|
1 |
/* -*- C++ -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2010
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_MAX_CARDINALITY_SEARCH_H
|
|
20 |
#define LEMON_MAX_CARDINALITY_SEARCH_H
|
|
21 |
|
|
22 |
|
|
23 |
/// \ingroup search
|
|
24 |
/// \file
|
|
25 |
/// \brief Maximum cardinality search in undirected digraphs.
|
|
26 |
|
|
27 |
#include <lemon/bin_heap.h>
|
|
28 |
#include <lemon/bucket_heap.h>
|
|
29 |
|
|
30 |
#include <lemon/error.h>
|
|
31 |
#include <lemon/maps.h>
|
|
32 |
|
|
33 |
#include <functional>
|
|
34 |
|
|
35 |
namespace lemon {
|
|
36 |
|
|
37 |
/// \brief Default traits class of MaxCardinalitySearch class.
|
|
38 |
///
|
|
39 |
/// Default traits class of MaxCardinalitySearch class.
|
|
40 |
/// \param Digraph Digraph type.
|
|
41 |
/// \param CapacityMap Type of capacity map.
|
|
42 |
template <typename GR, typename CAP>
|
|
43 |
struct MaxCardinalitySearchDefaultTraits {
|
|
44 |
/// The digraph type the algorithm runs on.
|
|
45 |
typedef GR Digraph;
|
|
46 |
|
|
47 |
template <typename CM>
|
|
48 |
struct CapMapSelector {
|
|
49 |
|
|
50 |
typedef CM CapacityMap;
|
|
51 |
|
|
52 |
static CapacityMap *createCapacityMap(const Digraph& g) {
|
|
53 |
return new CapacityMap(g);
|
|
54 |
}
|
|
55 |
};
|
|
56 |
|
|
57 |
template <typename CM>
|
|
58 |
struct CapMapSelector<ConstMap<CM, Const<int, 1> > > {
|
|
59 |
|
|
60 |
typedef ConstMap<CM, Const<int, 1> > CapacityMap;
|
|
61 |
|
|
62 |
static CapacityMap *createCapacityMap(const Digraph&) {
|
|
63 |
return new CapacityMap;
|
|
64 |
}
|
|
65 |
};
|
|
66 |
|
|
67 |
/// \brief The type of the map that stores the arc capacities.
|
|
68 |
///
|
|
69 |
/// The type of the map that stores the arc capacities.
|
|
70 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
|
71 |
typedef typename CapMapSelector<CAP>::CapacityMap CapacityMap;
|
|
72 |
|
|
73 |
/// \brief The type of the capacity of the arcs.
|
|
74 |
typedef typename CapacityMap::Value Value;
|
|
75 |
|
|
76 |
/// \brief Instantiates a CapacityMap.
|
|
77 |
///
|
|
78 |
/// This function instantiates a \ref CapacityMap.
|
|
79 |
/// \param digraph is the digraph, to which we would like to define
|
|
80 |
/// the CapacityMap.
|
|
81 |
static CapacityMap *createCapacityMap(const Digraph& digraph) {
|
|
82 |
return CapMapSelector<CapacityMap>::createCapacityMap(digraph);
|
|
83 |
}
|
|
84 |
|
|
85 |
/// \brief The cross reference type used by heap.
|
|
86 |
///
|
|
87 |
/// The cross reference type used by heap.
|
|
88 |
/// Usually it is \c Digraph::NodeMap<int>.
|
|
89 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef;
|
|
90 |
|
|
91 |
/// \brief Instantiates a HeapCrossRef.
|
|
92 |
///
|
|
93 |
/// This function instantiates a \ref HeapCrossRef.
|
|
94 |
/// \param digraph is the digraph, to which we would like to define the
|
|
95 |
/// HeapCrossRef.
|
|
96 |
static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) {
|
|
97 |
return new HeapCrossRef(digraph);
|
|
98 |
}
|
|
99 |
|
|
100 |
template <typename CapacityMap>
|
|
101 |
struct HeapSelector {
|
|
102 |
template <typename Value, typename Ref>
|
|
103 |
struct Selector {
|
|
104 |
typedef BinHeap<Value, Ref, std::greater<Value> > Heap;
|
|
105 |
};
|
|
106 |
};
|
|
107 |
|
|
108 |
template <typename CapacityKey>
|
|
109 |
struct HeapSelector<ConstMap<CapacityKey, Const<int, 1> > > {
|
|
110 |
template <typename Value, typename Ref>
|
|
111 |
struct Selector {
|
|
112 |
typedef BucketHeap<Ref, false > Heap;
|
|
113 |
};
|
|
114 |
};
|
|
115 |
|
|
116 |
/// \brief The heap type used by MaxCardinalitySearch algorithm.
