0
3
0
| ... | ... |
@@ -35,105 +35,105 @@ |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 |
/// \brief The type of the flow values. |
|
| 68 |
typedef typename SupplyMap::Value Flow; |
|
| 67 |
/// \brief The type of the flow and supply values. |
|
| 68 |
typedef typename SupplyMap::Value Value; |
|
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
typedef typename Digraph::template ArcMap< |
|
| 75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 76 | 76 |
|
| 77 | 77 |
/// \brief Instantiates a FlowMap. |
| 78 | 78 |
/// |
| 79 | 79 |
/// This function instantiates a \ref FlowMap. |
| 80 | 80 |
/// \param digraph The digraph for which we would like to define |
| 81 | 81 |
/// the flow map. |
| 82 | 82 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 83 | 83 |
return new FlowMap(digraph); |
| 84 | 84 |
} |
| 85 | 85 |
|
| 86 | 86 |
/// \brief The elevator type used by the algorithm. |
| 87 | 87 |
/// |
| 88 | 88 |
/// The elevator type used by the algorithm. |
| 89 | 89 |
/// |
| 90 | 90 |
/// \sa Elevator |
| 91 | 91 |
/// \sa LinkedElevator |
| 92 | 92 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 93 | 93 |
|
| 94 | 94 |
/// \brief Instantiates an Elevator. |
| 95 | 95 |
/// |
| 96 | 96 |
/// This function instantiates an \ref Elevator. |
| 97 | 97 |
/// \param digraph The digraph for which we would like to define |
| 98 | 98 |
/// the elevator. |
| 99 | 99 |
/// \param max_level The maximum level of the elevator. |
| 100 | 100 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 101 | 101 |
return new Elevator(digraph, max_level); |
| 102 | 102 |
} |
| 103 | 103 |
|
| 104 | 104 |
/// \brief The tolerance used by the algorithm |
| 105 | 105 |
/// |
| 106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 107 |
typedef lemon::Tolerance< |
|
| 107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 108 | 108 |
|
| 109 | 109 |
}; |
| 110 | 110 |
|
| 111 | 111 |
/** |
| 112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
| 113 | 113 |
|
| 114 | 114 |
\ingroup max_flow |
| 115 | 115 |
This class implements a push-relabel algorithm for the \e network |
| 116 | 116 |
\e circulation problem. |
| 117 | 117 |
It is to find a feasible circulation when lower and upper bounds |
| 118 | 118 |
are given for the flow values on the arcs and lower bounds are |
| 119 | 119 |
given for the difference between the outgoing and incoming flow |
| 120 | 120 |
at the nodes. |
| 121 | 121 |
|
| 122 | 122 |
The exact formulation of this problem is the following. |
| 123 | 123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 124 | 124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 125 | 125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 126 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 127 | 127 |
denotes the signed supply values of the nodes. |
| 128 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 129 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 130 | 130 |
\f$-sup(u)\f$ demand. |
| 131 | 131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 132 | 132 |
solution of the following problem. |
| 133 | 133 |
|
| 134 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 135 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
| 136 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 137 | 137 |
|
| 138 | 138 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 139 | 139 |
zero or negative in order to have a feasible solution (since the sum |
| ... | ... |
@@ -158,99 +158,99 @@ |
| 158 | 158 |
|
| 159 | 159 |
Note that this algorithm also provides a feasible solution for the |
| 160 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
