| ... |
... |
@@ -1445,1080 +1445,1088 @@
|
| 1445 |
1445 |
///\e
|
| 1446 |
1446 |
typedef bool Value;
|
| 1447 |
1447 |
|
| 1448 |
1448 |
/// Constructor
|
| 1449 |
1449 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1450 |
1450 |
///\e
|
| 1451 |
1451 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
| 1452 |
1452 |
};
|
| 1453 |
1453 |
|
| 1454 |
1454 |
/// Returns an \c AndMap class
|
| 1455 |
1455 |
|
| 1456 |
1456 |
/// This function just returns an \c AndMap class.
|
| 1457 |
1457 |
///
|
| 1458 |
1458 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
| 1459 |
1459 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
|
| 1460 |
1460 |
/// <tt>m1[x]&&m2[x]</tt>.
|
| 1461 |
1461 |
///
|
| 1462 |
1462 |
/// \relates AndMap
|
| 1463 |
1463 |
template<typename M1, typename M2>
|
| 1464 |
1464 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
| 1465 |
1465 |
return AndMap<M1, M2>(m1,m2);
|
| 1466 |
1466 |
}
|
| 1467 |
1467 |
|
| 1468 |
1468 |
|
| 1469 |
1469 |
/// Logical 'or' of two maps
|
| 1470 |
1470 |
|
| 1471 |
1471 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1472 |
1472 |
/// 'or' of the values of the two given maps.
|
| 1473 |
1473 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1474 |
1474 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1475 |
1475 |
///
|
| 1476 |
1476 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1477 |
1477 |
/// \code
|
| 1478 |
1478 |
/// OrMap<M1,M2> om(m1,m2);
|
| 1479 |
1479 |
/// \endcode
|
| 1480 |
1480 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
|
| 1481 |
1481 |
///
|
| 1482 |
1482 |
/// The simplest way of using this map is through the orMap()
|
| 1483 |
1483 |
/// function.
|
| 1484 |
1484 |
///
|
| 1485 |
1485 |
/// \sa AndMap
|
| 1486 |
1486 |
/// \sa NotMap, NotWriteMap
|
| 1487 |
1487 |
template<typename M1, typename M2>
|
| 1488 |
1488 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
| 1489 |
1489 |
const M1 &_m1;
|
| 1490 |
1490 |
const M2 &_m2;
|
| 1491 |
1491 |
public:
|
| 1492 |
1492 |
///\e
|
| 1493 |
1493 |
typedef typename M1::Key Key;
|
| 1494 |
1494 |
///\e
|
| 1495 |
1495 |
typedef bool Value;
|
| 1496 |
1496 |
|
| 1497 |
1497 |
/// Constructor
|
| 1498 |
1498 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1499 |
1499 |
///\e
|
| 1500 |
1500 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
| 1501 |
1501 |
};
|
| 1502 |
1502 |
|
| 1503 |
1503 |
/// Returns an \c OrMap class
|
| 1504 |
1504 |
|
| 1505 |
1505 |
/// This function just returns an \c OrMap class.
|
| 1506 |
1506 |
///
|
| 1507 |
1507 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
| 1508 |
1508 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
|
| 1509 |
1509 |
/// <tt>m1[x]||m2[x]</tt>.
|
| 1510 |
1510 |
///
|
| 1511 |
1511 |
/// \relates OrMap
|
| 1512 |
1512 |
template<typename M1, typename M2>
|
| 1513 |
1513 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
| 1514 |
1514 |
return OrMap<M1, M2>(m1,m2);
|
| 1515 |
1515 |
}
|
| 1516 |
1516 |
|
| 1517 |
1517 |
|
| 1518 |
1518 |
/// Logical 'not' of a map
|
| 1519 |
1519 |
|
| 1520 |
1520 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1521 |
1521 |
/// negation of the values of the given map.
|
| 1522 |
1522 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
| 1523 |
1523 |
///
|
| 1524 |
1524 |
/// The simplest way of using this map is through the notMap()
|
| 1525 |
1525 |
/// function.
|
| 1526 |
1526 |
///
|
| 1527 |
1527 |
/// \sa NotWriteMap
|
| 1528 |
1528 |
template <typename M>
|
| 1529 |
1529 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1530 |
1530 |
const M &_m;
|
| 1531 |
1531 |
public:
|
| 1532 |
1532 |
///\e
|
| 1533 |
1533 |
typedef typename M::Key Key;
|
| 1534 |
1534 |
///\e
|
| 1535 |
1535 |
typedef bool Value;
|
| 1536 |
1536 |
|
| 1537 |
1537 |
/// Constructor
|
| 1538 |
1538 |
NotMap(const M &m) : _m(m) {}
|
| 1539 |
1539 |
///\e
|
| 1540 |
1540 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1541 |
1541 |
};
|
| 1542 |
1542 |
|
| 1543 |
1543 |
/// Logical 'not' of a map (read-write version)
|
| 1544 |
1544 |
|
| 1545 |
1545 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
| 1546 |
1546 |
/// logical negation of the values of the given map.
|
| 1547 |
1547 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
| 1548 |
1548 |
/// It makes also possible to write the map. When a value is set,
|
| 1549 |
1549 |
/// the opposite value is set to the original map.
|
| 1550 |
1550 |
///
|
| 1551 |
1551 |
/// The simplest way of using this map is through the notWriteMap()
|
| 1552 |
1552 |
/// function.
|
| 1553 |
1553 |
///
|
| 1554 |
1554 |
/// \sa NotMap
|
| 1555 |
1555 |
template <typename M>
|
| 1556 |
1556 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1557 |
1557 |
M &_m;
|
| 1558 |
1558 |
public:
|
| 1559 |
1559 |
///\e
|
| 1560 |
1560 |
typedef typename M::Key Key;
|
| 1561 |
1561 |
///\e
|
| 1562 |
1562 |
typedef bool Value;
|
| 1563 |
1563 |
|
| 1564 |
1564 |
/// Constructor
|
| 1565 |
1565 |
NotWriteMap(M &m) : _m(m) {}
|
| 1566 |
1566 |
///\e
|
| 1567 |
1567 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1568 |
1568 |
///\e
|
| 1569 |
1569 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
| 1570 |
1570 |
};
|
| 1571 |
1571 |
|
| 1572 |
1572 |
/// Returns a \c NotMap class
|
| 1573 |
1573 |
|
| 1574 |
1574 |
/// This function just returns a \c NotMap class.
|
| 1575 |
1575 |
///
|
| 1576 |
1576 |
/// For example, if \c m is a map with \c bool values, then
|
| 1577 |
1577 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
| 1578 |
1578 |
///
|
| 1579 |
1579 |
/// \relates NotMap
|
| 1580 |
1580 |
template <typename M>
|
| 1581 |
1581 |
inline NotMap<M> notMap(const M &m) {
|
| 1582 |
1582 |
return NotMap<M>(m);
|
| 1583 |
1583 |
}
|
| 1584 |
1584 |
|
| 1585 |
1585 |
/// Returns a \c NotWriteMap class
|
| 1586 |
1586 |
|
| 1587 |
1587 |
/// This function just returns a \c NotWriteMap class.
|
| 1588 |
1588 |
///
|
| 1589 |
1589 |
/// For example, if \c m is a map with \c bool values, then
|
| 1590 |
1590 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
| 1591 |
1591 |
/// Moreover it makes also possible to write the map.