|
|
117 |
///
|
|
118 |
/// The heap type used by MaxCardinalitySearch algorithm. It should
|
|
119 |
/// maximalize the priorities. The default heap type is
|
|
120 |
/// the \ref BinHeap, but it is specialized when the
|
|
121 |
/// CapacityMap is ConstMap<Digraph::Node, Const<int, 1> >
|
|
122 |
/// to BucketHeap.
|
|
123 |
///
|
|
124 |
/// \sa MaxCardinalitySearch
|
|
125 |
typedef typename HeapSelector<CapacityMap>
|
|
126 |
::template Selector<Value, HeapCrossRef>
|
|
127 |
::Heap Heap;
|
|
128 |
|
|
129 |
/// \brief Instantiates a Heap.
|
|
130 |
///
|
|
131 |
/// This function instantiates a \ref Heap.
|
|
132 |
/// \param crossref The cross reference of the heap.
|
|
133 |
static Heap *createHeap(HeapCrossRef& crossref) {
|
|
134 |
return new Heap(crossref);
|
|
135 |
}
|
|
136 |
|
|
137 |
/// \brief The type of the map that stores whether a node is processed.
|
|
138 |
///
|
|
139 |
/// The type of the map that stores whether a node is processed.
|
|
140 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
|
141 |
/// By default it is a NullMap.
|
|
142 |
typedef NullMap<typename Digraph::Node, bool> ProcessedMap;
|
|
143 |
|
|
144 |
/// \brief Instantiates a ProcessedMap.
|
|
145 |
///
|
|
146 |
/// This function instantiates a \ref ProcessedMap.
|
|
147 |
/// \param digraph is the digraph, to which
|
|
148 |
/// we would like to define the \ref ProcessedMap
|
|
149 |
#ifdef DOXYGEN
|
|
150 |
static ProcessedMap *createProcessedMap(const Digraph &digraph)
|
|
151 |
#else
|
|
152 |
static ProcessedMap *createProcessedMap(const Digraph &)
|
|
153 |
#endif
|
|
154 |
{
|
|
155 |
return new ProcessedMap();
|
|
156 |
}
|
|
157 |
|
|
158 |
/// \brief The type of the map that stores the cardinalities of the nodes.
|
|
159 |
///
|
|
160 |
/// The type of the map that stores the cardinalities of the nodes.
|
|
161 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
|
162 |
typedef typename Digraph::template NodeMap<Value> CardinalityMap;
|
|
163 |
|
|
164 |
/// \brief Instantiates a CardinalityMap.
|
|
165 |
///
|
|
166 |
/// This function instantiates a \ref CardinalityMap.
|
|
167 |
/// \param digraph is the digraph, to which we would like to define the \ref
|
|
168 |
/// CardinalityMap
|
|
169 |
static CardinalityMap *createCardinalityMap(const Digraph &digraph) {
|
|
170 |
return new CardinalityMap(digraph);
|
|
171 |
}
|
|
172 |
|
|
173 |
|
|
174 |
};
|
|
175 |
|
|
176 |
/// \ingroup search
|
|
177 |
///
|
|
178 |
/// \brief Maximum Cardinality Search algorithm class.
|
|
179 |
///
|
|
180 |
/// This class provides an efficient implementation of Maximum Cardinality
|
|
181 |
/// Search algorithm. The maximum cardinality search first chooses any
|
|
182 |
/// node of the digraph. Then every time it chooses one unprocessed node
|
|
183 |
/// with maximum cardinality, i.e the sum of capacities on out arcs to the nodes
|
|
184 |
/// which were previusly processed.
|
|
185 |
/// If there is a cut in the digraph the algorithm should choose
|
|
186 |
/// again any unprocessed node of the digraph.
|
|
187 |
|
|
188 |
/// The arc capacities are passed to the algorithm using a
|
|
189 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
|
|
190 |
/// kind of capacity.
|
|
191 |
///
|
|
192 |
/// The type of the capacity is determined by the \ref
|
|
193 |
/// concepts::ReadMap::Value "Value" of the capacity map.
|
|
194 |
///
|
|
195 |
/// It is also possible to change the underlying priority heap.
|
|
196 |
///
|
|
197 |
///
|
|
198 |
/// \param GR The digraph type the algorithm runs on. The value of
|
|
199 |
/// Digraph is not used directly by the search algorithm, it
|
|
200 |
/// is only passed to \ref MaxCardinalitySearchDefaultTraits.
|
|
201 |
/// \param CAP This read-only ArcMap determines the capacities of
|
|
202 |
/// the arcs. It is read once for each arc, so the map may involve in
|
|
203 |
/// relatively time consuming process to compute the arc capacity if
|
|
204 |
/// it is necessary. The default map type is \ref
|
|
205 |
/// ConstMap "ConstMap<concepts::Digraph::Arc, Const<int,1> >". The value
|
|
206 |
/// of CapacityMap is not used directly by search algorithm, it is only
|
|
207 |
/// passed to \ref MaxCardinalitySearchDefaultTraits.
