0
4
0
10
10
203
244
... | ... |
@@ -354,8 +354,8 @@ |
354 | 354 |
and arc costs. |
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
|
355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
357 | 357 |
upper bounds for the flow values on the arcs, for which |
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
|
360 |
|
|
358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 | 361 |
signed supply values of the nodes. |
... | ... |
@@ -364,3 +364,3 @@ |
364 | 364 |
\f$-sup(u)\f$ demand. |
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z} |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
366 | 366 |
of the following optimization problem. |
... | ... |
@@ -406,3 +406,3 @@ |
406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
407 |
An \f$f: A\rightarrow\mathbf{Z} |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
... | ... |
@@ -415,3 +415,3 @@ |
415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
416 |
- For all \f$u\in V\f$: |
|
416 |
- For all \f$u\in V\f$ nodes: |
|
417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
... | ... |
@@ -420,6 +420,6 @@ |
420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
421 |
\f$uv\in A\f$ with respect to the |
|
421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
423 | 423 |
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
424 |
All algorithms provide dual solution (node potentials) as well, |
|
425 | 425 |
if an optimal flow is found. |
... | ... |
@@ -32,5 +32,2 @@ |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 | 33 |
|
... | ... |
@@ -52,4 +49,9 @@ |
52 | 49 |
/// in LEMON for the minimum cost flow problem. |
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
51 |
/// constraints. For more information see \ref SupplyType. |
|
52 |
/// |
|
53 |
/// Most of the parameters of the problem (except for the digraph) |
|
54 |
/// can be given using separate functions, and the algorithm can be |
|
55 |
/// executed using the \ref run() function. If some parameters are not |
|
56 |
/// specified, then default values will be used. |
|
55 | 57 |
/// |
... | ... |
@@ -90,7 +92,76 @@ |
90 | 92 |
|
91 |
/// \brief |
|
93 |
/// \brief Problem type constants for the \c run() function. |
|
92 | 94 |
/// |
93 |
/// Enum type |
|
95 |
/// Enum type containing the problem type constants that can be |
|
96 |
/// returned by the \ref run() function of the algorithm. |
|
97 |
enum ProblemType { |
|
98 |
/// The problem has no feasible solution (flow). |
|
99 |
INFEASIBLE, |
|
100 |
/// The problem has optimal solution (i.e. it is feasible and |
|
101 |
/// bounded), and the algorithm has found optimal flow and node |
|
102 |
/// potentials (primal and dual solutions). |
|
103 |
OPTIMAL, |
|
104 |
/// The objective function of the problem is unbounded, i.e. |
|
105 |
/// there is a directed cycle having negative total cost and |
|
106 |
/// infinite upper bound. |
|
107 |
UNBOUNDED |
|
108 |
}; |
|
109 |
|
|
110 |
/// \brief Constants for selecting the type of the supply constraints. |
|
111 |
/// |
|
112 |
/// Enum type containing constants for selecting the supply type, |
|
113 |
/// i.e. the direction of the inequalities in the supply/demand |
|
114 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
115 |
/// |
|
116 |
/// The default supply type is \c GEQ, since this form is supported |
|
117 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
118 |
/// algorithm, as well. |
|
119 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
94 | 120 |
/// function. |
95 | 121 |
/// |
122 |
/// Note that the equality form is a special case of both supply types. |
|
123 |
enum SupplyType { |
|
124 |
|
|
125 |
/// This option means that there are <em>"greater or equal"</em> |
|
126 |
/// supply/demand constraints in the definition, i.e. the exact |
|
127 |
/// formulation of the problem is the following. |
|
128 |
/** |
|
129 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