|
| 1592 |
1592 |
///
|
| 1593 |
1593 |
/// \relates NotWriteMap
|
| 1594 |
1594 |
template <typename M>
|
| 1595 |
1595 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
| 1596 |
1596 |
return NotWriteMap<M>(m);
|
| 1597 |
1597 |
}
|
| 1598 |
1598 |
|
| 1599 |
1599 |
|
| 1600 |
1600 |
/// Combination of two maps using the \c == operator
|
| 1601 |
1601 |
|
| 1602 |
1602 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1603 |
1603 |
/// the keys for which the corresponding values of the two maps are
|
| 1604 |
1604 |
/// equal.
|
| 1605 |
1605 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1606 |
1606 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1607 |
1607 |
///
|
| 1608 |
1608 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1609 |
1609 |
/// \code
|
| 1610 |
1610 |
/// EqualMap<M1,M2> em(m1,m2);
|
| 1611 |
1611 |
/// \endcode
|
| 1612 |
1612 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
|
| 1613 |
1613 |
///
|
| 1614 |
1614 |
/// The simplest way of using this map is through the equalMap()
|
| 1615 |
1615 |
/// function.
|
| 1616 |
1616 |
///
|
| 1617 |
1617 |
/// \sa LessMap
|
| 1618 |
1618 |
template<typename M1, typename M2>
|
| 1619 |
1619 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
| 1620 |
1620 |
const M1 &_m1;
|
| 1621 |
1621 |
const M2 &_m2;
|
| 1622 |
1622 |
public:
|
| 1623 |
1623 |
///\e
|
| 1624 |
1624 |
typedef typename M1::Key Key;
|
| 1625 |
1625 |
///\e
|
| 1626 |
1626 |
typedef bool Value;
|
| 1627 |
1627 |
|
| 1628 |
1628 |
/// Constructor
|
| 1629 |
1629 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1630 |
1630 |
///\e
|
| 1631 |
1631 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
| 1632 |
1632 |
};
|
| 1633 |
1633 |
|
| 1634 |
1634 |
/// Returns an \c EqualMap class
|
| 1635 |
1635 |
|
| 1636 |
1636 |
/// This function just returns an \c EqualMap class.
|
| 1637 |
1637 |
///
|
| 1638 |
1638 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
| 1639 |
1639 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
|
| 1640 |
1640 |
/// <tt>m1[x]==m2[x]</tt>.
|
| 1641 |
1641 |
///
|
| 1642 |
1642 |
/// \relates EqualMap
|
| 1643 |
1643 |
template<typename M1, typename M2>
|
| 1644 |
1644 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
| 1645 |
1645 |
return EqualMap<M1, M2>(m1,m2);
|
| 1646 |
1646 |
}
|
| 1647 |
1647 |
|
| 1648 |
1648 |
|
| 1649 |
1649 |
/// Combination of two maps using the \c < operator
|
| 1650 |
1650 |
|
| 1651 |
1651 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1652 |
1652 |
/// the keys for which the corresponding value of the first map is
|
| 1653 |
1653 |
/// less then the value of the second map.
|
| 1654 |
1654 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1655 |
1655 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1656 |
1656 |
///
|
| 1657 |
1657 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1658 |
1658 |
/// \code
|
| 1659 |
1659 |
/// LessMap<M1,M2> lm(m1,m2);
|
| 1660 |
1660 |
/// \endcode
|
| 1661 |
1661 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
|
| 1662 |
1662 |
///
|
| 1663 |
1663 |
/// The simplest way of using this map is through the lessMap()
|
| 1664 |
1664 |
/// function.
|
| 1665 |
1665 |
///
|
| 1666 |
1666 |
/// \sa EqualMap
|
| 1667 |
1667 |
template<typename M1, typename M2>
|
| 1668 |
1668 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
| 1669 |
1669 |
const M1 &_m1;
|
| 1670 |
1670 |
const M2 &_m2;
|
| 1671 |
1671 |
public:
|
| 1672 |
1672 |
///\e
|
| 1673 |
1673 |
typedef typename M1::Key Key;
|
| 1674 |
1674 |
///\e
|
| 1675 |
1675 |
typedef bool Value;
|
| 1676 |
1676 |
|
| 1677 |
1677 |
/// Constructor
|
| 1678 |
1678 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1679 |
1679 |
///\e
|
| 1680 |
1680 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
| 1681 |
1681 |
};
|
| 1682 |
1682 |
|
| 1683 |
1683 |
/// Returns an \c LessMap class
|
| 1684 |
1684 |
|
| 1685 |
1685 |
/// This function just returns an \c LessMap class.
|
| 1686 |
1686 |
///
|
| 1687 |
1687 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
| 1688 |
1688 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
|
| 1689 |
1689 |
/// <tt>m1[x]<m2[x]</tt>.
|
| 1690 |
1690 |
///
|
| 1691 |
1691 |
/// \relates LessMap
|
| 1692 |
1692 |
template<typename M1, typename M2>
|
| 1693 |
1693 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
| 1694 |
1694 |
return LessMap<M1, M2>(m1,m2);
|
| 1695 |
1695 |
}
|
| 1696 |
1696 |
|
| 1697 |
1697 |
namespace _maps_bits {
|
| 1698 |
1698 |
|
| 1699 |
1699 |
template <typename _Iterator, typename Enable = void>
|
| 1700 |
1700 |
struct IteratorTraits {
|
| 1701 |
1701 |
typedef typename std::iterator_traits<_Iterator>::value_type Value;
|
| 1702 |
1702 |
};
|
| 1703 |
1703 |
|
| 1704 |
1704 |
template <typename _Iterator>
|
| 1705 |
1705 |
struct IteratorTraits<_Iterator,
|
| 1706 |
1706 |
typename exists<typename _Iterator::container_type>::type>
|
| 1707 |
1707 |
{
|
| 1708 |
1708 |
typedef typename _Iterator::container_type::value_type Value;
|
| 1709 |
1709 |
};
|
| 1710 |
1710 |
|
| 1711 |
1711 |
}
|
| 1712 |
1712 |
|
| 1713 |
1713 |
/// @}
|
| 1714 |
1714 |
|
| 1715 |
1715 |
/// \addtogroup maps
|
| 1716 |
1716 |
/// @{
|
| 1717 |
1717 |
|
| 1718 |
1718 |
/// \brief Writable bool map for logging each \c true assigned element
|
| 1719 |
1719 |
///
|
| 1720 |
1720 |
/// A \ref concepts::WriteMap "writable" bool map for logging
|
| 1721 |
1721 |
/// each \c true assigned element, i.e it copies subsequently each
|
| 1722 |
1722 |
/// keys set to \c true to the given iterator.
|
| 1723 |
1723 |
/// The most important usage of it is storing certain nodes or arcs
|
| 1724 |
1724 |
/// that were marked \c true by an algorithm.
|
| 1725 |
1725 |
///
|
| 1726 |
1726 |
/// There are several algorithms that provide solutions through bool
|
| 1727 |
1727 |
/// maps and most of them assign \c true at most once for each key.
|
| 1728 |
1728 |
/// In these cases it is a natural request to store each \c true
|
| 1729 |
1729 |
/// assigned elements (in order of the assignment), which can be
|
| 1730 |
1730 |
/// easily done with LoggerBoolMap.
|
| 1731 |
1731 |
///
|
| 1732 |
1732 |
/// The simplest way of using this map is through the loggerBoolMap()
|
| 1733 |
1733 |
/// function.
|
| 1734 |
1734 |
///
|
| 1735 |
1735 |
/// \tparam IT The type of the iterator.
|
| 1736 |
1736 |
/// \tparam KEY The key type of the map. The default value set
|
| 1737 |
1737 |
/// according to the iterator type should work in most cases.
