0
6
0
30
9
110
110
166
139
125
118
184
179
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 |
@defgroup matrices Matrices |
|
230 |
@ingroup datas |
|
231 |
\brief Two dimensional data storages implemented in LEMON. |
|
232 |
|
|
233 |
This group contains two dimensional data storages implemented in LEMON. |
|
234 |
*/ |
|
235 |
|
|
236 |
/** |
|
237 | 229 |
@defgroup paths Path Structures |
238 | 230 |
@ingroup datas |
239 | 231 |
\brief %Path structures implemented in LEMON. |
240 | 232 |
|
241 | 233 |
This group contains the path structures implemented in LEMON. |
242 | 234 |
|
243 | 235 |
LEMON provides flexible data structures to work with paths. |
244 | 236 |
All of them have similar interfaces and they can be copied easily with |
245 | 237 |
assignment operators and copy constructors. This makes it easy and |
246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
247 | 239 |
any kind of path structure. |
248 | 240 |
|
249 |
\sa |
|
241 |
\sa \ref concepts::Path "Path concept" |
|
242 |
*/ |
|
243 |
|
|
244 |
/** |
|
245 |
@defgroup heaps Heap Structures |
|
246 |
@ingroup datas |
|
247 |
\brief %Heap structures implemented in LEMON. |
|
248 |
|
|
249 |
This group contains the heap structures implemented in LEMON. |
|
250 |
|
|
251 |
LEMON provides several heap classes. They are efficient implementations |
|
252 |
of the abstract data type \e priority \e queue. They store items with |
|
253 |
specified values called \e priorities in such a way that finding and |
|
254 |
removing the item with minimum priority are efficient. |
|
255 |
The basic operations are adding and erasing items, changing the priority |
|
256 |
of an item, etc. |
|
257 |
|
|
258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
259 |
The heap implementations have the same interface, thus any of them can be |
|
260 |
used easily in such algorithms. |
|
261 |
|
|
262 |
\sa \ref concepts::Heap "Heap concept" |
|
263 |
*/ |
|
264 |
|
|
265 |
/** |
|
266 |
@defgroup matrices Matrices |
|
267 |
@ingroup datas |
|
268 |
\brief Two dimensional data storages implemented in LEMON. |
|
269 |
|
|
270 |
This group contains two dimensional data storages implemented in LEMON. |
|
250 | 271 |
*/ |
251 | 272 |
|
252 | 273 |
/** |
253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
254 | 275 |
@ingroup datas |
255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
256 | 277 |
|
257 | 278 |
This group contains some data structures implemented in LEMON in |
258 | 279 |
order to make it easier to implement combinatorial algorithms. |
259 | 280 |
*/ |
260 | 281 |
|
261 | 282 |
/** |
262 | 283 |
@defgroup algs Algorithms |
263 | 284 |
\brief This group contains the several algorithms |
264 | 285 |
implemented in LEMON. |
265 | 286 |
|
266 | 287 |
This group contains the several algorithms |
267 | 288 |
implemented in LEMON. |
268 | 289 |
*/ |
269 | 290 |
|
270 | 291 |
/** |
271 | 292 |
@defgroup search Graph Search |
272 | 293 |
@ingroup algs |
273 | 294 |
\brief Common graph search algorithms. |
274 | 295 |
|
275 | 296 |
This group contains the common graph search algorithms, namely |
276 | 297 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
277 | 298 |
*/ |
278 | 299 |
|
279 | 300 |
/** |
280 | 301 |
@defgroup shortest_path Shortest Path Algorithms |
281 | 302 |
@ingroup algs |
282 | 303 |
\brief Algorithms for finding shortest paths. |
283 | 304 |
|
284 | 305 |
This group contains the algorithms for finding shortest paths in digraphs. |
285 | 306 |
|
286 | 307 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
287 | 308 |
when all arc lengths are non-negative. |
288 | 309 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
289 | 310 |
from a source node when arc lenghts can be either positive or negative, |
290 | 311 |
but the digraph should not contain directed cycles with negative total |
291 | 312 |
length. |
292 | 313 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
293 | 314 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
294 | 315 |
lenghts can be either positive or negative, but the digraph should |
295 | 316 |
not contain directed cycles with negative total length. |
296 | 317 |
- \ref Suurballe A successive shortest path algorithm for finding |
297 | 318 |
arc-disjoint paths between two nodes having minimum total length. |
298 | 319 |
*/ |
299 | 320 |
|
300 | 321 |
/** |
301 | 322 |
@defgroup max_flow Maximum Flow Algorithms |
302 | 323 |
@ingroup algs |
303 | 324 |
\brief Algorithms for finding maximum flows. |
304 | 325 |
|
305 | 326 |
This group contains the algorithms for finding maximum flows and |
306 | 327 |
feasible circulations. |
307 | 328 |
|
308 | 329 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
309 | 330 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
310 | 331 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
311 | 332 |
\f$s, t \in V\f$ source and target nodes. |
312 | 333 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
313 | 334 |
following optimization problem. |
314 | 335 |
|
315 | 336 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
316 | 337 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
317 | 338 |
\quad \forall u\in V\setminus\{s,t\} \f] |
318 | 339 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
319 | 340 |
|
320 | 341 |
LEMON contains several algorithms for solving maximum flow problems: |
321 | 342 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
322 | 343 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
323 | 344 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
324 | 345 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
325 | 346 |
|
326 | 347 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
327 | 348 |
fastest method for computing a maximum flow. All implementations |
328 | 349 |
also provide functions to query the minimum cut, which is the dual |
329 | 350 |
problem of maximum flow. |
330 | 351 |
|
331 | 352 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
332 | 353 |
for finding feasible circulations, which is a somewhat different problem, |
333 | 354 |
but it is strongly related to maximum flow. |
334 | 355 |
For more information, see \ref Circulation. |
335 | 356 |
*/ |
336 | 357 |
|
337 | 358 |
/** |
338 | 359 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
339 | 360 |
@ingroup algs |
340 | 361 |
|
341 | 362 |
\brief Algorithms for finding minimum cost flows and circulations. |
342 | 363 |
|
343 | 364 |
This group contains the algorithms for finding minimum cost flows and |
344 | 365 |
circulations. For more information about this problem and its dual |
345 | 366 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
346 | 367 |
|
347 | 368 |
LEMON contains several algorithms for this problem. |
348 | 369 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
349 | 370 |
pivot strategies. |
350 | 371 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
351 | 372 |
cost scaling. |
352 | 373 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
353 | 374 |
capacity scaling. |
354 | 375 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
355 | 376 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
356 | 377 |
|
357 | 378 |
In general NetworkSimplex is the most efficient implementation, |
358 | 379 |
but in special cases other algorithms could be faster. |
359 | 380 |
For example, if the total supply and/or capacities are rather small, |
360 | 381 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
361 | 382 |
*/ |
362 | 383 |
|
363 | 384 |
/** |
364 | 385 |
@defgroup min_cut Minimum Cut Algorithms |
365 | 386 |
@ingroup algs |
366 | 387 |
|
367 | 388 |
\brief Algorithms for finding minimum cut in graphs. |
368 | 389 |
|
369 | 390 |
This group contains the algorithms for finding minimum cut in graphs. |
370 | 391 |
|
371 | 392 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
372 | 393 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
373 | 394 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
374 | 395 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
375 | 396 |
cut is the \f$X\f$ solution of the next optimization problem: |
376 | 397 |
|
377 | 398 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
378 | 399 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
379 | 400 |
|
380 | 401 |
LEMON contains several algorithms related to minimum cut problems: |
381 | 402 |
|
382 | 403 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
383 | 404 |
in directed graphs. |
384 | 405 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
385 | 406 |
calculating minimum cut in undirected graphs. |
386 | 407 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
387 | 408 |
all-pairs minimum cut in undirected graphs. |
388 | 409 |
|
389 | 410 |
If you want to find minimum cut just between two distinict nodes, |
390 | 411 |
see the \ref max_flow "maximum flow problem". |
391 | 412 |
*/ |
392 | 413 |
|
393 | 414 |
/** |
394 | 415 |
@defgroup graph_properties Connectivity and Other Graph Properties |
395 | 416 |
@ingroup algs |
396 | 417 |
\brief Algorithms for discovering the graph properties |
397 | 418 |
|
398 | 419 |
This group contains the algorithms for discovering the graph properties |
399 | 420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
400 | 421 |
|
401 | 422 |
\image html edge_biconnected_components.png |
402 | 423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
403 | 424 |
*/ |
404 | 425 |
|
405 | 426 |
/** |
406 | 427 |
@defgroup planar Planarity Embedding and Drawing |
407 | 428 |
@ingroup algs |
408 | 429 |
\brief Algorithms for planarity checking, embedding and drawing |
409 | 430 |
|
410 | 431 |
This group contains the algorithms for planarity checking, |
411 | 432 |
embedding and drawing. |
412 | 433 |
|
413 | 434 |
\image html planar.png |
414 | 435 |
\image latex planar.eps "Plane graph" width=\textwidth |
415 | 436 |
*/ |
416 | 437 |
|
417 | 438 |
/** |
418 | 439 |
@defgroup matching Matching Algorithms |
419 | 440 |
@ingroup algs |
420 | 441 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
421 | 442 |
|
422 | 443 |
This group contains the algorithms for calculating |
423 | 444 |
matchings in graphs and bipartite graphs. The general matching problem is |
424 | 445 |
finding a subset of the edges for which each node has at most one incident |
425 | 446 |
edge. |
426 | 447 |
|
427 | 448 |
There are several different algorithms for calculate matchings in |
428 | 449 |
graphs. The matching problems in bipartite graphs are generally |
429 | 450 |
easier than in general graphs. The goal of the matching optimization |
430 | 451 |
can be finding maximum cardinality, maximum weight or minimum cost |
431 | 452 |
matching. The search can be constrained to find perfect or |
432 | 453 |
maximum cardinality matching. |
433 | 454 |
|
434 | 455 |
The matching algorithms implemented in LEMON: |
435 | 456 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
436 | 457 |
for calculating maximum cardinality matching in bipartite graphs. |
437 | 458 |
- \ref PrBipartiteMatching Push-relabel algorithm |
438 | 459 |
for calculating maximum cardinality matching in bipartite graphs. |
439 | 460 |
- \ref MaxWeightedBipartiteMatching |
440 | 461 |
Successive shortest path algorithm for calculating maximum weighted |
441 | 462 |
matching and maximum weighted bipartite matching in bipartite graphs. |
442 | 463 |
- \ref MinCostMaxBipartiteMatching |
443 | 464 |
Successive shortest path algorithm for calculating minimum cost maximum |
444 | 465 |
matching in bipartite graphs. |
445 | 466 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
446 | 467 |
maximum cardinality matching in general graphs. |
447 | 468 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
448 | 469 |
maximum weighted matching in general graphs. |
449 | 470 |
- \ref MaxWeightedPerfectMatching |
450 | 471 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
451 | 472 |
perfect matching in general graphs. |
452 | 473 |
|
453 | 474 |
\image html bipartite_matching.png |
454 | 475 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
455 | 476 |
*/ |
456 | 477 |
|
457 | 478 |
/** |
458 | 479 |
@defgroup spantree Minimum Spanning Tree Algorithms |
459 | 480 |
@ingroup algs |
460 | 481 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
461 | 482 |
|
462 | 483 |
This group contains the algorithms for finding minimum cost spanning |
463 | 484 |
trees and arborescences. |
464 | 485 |
*/ |
465 | 486 |
|
466 | 487 |
/** |
467 | 488 |
@defgroup auxalg Auxiliary Algorithms |
468 | 489 |
@ingroup algs |
469 | 490 |
\brief Auxiliary algorithms implemented in LEMON. |
470 | 491 |
|
471 | 492 |
This group contains some algorithms implemented in LEMON |
472 | 493 |
in order to make it easier to implement complex algorithms. |
473 | 494 |
*/ |
474 | 495 |
|
475 | 496 |
/** |
476 | 497 |
@defgroup approx Approximation Algorithms |
477 | 498 |
@ingroup algs |
478 | 499 |
\brief Approximation algorithms. |
479 | 500 |
|
480 | 501 |
This group contains the approximation and heuristic algorithms |
481 | 502 |
implemented in LEMON. |
482 | 503 |
*/ |
483 | 504 |
|
484 | 505 |
/** |
485 | 506 |
@defgroup gen_opt_group General Optimization Tools |
486 | 507 |
\brief This group contains some general optimization frameworks |
487 | 508 |
implemented in LEMON. |
488 | 509 |
|
489 | 510 |
