1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_TOPOLOGY_H |
|
20 |
#define LEMON_TOPOLOGY_H |
|
21 |
|
|
22 |
#include <lemon/dfs.h> |
|
23 |
#include <lemon/bfs.h> |
|
24 |
#include <lemon/core.h> |
|
25 |
#include <lemon/maps.h> |
|
26 |
#include <lemon/adaptors.h> |
|
27 |
|
|
28 |
#include <lemon/concepts/digraph.h> |
|
29 |
#include <lemon/concepts/graph.h> |
|
30 |
#include <lemon/concept_check.h> |
|
31 |
|
|
32 |
#include <stack> |
|
33 |
#include <functional> |
|
34 |
|
|
35 |
/// \ingroup connectivity |
|
36 |
/// \file |
|
37 |
/// \brief Connectivity algorithms |
|
38 |
/// |
|
39 |
/// Connectivity algorithms |
|
40 |
|
|
41 |
namespace lemon { |
|
42 |
|
|
43 |
/// \ingroup connectivity |
|
44 |
/// |
|
45 |
/// \brief Check whether the given undirected graph is connected. |
|
46 |
/// |
|
47 |
/// Check whether the given undirected graph is connected. |
|
48 |
/// \param graph The undirected graph. |
|
49 |
/// \return %True when there is path between any two nodes in the graph. |
|
50 |
/// \note By definition, the empty graph is connected. |
|
51 |
template <typename Graph> |
|
52 |
bool connected(const Graph& graph) { |
|
53 |
checkConcept<concepts::Graph, Graph>(); |
|
54 |
typedef typename Graph::NodeIt NodeIt; |
|
55 |
if (NodeIt(graph) == INVALID) return true; |
|
56 |
Dfs<Graph> dfs(graph); |
|
57 |
dfs.run(NodeIt(graph)); |
|
58 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
59 |
if (!dfs.reached(it)) { |
|
60 |
return false; |
|
61 |
} |
|
62 |
} |
|
63 |
return true; |
|
64 |
} |
|
65 |
|
|
66 |
/// \ingroup connectivity |
|
67 |
/// |
|
68 |
/// \brief Count the number of connected components of an undirected graph |
|
69 |
/// |
|
70 |
/// Count the number of connected components of an undirected graph |
|
71 |
/// |
|
72 |
/// \param graph The graph. It must be undirected. |
|
73 |
/// \return The number of components |
|
74 |
/// \note By definition, the empty graph consists |
|
75 |
/// of zero connected components. |
|
76 |
template <typename Graph> |
|
77 |
int countConnectedComponents(const Graph &graph) { |
|
78 |
checkConcept<concepts::Graph, Graph>(); |
|
79 |
typedef typename Graph::Node Node; |
|
80 |
typedef typename Graph::Arc Arc; |
|
81 |
|
|
82 |
typedef NullMap<Node, Arc> PredMap; |
|
83 |
typedef NullMap<Node, int> DistMap; |
|
84 |
|
|
85 |
int compNum = 0; |
|
86 |
typename Bfs<Graph>:: |
|
87 |
template SetPredMap<PredMap>:: |
|
88 |
template SetDistMap<DistMap>:: |
|
89 |
Create bfs(graph); |
|
90 |
|
|
91 |
PredMap predMap; |
|
92 |
bfs.predMap(predMap); |
|
93 |
|
|
94 |
DistMap distMap; |
|
95 |
bfs.distMap(distMap); |
|
96 |
|
|
97 |
bfs.init(); |
|
98 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
99 |
if (!bfs.reached(n)) { |
|
100 |
bfs.addSource(n); |
|
101 |
bfs.start(); |
|
102 |
++compNum; |
|
103 |
} |
|
104 |
} |
|
105 |
return compNum; |
|
106 |
} |
|
107 |
|
|
108 |
/// \ingroup connectivity |
|
109 |
/// |
|
110 |
/// \brief Find the connected components of an undirected graph |
|
111 |
/// |
|
112 |
/// Find the connected components of an undirected graph. |
|
113 |
/// |
|
114 |
/// \param graph The graph. It must be undirected. |
|
115 |
/// \retval compMap A writable node map. The values will be set from 0 to |
|
116 |
/// the number of the connected components minus one. Each values of the map |
|
117 |
/// will be set exactly once, the values of a certain component will be |
|
118 |
/// set continuously. |
|
119 |
/// \return The number of components |
|
120 |
/// |
|
121 |
template <class Graph, class NodeMap> |
|
122 |
int connectedComponents(const Graph &graph, NodeMap &compMap) { |
|
123 |
checkConcept<concepts::Graph, Graph>(); |
|
124 |
typedef typename Graph::Node Node; |
|
125 |
typedef typename Graph::Arc Arc; |
|
126 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|
127 |
|
|
128 |
typedef NullMap<Node, Arc> PredMap; |
|
129 |
typedef NullMap<Node, int> DistMap; |
|
130 |
|
|
131 |
int compNum = 0; |
|
132 |
typename Bfs<Graph>:: |
|
133 |
template SetPredMap<PredMap>:: |
|
134 |
template SetDistMap<DistMap>:: |
|
135 |
Create bfs(graph); |
|
136 |
|
|
137 |
PredMap predMap; |
|
138 |
bfs.predMap(predMap); |
|
139 |
|
|
140 |
DistMap distMap; |
|
141 |
bfs.distMap(distMap); |
|
142 |
|
|
143 |
bfs.init(); |
|
144 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
145 |
if(!bfs.reached(n)) { |
|
146 |
bfs.addSource(n); |
|
147 |
while (!bfs.emptyQueue()) { |
|
148 |
compMap.set(bfs.nextNode(), compNum); |
|
149 |
bfs.processNextNode(); |
|
150 |
} |
|
151 |
++compNum; |
|
152 |
} |
|
153 |
} |
|
154 |
return compNum; |
|
155 |
} |
|
156 |
|
|
157 |
namespace _topology_bits { |
|
158 |
|
|
159 |
template <typename Digraph, typename Iterator > |
|
160 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
|
161 |
public: |
|
162 |
typedef typename Digraph::Node Node; |
|
163 |
LeaveOrderVisitor(Iterator it) : _it(it) {} |
|
164 |
|
|
165 |
void leave(const Node& node) { |
|
166 |
*(_it++) = node; |
|
167 |
} |
|
168 |
|
|
169 |
private: |
|
170 |
Iterator _it; |
|
171 |
}; |
|
172 |
|
|
173 |
template <typename Digraph, typename Map> |
|
174 |
struct FillMapVisitor : public DfsVisitor<Digraph> { |
|
175 |
public: |
|
176 |
typedef typename Digraph::Node Node; |
|
177 |
typedef typename Map::Value Value; |
|
178 |
|
|
179 |
FillMapVisitor(Map& map, Value& value) |
|
180 |
: _map(map), _value(value) {} |
|
181 |
|
|
182 |
void reach(const Node& node) { |
|
183 |
_map.set(node, _value); |
|
184 |
} |
|
185 |
private: |
|
186 |
Map& _map; |
|
187 |
Value& _value; |
|
188 |
}; |
|
189 |
|
|
190 |
template <typename Digraph, typename ArcMap> |
|
191 |
struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
|
192 |
public: |
|
193 |
typedef typename Digraph::Node Node; |
|
194 |
typedef typename Digraph::Arc Arc; |
|
195 |
|
|
196 |
StronglyConnectedCutEdgesVisitor(const Digraph& digraph, |
|
197 |
ArcMap& cutMap, |
|
198 |
int& cutNum) |
|
199 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
|
200 |
_compMap(digraph), _num(0) { |
|
201 |
} |
|
202 |
|
|
203 |
void stop(const Node&) { |
|
204 |
++_num; |
|
205 |
} |
|
206 |
|
|
207 |
void reach(const Node& node) { |
|
208 |
_compMap.set(node, _num); |
|
209 |
} |
|
210 |
|
|
211 |
void examine(const Arc& arc) { |
|
212 |
if (_compMap[_digraph.source(arc)] != |
|
213 |
_compMap[_digraph.target(arc)]) { |
|
214 |
_cutMap.set(arc, true); |
|
215 |
++_cutNum; |
|
216 |
} |
|
217 |
} |
|
218 |
private: |
|
219 |
const Digraph& _digraph; |
|
220 |
ArcMap& _cutMap; |
|
221 |
int& _cutNum; |
|
222 |
|
|
223 |
typename Digraph::template NodeMap<int> _compMap; |
|
224 |
int _num; |
|
225 |
}; |
|
226 |
|
|
227 |
} |
|
228 |
|
|
229 |
|
|
230 |
/// \ingroup connectivity |