130 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
131 |
sup(u) \quad \forall u\in V \f] |
|
132 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
133 |
*/ |
|
134 |
/// It means that the total demand must be greater or equal to the |
|
135 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
136 |
/// negative) and all the supplies have to be carried out from |
|
137 |
/// the supply nodes, but there could be demands that are not |
|
138 |
/// satisfied. |
|
139 |
GEQ, |
|
140 |
/// It is just an alias for the \c GEQ option. |
|
141 |
CARRY_SUPPLIES = GEQ, |
|
142 |
|
|
143 |
/// This option means that there are <em>"less or equal"</em> |
|
144 |
/// supply/demand constraints in the definition, i.e. the exact |
|
145 |
/// formulation of the problem is the following. |
|
146 |
/** |
|
147 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
148 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
149 |
sup(u) \quad \forall u\in V \f] |
|
150 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
151 |
*/ |
|
152 |
/// It means that the total demand must be less or equal to the |
|
153 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
154 |
/// positive) and all the demands have to be satisfied, but there |
|
155 |
/// could be supplies that are not carried out from the supply |
|
156 |
/// nodes. |
|
157 |
LEQ, |
|
158 |
/// It is just an alias for the \c LEQ option. |
|
159 |
SATISFY_DEMANDS = LEQ |
|
160 |
}; |
|
161 |
|
|
162 |
/// \brief Constants for selecting the pivot rule. |
|
163 |
/// |
|
164 |
/// Enum type containing constants for selecting the pivot rule for |
|
165 |
/// the \ref run() function. |
|
166 |
/// |
|
96 | 167 |
/// \ref NetworkSimplex provides five different pivot rule |
... | ... |
@@ -133,54 +204,2 @@ |
133 | 204 |
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
185 |
|
|
186 | 205 |
private: |
... | ... |
@@ -222,3 +241,5 @@ |
222 | 241 |
Flow _pstflow; |
223 |
|
|
242 |
SupplyType _stype; |
|
243 |
|
|
244 |
Flow _sum_supply; |
|
224 | 245 |
|
... | ... |
@@ -261,2 +282,11 @@ |
261 | 282 |
|
283 |
public: |
|
284 |
|
|
285 |
/// \brief Constant for infinite upper bounds (capacities). |
|
286 |
/// |
|
287 |
/// Constant for infinite upper bounds (capacities). |
|
288 |
/// It is \c std::numeric_limits<Flow>::infinity() if available, |
|
289 |
/// \c std::numeric_limits<Flow>::max() otherwise. |
|
290 |
const Flow INF; |
|
291 |
|
|
262 | 292 |
private: |
... | ... |
@@ -663,13 +693,15 @@ |
663 | 693 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
664 |
_psupply(NULL), _pstsup(false), |
|
694 |
_psupply(NULL), _pstsup(false), _stype(GEQ), |
|
665 | 695 |
_flow_map(NULL), _potential_map(NULL), |
666 | 696 |
_local_flow(false), _local_potential(false), |
667 |
_node_id(graph) |
|
697 |
_node_id(graph), |
|
698 |
INF(std::numeric_limits<Flow>::has_infinity ? |
|
699 |
std::numeric_limits<Flow>::infinity() : |
|
700 |
std::numeric_limits<Flow>::max()) |
|
668 | 701 |
{ |
669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
670 |
std::numeric_limits<Flow>::is_signed, |
|
671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
673 |
std::numeric_limits<Cost>::is_signed, |
|
674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
702 |
// Check the value types |
|
703 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_signed, |
|
704 |
"The flow type of NetworkSimplex must be signed"); |
|
705 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
706 |
"The cost type of NetworkSimplex must be signed"); |
|
675 | 707 |
} |
... | ... |
@@ -691,5 +723,4 @@ |
691 | 723 |
/// This function sets the lower bounds on the arcs. |
692 |
/// If neither this function nor \ref boundMaps() is used before |
|
693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
694 |
/// |
|
724 |
/// If it is not used before calling \ref run(), the lower bounds |
|
725 |
/// will be set to zero on all arcs. |
|
695 | 726 |
/// |
... | ... |