This group contains some general optimization frameworks |
490 | 511 |
implemented in LEMON. |
491 | 512 |
*/ |
492 | 513 |
|
493 | 514 |
/** |
494 | 515 |
@defgroup lp_group Lp and Mip Solvers |
495 | 516 |
@ingroup gen_opt_group |
496 | 517 |
\brief Lp and Mip solver interfaces for LEMON. |
497 | 518 |
|
498 | 519 |
This group contains Lp and Mip solver interfaces for LEMON. The |
499 | 520 |
various LP solvers could be used in the same manner with this |
500 | 521 |
interface. |
501 | 522 |
*/ |
502 | 523 |
|
503 | 524 |
/** |
504 | 525 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
505 | 526 |
@ingroup lp_group |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Binary |
|
24 |
///\brief Binary heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 |
///\ingroup |
|
32 |
/// \ingroup heaps |
|
33 | 33 |
/// |
34 |
///\brief |
|
34 |
/// \brief Binary heap data structure. |
|
35 | 35 |
/// |
36 |
///This class implements the \e binary \e heap data structure. |
|
36 |
/// This class implements the \e binary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
37 | 38 |
/// |
38 |
///A \e heap is a data structure for storing items with specified values |
|
39 |
///called \e priorities in such a way that finding the item with minimum |
|
40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
41 |
///In a heap one can change the priority of an item, add or erase an |
|
42 |
///item, etc. |
|
43 |
/// |
|
44 |
///\tparam PR Type of the priority of the items. |
|
45 |
///\tparam IM A read and writable item map with int values, used internally |
|
46 |
///to handle the cross references. |
|
47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
48 |
///The default is \c std::less<PR>. |
|
49 |
/// |
|
50 |
///\sa FibHeap |
|
51 |
///\sa Dijkstra |
|
39 |
/// \tparam PR Type of the priorities of the items. |
|
40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
41 |
/// internally to handle the cross references. |
|
42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
43 |
/// The default is \c std::less<PR>. |
|
44 |
#ifdef DOXYGEN |
|
45 |
template <typename PR, typename IM, typename CMP> |
|
46 |
#else |
|
52 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
48 |
#endif |
|
53 | 49 |
class BinHeap { |
50 |
public: |
|
54 | 51 |
|
55 |
public: |
|
56 |
///\e |
|
52 |
/// Type of the item-int map. |
|
57 | 53 |
typedef IM ItemIntMap; |
58 |
/// |
|
54 |
/// Type of the priorities. |
|
59 | 55 |
typedef PR Prio; |
60 |
/// |
|
56 |
/// Type of the items stored in the heap. |
|
61 | 57 |
typedef typename ItemIntMap::Key Item; |
62 |
/// |
|
58 |
/// Type of the item-priority pairs. |
|
63 | 59 |
typedef std::pair<Item,Prio> Pair; |
64 |
/// |
|
60 |
/// Functor type for comparing the priorities. |
|
65 | 61 |
typedef CMP Compare; |
66 | 62 |
|
67 |
/// \brief Type to represent the |
|
63 |
/// \brief Type to represent the states of the items. |
|
68 | 64 |
/// |
69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
65 |
/// Each item has a state associated to it. It can be "in heap", |
|
66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 | 67 |
/// heap's point of view, but may be useful to the user. |
72 | 68 |
/// |
73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 71 |
enum State { |
76 | 72 |
IN_HEAP = 0, ///< = 0. |
77 | 73 |
PRE_HEAP = -1, ///< = -1. |
78 | 74 |
POST_HEAP = -2 ///< = -2. |
79 | 75 |
}; |
80 | 76 |
|
81 | 77 |
private: |
82 | 78 |
std::vector<Pair> _data; |
83 | 79 |
Compare _comp; |
84 | 80 |
ItemIntMap &_iim; |
85 | 81 |
|
86 | 82 |
public: |
87 |
|
|
83 |
|
|
84 |
/// \brief Constructor. |
|
88 | 85 |
/// |
89 |
/// The constructor. |
|
90 |
/// \param map should be given to the constructor, since it is used |
|
91 |
/// internally to handle the cross references. The value of the map |
|
92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
86 |
/// Constructor. |
|
87 |
/// \param map A map that assigns \c int values to the items. |
|
88 |
/// It is used internally to handle the cross references. |
|
89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 91 |
|
95 |
/// \brief |
|
92 |
/// \brief Constructor. |
|
96 | 93 |
/// |
97 |
/// The constructor. |
|
98 |
/// \param map should be given to the constructor, since it is used |
|
99 |
/// internally to handle the cross references. The value of the map |
|
100 |
/// should be PRE_HEAP (-1) for each element. |
|
101 |
/// |
|
102 |
/// \param comp The comparator function object. |
|
94 |
/// Constructor. |
|
95 |
/// \param map A map that assigns \c int values to the items. |
|
96 |
/// It is used internally to handle the cross references. |
|
97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
98 |
/// \param comp The function object used for comparing the priorities. |
|
103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
104 | 100 |
: _iim(map), _comp(comp) {} |
105 | 101 |
|
106 | 102 |
|
107 |
/// The number of items stored in the heap. |
|
103 |
/// \brief The number of items stored in the heap. |
|
108 | 104 |
/// |
109 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
110 | 106 |
int size() const { return _data.size(); } |
111 | 107 |
|
112 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
113 | 109 |
/// |
114 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
115 | 111 |
bool empty() const { return _data.empty(); } |
116 | 112 |
|
117 |
/// \brief Make |
|
113 |
/// \brief Make the heap empty. |
|
118 | 114 |
/// |
119 |
/// Make empty this heap. It does not change the cross reference map. |
|
120 |
/// If you want to reuse what is not surely empty you should first clear |
|
121 |
/// the heap and after that you should set the cross reference map for |
|
122 |
/// each item to \c PRE_HEAP. |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
123 | 120 |
void clear() { |
124 | 121 |
_data.clear(); |
125 | 122 |
} |
126 | 123 |
|
127 | 124 |
private: |
128 | 125 |
static int parent(int i) { return (i-1)/2; } |
129 | 126 |
|
130 |
static int |
|
127 |
static int secondChild(int i) { return 2*i+2; } |
|
131 | 128 |
bool less(const Pair &p1, const Pair &p2) const { |
132 | 129 |
return _comp(p1.second, p2.second); |
133 | 130 |
} |
134 | 131 |
|
135 |
int |
|
132 |
int bubbleUp(int hole, Pair p) { |
|
136 | 133 |
int par = parent(hole); |
137 | 134 |
while( hole>0 && less(p,_data[par]) ) { |
138 | 135 |
move(_data[par],hole); |
139 | 136 |
hole = par; |
140 | 137 |
par = parent(hole); |
141 | 138 |
} |
142 | 139 |
move(p, hole); |
143 | 140 |
return hole; |
144 | 141 |
} |
145 | 142 |
|
146 |
int bubble_down(int hole, Pair p, int length) { |
|
147 |
int child = second_child(hole); |
|
143 |
int bubbleDown(int hole, Pair p, int length) { |
|
144 |
int child = secondChild(hole); |
|
148 | 145 |
while(child < length) { |
149 | 146 |
if( less(_data[child-1], _data[child]) ) { |
150 | 147 |
--child; |
151 | 148 |
} |
152 | 149 |
if( !less(_data[child], p) ) |
153 | 150 |
goto ok; |
154 | 151 |
move(_data[child], hole); |
155 | 152 |
hole = child; |
156 |
child = |
|
153 |
child = secondChild(hole); |
|
157 | 154 |
} |
158 | 155 |
child--; |
159 | 156 |
if( child<length && less(_data[child], p) ) { |
160 | 157 |
move(_data[child], hole); |
161 | 158 |
hole=child; |
162 | 159 |
} |
163 | 160 |
ok: |
164 | 161 |
move(p, hole); |
165 | 162 |
return hole; |
166 | 163 |
} |
167 | 164 |
|
168 | 165 |
void move(const Pair &p, int i) { |
169 | 166 |
_data[i] = p; |
170 | 167 |
_iim.set(p.first, i); |
171 | 168 |
} |
172 | 169 |
|
173 | 170 |
public: |
171 |
|
|
174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
175 | 173 |
/// |
176 |
/// |
|
174 |
/// This function inserts \c p.first to the heap with priority |
|
175 |
/// \c p.second. |
|
177 | 176 |
/// \param p The pair to insert. |
177 |
/// \pre \c p.first must not be stored in the heap. |
|
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 |
|
|
181 |
bubbleUp(n, p); |
|
182 | 182 |
} |
183 | 183 |
|
184 |
/// \brief Insert an item into the heap with the given |
|
184 |
/// \brief Insert an item into the heap with the given priority. |
|
185 | 185 |
/// |
186 |
/// |
|
186 |
/// This function inserts the given item into the heap with the |
|
187 |
/// given priority. |
|
187 | 188 |
/// \param i The item to insert. |
188 | 189 |
/// \param p The priority of the item. |
190 |
/// \pre \e i must not be stored in the heap. |
|
189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
190 | 192 |
|
191 |
/// \brief |
|
193 |
/// \brief Return the item having minimum priority. |
|
192 | 194 |
/// |
193 |
/// This method returns the item with minimum priority relative to \c |
|
194 |
/// Compare. |
|
195 |
/// |
|
195 |
/// This function returns the item having minimum priority. |
|
196 |
/// \pre The heap must be non-empty. |
|
196 | 197 |
Item top() const { |
197 | 198 |
return _data[0].first; |
198 | 199 |
} |
199 | 200 |
|
200 |
/// \brief |
|
201 |
/// \brief The minimum priority. |
|
201 | 202 |
/// |
202 |
/// It returns the minimum priority relative to \c Compare. |
|
203 |
/// \pre The heap must be nonempty. |
|
203 |
/// This function returns the minimum priority. |
|
204 |
/// \pre The heap must be non-empty. |
|
204 | 205 |
Prio prio() const { |
205 | 206 |
return _data[0].second; |
206 | 207 |
} |
207 | 208 |
|
208 |
/// \brief |
|
209 |
/// \brief Remove the item having minimum priority. |
|
209 | 210 |
/// |
210 |
/// This method deletes the item with minimum priority relative to \c |
|
211 |
/// Compare from the heap. |
|
211 |
/// This function removes the item having minimum priority. |
|
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 |
|
|
217 |
bubbleDown(0, _data[n], n); |
|
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 |
/// \brief |
|
222 |
/// \brief Remove the given item from the heap. |
|
223 | 223 |
/// |
224 |
/// This method deletes item \c i from the heap. |
|
225 |
/// \param i The item to erase. |
|
226 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
227 | 228 |
void erase(const Item &i) { |
228 | 229 |
int h = _iim[i]; |
229 | 230 |
int n = _data.size()-1; |
230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
231 | 232 |
if( h < n ) { |
232 |
if ( bubble_up(h, _data[n]) == h) { |
|
233 |
bubble_down(h, _data[n], n); |
|
233 |
if ( bubbleUp(h, _data[n]) == h) { |
|
234 |
bubbleDown(h, _data[n], n); |
|
234 | 235 |
} |
235 | 236 |
} |
236 | 237 |
_data.pop_back(); |
237 | 238 |
} |
238 | 239 |
|
239 |
|
|
240 |
/// \brief Returns the priority of \c i. |
|
240 |
/// \brief The priority of the given item. |
|
241 | 241 |
/// |
242 |
/// This function returns the priority of |
|
242 |
/// This function returns the priority of the given item. |
|
243 | 243 |
/// \param i The item. |
244 |
/// \pre \ |
|
244 |
/// \pre \e i must be in the heap. |
|
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
251 |
/// if \c i was already there. |
|
250 |
/// \brief Set the priority of an item or insert it, if it is |
|
251 |
/// not stored in the heap. |
|
252 | 252 |
/// |
253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
253 |
/// This method sets the priority of the given item if it is |
|
254 |
/// already stored in the heap. Otherwise it inserts the given |
|
255 |
/// item into the heap with the given priority. |
|
255 | 256 |
/// \param i The item. |
256 | 257 |
/// \param p The priority. |
257 | 258 |
void set(const Item &i, const Prio &p) { |
258 | 259 |
int idx = _iim[i]; |
259 | 260 |
if( idx < 0 ) { |
260 | 261 |
push(i,p); |
261 | 262 |
} |
262 | 263 |
else if( _comp(p, _data[idx].second) ) { |
263 |
|
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
264 | 265 |
} |
265 | 266 |
else { |
266 |
|
|
267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 | 268 |
} |
268 | 269 |
} |
269 | 270 |
|
270 |
/// \brief |
|
271 |
/// \brief Decrease the priority of an item to the given value. |
|
271 | 272 |
/// |
272 |
/// This |
|
273 |
/// This function decreases the priority of an item to the given value. |
|
273 | 274 |
/// \param i The item. |
274 | 275 |
/// \param p The priority. |
275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
276 |
/// p relative to \c Compare. |
|
276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 |
|
|
279 |
bubbleUp(idx, Pair(i,p)); |
|
280 | 280 |
} |
281 | 281 |
|
282 |
/// \brief |
|
282 |
/// \brief Increase the priority of an item to the given value. |
|
283 | 283 |
/// |
284 |
/// This |
|
284 |
/// This function increases the priority of an item to the given value. |
|
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
288 |
/// p relative to \c Compare. |
|
287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
289 | 288 |
void increase(const Item &i, const Prio &p) { |
290 | 289 |
int idx = _iim[i]; |
291 |
|
|
290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
292 | 291 |
} |
293 | 292 |
|
294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
295 |
/// never been in the heap. |
|
293 |
/// \brief Return the state of an item. |
|
296 | 294 |
/// |
297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
299 |
/// otherwise. In the latter case it is possible that \c item will |
|
300 |
/// get back to the heap again. |
|
295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
297 |
/// and \c POST_HEAP otherwise. |
|
298 |
/// In the latter case it is possible that the item will get back |