|
231 |
/// |
|
232 |
/// \brief Check whether the given directed graph is strongly connected. |
|
233 |
/// |
|
234 |
/// Check whether the given directed graph is strongly connected. The |
|
235 |
/// graph is strongly connected when any two nodes of the graph are |
|
236 |
/// connected with directed paths in both direction. |
|
237 |
/// \return %False when the graph is not strongly connected. |
|
238 |
/// \see connected |
|
239 |
/// |
|
240 |
/// \note By definition, the empty graph is strongly connected. |
|
241 |
template <typename Digraph> |
|
242 |
bool stronglyConnected(const Digraph& digraph) { |
|
243 |
checkConcept<concepts::Digraph, Digraph>(); |
|
244 |
|
|
245 |
typedef typename Digraph::Node Node; |
|
246 |
typedef typename Digraph::NodeIt NodeIt; |
|
247 |
|
|
248 |
typename Digraph::Node source = NodeIt(digraph); |
|
249 |
if (source == INVALID) return true; |
|
250 |
|
|
251 |
using namespace _topology_bits; |
|
252 |
|
|
253 |
typedef DfsVisitor<Digraph> Visitor; |
|
254 |
Visitor visitor; |
|
255 |
|
|
256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
257 |
dfs.init(); |
|
258 |
dfs.addSource(source); |
|
259 |
dfs.start(); |
|
260 |
|
|
261 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
262 |
if (!dfs.reached(it)) { |
|
263 |
return false; |
|
264 |
} |
|
265 |
} |
|
266 |
|
|
267 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
268 |
RDigraph rdigraph(digraph); |
|
269 |
|
|
270 |
typedef DfsVisitor<Digraph> RVisitor; |
|
271 |
RVisitor rvisitor; |
|
272 |
|
|
273 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
274 |
rdfs.init(); |
|
275 |
rdfs.addSource(source); |
|
276 |
rdfs.start(); |
|
277 |
|
|
278 |
for (NodeIt it(rdigraph); it != INVALID; ++it) { |
|
279 |
if (!rdfs.reached(it)) { |
|
280 |
return false; |
|
281 |
} |
|
282 |
} |
|
283 |
|
|
284 |
return true; |
|
285 |
} |
|
286 |
|
|
287 |
/// \ingroup connectivity |
|
288 |
/// |
|
289 |
/// \brief Count the strongly connected components of a directed graph |
|
290 |
/// |
|
291 |
/// Count the strongly connected components of a directed graph. |
|
292 |
/// The strongly connected components are the classes of an |
|
293 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
|
294 |
/// the same class if they are connected with directed paths in both |
|
295 |
/// direction. |
|
296 |
/// |
|
297 |
/// \param graph The graph. |
|
298 |
/// \return The number of components |
|
299 |
/// \note By definition, the empty graph has zero |
|
300 |
/// strongly connected components. |
|
301 |
template <typename Digraph> |
|
302 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
|
303 |
checkConcept<concepts::Digraph, Digraph>(); |
|
304 |
|
|
305 |
using namespace _topology_bits; |
|
306 |
|
|
307 |
typedef typename Digraph::Node Node; |
|
308 |
typedef typename Digraph::Arc Arc; |
|
309 |
typedef typename Digraph::NodeIt NodeIt; |
|
310 |
typedef typename Digraph::ArcIt ArcIt; |
|
311 |
|
|
312 |
typedef std::vector<Node> Container; |
|
313 |
typedef typename Container::iterator Iterator; |
|
314 |
|
|
315 |
Container nodes(countNodes(digraph)); |
|
316 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|
317 |
Visitor visitor(nodes.begin()); |
|
318 |
|
|
319 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
320 |
dfs.init(); |
|
321 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
322 |
if (!dfs.reached(it)) { |
|
323 |
dfs.addSource(it); |
|
324 |
dfs.start(); |
|
325 |
} |
|
326 |
} |
|
327 |
|
|
328 |
typedef typename Container::reverse_iterator RIterator; |
|
329 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
330 |
|
|
331 |
RDigraph rdigraph(digraph); |
|
332 |
|
|
333 |
typedef DfsVisitor<Digraph> RVisitor; |
|
334 |
RVisitor rvisitor; |
|
335 |
|
|
336 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
337 |
|
|
338 |
int compNum = 0; |
|
339 |
|
|
340 |
rdfs.init(); |
|
341 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
|
342 |
if (!rdfs.reached(*it)) { |
|
343 |
rdfs.addSource(*it); |
|
344 |
rdfs.start(); |
|
345 |
++compNum; |
|
346 |
} |
|
347 |
} |
|
348 |
return compNum; |
|
349 |
} |
|
350 |
|
|
351 |
/// \ingroup connectivity |
|
352 |
/// |
|
353 |
/// \brief Find the strongly connected components of a directed graph |
|
354 |
/// |
|
355 |
/// Find the strongly connected components of a directed graph. The |
|
356 |
/// strongly connected components are the classes of an equivalence |
|
357 |
/// relation on the nodes of the graph. Two nodes are in |
|
358 |
/// relationship when there are directed paths between them in both |
|
359 |
/// direction. In addition, the numbering of components will satisfy |
|
360 |
/// that there is no arc going from a higher numbered component to |
|
361 |
/// a lower. |
|
362 |
/// |
|
363 |
/// \param digraph The digraph. |
|
364 |
/// \retval compMap A writable node map. The values will be set from 0 to |
|
365 |
/// the number of the strongly connected components minus one. Each value |
|
366 |
/// of the map will be set exactly once, the values of a certain component |
|
367 |
/// will be set continuously. |
|
368 |
/// \return The number of components |
|
369 |
/// |
|
370 |
template <typename Digraph, typename NodeMap> |
|
371 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
|
372 |
checkConcept<concepts::Digraph, Digraph>(); |
|
373 |
typedef typename Digraph::Node Node; |
|
374 |
typedef typename Digraph::NodeIt NodeIt; |
|
375 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|
376 |
|
|
377 |
using namespace _topology_bits; |
|
378 |
|
|
379 |
typedef std::vector<Node> Container; |
|
380 |
typedef typename Container::iterator Iterator; |
|
381 |
|
|
382 |
Container nodes(countNodes(digraph)); |
|
383 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|
384 |
Visitor visitor(nodes.begin()); |
|
385 |
|
|
386 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
387 |
dfs.init(); |
|
388 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
389 |
if (!dfs.reached(it)) { |
|
390 |
dfs.addSource(it); |
|
391 |
dfs.start(); |
|
392 |
} |
|
393 |
} |
|
394 |
|
|
395 |
typedef typename Container::reverse_iterator RIterator; |
|
396 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
397 |
|
|
398 |
RDigraph rdigraph(digraph); |
|
399 |
|
|
400 |
int compNum = 0; |
|
401 |
|
|
402 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
|
403 |
RVisitor rvisitor(compMap, compNum); |
|
404 |
|
|
405 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
406 |
|
|
407 |
rdfs.init(); |
|
408 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
|
409 |
if (!rdfs.reached(*it)) { |
|
410 |
rdfs.addSource(*it); |
|
411 |
rdfs.start(); |
|
412 |
++compNum; |
|
413 |
} |
|
414 |
} |
|
415 |
return compNum; |
|
416 |
} |