|
|
208 |
/// \param TR Traits class to set various data types used by the
|
|
209 |
/// algorithm. The default traits class is
|
|
210 |
/// \ref MaxCardinalitySearchDefaultTraits
|
|
211 |
/// "MaxCardinalitySearchDefaultTraits<GR, CAP>".
|
|
212 |
/// See \ref MaxCardinalitySearchDefaultTraits
|
|
213 |
/// for the documentation of a MaxCardinalitySearch traits class.
|
|
214 |
|
|
215 |
#ifdef DOXYGEN
|
|
216 |
template <typename GR, typename CAP, typename TR>
|
|
217 |
#else
|
|
218 |
template <typename GR, typename CAP =
|
|
219 |
ConstMap<typename GR::Arc, Const<int,1> >,
|
|
220 |
typename TR =
|
|
221 |
MaxCardinalitySearchDefaultTraits<GR, CAP> >
|
|
222 |
#endif
|
|
223 |
class MaxCardinalitySearch {
|
|
224 |
public:
|
|
225 |
|
|
226 |
typedef TR Traits;
|
|
227 |
///The type of the underlying digraph.
|
|
228 |
typedef typename Traits::Digraph Digraph;
|
|
229 |
|
|
230 |
///The type of the capacity of the arcs.
|
|
231 |
typedef typename Traits::CapacityMap::Value Value;
|
|
232 |
///The type of the map that stores the arc capacities.
|
|
233 |
typedef typename Traits::CapacityMap CapacityMap;
|
|
234 |
///The type of the map indicating if a node is processed.
|
|
235 |
typedef typename Traits::ProcessedMap ProcessedMap;
|
|
236 |
///The type of the map that stores the cardinalities of the nodes.
|
|
237 |
typedef typename Traits::CardinalityMap CardinalityMap;
|
|
238 |
///The cross reference type used for the current heap.
|
|
239 |
typedef typename Traits::HeapCrossRef HeapCrossRef;
|
|
240 |
///The heap type used by the algorithm. It maximizes the priorities.
|
|
241 |
typedef typename Traits::Heap Heap;
|
|
242 |
private:
|
|
243 |
// Pointer to the underlying digraph.
|
|
244 |
const Digraph *_graph;
|
|
245 |
// Pointer to the capacity map
|
|
246 |
const CapacityMap *_capacity;
|
|
247 |
// Indicates if \ref _capacity is locally allocated (\c true) or not.
|
|
248 |
bool local_capacity;
|
|
249 |
// Pointer to the map of cardinality.
|
|
250 |
CardinalityMap *_cardinality;
|
|
251 |
// Indicates if \ref _cardinality is locally allocated (\c true) or not.
|
|
252 |
bool local_cardinality;
|
|
253 |
// Pointer to the map of processed status of the nodes.
|
|
254 |
ProcessedMap *_processed;
|
|
255 |
// Indicates if \ref _processed is locally allocated (\c true) or not.
|
|
256 |
bool local_processed;
|
|
257 |
// Pointer to the heap cross references.
|
|
258 |
HeapCrossRef *_heap_cross_ref;
|
|
259 |
// Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
|
|
260 |
bool local_heap_cross_ref;
|
|
261 |
// Pointer to the heap.
|
|
262 |
Heap *_heap;
|
|
263 |
// Indicates if \ref _heap is locally allocated (\c true) or not.
|
|
264 |
bool local_heap;
|
|
265 |
|
|
266 |
public :
|
|
267 |
|
|
268 |
typedef MaxCardinalitySearch Create;
|
|
269 |
|
|
270 |
///\name Named template parameters
|
|
271 |
|
|
272 |
///@{
|
|
273 |
|
|
274 |
template <class T>
|
|
275 |
struct DefCapacityMapTraits : public Traits {
|
|
276 |
typedef T CapacityMap;
|
|
277 |
static CapacityMap *createCapacityMap(const Digraph &) {
|
|
278 |
LEMON_ASSERT(false,"Uninitialized parameter.");
|
|
279 |
return 0;
|
|
280 |
}
|
|
281 |
};
|
|
282 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
283 |
/// CapacityMap type
|
|
284 |
///
|
|
285 |
/// \ref named-templ-param "Named parameter" for setting CapacityMap type
|
|
286 |
/// for the algorithm.