|
| 1738 |
1738 |
///
|
| 1739 |
1739 |
/// \note The container of the iterator must contain enough space
|
| 1740 |
1740 |
/// for the elements or the iterator should be an inserter iterator.
|
| 1741 |
1741 |
#ifdef DOXYGEN
|
| 1742 |
1742 |
template <typename IT, typename KEY>
|
| 1743 |
1743 |
#else
|
| 1744 |
1744 |
template <typename IT,
|
| 1745 |
1745 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
|
| 1746 |
1746 |
#endif
|
| 1747 |
1747 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
| 1748 |
1748 |
public:
|
| 1749 |
1749 |
|
| 1750 |
1750 |
///\e
|
| 1751 |
1751 |
typedef KEY Key;
|
| 1752 |
1752 |
///\e
|
| 1753 |
1753 |
typedef bool Value;
|
| 1754 |
1754 |
///\e
|
| 1755 |
1755 |
typedef IT Iterator;
|
| 1756 |
1756 |
|
| 1757 |
1757 |
/// Constructor
|
| 1758 |
1758 |
LoggerBoolMap(Iterator it)
|
| 1759 |
1759 |
: _begin(it), _end(it) {}
|
| 1760 |
1760 |
|
| 1761 |
1761 |
/// Gives back the given iterator set for the first key
|
| 1762 |
1762 |
Iterator begin() const {
|
| 1763 |
1763 |
return _begin;
|
| 1764 |
1764 |
}
|
| 1765 |
1765 |
|
| 1766 |
1766 |
/// Gives back the the 'after the last' iterator
|
| 1767 |
1767 |
Iterator end() const {
|
| 1768 |
1768 |
return _end;
|
| 1769 |
1769 |
}
|
| 1770 |
1770 |
|
| 1771 |
1771 |
/// The set function of the map
|
| 1772 |
1772 |
void set(const Key& key, Value value) {
|
| 1773 |
1773 |
if (value) {
|
| 1774 |
1774 |
*_end++ = key;
|
| 1775 |
1775 |
}
|
| 1776 |
1776 |
}
|
| 1777 |
1777 |
|
| 1778 |
1778 |
private:
|
| 1779 |
1779 |
Iterator _begin;
|
| 1780 |
1780 |
Iterator _end;
|
| 1781 |
1781 |
};
|
| 1782 |
1782 |
|
| 1783 |
1783 |
/// Returns a \c LoggerBoolMap class
|
| 1784 |
1784 |
|
| 1785 |
1785 |
/// This function just returns a \c LoggerBoolMap class.
|
| 1786 |
1786 |
///
|
| 1787 |
1787 |
/// The most important usage of it is storing certain nodes or arcs
|
| 1788 |
1788 |
/// that were marked \c true by an algorithm.
|
| 1789 |
1789 |
/// For example it makes easier to store the nodes in the processing
|
| 1790 |
1790 |
/// order of Dfs algorithm, as the following examples show.
|
| 1791 |
1791 |
/// \code
|
| 1792 |
1792 |
/// std::vector<Node> v;
|
| 1793 |
1793 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
|
| 1794 |
1794 |
/// \endcode
|
| 1795 |
1795 |
/// \code
|
| 1796 |
1796 |
/// std::vector<Node> v(countNodes(g));
|
| 1797 |
1797 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
|
| 1798 |
1798 |
/// \endcode
|
| 1799 |
1799 |
///
|
| 1800 |
1800 |
/// \note The container of the iterator must contain enough space
|
| 1801 |
1801 |
/// for the elements or the iterator should be an inserter iterator.
|
| 1802 |
1802 |
///
|
| 1803 |
1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
|
| 1804 |
1804 |
/// it cannot be used when a readable map is needed, for example as
|
| 1805 |
1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
|
| 1806 |
1806 |
///
|
| 1807 |
1807 |
/// \relates LoggerBoolMap
|
| 1808 |
1808 |
template<typename Iterator>
|
| 1809 |
1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1810 |
1810 |
return LoggerBoolMap<Iterator>(it);
|
| 1811 |
1811 |
}
|
| 1812 |
1812 |
|
| 1813 |
1813 |
/// @}
|
| 1814 |
1814 |
|
| 1815 |
1815 |
/// \addtogroup graph_maps
|
| 1816 |
1816 |
/// @{
|
| 1817 |
1817 |
|
| 1818 |
1818 |
/// \brief Provides an immutable and unique id for each item in a graph.
|
| 1819 |
1819 |
///
|
| 1820 |
1820 |
/// IdMap provides a unique and immutable id for each item of the
|
| 1821 |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
|
| 1822 |
1822 |
/// - \b unique: different items get different ids,
|
| 1823 |
1823 |
/// - \b immutable: the id of an item does not change (even if you
|
| 1824 |
1824 |
/// delete other nodes).
|
| 1825 |
1825 |
///
|
| 1826 |
1826 |
/// Using this map you get access (i.e. can read) the inner id values of
|
| 1827 |
1827 |
/// the items stored in the graph, which is returned by the \c id()
|
| 1828 |
1828 |
/// function of the graph. This map can be inverted with its member
|
| 1829 |
|
/// class \c InverseMap or with the \c operator() member.
|
|
1829 |
/// class \c InverseMap or with the \c operator()() member.
|
| 1830 |
1830 |
///
|
| 1831 |
1831 |
/// \tparam GR The graph type.
|
| 1832 |
1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
| 1833 |
1833 |
/// \c GR::Edge).
|
| 1834 |
1834 |
///
|
| 1835 |
1835 |
/// \see RangeIdMap
|
| 1836 |
1836 |
template <typename GR, typename K>
|
| 1837 |
1837 |
class IdMap : public MapBase<K, int> {
|
| 1838 |
1838 |
public:
|
| 1839 |
1839 |
/// The graph type of IdMap.
|
| 1840 |
1840 |
typedef GR Graph;
|
| 1841 |
1841 |
typedef GR Digraph;
|
| 1842 |
1842 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
|
| 1843 |
1843 |
typedef K Item;
|
| 1844 |
1844 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
|
| 1845 |
1845 |
typedef K Key;
|
| 1846 |
1846 |
/// The value type of IdMap.
|
| 1847 |
1847 |
typedef int Value;
|
| 1848 |
1848 |
|
| 1849 |
1849 |
/// \brief Constructor.
|
| 1850 |
1850 |
///
|
| 1851 |
1851 |
/// Constructor of the map.
|
| 1852 |
1852 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1853 |
1853 |
|
| 1854 |
1854 |
/// \brief Gives back the \e id of the item.
|
| 1855 |
1855 |
///
|
| 1856 |
1856 |
/// Gives back the immutable and unique \e id of the item.
|
| 1857 |
1857 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1858 |
1858 |
|
| 1859 |
1859 |
/// \brief Gives back the \e item by its id.
|
| 1860 |
1860 |
///
|
| 1861 |
1861 |
/// Gives back the \e item by its id.
|
| 1862 |
1862 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1863 |
1863 |
|
| 1864 |
1864 |
private:
|
| 1865 |
1865 |
const Graph* _graph;
|
| 1866 |
1866 |
|
| 1867 |
1867 |
public:
|
| 1868 |
1868 |
|
| 1869 |
1869 |
/// \brief This class represents the inverse of its owner (IdMap).
|
| 1870 |
1870 |
///
|
| 1871 |
1871 |
/// This class represents the inverse of its owner (IdMap).