|
417 |
|
|
418 |
/// \ingroup connectivity |
|
419 |
/// |
|
420 |
/// \brief Find the cut arcs of the strongly connected components. |
|
421 |
/// |
|
422 |
/// Find the cut arcs of the strongly connected components. |
|
423 |
/// The strongly connected components are the classes of an equivalence |
|
424 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
425 |
/// when there are directed paths between them in both direction. |
|
426 |
/// The strongly connected components are separated by the cut arcs. |
|
427 |
/// |
|
428 |
/// \param graph The graph. |
|
429 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
430 |
/// arc is a cut arc. |
|
431 |
/// |
|
432 |
/// \return The number of cut arcs |
|
433 |
template <typename Digraph, typename ArcMap> |
|
434 |
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) { |
|
435 |
checkConcept<concepts::Digraph, Digraph>(); |
|
436 |
typedef typename Digraph::Node Node; |
|
437 |
typedef typename Digraph::Arc Arc; |
|
438 |
typedef typename Digraph::NodeIt NodeIt; |
|
439 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
|
440 |
|
|
441 |
using namespace _topology_bits; |
|
442 |
|
|
443 |
typedef std::vector<Node> Container; |
|
444 |
typedef typename Container::iterator Iterator; |
|
445 |
|
|
446 |
Container nodes(countNodes(graph)); |
|
447 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|
448 |
Visitor visitor(nodes.begin()); |
|
449 |
|
|
450 |
DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
|
451 |
dfs.init(); |
|
452 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
453 |
if (!dfs.reached(it)) { |
|
454 |
dfs.addSource(it); |
|
455 |
dfs.start(); |
|
456 |
} |
|
457 |
} |
|
458 |
|
|
459 |
typedef typename Container::reverse_iterator RIterator; |
|
460 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
461 |
|
|
462 |
RDigraph rgraph(graph); |
|
463 |
|
|
464 |
int cutNum = 0; |
|
465 |
|
|
466 |
typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor; |
|
467 |
RVisitor rvisitor(rgraph, cutMap, cutNum); |
|
468 |
|
|
469 |
DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
|
470 |
|
|
471 |
rdfs.init(); |
|
472 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
|
473 |
if (!rdfs.reached(*it)) { |
|
474 |
rdfs.addSource(*it); |
|
475 |
rdfs.start(); |
|
476 |
} |
|
477 |
} |
|
478 |
return cutNum; |
|
479 |
} |
|
480 |
|
|
481 |
namespace _topology_bits { |
|
482 |
|
|
483 |
template <typename Digraph> |
|
484 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|
485 |
public: |
|
486 |
typedef typename Digraph::Node Node; |
|
487 |
typedef typename Digraph::Arc Arc; |
|
488 |
typedef typename Digraph::Edge Edge; |
|
489 |
|
|
490 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
|
491 |
: _graph(graph), _compNum(compNum), |
|
492 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|
493 |
|
|
494 |
void start(const Node& node) { |
|
495 |
_predMap.set(node, INVALID); |
|
496 |
} |
|
497 |
|
|
498 |
void reach(const Node& node) { |
|
499 |
_numMap.set(node, _num); |
|
500 |
_retMap.set(node, _num); |
|
501 |
++_num; |
|
502 |
} |
|
503 |
|
|
504 |
void discover(const Arc& edge) { |
|
505 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
|
506 |
} |
|
507 |
|
|
508 |
void examine(const Arc& edge) { |
|
509 |
if (_graph.source(edge) == _graph.target(edge) && |
|
510 |
_graph.direction(edge)) { |
|
511 |
++_compNum; |
|
512 |
return; |
|
513 |
} |
|
514 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
|
515 |
return; |
|
516 |
} |
|
517 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
|
518 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
|
519 |
} |
|
520 |
} |
|
521 |
|
|
522 |
void backtrack(const Arc& edge) { |
|
523 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
524 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
525 |
} |
|
526 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
|
527 |
++_compNum; |
|
528 |
} |
|
529 |
} |
|
530 |
|
|
531 |
private: |
|
532 |
const Digraph& _graph; |
|
533 |
int& _compNum; |
|
534 |
|
|
535 |
typename Digraph::template NodeMap<int> _numMap; |
|
536 |
typename Digraph::template NodeMap<int> _retMap; |
|
537 |
typename Digraph::template NodeMap<Node> _predMap; |
|
538 |
int _num; |
|
539 |
}; |
|
540 |
|
|
541 |
template <typename Digraph, typename ArcMap> |
|
542 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|
543 |
public: |
|
544 |
typedef typename Digraph::Node Node; |
|
545 |
typedef typename Digraph::Arc Arc; |
|
546 |
typedef typename Digraph::Edge Edge; |
|
547 |
|
|
548 |
BiNodeConnectedComponentsVisitor(const Digraph& graph, |
|
549 |
ArcMap& compMap, int &compNum) |
|
550 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
|
551 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|
552 |
|
|
553 |
void start(const Node& node) { |
|
554 |
_predMap.set(node, INVALID); |
|
555 |
} |
|
556 |
|
|
557 |
void reach(const Node& node) { |
|
558 |
_numMap.set(node, _num); |
|
559 |
_retMap.set(node, _num); |
|
560 |
++_num; |
|
561 |
} |
|
562 |
|
|
563 |
void discover(const Arc& edge) { |
|
564 |
Node target = _graph.target(edge); |
|
565 |
_predMap.set(target, edge); |
|
566 |
_edgeStack.push(edge); |
|
567 |
} |
|
568 |
|
|
569 |
void examine(const Arc& edge) { |
|
570 |
Node source = _graph.source(edge); |
|
571 |
Node target = _graph.target(edge); |
|
572 |
if (source == target && _graph.direction(edge)) { |
|
573 |
_compMap.set(edge, _compNum); |
|
574 |
++_compNum; |
|
575 |
return; |
|
576 |
} |
|
577 |
if (_numMap[target] < _numMap[source]) { |
|
578 |
if (_predMap[source] != _graph.oppositeArc(edge)) { |
|
579 |
_edgeStack.push(edge); |
|
580 |
} |
|
581 |
} |
|
582 |
if (_predMap[source] != INVALID && |
|
583 |
target == _graph.source(_predMap[source])) { |
|
584 |
return; |
|
585 |
} |
|
586 |
if (_retMap[source] > _numMap[target]) { |
|
587 |
_retMap.set(source, _numMap[target]); |
|
588 |
} |
|
589 |
} |
|
590 |
|
|
591 |
void backtrack(const Arc& edge) { |
|
592 |
Node source = _graph.source(edge); |
|
593 |
Node target = _graph.target(edge); |
|
594 |
if (_retMap[source] > _retMap[target]) { |
|
595 |
_retMap.set(source, _retMap[target]); |
|
596 |
} |
|
597 |
if (_numMap[source] <= _retMap[target]) { |
|
598 |
while (_edgeStack.top() != edge) { |
|
599 |
_compMap.set(_edgeStack.top(), _compNum); |
|
600 |
_edgeStack.pop(); |
|
601 |
} |
|
602 |
_compMap.set(edge, _compNum); |
|
603 |
_edgeStack.pop(); |
|
604 |
++_compNum; |
|
605 |
} |
|
606 |
} |
|
607 |
|
|
608 |
private: |
|
609 |
const Digraph& _graph; |
|
610 |
ArcMap& _compMap; |
|
611 |
int& _compNum; |
|
612 |
|
|
613 |
typename Digraph::template NodeMap<int> _numMap; |
|
614 |
typename Digraph::template NodeMap<int> _retMap; |
|