@@ -700,4 +731,4 @@ |
700 | 731 |
/// \return <tt>(*this)</tt> |
701 |
template <typename LOWER> |
|
702 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
732 |
template <typename LowerMap> |
|
733 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
|
703 | 734 |
delete _plower; |
... | ... |
@@ -713,6 +744,5 @@ |
713 | 744 |
/// This function sets the upper bounds (capacities) on the arcs. |
714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
716 |
/// the upper bounds (capacities) will be set to |
|
717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
745 |
/// If it is not used before calling \ref run(), the upper bounds |
|
746 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
747 |
/// unbounded from above on each arc). |
|
718 | 748 |
/// |
... | ... |
@@ -723,4 +753,4 @@ |
723 | 753 |
/// \return <tt>(*this)</tt> |
724 |
template<typename UPPER> |
|
725 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
754 |
template<typename UpperMap> |
|
755 |
NetworkSimplex& upperMap(const UpperMap& map) { |
|
726 | 756 |
delete _pupper; |
... | ... |
@@ -733,39 +763,2 @@ |
733 | 763 |
|
734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
735 |
/// |
|
736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
737 |
/// It is just an alias for \ref upperMap(). |
|
738 |
/// |
|
739 |
/// \return <tt>(*this)</tt> |
|
740 |
template<typename CAP> |
|
741 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
742 |
return upperMap(map); |
|
743 |
} |
|
744 |
|
|
745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
746 |
/// |
|
747 |
/// This function sets the lower and upper bounds on the arcs. |
|
748 |
/// If neither this function nor \ref lowerMap() is used before |
|
749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
750 |
/// on all arcs. |
|
751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
753 |
/// the upper bounds (capacities) will be set to |
|
754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
755 |
/// |
|
756 |
/// \param lower An arc map storing the lower bounds. |
|
757 |
/// \param upper An arc map storing the upper bounds. |
|
758 |
/// |
|
759 |
/// The \c Value type of the maps must be convertible to the |
|
760 |
/// \c Flow type of the algorithm. |
|
761 |
/// |
|
762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
763 |
/// and \ref upperMap() separately. |
|
764 |
/// |
|
765 |
/// \return <tt>(*this)</tt> |
|
766 |
template <typename LOWER, typename UPPER> |
|
767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
768 |
return lowerMap(lower).upperMap(upper); |
|
769 |
} |
|
770 |
|
|
771 | 764 |
/// \brief Set the costs of the arcs. |
... | ... |
@@ -781,4 +774,4 @@ |
781 | 774 |
/// \return <tt>(*this)</tt> |
782 |
template<typename COST> |
|
783 |
NetworkSimplex& costMap(const COST& map) { |
|
775 |
template<typename CostMap> |
|
776 |
NetworkSimplex& costMap(const CostMap& map) { |
|
784 | 777 |
delete _pcost; |
... | ... |
@@ -803,4 +796,4 @@ |
803 | 796 |
/// \return <tt>(*this)</tt> |
804 |
template<typename SUP> |
|
805 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
797 |
template<typename SupplyMap> |
|
798 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
|
806 | 799 |
delete _psupply; |
... | ... |
@@ -822,2 +815,6 @@ |
822 | 815 |
/// |
816 |
/// Using this function has the same effect as using \ref supplyMap() |
|
817 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
818 |
/// assigned to \c t and all other nodes have zero supply value. |
|
819 |
/// |
|
823 | 820 |
/// \param s The source node. |
... | ... |
@@ -838,13 +835,13 @@ |
838 | 835 |
|
839 |
/// \brief Set the |
|
836 |
/// \brief Set the type of the supply constraints. |
|
840 | 837 |
/// |
841 |
/// This function sets the problem type for the algorithm. |
|
842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
838 |
/// This function sets the type of the supply/demand constraints. |