|
|
287 |
template <class T>
|
|
288 |
struct SetCapacityMap
|
|
289 |
: public MaxCardinalitySearch<Digraph, CapacityMap,
|
|
290 |
DefCapacityMapTraits<T> > {
|
|
291 |
typedef MaxCardinalitySearch<Digraph, CapacityMap,
|
|
292 |
DefCapacityMapTraits<T> > Create;
|
|
293 |
};
|
|
294 |
|
|
295 |
template <class T>
|
|
296 |
struct DefCardinalityMapTraits : public Traits {
|
|
297 |
typedef T CardinalityMap;
|
|
298 |
static CardinalityMap *createCardinalityMap(const Digraph &)
|
|
299 |
{
|
|
300 |
LEMON_ASSERT(false,"Uninitialized parameter.");
|
|
301 |
return 0;
|
|
302 |
}
|
|
303 |
};
|
|
304 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
305 |
/// CardinalityMap type
|
|
306 |
///
|
|
307 |
/// \ref named-templ-param "Named parameter" for setting CardinalityMap
|
|
308 |
/// type for the algorithm.
|
|
309 |
template <class T>
|
|
310 |
struct SetCardinalityMap
|
|
311 |
: public MaxCardinalitySearch<Digraph, CapacityMap,
|
|
312 |
DefCardinalityMapTraits<T> > {
|
|
313 |
typedef MaxCardinalitySearch<Digraph, CapacityMap,
|
|
314 |
DefCardinalityMapTraits<T> > Create;
|
|
315 |
};
|
|
316 |
|
|
317 |
template <class T>
|
|
318 |
struct DefProcessedMapTraits : public Traits {
|
|
319 |
typedef T ProcessedMap;
|
|
320 |
static ProcessedMap *createProcessedMap(const Digraph &) {
|
|
321 |
LEMON_ASSERT(false,"Uninitialized parameter.");
|
|
322 |
return 0;
|
|
323 |
}
|
|
324 |
};
|
|
325 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
326 |
/// ProcessedMap type
|
|
327 |
///
|
|
328 |
/// \ref named-templ-param "Named parameter" for setting ProcessedMap type
|
|
329 |
/// for the algorithm.
|
|
330 |
template <class T>
|
|
331 |
struct SetProcessedMap
|
|
332 |
: public MaxCardinalitySearch<Digraph, CapacityMap,
|
|
333 |
DefProcessedMapTraits<T> > {
|
|
334 |
typedef MaxCardinalitySearch<Digraph, CapacityMap,
|
|
335 |
DefProcessedMapTraits<T> > Create;
|
|
336 |
};
|
|
337 |
|
|
338 |
template <class H, class CR>
|
|
339 |
struct DefHeapTraits : public Traits {
|
|
340 |
typedef CR HeapCrossRef;
|
|
341 |
typedef H Heap;
|
|
342 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
|
343 |
LEMON_ASSERT(false,"Uninitialized parameter.");
|
|
344 |
return 0;
|
|
345 |
}
|
|
346 |
static Heap *createHeap(HeapCrossRef &) {
|
|
347 |
LEMON_ASSERT(false,"Uninitialized parameter.");
|
|
348 |
return 0;
|
|
349 |
}
|
|
350 |
};
|
|
351 |
/// \brief \ref named-templ-param "Named parameter" for setting heap
|
|
352 |
/// and cross reference type
|
|
353 |
///
|
|
354 |
/// \ref named-templ-param "Named parameter" for setting heap and cross
|
|
355 |
/// reference type for the algorithm.
|
|
356 |
template <class H, class CR = typename Digraph::template NodeMap<int> >
|
|
357 |
struct SetHeap
|
|
358 |
: public MaxCardinalitySearch<Digraph, CapacityMap,
|
|
359 |
DefHeapTraits<H, CR> > {
|
|
360 |
typedef MaxCardinalitySearch< Digraph, CapacityMap,
|
|
361 |
DefHeapTraits<H, CR> > Create;
|
|
362 |
};
|
|
363 |
|
|
364 |
template <class H, class CR>
|
|
365 |
struct DefStandardHeapTraits : public Traits {
|
|
366 |
typedef CR HeapCrossRef;
|
|
367 |
typedef H Heap;
|
|
368 |
static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) {
|
|
369 |
return new HeapCrossRef(digraph);
|
|
370 |
}
|
|
371 |
static Heap *createHeap(HeapCrossRef &crossref) {
|
|
372 |
return new Heap(crossref);
|
|
373 |
}
|
|
374 |
};
|
|
375 |
|
|
376 |
/// \brief \ref named-templ-param "Named parameter" for setting heap and
|
|
377 |
/// cross reference type with automatic allocation
|
|
378 |
///
|
|
379 |
/// \ref named-templ-param "Named parameter" for setting heap and cross
|
|
380 |
/// reference type. It can allocate the heap and the cross reference
|
|
381 |
/// object if the cross reference's constructor waits for the digraph as
|
|
382 |
/// parameter and the heap's constructor waits for the cross reference.