|
299 |
/// to the heap again. |
|
301 | 300 |
/// \param i The item. |
302 | 301 |
State state(const Item &i) const { |
303 | 302 |
int s = _iim[i]; |
304 | 303 |
if( s>=0 ) |
305 | 304 |
s=0; |
306 | 305 |
return State(s); |
307 | 306 |
} |
308 | 307 |
|
309 |
/// \brief |
|
308 |
/// \brief Set the state of an item in the heap. |
|
310 | 309 |
/// |
311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
312 |
/// manually clear the heap when it is important to achive the |
|
313 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
314 | 313 |
/// \param i The item. |
315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
316 | 315 |
void state(const Item& i, State st) { |
317 | 316 |
switch (st) { |
318 | 317 |
case POST_HEAP: |
319 | 318 |
case PRE_HEAP: |
320 | 319 |
if (state(i) == IN_HEAP) { |
321 | 320 |
erase(i); |
322 | 321 |
} |
323 | 322 |
_iim[i] = st; |
324 | 323 |
break; |
325 | 324 |
case IN_HEAP: |
326 | 325 |
break; |
327 | 326 |
} |
328 | 327 |
} |
329 | 328 |
|
330 |
/// \brief |
|
329 |
/// \brief Replace an item in the heap. |
|
331 | 330 |
/// |
332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
331 |
/// This function replaces item \c i with item \c j. |
|
332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
333 |
/// After calling this method, item \c i will be out of the |
|
334 |
/// heap and \c j will be in the heap with the same prioriority |
|
335 |
/// as item \c i had before. |
|
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
20 | 20 |
#define LEMON_BUCKET_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Bucket |
|
24 |
///\brief Bucket heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
namespace _bucket_heap_bits { |
33 | 33 |
|
34 | 34 |
template <bool MIN> |
35 | 35 |
struct DirectionTraits { |
36 | 36 |
static bool less(int left, int right) { |
37 | 37 |
return left < right; |
38 | 38 |
} |
39 | 39 |
static void increase(int& value) { |
40 | 40 |
++value; |
41 | 41 |
} |
42 | 42 |
}; |
43 | 43 |
|
44 | 44 |
template <> |
45 | 45 |
struct DirectionTraits<false> { |
46 | 46 |
static bool less(int left, int right) { |
47 | 47 |
return left > right; |
48 | 48 |
} |
49 | 49 |
static void increase(int& value) { |
50 | 50 |
--value; |
51 | 51 |
} |
52 | 52 |
}; |
53 | 53 |
|
54 | 54 |
} |
55 | 55 |
|
56 |
/// \ingroup |
|
56 |
/// \ingroup heaps |
|
57 | 57 |
/// |
58 |
/// \brief |
|
58 |
/// \brief Bucket heap data structure. |
|
59 | 59 |
/// |
60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
61 |
/// is a data structure for storing items with specified values called \e |
|
62 |
/// priorities in such a way that finding the item with minimum priority is |
|
63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
64 |
/// only integer priorities and it stores for each priority in the |
|
65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
66 |
/// the |
|
60 |
/// This class implements the \e bucket \e heap data structure. |
|
61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
62 |
/// but it has some limitations. |
|
67 | 63 |
/// |
68 |
/// \param IM A read and write Item int map, used internally |
|
69 |
/// to handle the cross references. |
|
70 |
/// \param MIN If the given parameter is false then instead of the |
|
71 |
/// minimum value the maximum can be retrivied with the top() and |
|
72 |
/// |
|
64 |
/// The bucket heap is a very simple structure. It can store only |
|
65 |
/// \c int priorities and it maintains a list of items for each priority |
|
66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
68 |
/// |
|
69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
70 |
/// internally to handle the cross references. |
|
71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
74 |
/// functions deal with the item having maximum priority instead of the |
|
75 |
/// minimum. |
|
76 |
/// |
|
77 |
/// \sa SimpleBucketHeap |
|
73 | 78 |
template <typename IM, bool MIN = true> |
74 | 79 |
class BucketHeap { |
75 | 80 |
|
76 | 81 |
public: |
77 |
/// \e |
|
78 |
typedef typename IM::Key Item; |
|
79 |
|
|
82 |
|
|
83 |
/// Type of the item-int map. |
|
84 |
typedef IM ItemIntMap; |
|
85 |
/// Type of the priorities. |
|
80 | 86 |
typedef int Prio; |
81 |
/// \e |
|
82 |
typedef std::pair<Item, Prio> Pair; |
|
83 |
/// \e |
|
84 |
typedef IM ItemIntMap; |
|
87 |
/// Type of the items stored in the heap. |
|
88 |
typedef typename ItemIntMap::Key Item; |
|
89 |
/// Type of the item-priority pairs. |
|
90 |
typedef std::pair<Item,Prio> Pair; |
|
85 | 91 |
|
86 | 92 |
private: |
87 | 93 |
|
88 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
89 | 95 |
|
90 | 96 |
public: |
91 | 97 |
|
92 |
/// \brief Type to represent the |
|
98 |
/// \brief Type to represent the states of the items. |
|
93 | 99 |
/// |
94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
100 |
/// Each item has a state associated to it. It can be "in heap", |
|
101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
96 | 102 |
/// heap's point of view, but may be useful to the user. |
97 | 103 |
/// |
98 | 104 |
/// The item-int map must be initialized in such way that it assigns |
99 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
100 | 106 |
enum State { |
101 | 107 |
IN_HEAP = 0, ///< = 0. |
102 | 108 |
PRE_HEAP = -1, ///< = -1. |
103 | 109 |
POST_HEAP = -2 ///< = -2. |
104 | 110 |
}; |
105 | 111 |
|
106 | 112 |
public: |
107 |
|
|
113 |
|
|
114 |
/// \brief Constructor. |
|
108 | 115 |
/// |
109 |
/// The constructor. |
|
110 |
/// \param map should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
116 |
/// Constructor. |
|
117 |
/// \param map A map that assigns \c int values to the items. |
|
118 |
/// It is used internally to handle the cross references. |
|
119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
113 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
114 | 121 |
|
115 |
/// The number of items stored in the heap. |
|
122 |
/// \brief The number of items stored in the heap. |
|
116 | 123 |
/// |
117 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
118 | 125 |
int size() const { return _data.size(); } |
119 | 126 |
|
120 |
/// \brief |
|
127 |
/// \brief Check if the heap is empty. |
|
121 | 128 |
/// |
122 |
/// |
|
129 |
/// This function returns \c true if the heap is empty. |
|
123 | 130 |
bool empty() const { return _data.empty(); } |
124 | 131 |
|
125 |
/// \brief Make |
|
132 |
/// \brief Make the heap empty. |
|
126 | 133 |
/// |
127 |
/// Make empty this heap. It does not change the cross reference |
|
128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
129 |
/// should first clear the heap and after that you should set the |
|
130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
131 | 139 |
void clear() { |
132 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
133 | 141 |
} |
134 | 142 |
|
135 | 143 |
private: |
136 | 144 |
|
137 |
void |
|
145 |
void relocateLast(int idx) { |
|
138 | 146 |
if (idx + 1 < int(_data.size())) { |
139 | 147 |
_data[idx] = _data.back(); |
140 | 148 |
if (_data[idx].prev != -1) { |
141 | 149 |
_data[_data[idx].prev].next = idx; |
142 | 150 |
} else { |
143 | 151 |
_first[_data[idx].value] = idx; |
144 | 152 |
} |
145 | 153 |
if (_data[idx].next != -1) { |
146 | 154 |
_data[_data[idx].next].prev = idx; |
147 | 155 |
} |
148 | 156 |
_iim[_data[idx].item] = idx; |
149 | 157 |
} |
150 | 158 |
_data.pop_back(); |
151 | 159 |
} |
152 | 160 |
|
153 | 161 |
void unlace(int idx) { |
154 | 162 |
if (_data[idx].prev != -1) { |
155 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
156 | 164 |
} else { |
157 | 165 |
_first[_data[idx].value] = _data[idx].next; |
158 | 166 |
} |
159 | 167 |
if (_data[idx].next != -1) { |
160 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
161 | 169 |
} |
162 | 170 |
} |
163 | 171 |
|
164 | 172 |
void lace(int idx) { |
165 | 173 |
if (int(_first.size()) <= _data[idx].value) { |
166 | 174 |
_first.resize(_data[idx].value + 1, -1); |
167 | 175 |
} |
168 | 176 |
_data[idx].next = _first[_data[idx].value]; |
169 | 177 |
if (_data[idx].next != -1) { |
170 | 178 |
_data[_data[idx].next].prev = idx; |
171 | 179 |
} |
172 | 180 |
_first[_data[idx].value] = idx; |
173 | 181 |
_data[idx].prev = -1; |
174 | 182 |
} |
175 | 183 |
|
176 | 184 |
public: |
185 |
|
|
177 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
178 | 187 |
/// |
179 |
/// |
|
188 |
/// This function inserts \c p.first to the heap with priority |
|
189 |
/// \c p.second. |
|
180 | 190 |
/// \param p The pair to insert. |
191 |
/// \pre \c p.first must not be stored in the heap. |
|
181 | 192 |
void push(const Pair& p) { |
182 | 193 |
push(p.first, p.second); |
183 | 194 |
} |
184 | 195 |
|
185 | 196 |
/// \brief Insert an item into the heap with the given priority. |
186 | 197 |
/// |
187 |
/// |
|
198 |
/// This function inserts the given item into the heap with the |
|
199 |
/// given priority. |
|
188 | 200 |
/// \param i The item to insert. |
189 | 201 |
/// \param p The priority of the item. |
202 |
/// \pre \e i must not be stored in the heap. |
|
190 | 203 |
void push(const Item &i, const Prio &p) { |
191 | 204 |
int idx = _data.size(); |
192 | 205 |
_iim[i] = idx; |
193 | 206 |
_data.push_back(BucketItem(i, p)); |
194 | 207 |
lace(idx); |
195 | 208 |
if (Direction::less(p, _minimum)) { |
196 | 209 |
_minimum = p; |
197 | 210 |
} |
198 | 211 |
} |
199 | 212 |
|
200 |
/// \brief |
|
213 |
/// \brief Return the item having minimum priority. |
|
201 | 214 |
/// |
202 |
/// This method returns the item with minimum priority. |
|
203 |
/// \pre The heap must be nonempty. |
|
215 |
/// This function returns the item having minimum priority. |
|
216 |
/// \pre The heap must be non-empty. |
|
204 | 217 |
Item top() const { |
205 | 218 |
while (_first[_minimum] == -1) { |
206 | 219 |
Direction::increase(_minimum); |
207 | 220 |
} |
208 | 221 |
return _data[_first[_minimum]].item; |
209 | 222 |
} |
210 | 223 |
|
211 |
/// \brief |
|
224 |
/// \brief The minimum priority. |
|
212 | 225 |
/// |
213 |
/// It returns the minimum priority. |
|
214 |
/// \pre The heap must be nonempty. |
|
226 |
/// This function returns the minimum priority. |
|
227 |
/// \pre The heap must be non-empty. |
|
215 | 228 |
Prio prio() const { |
216 | 229 |
while (_first[_minimum] == -1) { |
217 | 230 |
Direction::increase(_minimum); |
218 | 231 |
} |
219 | 232 |
return _minimum; |
220 | 233 |
} |
221 | 234 |
|
222 |
/// \brief |
|
235 |
/// \brief Remove the item having minimum priority. |
|
223 | 236 |
/// |
224 |
/// This |
|
237 |
/// This function removes the item having minimum priority. |
|
225 | 238 |
/// \pre The heap must be non-empty. |
226 | 239 |
void pop() { |
227 | 240 |
while (_first[_minimum] == -1) { |
228 | 241 |
Direction::increase(_minimum); |
229 | 242 |
} |
230 | 243 |
int idx = _first[_minimum]; |
231 | 244 |
_iim[_data[idx].item] = -2; |
232 | 245 |
unlace(idx); |
233 |
|
|
246 |
relocateLast(idx); |
|
234 | 247 |
} |
235 | 248 |
|
236 |
/// \brief |
|
249 |
/// \brief Remove the given item from the heap. |
|
237 | 250 |
/// |
238 |
/// This method deletes item \c i from the heap, if \c i was |
|
239 |
/// already stored in the heap. |
|
240 |
/// |
|
251 |
/// This function removes the given item from the heap if it is |
|
252 |
/// already stored. |
|
253 |
/// \param i The item to delete. |
|
254 |
/// \pre \e i must be in the heap. |
|
241 | 255 |
void erase(const Item &i) { |
242 | 256 |
int idx = _iim[i]; |
243 | 257 |
_iim[_data[idx].item] = -2; |
244 | 258 |
unlace(idx); |
245 |
|
|
259 |
relocateLast(idx); |
|
246 | 260 |
} |
247 | 261 |
|
248 |
|
|
249 |
/// \brief Returns the priority of \c i. |
|
262 |
/// \brief The priority of the given item. |
|
250 | 263 |
/// |
251 |
/// This function returns the priority of item \c i. |
|
252 |
/// \pre \c i must be in the heap. |
|
264 |
/// This function returns the priority of the given item. |
|
253 | 265 |
/// \param i The item. |
266 |
/// \pre \e i must be in the heap. |
|
254 | 267 |
Prio operator[](const Item &i) const { |
255 | 268 |
int idx = _iim[i]; |
256 | 269 |
return _data[idx].value; |
257 | 270 |
} |
258 | 271 |
|
259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
260 |
/// if \c i was already there. |
|
272 |
/// \brief Set the priority of an item or insert it, if it is |
|
273 |
/// not stored in the heap. |
|
261 | 274 |
/// |
262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
275 |
/// This method sets the priority of the given item if it is |
|
276 |
/// already stored in the heap. Otherwise it inserts the given |
|
277 |
/// item into the heap with the given priority. |
|
264 | 278 |
/// \param i The item. |
265 | 279 |
/// \param p The priority. |
266 | 280 |
void set(const Item &i, const Prio &p) { |
267 | 281 |
int idx = _iim[i]; |
268 | 282 |
if (idx < 0) { |
269 | 283 |
push(i, p); |
270 | 284 |
} else if (Direction::less(p, _data[idx].value)) { |
271 | 285 |
decrease(i, p); |
272 | 286 |
} else { |
273 | 287 |
increase(i, p); |
274 | 288 |
} |
275 | 289 |
} |
276 | 290 |
|
277 |
/// \brief |
|
291 |
/// \brief Decrease the priority of an item to the given value. |
|
278 | 292 |
/// |
279 |
/// This method decreases the priority of item \c i to \c p. |
|
280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
