gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Small fixes related to BellmanFord (#51) - Add a missing #include. - Add a missing const keyword for negativeCycle(). - Test if negativeCycle() is const function.
0 2 0
default
2 files changed with 4 insertions and 1 deletions:
↑ Collapse diff ↑
Ignore white space 16384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BELLMAN_FORD_H
20 20
#define LEMON_BELLMAN_FORD_H
21 21

	
22 22
/// \ingroup shortest_path
23 23
/// \file
24 24
/// \brief Bellman-Ford algorithm.
25 25

	
26
#include <lemon/list_graph.h>
26 27
#include <lemon/bits/path_dump.h>
27 28
#include <lemon/core.h>
28 29
#include <lemon/error.h>
29 30
#include <lemon/maps.h>
30 31
#include <lemon/path.h>
31 32

	
32 33
#include <limits>
33 34

	
34 35
namespace lemon {
35 36

	
36 37
  /// \brief Default OperationTraits for the BellmanFord algorithm class.
37 38
  ///  
38 39
  /// This operation traits class defines all computational operations
39 40
  /// and constants that are used in the Bellman-Ford algorithm.
40 41
  /// The default implementation is based on the \c numeric_limits class.
41 42
  /// If the numeric type does not have infinity value, then the maximum
42 43
  /// value is used as extremal infinity value.
43 44
  template <
44 45
    typename V, 
45 46
    bool has_inf = std::numeric_limits<V>::has_infinity>
46 47
  struct BellmanFordDefaultOperationTraits {
47 48
    /// \e
48 49
    typedef V Value;
49 50
    /// \brief Gives back the zero value of the type.
50 51
    static Value zero() {
51 52
      return static_cast<Value>(0);
52 53
    }
53 54
    /// \brief Gives back the positive infinity value of the type.
54 55
    static Value infinity() {
55 56
      return std::numeric_limits<Value>::infinity();
56 57
    }
57 58
    /// \brief Gives back the sum of the given two elements.
58 59
    static Value plus(const Value& left, const Value& right) {
59 60
      return left + right;
60 61
    }
61 62
    /// \brief Gives back \c true only if the first value is less than
62 63
    /// the second.
63 64
    static bool less(const Value& left, const Value& right) {
64 65
      return left < right;
65 66
    }
66 67
  };
67 68

	
68 69
  template <typename V>
69 70
  struct BellmanFordDefaultOperationTraits<V, false> {
70 71
    typedef V Value;
71 72
    static Value zero() {
72 73
      return static_cast<Value>(0);
73 74
    }
74 75
    static Value infinity() {
75 76
      return std::numeric_limits<Value>::max();
76 77
    }
77 78
    static Value plus(const Value& left, const Value& right) {
78 79
      if (left == infinity() || right == infinity()) return infinity();
79 80
      return left + right;
80 81
    }
81 82
    static bool less(const Value& left, const Value& right) {
82 83
      return left < right;
83 84
    }
84 85
  };
85 86
  
86 87
  /// \brief Default traits class of BellmanFord class.
87 88
  ///
88 89
  /// Default traits class of BellmanFord class.
89 90
  /// \param GR The type of the digraph.
90 91
  /// \param LEN The type of the length map.
91 92
  template<typename GR, typename LEN>
92 93
  struct BellmanFordDefaultTraits {
93 94
    /// The type of the digraph the algorithm runs on. 
94 95
    typedef GR Digraph;
95 96

	
96 97
    /// \brief The type of the map that stores the arc lengths.
97 98
    ///
98 99
    /// The type of the map that stores the arc lengths.
99 100
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
100 101
    typedef LEN LengthMap;
101 102

	
102 103
    /// The type of the arc lengths.
103 104
    typedef typename LEN::Value Value;
104 105

	
105 106
    /// \brief Operation traits for Bellman-Ford algorithm.
106 107
    ///
107 108
    /// It defines the used operations and the infinity value for the
108 109
    /// given \c Value type.
109 110
    /// \see BellmanFordDefaultOperationTraits
110 111
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
111 112
 
112 113
    /// \brief The type of the map that stores the last arcs of the 
113 114
    /// shortest paths.
114 115
    /// 
115 116
    /// The type of the map that stores the last
116 117
    /// arcs of the shortest paths.
117 118
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
118 119
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
119 120

	
120 121
    /// \brief Instantiates a \c PredMap.
121 122
    /// 
122 123
    /// This function instantiates a \ref PredMap. 
123 124
    /// \param g is the digraph to which we would like to define the
124 125
    /// \ref PredMap.
125 126
    static PredMap *createPredMap(const GR& g) {
126 127
      return new PredMap(g);
127 128
    }
128 129

	
129 130
    /// \brief The type of the map that stores the distances of the nodes.
130 131
    ///
131 132
    /// The type of the map that stores the distances of the nodes.
132 133
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
133 134
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
134 135

	
135 136
    /// \brief Instantiates a \c DistMap.
136 137
    ///
137 138
    /// This function instantiates a \ref DistMap. 
138 139
    /// \param g is the digraph to which we would like to define the 
139 140
    /// \ref DistMap.
140 141
    static DistMap *createDistMap(const GR& g) {
141 142
      return new DistMap(g);
142 143
    }
143 144

	
144 145
  };
145 146
  
146 147
  /// \brief %BellmanFord algorithm class.
147 148
  ///
148 149
  /// \ingroup shortest_path
149 150
  /// This class provides an efficient implementation of the Bellman-Ford 
150 151
  /// algorithm. The maximum time complexity of the algorithm is
151 152
  /// <tt>O(ne)</tt>.
152 153
  ///
153 154
  /// The Bellman-Ford algorithm solves the single-source shortest path
154 155
  /// problem when the arcs can have negative lengths, but the digraph
155 156
  /// should not contain directed cycles with negative total length.
156 157
  /// If all arc costs are non-negative, consider to use the Dijkstra
157 158
  /// algorithm instead, since it is more efficient.
158 159
  ///
159 160
  /// The arc lengths are passed to the algorithm using a
160 161
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
161 162
  /// kind of length. The type of the length values is determined by the
162 163
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
163 164
  ///
164 165
  /// There is also a \ref bellmanFord() "function-type interface" for the
165 166
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
166 167
  /// it can be used easier.
167 168
  ///
168 169
  /// \tparam GR The type of the digraph the algorithm runs on.
169 170
  /// The default type is \ref ListDigraph.
170 171
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
171 172
  /// the lengths of the arcs. The default map type is
172 173
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
173 174
#ifdef DOXYGEN
174 175
  template <typename GR, typename LEN, typename TR>
175 176
#else
176 177
  template <typename GR=ListDigraph,
177 178
            typename LEN=typename GR::template ArcMap<int>,
178 179
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
179 180
#endif
180 181
  class BellmanFord {
181 182
  public:
182 183