| 161 | 161 |
|
| 162 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
| 163 | 163 |
\tparam LM The type of the lower bound map. The default |
| 164 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 165 | 165 |
\tparam UM The type of the upper bound (capacity) map. |
| 166 | 166 |
The default map type is \c LM. |
| 167 | 167 |
\tparam SM The type of the supply map. The default map type is |
| 168 | 168 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 169 | 169 |
*/ |
| 170 | 170 |
#ifdef DOXYGEN |
| 171 | 171 |
template< typename GR, |
| 172 | 172 |
typename LM, |
| 173 | 173 |
typename UM, |
| 174 | 174 |
typename SM, |
| 175 | 175 |
typename TR > |
| 176 | 176 |
#else |
| 177 | 177 |
template< typename GR, |
| 178 | 178 |
typename LM = typename GR::template ArcMap<int>, |
| 179 | 179 |
typename UM = LM, |
| 180 | 180 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 181 | 181 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 182 | 182 |
#endif |
| 183 | 183 |
class Circulation {
|
| 184 | 184 |
public: |
| 185 | 185 |
|
| 186 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 187 | 187 |
typedef TR Traits; |
| 188 | 188 |
///The type of the digraph the algorithm runs on. |
| 189 | 189 |
typedef typename Traits::Digraph Digraph; |
| 190 |
///The type of the flow values. |
|
| 191 |
typedef typename Traits::Flow Flow; |
|
| 190 |
///The type of the flow and supply values. |
|
| 191 |
typedef typename Traits::Value Value; |
|
| 192 | 192 |
|
| 193 | 193 |
///The type of the lower bound map. |
| 194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
| 195 | 195 |
///The type of the upper bound (capacity) map. |
| 196 | 196 |
typedef typename Traits::UpperMap UpperMap; |
| 197 | 197 |
///The type of the supply map. |
| 198 | 198 |
typedef typename Traits::SupplyMap SupplyMap; |
| 199 | 199 |
///The type of the flow map. |
| 200 | 200 |
typedef typename Traits::FlowMap FlowMap; |
| 201 | 201 |
|
| 202 | 202 |
///The type of the elevator. |
| 203 | 203 |
typedef typename Traits::Elevator Elevator; |
| 204 | 204 |
///The type of the tolerance. |
| 205 | 205 |
typedef typename Traits::Tolerance Tolerance; |
| 206 | 206 |
|
| 207 | 207 |
private: |
| 208 | 208 |
|
| 209 | 209 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 210 | 210 |
|
| 211 | 211 |
const Digraph &_g; |
| 212 | 212 |
int _node_num; |
| 213 | 213 |
|
| 214 | 214 |
const LowerMap *_lo; |
| 215 | 215 |
const UpperMap *_up; |
| 216 | 216 |
const SupplyMap *_supply; |
| 217 | 217 |
|
| 218 | 218 |
FlowMap *_flow; |
| 219 | 219 |
bool _local_flow; |
| 220 | 220 |
|
| 221 | 221 |
Elevator* _level; |
| 222 | 222 |
bool _local_level; |
| 223 | 223 |
|
| 224 |
typedef typename Digraph::template NodeMap< |
|
| 224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 225 | 225 |
ExcessMap* _excess; |
| 226 | 226 |
|
| 227 | 227 |
Tolerance _tol; |
| 228 | 228 |
int _el; |
| 229 | 229 |
|
| 230 | 230 |
public: |
| 231 | 231 |
|
| 232 | 232 |
typedef Circulation Create; |
| 233 | 233 |
|
| 234 | 234 |
///\name Named Template Parameters |
| 235 | 235 |
|
| 236 | 236 |
///@{
|
| 237 | 237 |
|
| 238 | 238 |
template <typename T> |
| 239 | 239 |
struct SetFlowMapTraits : public Traits {
|
| 240 | 240 |
typedef T FlowMap; |
| 241 | 241 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 242 | 242 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 243 | 243 |
return 0; // ignore warnings |
| 244 | 244 |
} |
| 245 | 245 |
}; |
| 246 | 246 |
|
| 247 | 247 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 248 | 248 |
/// FlowMap type |
| 249 | 249 |
/// |