615 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
616 |
std::stack<Edge> _edgeStack; |
|
617 |
int _num; |
|
618 |
}; |
|
619 |
|
|
620 |
|
|
621 |
template <typename Digraph, typename NodeMap> |
|
622 |
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> { |
|
623 |
public: |
|
624 |
typedef typename Digraph::Node Node; |
|
625 |
typedef typename Digraph::Arc Arc; |
|
626 |
typedef typename Digraph::Edge Edge; |
|
627 |
|
|
628 |
BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
|
629 |
int& cutNum) |
|
630 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
|
631 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|
632 |
|
|
633 |
void start(const Node& node) { |
|
634 |
_predMap.set(node, INVALID); |
|
635 |
rootCut = false; |
|
636 |
} |
|
637 |
|
|
638 |
void reach(const Node& node) { |
|
639 |
_numMap.set(node, _num); |
|
640 |
_retMap.set(node, _num); |
|
641 |
++_num; |
|
642 |
} |
|
643 |
|
|
644 |
void discover(const Arc& edge) { |
|
645 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
|
646 |
} |
|
647 |
|
|
648 |
void examine(const Arc& edge) { |
|
649 |
if (_graph.source(edge) == _graph.target(edge) && |
|
650 |
_graph.direction(edge)) { |
|
651 |
if (!_cutMap[_graph.source(edge)]) { |
|
652 |
_cutMap.set(_graph.source(edge), true); |
|
653 |
++_cutNum; |
|
654 |
} |
|
655 |
return; |
|
656 |
} |
|
657 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
|
658 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
|
659 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
|
660 |
} |
|
661 |
} |
|
662 |
|
|
663 |
void backtrack(const Arc& edge) { |
|
664 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
665 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
666 |
} |
|
667 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
|
668 |
if (_predMap[_graph.source(edge)] != INVALID) { |
|
669 |
if (!_cutMap[_graph.source(edge)]) { |
|
670 |
_cutMap.set(_graph.source(edge), true); |
|
671 |
++_cutNum; |
|
672 |
} |
|
673 |
} else if (rootCut) { |
|
674 |
if (!_cutMap[_graph.source(edge)]) { |
|
675 |
_cutMap.set(_graph.source(edge), true); |
|
676 |
++_cutNum; |
|
677 |
} |
|
678 |
} else { |
|
679 |
rootCut = true; |
|
680 |
} |
|
681 |
} |
|
682 |
} |
|
683 |
|
|
684 |
private: |
|
685 |
const Digraph& _graph; |
|
686 |
NodeMap& _cutMap; |
|
687 |
int& _cutNum; |
|
688 |
|
|
689 |
typename Digraph::template NodeMap<int> _numMap; |
|
690 |
typename Digraph::template NodeMap<int> _retMap; |
|
691 |
typename Digraph::template NodeMap<Node> _predMap; |
|
692 |
std::stack<Edge> _edgeStack; |
|
693 |
int _num; |
|
694 |
bool rootCut; |
|
695 |
}; |
|
696 |
|
|
697 |
} |
|
698 |
|
|
699 |
template <typename Graph> |
|
700 |
int countBiNodeConnectedComponents(const Graph& graph); |
|
701 |
|
|
702 |
/// \ingroup connectivity |
|
703 |
/// |
|
704 |
/// \brief Checks the graph is bi-node-connected. |
|
705 |
/// |
|
706 |
/// This function checks that the undirected graph is bi-node-connected |
|
707 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
708 |
/// on same circle. |
|
709 |
/// |
|
710 |
/// \param graph The graph. |
|
711 |
/// \return %True when the graph bi-node-connected. |
|
712 |
template <typename Graph> |
|
713 |
bool biNodeConnected(const Graph& graph) { |
|
714 |
return countBiNodeConnectedComponents(graph) <= 1; |
|
715 |
} |
|
716 |
|
|
717 |
/// \ingroup connectivity |
|
718 |
/// |
|
719 |
/// \brief Count the biconnected components. |
|
720 |
/// |
|
721 |
/// This function finds the bi-node-connected components in an undirected |
|
722 |
/// graph. The biconnected components are the classes of an equivalence |
|
723 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
724 |
/// when they are on same circle. |
|
725 |
/// |
|
726 |
/// \param graph The graph. |
|
727 |
/// \return The number of components. |
|
728 |
template <typename Graph> |
|
729 |
int countBiNodeConnectedComponents(const Graph& graph) { |
|
730 |
checkConcept<concepts::Graph, Graph>(); |
|
731 |
typedef typename Graph::NodeIt NodeIt; |
|
732 |
|
|
733 |
using namespace _topology_bits; |
|
734 |
|
|
735 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
|
736 |
|
|
737 |
int compNum = 0; |
|
738 |
Visitor visitor(graph, compNum); |
|
739 |
|
|
740 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
741 |
dfs.init(); |
|
742 |
|
|
743 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
744 |
if (!dfs.reached(it)) { |
|
745 |
dfs.addSource(it); |
|
746 |
dfs.start(); |
|
747 |
} |
|
748 |
} |
|
749 |
return compNum; |
|
750 |
} |
|
751 |
|
|
752 |
/// \ingroup connectivity |
|
753 |
/// |
|
754 |
/// \brief Find the bi-node-connected components. |
|
755 |
/// |
|
756 |
/// This function finds the bi-node-connected components in an undirected |
|
757 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
758 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
759 |
/// when they are on same circle. |
|
760 |
/// |
|
761 |
/// \param graph The graph. |
|
762 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
763 |
/// to the number of the biconnected components minus one. Each values |
|
764 |
/// of the map will be set exactly once, the values of a certain component |
|
765 |
/// will be set continuously. |
|
766 |
/// \return The number of components. |
|
767 |
/// |
|
768 |
template <typename Graph, typename EdgeMap> |
|
769 |
int biNodeConnectedComponents(const Graph& graph, |
|
770 |
EdgeMap& compMap) { |
|
771 |
checkConcept<concepts::Graph, Graph>(); |
|
772 |
typedef typename Graph::NodeIt NodeIt; |
|
773 |
typedef typename Graph::Edge Edge; |
|
774 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
|
775 |
|
|
776 |
using namespace _topology_bits; |
|
777 |
|
|
778 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
|
779 |
|
|
780 |
int compNum = 0; |
|
781 |
Visitor visitor(graph, compMap, compNum); |
|
782 |
|
|
783 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
784 |
dfs.init(); |
|
785 |
|
|
786 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
787 |
if (!dfs.reached(it)) { |
|
788 |
dfs.addSource(it); |
|
789 |
dfs.start(); |
|
790 |
} |
|
791 |
} |
|
792 |
return compNum; |
|
793 |
} |
|
794 |
|
|
795 |
/// \ingroup connectivity |
|
796 |
/// |
|
797 |
/// \brief Find the bi-node-connected cut nodes. |
|
798 |
/// |
|
799 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
800 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
801 |
/// relation on the undirected edges. Two undirected edges are in |
|
802 |
/// relationship when they are on same circle. The biconnected components |
|
803 |
/// are separted by nodes which are the cut nodes of the components. |
|
804 |
/// |
|
805 |
/// \param graph The graph. |
|
806 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