	
183 184
    ///The type of the underlying digraph.
184 185
    typedef typename TR::Digraph Digraph;
185 186
    
186 187
    /// \brief The type of the arc lengths.
187 188
    typedef typename TR::LengthMap::Value Value;
188 189
    /// \brief The type of the map that stores the arc lengths.
189 190
    typedef typename TR::LengthMap LengthMap;
190 191
    /// \brief The type of the map that stores the last
191 192
    /// arcs of the shortest paths.
192 193
    typedef typename TR::PredMap PredMap;
193 194
    /// \brief The type of the map that stores the distances of the nodes.
194 195
    typedef typename TR::DistMap DistMap;
195 196
    /// The type of the paths.
196 197
    typedef PredMapPath<Digraph, PredMap> Path;
197 198
    ///\brief The \ref BellmanFordDefaultOperationTraits
198 199
    /// "operation traits class" of the algorithm.
199 200
    typedef typename TR::OperationTraits OperationTraits;
200 201

	
201 202
    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
202 203
    typedef TR Traits;
203 204

	
204 205
  private:
205 206

	
206 207
    typedef typename Digraph::Node Node;
207 208
    typedef typename Digraph::NodeIt NodeIt;
208 209
    typedef typename Digraph::Arc Arc;
209 210
    typedef typename Digraph::OutArcIt OutArcIt;
210 211

	
211 212
    // Pointer to the underlying digraph.
212 213
    const Digraph *_gr;
213 214
    // Pointer to the length map
214 215
    const LengthMap *_length;
215 216
    // Pointer to the map of predecessors arcs.
216 217
    PredMap *_pred;
217 218
    // Indicates if _pred is locally allocated (true) or not.
218 219
    bool _local_pred;
219 220
    // Pointer to the map of distances.
220 221
    DistMap *_dist;
221 222
    // Indicates if _dist is locally allocated (true) or not.
222 223
    bool _local_dist;
223 224

	
224 225
    typedef typename Digraph::template NodeMap<bool> MaskMap;
225 226
    MaskMap *_mask;
226 227

	
227 228
    std::vector<Node> _process;
228 229

	
229 230
    // Creates the maps if necessary.
230 231
    void create_maps() {
231 232
      if(!_pred) {
232 233
	_local_pred = true;
233 234
	_pred = Traits::createPredMap(*_gr);
234 235
      }
235 236
      if(!_dist) {
236 237
	_local_dist = true;
237 238
	_dist = Traits::createDistMap(*_gr);
238 239
      }
239 240
      _mask = new MaskMap(*_gr, false);
240 241
    }
241 242
    
242 243
  public :
243 244
 
244 245
    typedef BellmanFord Create;
245 246

	
246 247
    /// \name Named Template Parameters
247 248

	
248 249
    ///@{
249 250

	
250 251
    template <class T>
251 252
    struct SetPredMapTraits : public Traits {
252 253
      typedef T PredMap;
253 254
      static PredMap *createPredMap(const Digraph&) {
254 255
        LEMON_ASSERT(false, "PredMap is not initialized");
255 256
        return 0; // ignore warnings
256 257
      }
257 258
    };
258 259

	
259 260
    /// \brief \ref named-templ-param "Named parameter" for setting
260 261
    /// \c PredMap type.
261 262
    ///
262 263
    /// \ref named-templ-param "Named parameter" for setting
263 264
    /// \c PredMap type.
264 265
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
265 266
    template <class T>
266 267
    struct SetPredMap 
267 268
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
268 269
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
269 270
    };
270 271
    
271 272
    template <class T>
272 273
    struct SetDistMapTraits : public Traits {
273 274
      typedef T DistMap;
274 275
      static DistMap *createDistMap(const Digraph&) {
275 276
        LEMON_ASSERT(false, "DistMap is not initialized");
276 277
        return 0; // ignore warnings
277 278
      }
278 279
    };
279 280

	
280 281
    /// \brief \ref named-templ-param "Named parameter" for setting
281 282
    /// \c DistMap type.
282 283
    ///
283 284
    /// \ref named-templ-param "Named parameter" for setting
284 285
    /// \c DistMap type.
285 286
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
286 287
    template <class T>
287 288
    struct SetDistMap 
288 289
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
289 290
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
290 291
    };
291 292

	
292 293
    template <class T>
293 294
    struct SetOperationTraitsTraits : public Traits {
294 295
      typedef T OperationTraits;
295 296
    };
296 297
    
297 298
    /// \brief \ref named-templ-param "Named parameter" for setting 
298 299
    /// \c OperationTraits type.
299 300
    ///
300 301
    /// \ref named-templ-param "Named parameter" for setting
301 302
    /// \c OperationTraits type.
302 303
    /// For more information see \ref BellmanFordDefaultOperationTraits.
303 304
    template <class T>
304 305
    struct SetOperationTraits
305 306
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
306 307
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
307 308
      Create;
308 309
    };
309 310
    
310 311
    ///@}
311 312

	
312 313
  protected:
313 314
    
314 315
    BellmanFord() {}
315 316

	
316 317
  public:      
317 318
    
318 319
    /// \brief Constructor.
319 320
    ///
320 321
    /// Constructor.
321 322
    /// \param g The digraph the algorithm runs on.
322 323
    /// \param length The length map used by the algorithm.
323 324
    BellmanFord(const Digraph& g, const LengthMap& length) :
324 325
      _gr(&g), _length(&length),
325 326
      _pred(0), _local_pred(false),
326 327
      _dist(0), _local_dist(false), _mask(0) {}
327 328
    
328 329
    ///Destructor.
329 330
    ~BellmanFord() {
330 331
      if(_local_pred) delete _pred;
331 332
      if(_local_dist) delete _dist;
332 333
      if(_mask) delete _mask;
333 334
    }
334 335

	
335 336
    /// \brief Sets the length map.
336 337
    ///
337 338
    /// Sets the length map.
338 339
    /// \return <tt>(*this)</tt>
339 340
    BellmanFord &lengthMap(const LengthMap &map) {
340 341
      _length = &map;
341 342
      return *this;
342 343
    }
343 344

	
344 345
    /// \brief Sets the map that stores the predecessor arcs.
345 346
    ///
346 347
    /// Sets the map that stores the predecessor arcs.
347 348
    /// If you don't use this function before calling \ref run()
348 349
    /// or \ref init(), an instance will be allocated automatically.
349 350
    /// The destructor deallocates this automatically allocated map,
350 351
    /// of course.
351 352
    /// \return <tt>(*this)</tt>
352 353
    BellmanFord &predMap(PredMap &map) {
353 354
      if(_local_pred) {
354 355
	delete _pred;
355 356
	_local_pred=false;
356 357
      }
357 358
      _pred = &map;
358 359
      return *this;
359 360
    }
360 361