281 |
/// |
|
293 |
/// This function decreases the priority of an item to the given value. |
|
282 | 294 |
/// \param i The item. |
283 | 295 |
/// \param p The priority. |
296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
284 | 297 |
void decrease(const Item &i, const Prio &p) { |
285 | 298 |
int idx = _iim[i]; |
286 | 299 |
unlace(idx); |
287 | 300 |
_data[idx].value = p; |
288 | 301 |
if (Direction::less(p, _minimum)) { |
289 | 302 |
_minimum = p; |
290 | 303 |
} |
291 | 304 |
lace(idx); |
292 | 305 |
} |
293 | 306 |
|
294 |
/// \brief |
|
307 |
/// \brief Increase the priority of an item to the given value. |
|
295 | 308 |
/// |
296 |
/// This method sets the priority of item \c i to \c p. |
|
297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
298 |
/// |
|
309 |
/// This function increases the priority of an item to the given value. |
|
299 | 310 |
/// \param i The item. |
300 | 311 |
/// \param p The priority. |
312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
301 | 313 |
void increase(const Item &i, const Prio &p) { |
302 | 314 |
int idx = _iim[i]; |
303 | 315 |
unlace(idx); |
304 | 316 |
_data[idx].value = p; |
305 | 317 |
lace(idx); |
306 | 318 |
} |
307 | 319 |
|
308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
309 |
/// never been in the heap. |
|
320 |
/// \brief Return the state of an item. |
|
310 | 321 |
/// |
311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
313 |
/// otherwise. In the latter case it is possible that \c item will |
|
314 |
/// get back to the heap again. |
|
322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
324 |
/// and \c POST_HEAP otherwise. |
|
325 |
/// In the latter case it is possible that the item will get back |
|
326 |
/// to the heap again. |
|
315 | 327 |
/// \param i The item. |
316 | 328 |
State state(const Item &i) const { |
317 | 329 |
int idx = _iim[i]; |
318 | 330 |
if (idx >= 0) idx = 0; |
319 | 331 |
return State(idx); |
320 | 332 |
} |
321 | 333 |
|
322 |
/// \brief |
|
334 |
/// \brief Set the state of an item in the heap. |
|
323 | 335 |
/// |
324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
325 |
/// manually clear the heap when it is important to achive the |
|
326 |
/// |
|
336 |
/// This function sets the state of the given item in the heap. |
|
337 |
/// It can be used to manually clear the heap when it is important |
|
338 |
/// to achive better time complexity. |
|
327 | 339 |
/// \param i The item. |
328 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
329 | 341 |
void state(const Item& i, State st) { |
330 | 342 |
switch (st) { |
331 | 343 |
case POST_HEAP: |
332 | 344 |
case PRE_HEAP: |
333 | 345 |
if (state(i) == IN_HEAP) { |
334 | 346 |
erase(i); |
335 | 347 |
} |
336 | 348 |
_iim[i] = st; |
337 | 349 |
break; |
338 | 350 |
case IN_HEAP: |
339 | 351 |
break; |
340 | 352 |
} |
341 | 353 |
} |
342 | 354 |
|
343 | 355 |
private: |
344 | 356 |
|
345 | 357 |
struct BucketItem { |
346 | 358 |
BucketItem(const Item& _item, int _value) |
347 | 359 |
: item(_item), value(_value) {} |
348 | 360 |
|
349 | 361 |
Item item; |
350 | 362 |
int value; |
351 | 363 |
|
352 | 364 |
int prev, next; |
353 | 365 |
}; |
354 | 366 |
|
355 | 367 |
ItemIntMap& _iim; |
356 | 368 |
std::vector<int> _first; |
357 | 369 |
std::vector<BucketItem> _data; |
358 | 370 |
mutable int _minimum; |
359 | 371 |
|
360 | 372 |
}; // class BucketHeap |
361 | 373 |
|
362 |
/// \ingroup |
|
374 |
/// \ingroup heaps |
|
363 | 375 |
/// |
364 |
/// \brief |
|
376 |
/// \brief Simplified bucket heap data structure. |
|
365 | 377 |
/// |
366 | 378 |
/// This class implements a simplified \e bucket \e heap data |
367 |
/// structure. It does not provide some functionality but it faster |
|
368 |
/// and simplier data structure than the BucketHeap. The main |
|
369 |
/// difference is that the BucketHeap stores for every key a double |
|
370 |
/// linked list while this class stores just simple lists. In the |
|
371 |
/// other way it does not support erasing each elements just the |
|
372 |
/// minimal and it does not supports key increasing, decreasing. |
|
379 |
/// structure. It does not provide some functionality, but it is |
|
380 |
/// faster and simpler than BucketHeap. The main difference is |
|
381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
382 |
/// this class stores only simply-linked lists. It supports erasing |
|
383 |
/// only for the item having minimum priority and it does not support |
|
384 |
/// key increasing and decreasing. |
|
373 | 385 |
/// |
374 |
/// \param IM A read and write Item int map, used internally |
|
375 |
/// to handle the cross references. |
|
376 |
/// \param MIN If the given parameter is false then instead of the |
|
377 |
/// minimum value the maximum can be retrivied with the top() and |
|
378 |
/// |
|
386 |
/// Note that this implementation does not conform to the |
|
387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
388 |
/// functionality. |
|
389 |
/// |
|
390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
391 |
/// internally to handle the cross references. |
|
392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
395 |
/// functions deal with the item having maximum priority instead of the |
|
396 |
/// minimum. |
|
379 | 397 |
/// |
380 | 398 |
/// \sa BucketHeap |
381 | 399 |
template <typename IM, bool MIN = true > |
382 | 400 |
class SimpleBucketHeap { |
383 | 401 |
|
384 | 402 |
public: |
385 |
|
|
403 |
|
|
404 |
/// Type of the item-int map. |
|
405 |
typedef IM ItemIntMap; |
|
406 |
/// Type of the priorities. |
|
386 | 407 |
typedef int Prio; |
387 |
typedef std::pair<Item, Prio> Pair; |
|
388 |
typedef IM ItemIntMap; |
|
408 |
/// Type of the items stored in the heap. |
|
409 |
typedef typename ItemIntMap::Key Item; |
|
410 |
/// Type of the item-priority pairs. |
|
411 |
typedef std::pair<Item,Prio> Pair; |
|
389 | 412 |
|
390 | 413 |
private: |
391 | 414 |
|
392 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
393 | 416 |
|
394 | 417 |
public: |
395 | 418 |
|
396 |
/// \brief Type to represent the |
|
419 |
/// \brief Type to represent the states of the items. |
|
397 | 420 |
/// |
398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
421 |
/// Each item has a state associated to it. It can be "in heap", |
|
422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
400 | 423 |
/// heap's point of view, but may be useful to the user. |
401 | 424 |
/// |
402 | 425 |
/// The item-int map must be initialized in such way that it assigns |
403 | 426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
404 | 427 |
enum State { |
405 | 428 |
IN_HEAP = 0, ///< = 0. |
406 | 429 |
PRE_HEAP = -1, ///< = -1. |
407 | 430 |
POST_HEAP = -2 ///< = -2. |
408 | 431 |
}; |
409 | 432 |
|
410 | 433 |
public: |
411 | 434 |
|
412 |
/// \brief |
|
435 |
/// \brief Constructor. |
|
413 | 436 |
/// |
414 |
/// The constructor. |
|
415 |
/// \param map should be given to the constructor, since it is used |
|
416 |
/// internally to handle the cross references. The value of the map |
|
417 |
/// should be PRE_HEAP (-1) for each element. |
|
437 |
/// Constructor. |
|
438 |
/// \param map A map that assigns \c int values to the items. |
|
439 |
/// It is used internally to handle the cross references. |
|
440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
418 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
419 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
420 | 443 |
|
421 |
/// \brief |
|
444 |
/// \brief The number of items stored in the heap. |
|
422 | 445 |
/// |
423 |
/// |
|
446 |
/// This function returns the number of items stored in the heap. |
|
424 | 447 |
int size() const { return _num; } |
425 | 448 |
|
426 |
/// \brief |
|
449 |
/// \brief Check if the heap is empty. |
|
427 | 450 |
/// |
428 |
/// |
|
451 |
/// This function returns \c true if the heap is empty. |
|
429 | 452 |
bool empty() const { return _num == 0; } |
430 | 453 |
|
431 |
/// \brief Make |
|
454 |
/// \brief Make the heap empty. |
|
432 | 455 |
/// |
433 |
/// Make empty this heap. It does not change the cross reference |
|
434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
435 |
/// should first clear the heap and after that you should set the |
|
436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
456 |
/// This functon makes the heap empty. |
|
457 |
/// It does not change the cross reference map. If you want to reuse |
|
458 |
/// a heap that is not surely empty, you should first clear it and |
|
459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
460 |
/// for each item. |
|
437 | 461 |
void clear() { |
438 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
439 | 463 |
} |
440 | 464 |
|
441 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
442 | 466 |
/// |
443 |
/// |
|
467 |
/// This function inserts \c p.first to the heap with priority |
|
468 |
/// \c p.second. |
|
444 | 469 |
/// \param p The pair to insert. |
470 |
/// \pre \c p.first must not be stored in the heap. |
|
445 | 471 |
void push(const Pair& p) { |
446 | 472 |
push(p.first, p.second); |
447 | 473 |
} |
448 | 474 |
|
449 | 475 |
/// \brief Insert an item into the heap with the given priority. |
450 | 476 |
/// |
451 |
/// |
|
477 |
/// This function inserts the given item into the heap with the |
|
478 |
/// given priority. |
|
452 | 479 |
/// \param i The item to insert. |
453 | 480 |
/// \param p The priority of the item. |
481 |
/// \pre \e i must not be stored in the heap. |
|
454 | 482 |
void push(const Item &i, const Prio &p) { |
455 | 483 |
int idx; |
456 | 484 |
if (_free == -1) { |
457 | 485 |
idx = _data.size(); |
458 | 486 |
_data.push_back(BucketItem(i)); |
459 | 487 |
} else { |
460 | 488 |
idx = _free; |
461 | 489 |
_free = _data[idx].next; |
462 | 490 |
_data[idx].item = i; |
463 | 491 |
} |
464 | 492 |
_iim[i] = idx; |
465 | 493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
466 | 494 |
_data[idx].next = _first[p]; |
467 | 495 |
_first[p] = idx; |
468 | 496 |
if (Direction::less(p, _minimum)) { |
469 | 497 |
_minimum = p; |
470 | 498 |
} |
471 | 499 |
++_num; |
472 | 500 |
} |
473 | 501 |
|
474 |
/// \brief |
|
502 |
/// \brief Return the item having minimum priority. |
|
475 | 503 |
/// |
476 |
/// This method returns the item with minimum priority. |
|
477 |
/// \pre The heap must be nonempty. |
|
504 |
/// This function returns the item having minimum priority. |
|
505 |
/// \pre The heap must be non-empty. |
|
478 | 506 |
Item top() const { |
479 | 507 |
while (_first[_minimum] == -1) { |
480 | 508 |
Direction::increase(_minimum); |
481 | 509 |
} |
482 | 510 |
return _data[_first[_minimum]].item; |
483 | 511 |
} |
484 | 512 |
|
485 |
/// \brief |
|
513 |
/// \brief The minimum priority. |
|
486 | 514 |
/// |
487 |
/// It returns the minimum priority. |
|
488 |
/// \pre The heap must be nonempty. |
|
515 |
/// This function returns the minimum priority. |
|
516 |
/// \pre The heap must be non-empty. |
|
489 | 517 |
Prio prio() const { |
490 | 518 |
while (_first[_minimum] == -1) { |
491 | 519 |
Direction::increase(_minimum); |
492 | 520 |
} |
493 | 521 |
return _minimum; |
494 | 522 |
} |
495 | 523 |
|
496 |
/// \brief |
|
524 |
/// \brief Remove the item having minimum priority. |
|
497 | 525 |
/// |
498 |
/// This |
|
526 |
/// This function removes the item having minimum priority. |
|
499 | 527 |
/// \pre The heap must be non-empty. |
500 | 528 |
void pop() { |
501 | 529 |
while (_first[_minimum] == -1) { |
502 | 530 |
Direction::increase(_minimum); |
503 | 531 |
} |
504 | 532 |
int idx = _first[_minimum]; |
505 | 533 |
_iim[_data[idx].item] = -2; |
506 | 534 |
_first[_minimum] = _data[idx].next; |
507 | 535 |
_data[idx].next = _free; |
508 | 536 |
_free = idx; |
509 | 537 |
--_num; |
510 | 538 |
} |
511 | 539 |
|
512 |
/// \brief |
|
540 |
/// \brief The priority of the given item. |
|
513 | 541 |
/// |
514 |
/// This function returns the priority of item \c i. |
|
515 |
/// \warning This operator is not a constant time function |
|
516 |
/// because it scans the whole data structure to find the proper |
|
517 |
/// value. |
|
518 |
/// |
|
542 |
/// This function returns the priority of the given item. |
|
519 | 543 |
/// \param i The item. |
544 |
/// \pre \e i must be in the heap. |
|
545 |
/// \warning This operator is not a constant time function because |
|
546 |
/// it scans the whole data structure to find the proper value. |
|
520 | 547 |
Prio operator[](const Item &i) const { |
521 |
for (int k = 0; k < _first.size(); ++k) { |
|
548 |
for (int k = 0; k < int(_first.size()); ++k) { |
|
522 | 549 |
int idx = _first[k]; |
523 | 550 |
while (idx != -1) { |
524 | 551 |
if (_data[idx].item == i) { |
525 | 552 |
return k; |
526 | 553 |
} |
527 | 554 |
idx = _data[idx].next; |
528 | 555 |
} |
529 | 556 |
} |
530 | 557 |
return -1; |
531 | 558 |
} |
532 | 559 |
|
533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
534 |
/// never been in the heap. |
|
560 |
/// \brief Return the state of an item. |
|
535 | 561 |
/// |
536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
538 |
/// otherwise. In the latter case it is possible that \c item will |
|
539 |
/// get back to the heap again. |
|
562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
564 |
/// and \c POST_HEAP otherwise. |
|
565 |
