1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KARY_HEAP_H |
20 | 20 |
#define LEMON_KARY_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 | 24 |
///\brief Fourary heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 | 34 |
///\brief K-ary heap data structure. |
35 | 35 |
/// |
36 | 36 |
/// This class implements the \e K-ary \e heap data structure. |
37 | 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
38 | 38 |
/// |
39 | 39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
40 | 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
41 | 41 |
/// \c K children, instead of two. |
42 | 42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
43 | 43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
44 | 44 |
/// |
45 | 45 |
/// \tparam PR Type of the priorities of the items. |
46 | 46 |
/// \tparam IM A read-writable item map with \c int values, used |
47 | 47 |
/// internally to handle the cross references. |
48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
49 |
/// children. The default is 16. Powers of two are suggested to use |
|
50 |
/// so that the multiplications and divisions needed to traverse the |
|
51 |
/// nodes of the heap could be performed faster. |
|
48 | 52 |
/// \tparam CMP A functor class for comparing the priorities. |
49 | 53 |
/// The default is \c std::less<PR>. |
50 | 54 |
/// |
51 | 55 |
///\sa BinHeap |
52 | 56 |
///\sa FouraryHeap |
53 | 57 |
#ifdef DOXYGEN |
54 |
template <typename PR, typename IM, typename CMP> |
|
58 |
template <typename PR, typename IM, int K, typename CMP> |
|
55 | 59 |
#else |
56 |
template <typename PR, typename IM, |
|
60 |
template <typename PR, typename IM, int K = 16, |
|
61 |
typename CMP = std::less<PR> > |
|
57 | 62 |
#endif |
58 | 63 |
class KaryHeap { |
59 | 64 |
public: |
60 | 65 |
/// Type of the item-int map. |
61 | 66 |
typedef IM ItemIntMap; |
62 | 67 |
/// Type of the priorities. |
63 | 68 |
typedef PR Prio; |
64 | 69 |
/// Type of the items stored in the heap. |
65 | 70 |
typedef typename ItemIntMap::Key Item; |
66 | 71 |
/// Type of the item-priority pairs. |
67 | 72 |
typedef std::pair<Item,Prio> Pair; |
68 | 73 |
/// Functor type for comparing the priorities. |
69 | 74 |
typedef CMP Compare; |
70 | 75 |
|
71 | 76 |
/// \brief Type to represent the states of the items. |
72 | 77 |
/// |
73 | 78 |
/// Each item has a state associated to it. It can be "in heap", |
74 | 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
75 | 80 |
/// heap's point of view, but may be useful to the user. |
76 | 81 |
/// |
77 | 82 |
/// The item-int map must be initialized in such way that it assigns |
78 | 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
79 | 84 |
enum State { |
80 | 85 |
IN_HEAP = 0, ///< = 0. |
81 | 86 |
PRE_HEAP = -1, ///< = -1. |
82 | 87 |
POST_HEAP = -2 ///< = -2. |
83 | 88 |
}; |
84 | 89 |
|
85 | 90 |
private: |
86 | 91 |
std::vector<Pair> _data; |
87 | 92 |
Compare _comp; |
88 | 93 |
ItemIntMap &_iim; |
89 |
int _K; |
|
90 | 94 |
|
91 | 95 |
public: |
92 | 96 |
/// \brief Constructor. |
93 | 97 |
/// |
94 | 98 |
/// Constructor. |
95 | 99 |
/// \param map A map that assigns \c int values to the items. |
96 | 100 |
/// It is used internally to handle the cross references. |
97 | 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
98 |
explicit KaryHeap(ItemIntMap &map |
|
102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {} |
|
99 | 103 |
|
100 | 104 |
/// \brief Constructor. |
101 | 105 |
/// |
102 | 106 |
/// Constructor. |
103 | 107 |
/// \param map A map that assigns \c int values to the items. |
104 | 108 |
/// It is used internally to handle the cross references. |
105 | 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
106 | 110 |
/// \param comp The function object used for comparing the priorities. |
107 |
KaryHeap(ItemIntMap &map, const Compare &comp, int K=32) |
|
108 |
: _iim(map), _comp(comp), _K(K) {} |
|
111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
112 |
: _iim(map), _comp(comp) {} |
|
109 | 113 |
|
110 | 114 |
/// \brief The number of items stored in the heap. |
111 | 115 |
/// |
112 | 116 |
/// This function returns the number of items stored in the heap. |
113 | 117 |
int size() const { return _data.size(); } |
114 | 118 |
|
115 | 119 |
/// \brief Check if the heap is empty. |
116 | 120 |
/// |
117 | 121 |
/// This function returns \c true if the heap is empty. |
118 | 122 |
bool empty() const { return _data.empty(); } |
119 | 123 |
|
120 | 124 |
/// \brief Make the heap empty. |
121 | 125 |
/// |
122 | 126 |