	
361 362
    /// \brief Sets the map that stores the distances of the nodes.
362 363
    ///
363 364
    /// Sets the map that stores the distances of the nodes calculated
364 365
    /// by the algorithm.
365 366
    /// If you don't use this function before calling \ref run()
366 367
    /// or \ref init(), an instance will be allocated automatically.
367 368
    /// The destructor deallocates this automatically allocated map,
368 369
    /// of course.
369 370
    /// \return <tt>(*this)</tt>
370 371
    BellmanFord &distMap(DistMap &map) {
371 372
      if(_local_dist) {
372 373
	delete _dist;
373 374
	_local_dist=false;
374 375
      }
375 376
      _dist = &map;
376 377
      return *this;
377 378
    }
378 379

	
379 380
    /// \name Execution Control
380 381
    /// The simplest way to execute the Bellman-Ford algorithm is to use
381 382
    /// one of the member functions called \ref run().\n
382 383
    /// If you need better control on the execution, you have to call
383 384
    /// \ref init() first, then you can add several source nodes
384 385
    /// with \ref addSource(). Finally the actual path computation can be
385 386
    /// performed with \ref start(), \ref checkedStart() or
386 387
    /// \ref limitedStart().
387 388

	
388 389
    ///@{
389 390

	
390 391
    /// \brief Initializes the internal data structures.
391 392
    /// 
392 393
    /// Initializes the internal data structures. The optional parameter
393 394
    /// is the initial distance of each node.
394 395
    void init(const Value value = OperationTraits::infinity()) {
395 396
      create_maps();
396 397
      for (NodeIt it(*_gr); it != INVALID; ++it) {
397 398
	_pred->set(it, INVALID);
398 399
	_dist->set(it, value);
399 400
      }
400 401
      _process.clear();
401 402
      if (OperationTraits::less(value, OperationTraits::infinity())) {
402 403
	for (NodeIt it(*_gr); it != INVALID; ++it) {
403 404
	  _process.push_back(it);
404 405
	  _mask->set(it, true);
405 406
	}
406 407
      }
407 408
    }
408 409
    
409 410
    /// \brief Adds a new source node.
410 411
    ///
411 412
    /// This function adds a new source node. The optional second parameter
412 413
    /// is the initial distance of the node.
413 414
    void addSource(Node source, Value dst = OperationTraits::zero()) {
414 415
      _dist->set(source, dst);
415 416
      if (!(*_mask)[source]) {
416 417
	_process.push_back(source);
417 418
	_mask->set(source, true);
418 419
      }
419 420
    }
420 421

	
421 422
    /// \brief Executes one round from the Bellman-Ford algorithm.
422 423
    ///
423 424
    /// If the algoritm calculated the distances in the previous round
424 425
    /// exactly for the paths of at most \c k arcs, then this function
425 426
    /// will calculate the distances exactly for the paths of at most
426 427
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
427 428
    /// calculates the shortest path distances exactly for the paths
428 429
    /// consisting of at most \c k arcs.
429 430
    ///
430 431
    /// \warning The paths with limited arc number cannot be retrieved
431 432
    /// easily with \ref path() or \ref predArc() functions. If you also
432 433
    /// need the shortest paths and not only the distances, you should
433 434
    /// store the \ref predMap() "predecessor map" after each iteration
434 435
    /// and build the path manually.
435 436
    ///
436 437
    /// \return \c true when the algorithm have not found more shorter
437 438
    /// paths.
438 439
    ///
439 440
    /// \see ActiveIt
440 441
    bool processNextRound() {
441 442
      for (int i = 0; i < int(_process.size()); ++i) {
442 443
	_mask->set(_process[i], false);
443 444
      }
444 445
      std::vector<Node> nextProcess;
445 446
      std::vector<Value> values(_process.size());
446 447
      for (int i = 0; i < int(_process.size()); ++i) {
447 448
	values[i] = (*_dist)[_process[i]];
448 449
      }
449 450
      for (int i = 0; i < int(_process.size()); ++i) {
450 451
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
451 452
	  Node target = _gr->target(it);
452 453
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
453 454
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
454 455
	    _pred->set(target, it);
455 456
	    _dist->set(target, relaxed);
456 457
	    if (!(*_mask)[target]) {
457 458
	      _mask->set(target, true);
458 459
	      nextProcess.push_back(target);
459 460
	    }
460 461
	  }	  
461 462
	}
462 463
      }
463 464
      _process.swap(nextProcess);
464 465
      return _process.empty();
465 466
    }
466 467

	
467 468
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
468 469
    ///
469 470
    /// If the algorithm calculated the distances in the previous round
470 471
    /// at least for the paths of at most \c k arcs, then this function
471 472
    /// will calculate the distances at least for the paths of at most
472 473
    /// <tt>k+1</tt> arcs.
473 474
    /// This function does not make it possible to calculate the shortest
474 475
    /// path distances exactly for paths consisting of at most \c k arcs,
475 476
    /// this is why it is called weak round.
476 477
    ///
477 478
    /// \return \c true when the algorithm have not found more shorter
478 479
    /// paths.
479 480
    ///
480 481
    /// \see ActiveIt
481 482
    bool processNextWeakRound() {
482 483
      for (int i = 0; i < int(_process.size()); ++i) {
483 484
	_mask->set(_process[i], false);
484 485
      }
485 486
      std::vector<Node> nextProcess;
486 487
      for (int i = 0; i < int(_process.size()); ++i) {
487 488
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
488 489
	  Node target = _gr->target(it);
489 490
	  Value relaxed = 
490 491
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
491 492
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
492 493
	    _pred->set(target, it);
493 494
	    _dist->set(target, relaxed);
494 495
	    if (!(*_mask)[target]) {
495 496
	      _mask->set(target, true);
496 497
	      nextProcess.push_back(target);
497 498
	    }
498 499
	  }	  
499 500
	}
500 501
      }
501 502
      _process.swap(nextProcess);
502 503
      return _process.empty();
503 504
    }
504 505

	
505 506
    /// \brief Executes the algorithm.
506 507
    ///
507 508
    /// Executes the algorithm.
508 509
    ///
509 510
    /// This method runs the Bellman-Ford algorithm from the root node(s)
510 511
    /// in order to compute the shortest path to each node.
511 512
    ///
512 513
    /// The algorithm computes
513 514
    /// - the shortest path tree (forest),
514 515
    /// - the distance of each node from the root(s).
515 516
    ///
516 517
    /// \pre init() must be called and at least one root node should be
517 518
    /// added with addSource() before using this function.
518 519
    void start() {
519 520
      int num = countNodes(*_gr) - 1;
520 521
      for (int i = 0; i < num; ++i) {
521 522
	if (processNextWeakRound()) break;
522 523
      }
523 524
    }
524 525

