... | ... |
@@ -812,25 +812,25 @@ |
812 | 812 |
} |
813 | 813 |
} |
814 | 814 |
} |
815 | 815 |
|
816 | 816 |
public: |
817 | 817 |
|
818 | 818 |
/// \name Execution control |
819 | 819 |
/// The simplest way to execute the algorithm is to use |
820 | 820 |
/// one of the member functions called \c run(...). |
821 | 821 |
/// \n |
822 | 822 |
/// If you need more control on the execution, |
823 | 823 |
/// first you must call \ref init(), then the \ref calculateIn() or |
824 |
/// \ref |
|
824 |
/// \ref calculateOut() functions. |
|
825 | 825 |
|
826 | 826 |
/// @{ |
827 | 827 |
|
828 | 828 |
/// \brief Initializes the internal data structures. |
829 | 829 |
/// |
830 | 830 |
/// Initializes the internal data structures. It creates |
831 | 831 |
/// the maps, residual graph adaptors and some bucket structures |
832 | 832 |
/// for the algorithm. |
833 | 833 |
void init() { |
834 | 834 |
init(NodeIt(_graph)); |
835 | 835 |
} |
836 | 836 |
|
... | ... |
@@ -874,36 +874,36 @@ |
874 | 874 |
if (!_min_cut_map) { |
875 | 875 |
_min_cut_map = new MinCutMap(_graph); |
876 | 876 |
} |
877 | 877 |
|
878 | 878 |
_min_cut = std::numeric_limits<Value>::max(); |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
|
882 | 882 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
883 | 883 |
/// source-side. |
884 | 884 |
/// |
885 | 885 |
/// Calculates a minimum cut with \f$ source \f$ on the |
886 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
887 |
/// \in X \f$ and minimal out-degree). |
|
886 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with |
|
887 |
/// \f$ source \in X \f$ and minimal out-degree). |
|
888 | 888 |
void calculateOut() { |
889 | 889 |
findMinCutOut(); |
890 | 890 |
} |
891 | 891 |
|
892 | 892 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
893 | 893 |
/// target-side. |
894 | 894 |
/// |
895 | 895 |
/// Calculates a minimum cut with \f$ source \f$ on the |
896 |
/// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
897 |
/// \in X \f$ and minimal out-degree). |
|
896 |
/// target-side (i.e. a set \f$ X\subsetneq V \f$ with |
|
897 |
/// \f$ source \in X \f$ and minimal out-degree). |
|
898 | 898 |
void calculateIn() { |
899 | 899 |
findMinCutIn(); |
900 | 900 |
} |
901 | 901 |
|
902 | 902 |
|
903 | 903 |
/// \brief Runs the algorithm. |
904 | 904 |
/// |
905 | 905 |
/// Runs the algorithm. It finds nodes \c source and \c target |
906 | 906 |
/// arbitrarily and then calls \ref init(), \ref calculateOut() |
907 | 907 |
/// and \ref calculateIn(). |
908 | 908 |
void run() { |
909 | 909 |
init(); |
0 comments (0 inline)