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
843 | 840 |
/// type will be used. |
844 | 841 |
/// |
845 |
/// For more information see \ref |
|
842 |
/// For more information see \ref SupplyType. |
|
846 | 843 |
/// |
847 | 844 |
/// \return <tt>(*this)</tt> |
848 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
849 |
_ptype = problem_type; |
|
845 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
|
846 |
_stype = supply_type; |
|
850 | 847 |
return *this; |
... | ... |
@@ -898,5 +895,4 @@ |
898 | 895 |
/// The paramters can be specified using functions \ref lowerMap(), |
899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
901 |
/// \ref |
|
896 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
897 |
/// \ref supplyType(), \ref flowMap() and \ref potentialMap(). |
|
902 | 898 |
/// For example, |
... | ... |
@@ -904,3 +900,3 @@ |
904 | 900 |
/// NetworkSimplex<ListDigraph> ns(graph); |
905 |
/// ns. |
|
901 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
906 | 902 |
/// .supplyMap(sup).run(); |
... | ... |
@@ -916,5 +912,14 @@ |
916 | 912 |
/// |
917 |
/// \return \c true if a feasible flow can be found. |
|
918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
919 |
|
|
913 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
914 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
915 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
916 |
/// optimal flow and node potentials (primal and dual solutions), |
|
917 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
918 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
919 |
/// cost and infinite upper bound. |
|
920 |
/// |
|
921 |
/// \see ProblemType, PivotRule |
|
922 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
923 |
if (!init()) return INFEASIBLE; |
|
924 |
return start(pivot_rule); |
|
920 | 925 |
} |
... | ... |
@@ -925,4 +930,3 @@ |
925 | 930 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
931 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(), |
|
928 | 932 |
/// \ref flowMap() and \ref potentialMap(). |
... | ... |
@@ -938,3 +942,3 @@ |
938 | 942 |
/// // First run |
939 |
/// ns.lowerMap(lower). |
|
943 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
940 | 944 |
/// .supplyMap(sup).run(); |
... | ... |
@@ -949,3 +953,3 @@ |
949 | 953 |
/// ns.reset(); |
950 |
/// ns. |
|
954 |
/// ns.upperMap(capacity).costMap(cost) |
|
951 | 955 |
/// .supplyMap(sup).run(); |
... | ... |
@@ -964,3 +968,3 @@ |
964 | 968 |
_pstsup = false; |
965 |
|
|
969 |
_stype = GEQ; |
|
966 | 970 |
if (_local_flow) delete _flow_map; |
... | ... |
@@ -987,3 +991,3 @@ |
987 | 991 |
/// This function returns the total cost of the found flow. |
988 |
/// |
|
992 |
/// Its complexity is O(e). |
|
989 | 993 |
/// |
... | ... |
@@ -999,5 +1003,5 @@ |
999 | 1003 |
/// \pre \ref run() must be called before using this function. |
1000 |
template <typename Num> |
|
1001 |
Num totalCost() const { |
|
1002 |
|
|
1004 |
template <typename Value> |
|
1005 |
Value totalCost() const { |
|
1006 |
Value c = 0; |
|
1003 | 1007 |
if (_pcost) { |
... | ... |
@@ -1052,3 +1056,3 @@ |
1052 | 1056 |
/// the found potentials, which form the dual solution of the |
1053 |
/// \ref min_cost_flow "minimum cost flow" |
|
1057 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
1054 | 1058 |
/// |
... | ... |
@@ -1103,3 +1107,3 @@ |
1103 | 1107 |
bool valid_supply = true; |
1104 |
|
|
1108 |
_sum_supply = 0; |
|
1105 | 1109 |
if (!_pstsup && !_psupply) { |
... | ... |
@@ -1114,6 +1118,6 @@ |
1114 | 1118 |
_supply[i] = (*_psupply)[n]; |
1115 |
|
|
1119 |
_sum_supply += _supply[i]; |
|
1116 | 1120 |
} |
1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
1121 |
valid_supply = (_stype == GEQ && _sum_supply <= 0) || |
|
1122 |
(_stype == LEQ && _sum_supply >= 0); |
|
1119 | 1123 |
} else { |
... | ... |
@@ -1129,88 +1133,14 @@ |
1129 | 1133 |
|
1130 |
// Infinite capacity value |
|
1131 |
Flow inf_cap = |