807 |
/// the node separate two or more components. |
|
808 |
/// \return The number of the cut nodes. |
|
809 |
template <typename Graph, typename NodeMap> |
|
810 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
|
811 |
checkConcept<concepts::Graph, Graph>(); |
|
812 |
typedef typename Graph::Node Node; |
|
813 |
typedef typename Graph::NodeIt NodeIt; |
|
814 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
|
815 |
|
|
816 |
using namespace _topology_bits; |
|
817 |
|
|
818 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
|
819 |
|
|
820 |
int cutNum = 0; |
|
821 |
Visitor visitor(graph, cutMap, cutNum); |
|
822 |
|
|
823 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
824 |
dfs.init(); |
|
825 |
|
|
826 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
827 |
if (!dfs.reached(it)) { |
|
828 |
dfs.addSource(it); |
|
829 |
dfs.start(); |
|
830 |
} |
|
831 |
} |
|
832 |
return cutNum; |
|
833 |
} |
|
834 |
|
|
835 |
namespace _topology_bits { |
|
836 |
|
|
837 |
template <typename Digraph> |
|
838 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|
839 |
public: |
|
840 |
typedef typename Digraph::Node Node; |
|
841 |
typedef typename Digraph::Arc Arc; |
|
842 |
typedef typename Digraph::Edge Edge; |
|
843 |
|
|
844 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
|
845 |
: _graph(graph), _compNum(compNum), |
|
846 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|
847 |
|
|
848 |
void start(const Node& node) { |
|
849 |
_predMap.set(node, INVALID); |
|
850 |
} |
|
851 |
|
|
852 |
void reach(const Node& node) { |
|
853 |
_numMap.set(node, _num); |
|
854 |
_retMap.set(node, _num); |
|
855 |
++_num; |
|
856 |
} |
|
857 |
|
|
858 |
void leave(const Node& node) { |
|
859 |
if (_numMap[node] <= _retMap[node]) { |
|
860 |
++_compNum; |
|
861 |
} |
|
862 |
} |
|
863 |
|
|
864 |
void discover(const Arc& edge) { |
|
865 |
_predMap.set(_graph.target(edge), edge); |
|
866 |
} |
|
867 |
|
|
868 |
void examine(const Arc& edge) { |
|
869 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
|
870 |
return; |
|
871 |
} |
|
872 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
873 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
874 |
} |
|
875 |
} |
|
876 |
|
|
877 |
void backtrack(const Arc& edge) { |
|
878 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
879 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
880 |
} |
|
881 |
} |
|
882 |
|
|
883 |
private: |
|
884 |
const Digraph& _graph; |
|
885 |
int& _compNum; |
|
886 |
|
|
887 |
typename Digraph::template NodeMap<int> _numMap; |
|
888 |
typename Digraph::template NodeMap<int> _retMap; |
|
889 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
890 |
int _num; |
|
891 |
}; |
|
892 |
|
|
893 |
template <typename Digraph, typename NodeMap> |
|
894 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
|
895 |
public: |
|
896 |
typedef typename Digraph::Node Node; |
|
897 |
typedef typename Digraph::Arc Arc; |
|
898 |
typedef typename Digraph::Edge Edge; |
|
899 |
|
|
900 |
BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
|
901 |
NodeMap& compMap, int &compNum) |
|
902 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
|
903 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|
904 |
|
|
905 |
void start(const Node& node) { |
|
906 |
_predMap.set(node, INVALID); |
|
907 |
} |
|
908 |
|
|
909 |
void reach(const Node& node) { |
|
910 |
_numMap.set(node, _num); |
|
911 |
_retMap.set(node, _num); |
|
912 |
_nodeStack.push(node); |
|
913 |
++_num; |
|
914 |
} |
|
915 |
|
|
916 |
void leave(const Node& node) { |
|
917 |
if (_numMap[node] <= _retMap[node]) { |
|
918 |
while (_nodeStack.top() != node) { |
|
919 |
_compMap.set(_nodeStack.top(), _compNum); |
|
920 |
_nodeStack.pop(); |
|
921 |
} |
|
922 |
_compMap.set(node, _compNum); |
|
923 |
_nodeStack.pop(); |
|
924 |
++_compNum; |
|
925 |
} |
|
926 |
} |
|
927 |
|
|
928 |
void discover(const Arc& edge) { |
|
929 |
_predMap.set(_graph.target(edge), edge); |
|
930 |
} |
|
931 |
|
|
932 |
void examine(const Arc& edge) { |
|
933 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
|
934 |
return; |
|
935 |
} |
|
936 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
937 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
938 |
} |
|
939 |
} |
|
940 |
|
|
941 |
void backtrack(const Arc& edge) { |
|
942 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
943 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
944 |
} |
|
945 |
} |
|
946 |
|
|
947 |
private: |
|
948 |
const Digraph& _graph; |
|
949 |
NodeMap& _compMap; |
|
950 |
int& _compNum; |
|
951 |
|
|
952 |
typename Digraph::template NodeMap<int> _numMap; |
|
953 |
typename Digraph::template NodeMap<int> _retMap; |
|
954 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
955 |
std::stack<Node> _nodeStack; |
|
956 |
int _num; |
|
957 |
}; |
|
958 |
|
|
959 |
|
|
960 |
template <typename Digraph, typename ArcMap> |
|
961 |
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
|
962 |
public: |
|
963 |
typedef typename Digraph::Node Node; |
|
964 |
typedef typename Digraph::Arc Arc; |
|
965 |
typedef typename Digraph::Edge Edge; |
|
966 |
|
|
967 |
BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
|
968 |
ArcMap& cutMap, int &cutNum) |
|
969 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
|
970 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
|
971 |
|
|
972 |
void start(const Node& node) { |
|
973 |
_predMap[node] = INVALID; |
|
974 |
} |
|
975 |
|
|
976 |
void reach(const Node& node) { |
|
977 |
_numMap.set(node, _num); |
|
978 |
_retMap.set(node, _num); |
|
979 |
++_num; |
|
980 |
} |
|
981 |
|
|
982 |
void leave(const Node& node) { |
|
983 |
if (_numMap[node] <= _retMap[node]) { |
|
984 |
if (_predMap[node] != INVALID) { |
|
985 |
_cutMap.set(_predMap[node], true); |
|
986 |
++_cutNum; |
|
987 |
} |
|
988 |
} |
|
989 |
} |
|
990 |
|
|
991 |
void discover(const Arc& edge) { |
|
992 |
_predMap.set(_graph.target(edge), edge); |
|
993 |
} |
|
994 |
|
|
995 |
void examine(const Arc& edge) { |
|
996 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
|
997 |
return; |
|
998 |
} |
|
999 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
1000 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
1001 |
} |
|
1002 |
} |
|
1003 |
|
|
1004 |
void backtrack(const Arc& edge) { |
|
1005 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
|
1006 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
1007 |
} |
|
1008 |
} |
|
1009 |
|
|
1010 |
private: |
|
1011 |
const Digraph& _graph; |
|
1012 |
ArcMap& _cutMap; |
|
1013 |
int& _cutNum; |
|
1014 |
|
|
1015 |
typename Digraph::template NodeMap<int> _numMap; |
|
1016 |
typename Digraph::template NodeMap<int> _retMap; |
|