/// In the latter case it is possible that the item will get back |
|
566 |
/// to the heap again. |
|
540 | 567 |
/// \param i The item. |
541 | 568 |
State state(const Item &i) const { |
542 | 569 |
int idx = _iim[i]; |
543 | 570 |
if (idx >= 0) idx = 0; |
544 | 571 |
return State(idx); |
545 | 572 |
} |
546 | 573 |
|
547 | 574 |
private: |
548 | 575 |
|
549 | 576 |
struct BucketItem { |
550 | 577 |
BucketItem(const Item& _item) |
551 | 578 |
: item(_item) {} |
552 | 579 |
|
553 | 580 |
Item item; |
554 | 581 |
int next; |
555 | 582 |
}; |
556 | 583 |
|
557 | 584 |
ItemIntMap& _iim; |
558 | 585 |
std::vector<int> _first; |
559 | 586 |
std::vector<BucketItem> _data; |
560 | 587 |
int _free, _num; |
561 | 588 |
mutable int _minimum; |
562 | 589 |
|
563 | 590 |
}; // class SimpleBucketHeap |
564 | 591 |
|
565 | 592 |
} |
566 | 593 |
|
567 | 594 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
20 |
#define LEMON_CONCEPTS_HEAP_H |
|
21 |
|
|
19 | 22 |
///\ingroup concept |
20 | 23 |
///\file |
21 | 24 |
///\brief The concept of heaps. |
22 | 25 |
|
23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
24 |
#define LEMON_CONCEPTS_HEAP_H |
|
25 |
|
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
39 |
/// is a data structure for storing items with specified values called |
|
40 |
/// \e priorities in such a way that finding the item with minimum |
|
41 |
/// priority is efficient. In a heap one can change the priority of an |
|
42 |
/// |
|
38 |
/// This concept class describes the main interface of heaps. |
|
39 |
/// The various \ref heaps "heap structures" are efficient |
|
40 |
/// implementations of the abstract data type \e priority \e queue. |
|
41 |
/// They store items with specified values called \e priorities |
|
42 |
/// in such a way that finding and removing the item with minimum |
|
43 |
/// priority are efficient. The basic operations are adding and |
|
44 |
/// erasing items, changing the priority of an item, etc. |
|
43 | 45 |
/// |
44 |
/// \tparam PR Type of the priority of the items. |
|
45 |
/// \tparam IM A read and writable item map with int values, used |
|
46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
47 |
/// Any class that conforms to this concept can be used easily in such |
|
48 |
/// algorithms. |
|
49 |
/// |
|
50 |
/// \tparam PR Type of the priorities of the items. |
|
51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 | 52 |
/// internally to handle the cross references. |
47 |
/// \tparam |
|
53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 | 54 |
/// The default is \c std::less<PR>. |
49 | 55 |
#ifdef DOXYGEN |
50 |
template <typename PR, typename IM, typename |
|
56 |
template <typename PR, typename IM, typename CMP> |
|
51 | 57 |
#else |
52 |
template <typename PR, typename IM> |
|
58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 59 |
#endif |
54 | 60 |
class Heap { |
55 | 61 |
public: |
56 | 62 |
|
57 | 63 |
/// Type of the item-int map. |
58 | 64 |
typedef IM ItemIntMap; |
59 | 65 |
/// Type of the priorities. |
60 | 66 |
typedef PR Prio; |
61 | 67 |
/// Type of the items stored in the heap. |
62 | 68 |
typedef typename ItemIntMap::Key Item; |
63 | 69 |
|
64 | 70 |
/// \brief Type to represent the states of the items. |
65 | 71 |
/// |
66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
68 |
/// from the point of view of the heap, but may be useful for |
|
69 |
/// |
|
73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
70 | 75 |
/// |
71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 78 |
enum State { |
74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
77 | 82 |
}; |
78 | 83 |
|
79 |
/// \brief |
|
84 |
/// \brief Constructor. |
|
80 | 85 |
/// |
81 |
/// |
|
86 |
/// Constructor. |
|
82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
84 | 89 |
/// handle the cross references. The assigned value must be |
85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
86 | 91 |
explicit Heap(ItemIntMap &map) {} |
87 | 92 |
|
93 |
/// \brief Constructor. |
|
94 |
/// |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to keys of type |
|
97 |
/// \c Item. It is used internally by the heap implementations to |
|
98 |
/// handle the cross references. The assigned value must be |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
100 |
/// \param comp The function object used for comparing the priorities. |
|
101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {} |
|
102 |
|
|
88 | 103 |
/// \brief The number of items stored in the heap. |
89 | 104 |
/// |
90 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
91 | 106 |
int size() const { return 0; } |
92 | 107 |
|
93 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
94 | 109 |
/// |
95 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
96 | 111 |
bool empty() const { return false; } |
97 | 112 |
|
98 |
/// \brief |
|
113 |
/// \brief Make the heap empty. |
|
99 | 114 |
/// |
100 |
/// Makes the heap empty. |
|
101 |
void clear(); |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
120 |
void clear() {} |
|
102 | 121 |
|
103 |
/// \brief |
|
122 |
/// \brief Insert an item into the heap with the given priority. |
|
104 | 123 |
/// |
105 |
/// |
|
124 |
/// This function inserts the given item into the heap with the |
|
125 |
/// given priority. |
|
106 | 126 |
/// \param i The item to insert. |
107 | 127 |
/// \param p The priority of the item. |
128 |
/// \pre \e i must not be stored in the heap. |
|
108 | 129 |
void push(const Item &i, const Prio &p) {} |
109 | 130 |
|
110 |
/// \brief |
|
131 |
/// \brief Return the item having minimum priority. |
|
111 | 132 |
/// |
112 |
/// |
|
133 |
/// This function returns the item having minimum priority. |
|
113 | 134 |
/// \pre The heap must be non-empty. |
114 | 135 |
Item top() const {} |
115 | 136 |
|
116 | 137 |
/// \brief The minimum priority. |
117 | 138 |
/// |
118 |
/// |
|
139 |
/// This function returns the minimum priority. |
|
119 | 140 |
/// \pre The heap must be non-empty. |
120 | 141 |
Prio prio() const {} |
121 | 142 |
|
122 |
/// \brief |
|
143 |
/// \brief Remove the item having minimum priority. |
|
123 | 144 |
/// |
124 |
/// |
|
145 |
/// This function removes the item having minimum priority. |
|
125 | 146 |
/// \pre The heap must be non-empty. |
126 | 147 |
void pop() {} |
127 | 148 |
|
128 |
/// \brief |
|
149 |
/// \brief Remove the given item from the heap. |
|
129 | 150 |
/// |
130 |
/// |
|
151 |
/// This function removes the given item from the heap if it is |
|
152 |
/// already stored. |
|
131 | 153 |
/// \param i The item to delete. |
154 |
/// \pre \e i must be in the heap. |
|
132 | 155 |
void erase(const Item &i) {} |
133 | 156 |
|
134 |
/// \brief The priority of |
|
157 |
/// \brief The priority of the given item. |
|
135 | 158 |
/// |
136 |
/// |
|
159 |
/// This function returns the priority of the given item. |
|
137 | 160 |
/// \param i The item. |
138 |
/// \pre \ |
|
161 |
/// \pre \e i must be in the heap. |
|
139 | 162 |
Prio operator[](const Item &i) const {} |
140 | 163 |
|
141 |
/// \brief |
|
164 |
/// \brief Set the priority of an item or insert it, if it is |
|
142 | 165 |
/// not stored in the heap. |
143 | 166 |
/// |
144 | 167 |
/// This method sets the priority of the given item if it is |
145 |
/// already stored in the heap. |
|
146 |
/// Otherwise it inserts the given item with the given priority. |
|
168 |
/// already stored in the heap. Otherwise it inserts the given |
|
169 |
/// item into the heap with the given priority. |
|
147 | 170 |
/// |
148 | 171 |
/// \param i The item. |
149 | 172 |
/// \param p The priority. |
150 | 173 |
void set(const Item &i, const Prio &p) {} |
151 | 174 |
|
152 |
/// \brief |
|
175 |
/// \brief Decrease the priority of an item to the given value. |
|
153 | 176 |
/// |
154 |
/// |
|
177 |
/// This function decreases the priority of an item to the given value. |
|
155 | 178 |
/// \param i The item. |
156 | 179 |
/// \param p The priority. |
157 |
/// \pre \ |
|
180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
158 | 181 |
void decrease(const Item &i, const Prio &p) {} |
159 | 182 |
|
160 |
/// \brief |
|
183 |
/// \brief Increase the priority of an item to the given value. |
|
161 | 184 |
/// |
162 |
/// |
|
185 |
/// This function increases the priority of an item to the given value. |
|
163 | 186 |
/// \param i The item. |
164 | 187 |
/// \param p The priority. |
165 |
/// \pre \ |
|
188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
166 | 189 |
void increase(const Item &i, const Prio &p) {} |
167 | 190 |
|
168 |
/// \brief Returns if an item is in, has already been in, or has |
|
169 |
/// never been in the heap. |
|
191 |
/// \brief Return the state of an item. |
|
170 | 192 |
/// |
171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
172 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
173 | 195 |
/// and \c POST_HEAP otherwise. |
174 | 196 |
/// In the latter case it is possible that the item will get back |
175 | 197 |
/// to the heap again. |
176 | 198 |
/// \param i The item. |
177 | 199 |
State state(const Item &i) const {} |
178 | 200 |
|
179 |
/// \brief |
|
201 |
/// \brief Set the state of an item in the heap. |
|
180 | 202 |
/// |
181 |
/// Sets the state of the given item in the heap. It can be used |
|
182 |
/// to manually clear the heap when it is important to achive the |
|
183 |
/// |
|
203 |
/// This function sets the state of the given item in the heap. |
|
204 |
/// It can be used to manually clear the heap when it is important |
|
205 |
/// to achive better time complexity. |
|
184 | 206 |
/// \param i The item. |
185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
186 | 208 |
void state(const Item& i, State st) {} |
187 | 209 |
|
188 | 210 |
|
189 | 211 |
template <typename _Heap> |
190 | 212 |
struct Constraints { |
191 | 213 |
public: |
192 | 214 |
void constraints() { |
193 | 215 |
typedef typename _Heap::Item OwnItem; |
194 | 216 |
typedef typename _Heap::Prio OwnPrio; |
195 | 217 |
typedef typename _Heap::State OwnState; |
196 | 218 |
|
197 | 219 |
Item item; |
198 | 220 |
Prio prio; |
199 | 221 |
item=Item(); |
200 | 222 |
prio=Prio(); |
201 | 223 |
ignore_unused_variable_warning(item); |
202 | 224 |
ignore_unused_variable_warning(prio); |
203 | 225 |
|
204 | 226 |
OwnItem own_item; |
205 | 227 |
OwnPrio own_prio; |
206 | 228 |
OwnState own_state; |
207 | 229 |
own_item=Item(); |
208 | 230 |
own_prio=Prio(); |
209 | 231 |
ignore_unused_variable_warning(own_item); |
210 | 232 |
ignore_unused_variable_warning(own_prio); |
211 | 233 |
ignore_unused_variable_warning(own_state); |
212 | 234 |
|
213 | 235 |
_Heap heap1(map); |
214 | 236 |
_Heap heap2 = heap1; |
215 | 237 |
ignore_unused_variable_warning(heap1); |
216 | 238 |
ignore_unused_variable_warning(heap2); |
217 | 239 |
|
218 | 240 |
int s = heap.size(); |
219 | 241 |
ignore_unused_variable_warning(s); |
220 | 242 |
bool e = heap.empty(); |
221 | 243 |
ignore_unused_variable_warning(e); |
222 | 244 |
|
223 | 245 |
prio = heap.prio(); |
224 | 246 |
item = heap.top(); |
225 | 247 |
prio = heap[item]; |
226 | 248 |
own_prio = heap.prio(); |
227 | 249 |
own_item = heap.top(); |
228 | 250 |
own_prio = heap[own_item]; |
229 | 251 |
|
230 | 252 |
heap.push(item, prio); |
231 | 253 |
heap.push(own_item, own_prio); |
232 | 254 |
heap.pop(); |
233 | 255 |
|
234 | 256 |
heap.set(item, prio); |
235 | 257 |
heap.decrease(item, prio); |
236 | 258 |
heap.increase(item, prio); |
237 | 259 |
heap.set(own_item, own_prio); |
238 | 260 |
heap.decrease(own_item, own_prio); |
239 | 261 |
heap.increase(own_item, own_prio); |
240 | 262 |
|
241 | 263 |
heap.erase(item); |
242 | 264 |
heap.erase(own_item); |
243 | 265 |
heap.clear(); |
244 | 266 |
|
245 | 267 |
own_state = heap.state(own_item); |
246 | 268 |
heap.state(own_item, own_state); |
247 | 269 |
|
248 | 270 |
own_state = _Heap::PRE_HEAP; |
249 | 271 |
own_state = _Heap::IN_HEAP; |
250 | 272 |
own_state = _Heap::POST_HEAP; |
251 | 273 |
} |
252 | 274 |
|
253 | 275 |
_Heap& heap; |
254 | 276 |
ItemIntMap& map; |
255 | 277 |
}; |
256 | 278 |
}; |
257 | 279 |
|
258 | 280 |
/// @} |
259 | 281 |
} // namespace lemon |
260 | 282 |
} |
261 | 283 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_FIB_HEAP_H |
20 | 20 |
#define LEMON_FIB_HEAP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 |
///\ingroup auxdat |
|
24 |
///\brief Fibonacci Heap implementation. |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Fibonacci heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 |
#include <utility> |
|
27 | 28 |
#include <functional> |
28 | 29 |
#include <lemon/math.h> |
29 | 30 |
|
30 | 31 |
namespace lemon { |
31 | 32 |
|
32 |
/// \ingroup |
|
33 |
/// \ingroup heaps |
|
33 | 34 |
/// |
34 |
///\brief Fibonacci |
|
35 |
/// \brief Fibonacci heap data structure. |
|
35 | 36 |
/// |
36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
37 |
///is a data structure for storing items with specified values called \e |
|
38 |
///priorities in such a way that finding the item with minimum priority is |
|
39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
40 |
/// |
|
37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
41 | 39 |
/// |
42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
43 |
///heap. In case of many calls to these operations, it is better to use a |