|
1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
1133 |
std::numeric_limits<Flow>::infinity() : |
|
1134 |
std::numeric_limits<Flow>::max(); |
|
1135 |
|
|
1136 | 1134 |
// Initialize artifical cost |
1137 |
Cost |
|
1135 |
Cost ART_COST; |
|
1138 | 1136 |
if (std::numeric_limits<Cost>::is_exact) { |
1139 |
|
|
1137 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1140 | 1138 |
} else { |
1141 |
|
|
1139 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
1142 | 1140 |
for (int i = 0; i != _arc_num; ++i) { |
1143 |
if (_cost[i] > |
|
1141 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
1144 | 1142 |
} |
1145 |
|
|
1143 |
ART_COST = (ART_COST + 1) * _node_num; |
|
1146 | 1144 |
} |
1147 | 1145 |
|
1148 |
// Run Circulation to check if a feasible solution exists |
|
1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
1151 |
FlowNodeMap *csup = NULL; |
|
1152 |
bool local_csup = false; |
|
1153 |
if (_psupply) { |
|
1154 |
csup = _psupply; |
|
1155 |
} else { |
|
1156 |
csup = new FlowNodeMap(_graph, 0); |
|
1157 |
(*csup)[_psource] = _pstflow; |
|
1158 |
(*csup)[_ptarget] = -_pstflow; |
|
1159 |
local_csup = true; |
|
1160 |
} |
|
1161 |
bool circ_result = false; |
|
1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1163 |
// GEQ problem type |
|
1164 |
if (_plower) { |
|
1165 |
if (_pupper) { |
|
1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} else { |
|
1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
1172 |
circ_result = circ.run(); |
|
1173 |
} |
|
1174 |
} else { |
|
1175 |
if (_pupper) { |
|
1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} else { |
|
1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
1182 |
circ_result = circ.run(); |
|
1183 |
} |
|
1184 |
} |
|
1185 |
} else { |
|
1186 |
// LEQ problem type |
|
1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1189 |
RevGraph rgraph(_graph); |
|
1190 |
NegNodeMap neg_csup(*csup); |
|
1191 |
if (_plower) { |
|
1192 |
if (_pupper) { |
|
1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} else { |
|
1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
1199 |
circ_result = circ.run(); |
|
1200 |
} |
|
1201 |
} else { |
|
1202 |
if (_pupper) { |
|
1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} else { |
|
1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
1209 |
circ_result = circ.run(); |
|
1210 |
} |
|
1211 |
} |
|
1212 |
} |
|
1213 |
if (local_csup) delete csup; |
|
1214 |
if (!circ_result) return false; |
|
1215 |
|
|
1216 | 1146 |
// Set data for the artificial root node |
... | ... |
@@ -1223,7 +1153,7 @@ |
1223 | 1153 |
_last_succ[_root] = _root - 1; |
1224 |
_supply[_root] = -sum_supply; |
|
1225 |
if (sum_supply < 0) { |
|
1226 |
|
|
1154 |
_supply[_root] = -_sum_supply; |
|
1155 |
if (_sum_supply < 0) { |
|
1156 |
_pi[_root] = -ART_COST; |
|
1227 | 1157 |
} else { |
1228 |
_pi[_root] = |
|
1158 |
_pi[_root] = ART_COST; |
|
1229 | 1159 |
} |
... | ... |
@@ -1262,3 +1192,3 @@ |
1262 | 1192 |
for (int i = 0; i != _arc_num; ++i) |
1263 |
_cap[i] = |
|
1193 |
_cap[i] = INF; |
|
1264 | 1194 |
} |
... | ... |
@@ -1277,4 +1207,13 @@ |
1277 | 1207 |
Flow c = (*_plower)[_arc_ref[i]]; |
1278 |
if (c != 0) { |
|
1279 |
_cap[i] -= c; |
|
1208 |
if (c > 0) { |
|
1209 |
if (_cap[i] < INF) _cap[i] -= c; |
|
1210 |
_supply[_source[i]] -= c; |
|
1211 |
_supply[_target[i]] += c; |
|
1212 |
} |
|
1213 |
else if (c < 0) { |
|
1214 |
if (_cap[i] < INF + c) { |
|
1215 |
_cap[i] -= c; |
|
1216 |
} else { |
|
1217 |
_cap[i] = INF; |
|
1218 |
} |
|
1280 | 1219 |
_supply[_source[i]] -= c; |
... | ... |
@@ -1293,9 +1232,9 @@ |
1293 | 1232 |
_pred[u] = e; |
1294 |
_cost[e] = art_cost; |
|
1295 |
_cap[e] = inf_cap; |
|
1233 |
_cost[e] = ART_COST; |
|
1234 |
_cap[e] = INF; |
|
1296 | 1235 |
_state[e] = STATE_TREE; |
1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
1236 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) { |
|
1298 | 1237 |
_flow[e] = _supply[u]; |