|
| 1872 |
1872 |
/// \see inverse()
|
| 1873 |
1873 |
class InverseMap {
|
| 1874 |
1874 |
public:
|
| 1875 |
1875 |
|
| 1876 |
1876 |
/// \brief Constructor.
|
| 1877 |
1877 |
///
|
| 1878 |
1878 |
/// Constructor for creating an id-to-item map.
|
| 1879 |
1879 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1880 |
1880 |
|
| 1881 |
1881 |
/// \brief Constructor.
|
| 1882 |
1882 |
///
|
| 1883 |
1883 |
/// Constructor for creating an id-to-item map.
|
| 1884 |
1884 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1885 |
1885 |
|
| 1886 |
1886 |
/// \brief Gives back the given item from its id.
|
| 1887 |
1887 |
///
|
| 1888 |
1888 |
/// Gives back the given item from its id.
|
| 1889 |
1889 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1890 |
1890 |
|
| 1891 |
1891 |
private:
|
| 1892 |
1892 |
const Graph* _graph;
|
| 1893 |
1893 |
};
|
| 1894 |
1894 |
|
| 1895 |
1895 |
/// \brief Gives back the inverse of the map.
|
| 1896 |
1896 |
///
|
| 1897 |
1897 |
/// Gives back the inverse of the IdMap.
|
| 1898 |
1898 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1899 |
1899 |
};
|
| 1900 |
1900 |
|
| 1901 |
1901 |
|
| 1902 |
1902 |
/// \brief General cross reference graph map type.
|
| 1903 |
1903 |
|
| 1904 |
1904 |
/// This class provides simple invertable graph maps.
|
| 1905 |
1905 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
|
| 1906 |
1906 |
/// and if a key is set to a new value, then stores it in the inverse map.
|
| 1907 |
1907 |
/// The values of the map can be accessed
|
| 1908 |
1908 |
/// with stl compatible forward iterator.
|
| 1909 |
1909 |
///
|
| 1910 |
1910 |
/// This type is not reference map, so it cannot be modified with
|
| 1911 |
1911 |
/// the subscript operator.
|
| 1912 |
1912 |
///
|
| 1913 |
1913 |
/// \tparam GR The graph type.
|
| 1914 |
1914 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
| 1915 |
1915 |
/// \c GR::Edge).
|
| 1916 |
1916 |
/// \tparam V The value type of the map.
|
| 1917 |
1917 |
///
|
| 1918 |
1918 |
/// \see IterableValueMap
|
| 1919 |
1919 |
template <typename GR, typename K, typename V>
|
| 1920 |
1920 |
class CrossRefMap
|
| 1921 |
1921 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
| 1922 |
1922 |
private:
|
| 1923 |
1923 |
|
| 1924 |
1924 |
typedef typename ItemSetTraits<GR, K>::
|
| 1925 |
1925 |
template Map<V>::Type Map;
|
| 1926 |
1926 |
|
| 1927 |
1927 |
typedef std::multimap<V, K> Container;
|
| 1928 |
1928 |
Container _inv_map;
|
| 1929 |
1929 |
|
| 1930 |
1930 |
public:
|
| 1931 |
1931 |
|
| 1932 |
1932 |
/// The graph type of CrossRefMap.
|
| 1933 |
1933 |
typedef GR Graph;
|
| 1934 |
1934 |
typedef GR Digraph;
|
| 1935 |
1935 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
|
| 1936 |
1936 |
typedef K Item;
|
| 1937 |
1937 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
|
| 1938 |
1938 |
typedef K Key;
|
| 1939 |
1939 |
/// The value type of CrossRefMap.
|
| 1940 |
1940 |
typedef V Value;
|
| 1941 |
1941 |
|
| 1942 |
1942 |
/// \brief Constructor.
|
| 1943 |
1943 |
///
|
| 1944 |
1944 |
/// Construct a new CrossRefMap for the given graph.
|
| 1945 |
1945 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
| 1946 |
1946 |
|
| 1947 |
1947 |
/// \brief Forward iterator for values.
|
| 1948 |
1948 |
///
|
| 1949 |
1949 |
/// This iterator is an stl compatible forward
|
| 1950 |
1950 |
/// iterator on the values of the map. The values can
|
| 1951 |
1951 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
|
| 1952 |
1952 |
/// They are considered with multiplicity, so each value is
|
| 1953 |
1953 |
/// traversed for each item it is assigned to.
|
| 1954 |
1954 |
class ValueIterator
|
| 1955 |
1955 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1956 |
1956 |
friend class CrossRefMap;
|
| 1957 |
1957 |
private:
|
| 1958 |
1958 |
ValueIterator(typename Container::const_iterator _it)
|
| 1959 |
1959 |
: it(_it) {}
|
| 1960 |
1960 |
public:
|
| 1961 |
1961 |
|
| 1962 |
1962 |
ValueIterator() {}
|
| 1963 |
1963 |
|
| 1964 |
1964 |
ValueIterator& operator++() { ++it; return *this; }
|
| 1965 |
1965 |
ValueIterator operator++(int) {
|
| 1966 |
1966 |
ValueIterator tmp(*this);
|
| 1967 |
1967 |
operator++();
|
| 1968 |
1968 |
return tmp;
|
| 1969 |
1969 |
}
|
| 1970 |
1970 |
|
| 1971 |
1971 |
const Value& operator*() const { return it->first; }
|
| 1972 |
1972 |
const Value* operator->() const { return &(it->first); }
|
| 1973 |
1973 |
|
| 1974 |
1974 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
| 1975 |
1975 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
| 1976 |
1976 |
|
| 1977 |
1977 |
private:
|
| 1978 |
1978 |
typename Container::const_iterator it;
|
| 1979 |
1979 |
};
|
| 1980 |
1980 |
|
| 1981 |
1981 |
/// \brief Returns an iterator to the first value.
|
| 1982 |
1982 |
///
|
| 1983 |
1983 |
/// Returns an stl compatible iterator to the
|
| 1984 |
1984 |
/// first value of the map. The values of the
|
| 1985 |
1985 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
| 1986 |
1986 |
/// range.
|
| 1987 |
1987 |
ValueIterator beginValue() const {
|
| 1988 |
1988 |
return ValueIterator(_inv_map.begin());
|
| 1989 |
1989 |
}
|
| 1990 |
1990 |
|
| 1991 |
1991 |
/// \brief Returns an iterator after the last value.
|
| 1992 |
1992 |
///
|
| 1993 |
1993 |
/// Returns an stl compatible iterator after the
|
| 1994 |
1994 |
/// last value of the map. The values of the
|
| 1995 |
1995 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
| 1996 |
1996 |
/// range.
|
| 1997 |
1997 |
ValueIterator endValue() const {
|
| 1998 |
1998 |
return ValueIterator(_inv_map.end());
|
| 1999 |
1999 |
}
|
| 2000 |
2000 |
|
| 2001 |
2001 |
/// \brief Sets the value associated with the given key.
|
| 2002 |
2002 |
///
|
| 2003 |
2003 |
/// Sets the value associated with the given key.
|
| 2004 |
2004 |
void set(const Key& key, const Value& val) {
|
| 2005 |
2005 |
Value oldval = Map::operator[](key);
|
| 2006 |
2006 |
typename Container::iterator it;
|
| 2007 |
2007 |
for (it = _inv_map.equal_range(oldval).first;
|
| 2008 |
2008 |
it != _inv_map.equal_range(oldval).second; ++it) {
|
| 2009 |
2009 |
if (it->second == key) {
|
| 2010 |
2010 |
_inv_map.erase(it);
|
| 2011 |
2011 |
break;
|
| 2012 |
2012 |
}
|
| 2013 |
2013 |
}
|
| 2014 |
2014 |
_inv_map.insert(std::make_pair(val, key));
|
| 2015 |
2015 |
Map::set(key, val);
|
| 2016 |
2016 |
}
|
| 2017 |
2017 |
|
| 2018 |
2018 |
/// \brief Returns the value associated with the given key.