|
|
383 |
template <class H, class CR = typename Digraph::template NodeMap<int> >
|
|
384 |
struct SetStandardHeap
|
|
385 |
: public MaxCardinalitySearch<Digraph, CapacityMap,
|
|
386 |
DefStandardHeapTraits<H, CR> > {
|
|
387 |
typedef MaxCardinalitySearch<Digraph, CapacityMap,
|
|
388 |
DefStandardHeapTraits<H, CR> >
|
|
389 |
Create;
|
|
390 |
};
|
|
391 |
|
|
392 |
///@}
|
|
393 |
|
|
394 |
|
|
395 |
protected:
|
|
396 |
|
|
397 |
MaxCardinalitySearch() {}
|
|
398 |
|
|
399 |
public:
|
|
400 |
|
|
401 |
/// \brief Constructor.
|
|
402 |
///
|
|
403 |
///\param digraph the digraph the algorithm will run on.
|
|
404 |
///\param capacity the capacity map used by the algorithm.
|
|
405 |
///When no capacity map given, a constant 1 capacity map will
|
|
406 |
///be allocated.
|
|
407 |
#ifdef DOXYGEN
|
|
408 |
MaxCardinalitySearch(const Digraph& digraph,
|
|
409 |
const CapacityMap& capacity=0 ) :
|
|
410 |
#else
|
|
411 |
MaxCardinalitySearch(const Digraph& digraph,
|
|
412 |
const CapacityMap& capacity=*static_cast<const CapacityMap*>(0) ) :
|
|
413 |
#endif
|
|
414 |
_graph(&digraph),
|
|
415 |
_capacity(&capacity), local_capacity(false),
|
|
416 |
_cardinality(0), local_cardinality(false),
|
|
417 |
_processed(0), local_processed(false),
|
|
418 |
_heap_cross_ref(0), local_heap_cross_ref(false),
|
|
419 |
_heap(0), local_heap(false)
|
|
420 |
{ }
|
|
421 |
|
|
422 |
/// \brief Destructor.
|
|
423 |
~MaxCardinalitySearch() {
|
|
424 |
if(local_capacity) delete _capacity;
|
|
425 |
if(local_cardinality) delete _cardinality;
|
|
426 |
if(local_processed) delete _processed;
|
|
427 |
if(local_heap_cross_ref) delete _heap_cross_ref;
|
|
428 |
if(local_heap) delete _heap;
|
|
429 |
}
|
|
430 |
|
|
431 |
/// \brief Sets the capacity map.
|
|
432 |
///
|
|
433 |
/// Sets the capacity map.
|
|
434 |
/// \return <tt> (*this) </tt>
|
|
435 |
MaxCardinalitySearch &capacityMap(const CapacityMap &m) {
|
|
436 |
if (local_capacity) {
|
|
437 |
delete _capacity;
|
|
438 |
local_capacity=false;
|
|
439 |
}
|
|
440 |
_capacity=&m;
|
|
441 |
return *this;
|
|
442 |
}
|
|
443 |
|
|
444 |
/// \brief Returns a const reference to the capacity map.
|
|
445 |
///
|
|
446 |
/// Returns a const reference to the capacity map used by
|
|
447 |
/// the algorithm.
|
|
448 |
const CapacityMap &capacityMap() const {
|
|
449 |
return *_capacity;
|
|
450 |
}
|
|
451 |
|
|
452 |
/// \brief Sets the map storing the cardinalities calculated by the
|
|
453 |
/// algorithm.
|
|
454 |
///
|
|
455 |
/// Sets the map storing the cardinalities calculated by the algorithm.
|
|
456 |
/// If you don't use this function before calling \ref run(),
|
|
457 |
/// it will allocate one. The destuctor deallocates this
|
|
458 |
/// automatically allocated map, of course.
|
|
459 |
/// \return <tt> (*this) </tt>
|
|
460 |
MaxCardinalitySearch &cardinalityMap(CardinalityMap &m) {
|
|
461 |
if(local_cardinality) {
|
|
462 |
delete _cardinality;
|
|
463 |
local_cardinality=false;
|
|
464 |
}
|
|
465 |
_cardinality = &m;
|
|
466 |
return *this;
|
|
467 |
}
|
|
468 |
|
|
469 |
/// \brief Sets the map storing the processed nodes.
|
|
470 |
///
|
|
471 |
/// Sets the map storing the processed nodes.
|
|
472 |
/// If you don't use this function before calling \ref run(),
|
|
473 |
/// it will allocate one. The destuctor deallocates this
|
|
474 |
/// automatically allocated map, of course.