|
44 |
///\ref |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
45 | 43 |
/// |
46 |
///\param PRIO Type of the priority of the items. |
|
47 |
///\param IM A read and writable Item int map, used internally |
|
48 |
///to handle the cross references. |
|
49 |
///\param CMP A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<PRIO>. |
|
51 |
/// |
|
52 |
///\sa BinHeap |
|
53 |
///\sa Dijkstra |
|
44 |
/// \tparam PR Type of the priorities of the items. |
|
45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 |
/// internally to handle the cross references. |
|
47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 |
/// The default is \c std::less<PR>. |
|
54 | 49 |
#ifdef DOXYGEN |
55 |
template <typename |
|
50 |
template <typename PR, typename IM, typename CMP> |
|
56 | 51 |
#else |
57 |
template <typename |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
58 | 53 |
#endif |
59 | 54 |
class FibHeap { |
60 | 55 |
public: |
61 |
|
|
56 |
|
|
57 |
/// Type of the item-int map. |
|
62 | 58 |
typedef IM ItemIntMap; |
63 |
///\e |
|
64 |
typedef PRIO Prio; |
|
65 |
/// |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
66 | 62 |
typedef typename ItemIntMap::Key Item; |
67 |
/// |
|
63 |
/// Type of the item-priority pairs. |
|
68 | 64 |
typedef std::pair<Item,Prio> Pair; |
69 |
/// |
|
65 |
/// Functor type for comparing the priorities. |
|
70 | 66 |
typedef CMP Compare; |
71 | 67 |
|
72 | 68 |
private: |
73 | 69 |
class Store; |
74 | 70 |
|
75 | 71 |
std::vector<Store> _data; |
76 | 72 |
int _minimum; |
77 | 73 |
ItemIntMap &_iim; |
78 | 74 |
Compare _comp; |
79 | 75 |
int _num; |
80 | 76 |
|
81 | 77 |
public: |
82 | 78 |
|
83 |
/// \brief Type to represent the |
|
79 |
/// \brief Type to represent the states of the items. |
|
84 | 80 |
/// |
85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
81 |
/// Each item has a state associated to it. It can be "in heap", |
|
82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
87 | 83 |
/// heap's point of view, but may be useful to the user. |
88 | 84 |
/// |
89 | 85 |
/// The item-int map must be initialized in such way that it assigns |
90 | 86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
91 | 87 |
enum State { |
92 | 88 |
IN_HEAP = 0, ///< = 0. |
93 | 89 |
PRE_HEAP = -1, ///< = -1. |
94 | 90 |
POST_HEAP = -2 ///< = -2. |
95 | 91 |
}; |
96 | 92 |
|
97 |
/// \brief |
|
93 |
/// \brief Constructor. |
|
98 | 94 |
/// |
99 |
/// \c map should be given to the constructor, since it is |
|
100 |
/// used internally to handle the cross references. |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to the items. |
|
97 |
/// It is used internally to handle the cross references. |
|
98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
101 | 99 |
explicit FibHeap(ItemIntMap &map) |
102 | 100 |
: _minimum(0), _iim(map), _num() {} |
103 | 101 |
|
104 |
/// \brief |
|
102 |
/// \brief Constructor. |
|
105 | 103 |
/// |
106 |
/// \c map should be given to the constructor, since it is used |
|
107 |
/// internally to handle the cross references. \c comp is an |
|
108 |
/// |
|
104 |
/// Constructor. |
|
105 |
/// \param map A map that assigns \c int values to the items. |
|
106 |
/// It is used internally to handle the cross references. |
|
107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
108 |
/// \param comp The function object used for comparing the priorities. |
|
109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
111 | 111 |
|
112 | 112 |
/// \brief The number of items stored in the heap. |
113 | 113 |
/// |
114 |
/// |
|
114 |
/// This function returns the number of items stored in the heap. |
|
115 | 115 |
int size() const { return _num; } |
116 | 116 |
|
117 |
/// \brief |
|
117 |
/// \brief Check if the heap is empty. |
|
118 | 118 |
/// |
119 |
/// |
|
119 |
/// This function returns \c true if the heap is empty. |
|
120 | 120 |
bool empty() const { return _num==0; } |
121 | 121 |
|
122 |
/// \brief Make |
|
122 |
/// \brief Make the heap empty. |
|
123 | 123 |
/// |
124 |
/// Make empty this heap. It does not change the cross reference |
|
125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
126 |
/// should first clear the heap and after that you should set the |
|
127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
124 |
/// This functon makes the heap empty. |
|
125 |
/// It does not change the cross reference map. If you want to reuse |
|
126 |
/// a heap that is not surely empty, you should first clear it and |
|
127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
128 |
/// for each item. |
|
128 | 129 |
void clear() { |
129 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
130 | 131 |
} |
131 | 132 |
|
132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
133 |
/// if \c item was already there. |
|
133 |
/// \brief Insert an item into the heap with the given priority. |
|
134 | 134 |
/// |
135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
137 |
/// \ref increase(\c item, \c value) otherwise. |
|
138 |
void set (const Item& item, const Prio& value) { |
|
139 |
int i=_iim[item]; |
|
140 |
if ( i >= 0 && _data[i].in ) { |
|
141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
143 |
} else push(item, value); |
|
144 |
} |
|
145 |
|
|
146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
147 |
/// |
|
148 |
/// Adds \c item to the heap with priority \c value. |
|
149 |
/// \pre \c item must not be stored in the heap. |
|
150 |
void push (const Item& item, const Prio& value) { |
|
135 |
/// This function inserts the given item into the heap with the |
|
136 |
/// given priority. |
|
137 |
/// \param item The item to insert. |
|
138 |
/// \param prio The priority of the item. |
|
139 |
/// \pre \e item must not be stored in the heap. |
|
140 |
void push (const Item& item, const Prio& prio) { |
|
151 | 141 |
int i=_iim[item]; |
152 | 142 |
if ( i < 0 ) { |
153 | 143 |
int s=_data.size(); |
154 | 144 |
_iim.set( item, s ); |
155 | 145 |
Store st; |
156 | 146 |
st.name=item; |
157 | 147 |
_data.push_back(st); |
158 | 148 |
i=s; |
159 | 149 |
} else { |
160 | 150 |
_data[i].parent=_data[i].child=-1; |
161 | 151 |
_data[i].degree=0; |
162 | 152 |
_data[i].in=true; |
163 | 153 |
_data[i].marked=false; |
164 | 154 |
} |
165 | 155 |
|
166 | 156 |
if ( _num ) { |
167 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
168 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
169 | 159 |
_data[_minimum].right_neighbor=i; |
170 | 160 |
_data[i].left_neighbor=_minimum; |
171 |
if ( _comp( |
|
161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
172 | 162 |
} else { |
173 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
174 | 164 |
_minimum=i; |
175 | 165 |
} |
176 |
_data[i].prio= |
|
166 |
_data[i].prio=prio; |
|
177 | 167 |
++_num; |
178 | 168 |
} |
179 | 169 |
|
180 |
/// \brief |
|
170 |
/// \brief Return the item having minimum priority. |
|
181 | 171 |
/// |
182 |
/// This method returns the item with minimum priority relative to \c |
|
183 |
/// Compare. |
|
184 |
/// |
|
172 |
/// This function returns the item having minimum priority. |
|
173 |
/// \pre The heap must be non-empty. |
|
185 | 174 |
Item top() const { return _data[_minimum].name; } |
186 | 175 |
|
187 |
/// \brief |
|
176 |
/// \brief The minimum priority. |
|
188 | 177 |
/// |
189 |
/// It returns the minimum priority relative to \c Compare. |
|
190 |
/// \pre The heap must be nonempty. |
|
191 |
|
|
178 |
/// This function returns the minimum priority. |
|
179 |
/// \pre The heap must be non-empty. |
|
180 |
Prio prio() const { return _data[_minimum].prio; } |
|
192 | 181 |
|
193 |
/// \brief |
|
182 |
/// \brief Remove the item having minimum priority. |
|
194 | 183 |
/// |
195 |
/// It returns the priority of \c item. |
|
196 |
/// \pre \c item must be in the heap. |
|
197 |
const Prio& operator[](const Item& item) const { |
|
198 |
return _data[_iim[item]].prio; |
|
199 |
} |
|
200 |
|
|
201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
202 |
/// |
|
203 |
/// This method deletes the item with minimum priority relative to \c |
|
204 |
/// Compare from the heap. |
|
184 |
/// This function removes the item having minimum priority. |
|
205 | 185 |
/// \pre The heap must be non-empty. |
206 | 186 |
void pop() { |
207 | 187 |
/*The first case is that there are only one root.*/ |
208 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
209 | 189 |
_data[_minimum].in=false; |
210 | 190 |
if ( _data[_minimum].degree!=0 ) { |
211 |
|
|
191 |
makeRoot(_data[_minimum].child); |
|
212 | 192 |
_minimum=_data[_minimum].child; |
213 | 193 |
balance(); |
214 | 194 |
} |
215 | 195 |
} else { |
216 | 196 |
int right=_data[_minimum].right_neighbor; |
217 | 197 |
unlace(_minimum); |
218 | 198 |
_data[_minimum].in=false; |
219 | 199 |
if ( _data[_minimum].degree > 0 ) { |
220 | 200 |
int left=_data[_minimum].left_neighbor; |
221 | 201 |
int child=_data[_minimum].child; |
222 | 202 |
int last_child=_data[child].left_neighbor; |
223 | 203 |
|
224 |
|
|
204 |
makeRoot(child); |
|
225 | 205 |
|
226 | 206 |
_data[left].right_neighbor=child; |
227 | 207 |
_data[child].left_neighbor=left; |
228 | 208 |
_data[right].left_neighbor=last_child; |
229 | 209 |
_data[last_child].right_neighbor=right; |
230 | 210 |
} |
231 | 211 |
_minimum=right; |
232 | 212 |
balance(); |
233 | 213 |
} // the case where there are more roots |
234 | 214 |
--_num; |
235 | 215 |
} |
236 | 216 |
|
237 |
/// \brief |
|
217 |
/// \brief Remove the given item from the heap. |
|
238 | 218 |
/// |
239 |
/// This method deletes \c item from the heap, if \c item was already |
|
240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
219 |
/// This function removes the given item from the heap if it is |
|
220 |
/// already stored. |
|
221 |
/// \param item The item to delete. |
|
222 |
/// \pre \e item must be in the heap. |
|
241 | 223 |
void erase (const Item& item) { |
242 | 224 |
int i=_iim[item]; |
243 | 225 |
|
244 | 226 |
if ( i >= 0 && _data[i].in ) { |
245 | 227 |
if ( _data[i].parent!=-1 ) { |
246 | 228 |
int p=_data[i].parent; |
247 | 229 |
cut(i,p); |
248 | 230 |
cascade(p); |
249 | 231 |
} |
250 | 232 |
_minimum=i; //As if its prio would be -infinity |
251 | 233 |
pop(); |
252 | 234 |
} |
253 | 235 |
} |
254 | 236 |
|
255 |
/// \brief |
|
237 |
/// \brief The priority of the given item. |
|
256 | 238 |
/// |
257 |
/// This method decreases the priority of \c item to \c value. |
|
258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
259 |
/// value relative to \c Compare. |
|
260 |
void decrease (Item item, const Prio& value) { |
|
239 |
/// This function returns the priority of the given item. |
|
240 |
/// \param item The item. |
|
241 |
/// \pre \e item must be in the heap. |
|
242 |
Prio operator[](const Item& item) const { |
|
243 |
return _data[_iim[item]].prio; |
|
244 |
} |
|
245 |
|
|
246 |
/// \brief Set the priority of an item or insert it, if it is |
|
247 |
/// not stored in the heap. |
|
248 |
/// |
|
249 |
/// This method sets the priority of the given item if it is |
|
250 |
/// already stored in the heap. Otherwise it inserts the given |
|
251 |
/// item into the heap with the given priority. |
|
252 |
/// \param item The item. |
|
253 |
/// \param prio The priority. |
|
254 |
void set (const Item& item, const Prio& prio) { |
|
261 | 255 |
int i=_iim[item]; |
262 |
_data[i]. |
|
256 |
if ( i >= 0 && _data[i].in ) { |
|
257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
259 |
} else push(item, prio); |
|
260 |
} |
|
261 |
|
|
262 |
/// \brief Decrease the priority of an item to the given value. |
|
263 |
/// |
|
264 |
/// This function decreases the priority of an item to the given value. |
|
265 |
/// \param item The item. |
|
266 |
/// \param prio The priority. |
|
267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
268 |
void decrease (const Item& item, const Prio& prio) { |
|
269 |
int i=_iim[item]; |
|
270 |
_data[i].prio=prio; |
|
263 | 271 |
int p=_data[i].parent; |
264 | 272 |
|
265 |
if ( p!=-1 && _comp( |
|
273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) { |
|
266 | 274 |
cut(i,p); |
267 | 275 |
cascade(p); |
268 | 276 |
} |
269 |
if ( _comp( |
|
277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
270 | 278 |
} |
271 | 279 |
|
272 |
/// \brief |
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
273 | 281 |
/// |
274 |
/// This method sets the priority of \c item to \c value. Though |
|
275 |
/// there is no precondition on the priority of \c item, this |
|
276 |
/// method should be used only if it is indeed necessary to increase |
|
277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
278 |
/// method is inefficient. |
|
279 |
void increase (Item item, const Prio& value) { |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param item The item. |
|
284 |
/// \param prio The priority. |
|
285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
286 |
void increase (const Item& item, const Prio& prio) { |
|
280 | 287 |
erase(item); |
281 |
push(item, |
|
288 |
push(item, prio); |
|
282 | 289 |
} |
283 | 290 |
|
284 |
|
|
285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
286 |
/// |
|
291 |
/// \brief Return the state of an item. |
|
287 | 292 |
/// |
288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