/// This functon makes the heap empty. |
123 | 127 |
/// It does not change the cross reference map. If you want to reuse |
124 | 128 |
/// a heap that is not surely empty, you should first clear it and |
125 | 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
126 | 130 |
/// for each item. |
127 | 131 |
void clear() { _data.clear(); } |
128 | 132 |
|
129 | 133 |
private: |
130 |
int parent(int i) { return (i-1)/_K; } |
|
131 |
int firstChild(int i) { return _K*i+1; } |
|
134 |
int parent(int i) { return (i-1)/K; } |
|
135 |
int firstChild(int i) { return K*i+1; } |
|
132 | 136 |
|
133 | 137 |
bool less(const Pair &p1, const Pair &p2) const { |
134 | 138 |
return _comp(p1.second, p2.second); |
135 | 139 |
} |
136 | 140 |
|
137 | 141 |
int findMin(const int child, const int length) { |
138 | 142 |
int min=child, i=1; |
139 |
while( i< |
|
143 |
while( i<K && child+i<length ) { |
|
140 | 144 |
if( less(_data[child+i], _data[min]) ) |
141 | 145 |
min=child+i; |
142 | 146 |
++i; |
143 | 147 |
} |
144 | 148 |
return min; |
145 | 149 |
} |
146 | 150 |
|
147 | 151 |
void bubbleUp(int hole, Pair p) { |
148 | 152 |
int par = parent(hole); |
149 | 153 |
while( hole>0 && less(p,_data[par]) ) { |
150 | 154 |
move(_data[par],hole); |
151 | 155 |
hole = par; |
152 | 156 |
par = parent(hole); |
153 | 157 |
} |
154 | 158 |
move(p, hole); |
155 | 159 |
} |
156 | 160 |
|
157 | 161 |
void bubbleDown(int hole, Pair p, int length) { |
158 | 162 |
if( length>1 ) { |
159 | 163 |
int child = firstChild(hole); |
160 | 164 |
while( child<length ) { |
161 | 165 |
child = findMin(child, length); |
162 | 166 |
if( !less(_data[child], p) ) |
163 | 167 |
goto ok; |
164 | 168 |
move(_data[child], hole); |
165 | 169 |
hole = child; |
166 | 170 |
child = firstChild(hole); |
167 | 171 |
} |
168 | 172 |
} |
169 | 173 |
ok: |
170 | 174 |
move(p, hole); |
171 | 175 |
} |
172 | 176 |
|
173 | 177 |
void move(const Pair &p, int i) { |
174 | 178 |
_data[i] = p; |
175 | 179 |
_iim.set(p.first, i); |
176 | 180 |
} |
177 | 181 |
|
178 | 182 |
public: |
179 | 183 |
/// \brief Insert a pair of item and priority into the heap. |
180 | 184 |
/// |
181 | 185 |
/// This function inserts \c p.first to the heap with priority |
182 | 186 |
/// \c p.second. |
183 | 187 |
/// \param p The pair to insert. |
184 | 188 |
/// \pre \c p.first must not be stored in the heap. |
185 | 189 |
void push(const Pair &p) { |
186 | 190 |
int n = _data.size(); |
187 | 191 |
_data.resize(n+1); |
188 | 192 |
bubbleUp(n, p); |
189 | 193 |
} |
190 | 194 |
|
191 | 195 |
/// \brief Insert an item into the heap with the given priority. |
192 | 196 |
/// |
193 | 197 |
/// This function inserts the given item into the heap with the |
194 | 198 |
/// given priority. |
195 | 199 |
/// \param i The item to insert. |
196 | 200 |
/// \param p The priority of the item. |
197 | 201 |
/// \pre \e i must not be stored in the heap. |
198 | 202 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
199 | 203 |
|
200 | 204 |
/// \brief Return the item having minimum priority. |
201 | 205 |
/// |
202 | 206 |
/// This function returns the item having minimum priority. |
203 | 207 |
/// \pre The heap must be non-empty. |
204 | 208 |
Item top() const { return _data[0].first; } |
205 | 209 |
|
206 | 210 |
/// \brief The minimum priority. |
207 | 211 |
/// |
208 | 212 |
/// This function returns the minimum priority. |
209 | 213 |
/// \pre The heap must be non-empty. |
210 | 214 |
Prio prio() const { return _data[0].second; } |
211 | 215 |
|
212 | 216 |
/// \brief Remove the item having minimum priority. |
213 | 217 |
/// |
214 | 218 |
/// This function removes the item having minimum priority. |
215 | 219 |
/// \pre The heap must be non-empty. |
216 | 220 |
void pop() { |
217 | 221 |
int n = _data.size()-1; |
218 | 222 |
_iim.set(_data[0].first, POST_HEAP); |
219 | 223 |
if (n>0) bubbleDown(0, _data[n], n); |
220 | 224 |
_data.pop_back(); |
221 | 225 |
} |
222 | 226 |
|
223 | 227 |
/// \brief Remove the given item from the heap. |
224 | 228 |
/// |
225 | 229 |
/// This function removes the given item from the heap if it is |
226 | 230 |
/// already stored. |
227 | 231 |
/// \param i The item to delete. |
228 | 232 |
/// \pre \e i must be in the heap. |
229 | 233 |
void erase(const Item &i) { |
230 | 234 |
int h = _iim[i]; |
231 | 235 |
int n = _data.size()-1; |
232 | 236 |
_iim.set(_data[h].first, POST_HEAP); |
233 | 237 |
if( h<n ) { |
234 | 238 |
if( less(_data[parent(h)], _data[n]) ) |
235 | 239 |
bubbleDown(h, _data[n], n); |
0 comments (0 inline)