|
|
475 |
/// \return <tt> (*this) </tt>
|
|
476 |
MaxCardinalitySearch &processedMap(ProcessedMap &m)
|
|
477 |
{
|
|
478 |
if(local_processed) {
|
|
479 |
delete _processed;
|
|
480 |
local_processed=false;
|
|
481 |
}
|
|
482 |
_processed = &m;
|
|
483 |
return *this;
|
|
484 |
}
|
|
485 |
|
|
486 |
/// \brief Returns a const reference to the cardinality map.
|
|
487 |
///
|
|
488 |
/// Returns a const reference to the cardinality map used by
|
|
489 |
/// the algorithm.
|
|
490 |
const ProcessedMap &processedMap() const {
|
|
491 |
return *_processed;
|
|
492 |
}
|
|
493 |
|
|
494 |
/// \brief Sets the heap and the cross reference used by algorithm.
|
|
495 |
///
|
|
496 |
/// Sets the heap and the cross reference used by algorithm.
|
|
497 |
/// If you don't use this function before calling \ref run(),
|
|
498 |
/// it will allocate one. The destuctor deallocates this
|
|
499 |
/// automatically allocated map, of course.
|
|
500 |
/// \return <tt> (*this) </tt>
|
|
501 |
MaxCardinalitySearch &heap(Heap& hp, HeapCrossRef &cr) {
|
|
502 |
if(local_heap_cross_ref) {
|
|
503 |
delete _heap_cross_ref;
|
|
504 |
local_heap_cross_ref = false;
|
|
505 |
}
|
|
506 |
_heap_cross_ref = &cr;
|
|
507 |
if(local_heap) {
|
|
508 |
delete _heap;
|
|
509 |
local_heap = false;
|
|
510 |
}
|
|
511 |
_heap = &hp;
|
|
512 |
return *this;
|
|
513 |
}
|
|
514 |
|
|
515 |
/// \brief Returns a const reference to the heap.
|
|
516 |
///
|
|
517 |
/// Returns a const reference to the heap used by
|
|
518 |
/// the algorithm.
|
|
519 |
const Heap &heap() const {
|
|
520 |
return *_heap;
|
|
521 |
}
|
|
522 |
|
|
523 |
/// \brief Returns a const reference to the cross reference.
|
|
524 |
///
|
|
525 |
/// Returns a const reference to the cross reference
|
|
526 |
/// of the heap.
|
|
527 |
const HeapCrossRef &heapCrossRef() const {
|
|
528 |
return *_heap_cross_ref;
|
|
529 |
}
|
|
530 |
|
|
531 |
private:
|
|
532 |
|
|
533 |
typedef typename Digraph::Node Node;
|
|
534 |
typedef typename Digraph::NodeIt NodeIt;
|
|
535 |
typedef typename Digraph::Arc Arc;
|
|
536 |
typedef typename Digraph::InArcIt InArcIt;
|
|
537 |
|
|
538 |
void create_maps() {
|
|
539 |
if(!_capacity) {
|
|
540 |
local_capacity = true;
|
|
541 |
_capacity = Traits::createCapacityMap(*_graph);
|
|
542 |
}
|
|
543 |
if(!_cardinality) {
|
|
544 |
local_cardinality = true;
|
|
545 |
_cardinality = Traits::createCardinalityMap(*_graph);
|
|
546 |
}
|
|
547 |
if(!_processed) {
|
|
548 |
local_processed = true;
|
|
549 |
_processed = Traits::createProcessedMap(*_graph);
|
|
550 |
}
|
|
551 |
if (!_heap_cross_ref) {
|
|
552 |
local_heap_cross_ref = true;
|
|
553 |
_heap_cross_ref = Traits::createHeapCrossRef(*_graph);
|
|
554 |
}
|
|
555 |
if (!_heap) {
|
|
556 |
local_heap = true;
|
|
557 |
_heap = Traits::createHeap(*_heap_cross_ref);
|
|
558 |
}
|
|
559 |
}
|
|
560 |
|
|
561 |
void finalizeNodeData(Node node, Value capacity) {
|
|
562 |
_processed->set(node, true);
|
|
563 |
_cardinality->set(node, capacity);
|
|
564 |
}
|
|
565 |
|
|
566 |
public:
|
|
567 |
/// \name Execution control
|
|
568 |
/// The simplest way to execute the algorithm is to use
|
|
569 |
/// one of the member functions called \ref run().
|
|
570 |
/// \n
|
|
571 |
/// If you need more control on the execution,
|
|
572 |
/// first you must call \ref init(), then you can add several source nodes
|
|
573 |
/// with \ref addSource().
|
|
574 |
/// Finally \ref start() will perform the computation.
|
|
575 |
|
|
576 |
///@{
|
|
577 |
|
|
578 |
/// \brief Initializes the internal data structures.