|
| 2019 |
2019 |
///
|
| 2020 |
2020 |
/// Returns the value associated with the given key.
|
| 2021 |
2021 |
typename MapTraits<Map>::ConstReturnValue
|
| 2022 |
2022 |
operator[](const Key& key) const {
|
| 2023 |
2023 |
return Map::operator[](key);
|
| 2024 |
2024 |
}
|
| 2025 |
2025 |
|
| 2026 |
2026 |
/// \brief Gives back an item by its value.
|
| 2027 |
2027 |
///
|
| 2028 |
2028 |
/// This function gives back an item that is assigned to
|
| 2029 |
2029 |
/// the given value or \c INVALID if no such item exists.
|
| 2030 |
2030 |
/// If there are more items with the same associated value,
|
| 2031 |
2031 |
/// only one of them is returned.
|
| 2032 |
2032 |
Key operator()(const Value& val) const {
|
| 2033 |
2033 |
typename Container::const_iterator it = _inv_map.find(val);
|
| 2034 |
2034 |
return it != _inv_map.end() ? it->second : INVALID;
|
| 2035 |
2035 |
}
|
| 2036 |
2036 |
|
|
2037 |
/// \brief Returns the number of items with the given value.
|
|
2038 |
///
|
|
2039 |
/// This function returns the number of items with the given value
|
|
2040 |
/// associated with it.
|
|
2041 |
int count(const Value &val) const {
|
|
2042 |
return _inv_map.count(val);
|
|
2043 |
}
|
|
2044 |
|
| 2037 |
2045 |
protected:
|
| 2038 |
2046 |
|
| 2039 |
2047 |
/// \brief Erase the key from the map and the inverse map.
|
| 2040 |
2048 |
///
|
| 2041 |
2049 |
/// Erase the key from the map and the inverse map. It is called by the
|
| 2042 |
2050 |
/// \c AlterationNotifier.
|
| 2043 |
2051 |
virtual void erase(const Key& key) {
|
| 2044 |
2052 |
Value val = Map::operator[](key);
|
| 2045 |
2053 |
typename Container::iterator it;
|
| 2046 |
2054 |
for (it = _inv_map.equal_range(val).first;
|
| 2047 |
2055 |
it != _inv_map.equal_range(val).second; ++it) {
|
| 2048 |
2056 |
if (it->second == key) {
|
| 2049 |
2057 |
_inv_map.erase(it);
|
| 2050 |
2058 |
break;
|
| 2051 |
2059 |
}
|
| 2052 |
2060 |
}
|
| 2053 |
2061 |
Map::erase(key);
|
| 2054 |
2062 |
}
|
| 2055 |
2063 |
|
| 2056 |
2064 |
/// \brief Erase more keys from the map and the inverse map.
|
| 2057 |
2065 |
///
|
| 2058 |
2066 |
/// Erase more keys from the map and the inverse map. It is called by the
|
| 2059 |
2067 |
/// \c AlterationNotifier.
|
| 2060 |
2068 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2061 |
2069 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2062 |
2070 |
Value val = Map::operator[](keys[i]);
|
| 2063 |
2071 |
typename Container::iterator it;
|
| 2064 |
2072 |
for (it = _inv_map.equal_range(val).first;
|
| 2065 |
2073 |
it != _inv_map.equal_range(val).second; ++it) {
|
| 2066 |
2074 |
if (it->second == keys[i]) {
|
| 2067 |
2075 |
_inv_map.erase(it);
|
| 2068 |
2076 |
break;
|
| 2069 |
2077 |
}
|
| 2070 |
2078 |
}
|
| 2071 |
2079 |
}
|
| 2072 |
2080 |
Map::erase(keys);
|
| 2073 |
2081 |
}
|
| 2074 |
2082 |
|
| 2075 |
2083 |
/// \brief Clear the keys from the map and the inverse map.
|
| 2076 |
2084 |
///
|
| 2077 |
2085 |
/// Clear the keys from the map and the inverse map. It is called by the
|
| 2078 |
2086 |
/// \c AlterationNotifier.
|
| 2079 |
2087 |
virtual void clear() {
|
| 2080 |
2088 |
_inv_map.clear();
|
| 2081 |
2089 |
Map::clear();
|
| 2082 |
2090 |
}
|
| 2083 |
2091 |
|
| 2084 |
2092 |
public:
|
| 2085 |
2093 |
|
| 2086 |
2094 |
/// \brief The inverse map type.
|
| 2087 |
2095 |
///
|
| 2088 |
2096 |
/// The inverse of this map. The subscript operator of the map
|
| 2089 |
2097 |
/// gives back the item that was last assigned to the value.
|
| 2090 |
2098 |
class InverseMap {
|
| 2091 |
2099 |
public:
|
| 2092 |
2100 |
/// \brief Constructor
|
| 2093 |
2101 |
///
|
| 2094 |
2102 |
/// Constructor of the InverseMap.
|
| 2095 |
2103 |
explicit InverseMap(const CrossRefMap& inverted)
|
| 2096 |
2104 |
: _inverted(inverted) {}
|
| 2097 |
2105 |
|
| 2098 |
2106 |
/// The value type of the InverseMap.
|
| 2099 |
2107 |
typedef typename CrossRefMap::Key Value;
|
| 2100 |
2108 |
/// The key type of the InverseMap.
|
| 2101 |
2109 |
typedef typename CrossRefMap::Value Key;
|
| 2102 |
2110 |
|
| 2103 |
2111 |
/// \brief Subscript operator.
|
| 2104 |
2112 |
///
|
| 2105 |
2113 |
/// Subscript operator. It gives back an item
|
| 2106 |
2114 |
/// that is assigned to the given value or \c INVALID
|
| 2107 |
2115 |
/// if no such item exists.
|
| 2108 |
2116 |
Value operator[](const Key& key) const {
|
| 2109 |
2117 |
return _inverted(key);
|
| 2110 |
2118 |
}
|
| 2111 |
2119 |
|
| 2112 |
2120 |
private:
|
| 2113 |
2121 |
const CrossRefMap& _inverted;
|
| 2114 |
2122 |
};
|
| 2115 |
2123 |
|
| 2116 |
2124 |
/// \brief It gives back the read-only inverse map.
|
| 2117 |
2125 |
///
|
| 2118 |
2126 |
/// It gives back the read-only inverse map.
|
| 2119 |
2127 |
InverseMap inverse() const {
|
| 2120 |
2128 |
return InverseMap(*this);
|
| 2121 |
2129 |
}
|
| 2122 |
2130 |
|
| 2123 |
2131 |
};
|
| 2124 |
2132 |
|
| 2125 |
|
/// \brief Provides continuous and unique ID for the
|
|
2133 |
/// \brief Provides continuous and unique id for the
|
| 2126 |
2134 |
/// items of a graph.
|
| 2127 |
2135 |
///
|
| 2128 |
2136 |
/// RangeIdMap provides a unique and continuous
|
| 2129 |
|
/// ID for each item of a given type (\c Node, \c Arc or
|
|
2137 |
/// id for each item of a given type (\c Node, \c Arc or
|
| 2130 |
2138 |
/// \c Edge) in a graph. This id is
|
| 2131 |
2139 |
/// - \b unique: different items get different ids,
|
| 2132 |
2140 |
/// - \b continuous: the range of the ids is the set of integers
|
| 2133 |
2141 |
/// between 0 and \c n-1, where \c n is the number of the items of
|
| 2134 |
2142 |
/// this type (\c Node, \c Arc or \c Edge).