| 250 | 250 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 251 | 251 |
/// type. |
| 252 | 252 |
template <typename T> |
| 253 | 253 |
struct SetFlowMap |
| 254 | 254 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 255 | 255 |
SetFlowMapTraits<T> > {
|
| 256 | 256 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| ... | ... |
@@ -501,126 +501,126 @@ |
| 501 | 501 |
_level->initAddItem(n); |
| 502 | 502 |
_level->initFinish(); |
| 503 | 503 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 504 | 504 |
if(_tol.positive((*_excess)[n])) |
| 505 | 505 |
_level->activate(n); |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
/// Initializes the internal data structures using a greedy approach. |
| 509 | 509 |
|
| 510 | 510 |
/// Initializes the internal data structures using a greedy approach |
| 511 | 511 |
/// to construct the initial solution. |
| 512 | 512 |
void greedyInit() |
| 513 | 513 |
{
|
| 514 | 514 |
LEMON_DEBUG(checkBoundMaps(), |
| 515 | 515 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 516 | 516 |
|
| 517 | 517 |
createStructures(); |
| 518 | 518 |
|
| 519 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 520 | 520 |
(*_excess)[n] = (*_supply)[n]; |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 524 | 524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 525 | 525 |
_flow->set(e, (*_up)[e]); |
| 526 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 527 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 528 | 528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 529 | 529 |
_flow->set(e, (*_lo)[e]); |
| 530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 532 | 532 |
} else {
|
| 533 |
|
|
| 533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
| 534 | 534 |
_flow->set(e, fc); |
| 535 | 535 |
(*_excess)[_g.target(e)] = 0; |
| 536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
| 537 | 537 |
} |
| 538 | 538 |
} |
| 539 | 539 |
|
| 540 | 540 |
_level->initStart(); |
| 541 | 541 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 542 | 542 |
_level->initAddItem(n); |
| 543 | 543 |
_level->initFinish(); |
| 544 | 544 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 545 | 545 |
if(_tol.positive((*_excess)[n])) |
| 546 | 546 |
_level->activate(n); |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
///Executes the algorithm |
| 550 | 550 |
|
| 551 | 551 |
///This function executes the algorithm. |
| 552 | 552 |
/// |
| 553 | 553 |
///\return \c true if a feasible circulation is found. |
| 554 | 554 |
/// |
| 555 | 555 |
///\sa barrier() |
| 556 | 556 |
///\sa barrierMap() |
| 557 | 557 |
bool start() |
| 558 | 558 |
{
|
| 559 | 559 |
|
| 560 | 560 |
Node act; |
| 561 | 561 |
Node bact=INVALID; |
| 562 | 562 |
Node last_activated=INVALID; |
| 563 | 563 |
while((act=_level->highestActive())!=INVALID) {
|
| 564 | 564 |
int actlevel=(*_level)[act]; |
| 565 | 565 |
int mlevel=_node_num; |
| 566 |
|
|
| 566 |
Value exc=(*_excess)[act]; |
|
| 567 | 567 |
|
| 568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 569 | 569 |
Node v = _g.target(e); |
| 570 |
|
|
| 570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
| 571 | 571 |
if(!_tol.positive(fc)) continue; |
| 572 | 572 |
if((*_level)[v]<actlevel) {
|
| 573 | 573 |
if(!_tol.less(fc, exc)) {
|
| 574 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
| 575 | 575 |
(*_excess)[v] += exc; |
| 576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 577 | 577 |
_level->activate(v); |
| 578 | 578 |
(*_excess)[act] = 0; |
| 579 | 579 |
_level->deactivate(act); |
| 580 | 580 |
goto next_l; |
| 581 | 581 |
} |
| 582 | 582 |
else {
|
| 583 | 583 |