	
525 526
    /// \brief Executes the algorithm and checks the negative cycles.
526 527
    ///
527 528
    /// Executes the algorithm and checks the negative cycles.
528 529
    ///
529 530
    /// This method runs the Bellman-Ford algorithm from the root node(s)
530 531
    /// in order to compute the shortest path to each node and also checks
531 532
    /// if the digraph contains cycles with negative total length.
532 533
    ///
533 534
    /// The algorithm computes 
534 535
    /// - the shortest path tree (forest),
535 536
    /// - the distance of each node from the root(s).
536 537
    /// 
537 538
    /// \return \c false if there is a negative cycle in the digraph.
538 539
    ///
539 540
    /// \pre init() must be called and at least one root node should be
540 541
    /// added with addSource() before using this function. 
541 542
    bool checkedStart() {
542 543
      int num = countNodes(*_gr);
543 544
      for (int i = 0; i < num; ++i) {
544 545
	if (processNextWeakRound()) return true;
545 546
      }
546 547
      return _process.empty();
547 548
    }
548 549

	
549 550
    /// \brief Executes the algorithm with arc number limit.
550 551
    ///
551 552
    /// Executes the algorithm with arc number limit.
552 553
    ///
553 554
    /// This method runs the Bellman-Ford algorithm from the root node(s)
554 555
    /// in order to compute the shortest path distance for each node
555 556
    /// using only the paths consisting of at most \c num arcs.
556 557
    ///
557 558
    /// The algorithm computes
558 559
    /// - the limited distance of each node from the root(s),
559 560
    /// - the predecessor arc for each node.
560 561
    ///
561 562
    /// \warning The paths with limited arc number cannot be retrieved
562 563
    /// easily with \ref path() or \ref predArc() functions. If you also
563 564
    /// need the shortest paths and not only the distances, you should
564 565
    /// store the \ref predMap() "predecessor map" after each iteration
565 566
    /// and build the path manually.
566 567
    ///
567 568
    /// \pre init() must be called and at least one root node should be
568 569
    /// added with addSource() before using this function. 
569 570
    void limitedStart(int num) {
570 571
      for (int i = 0; i < num; ++i) {
571 572
	if (processNextRound()) break;
572 573
      }
573 574
    }
574 575
    
575 576
    /// \brief Runs the algorithm from the given root node.
576 577
    ///    
577 578
    /// This method runs the Bellman-Ford algorithm from the given root
578 579
    /// node \c s in order to compute the shortest path to each node.
579 580
    ///
580 581
    /// The algorithm computes
581 582
    /// - the shortest path tree (forest),
582 583
    /// - the distance of each node from the root(s).
583 584
    ///
584 585
    /// \note bf.run(s) is just a shortcut of the following code.
585 586
    /// \code
586 587
    ///   bf.init();
587 588
    ///   bf.addSource(s);
588 589
    ///   bf.start();
589 590
    /// \endcode
590 591
    void run(Node s) {
591 592
      init();
592 593
      addSource(s);
593 594
      start();
594 595
    }
595 596
    
596 597
    /// \brief Runs the algorithm from the given root node with arc
597 598
    /// number limit.
598 599
    ///    
599 600
    /// This method runs the Bellman-Ford algorithm from the given root
600 601
    /// node \c s in order to compute the shortest path distance for each
601 602
    /// node using only the paths consisting of at most \c num arcs.
602 603
    ///
603 604
    /// The algorithm computes
604 605
    /// - the limited distance of each node from the root(s),
605 606
    /// - the predecessor arc for each node.
606 607
    ///
607 608
    /// \warning The paths with limited arc number cannot be retrieved
608 609
    /// easily with \ref path() or \ref predArc() functions. If you also
609 610
    /// need the shortest paths and not only the distances, you should
610 611
    /// store the \ref predMap() "predecessor map" after each iteration
611 612
    /// and build the path manually.
612 613
    ///
613 614
    /// \note bf.run(s, num) is just a shortcut of the following code.
614 615
    /// \code
615 616
    ///   bf.init();
616 617
    ///   bf.addSource(s);
617 618
    ///   bf.limitedStart(num);
618 619
    /// \endcode
619 620
    void run(Node s, int num) {
620 621
      init();
621 622
      addSource(s);
622 623
      limitedStart(num);
623 624
    }
624 625
    
625 626
    ///@}
626 627

	
627 628
    /// \brief LEMON iterator for getting the active nodes.
628 629
    ///
629 630
    /// This class provides a common style LEMON iterator that traverses
630 631
    /// the active nodes of the Bellman-Ford algorithm after the last
631 632
    /// phase. These nodes should be checked in the next phase to
632 633
    /// find augmenting arcs outgoing from them.
633 634
    class ActiveIt {
634 635
    public:
635 636

	
636 637
      /// \brief Constructor.
637 638
      ///
638 639
      /// Constructor for getting the active nodes of the given BellmanFord
639 640
      /// instance. 
640 641
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
641 642
      {
642 643
        _index = _algorithm->_process.size() - 1;
643 644
      }
644 645

	
645 646
      /// \brief Invalid constructor.
646 647
      ///
647 648
      /// Invalid constructor.
648 649
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
649 650

	
650 651
      /// \brief Conversion to \c Node.
651 652
      ///
652 653
      /// Conversion to \c Node.
653 654
      operator Node() const { 
654 655
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
655 656
      }
656 657

	
657 658
      /// \brief Increment operator.
658 659
      ///
659 660
      /// Increment operator.
660 661
      ActiveIt& operator++() {
661 662
        --_index;
662 663
        return *this; 
663 664
      }
664 665

	
665 666
      bool operator==(const ActiveIt& it) const { 
666 667
        return static_cast<Node>(*this) == static_cast<Node>(it); 
667 668
      }
668 669
      bool operator!=(const ActiveIt& it) const { 
669 670
        return static_cast<Node>(*this) != static_cast<Node>(it); 
670 671
      }
671 672
      bool operator<(const ActiveIt& it) const { 
672 673
        return static_cast<Node>(*this) < static_cast<Node>(it); 
673 674
      }
674 675
      
675 676
    private:
676 677
      const BellmanFord* _algorithm;
677 678
      int _index;
678 679
    };
679 680
    
680 681
    /// \name Query Functions
681 682
    /// The result of the Bellman-Ford algorithm can be obtained using these
682 683
    /// functions.\n
683 684
    /// Either \ref run() or \ref init() should be called before using them.
684 685
    
685 686
    ///@{
686 687

	
687 688
    /// \brief The shortest path to the given node.
688 689
    ///    
689 690
    /// Gives back the shortest path to the given node from the root(s).
690 691
    ///
691 692
    /// \warning \c t should be reached from the root(s).
692 693
    ///
693 694
    /// \pre Either \ref run() or \ref init() must be called before
694 695
    /// using this function.
695 696
    Path path(Node t) const
696 697
    {
697 698
      return Path(*_gr, *_pred, t);
698 699
    }
699 700
	  