1299 | 1238 |
_forward[u] = true; |
1300 |
_pi[u] = - |
|
1239 |
_pi[u] = -ART_COST + _pi[_root]; |
|
1301 | 1240 |
} else { |
... | ... |
@@ -1303,3 +1242,3 @@ |
1303 | 1242 |
_forward[u] = false; |
1304 |
_pi[u] = |
|
1243 |
_pi[u] = ART_COST + _pi[_root]; |
|
1305 | 1244 |
} |
... | ... |
@@ -1344,3 +1283,4 @@ |
1344 | 1283 |
e = _pred[u]; |
1345 |
d = _forward[u] ? |
|
1284 |
d = _forward[u] ? |
|
1285 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
1346 | 1286 |
if (d < delta) { |
... | ... |
@@ -1354,3 +1294,4 @@ |
1354 | 1294 |
e = _pred[u]; |
1355 |
d = _forward[u] ? |
|
1295 |
d = _forward[u] ? |
|
1296 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
1356 | 1297 |
if (d <= delta) { |
... | ... |
@@ -1528,3 +1469,3 @@ |
1528 | 1469 |
// Execute the algorithm |
1529 |
|
|
1470 |
ProblemType start(PivotRule pivot_rule) { |
|
1530 | 1471 |
// Select the pivot rule implementation |
... | ... |
@@ -1542,3 +1483,3 @@ |
1542 | 1483 |
} |
1543 |
return |
|
1484 |
return INFEASIBLE; // avoid warning |
|
1544 | 1485 |
} |
... | ... |
@@ -1546,3 +1487,3 @@ |
1546 | 1487 |
template <typename PivotRuleImpl> |
1547 |
|
|
1488 |
ProblemType start() { |
|
1548 | 1489 |
PivotRuleImpl pivot(*this); |
... | ... |
@@ -1553,2 +1494,3 @@ |
1553 | 1494 |
bool change = findLeavingArc(); |
1495 |
if (delta >= INF) return UNBOUNDED; |
|
1554 | 1496 |
changeFlow(change); |
... | ... |
@@ -1559,2 +1501,19 @@ |
1559 | 1501 |
} |
1502 |
|
|
1503 |
// Check feasibility |
|
1504 |
if (_sum_supply < 0) { |
|
1505 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1506 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1507 |
} |
|
1508 |
} |
|
1509 |
else if (_sum_supply > 0) { |
|
1510 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1511 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1512 |
} |
|
1513 |
} |
|
1514 |
else { |
|
1515 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1516 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1517 |
} |
|
1518 |
} |
|
1560 | 1519 |
|
... | ... |
@@ -1576,3 +1535,3 @@ |
1576 | 1535 |
|
1577 |
return |
|
1536 |
return OPTIMAL; |
|
1578 | 1537 |
} |
... | ... |
@@ -20,2 +20,3 @@ |
20 | 20 |
#include <fstream> |
21 |
#include <limits> |
|
21 | 22 |
|
... | ... |
@@ -35,39 +36,39 @@ |
35 | 36 |
"@nodes\n" |
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 |
"\n" |
|
37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
|
38 |
" 1 20 27 0 30 20 30\n" |
|
39 |
" 2 -4 0 0 0 -8 -3\n" |
|
40 |
" 3 0 0 0 0 0 0\n" |
|
41 |
" 4 0 0 0 0 0 0\n" |
|
42 |
" 5 9 0 0 0 6 11\n" |
|
43 |
" 6 -6 0 0 0 -5 -6\n" |
|
44 |
" 7 0 0 0 0 0 0\n" |
|
45 |
" 8 0 0 0 0 0 3\n" |
|
46 |
" 9 3 0 0 0 0 0\n" |
|
47 |
" 10 -2 0 0 0 -7 -2\n" |
|
48 |
" 11 0 0 0 0 -10 0\n" |
|
49 |
" 12 -20 -27 0 -30 -30 -20\n" |
|
50 |
"\n" |
|
50 | 51 |
"@arcs\n" |
51 |
" cost cap low1 low2\n" |
|
52 |
" 1 2 70 11 0 8\n" |
|
53 |
" 1 3 150 3 0 1\n" |
|
54 |
" 1 4 80 15 0 2\n" |
|
55 |
" 2 8 80 12 0 0\n" |
|
56 |
" 3 5 140 5 0 3\n" |
|
57 |
" 4 6 60 10 0 1\n" |
|
58 |
" 4 7 80 2 0 0\n" |
|
59 |
" 4 8 110 3 0 0\n" |
|
60 |
" 5 7 60 14 0 0\n" |
|
61 |
" 5 11 120 12 0 0\n" |
|
62 |
" 6 3 0 3 0 0\n" |
|
63 |
" 6 9 140 4 0 0\n" |
|
64 |
" 6 10 90 8 0 0\n" |
|
65 |
" 7 1 30 5 0 0\n" |
|
66 |
" 8 12 60 16 0 4\n" |
|
67 |
" 9 12 50 6 0 0\n" |
|
68 |
"10 12 70 13 0 5\n" |
|
69 |
"10 2 100 7 0 0\n" |
|
70 |
"10 7 60 10 0 0\n" |
|
71 |
"11 10 20 14 0 6\n" |
|
72 |
"12 11 30 10 0 0\n" |
|
52 |
" cost cap low1 low2 low3\n" |
|
53 |
" 1 2 70 11 0 8 8\n" |
|
54 |
" 1 3 150 3 0 1 0\n" |
|
55 |
" 1 4 80 15 0 2 2\n" |
|
56 |
" 2 8 80 12 0 0 0\n" |
|
57 |
" 3 5 140 5 0 3 1\n" |
|
58 |
" 4 6 60 10 0 1 0\n" |
|
59 |
" 4 7 80 2 0 0 0\n" |
|
60 |
" 4 8 110 3 0 0 0\n" |
|
61 |
" 5 7 60 14 0 0 0\n" |
|
62 |
" 5 11 120 12 0 0 0\n" |
|
63 |
" 6 3 0 3 0 0 0\n" |
|
64 |
" 6 9 140 4 0 0 0\n" |
|
65 |
" 6 10 90 8 0 0 0\n" |
|
66 |
" 7 1 30 5 0 0 -5\n" |
|
67 |
" 8 12 60 16 0 4 3\n" |