_flow->set(e, (*_up)[e]); |
| 584 | 584 |
(*_excess)[v] += fc; |
| 585 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 586 | 586 |
_level->activate(v); |
| 587 | 587 |
exc-=fc; |
| 588 | 588 |
} |
| 589 | 589 |
} |
| 590 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 591 | 591 |
} |
| 592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 593 | 593 |
Node v = _g.source(e); |
| 594 |
|
|
| 594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
| 595 | 595 |
if(!_tol.positive(fc)) continue; |
| 596 | 596 |
if((*_level)[v]<actlevel) {
|
| 597 | 597 |
if(!_tol.less(fc, exc)) {
|
| 598 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
| 599 | 599 |
(*_excess)[v] += exc; |
| 600 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 601 | 601 |
_level->activate(v); |
| 602 | 602 |
(*_excess)[act] = 0; |
| 603 | 603 |
_level->deactivate(act); |
| 604 | 604 |
goto next_l; |
| 605 | 605 |
} |
| 606 | 606 |
else {
|
| 607 | 607 |
_flow->set(e, (*_lo)[e]); |
| 608 | 608 |
(*_excess)[v] += fc; |
| 609 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 610 | 610 |
_level->activate(v); |
| 611 | 611 |
exc-=fc; |
| 612 | 612 |
} |
| 613 | 613 |
} |
| 614 | 614 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 615 | 615 |
} |
| 616 | 616 |
|
| 617 | 617 |
(*_excess)[act] = exc; |
| 618 | 618 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 619 | 619 |
else if(mlevel==_node_num) {
|
| 620 | 620 |
_level->liftHighestActiveToTop(); |
| 621 | 621 |
_el = _node_num; |
| 622 | 622 |
return false; |
| 623 | 623 |
} |
| 624 | 624 |
else {
|
| 625 | 625 |
_level->liftHighestActive(mlevel+1); |
| 626 | 626 |
if(_level->onLevel(actlevel)==0) {
|
| ... | ... |
@@ -632,71 +632,71 @@ |
| 632 | 632 |
; |
| 633 | 633 |
} |
| 634 | 634 |
return true; |
| 635 | 635 |
} |
| 636 | 636 |
|
| 637 | 637 |
/// Runs the algorithm. |
| 638 | 638 |
|
| 639 | 639 |
/// This function runs the algorithm. |
| 640 | 640 |
/// |
| 641 | 641 |
/// \return \c true if a feasible circulation is found. |
| 642 | 642 |
/// |
| 643 | 643 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 644 | 644 |
/// the following code. |
| 645 | 645 |
/// \code |
| 646 | 646 |
/// c.greedyInit(); |
| 647 | 647 |
/// c.start(); |
| 648 | 648 |
/// \endcode |
| 649 | 649 |
bool run() {
|
| 650 | 650 |
greedyInit(); |
| 651 | 651 |
return start(); |
| 652 | 652 |
} |
| 653 | 653 |
|
| 654 | 654 |
/// @} |
| 655 | 655 |
|
| 656 | 656 |
/// \name Query Functions |
| 657 | 657 |
/// The results of the circulation algorithm can be obtained using |
| 658 | 658 |
/// these functions.\n |
| 659 | 659 |
/// Either \ref run() or \ref start() should be called before |
| 660 | 660 |
/// using them. |
| 661 | 661 |
|
| 662 | 662 |
///@{
|
| 663 | 663 |
|
| 664 |
/// \brief Returns the flow on the given arc. |
|
| 664 |
/// \brief Returns the flow value on the given arc. |
|
| 665 | 665 |
/// |
| 666 |
/// Returns the flow on the given arc. |
|
| 666 |
/// Returns the flow value on the given arc. |
|
| 667 | 667 |
/// |
| 668 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
| 669 | 669 |
/// using this function. |
| 670 |
|
|
| 670 |
Value flow(const Arc& arc) const {
|
|
| 671 | 671 |
return (*_flow)[arc]; |
| 672 | 672 |
} |
| 673 | 673 |
|
| 674 | 674 |
/// \brief Returns a const reference to the flow map. |
| 675 | 675 |
/// |
| 676 | 676 |
/// Returns a const reference to the arc map storing the found flow. |
| 677 | 677 |
/// |
| 678 | 678 |
/// \pre Either \ref run() or \ref init() must be called before |
| 679 | 679 |
/// using this function. |
| 680 | 680 |
const FlowMap& flowMap() const {
|
| 681 | 681 |