700 701
    /// \brief The distance of the given node from the root(s).
701 702
    ///
702 703
    /// Returns the distance of the given node from the root(s).
703 704
    ///
704 705
    /// \warning If node \c v is not reached from the root(s), then
705 706
    /// the return value of this function is undefined.
706 707
    ///
707 708
    /// \pre Either \ref run() or \ref init() must be called before
708 709
    /// using this function.
709 710
    Value dist(Node v) const { return (*_dist)[v]; }
710 711

	
711 712
    /// \brief Returns the 'previous arc' of the shortest path tree for
712 713
    /// the given node.
713 714
    ///
714 715
    /// This function returns the 'previous arc' of the shortest path
715 716
    /// tree for node \c v, i.e. it returns the last arc of a
716 717
    /// shortest path from a root to \c v. It is \c INVALID if \c v
717 718
    /// is not reached from the root(s) or if \c v is a root.
718 719
    ///
719 720
    /// The shortest path tree used here is equal to the shortest path
720 721
    /// tree used in \ref predNode() and \predMap().
721 722
    ///
722 723
    /// \pre Either \ref run() or \ref init() must be called before
723 724
    /// using this function.
724 725
    Arc predArc(Node v) const { return (*_pred)[v]; }
725 726

	
726 727
    /// \brief Returns the 'previous node' of the shortest path tree for
727 728
    /// the given node.
728 729
    ///
729 730
    /// This function returns the 'previous node' of the shortest path
730 731
    /// tree for node \c v, i.e. it returns the last but one node of
731 732
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
732 733
    /// is not reached from the root(s) or if \c v is a root.
733 734
    ///
734 735
    /// The shortest path tree used here is equal to the shortest path
735 736
    /// tree used in \ref predArc() and \predMap().
736 737
    ///
737 738
    /// \pre Either \ref run() or \ref init() must be called before
738 739
    /// using this function.
739 740
    Node predNode(Node v) const { 
740 741
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
741 742
    }
742 743
    
743 744
    /// \brief Returns a const reference to the node map that stores the
744 745
    /// distances of the nodes.
745 746
    ///
746 747
    /// Returns a const reference to the node map that stores the distances
747 748
    /// of the nodes calculated by the algorithm.
748 749
    ///
749 750
    /// \pre Either \ref run() or \ref init() must be called before
750 751
    /// using this function.
751 752
    const DistMap &distMap() const { return *_dist;}
752 753
 
753 754
    /// \brief Returns a const reference to the node map that stores the
754 755
    /// predecessor arcs.
755 756
    ///
756 757
    /// Returns a const reference to the node map that stores the predecessor
757 758
    /// arcs, which form the shortest path tree (forest).
758 759
    ///
759 760
    /// \pre Either \ref run() or \ref init() must be called before
760 761
    /// using this function.
761 762
    const PredMap &predMap() const { return *_pred; }
762 763
 
763 764
    /// \brief Checks if a node is reached from the root(s).
764 765
    ///
765 766
    /// Returns \c true if \c v is reached from the root(s).
766 767
    ///
767 768
    /// \pre Either \ref run() or \ref init() must be called before
768 769
    /// using this function.
769 770
    bool reached(Node v) const {
770 771
      return (*_dist)[v] != OperationTraits::infinity();
771 772
    }
772 773

	
773 774
    /// \brief Gives back a negative cycle.
774 775
    ///    
775 776
    /// This function gives back a directed cycle with negative total
776 777
    /// length if the algorithm has already found one.
777 778
    /// Otherwise it gives back an empty path.
778
    lemon::Path<Digraph> negativeCycle() {
779
    lemon::Path<Digraph> negativeCycle() const {
779 780
      typename Digraph::template NodeMap<int> state(*_gr, -1);
780 781
      lemon::Path<Digraph> cycle;
781 782
      for (int i = 0; i < int(_process.size()); ++i) {
782 783
        if (state[_process[i]] != -1) continue;
783 784
        for (Node v = _process[i]; (*_pred)[v] != INVALID;
784 785
             v = _gr->source((*_pred)[v])) {
785 786
          if (state[v] == i) {
786 787
            cycle.addFront((*_pred)[v]);
787 788
            for (Node u = _gr->source((*_pred)[v]); u != v;
788 789
                 u = _gr->source((*_pred)[u])) {
789 790
              cycle.addFront((*_pred)[u]);
790 791
            }
791 792
            return cycle;
792 793
          }
793 794
          else if (state[v] >= 0) {
794 795
            break;
795 796
          }
796 797
          state[v] = i;
797 798
        }
798 799
      }
799 800
      return cycle;
800 801
    }
801 802
    
802 803
    ///@}
803 804
  };
804 805
 
805 806
  /// \brief Default traits class of bellmanFord() function.
806 807
  ///
807 808
  /// Default traits class of bellmanFord() function.
808 809
  /// \tparam GR The type of the digraph.
809 810
  /// \tparam LEN The type of the length map.
810 811
  template <typename GR, typename LEN>
811 812
  struct BellmanFordWizardDefaultTraits {
812 813
    /// The type of the digraph the algorithm runs on. 
813 814
    typedef GR Digraph;
814 815

	
815 816
    /// \brief The type of the map that stores the arc lengths.
816 817
    ///
817 818
    /// The type of the map that stores the arc lengths.
818 819
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
819 820
    typedef LEN LengthMap;
820 821

	
821 822
    /// The type of the arc lengths.
822 823
    typedef typename LEN::Value Value;
823 824

	
824 825
    /// \brief Operation traits for Bellman-Ford algorithm.
825 826
    ///
826 827
    /// It defines the used operations and the infinity value for the
827 828
    /// given \c Value type.
828 829
    /// \see BellmanFordDefaultOperationTraits
829 830
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
830 831

	
831 832
    /// \brief The type of the map that stores the last
832 833
    /// arcs of the shortest paths.
833 834
    /// 
834 835
    /// The type of the map that stores the last arcs of the shortest paths.
835 836
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
836 837
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
837 838

	
838 839
    /// \brief Instantiates a \c PredMap.
839 840
    /// 
840 841
    /// This function instantiates a \ref PredMap.
841 842
    /// \param g is the digraph to which we would like to define the
842 843
    /// \ref PredMap.
843 844
    static PredMap *createPredMap(const GR &g) {
844 845
      return new PredMap(g);
845 846
    }
846 847

	
847 848
    /// \brief The type of the map that stores the distances of the nodes.
848 849
    ///
849 850
    /// The type of the map that stores the distances of the nodes.
850 851
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
851 852
    typedef typename GR::template NodeMap<Value> DistMap;
852 853