|
| 2135 |
2143 |
/// - So, the ids can change when deleting an item of the same type.
|
| 2136 |
2144 |
///
|
| 2137 |
2145 |
/// Thus this id is not (necessarily) the same as what can get using
|
| 2138 |
2146 |
/// the \c id() function of the graph or \ref IdMap.
|
| 2139 |
2147 |
/// This map can be inverted with its member class \c InverseMap,
|
| 2140 |
|
/// or with the \c operator() member.
|
|
2148 |
/// or with the \c operator()() member.
|
| 2141 |
2149 |
///
|
| 2142 |
2150 |
/// \tparam GR The graph type.
|
| 2143 |
2151 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
| 2144 |
2152 |
/// \c GR::Edge).
|
| 2145 |
2153 |
///
|
| 2146 |
2154 |
/// \see IdMap
|
| 2147 |
2155 |
template <typename GR, typename K>
|
| 2148 |
2156 |
class RangeIdMap
|
| 2149 |
2157 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2150 |
2158 |
|
| 2151 |
2159 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
|
| 2152 |
2160 |
|
| 2153 |
2161 |
public:
|
| 2154 |
2162 |
/// The graph type of RangeIdMap.
|
| 2155 |
2163 |
typedef GR Graph;
|
| 2156 |
2164 |
typedef GR Digraph;
|
| 2157 |
2165 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
|
| 2158 |
2166 |
typedef K Item;
|
| 2159 |
2167 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
|
| 2160 |
2168 |
typedef K Key;
|
| 2161 |
2169 |
/// The value type of RangeIdMap.
|
| 2162 |
2170 |
typedef int Value;
|
| 2163 |
2171 |
|
| 2164 |
2172 |
/// \brief Constructor.
|
| 2165 |
2173 |
///
|
| 2166 |
2174 |
/// Constructor.
|
| 2167 |
2175 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
| 2168 |
2176 |
Item it;
|
| 2169 |
2177 |
const typename Map::Notifier* nf = Map::notifier();
|
| 2170 |
2178 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2171 |
2179 |
Map::set(it, _inv_map.size());
|
| 2172 |
2180 |
_inv_map.push_back(it);
|
| 2173 |
2181 |
}
|
| 2174 |
2182 |
}
|
| 2175 |
2183 |
|
| 2176 |
2184 |
protected:
|
| 2177 |
2185 |
|
| 2178 |
2186 |
/// \brief Adds a new key to the map.
|
| 2179 |
2187 |
///
|
| 2180 |
2188 |
/// Add a new key to the map. It is called by the
|
| 2181 |
2189 |
/// \c AlterationNotifier.
|
| 2182 |
2190 |
virtual void add(const Item& item) {
|
| 2183 |
2191 |
Map::add(item);
|
| 2184 |
2192 |
Map::set(item, _inv_map.size());
|
| 2185 |
2193 |
_inv_map.push_back(item);
|
| 2186 |
2194 |
}
|
| 2187 |
2195 |
|
| 2188 |
2196 |
/// \brief Add more new keys to the map.
|
| 2189 |
2197 |
///
|
| 2190 |
2198 |
/// Add more new keys to the map. It is called by the
|
| 2191 |
2199 |
/// \c AlterationNotifier.
|
| 2192 |
2200 |
virtual void add(const std::vector<Item>& items) {
|
| 2193 |
2201 |
Map::add(items);
|
| 2194 |
2202 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2195 |
2203 |
Map::set(items[i], _inv_map.size());
|
| 2196 |
2204 |
_inv_map.push_back(items[i]);
|
| 2197 |
2205 |
}
|
| 2198 |
2206 |
}
|
| 2199 |
2207 |
|
| 2200 |
2208 |
/// \brief Erase the key from the map.
|
| 2201 |
2209 |
///
|
| 2202 |
2210 |
/// Erase the key from the map. It is called by the
|
| 2203 |
2211 |
/// \c AlterationNotifier.
|
| 2204 |
2212 |
virtual void erase(const Item& item) {
|
| 2205 |
2213 |
Map::set(_inv_map.back(), Map::operator[](item));
|
| 2206 |
2214 |
_inv_map[Map::operator[](item)] = _inv_map.back();
|
| 2207 |
2215 |
_inv_map.pop_back();
|
| 2208 |
2216 |
Map::erase(item);
|
| 2209 |
2217 |
}
|
| 2210 |
2218 |
|
| 2211 |
2219 |
/// \brief Erase more keys from the map.
|
| 2212 |
2220 |
///
|
| 2213 |
2221 |
/// Erase more keys from the map. It is called by the
|
| 2214 |
2222 |
/// \c AlterationNotifier.
|
| 2215 |
2223 |
virtual void erase(const std::vector<Item>& items) {
|
| 2216 |
2224 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2217 |
2225 |
Map::set(_inv_map.back(), Map::operator[](items[i]));
|
| 2218 |
2226 |
_inv_map[Map::operator[](items[i])] = _inv_map.back();
|
| 2219 |
2227 |
_inv_map.pop_back();
|
| 2220 |
2228 |
}
|
| 2221 |
2229 |
Map::erase(items);
|
| 2222 |
2230 |
}
|
| 2223 |
2231 |
|
| 2224 |
2232 |
/// \brief Build the unique map.
|
| 2225 |
2233 |
///
|
| 2226 |
2234 |
/// Build the unique map. It is called by the
|
| 2227 |
2235 |
/// \c AlterationNotifier.
|
| 2228 |
2236 |
virtual void build() {
|
| 2229 |
2237 |
Map::build();
|
| 2230 |
2238 |
Item it;
|
| 2231 |
2239 |
const typename Map::Notifier* nf = Map::notifier();
|
| 2232 |
2240 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2233 |
2241 |
Map::set(it, _inv_map.size());
|
| 2234 |
2242 |
_inv_map.push_back(it);
|
| 2235 |
2243 |
}
|
| 2236 |
2244 |
}
|
| 2237 |
2245 |
|
| 2238 |
2246 |
/// \brief Clear the keys from the map.
|
| 2239 |
2247 |
///
|
| 2240 |
2248 |
/// Clear the keys from the map. It is called by the
|
| 2241 |
2249 |
/// \c AlterationNotifier.
|
| 2242 |
2250 |
virtual void clear() {
|
| 2243 |
2251 |
_inv_map.clear();
|
| 2244 |
2252 |
Map::clear();
|
| 2245 |
2253 |
}
|
| 2246 |
2254 |
|
| 2247 |
2255 |
public:
|
| 2248 |
2256 |
|
| 2249 |
2257 |
/// \brief Returns the maximal value plus one.
|
| 2250 |
2258 |
///
|
| 2251 |
2259 |
/// Returns the maximal value plus one in the map.
|
| 2252 |
2260 |
unsigned int size() const {
|
| 2253 |
2261 |
return _inv_map.size();
|
| 2254 |
2262 |
}
|
| 2255 |
2263 |
|
| 2256 |
2264 |
/// \brief Swaps the position of the two items in the map.
|
| 2257 |
2265 |
///
|
| 2258 |
2266 |
/// Swaps the position of the two items in the map.