return *_flow; |
| 682 | 682 |
} |
| 683 | 683 |
|
| 684 | 684 |
/** |
| 685 | 685 |
\brief Returns \c true if the given node is in a barrier. |
| 686 | 686 |
|
| 687 | 687 |
Barrier is a set \e B of nodes for which |
| 688 | 688 |
|
| 689 | 689 |
\f[ \sum_{uv\in A: u\in B} upper(uv) -
|
| 690 | 690 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
|
| 691 | 691 |
|
| 692 | 692 |
holds. The existence of a set with this property prooves that a |
| 693 | 693 |
feasible circualtion cannot exist. |
| 694 | 694 |
|
| 695 | 695 |
This function returns \c true if the given node is in the found |
| 696 | 696 |
barrier. If a feasible circulation is found, the function |
| 697 | 697 |
gives back \c false for every node. |
| 698 | 698 |
|
| 699 | 699 |
\pre Either \ref run() or \ref init() must be called before |
| 700 | 700 |
using this function. |
| 701 | 701 |
|
| 702 | 702 |
\sa barrierMap() |
| ... | ... |
@@ -721,74 +721,74 @@ |
| 721 | 721 |
/// |
| 722 | 722 |
/// \pre Either \ref run() or \ref init() must be called before |
| 723 | 723 |
/// using this function. |
| 724 | 724 |
/// |
| 725 | 725 |
/// \sa barrier() |
| 726 | 726 |
/// \sa checkBarrier() |
| 727 | 727 |
template<class BarrierMap> |
| 728 | 728 |
void barrierMap(BarrierMap &bar) const |
| 729 | 729 |
{
|
| 730 | 730 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 731 | 731 |
bar.set(n, (*_level)[n] >= _el); |
| 732 | 732 |
} |
| 733 | 733 |
|
| 734 | 734 |
/// @} |
| 735 | 735 |
|
| 736 | 736 |
/// \name Checker Functions |
| 737 | 737 |
/// The feasibility of the results can be checked using |
| 738 | 738 |
/// these functions.\n |
| 739 | 739 |
/// Either \ref run() or \ref start() should be called before |
| 740 | 740 |
/// using them. |
| 741 | 741 |
|
| 742 | 742 |
///@{
|
| 743 | 743 |
|
| 744 | 744 |
///Check if the found flow is a feasible circulation |
| 745 | 745 |
|
| 746 | 746 |
///Check if the found flow is a feasible circulation, |
| 747 | 747 |
/// |
| 748 | 748 |
bool checkFlow() const {
|
| 749 | 749 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 750 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 751 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 752 | 752 |
{
|
| 753 |
|
|
| 753 |
Value dif=-(*_supply)[n]; |
|
| 754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 755 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 756 | 756 |
if(_tol.negative(dif)) return false; |
| 757 | 757 |
} |
| 758 | 758 |
return true; |
| 759 | 759 |
} |
| 760 | 760 |
|
| 761 | 761 |
///Check whether or not the last execution provides a barrier |
| 762 | 762 |
|
| 763 | 763 |
///Check whether or not the last execution provides a barrier. |
| 764 | 764 |
///\sa barrier() |
| 765 | 765 |
///\sa barrierMap() |
| 766 | 766 |
bool checkBarrier() const |
| 767 | 767 |
{
|
| 768 |
Flow delta=0; |
|
| 769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
| 770 |
std::numeric_limits<Flow>::infinity() : |
|
| 771 |
std::numeric_limits<Flow>::max(); |
|
| 768 |
Value delta=0; |
|
| 769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
| 770 |
std::numeric_limits<Value>::infinity() : |
|
| 771 |
std::numeric_limits<Value>::max(); |
|
| 772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 773 | 773 |
if(barrier(n)) |
| 774 | 774 |
delta-=(*_supply)[n]; |
| 775 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 776 | 776 |
{
|
| 777 | 777 |
Node s=_g.source(e); |
| 778 | 778 |
Node t=_g.target(e); |
| 779 | 779 |
if(barrier(s)&&!barrier(t)) {
|
| 780 | 780 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
| 781 | 781 |
delta+=(*_up)[e]; |
| 782 | 782 |
} |