|
68 |
" 9 12 50 6 0 0 0\n" |
|
69 |
"10 12 70 13 0 5 2\n" |
|
70 |
"10 2 100 7 0 0 0\n" |
|
71 |
"10 7 60 10 0 0 -3\n" |
|
72 |
"11 10 20 14 0 6 -20\n" |
|
73 |
"12 11 30 10 0 0 -10\n" |
|
73 | 74 |
"\n" |
... | ... |
@@ -78,3 +79,3 @@ |
78 | 79 |
|
79 |
enum |
|
80 |
enum SupplyType { |
|
80 | 81 |
EQ, |
... | ... |
@@ -100,4 +101,2 @@ |
100 | 101 |
.upperMap(upper) |
101 |
.capacityMap(upper) |
|
102 |
.boundMaps(lower, upper) |
|
103 | 102 |
.costMap(cost) |
... | ... |
@@ -114,6 +113,8 @@ |
114 | 113 |
|
115 |
|
|
114 |
c = const_mcf.totalCost(); |
|
116 | 115 |
double x = const_mcf.template totalCost<double>(); |
117 | 116 |
v = const_mcf.flow(a); |
118 |
|
|
117 |
c = const_mcf.potential(n); |
|
118 |
|
|
119 |
v = const_mcf.INF; |
|
119 | 120 |
|
... | ... |
@@ -139,2 +140,3 @@ |
139 | 140 |
Flow v; |
141 |
Cost c; |
|
140 | 142 |
bool b; |
... | ... |
@@ -153,3 +155,3 @@ |
153 | 155 |
const SM& supply, const FM& flow, |
154 |
|
|
156 |
SupplyType type = EQ ) |
|
155 | 157 |
{ |
... | ... |
@@ -210,12 +212,13 @@ |
210 | 212 |
typename LM, typename UM, |
211 |
typename CM, typename SM > |
|
212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
213 |
typename CM, typename SM, |
|
214 |
typename PT > |
|
215 |
void checkMcf( const MCF& mcf, PT mcf_result, |
|
213 | 216 |
const GR& gr, const LM& lower, const UM& upper, |
214 | 217 |
const CM& cost, const SM& supply, |
215 |
bool |
|
218 |
PT result, bool optimal, typename CM::Value total, |
|
216 | 219 |
const std::string &test_id = "", |
217 |
|
|
220 |
SupplyType type = EQ ) |
|
218 | 221 |
{ |
219 | 222 |
check(mcf_result == result, "Wrong result " + test_id); |
220 |
if ( |
|
223 |
if (optimal) { |
|
221 | 224 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
... | ... |
@@ -246,4 +249,4 @@ |
246 | 249 |
Digraph gr; |
247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
250 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
251 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
249 | 252 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
... | ... |
@@ -257,2 +260,3 @@ |
257 | 260 |
.arcMap("low2", l2) |
261 |
.arcMap("low3", l3) |
|
258 | 262 |
.nodeMap("sup1", s1) |
... | ... |
@@ -262,2 +266,3 @@ |
262 | 266 |
.nodeMap("sup5", s5) |
267 |
.nodeMap("sup6", s6) |
|
263 | 268 |
.node("source", v) |
... | ... |
@@ -265,2 +270,42 @@ |
265 | 270 |
.run(); |
271 |
|
|
272 |
// Build a test digraph for testing negative costs |
|
273 |
Digraph ngr; |
|
274 |
Node n1 = ngr.addNode(); |
|
275 |
Node n2 = ngr.addNode(); |
|
276 |
Node n3 = ngr.addNode(); |
|
277 |
Node n4 = ngr.addNode(); |
|
278 |
Node n5 = ngr.addNode(); |
|
279 |
Node n6 = ngr.addNode(); |
|
280 |
Node n7 = ngr.addNode(); |
|
281 |
|
|
282 |
Arc a1 = ngr.addArc(n1, n2); |
|
283 |
Arc a2 = ngr.addArc(n1, n3); |
|
284 |
Arc a3 = ngr.addArc(n2, n4); |
|
285 |
Arc a4 = ngr.addArc(n3, n4); |
|
286 |
Arc a5 = ngr.addArc(n3, n2); |
|
287 |
Arc a6 = ngr.addArc(n5, n3); |
|
288 |
Arc a7 = ngr.addArc(n5, n6); |
|
289 |
Arc a8 = ngr.addArc(n6, n7); |
|
290 |
Arc a9 = ngr.addArc(n7, n5); |
|
291 |
|
|
292 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
293 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
294 |
Digraph::NodeMap<int> ns(ngr, 0); |
|
295 |
|
|
296 |
nl2[a7] = 1000; |
|
297 |
nl2[a8] = -1000; |
|
298 |
|
|
299 |
ns[n1] = 100; |
|
300 |
ns[n4] = -100; |
|
301 |
|
|
302 |
nc[a1] = 100; |
|
303 |
nc[a2] = 30; |
|
304 |
nc[a3] = 20; |
|
305 |
nc[a4] = 80; |
|
306 |
nc[a5] = 50; |
|
307 |
nc[a6] = 10; |
|
308 |
nc[a7] = 80; |
|
309 |
nc[a8] = 30; |
|
310 |
nc[a9] = -120; |
|
266 | 311 |
|
... | ... |
@@ -273,42 +318,56 @@ |
273 | 318 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
319 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
275 | 320 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
321 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
277 | 322 |
mcf.lowerMap(l2); |