290 |
/// otherwise. In the latter case it is possible that \c item will |
|
291 |
/// get back to the heap again. |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param item The item. |
|
292 | 299 |
State state(const Item &item) const { |
293 | 300 |
int i=_iim[item]; |
294 | 301 |
if( i>=0 ) { |
295 | 302 |
if ( _data[i].in ) i=0; |
296 | 303 |
else i=-2; |
297 | 304 |
} |
298 | 305 |
return State(i); |
299 | 306 |
} |
300 | 307 |
|
301 |
/// \brief |
|
308 |
/// \brief Set the state of an item in the heap. |
|
302 | 309 |
/// |
303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
304 |
/// manually clear the heap when it is important to achive the |
|
305 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
306 | 313 |
/// \param i The item. |
307 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
308 | 315 |
void state(const Item& i, State st) { |
309 | 316 |
switch (st) { |
310 | 317 |
case POST_HEAP: |
311 | 318 |
case PRE_HEAP: |
312 | 319 |
if (state(i) == IN_HEAP) { |
313 | 320 |
erase(i); |
314 | 321 |
} |
315 | 322 |
_iim[i] = st; |
316 | 323 |
break; |
317 | 324 |
case IN_HEAP: |
318 | 325 |
break; |
319 | 326 |
} |
320 | 327 |
} |
321 | 328 |
|
322 | 329 |
private: |
323 | 330 |
|
324 | 331 |
void balance() { |
325 | 332 |
|
326 | 333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
327 | 334 |
|
328 | 335 |
std::vector<int> A(maxdeg,-1); |
329 | 336 |
|
330 | 337 |
/* |
331 | 338 |
*Recall that now minimum does not point to the minimum prio element. |
332 | 339 |
*We set minimum to this during balance(). |
333 | 340 |
*/ |
334 | 341 |
int anchor=_data[_minimum].left_neighbor; |
335 | 342 |
int next=_minimum; |
336 | 343 |
bool end=false; |
337 | 344 |
|
338 | 345 |
do { |
339 | 346 |
int active=next; |
340 | 347 |
if ( anchor==active ) end=true; |
341 | 348 |
int d=_data[active].degree; |
342 | 349 |
next=_data[active].right_neighbor; |
343 | 350 |
|
344 | 351 |
while (A[d]!=-1) { |
345 | 352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
346 | 353 |
fuse(active,A[d]); |
347 | 354 |
} else { |
348 | 355 |
fuse(A[d],active); |
349 | 356 |
active=A[d]; |
350 | 357 |
} |
351 | 358 |
A[d]=-1; |
352 | 359 |
++d; |
353 | 360 |
} |
354 | 361 |
A[d]=active; |
355 | 362 |
} while ( !end ); |
356 | 363 |
|
357 | 364 |
|
358 | 365 |
while ( _data[_minimum].parent >=0 ) |
359 | 366 |
_minimum=_data[_minimum].parent; |
360 | 367 |
int s=_minimum; |
361 | 368 |
int m=_minimum; |
362 | 369 |
do { |
363 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
364 | 371 |
s=_data[s].right_neighbor; |
365 | 372 |
} while ( s != m ); |
366 | 373 |
} |
367 | 374 |
|
368 |
void |
|
375 |
void makeRoot(int c) { |
|
369 | 376 |
int s=c; |
370 | 377 |
do { |
371 | 378 |
_data[s].parent=-1; |
372 | 379 |
s=_data[s].right_neighbor; |
373 | 380 |
} while ( s != c ); |
374 | 381 |
} |
375 | 382 |
|
376 | 383 |
void cut(int a, int b) { |
377 | 384 |
/* |
378 | 385 |
*Replacing a from the children of b. |
379 | 386 |
*/ |
380 | 387 |
--_data[b].degree; |
381 | 388 |
|
382 | 389 |
if ( _data[b].degree !=0 ) { |
383 | 390 |
int child=_data[b].child; |
384 | 391 |
if ( child==a ) |
385 | 392 |
_data[b].child=_data[child].right_neighbor; |
386 | 393 |
unlace(a); |
387 | 394 |
} |
388 | 395 |
|
389 | 396 |
|
390 | 397 |
/*Lacing a to the roots.*/ |
391 | 398 |
int right=_data[_minimum].right_neighbor; |
392 | 399 |
_data[_minimum].right_neighbor=a; |
393 | 400 |
_data[a].left_neighbor=_minimum; |
394 | 401 |
_data[a].right_neighbor=right; |
395 | 402 |
_data[right].left_neighbor=a; |
396 | 403 |
|
397 | 404 |
_data[a].parent=-1; |
398 | 405 |
_data[a].marked=false; |
399 | 406 |
} |
400 | 407 |
|
401 | 408 |
void cascade(int a) { |
402 | 409 |
if ( _data[a].parent!=-1 ) { |
403 | 410 |
int p=_data[a].parent; |
404 | 411 |
|
405 | 412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
406 | 413 |
else { |
407 | 414 |
cut(a,p); |
408 | 415 |
cascade(p); |
409 | 416 |
} |
410 | 417 |
} |
411 | 418 |
} |
412 | 419 |
|
413 | 420 |
void fuse(int a, int b) { |
414 | 421 |
unlace(b); |
415 | 422 |
|
416 | 423 |
/*Lacing b under a.*/ |
417 | 424 |
_data[b].parent=a; |
418 | 425 |
|
419 | 426 |
if (_data[a].degree==0) { |
420 | 427 |
_data[b].left_neighbor=b; |
421 | 428 |
_data[b].right_neighbor=b; |
422 | 429 |
_data[a].child=b; |
423 | 430 |
} else { |
424 | 431 |
int child=_data[a].child; |
425 | 432 |
int last_child=_data[child].left_neighbor; |
426 | 433 |
_data[child].left_neighbor=b; |
427 | 434 |
_data[b].right_neighbor=child; |
428 | 435 |
_data[last_child].right_neighbor=b; |
429 | 436 |
_data[b].left_neighbor=last_child; |
430 | 437 |
} |
431 | 438 |
|
432 | 439 |
++_data[a].degree; |
433 | 440 |
|
434 | 441 |
_data[b].marked=false; |
435 | 442 |
} |
436 | 443 |
|
437 | 444 |
/* |
438 | 445 |
*It is invoked only if a has siblings. |
439 | 446 |
*/ |
440 | 447 |
void unlace(int a) { |
441 | 448 |
int leftn=_data[a].left_neighbor; |
442 | 449 |
int rightn=_data[a].right_neighbor; |
443 | 450 |
_data[leftn].right_neighbor=rightn; |
444 | 451 |
_data[rightn].left_neighbor=leftn; |
445 | 452 |
} |
446 | 453 |
|
447 | 454 |
|
448 | 455 |
class Store { |
449 | 456 |
friend class FibHeap; |
450 | 457 |
|
451 | 458 |
Item name; |
452 | 459 |
int parent; |
453 | 460 |
int left_neighbor; |
454 | 461 |
int right_neighbor; |
455 | 462 |
int child; |
456 | 463 |
int degree; |
457 | 464 |
bool marked; |
458 | 465 |
bool in; |
459 | 466 |
Prio prio; |
460 | 467 |
|
461 | 468 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
462 | 469 |
}; |
463 | 470 |
}; |
464 | 471 |
|
465 | 472 |
} //namespace lemon |
466 | 473 |
|
467 | 474 |
#endif //LEMON_FIB_HEAP_H |
468 | 475 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_RADIX_HEAP_H |
20 | 20 |
#define LEMON_RADIX_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Radix |
|
24 |
///\brief Radix heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
|
32 |
/// \ingroup |
|
32 |
/// \ingroup heaps |
|
33 | 33 |
/// |
34 |
/// \brief |
|
34 |
/// \brief Radix heap data structure. |
|
35 | 35 |
/// |
36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
37 |
/// is a data structure for storing items with specified values called \e |
|
38 |
/// priorities in such a way that finding the item with minimum priority is |
|
39 |
/// efficient. This heap type can store only items with \e int priority. |
|
40 |
/// In a heap one can change the priority of an item, add or erase an |
|
41 |
/// item, but the priority cannot be decreased under the last removed |
|
42 |
/// |
|
36 |
/// This class implements the \e radix \e heap data structure. |
|
37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
38 |
/// but it has some limitations due its special implementation. |
|
39 |
/// The type of the priorities must be \c int and the priority of an |
|
40 |
/// item cannot be decreased under the priority of the last removed item. |
|
43 | 41 |
/// |
44 |
/// \param IM A read and writable Item int map, used internally |
|
45 |
/// to handle the cross references. |
|
46 |
/// |
|
47 |
/// \see BinHeap |
|
48 |
/// \ |
|
42 |
/// \tparam IM A read-writable item map with \c int values, used |
|
43 |
/// internally to handle the cross references. |
|
49 | 44 |
template <typename IM> |
50 | 45 |
class RadixHeap { |
51 | 46 |
|
52 | 47 |
public: |
53 |
|
|
48 |
|
|
49 |
/// Type of the item-int map. |
|
50 |
typedef IM ItemIntMap; |
|
51 |
/// Type of the priorities. |
|
54 | 52 |
typedef int Prio; |
55 |
|
|
53 |
/// Type of the items stored in the heap. |
|
54 |
typedef typename ItemIntMap::Key Item; |
|
56 | 55 |
|
57 | 56 |
/// \brief Exception thrown by RadixHeap. |
58 | 57 |
/// |
59 |
/// This Exception is thrown when a smaller priority |
|
60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
58 |
/// This exception is thrown when an item is inserted into a |
|
59 |
/// RadixHeap with a priority smaller than the last erased one. |
|
61 | 60 |
/// \see RadixHeap |
62 |
|
|
63 |
class UnderFlowPriorityError : public Exception { |
|
61 |
class PriorityUnderflowError : public Exception { |
|
64 | 62 |
public: |
65 | 63 |
virtual const char* what() const throw() { |
66 |
return "lemon::RadixHeap:: |
|
64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
67 | 65 |
} |
68 | 66 |
}; |
69 | 67 |
|
70 |
/// \brief Type to represent the |
|
68 |
/// \brief Type to represent the states of the items. |
|
71 | 69 |
/// |
72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
70 |
/// Each item has a state associated to it. It can be "in heap", |
|
71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
74 | 72 |
/// heap's point of view, but may be useful to the user. |
75 | 73 |
/// |
76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
74 |
/// The item-int map must be initialized in such way that it assigns |
|
75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
78 | 76 |
enum State { |
79 |
IN_HEAP = 0, |
|
80 |
PRE_HEAP = -1, |
|
81 |
|
|
77 |
IN_HEAP = 0, ///< = 0. |
|
78 |
PRE_HEAP = -1, ///< = -1. |
|
79 |
POST_HEAP = -2 ///< = -2. |
|
82 | 80 |
}; |
83 | 81 |
|
84 | 82 |
private: |
85 | 83 |
|
86 | 84 |
struct RadixItem { |
87 | 85 |
int prev, next, box; |
88 | 86 |
Item item; |
89 | 87 |
int prio; |
90 | 88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
91 | 89 |
}; |
92 | 90 |
|
93 | 91 |
struct RadixBox { |
94 | 92 |
int first; |
95 | 93 |
int min, size; |
96 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
97 | 95 |
}; |
98 | 96 |
|
99 |
std::vector<RadixItem> data; |
|
100 |
std::vector<RadixBox> boxes; |
|
97 |
std::vector<RadixItem> _data; |
|
98 |
std::vector<RadixBox> _boxes; |
|
101 | 99 |
|
102 | 100 |
ItemIntMap &_iim; |
103 | 101 |
|
102 |
public: |
|
104 | 103 |
|
105 |
public: |
|
106 |
/// \brief The constructor. |
|
104 |
/// \brief Constructor. |
|
107 | 105 |
/// |
108 |
/// The constructor. |
|
109 |
/// |
|
110 |
/// \param map It should be given to the constructor, since it is used |
|
111 |
/// internally to handle the cross references. The value of the map |
|
112 |
/// should be PRE_HEAP (-1) for each element. |
|
113 |
/// |
|
114 |
/// \param minimal The initial minimal value of the heap. |
|
115 |
/// \param capacity It determines the initial capacity of the heap. |
|
116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
117 |
: _iim(map) { |
|
118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
120 |
|
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param minimum The initial minimum value of the heap. |
|
111 |
/// \param capacity The initial capacity of the heap. |
|
112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
|
113 |
: _iim(map) |
|
114 |
{ |
|
115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
121 | 118 |
extend(); |
122 | 119 |
} |
123 | 120 |
} |
124 | 121 |
|
125 |
/// The number of items stored in the heap. |
|
122 |
/// \brief The number of items stored in the heap. |
|
126 | 123 |
/// |
127 |
/// \brief Returns the number of items stored in the heap. |
|
128 |
int size() const { return data.size(); } |
|
129 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
125 |
int size() const { return _data.size(); } |
|
126 |
|
|
127 |
/// \brief Check if the heap is empty. |
|
130 | 128 |
/// |
131 |
/// Returns \c true if and only if the heap stores no items. |
|
132 |
bool empty() const { return data.empty(); } |
|
129 |
/// This function returns \c true if the heap is empty. |
|
130 |
bool empty() const { return _data.empty(); } |
|
133 | 131 |
|
134 |
/// \brief Make |
|
132 |
/// \brief Make the heap empty. |
|
135 | 133 |
/// |
136 |
/// Make empty this heap. It does not change the cross reference |
|
137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
138 |
/// should first clear the heap and after that you should set the |
|
139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
140 |
void clear(int minimal = 0, int capacity = 0) { |
|
141 |
data.clear(); boxes.clear(); |
|
142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
144 |
|
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
139 |
/// \param minimum The minimum value of the heap. |
|
140 |
/// \param capacity The capacity of the heap. |
|
141 |
void clear(int minimum = 0, int capacity = 0) { |
|
142 |
_data.clear(); _boxes.clear(); |
|
143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) { |
|
145 | 146 |
extend(); |
146 | 147 |
} |
147 | 148 |
} |
148 | 149 |
|
149 | 150 |
private: |
150 | 151 |
|
151 | 152 |
bool upper(int box, Prio pr) { |
152 |
return pr < |
|
153 |
return pr < _boxes[box].min; |
|
153 | 154 |
} |
154 | 155 |
|
155 | 156 |
bool lower(int box, Prio pr) { |
156 |
return pr >= |
|
157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
157 | 158 |
} |
158 | 159 |
|
159 |
// |
|
160 |
// Remove item from the box list |
|
160 | 161 |
void remove(int index) { |
161 |
if (data[index].prev >= 0) { |
|
162 |
data[data[index].prev].next = data[index].next; |
|
162 |
if (_data[index].prev >= 0) { |
|
163 |
_data[_data[index].prev].next = _data[index].next; |
|
163 | 164 |
} else { |
164 |
|
|
165 |
_boxes[_data[index].box].first = _data[index].next; |
|
165 | 166 |
} |
166 |
if (data[index].next >= 0) { |
|
167 |
data[data[index].next].prev = data[index].prev; |
|
167 |
if (_data[index].next >= 0) { |
|
168 |
_data[_data[index].next].prev = _data[index].prev; |