| 783 | 783 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 784 | 784 |
} |
| 785 | 785 |
return _tol.negative(delta); |
| 786 | 786 |
} |
| 787 | 787 |
|
| 788 | 788 |
/// @} |
| 789 | 789 |
|
| 790 | 790 |
}; |
| 791 | 791 |
|
| 792 | 792 |
} |
| 793 | 793 |
|
| 794 | 794 |
#endif |
| ... | ... |
@@ -27,92 +27,92 @@ |
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 | 44 |
/// This algorithm is a specialized version of the linear programming |
| 45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
| 46 | 46 |
/// It is one of the most efficient solution methods. |
| 47 | 47 |
/// |
| 48 | 48 |
/// In general this class is the fastest implementation available |
| 49 | 49 |
/// in LEMON for the minimum cost flow problem. |
| 50 | 50 |
/// Moreover it supports both directions of the supply/demand inequality |
| 51 | 51 |
/// constraints. For more information see \ref SupplyType. |
| 52 | 52 |
/// |
| 53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
| 54 | 54 |
/// can be given using separate functions, and the algorithm can be |
| 55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
| 56 | 56 |
/// specified, then default values will be used. |
| 57 | 57 |
/// |
| 58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
| 59 |
/// \tparam |
|
| 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
| 60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
| 61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
| 62 |
/// algorithm. By default it is the same as \c |
|
| 62 |
/// algorithm. By default it is the same as \c V. |
|
| 63 | 63 |
/// |
| 64 | 64 |
/// \warning Both value types must be signed and all input data must |
| 65 | 65 |
/// be integer. |
| 66 | 66 |
/// |
| 67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
| 68 | 68 |
/// implementations, from which the most efficient one is used |
| 69 | 69 |
/// by default. For more information see \ref PivotRule. |
| 70 |
template <typename GR, typename |
|
| 70 |
template <typename GR, typename V = int, typename C = V> |
|
| 71 | 71 |
class NetworkSimplex |
| 72 | 72 |
{
|
| 73 | 73 |
public: |
| 74 | 74 |
|
| 75 | 75 |
/// The flow type of the algorithm |
| 76 |
typedef |
|
| 76 |
typedef V Value; |
|
| 77 | 77 |
/// The cost type of the algorithm |
| 78 | 78 |
typedef C Cost; |
| 79 | 79 |
#ifdef DOXYGEN |
| 80 | 80 |
/// The type of the flow map |
| 81 |
typedef GR::ArcMap< |
|
| 81 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 82 | 82 |
/// The type of the potential map |
| 83 | 83 |
typedef GR::NodeMap<Cost> PotentialMap; |
| 84 | 84 |
#else |
| 85 | 85 |
/// The type of the flow map |
| 86 |
typedef typename GR::template ArcMap< |
|
| 86 |
typedef typename GR::template ArcMap<Value> FlowMap; |
|
| 87 | 87 |
/// The type of the potential map |
| 88 | 88 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
| 89 | 89 |
#endif |
| 90 | 90 |
|
| 91 | 91 |
public: |
| 92 | 92 |
|
| 93 | 93 |
/// \brief Problem type constants for the \c run() function. |
| 94 | 94 |
/// |
| 95 | 95 |
/// Enum type containing the problem type constants that can be |
| 96 | 96 |
/// returned by the \ref run() function of the algorithm. |
| 97 | 97 |
enum ProblemType {
|
| 98 | 98 |
/// The problem has no feasible solution (flow). |
| 99 | 99 |
INFEASIBLE, |
| 100 | 100 |
/// The problem has optimal solution (i.e. it is feasible and |
| 101 | 101 |
/// bounded), and the algorithm has found optimal flow and node |
| 102 | 102 |
/// potentials (primal and dual solutions). |
| 103 | 103 |
OPTIMAL, |
| 104 | 104 |
/// The objective function of the problem is unbounded, i.e. |
| 105 | 105 |