	
853 854
    /// \brief Instantiates a \c DistMap.
854 855
    ///
855 856
    /// This function instantiates a \ref DistMap. 
856 857
    /// \param g is the digraph to which we would like to define the
857 858
    /// \ref DistMap.
858 859
    static DistMap *createDistMap(const GR &g) {
859 860
      return new DistMap(g);
860 861
    }
861 862

	
862 863
    ///The type of the shortest paths.
863 864

	
864 865
    ///The type of the shortest paths.
865 866
    ///It must meet the \ref concepts::Path "Path" concept.
866 867
    typedef lemon::Path<Digraph> Path;
867 868
  };
868 869
  
869 870
  /// \brief Default traits class used by BellmanFordWizard.
870 871
  ///
871 872
  /// Default traits class used by BellmanFordWizard.
872 873
  /// \tparam GR The type of the digraph.
873 874
  /// \tparam LEN The type of the length map.
874 875
  template <typename GR, typename LEN>
875 876
  class BellmanFordWizardBase 
876 877
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
877 878

	
878 879
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
879 880
  protected:
880 881
    // Type of the nodes in the digraph.
881 882
    typedef typename Base::Digraph::Node Node;
882 883

	
883 884
    // Pointer to the underlying digraph.
884 885
    void *_graph;
885 886
    // Pointer to the length map
886 887
    void *_length;
887 888
    // Pointer to the map of predecessors arcs.
888 889
    void *_pred;
889 890
    // Pointer to the map of distances.
890 891
    void *_dist;
891 892
    //Pointer to the shortest path to the target node.
892 893
    void *_path;
893 894
    //Pointer to the distance of the target node.
894 895
    void *_di;
895 896

	
896 897
    public:
897 898
    /// Constructor.
898 899
    
899 900
    /// This constructor does not require parameters, it initiates
900 901
    /// all of the attributes to default values \c 0.
901 902
    BellmanFordWizardBase() :
902 903
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
903 904

	
904 905
    /// Constructor.
905 906
    
906 907
    /// This constructor requires two parameters,
907 908
    /// others are initiated to \c 0.
908 909
    /// \param gr The digraph the algorithm runs on.
909 910
    /// \param len The length map.
910 911
    BellmanFordWizardBase(const GR& gr, 
911 912
			  const LEN& len) :
912 913
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
913 914
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
914 915
      _pred(0), _dist(0), _path(0), _di(0) {}
915 916

	
916 917
  };
917 918
  
918 919
  /// \brief Auxiliary class for the function-type interface of the
919 920
  /// \ref BellmanFord "Bellman-Ford" algorithm.
920 921
  ///
921 922
  /// This auxiliary class is created to implement the
922 923
  /// \ref bellmanFord() "function-type interface" of the
923 924
  /// \ref BellmanFord "Bellman-Ford" algorithm.
924 925
  /// It does not have own \ref run() method, it uses the
925 926
  /// functions and features of the plain \ref BellmanFord.
926 927
  ///
927 928
  /// This class should only be used through the \ref bellmanFord()
928 929
  /// function, which makes it easier to use the algorithm.
929 930
  template<class TR>
930 931
  class BellmanFordWizard : public TR {
931 932
    typedef TR Base;
932 933

	
933 934
    typedef typename TR::Digraph Digraph;
934 935

	
935 936
    typedef typename Digraph::Node Node;
936 937
    typedef typename Digraph::NodeIt NodeIt;
937 938
    typedef typename Digraph::Arc Arc;
938 939
    typedef typename Digraph::OutArcIt ArcIt;
939 940
    
940 941
    typedef typename TR::LengthMap LengthMap;
941 942
    typedef typename LengthMap::Value Value;
942 943
    typedef typename TR::PredMap PredMap;
943 944
    typedef typename TR::DistMap DistMap;
944 945
    typedef typename TR::Path Path;
945 946

	
946 947
  public:
947 948
    /// Constructor.
948 949
    BellmanFordWizard() : TR() {}
949 950

	
950 951
    /// \brief Constructor that requires parameters.
951 952
    ///
952 953
    /// Constructor that requires parameters.
953 954
    /// These parameters will be the default values for the traits class.
954 955
    /// \param gr The digraph the algorithm runs on.
955 956
    /// \param len The length map.
956 957
    BellmanFordWizard(const Digraph& gr, const LengthMap& len) 
957 958
      : TR(gr, len) {}
958 959

	
959 960
    /// \brief Copy constructor
960 961
    BellmanFordWizard(const TR &b) : TR(b) {}
961 962

	
962 963
    ~BellmanFordWizard() {}
963 964

	
964 965
    /// \brief Runs the Bellman-Ford algorithm from the given source node.
965 966
    ///    
966 967
    /// This method runs the Bellman-Ford algorithm from the given source
967 968
    /// node in order to compute the shortest path to each node.
968 969
    void run(Node s) {
969 970
      BellmanFord<Digraph,LengthMap,TR> 
970 971
	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
971 972
           *reinterpret_cast<const LengthMap*>(Base::_length));
972 973
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
973 974
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
974 975
      bf.run(s);
975 976
    }
976 977

	
977 978
    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
978 979
    /// between \c s and \c t.
979 980
    ///
980 981
    /// This method runs the Bellman-Ford algorithm from node \c s
981 982
    /// in order to compute the shortest path to node \c t.
982 983
    /// Actually, it computes the shortest path to each node, but using
983 984
    /// this function you can retrieve the distance and the shortest path
984 985
    /// for a single target node easier.
985 986
    ///
986 987
    /// \return \c true if \c t is reachable form \c s.
987 988
    bool run(Node s, Node t) {
988 989
      BellmanFord<Digraph,LengthMap,TR>
989 990
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
990 991
           *reinterpret_cast<const LengthMap*>(Base::_length));
991 992
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
992 993
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
993 994
      bf.run(s);
994 995
      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
995 996
      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
996 997
      return bf.reached(t);
997 998
    }
998 999

	
999 1000
    template<class T>
1000 1001
    struct SetPredMapBase : public Base {
1001 1002
      typedef T PredMap;
1002 1003
      static PredMap *createPredMap(const Digraph &) { return 0; };
1003 1004
      SetPredMapBase(const TR &b) : TR(b) {}
1004 1005
    };
1005 1006
    
1006 1007
    /// \brief \ref named-templ-param "Named parameter" for setting
1007 1008
    /// the predecessor map.
1008 1009
    ///
1009 1010
    /// \ref named-templ-param "Named parameter" for setting
1010 1011
    /// the map that stores the predecessor arcs of the nodes.
1011 1012
    template<class T>
1012 1013
    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
1013 1014
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1014 1015
      return BellmanFordWizard<SetPredMapBase<T> >(*this);
1015 1016
    }
1016 1017
    
1017 1018
    template<class T>
1018 1019
    struct SetDistMapBase : public Base {
1019 1020
      typedef T DistMap;
1020 1021
      static DistMap *createDistMap(const Digraph &) { return 0; };
1021 1022
      SetDistMapBase(const TR &b) : TR(b) {}
1022 1023
    };
1023 1024
    