1017 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
1018 |
int _num; |
|
1019 |
}; |
|
1020 |
} |
|
1021 |
|
|
1022 |
template <typename Graph> |
|
1023 |
int countBiEdgeConnectedComponents(const Graph& graph); |
|
1024 |
|
|
1025 |
/// \ingroup connectivity |
|
1026 |
/// |
|
1027 |
/// \brief Checks that the graph is bi-edge-connected. |
|
1028 |
/// |
|
1029 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
1030 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
1031 |
/// edge-disjoint paths. |
|
1032 |
/// |
|
1033 |
/// \param graph The undirected graph. |
|
1034 |
/// \return The number of components. |
|
1035 |
template <typename Graph> |
|
1036 |
bool biEdgeConnected(const Graph& graph) { |
|
1037 |
return countBiEdgeConnectedComponents(graph) <= 1; |
|
1038 |
} |
|
1039 |
|
|
1040 |
/// \ingroup connectivity |
|
1041 |
/// |
|
1042 |
/// \brief Count the bi-edge-connected components. |
|
1043 |
/// |
|
1044 |
/// This function count the bi-edge-connected components in an undirected |
|
1045 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1046 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1047 |
/// connected with at least two edge-disjoint paths. |
|
1048 |
/// |
|
1049 |
/// \param graph The undirected graph. |
|
1050 |
/// \return The number of components. |
|
1051 |
template <typename Graph> |
|
1052 |
int countBiEdgeConnectedComponents(const Graph& graph) { |
|
1053 |
checkConcept<concepts::Graph, Graph>(); |
|
1054 |
typedef typename Graph::NodeIt NodeIt; |
|
1055 |
|
|
1056 |
using namespace _topology_bits; |
|
1057 |
|
|
1058 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
|
1059 |
|
|
1060 |
int compNum = 0; |
|
1061 |
Visitor visitor(graph, compNum); |
|
1062 |
|
|
1063 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
1064 |
dfs.init(); |
|
1065 |
|
|
1066 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1067 |
if (!dfs.reached(it)) { |
|
1068 |
dfs.addSource(it); |
|
1069 |
dfs.start(); |
|
1070 |
} |
|
1071 |
} |
|
1072 |
return compNum; |
|
1073 |
} |
|
1074 |
|
|
1075 |
/// \ingroup connectivity |
|
1076 |
/// |
|
1077 |
/// \brief Find the bi-edge-connected components. |
|
1078 |
/// |
|
1079 |
/// This function finds the bi-edge-connected components in an undirected |
|
1080 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1081 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1082 |
/// connected at least two edge-disjoint paths. |
|
1083 |
/// |
|
1084 |
/// \param graph The graph. |
|
1085 |
/// \retval compMap A writable node map. The values will be set from 0 to |
|
1086 |
/// the number of the biconnected components minus one. Each values |
|
1087 |
/// of the map will be set exactly once, the values of a certain component |
|
1088 |
/// will be set continuously. |
|
1089 |
/// \return The number of components. |
|
1090 |
/// |
|
1091 |
template <typename Graph, typename NodeMap> |
|
1092 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
|
1093 |
checkConcept<concepts::Graph, Graph>(); |
|
1094 |
typedef typename Graph::NodeIt NodeIt; |
|
1095 |
typedef typename Graph::Node Node; |
|
1096 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|
1097 |
|
|
1098 |
using namespace _topology_bits; |
|
1099 |
|
|
1100 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
|
1101 |
|
|
1102 |
int compNum = 0; |
|
1103 |
Visitor visitor(graph, compMap, compNum); |
|
1104 |
|
|
1105 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
1106 |
dfs.init(); |
|
1107 |
|
|
1108 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1109 |
if (!dfs.reached(it)) { |
|
1110 |
dfs.addSource(it); |
|
1111 |
dfs.start(); |
|
1112 |
} |
|
1113 |
} |
|
1114 |
return compNum; |
|
1115 |
} |
|
1116 |
|
|
1117 |
/// \ingroup connectivity |
|
1118 |
/// |
|
1119 |
/// \brief Find the bi-edge-connected cut edges. |
|
1120 |
/// |
|
1121 |
/// This function finds the bi-edge-connected components in an undirected |
|
1122 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1123 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1124 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
1125 |
/// components are separted by edges which are the cut edges of the |
|
1126 |
/// components. |
|
1127 |
/// |
|
1128 |
/// \param graph The graph. |
|
1129 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
1130 |
/// edge is a cut edge. |
|
1131 |
/// \return The number of cut edges. |
|
1132 |
template <typename Graph, typename EdgeMap> |
|
1133 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
|
1134 |
checkConcept<concepts::Graph, Graph>(); |
|
1135 |
typedef typename Graph::NodeIt NodeIt; |
|
1136 |
typedef typename Graph::Edge Edge; |
|
1137 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
|
1138 |
|
|
1139 |
using namespace _topology_bits; |
|
1140 |
|
|
1141 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
|
1142 |
|
|
1143 |
int cutNum = 0; |
|
1144 |
Visitor visitor(graph, cutMap, cutNum); |
|
1145 |
|
|
1146 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
1147 |
dfs.init(); |
|
1148 |
|
|
1149 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1150 |
if (!dfs.reached(it)) { |
|
1151 |
dfs.addSource(it); |
|
1152 |
dfs.start(); |
|
1153 |
} |
|
1154 |
} |
|
1155 |
return cutNum; |
|
1156 |
} |
|
1157 |
|
|
1158 |
|
|
1159 |
namespace _topology_bits { |
|
1160 |
|
|
1161 |
template <typename Digraph, typename IntNodeMap> |
|
1162 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
|
1163 |
public: |
|
1164 |
typedef typename Digraph::Node Node; |
|
1165 |
typedef typename Digraph::Arc edge; |
|
1166 |
|
|
1167 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
|
1168 |
: _order(order), _num(num) {} |
|
1169 |
|
|
1170 |
void leave(const Node& node) { |
|
1171 |
_order.set(node, --_num); |
|
1172 |
} |
|
1173 |
|
|
1174 |
private: |
|
1175 |
IntNodeMap& _order; |
|
1176 |
int _num; |
|
1177 |
}; |
|
1178 |
|
|
1179 |
} |
|
1180 |
|
|
1181 |
/// \ingroup connectivity |
|
1182 |
/// |
|
1183 |
/// \brief Sort the nodes of a DAG into topolgical order. |
|
1184 |
/// |
|
1185 |
/// Sort the nodes of a DAG into topolgical order. |
|
1186 |
/// |
|
1187 |
/// \param graph The graph. It must be directed and acyclic. |
|
1188 |
/// \retval order A writable node map. The values will be set from 0 to |
|
1189 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
1190 |
/// will be set exactly once, the values will be set descending order. |
|
1191 |
/// |
|
1192 |
/// \see checkedTopologicalSort |
|
1193 |
/// \see dag |
|
1194 |
template <typename Digraph, typename NodeMap> |
|
1195 |
void topologicalSort(const Digraph& graph, NodeMap& order) { |
|
1196 |
using namespace _topology_bits; |
|
1197 |
|
|
1198 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1199 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