/// there is a directed cycle having negative total cost and |
| 106 | 106 |
/// infinite upper bound. |
| 107 | 107 |
UNBOUNDED |
| 108 | 108 |
}; |
| 109 | 109 |
|
| 110 | 110 |
/// \brief Constants for selecting the type of the supply constraints. |
| 111 | 111 |
/// |
| 112 | 112 |
/// Enum type containing constants for selecting the supply type, |
| 113 | 113 |
/// i.e. the direction of the inequalities in the supply/demand |
| 114 | 114 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 115 | 115 |
/// |
| 116 | 116 |
/// The default supply type is \c GEQ, since this form is supported |
| 117 | 117 |
/// by other minimum cost flow algorithms and the \ref Circulation |
| 118 | 118 |
/// algorithm, as well. |
| ... | ... |
@@ -177,146 +177,146 @@ |
| 177 | 177 |
/// The First Eligible pivot rule. |
| 178 | 178 |
/// The next eligible arc is selected in a wraparound fashion |
| 179 | 179 |
/// in every iteration. |
| 180 | 180 |
FIRST_ELIGIBLE, |
| 181 | 181 |
|
| 182 | 182 |
/// The Best Eligible pivot rule. |
| 183 | 183 |
/// The best eligible arc is selected in every iteration. |
| 184 | 184 |
BEST_ELIGIBLE, |
| 185 | 185 |
|
| 186 | 186 |
/// The Block Search pivot rule. |
| 187 | 187 |
/// A specified number of arcs are examined in every iteration |
| 188 | 188 |
/// in a wraparound fashion and the best eligible arc is selected |
| 189 | 189 |
/// from this block. |
| 190 | 190 |
BLOCK_SEARCH, |
| 191 | 191 |
|
| 192 | 192 |
/// The Candidate List pivot rule. |
| 193 | 193 |
/// In a major iteration a candidate list is built from eligible arcs |
| 194 | 194 |
/// in a wraparound fashion and in the following minor iterations |
| 195 | 195 |
/// the best eligible arc is selected from this list. |
| 196 | 196 |
CANDIDATE_LIST, |
| 197 | 197 |
|
| 198 | 198 |
/// The Altering Candidate List pivot rule. |
| 199 | 199 |
/// It is a modified version of the Candidate List method. |
| 200 | 200 |
/// It keeps only the several best eligible arcs from the former |
| 201 | 201 |
/// candidate list and extends this list in every iteration. |
| 202 | 202 |
ALTERING_LIST |
| 203 | 203 |
}; |
| 204 | 204 |
|
| 205 | 205 |
private: |
| 206 | 206 |
|
| 207 | 207 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 208 | 208 |
|
| 209 |
typedef typename GR::template ArcMap< |
|
| 209 |
typedef typename GR::template ArcMap<Value> ValueArcMap; |
|
| 210 | 210 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
| 211 |
typedef typename GR::template NodeMap< |
|
| 211 |
typedef typename GR::template NodeMap<Value> ValueNodeMap; |
|
| 212 | 212 |
|
| 213 | 213 |
typedef std::vector<Arc> ArcVector; |
| 214 | 214 |
typedef std::vector<Node> NodeVector; |
| 215 | 215 |
typedef std::vector<int> IntVector; |
| 216 | 216 |
typedef std::vector<bool> BoolVector; |
| 217 |
typedef std::vector< |
|
| 217 |
typedef std::vector<Value> FlowVector; |
|
| 218 | 218 |
typedef std::vector<Cost> CostVector; |
| 219 | 219 |
|
| 220 | 220 |
// State constants for arcs |
| 221 | 221 |
enum ArcStateEnum {
|
| 222 | 222 |
STATE_UPPER = -1, |
| 223 | 223 |
STATE_TREE = 0, |
| 224 | 224 |
STATE_LOWER = 1 |
| 225 | 225 |
}; |
| 226 | 226 |
|
| 227 | 227 |
private: |
| 228 | 228 |
|
| 229 | 229 |
// Data related to the underlying digraph |
| 230 | 230 |
const GR &_graph; |
| 231 | 231 |
int _node_num; |
| 232 | 232 |
int _arc_num; |
| 233 | 233 |
|
| 234 | 234 |
// Parameters of the problem |
| 235 |
FlowArcMap *_plower; |
|
| 236 |
FlowArcMap *_pupper; |
|
| 235 |
ValueArcMap *_plower; |
|
| 236 |
ValueArcMap *_pupper; |
|
| 237 | 237 |
CostArcMap *_pcost; |
| 238 |
|
|
| 238 |
ValueNodeMap *_psupply; |
|
| 239 | 239 |