|
|
579 |
///
|
|
580 |
/// Initializes the internal data structures, and clears the heap.
|
|
581 |
void init() {
|
|
582 |
create_maps();
|
|
583 |
_heap->clear();
|
|
584 |
for (NodeIt it(*_graph) ; it != INVALID ; ++it) {
|
|
585 |
_processed->set(it, false);
|
|
586 |
_heap_cross_ref->set(it, Heap::PRE_HEAP);
|
|
587 |
}
|
|
588 |
}
|
|
589 |
|
|
590 |
/// \brief Adds a new source node.
|
|
591 |
///
|
|
592 |
/// Adds a new source node to the priority heap.
|
|
593 |
///
|
|
594 |
/// It checks if the node has not yet been added to the heap.
|
|
595 |
void addSource(Node source, Value capacity = 0) {
|
|
596 |
if(_heap->state(source) == Heap::PRE_HEAP) {
|
|
597 |
_heap->push(source, capacity);
|
|
598 |
}
|
|
599 |
}
|
|
600 |
|
|
601 |
/// \brief Processes the next node in the priority heap
|
|
602 |
///
|
|
603 |
/// Processes the next node in the priority heap.
|
|
604 |
///
|
|
605 |
/// \return The processed node.
|
|
606 |
///
|
|
607 |
/// \warning The priority heap must not be empty!
|
|
608 |
Node processNextNode() {
|
|
609 |
Node node = _heap->top();
|
|
610 |
finalizeNodeData(node, _heap->prio());
|
|
611 |
_heap->pop();
|
|
612 |
|
|
613 |
for (InArcIt it(*_graph, node); it != INVALID; ++it) {
|
|
614 |
Node source = _graph->source(it);
|
|
615 |
switch (_heap->state(source)) {
|
|
616 |
case Heap::PRE_HEAP:
|
|
617 |
_heap->push(source, (*_capacity)[it]);
|
|
618 |
break;
|
|
619 |
case Heap::IN_HEAP:
|
|
620 |
_heap->decrease(source, (*_heap)[source] + (*_capacity)[it]);
|
|
621 |
break;
|
|
622 |
case Heap::POST_HEAP:
|
|
623 |
break;
|
|
624 |
}
|
|
625 |
}
|
|
626 |
return node;
|
|
627 |
}
|
|
628 |
|
|
629 |
/// \brief Next node to be processed.
|
|
630 |
///
|
|
631 |
/// Next node to be processed.
|
|
632 |
///
|
|
633 |
/// \return The next node to be processed or INVALID if the
|
|
634 |
/// priority heap is empty.
|
|
635 |
Node nextNode() {
|
|
636 |
return !_heap->empty() ? _heap->top() : INVALID;
|
|
637 |
}
|
|
638 |
|
|
639 |
/// \brief Returns \c false if there are nodes
|
|
640 |
/// to be processed in the priority heap
|
|
641 |
///
|
|
642 |
/// Returns \c false if there are nodes
|
|
643 |
/// to be processed in the priority heap
|
|
644 |
bool emptyQueue() { return _heap->empty(); }
|
|
645 |
/// \brief Returns the number of the nodes to be processed
|
|
646 |
/// in the priority heap
|
|
647 |
///
|
|
648 |
/// Returns the number of the nodes to be processed in the priority heap
|
|
649 |
int emptySize() { return _heap->size(); }
|
|
650 |
|
|
651 |
/// \brief Executes the algorithm.
|
|
652 |
///
|
|
653 |
/// Executes the algorithm.
|
|
654 |
///
|
|
655 |
///\pre init() must be called and at least one node should be added
|
|
656 |
/// with addSource() before using this function.
|
|
657 |
///
|
|
658 |
/// This method runs the Maximum Cardinality Search algorithm from the
|
|
659 |
/// source node(s).
|
|
660 |
void start() {
|
|
661 |
while ( !_heap->empty() ) processNextNode();
|
|
662 |
}
|
|
663 |
|
|
664 |
/// \brief Executes the algorithm until \c dest is reached.
|
|
665 |
///
|
|
666 |
/// Executes the algorithm until \c dest is reached.
|
|
667 |
///
|
|
668 |
/// \pre init() must be called and at least one node should be added
|
|
669 |
/// with addSource() before using this function.
|
|
670 |
///
|
|
671 |
/// This method runs the %MaxCardinalitySearch algorithm from the source
|
|
672 |
/// nodes.
|
|
673 |
void start(Node dest) {
|
|
674 |
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
|
|
675 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(), _heap->prio());
|
|
676 |
}
|
|
677 |
|
|
678 |
/// \brief Executes the algorithm until a condition is met.