|
1200 |
|
|
1201 |
typedef typename Digraph::Node Node; |
|
1202 |
typedef typename Digraph::NodeIt NodeIt; |
|
1203 |
typedef typename Digraph::Arc Arc; |
|
1204 |
|
|
1205 |
TopologicalSortVisitor<Digraph, NodeMap> |
|
1206 |
visitor(order, countNodes(graph)); |
|
1207 |
|
|
1208 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
|
1209 |
dfs(graph, visitor); |
|
1210 |
|
|
1211 |
dfs.init(); |
|
1212 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1213 |
if (!dfs.reached(it)) { |
|
1214 |
dfs.addSource(it); |
|
1215 |
dfs.start(); |
|
1216 |
} |
|
1217 |
} |
|
1218 |
} |
|
1219 |
|
|
1220 |
/// \ingroup connectivity |
|
1221 |
/// |
|
1222 |
/// \brief Sort the nodes of a DAG into topolgical order. |
|
1223 |
/// |
|
1224 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
1225 |
/// that the given graph is DAG. |
|
1226 |
/// |
|
1227 |
/// \param graph The graph. It must be directed and acyclic. |
|
1228 |
/// \retval order A readable - writable node map. The values will be set |
|
1229 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
1230 |
/// of the map will be set exactly once, the values will be set descending |
|
1231 |
/// order. |
|
1232 |
/// \return %False when the graph is not DAG. |
|
1233 |
/// |
|
1234 |
/// \see topologicalSort |
|
1235 |
/// \see dag |
|
1236 |
template <typename Digraph, typename NodeMap> |
|
1237 |
bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) { |
|
1238 |
using namespace _topology_bits; |
|
1239 |
|
|
1240 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1241 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
|
1242 |
NodeMap>(); |
|
1243 |
|
|
1244 |
typedef typename Digraph::Node Node; |
|
1245 |
typedef typename Digraph::NodeIt NodeIt; |
|
1246 |
typedef typename Digraph::Arc Arc; |
|
1247 |
|
|
1248 |
order = constMap<Node, int, -1>(); |
|
1249 |
|
|
1250 |
TopologicalSortVisitor<Digraph, NodeMap> |
|
1251 |
visitor(order, countNodes(graph)); |
|
1252 |
|
|
1253 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
|
1254 |
dfs(graph, visitor); |
|
1255 |
|
|
1256 |
dfs.init(); |
|
1257 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1258 |
if (!dfs.reached(it)) { |
|
1259 |
dfs.addSource(it); |
|
1260 |
while (!dfs.emptyQueue()) { |
|
1261 |
Arc edge = dfs.nextArc(); |
|
1262 |
Node target = graph.target(edge); |
|
1263 |
if (dfs.reached(target) && order[target] == -1) { |
|
1264 |
return false; |
|
1265 |
} |
|
1266 |
dfs.processNextArc(); |
|
1267 |
} |
|
1268 |
} |
|
1269 |
} |
|
1270 |
return true; |
|
1271 |
} |
|
1272 |
|
|
1273 |
/// \ingroup connectivity |
|
1274 |
/// |
|
1275 |
/// \brief Check that the given directed graph is a DAG. |
|
1276 |
/// |
|
1277 |
/// Check that the given directed graph is a DAG. The DAG is |
|
1278 |
/// an Directed Acyclic Digraph. |
|
1279 |
/// \return %False when the graph is not DAG. |
|
1280 |
/// \see acyclic |
|
1281 |
template <typename Digraph> |
|
1282 |
bool dag(const Digraph& graph) { |
|
1283 |
|
|
1284 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1285 |
|
|
1286 |
typedef typename Digraph::Node Node; |
|
1287 |
typedef typename Digraph::NodeIt NodeIt; |
|
1288 |
typedef typename Digraph::Arc Arc; |
|
1289 |
|
|
1290 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1291 |
|
|
1292 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1293 |
Create dfs(graph); |
|
1294 |
|
|
1295 |
ProcessedMap processed(graph); |
|
1296 |
dfs.processedMap(processed); |
|
1297 |
|
|
1298 |
dfs.init(); |
|
1299 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1300 |
if (!dfs.reached(it)) { |
|
1301 |
dfs.addSource(it); |
|
1302 |
while (!dfs.emptyQueue()) { |
|
1303 |
Arc edge = dfs.nextArc(); |
|
1304 |
Node target = graph.target(edge); |
|
1305 |
if (dfs.reached(target) && !processed[target]) { |
|
1306 |
return false; |
|
1307 |
} |
|
1308 |
dfs.processNextArc(); |
|
1309 |
} |
|
1310 |
} |
|
1311 |
} |
|
1312 |
return true; |
|
1313 |
} |
|
1314 |
|
|
1315 |
/// \ingroup connectivity |
|
1316 |
/// |
|
1317 |
/// \brief Check that the given undirected graph is acyclic. |
|
1318 |
/// |
|
1319 |
/// Check that the given undirected graph acyclic. |
|
1320 |
/// \param graph The undirected graph. |
|
1321 |
/// \return %True when there is no circle in the graph. |
|
1322 |
/// \see dag |
|
1323 |
template <typename Graph> |
|
1324 |
bool acyclic(const Graph& graph) { |
|
1325 |
checkConcept<concepts::Graph, Graph>(); |
|
1326 |
typedef typename Graph::Node Node; |
|
1327 |
typedef typename Graph::NodeIt NodeIt; |
|
1328 |
typedef typename Graph::Arc Arc; |
|
1329 |
Dfs<Graph> dfs(graph); |
|
1330 |
dfs.init(); |
|
1331 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1332 |
if (!dfs.reached(it)) { |
|
1333 |
dfs.addSource(it); |
|
1334 |
while (!dfs.emptyQueue()) { |
|
1335 |
Arc edge = dfs.nextArc(); |
|
1336 |
Node source = graph.source(edge); |
|
1337 |
Node target = graph.target(edge); |
|
1338 |
if (dfs.reached(target) && |
|
1339 |
dfs.predArc(source) != graph.oppositeArc(edge)) { |
|
1340 |
return false; |
|
1341 |
} |
|
1342 |
dfs.processNextArc(); |
|
1343 |
} |
|
1344 |
} |
|
1345 |
} |
|
1346 |
return true; |
|
1347 |
} |
|
1348 |
|
|
1349 |
/// \ingroup connectivity |
|
1350 |
/// |
|
1351 |
/// \brief Check that the given undirected graph is tree. |
|
1352 |
/// |
|
1353 |
/// Check that the given undirected graph is tree. |
|
1354 |
/// \param graph The undirected graph. |
|
1355 |
/// \return %True when the graph is acyclic and connected. |
|
1356 |
template <typename Graph> |
|
1357 |
bool tree(const Graph& graph) { |
|
1358 |
checkConcept<concepts::Graph, Graph>(); |
|
1359 |
typedef typename Graph::Node Node; |
|
1360 |
typedef typename Graph::NodeIt NodeIt; |
|
1361 |
typedef typename Graph::Arc Arc; |
|
1362 |
Dfs<Graph> dfs(graph); |
|
1363 |
dfs.init(); |
|
1364 |
dfs.addSource(NodeIt(graph)); |
|
1365 |
while (!dfs.emptyQueue()) { |
|
1366 |
Arc edge = dfs.nextArc(); |
|
1367 |
Node source = graph.source(edge); |
|
1368 |
Node target = graph.target(edge); |
|
1369 |
if (dfs.reached(target) && |
|
1370 |
dfs.predArc(source) != graph.oppositeArc(edge)) { |
|
1371 |
return false; |
|
1372 |
} |
|
1373 |
dfs.processNextArc(); |
|
1374 |
} |
|
1375 |
for (NodeIt it(graph); it != INVALID; ++it) { |
|
1376 |
if (!dfs.reached(it)) { |
|
1377 |
return false; |
|
1378 |
} |
|
1379 |
} |
|
1380 |
return true; |
|
1381 |
} |
|
1382 |
|
|
1383 |
namespace _topology_bits { |
|
1384 |
|
|
1385 |
template <typename Digraph> |
|
1386 |
class BipartiteVisitor : public BfsVisitor<Digraph> { |
|
1387 |
public: |
|
1388 |
typedef typename Digraph::Arc Arc; |
|
1389 |
typedef typename Digraph::Node Node; |
|
1390 |
|
|