|
| 2259 |
2267 |
void swap(const Item& p, const Item& q) {
|
| 2260 |
2268 |
int pi = Map::operator[](p);
|
| 2261 |
2269 |
int qi = Map::operator[](q);
|
| 2262 |
2270 |
Map::set(p, qi);
|
| 2263 |
2271 |
_inv_map[qi] = p;
|
| 2264 |
2272 |
Map::set(q, pi);
|
| 2265 |
2273 |
_inv_map[pi] = q;
|
| 2266 |
2274 |
}
|
| 2267 |
2275 |
|
| 2268 |
2276 |
/// \brief Gives back the \e RangeId of the item
|
| 2269 |
2277 |
///
|
| 2270 |
2278 |
/// Gives back the \e RangeId of the item.
|
| 2271 |
2279 |
int operator[](const Item& item) const {
|
| 2272 |
2280 |
return Map::operator[](item);
|
| 2273 |
2281 |
}
|
| 2274 |
2282 |
|
| 2275 |
2283 |
/// \brief Gives back the item belonging to a \e RangeId
|
| 2276 |
2284 |
///
|
| 2277 |
2285 |
/// Gives back the item belonging to a \e RangeId.
|
| 2278 |
2286 |
Item operator()(int id) const {
|
| 2279 |
2287 |
return _inv_map[id];
|
| 2280 |
2288 |
}
|
| 2281 |
2289 |
|
| 2282 |
2290 |
private:
|
| 2283 |
2291 |
|
| 2284 |
2292 |
typedef std::vector<Item> Container;
|
| 2285 |
2293 |
Container _inv_map;
|
| 2286 |
2294 |
|
| 2287 |
2295 |
public:
|
| 2288 |
2296 |
|
| 2289 |
2297 |
/// \brief The inverse map type of RangeIdMap.
|
| 2290 |
2298 |
///
|
| 2291 |
2299 |
/// The inverse map type of RangeIdMap.
|
| 2292 |
2300 |
class InverseMap {
|
| 2293 |
2301 |
public:
|
| 2294 |
2302 |
/// \brief Constructor
|
| 2295 |
2303 |
///
|
| 2296 |
2304 |
/// Constructor of the InverseMap.
|
| 2297 |
2305 |
explicit InverseMap(const RangeIdMap& inverted)
|
| 2298 |
2306 |
: _inverted(inverted) {}
|
| 2299 |
2307 |
|
| 2300 |
2308 |
|
| 2301 |
2309 |
/// The value type of the InverseMap.
|
| 2302 |
2310 |
typedef typename RangeIdMap::Key Value;
|
| 2303 |
2311 |
/// The key type of the InverseMap.
|
| 2304 |
2312 |
typedef typename RangeIdMap::Value Key;
|
| 2305 |
2313 |
|
| 2306 |
2314 |
/// \brief Subscript operator.
|
| 2307 |
2315 |
///
|
| 2308 |
2316 |
/// Subscript operator. It gives back the item
|
| 2309 |
2317 |
/// that the descriptor currently belongs to.
|
| 2310 |
2318 |
Value operator[](const Key& key) const {
|
| 2311 |
2319 |
return _inverted(key);
|
| 2312 |
2320 |
}
|
| 2313 |
2321 |
|
| 2314 |
2322 |
/// \brief Size of the map.
|
| 2315 |
2323 |
///
|
| 2316 |
2324 |
/// Returns the size of the map.
|
| 2317 |
2325 |
unsigned int size() const {
|
| 2318 |
2326 |
return _inverted.size();
|
| 2319 |
2327 |
}
|
| 2320 |
2328 |
|
| 2321 |
2329 |
private:
|
| 2322 |
2330 |
const RangeIdMap& _inverted;
|
| 2323 |
2331 |
};
|
| 2324 |
2332 |
|
| 2325 |
2333 |
/// \brief Gives back the inverse of the map.
|
| 2326 |
2334 |
///
|
| 2327 |
2335 |
/// Gives back the inverse of the map.
|
| 2328 |
2336 |
const InverseMap inverse() const {
|
| 2329 |
2337 |
return InverseMap(*this);
|
| 2330 |
2338 |
}
|
| 2331 |
2339 |
};
|
| 2332 |
2340 |
|
| 2333 |
2341 |
/// \brief Map of the source nodes of arcs in a digraph.
|
| 2334 |
2342 |
///
|
| 2335 |
2343 |
/// SourceMap provides access for the source node of each arc in a digraph,
|
| 2336 |
2344 |
/// which is returned by the \c source() function of the digraph.
|
| 2337 |
2345 |
/// \tparam GR The digraph type.
|
| 2338 |
2346 |
/// \see TargetMap
|
| 2339 |
2347 |
template <typename GR>
|
| 2340 |
2348 |
class SourceMap {
|
| 2341 |
2349 |
public:
|
| 2342 |
2350 |
|
| 2343 |
2351 |
///\e
|
| 2344 |
2352 |
typedef typename GR::Arc Key;
|
| 2345 |
2353 |
///\e
|
| 2346 |
2354 |
typedef typename GR::Node Value;
|
| 2347 |
2355 |
|
| 2348 |
2356 |
/// \brief Constructor
|
| 2349 |
2357 |
///
|
| 2350 |
2358 |
/// Constructor.
|
| 2351 |
2359 |
/// \param digraph The digraph that the map belongs to.
|
| 2352 |
2360 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
| 2353 |
2361 |
|
| 2354 |
2362 |
/// \brief Returns the source node of the given arc.
|
| 2355 |
2363 |
///
|
| 2356 |
2364 |
/// Returns the source node of the given arc.
|
| 2357 |
2365 |
Value operator[](const Key& arc) const {
|
| 2358 |
2366 |
return _graph.source(arc);
|
| 2359 |
2367 |
}
|
| 2360 |
2368 |
|
| 2361 |
2369 |
private:
|
| 2362 |
2370 |
const GR& _graph;
|
| 2363 |
2371 |
};
|
| 2364 |
2372 |
|
| 2365 |
2373 |
/// \brief Returns a \c SourceMap class.
|
| 2366 |
2374 |
///
|
| 2367 |
2375 |
/// This function just returns an \c SourceMap class.
|
| 2368 |
2376 |
/// \relates SourceMap
|
| 2369 |
2377 |
template <typename GR>
|
| 2370 |
2378 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
| 2371 |
2379 |
return SourceMap<GR>(graph);
|
| 2372 |
2380 |
}
|
| 2373 |
2381 |
|
| 2374 |
2382 |
/// \brief Map of the target nodes of arcs in a digraph.
|
| 2375 |
2383 |
///
|
| 2376 |
2384 |
/// TargetMap provides access for the target node of each arc in a digraph,
|
| 2377 |
2385 |
/// which is returned by the \c target() function of the digraph.
|
| 2378 |
2386 |
/// \tparam GR The digraph type.
|
| 2379 |
2387 |
/// \see SourceMap
|
| 2380 |
2388 |
template <typename GR>
|
| 2381 |
2389 |
class TargetMap {
|
| 2382 |
2390 |
public:
|
| 2383 |
2391 |
|
| 2384 |
2392 |
///\e
|
| 2385 |
2393 |
typedef typename GR::Arc Key;
|
| 2386 |
2394 |
///\e
|
| 2387 |
2395 |
typedef typename GR::Node Value;
|
| 2388 |
2396 |
|
| 2389 |
2397 |
/// \brief Constructor
|
| 2390 |
2398 |
///
|
| 2391 |
2399 |
/// Constructor.
|
| 2392 |
2400 |
/// \param digraph The digraph that the map belongs to.