1024 1025
    /// \brief \ref named-templ-param "Named parameter" for setting
1025 1026
    /// the distance map.
1026 1027
    ///
1027 1028
    /// \ref named-templ-param "Named parameter" for setting
1028 1029
    /// the map that stores the distances of the nodes calculated
1029 1030
    /// by the algorithm.
1030 1031
    template<class T>
1031 1032
    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
1032 1033
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1033 1034
      return BellmanFordWizard<SetDistMapBase<T> >(*this);
1034 1035
    }
1035 1036

	
1036 1037
    template<class T>
1037 1038
    struct SetPathBase : public Base {
1038 1039
      typedef T Path;
1039 1040
      SetPathBase(const TR &b) : TR(b) {}
1040 1041
    };
1041 1042

	
1042 1043
    /// \brief \ref named-func-param "Named parameter" for getting
1043 1044
    /// the shortest path to the target node.
1044 1045
    ///
1045 1046
    /// \ref named-func-param "Named parameter" for getting
1046 1047
    /// the shortest path to the target node.
1047 1048
    template<class T>
1048 1049
    BellmanFordWizard<SetPathBase<T> > path(const T &t)
1049 1050
    {
1050 1051
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1051 1052
      return BellmanFordWizard<SetPathBase<T> >(*this);
1052 1053
    }
1053 1054

	
1054 1055
    /// \brief \ref named-func-param "Named parameter" for getting
1055 1056
    /// the distance of the target node.
1056 1057
    ///
1057 1058
    /// \ref named-func-param "Named parameter" for getting
1058 1059
    /// the distance of the target node.
1059 1060
    BellmanFordWizard dist(const Value &d)
1060 1061
    {
1061 1062
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1062 1063
      return *this;
1063 1064
    }
1064 1065
    
1065 1066
  };
1066 1067
  
1067 1068
  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
1068 1069
  /// algorithm.
1069 1070
  ///
1070 1071
  /// \ingroup shortest_path
1071 1072
  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
1072 1073
  /// algorithm.
1073 1074
  ///
1074 1075
  /// This function also has several \ref named-templ-func-param 
1075 1076
  /// "named parameters", they are declared as the members of class 
1076 1077
  /// \ref BellmanFordWizard.
1077 1078
  /// The following examples show how to use these parameters.
1078 1079
  /// \code
1079 1080
  ///   // Compute shortest path from node s to each node
1080 1081
  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
1081 1082
  ///
1082 1083
  ///   // Compute shortest path from s to t
1083 1084
  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
1084 1085
  /// \endcode
1085 1086
  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1086 1087
  /// to the end of the parameter list.
1087 1088
  /// \sa BellmanFordWizard
1088 1089
  /// \sa BellmanFord
1089 1090
  template<typename GR, typename LEN>
1090 1091
  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
1091 1092
  bellmanFord(const GR& digraph,
1092 1093
	      const LEN& length)
1093 1094
  {
1094 1095
    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
1095 1096
  }
1096 1097

	
1097 1098
} //END OF NAMESPACE LEMON
1098 1099

	
1099 1100
#endif
1100 1101

	
Ignore white space 16384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/digraph.h>
20 20
#include <lemon/smart_graph.h>
21 21
#include <lemon/list_graph.h>
22 22
#include <lemon/lgf_reader.h>
23 23
#include <lemon/bellman_ford.h>
24 24
#include <lemon/path.h>
25 25

	
26 26
#include "graph_test.h"
27 27
#include "test_tools.h"
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
char test_lgf[] =
32 32
  "@nodes\n"
33 33
  "label\n"
34 34
  "0\n"
35 35
  "1\n"
36 36
  "2\n"
37 37
  "3\n"
38 38
  "4\n"
39 39
  "@arcs\n"
40 40
  "    length\n"
41 41
  "0 1 3\n"
42 42
  "1 2 -3\n"
43 43
  "1 2 -5\n"
44 44
  "1 3 -2\n"
45 45
  "0 2 -1\n"
46 46
  "1 2 -4\n"
47 47
  "0 3 2\n"
48 48
  "4 2 -5\n"
49 49
  "2 3 1\n"
50 50
  "@attributes\n"
51 51
  "source 0\n"
52 52
  "target 3\n";
53 53

	
54 54

	
55 55
void checkBellmanFordCompile()
56 56
{
57 57
  typedef int Value;
58 58
  typedef concepts::Digraph Digraph;
59 59
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
60 60
  typedef BellmanFord<Digraph, LengthMap> BF;
61 61
  typedef Digraph::Node Node;
62 62
  typedef Digraph::Arc Arc;
63 63

	
64 64
  Digraph gr;
65 65
  Node s, t, n;
66 66
  Arc e;
67 67
  Value l;
68 68
  int k;
69 69
  bool b;
70 70
  BF::DistMap d(gr);
71 71
  BF::PredMap p(gr);
72 72
  LengthMap length;
73 73
  concepts::Path<Digraph> pp;
74 74

	
75 75
  {
76 76
    BF bf_test(gr,length);
77 77
    const BF& const_bf_test = bf_test;
78 78

	
79 79
    bf_test.run(s);
80 80
    bf_test.run(s,k);
81 81

	
82 82
    bf_test.init();
83 83
    bf_test.addSource(s);
84 84
    bf_test.addSource(s, 1);
85 85
    b = bf_test.processNextRound();
86 86
    b = bf_test.processNextWeakRound();
87 87

	
88 88
    bf_test.start();
89 89
    bf_test.checkedStart();
90 90
    bf_test.limitedStart(k);
91 91

	
92 92
    l  = const_bf_test.dist(t);
93 93
    e  = const_bf_test.predArc(t);
94 94
    s  = const_bf_test.predNode(t);
95 95
    b  = const_bf_test.reached(t);
96 96
    d  = const_bf_test.distMap();
97 97
    p  = const_bf_test.predMap();
98 98
    pp = const_bf_test.path(t);
99
    pp = const_bf_test.negativeCycle();
99 100
    
100 101
    for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
101 102
  }
102 103
  {
103 104
    BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
104 105
      ::SetDistMap<concepts::ReadWriteMap<Node,Value> >
105 106
      ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
106 107
      ::Create bf_test(gr,length);
107 108

	
108 109
    LengthMap length_map;
109 110
    concepts::ReadWriteMap<Node,Arc> pred_map;
110 111
    concepts::ReadWriteMap<Node,Value> dist_map;
111 112
    
112 113
    bf_test
113 114
      .lengthMap(length_map)
114 115
      .predMap(pred_map)
115 116
      .distMap(dist_map);
116 117