1391 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
|
1392 |
: _graph(graph), _part(graph), _bipartite(bipartite) {} |
|
1393 |
|
|
1394 |
void start(const Node& node) { |
|
1395 |
_part[node] = true; |
|
1396 |
} |
|
1397 |
void discover(const Arc& edge) { |
|
1398 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
|
1399 |
} |
|
1400 |
void examine(const Arc& edge) { |
|
1401 |
_bipartite = _bipartite && |
|
1402 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
|
1403 |
} |
|
1404 |
|
|
1405 |
private: |
|
1406 |
|
|
1407 |
const Digraph& _graph; |
|
1408 |
typename Digraph::template NodeMap<bool> _part; |
|
1409 |
bool& _bipartite; |
|
1410 |
}; |
|
1411 |
|
|
1412 |
template <typename Digraph, typename PartMap> |
|
1413 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
|
1414 |
public: |
|
1415 |
typedef typename Digraph::Arc Arc; |
|
1416 |
typedef typename Digraph::Node Node; |
|
1417 |
|
|
1418 |
BipartitePartitionsVisitor(const Digraph& graph, |
|
1419 |
PartMap& part, bool& bipartite) |
|
1420 |
: _graph(graph), _part(part), _bipartite(bipartite) {} |
|
1421 |
|
|
1422 |
void start(const Node& node) { |
|
1423 |
_part.set(node, true); |
|
1424 |
} |
|
1425 |
void discover(const Arc& edge) { |
|
1426 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
|
1427 |
} |
|
1428 |
void examine(const Arc& edge) { |
|
1429 |
_bipartite = _bipartite && |
|
1430 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
|
1431 |
} |
|
1432 |
|
|
1433 |
private: |
|
1434 |
|
|
1435 |
const Digraph& _graph; |
|
1436 |
PartMap& _part; |
|
1437 |
bool& _bipartite; |
|
1438 |
}; |
|
1439 |
} |
|
1440 |
|
|
1441 |
/// \ingroup connectivity |
|
1442 |
/// |
|
1443 |
/// \brief Check if the given undirected graph is bipartite or not |
|
1444 |
/// |
|
1445 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
1446 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1447 |
/// \param graph The undirected graph. |
|
1448 |
/// \return %True if \c graph is bipartite, %false otherwise. |
|
1449 |
/// \sa bipartitePartitions |
|
1450 |
template<typename Graph> |
|
1451 |
inline bool bipartite(const Graph &graph){ |
|
1452 |
using namespace _topology_bits; |
|
1453 |
|
|
1454 |
checkConcept<concepts::Graph, Graph>(); |
|
1455 |
|
|
1456 |
typedef typename Graph::NodeIt NodeIt; |
|
1457 |
typedef typename Graph::ArcIt ArcIt; |
|
1458 |
|
|
1459 |
bool bipartite = true; |
|
1460 |
|
|
1461 |
BipartiteVisitor<Graph> |
|
1462 |
visitor(graph, bipartite); |
|
1463 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
|
1464 |
bfs(graph, visitor); |
|
1465 |
bfs.init(); |
|
1466 |
for(NodeIt it(graph); it != INVALID; ++it) { |
|
1467 |
if(!bfs.reached(it)){ |
|
1468 |
bfs.addSource(it); |
|
1469 |
while (!bfs.emptyQueue()) { |
|
1470 |
bfs.processNextNode(); |
|
1471 |
if (!bipartite) return false; |
|
1472 |
} |
|
1473 |
} |
|
1474 |
} |
|
1475 |
return true; |
|
1476 |
} |
|
1477 |
|
|
1478 |
/// \ingroup connectivity |
|
1479 |
/// |
|
1480 |
/// \brief Check if the given undirected graph is bipartite or not |
|
1481 |
/// |
|
1482 |
/// The function checks if the given undirected graph is bipartite |
|
1483 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1484 |
/// During the execution, the \c partMap will be set as the two |
|
1485 |
/// partitions of the graph. |
|
1486 |
/// \param graph The undirected graph. |
|
1487 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
1488 |
/// two partitions of the graph. |
|
1489 |
/// \return %True if \c graph is bipartite, %false otherwise. |
|
1490 |
template<typename Graph, typename NodeMap> |
|
1491 |
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
|
1492 |
using namespace _topology_bits; |
|
1493 |
|
|
1494 |
checkConcept<concepts::Graph, Graph>(); |
|
1495 |
|
|
1496 |
typedef typename Graph::Node Node; |
|
1497 |
typedef typename Graph::NodeIt NodeIt; |
|
1498 |
typedef typename Graph::ArcIt ArcIt; |
|
1499 |
|
|
1500 |
bool bipartite = true; |
|
1501 |
|
|
1502 |
BipartitePartitionsVisitor<Graph, NodeMap> |
|
1503 |
visitor(graph, partMap, bipartite); |
|
1504 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
|
1505 |
bfs(graph, visitor); |
|
1506 |
bfs.init(); |
|
1507 |
for(NodeIt it(graph); it != INVALID; ++it) { |
|
1508 |
if(!bfs.reached(it)){ |
|
1509 |
bfs.addSource(it); |
|
1510 |
while (!bfs.emptyQueue()) { |
|
1511 |
bfs.processNextNode(); |
|
1512 |
if (!bipartite) return false; |
|
1513 |
} |
|
1514 |
} |
|
1515 |
} |
|
1516 |
return true; |
|
1517 |
} |
|
1518 |
|
|
1519 |
/// \brief Returns true when there are not loop edges in the graph. |
|
1520 |
/// |
|
1521 |
/// Returns true when there are not loop edges in the graph. |
|
1522 |
template <typename Digraph> |
|
1523 |
bool loopFree(const Digraph& graph) { |
|
1524 |
for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) { |
|
1525 |
if (graph.source(it) == graph.target(it)) return false; |
|
1526 |
} |
|
1527 |
return true; |
|
1528 |
} |
|
1529 |
|
|
1530 |
/// \brief Returns true when there are not parallel edges in the graph. |
|
1531 |
/// |
|
1532 |
/// Returns true when there are not parallel edges in the graph. |
|
1533 |
template <typename Digraph> |
|
1534 |
bool parallelFree(const Digraph& graph) { |
|
1535 |
typename Digraph::template NodeMap<bool> reached(graph, false); |
|
1536 |
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) { |
|
1537 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
|
1538 |
if (reached[graph.target(e)]) return false; |
|
1539 |
reached.set(graph.target(e), true); |
|
1540 |
} |
|
1541 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
|
1542 |
reached.set(graph.target(e), false); |
|
1543 |
} |
|
1544 |
} |
|
1545 |
return true; |
|
1546 |
} |
|
1547 |
|
|
1548 |
/// \brief Returns true when there are not loop edges and parallel |
|
1549 |
/// edges in the graph. |
|
1550 |
/// |
|
1551 |
/// Returns true when there are not loop edges and parallel edges in |
|
1552 |
/// the graph. |
|
1553 |
template <typename Digraph> |
|
1554 |
bool simpleDigraph(const Digraph& graph) { |
|
1555 |
typename Digraph::template NodeMap<bool> reached(graph, false); |
|
1556 |
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) { |
|
1557 |
reached.set(n, true); |
|
1558 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
|
1559 |
if (reached[graph.target(e)]) return false; |
|
1560 |
reached.set(graph.target(e), true); |
|
1561 |
} |
|
1562 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
|
1563 |
reached.set(graph.target(e), false); |
|
1564 |
} |
|
1565 |
reached.set(n, false); |
|
1566 |
} |
|
1567 |
return true; |
|
1568 |
} |
|
1569 |
|
|
1570 |
} //namespace lemon |
|
1571 |
|
|
1572 |
#endif //LEMON_TOPOLOGY_H |
0 comments (0 inline)