0
2
0
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 |
#include <lemon/list_graph.h> |
|
26 | 27 |
#include <lemon/bits/path_dump.h> |
27 | 28 |
#include <lemon/core.h> |
28 | 29 |
#include <lemon/error.h> |
29 | 30 |
#include <lemon/maps.h> |
30 | 31 |
#include <lemon/path.h> |
31 | 32 |
|
32 | 33 |
#include <limits> |
33 | 34 |
|
34 | 35 |
namespace lemon { |
35 | 36 |
|
36 | 37 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
37 | 38 |
/// |
38 | 39 |
/// This operation traits class defines all computational operations |
39 | 40 |
/// and constants that are used in the Bellman-Ford algorithm. |
40 | 41 |
/// The default implementation is based on the \c numeric_limits class. |
41 | 42 |
/// If the numeric type does not have infinity value, then the maximum |
42 | 43 |
/// value is used as extremal infinity value. |
43 | 44 |
template < |
44 | 45 |
typename V, |
45 | 46 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
46 | 47 |
struct BellmanFordDefaultOperationTraits { |
47 | 48 |
/// \e |
48 | 49 |
typedef V Value; |
49 | 50 |
/// \brief Gives back the zero value of the type. |
50 | 51 |
static Value zero() { |
51 | 52 |
return static_cast<Value>(0); |
52 | 53 |
} |
53 | 54 |
/// \brief Gives back the positive infinity value of the type. |
54 | 55 |
static Value infinity() { |
55 | 56 |
return std::numeric_limits<Value>::infinity(); |
56 | 57 |
} |
57 | 58 |
/// \brief Gives back the sum of the given two elements. |
... | ... |
@@ -746,65 +747,65 @@ |
746 | 747 |
/// Returns a const reference to the node map that stores the distances |
747 | 748 |
/// of the nodes calculated by the algorithm. |
748 | 749 |
/// |
749 | 750 |
/// \pre Either \ref run() or \ref init() must be called before |
750 | 751 |
/// using this function. |
751 | 752 |
const DistMap &distMap() const { return *_dist;} |
752 | 753 |
|
753 | 754 |
/// \brief Returns a const reference to the node map that stores the |
754 | 755 |
/// predecessor arcs. |
755 | 756 |
/// |
756 | 757 |
/// Returns a const reference to the node map that stores the predecessor |
757 | 758 |
/// arcs, which form the shortest path tree (forest). |
758 | 759 |
/// |
759 | 760 |
/// \pre Either \ref run() or \ref init() must be called before |
760 | 761 |
/// using this function. |
761 | 762 |
const PredMap &predMap() const { return *_pred; } |
762 | 763 |
|
763 | 764 |
/// \brief Checks if a node is reached from the root(s). |
764 | 765 |
/// |
765 | 766 |
/// Returns \c true if \c v is reached from the root(s). |
766 | 767 |
/// |
767 | 768 |
/// \pre Either \ref run() or \ref init() must be called before |
768 | 769 |
/// using this function. |
769 | 770 |
bool reached(Node v) const { |
770 | 771 |
return (*_dist)[v] != OperationTraits::infinity(); |
771 | 772 |
} |
772 | 773 |
|
773 | 774 |
/// \brief Gives back a negative cycle. |
774 | 775 |
/// |
775 | 776 |
/// This function gives back a directed cycle with negative total |
776 | 777 |
/// length if the algorithm has already found one. |
777 | 778 |
/// Otherwise it gives back an empty path. |
778 |
lemon::Path<Digraph> negativeCycle() { |
|
779 |
lemon::Path<Digraph> negativeCycle() const { |
|
779 | 780 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
780 | 781 |
lemon::Path<Digraph> cycle; |
781 | 782 |
for (int i = 0; i < int(_process.size()); ++i) { |
782 | 783 |
if (state[_process[i]] != -1) continue; |
783 | 784 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
784 | 785 |
v = _gr->source((*_pred)[v])) { |
785 | 786 |
if (state[v] == i) { |
786 | 787 |
cycle.addFront((*_pred)[v]); |
787 | 788 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
788 | 789 |
u = _gr->source((*_pred)[u])) { |
789 | 790 |
cycle.addFront((*_pred)[u]); |
790 | 791 |
} |
791 | 792 |
return cycle; |
792 | 793 |
} |
793 | 794 |
else if (state[v] >= 0) { |
794 | 795 |
break; |
795 | 796 |
} |
796 | 797 |
state[v] = i; |
797 | 798 |
} |
798 | 799 |
} |
799 | 800 |
return cycle; |
800 | 801 |
} |
801 | 802 |
|
802 | 803 |