	
117 118
    bf_test.run(s);
118 119
    bf_test.run(s,k);
119 120

	
120 121
    bf_test.init();
121 122
    bf_test.addSource(s);
122 123
    bf_test.addSource(s, 1);
123 124
    b = bf_test.processNextRound();
124 125
    b = bf_test.processNextWeakRound();
125 126

	
126 127
    bf_test.start();
127 128
    bf_test.checkedStart();
128 129
    bf_test.limitedStart(k);
129 130

	
130 131
    l  = bf_test.dist(t);
131 132
    e  = bf_test.predArc(t);
132 133
    s  = bf_test.predNode(t);
133 134
    b  = bf_test.reached(t);
134 135
    pp = bf_test.path(t);
136
    pp = bf_test.negativeCycle();
135 137
  }
136 138
}
137 139

	
138 140
void checkBellmanFordFunctionCompile()
139 141
{
140 142
  typedef int Value;
141 143
  typedef concepts::Digraph Digraph;
142 144
  typedef Digraph::Arc Arc;
143 145
  typedef Digraph::Node Node;
144 146
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
145 147

	
146 148
  Digraph g;
147 149
  bool b;
148 150
  bellmanFord(g,LengthMap()).run(Node());
149 151
  b = bellmanFord(g,LengthMap()).run(Node(),Node());
150 152
  bellmanFord(g,LengthMap())
151 153
    .predMap(concepts::ReadWriteMap<Node,Arc>())
152 154
    .distMap(concepts::ReadWriteMap<Node,Value>())
153 155
    .run(Node());
154 156
  b=bellmanFord(g,LengthMap())
155 157
    .predMap(concepts::ReadWriteMap<Node,Arc>())
156 158
    .distMap(concepts::ReadWriteMap<Node,Value>())
157 159
    .path(concepts::Path<Digraph>())
158 160
    .dist(Value())
159 161
    .run(Node(),Node());
160 162
}
161 163

	
162 164

	
163 165
template <typename Digraph, typename Value>
164 166
void checkBellmanFord() {
165 167
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
166 168
  typedef typename Digraph::template ArcMap<Value> LengthMap;
167 169

	
168 170
  Digraph gr;
169 171
  Node s, t;
170 172
  LengthMap length(gr);
171 173

	
172 174
  std::istringstream input(test_lgf);
173 175
  digraphReader(gr, input).
174 176
    arcMap("length", length).
175 177
    node("source", s).
176 178
    node("target", t).
177 179
    run();
178 180

	
179 181
  BellmanFord<Digraph, LengthMap>
180 182
    bf(gr, length);
181 183
  bf.run(s);
182 184
  Path<Digraph> p = bf.path(t);
183 185

	
184 186
  check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
185 187
  check(p.length() == 3, "path() found a wrong path.");
186 188
  check(checkPath(gr, p), "path() found a wrong path.");
187 189
  check(pathSource(gr, p) == s, "path() found a wrong path.");
188 190
  check(pathTarget(gr, p) == t, "path() found a wrong path.");
189 191
  
190 192
  ListPath<Digraph> path;
191 193
  Value dist;
192 194
  bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
193 195

	
194 196
  check(reached && dist == -1, "Bellman-Ford found a wrong path.");
195 197
  check(path.length() == 3, "path() found a wrong path.");
196 198
  check(checkPath(gr, path), "path() found a wrong path.");
197 199
  check(pathSource(gr, path) == s, "path() found a wrong path.");
198 200
  check(pathTarget(gr, path) == t, "path() found a wrong path.");
199 201

	
200 202
  for(ArcIt e(gr); e!=INVALID; ++e) {
201 203
    Node u=gr.source(e);
202 204
    Node v=gr.target(e);
203 205
    check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]),
204 206
          "Wrong output. dist(target)-dist(source)-arc_length=" <<
205 207
          bf.dist(v) - bf.dist(u) - length[e]);
206 208
  }
207 209

	
208 210
  for(NodeIt v(gr); v!=INVALID; ++v) {
209 211
    if (bf.reached(v)) {
210 212
      check(v==s || bf.predArc(v)!=INVALID, "Wrong tree.");
211 213
      if (bf.predArc(v)!=INVALID ) {
212 214
        Arc e=bf.predArc(v);
213 215
        Node u=gr.source(e);
214 216
        check(u==bf.predNode(v),"Wrong tree.");
215 217
        check(bf.dist(v) - bf.dist(u) == length[e],
216 218
              "Wrong distance! Difference: " <<
217 219
              bf.dist(v) - bf.dist(u) - length[e]);
218 220
      }
219 221
    }
220 222
  }
221 223
}
222 224

	
223 225
void checkBellmanFordNegativeCycle() {
224 226
  DIGRAPH_TYPEDEFS(SmartDigraph);
225 227

	
226 228
  SmartDigraph gr;
227 229
  IntArcMap length(gr);
228 230
  
229 231
  Node n1 = gr.addNode();
230 232
  Node n2 = gr.addNode();
231 233
  Node n3 = gr.addNode();
232 234
  Node n4 = gr.addNode();
233 235
  
234 236
  Arc a1 = gr.addArc(n1, n2);
235 237
  Arc a2 = gr.addArc(n2, n2);
236 238
  
237 239
  length[a1] = 2;
238 240
  length[a2] = -1;
239 241
  
240 242
  {
241 243
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
242 244
    bf.run(n1);
243 245
    StaticPath<SmartDigraph> p = bf.negativeCycle();
244 246
    check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
245 247
          "Wrong negative cycle.");
246 248
  }
247 249
 
248 250
  length[a2] = 0;
249 251
  
250 252
  {
251 253
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
252 254
    bf.run(n1);
253 255
    check(bf.negativeCycle().empty(),
254 256
          "Negative cycle should not be found.");
255 257
  }
256 258
  
257 259
  length[gr.addArc(n1, n3)] = 5;
258 260
  length[gr.addArc(n4, n3)] = 1;
259 261
  length[gr.addArc(n2, n4)] = 2;
260 262
  length[gr.addArc(n3, n2)] = -4;
261 263
  
262 264
  {
263 265
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
264 266
    bf.init();
265 267
    bf.addSource(n1);
266 268
    for (int i = 0; i < 4; ++i) {
267 269
      check(bf.negativeCycle().empty(),
268 270
            "Negative cycle should not be found.");
269 271
      bf.processNextRound();
270 272
    }
271 273
    StaticPath<SmartDigraph> p = bf.negativeCycle();
272 274
    check(p.length() == 3, "Wrong negative cycle.");
273 275
    check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1,
274 276
          "Wrong negative cycle.");
275 277
  }
276 278
}
277 279

	
278 280
int main() {
279 281
  checkBellmanFord<ListDigraph, int>();
280 282
  checkBellmanFord<SmartDigraph, double>();
281 283
  checkBellmanFordNegativeCycle();
282 284
  return 0;
283 285
}
0 comments (0 inline)