278 | 323 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
324 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
280 | 325 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
326 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
282 | 327 |
mcf.reset(); |
283 | 328 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
329 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
285 | 330 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
331 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
287 | 332 |
mcf.reset(); |
288 | 333 |
checkMcf(mcf, mcf.run(), |
289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
291 |
gr, |
|
334 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
335 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
336 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
337 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
338 |
checkMcf(mcf, mcf.run(), |
|
339 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
292 | 340 |
|
293 | 341 |
// Check the GEQ form |
294 |
mcf.reset().upperMap(u).costMap(c).supplyMap( |
|
342 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
295 | 343 |
checkMcf(mcf, mcf.run(), |
296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
297 |
mcf.problemType(mcf.GEQ); |
|
344 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
345 |
mcf.supplyType(mcf.GEQ); |
|
298 | 346 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
347 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
348 |
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); |
|
301 | 349 |
checkMcf(mcf, mcf.run(), |
302 |
gr, l2, u, c, |
|
350 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
303 | 351 |
|
304 | 352 |
// Check the LEQ form |
305 |
mcf.reset().problemType(mcf.LEQ); |
|
306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
353 |
mcf.reset().supplyType(mcf.LEQ); |
|
354 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
307 | 355 |
checkMcf(mcf, mcf.run(), |
308 |
gr, l1, u, c, |
|
356 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
309 | 357 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
358 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
359 |
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); |
|
312 | 360 |
checkMcf(mcf, mcf.run(), |
313 |
gr, l2, u, c, |
|
361 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
362 |
|
|
363 |
// Check negative costs |
|
364 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
365 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
366 |
checkMcf(nmcf, nmcf.run(), |
|
367 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
368 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
369 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
370 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
371 |
checkMcf(nmcf, nmcf.run(), |
|
372 |
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); |
|
314 | 373 |
} |
... | ... |
@@ -318,14 +377,14 @@ |
318 | 377 |
NetworkSimplex<Digraph> mcf(gr); |
319 |
mcf.supplyMap(s1).costMap(c). |
|
378 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
320 | 379 |
|
321 | 380 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
381 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
323 | 382 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
383 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
325 | 384 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
385 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
327 | 386 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
387 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
329 | 388 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
389 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
331 | 390 |
} |
... | ... |
@@ -121,4 +121,4 @@ |
121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
|
123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
|
124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
0 comments (0 inline)