///@} |
803 | 804 |
}; |
804 | 805 |
|
805 | 806 |
/// \brief Default traits class of bellmanFord() function. |
806 | 807 |
/// |
807 | 808 |
/// Default traits class of bellmanFord() function. |
808 | 809 |
/// \tparam GR The type of the digraph. |
809 | 810 |
/// \tparam LEN The type of the length map. |
810 | 811 |
template <typename GR, typename LEN> |
... | ... |
@@ -67,100 +67,102 @@ |
67 | 67 |
Value l; |
68 | 68 |
int k; |
69 | 69 |
bool b; |
70 | 70 |
BF::DistMap d(gr); |
71 | 71 |
BF::PredMap p(gr); |
72 | 72 |
LengthMap length; |
73 | 73 |
concepts::Path<Digraph> pp; |
74 | 74 |
|
75 | 75 |
{ |
76 | 76 |
BF bf_test(gr,length); |
77 | 77 |
const BF& const_bf_test = bf_test; |
78 | 78 |
|
79 | 79 |
bf_test.run(s); |
80 | 80 |
bf_test.run(s,k); |
81 | 81 |
|
82 | 82 |
bf_test.init(); |
83 | 83 |
bf_test.addSource(s); |
84 | 84 |
bf_test.addSource(s, 1); |
85 | 85 |
b = bf_test.processNextRound(); |
86 | 86 |
b = bf_test.processNextWeakRound(); |
87 | 87 |
|
88 | 88 |
bf_test.start(); |
89 | 89 |
bf_test.checkedStart(); |
90 | 90 |
bf_test.limitedStart(k); |
91 | 91 |
|
92 | 92 |
l = const_bf_test.dist(t); |
93 | 93 |
e = const_bf_test.predArc(t); |
94 | 94 |
s = const_bf_test.predNode(t); |
95 | 95 |
b = const_bf_test.reached(t); |
96 | 96 |
d = const_bf_test.distMap(); |
97 | 97 |
p = const_bf_test.predMap(); |
98 | 98 |
pp = const_bf_test.path(t); |
99 |
pp = const_bf_test.negativeCycle(); |
|
99 | 100 |
|
100 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
101 | 102 |
} |
102 | 103 |
{ |
103 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
104 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
105 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
106 | 107 |
::Create bf_test(gr,length); |
107 | 108 |
|
108 | 109 |
LengthMap length_map; |
109 | 110 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
110 | 111 |
concepts::ReadWriteMap<Node,Value> dist_map; |
111 | 112 |
|
112 | 113 |
bf_test |
113 | 114 |
.lengthMap(length_map) |
114 | 115 |
.predMap(pred_map) |
115 | 116 |
.distMap(dist_map); |
116 | 117 |
|
117 | 118 |
bf_test.run(s); |
118 | 119 |
bf_test.run(s,k); |
119 | 120 |
|
120 | 121 |
bf_test.init(); |
121 | 122 |
bf_test.addSource(s); |
122 | 123 |
bf_test.addSource(s, 1); |
123 | 124 |
b = bf_test.processNextRound(); |
124 | 125 |
b = bf_test.processNextWeakRound(); |
125 | 126 |
|
126 | 127 |
bf_test.start(); |
127 | 128 |
bf_test.checkedStart(); |
128 | 129 |
bf_test.limitedStart(k); |
129 | 130 |
|
130 | 131 |
l = bf_test.dist(t); |
131 | 132 |
e = bf_test.predArc(t); |
132 | 133 |
s = bf_test.predNode(t); |
133 | 134 |
b = bf_test.reached(t); |
134 | 135 |
pp = bf_test.path(t); |
136 |
pp = bf_test.negativeCycle(); |
|
135 | 137 |
} |
136 | 138 |
} |
137 | 139 |
|
138 | 140 |
void checkBellmanFordFunctionCompile() |
139 | 141 |
{ |
140 | 142 |
typedef int Value; |
141 | 143 |
typedef concepts::Digraph Digraph; |
142 | 144 |
typedef Digraph::Arc Arc; |
143 | 145 |
typedef Digraph::Node Node; |
144 | 146 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
145 | 147 |
|
146 | 148 |
Digraph g; |
147 | 149 |
bool b; |
148 | 150 |
bellmanFord(g,LengthMap()).run(Node()); |
149 | 151 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
150 | 152 |
bellmanFord(g,LengthMap()) |
151 | 153 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
152 | 154 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
153 | 155 |
.run(Node()); |
154 | 156 |
b=bellmanFord(g,LengthMap()) |
155 | 157 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
156 | 158 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
157 | 159 |
.path(concepts::Path<Digraph>()) |
158 | 160 |
.dist(Value()) |
159 | 161 |
.run(Node(),Node()); |
160 | 162 |
} |
161 | 163 |
|
162 | 164 |
|
163 | 165 |
template <typename Digraph, typename Value> |
164 | 166 |
void checkBellmanFord() { |
165 | 167 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
166 | 168 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
0 comments (0 inline)