|
| 2393 |
2401 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
| 2394 |
2402 |
|
| 2395 |
2403 |
/// \brief Returns the target node of the given arc.
|
| 2396 |
2404 |
///
|
| 2397 |
2405 |
/// Returns the target node of the given arc.
|
| 2398 |
2406 |
Value operator[](const Key& e) const {
|
| 2399 |
2407 |
return _graph.target(e);
|
| 2400 |
2408 |
}
|
| 2401 |
2409 |
|
| 2402 |
2410 |
private:
|
| 2403 |
2411 |
const GR& _graph;
|
| 2404 |
2412 |
};
|
| 2405 |
2413 |
|
| 2406 |
2414 |
/// \brief Returns a \c TargetMap class.
|
| 2407 |
2415 |
///
|
| 2408 |
2416 |
/// This function just returns a \c TargetMap class.
|
| 2409 |
2417 |
/// \relates TargetMap
|
| 2410 |
2418 |
template <typename GR>
|
| 2411 |
2419 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
| 2412 |
2420 |
return TargetMap<GR>(graph);
|
| 2413 |
2421 |
}
|
| 2414 |
2422 |
|
| 2415 |
2423 |
/// \brief Map of the "forward" directed arc view of edges in a graph.
|
| 2416 |
2424 |
///
|
| 2417 |
2425 |
/// ForwardMap provides access for the "forward" directed arc view of
|
| 2418 |
2426 |
/// each edge in a graph, which is returned by the \c direct() function
|
| 2419 |
2427 |
/// of the graph with \c true parameter.
|
| 2420 |
2428 |
/// \tparam GR The graph type.
|
| 2421 |
2429 |
/// \see BackwardMap
|
| 2422 |
2430 |
template <typename GR>
|
| 2423 |
2431 |
class ForwardMap {
|
| 2424 |
2432 |
public:
|
| 2425 |
2433 |
|
| 2426 |
2434 |
typedef typename GR::Arc Value;
|
| 2427 |
2435 |
typedef typename GR::Edge Key;
|
| 2428 |
2436 |
|
| 2429 |
2437 |
/// \brief Constructor
|
| 2430 |
2438 |
///
|
| 2431 |
2439 |
/// Constructor.
|
| 2432 |
2440 |
/// \param graph The graph that the map belongs to.
|
| 2433 |
2441 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| 2434 |
2442 |
|
| 2435 |
2443 |
/// \brief Returns the "forward" directed arc view of the given edge.
|
| 2436 |
2444 |
///
|
| 2437 |
2445 |
/// Returns the "forward" directed arc view of the given edge.
|
| 2438 |
2446 |
Value operator[](const Key& key) const {
|
| 2439 |
2447 |
return _graph.direct(key, true);
|
| 2440 |
2448 |
}
|
| 2441 |
2449 |
|
| 2442 |
2450 |
private:
|
| 2443 |
2451 |
const GR& _graph;
|
| 2444 |
2452 |
};
|
| 2445 |
2453 |
|
| 2446 |
2454 |
/// \brief Returns a \c ForwardMap class.
|
| 2447 |
2455 |
///
|
| 2448 |
2456 |
/// This function just returns an \c ForwardMap class.
|
| 2449 |
2457 |
/// \relates ForwardMap
|
| 2450 |
2458 |
template <typename GR>
|
| 2451 |
2459 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
| 2452 |
2460 |
return ForwardMap<GR>(graph);
|
| 2453 |
2461 |
}
|
| 2454 |
2462 |
|
| 2455 |
2463 |
/// \brief Map of the "backward" directed arc view of edges in a graph.
|
| 2456 |
2464 |
///
|
| 2457 |
2465 |
/// BackwardMap provides access for the "backward" directed arc view of
|
| 2458 |
2466 |
/// each edge in a graph, which is returned by the \c direct() function
|
| 2459 |
2467 |
/// of the graph with \c false parameter.
|
| 2460 |
2468 |
/// \tparam GR The graph type.
|
| 2461 |
2469 |
/// \see ForwardMap
|
| 2462 |
2470 |
template <typename GR>
|
| 2463 |
2471 |
class BackwardMap {
|
| 2464 |
2472 |
public:
|
| 2465 |
2473 |
|
| 2466 |
2474 |
typedef typename GR::Arc Value;
|
| 2467 |
2475 |
typedef typename GR::Edge Key;
|
| 2468 |
2476 |
|
| 2469 |
2477 |
/// \brief Constructor
|
| 2470 |
2478 |
///
|
| 2471 |
2479 |
/// Constructor.
|
| 2472 |
2480 |
/// \param graph The graph that the map belongs to.
|
| 2473 |
2481 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| 2474 |
2482 |
|
| 2475 |
2483 |
/// \brief Returns the "backward" directed arc view of the given edge.
|
| 2476 |
2484 |
///
|
| 2477 |
2485 |
/// Returns the "backward" directed arc view of the given edge.
|
| 2478 |
2486 |
Value operator[](const Key& key) const {
|
| 2479 |
2487 |
return _graph.direct(key, false);
|
| 2480 |
2488 |
}
|
| 2481 |
2489 |
|
| 2482 |
2490 |
private:
|
| 2483 |
2491 |
const GR& _graph;
|
| 2484 |
2492 |
};
|
| 2485 |
2493 |
|
| 2486 |
2494 |
/// \brief Returns a \c BackwardMap class
|
| 2487 |
2495 |
|
| 2488 |
2496 |
/// This function just returns a \c BackwardMap class.
|
| 2489 |
2497 |
/// \relates BackwardMap
|
| 2490 |
2498 |
template <typename GR>
|
| 2491 |
2499 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
| 2492 |
2500 |
return BackwardMap<GR>(graph);
|
| 2493 |
2501 |
}
|
| 2494 |
2502 |
|
| 2495 |
2503 |
/// \brief Map of the in-degrees of nodes in a digraph.
|
| 2496 |
2504 |
///
|
| 2497 |
2505 |
/// This map returns the in-degree of a node. Once it is constructed,
|
| 2498 |
2506 |
/// the degrees are stored in a standard \c NodeMap, so each query is done
|
| 2499 |
2507 |
/// in constant time. On the other hand, the values are updated automatically
|
| 2500 |
2508 |
/// whenever the digraph changes.
|
| 2501 |
2509 |
///
|
| 2502 |
2510 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
|
| 2503 |
2511 |
/// may provide alternative ways to modify the digraph.
|
| 2504 |
2512 |
/// The correct behavior of InDegMap is not guarantied if these additional
|
| 2505 |
2513 |
/// features are used. For example the functions
|
| 2506 |
2514 |
/// \ref ListDigraph::changeSource() "changeSource()",
|
| 2507 |
2515 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
| 2508 |
2516 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
| 2509 |
2517 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
| 2510 |
2518 |
///
|
| 2511 |
2519 |
/// \sa OutDegMap
|
| 2512 |
2520 |
template <typename GR>
|
| 2513 |
2521 |
class InDegMap
|
| 2514 |
2522 |
: protected ItemSetTraits<GR, typename GR::Arc>
|
| 2515 |
2523 |
::ItemNotifier::ObserverBase {
|
| 2516 |
2524 |
|
| 2517 |
2525 |
public:
|
| 2518 |
2526 |
|
| 2519 |
2527 |
/// The graph type of InDegMap
|
| 2520 |
2528 |
typedef GR Graph;
|
| 2521 |
2529 |
typedef GR Digraph;
|
| 2522 |
2530 |
/// The key type
|
| 2523 |
2531 |
typedef typename Digraph::Node Key;
|
| 2524 |
2532 |
/// The value type
|