|
168 | 169 |
} |
169 | 170 |
} |
170 | 171 |
|
171 |
// |
|
172 |
// Insert item into the box list |
|
172 | 173 |
void insert(int box, int index) { |
173 |
if (boxes[box].first == -1) { |
|
174 |
boxes[box].first = index; |
|
175 |
|
|
174 |
if (_boxes[box].first == -1) { |
|
175 |
_boxes[box].first = index; |
|
176 |
_data[index].next = _data[index].prev = -1; |
|
176 | 177 |
} else { |
177 |
data[index].next = boxes[box].first; |
|
178 |
data[boxes[box].first].prev = index; |
|
179 |
data[index].prev = -1; |
|
180 |
boxes[box].first = index; |
|
178 |
_data[index].next = _boxes[box].first; |
|
179 |
_data[_boxes[box].first].prev = index; |
|
180 |
_data[index].prev = -1; |
|
181 |
_boxes[box].first = index; |
|
181 | 182 |
} |
182 |
|
|
183 |
_data[index].box = box; |
|
183 | 184 |
} |
184 | 185 |
|
185 |
// |
|
186 |
// Add a new box to the box list |
|
186 | 187 |
void extend() { |
187 |
int min = boxes.back().min + boxes.back().size; |
|
188 |
int bs = 2 * boxes.back().size; |
|
189 |
|
|
188 |
int min = _boxes.back().min + _boxes.back().size; |
|
189 |
int bs = 2 * _boxes.back().size; |
|
190 |
_boxes.push_back(RadixBox(min, bs)); |
|
190 | 191 |
} |
191 | 192 |
|
192 |
/// \brief Move an item up into the proper box. |
|
193 |
void bubble_up(int index) { |
|
194 |
|
|
193 |
// Move an item up into the proper box. |
|
194 |
void bubbleUp(int index) { |
|
195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
195 | 196 |
remove(index); |
196 |
int box = findUp( |
|
197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
197 | 198 |
insert(box, index); |
198 | 199 |
} |
199 | 200 |
|
200 |
// |
|
201 |
// Find up the proper box for the item with the given priority |
|
201 | 202 |
int findUp(int start, int pr) { |
202 | 203 |
while (lower(start, pr)) { |
203 |
if (++start == int( |
|
204 |
if (++start == int(_boxes.size())) { |
|
204 | 205 |
extend(); |
205 | 206 |
} |
206 | 207 |
} |
207 | 208 |
return start; |
208 | 209 |
} |
209 | 210 |
|
210 |
/// \brief Move an item down into the proper box. |
|
211 |
void bubble_down(int index) { |
|
212 |
|
|
211 |
// Move an item down into the proper box |
|
212 |
void bubbleDown(int index) { |
|
213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
213 | 214 |
remove(index); |
214 |
int box = findDown( |
|
215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
215 | 216 |
insert(box, index); |
216 | 217 |
} |
217 | 218 |
|
218 |
// |
|
219 |
// Find down the proper box for the item with the given priority |
|
219 | 220 |
int findDown(int start, int pr) { |
220 | 221 |
while (upper(start, pr)) { |
221 |
if (--start < 0) throw |
|
222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
222 | 223 |
} |
223 | 224 |
return start; |
224 | 225 |
} |
225 | 226 |
|
226 |
// |
|
227 |
// Find the first non-empty box |
|
227 | 228 |
int findFirst() { |
228 | 229 |
int first = 0; |
229 |
while ( |
|
230 |
while (_boxes[first].first == -1) ++first; |
|
230 | 231 |
return first; |
231 | 232 |
} |
232 | 233 |
|
233 |
// |
|
234 |
// Gives back the minimum priority of the given box |
|
234 | 235 |
int minValue(int box) { |
235 |
int min = data[boxes[box].first].prio; |
|
236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) { |
|
237 |
|
|
236 |
int min = _data[_boxes[box].first].prio; |
|
237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) { |
|
238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
238 | 239 |
} |
239 | 240 |
return min; |
240 | 241 |
} |
241 | 242 |
|
242 |
/// \brief Rearrange the items of the heap and makes the |
|
243 |
/// first box not empty. |
|
243 |
// Rearrange the items of the heap and make the first box non-empty |
|
244 | 244 |
void moveDown() { |
245 | 245 |
int box = findFirst(); |
246 | 246 |
if (box == 0) return; |
247 | 247 |
int min = minValue(box); |
248 | 248 |
for (int i = 0; i <= box; ++i) { |
249 |
boxes[i].min = min; |
|
250 |
min += boxes[i].size; |
|
249 |
_boxes[i].min = min; |
|
250 |
min += _boxes[i].size; |
|
251 | 251 |
} |
252 |
int curr = |
|
252 |
int curr = _boxes[box].first, next; |
|
253 | 253 |
while (curr != -1) { |
254 |
next = data[curr].next; |
|
255 |
bubble_down(curr); |
|
254 |
next = _data[curr].next; |
|
255 |
bubbleDown(curr); |
|
256 | 256 |
curr = next; |
257 | 257 |
} |
258 | 258 |
} |
259 | 259 |
|
260 |
void relocate_last(int index) { |
|
261 |
if (index != int(data.size()) - 1) { |
|
262 |
data[index] = data.back(); |
|
263 |
if (data[index].prev != -1) { |
|
264 |
|
|
260 |
void relocateLast(int index) { |
|
261 |
if (index != int(_data.size()) - 1) { |
|
262 |
_data[index] = _data.back(); |
|
263 |
if (_data[index].prev != -1) { |
|
264 |
_data[_data[index].prev].next = index; |
|
265 | 265 |
} else { |
266 |
|
|
266 |
_boxes[_data[index].box].first = index; |
|
267 | 267 |
} |
268 |
if (data[index].next != -1) { |
|
269 |
data[data[index].next].prev = index; |
|
268 |
if (_data[index].next != -1) { |
|
269 |
_data[_data[index].next].prev = index; |
|
270 | 270 |
} |
271 |
_iim[ |
|
271 |
_iim[_data[index].item] = index; |
|
272 | 272 |
} |
273 |
|
|
273 |
_data.pop_back(); |
|
274 | 274 |
} |
275 | 275 |
|
276 | 276 |
public: |
277 | 277 |
|
278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
279 | 279 |
/// |
280 |
/// |
|
280 |
/// This function inserts the given item into the heap with the |
|
281 |
/// given priority. |
|
281 | 282 |
/// \param i The item to insert. |
282 | 283 |
/// \param p The priority of the item. |
284 |
/// \pre \e i must not be stored in the heap. |
|
285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
283 | 286 |
void push(const Item &i, const Prio &p) { |
284 |
int n = |
|
287 |
int n = _data.size(); |
|
285 | 288 |
_iim.set(i, n); |
286 |
data.push_back(RadixItem(i, p)); |
|
287 |
while (lower(boxes.size() - 1, p)) { |
|
289 |
_data.push_back(RadixItem(i, p)); |
|
290 |
while (lower(_boxes.size() - 1, p)) { |
|
288 | 291 |
extend(); |
289 | 292 |
} |
290 |
int box = findDown( |
|
293 |
int box = findDown(_boxes.size() - 1, p); |
|
291 | 294 |
insert(box, n); |
292 | 295 |
} |
293 | 296 |
|
294 |
/// \brief |
|
297 |
/// \brief Return the item having minimum priority. |
|
295 | 298 |
/// |
296 |
/// This method returns the item with minimum priority. |
|
297 |
/// \pre The heap must be nonempty. |
|
299 |
/// This function returns the item having minimum priority. |
|
300 |
/// \pre The heap must be non-empty. |
|
298 | 301 |
Item top() const { |
299 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
300 |
return |
|
303 |
return _data[_boxes[0].first].item; |
|
301 | 304 |
} |
302 | 305 |
|
303 |
/// \brief |
|
306 |
/// \brief The minimum priority. |
|
304 | 307 |
/// |
305 |
/// It returns the minimum priority. |
|
306 |
/// \pre The heap must be nonempty. |
|
308 |
/// This function returns the minimum priority. |
|
309 |
/// \pre The heap must be non-empty. |
|
307 | 310 |
Prio prio() const { |
308 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
309 |
return |
|
312 |
return _data[_boxes[0].first].prio; |
|
310 | 313 |
} |
311 | 314 |
|
312 |
/// \brief |
|
315 |
/// \brief Remove the item having minimum priority. |
|
313 | 316 |
/// |
314 |
/// This |
|
317 |
/// This function removes the item having minimum priority. |
|
315 | 318 |
/// \pre The heap must be non-empty. |
316 | 319 |
void pop() { |
317 | 320 |
moveDown(); |
318 |
int index = boxes[0].first; |
|
319 |
_iim[data[index].item] = POST_HEAP; |
|
321 |
int index = _boxes[0].first; |
|
322 |
_iim[_data[index].item] = POST_HEAP; |
|
320 | 323 |
remove(index); |
321 |
|
|
324 |
relocateLast(index); |
|
322 | 325 |
} |
323 | 326 |
|
324 |
/// \brief |
|
327 |
/// \brief Remove the given item from the heap. |
|
325 | 328 |
/// |
326 |
/// This method deletes item \c i from the heap, if \c i was |
|
327 |
/// already stored in the heap. |
|
328 |
/// |
|
329 |
/// This function removes the given item from the heap if it is |
|
330 |
/// already stored. |
|
331 |
/// \param i The item to delete. |
|
332 |
/// \pre \e i must be in the heap. |
|
329 | 333 |
void erase(const Item &i) { |
330 | 334 |
int index = _iim[i]; |
331 | 335 |
_iim[i] = POST_HEAP; |
332 | 336 |
remove(index); |
333 |
|
|
337 |
relocateLast(index); |
|
334 | 338 |
} |
335 | 339 |
|
336 |
/// \brief |
|
340 |
/// \brief The priority of the given item. |
|
337 | 341 |
/// |
338 |
/// This function returns the priority of item \c i. |
|
339 |
/// \pre \c i must be in the heap. |
|
342 |
/// This function returns the priority of the given item. |
|
340 | 343 |
/// \param i The item. |
344 |
/// \pre \e i must be in the heap. |
|
341 | 345 |
Prio operator[](const Item &i) const { |
342 | 346 |
int idx = _iim[i]; |
343 |
return |
|
347 |
return _data[idx].prio; |
|
344 | 348 |
} |
345 | 349 |
|
346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
347 |
/// if \c i was already there. |
|
350 |
/// \brief Set the priority of an item or insert it, if it is |
|
351 |
/// not stored in the heap. |
|
348 | 352 |
/// |
349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
351 |
/// |
|
353 |
/// This method sets the priority of the given item if it is |
|
354 |
/// already stored in the heap. Otherwise it inserts the given |
|
355 |
/// item into the heap with the given priority. |
|
352 | 356 |
/// \param i The item. |
353 | 357 |
/// \param p The priority. |
358 |
/// \pre \e i must be in the heap. |
|
359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
354 | 360 |
void set(const Item &i, const Prio &p) { |
355 | 361 |
int idx = _iim[i]; |
356 | 362 |
if( idx < 0 ) { |
357 | 363 |
push(i, p); |
358 | 364 |
} |
359 |
else if( p >= data[idx].prio ) { |
|
360 |
data[idx].prio = p; |
|
361 |
|
|
365 |
else if( p >= _data[idx].prio ) { |
|
366 |
_data[idx].prio = p; |
|
367 |
bubbleUp(idx); |
|
362 | 368 |
} else { |
363 |
data[idx].prio = p; |
|
364 |
bubble_down(idx); |
|
369 |
_data[idx].prio = p; |
|
370 |
bubbleDown(idx); |
|
365 | 371 |
} |
366 | 372 |
} |
367 | 373 |
|
368 |
|
|
369 |
/// \brief Decreases the priority of \c i to \c p. |
|
374 |
/// \brief Decrease the priority of an item to the given value. |
|
370 | 375 |
/// |
371 |
/// This method decreases the priority of item \c i to \c p. |
|
372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
373 |
/// |
|
376 |
/// This function decreases the priority of an item to the given value. |
|
374 | 377 |
/// \param i The item. |
375 | 378 |
/// \param p The priority. |
379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
376 | 381 |
void decrease(const Item &i, const Prio &p) { |
377 | 382 |
int idx = _iim[i]; |
378 |
data[idx].prio = p; |
|
379 |
bubble_down(idx); |
|
383 |
_data[idx].prio = p; |
|
384 |
bubbleDown(idx); |
|
380 | 385 |
} |
381 | 386 |
|
382 |
/// \brief |
|
387 |
/// \brief Increase the priority of an item to the given value. |
|
383 | 388 |
/// |
384 |
/// This method sets the priority of item \c i to \c p. |
|
385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
389 |
/// This function increases the priority of an item to the given value. |
|
386 | 390 |
/// \param i The item. |
387 | 391 |
/// \param p The priority. |
392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
388 | 393 |
void increase(const Item &i, const Prio &p) { |
389 | 394 |
int idx = _iim[i]; |
390 |
data[idx].prio = p; |
|
391 |
bubble_up(idx); |
|
395 |
_data[idx].prio = p; |
|
396 |
bubbleUp(idx); |
|
392 | 397 |
} |
393 | 398 |
|
394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
395 |
/// never been in the heap. |
|
399 |
/// \brief Return the state of an item. |
|
396 | 400 |
/// |
397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
399 |
/// otherwise. In the latter case it is possible that \c item will |
|
400 |
/// get back to the heap again. |
|
401 |
/// This method returns \c PRE_HEAP if the given item has never |
|
402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
403 |
/// and \c POST_HEAP otherwise. |
|
404 |
/// In the latter case it is possible that the item will get back |
|
405 |
/// to the heap again. |
|
401 | 406 |
/// \param i The item. |
402 | 407 |
State state(const Item &i) const { |
403 | 408 |
int s = _iim[i]; |
404 | 409 |
if( s >= 0 ) s = 0; |
405 | 410 |
return State(s); |
406 | 411 |
} |
407 | 412 |
|
408 |
/// \brief |
|
413 |
/// \brief Set the state of an item in the heap. |
|
409 | 414 |
/// |
410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
411 |
/// manually clear the heap when it is important to achive the |
|
412 |
/// |
|
415 |
/// This function sets the state of the given item in the heap. |
|
416 |
/// It can be used to manually clear the heap when it is important |
|
417 |
/// to achive better time complexity. |
|
413 | 418 |
/// \param i The item. |
414 | 419 |
/// \param st The state. It should not be \c IN_HEAP. |
415 | 420 |
void state(const Item& i, State st) { |
416 | 421 |
switch (st) { |
417 | 422 |
case POST_HEAP: |
418 | 423 |
case PRE_HEAP: |
419 | 424 |
if (state(i) == IN_HEAP) { |
420 | 425 |
erase(i); |
421 | 426 |
} |
422 | 427 |
_iim[i] = st; |
423 | 428 |
break; |
424 | 429 |
case IN_HEAP: |
425 | 430 |
break; |
426 | 431 |
} |
427 | 432 |
} |
428 | 433 |
|
429 | 434 |
}; // class RadixHeap |
430 | 435 |
|
431 | 436 |
} // namespace lemon |
432 | 437 |
|
433 | 438 |
#endif // LEMON_RADIX_HEAP_H |
0 comments (0 inline)