|
|
679 |
///
|
|
680 |
/// Executes the algorithm until a condition is met.
|
|
681 |
///
|
|
682 |
/// \pre init() must be called and at least one node should be added
|
|
683 |
/// with addSource() before using this function.
|
|
684 |
///
|
|
685 |
/// \param nm must be a bool (or convertible) node map. The algorithm
|
|
686 |
/// will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
|
|
687 |
template <typename NodeBoolMap>
|
|
688 |
void start(const NodeBoolMap &nm) {
|
|
689 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
|
|
690 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
|
|
691 |
}
|
|
692 |
|
|
693 |
/// \brief Runs the maximum cardinality search algorithm from node \c s.
|
|
694 |
///
|
|
695 |
/// This method runs the %MaxCardinalitySearch algorithm from a root
|
|
696 |
/// node \c s.
|
|
697 |
///
|
|
698 |
///\note d.run(s) is just a shortcut of the following code.
|
|
699 |
///\code
|
|
700 |
/// d.init();
|
|
701 |
/// d.addSource(s);
|
|
702 |
/// d.start();
|
|
703 |
///\endcode
|
|
704 |
void run(Node s) {
|
|
705 |
init();
|
|
706 |
addSource(s);
|
|
707 |
start();
|
|
708 |
}
|
|
709 |
|
|
710 |
/// \brief Runs the maximum cardinality search algorithm for the
|
|
711 |
/// whole digraph.
|
|
712 |
///
|
|
713 |
/// This method runs the %MaxCardinalitySearch algorithm from all
|
|
714 |
/// unprocessed node of the digraph.
|
|
715 |
///
|
|
716 |
///\note d.run(s) is just a shortcut of the following code.
|
|
717 |
///\code
|
|
718 |
/// d.init();
|
|
719 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
720 |
/// if (!d.reached(it)) {
|
|
721 |
/// d.addSource(s);
|
|
722 |
/// d.start();
|
|
723 |
/// }
|
|
724 |
/// }
|
|
725 |
///\endcode
|
|
726 |
void run() {
|
|
727 |
init();
|
|
728 |
for (NodeIt it(*_graph); it != INVALID; ++it) {
|
|
729 |
if (!reached(it)) {
|
|
730 |
addSource(it);
|
|
731 |
start();
|
|
732 |
}
|
|
733 |
}
|
|
734 |
}
|
|
735 |
|
|
736 |
///@}
|
|
737 |
|
|
738 |
/// \name Query Functions
|
|
739 |
/// The results of the maximum cardinality search algorithm can be
|
|
740 |
/// obtained using these functions.
|
|
741 |
/// \n
|
|
742 |
/// Before the use of these functions, either run() or start() must be
|
|
743 |
/// called.
|
|
744 |
|
|
745 |
///@{
|
|
746 |
|
|
747 |
/// \brief The cardinality of a node.
|
|
748 |
///
|
|
749 |
/// Returns the cardinality of a node.
|
|
750 |
/// \pre \ref run() must be called before using this function.
|
|
751 |
/// \warning If node \c v in unreachable from the root the return value
|
|
752 |
/// of this funcion is undefined.
|
|
753 |
Value cardinality(Node node) const { return (*_cardinality)[node]; }
|
|
754 |
|
|
755 |
/// \brief The current cardinality of a node.
|
|
756 |
///
|
|
757 |
/// Returns the current cardinality of a node.
|
|
758 |
/// \pre the given node should be reached but not processed
|
|
759 |
Value currentCardinality(Node node) const { return (*_heap)[node]; }
|
|
760 |
|
|
761 |
/// \brief Returns a reference to the NodeMap of cardinalities.
|
|
762 |
///
|
|
763 |
/// Returns a reference to the NodeMap of cardinalities. \pre \ref run()
|
|
764 |
/// must be called before using this function.
|
|
765 |
const CardinalityMap &cardinalityMap() const { return *_cardinality;}
|
|
766 |
|
|
767 |
/// \brief Checks if a node is reachable from the root.
|
|
768 |
///
|
|
769 |
/// Returns \c true if \c v is reachable from the root.
|
|
770 |
/// \warning The source nodes are initated as unreached.
|
|
771 |
/// \pre \ref run() must be called before using this function.
|
|
772 |
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
|
|
773 |
|
|
774 |
/// \brief Checks if a node is processed.
|
|
775 |
///
|
|
776 |
/// Returns \c true if \c v is processed, i.e. the shortest
|
|
777 |
/// path to \c v has already found.
|
|
778 |
/// \pre \ref run() must be called before using this function.
|
|
779 |
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
|
|
780 |
|
|
781 |
///@}
|
|
782 |
};
|
|
783 |
|
|
784 |
}
|
|
785 |
|
|
786 |
#endif
|