bool _pstsup; |
| 240 | 240 |
Node _psource, _ptarget; |
| 241 |
|
|
| 241 |
Value _pstflow; |
|
| 242 | 242 |
SupplyType _stype; |
| 243 | 243 |
|
| 244 |
|
|
| 244 |
Value _sum_supply; |
|
| 245 | 245 |
|
| 246 | 246 |
// Result maps |
| 247 | 247 |
FlowMap *_flow_map; |
| 248 | 248 |
PotentialMap *_potential_map; |
| 249 | 249 |
bool _local_flow; |
| 250 | 250 |
bool _local_potential; |
| 251 | 251 |
|
| 252 | 252 |
// Data structures for storing the digraph |
| 253 | 253 |
IntNodeMap _node_id; |
| 254 | 254 |
ArcVector _arc_ref; |
| 255 | 255 |
IntVector _source; |
| 256 | 256 |
IntVector _target; |
| 257 | 257 |
|
| 258 | 258 |
// Node and arc data |
| 259 | 259 |
FlowVector _cap; |
| 260 | 260 |
CostVector _cost; |
| 261 | 261 |
FlowVector _supply; |
| 262 | 262 |
FlowVector _flow; |
| 263 | 263 |
CostVector _pi; |
| 264 | 264 |
|
| 265 | 265 |
// Data for storing the spanning tree structure |
| 266 | 266 |
IntVector _parent; |
| 267 | 267 |
IntVector _pred; |
| 268 | 268 |
IntVector _thread; |
| 269 | 269 |
IntVector _rev_thread; |
| 270 | 270 |
IntVector _succ_num; |
| 271 | 271 |
IntVector _last_succ; |
| 272 | 272 |
IntVector _dirty_revs; |
| 273 | 273 |
BoolVector _forward; |
| 274 | 274 |
IntVector _state; |
| 275 | 275 |
int _root; |
| 276 | 276 |
|
| 277 | 277 |
// Temporary data used in the current pivot iteration |
| 278 | 278 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 279 | 279 |
int first, second, right, last; |
| 280 | 280 |
int stem, par_stem, new_stem; |
| 281 |
|
|
| 281 |
Value delta; |
|
| 282 | 282 |
|
| 283 | 283 |
public: |
| 284 | 284 |
|
| 285 | 285 |
/// \brief Constant for infinite upper bounds (capacities). |
| 286 | 286 |
/// |
| 287 | 287 |
/// Constant for infinite upper bounds (capacities). |
| 288 |
/// It is \c std::numeric_limits<Flow>::infinity() if available, |
|
| 289 |
/// \c std::numeric_limits<Flow>::max() otherwise. |
|
| 290 |
|
|
| 288 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 289 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 290 |
const Value INF; |
|
| 291 | 291 |
|
| 292 | 292 |
private: |
| 293 | 293 |
|
| 294 | 294 |
// Implementation of the First Eligible pivot rule |
| 295 | 295 |
class FirstEligiblePivotRule |
| 296 | 296 |
{
|
| 297 | 297 |
private: |
| 298 | 298 |
|
| 299 | 299 |
// References to the NetworkSimplex class |
| 300 | 300 |
const IntVector &_source; |
| 301 | 301 |
const IntVector &_target; |
| 302 | 302 |
const CostVector &_cost; |
| 303 | 303 |
const IntVector &_state; |
| 304 | 304 |
const CostVector &_pi; |
| 305 | 305 |
int &_in_arc; |
| 306 | 306 |
int _arc_num; |
| 307 | 307 |
|
| 308 | 308 |
// Pivot rule data |
| 309 | 309 |
int _next_arc; |
| 310 | 310 |
|
| 311 | 311 |
public: |
| 312 | 312 |
|
| 313 | 313 |
// Constructor |
| 314 | 314 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 315 | 315 |
_source(ns._source), _target(ns._target), |
| 316 | 316 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 317 | 317 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 318 | 318 |
{}
|
| 319 | 319 |
|
| 320 | 320 |
// Find next entering arc |
| 321 | 321 |
bool findEnteringArc() {
|
| 322 | 322 |
Cost c; |
| ... | ... |
@@ -666,193 +666,193 @@ |
| 666 | 666 |
} |
| 667 | 667 |
if (_curr_length == 0) return false; |
| 668 | 668 |
_next_arc = last_arc + 1; |
| 669 | 669 |
|
| 670 | 670 |
// Make heap of the candidate list (approximating a partial sort) |
| 671 | 671 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 672 | 672 |
_sort_func ); |
| 673 | 673 |
|
| 674 | 674 |
// Pop the first element of the heap |
| 675 | 675 |
_in_arc = _candidates[0]; |
| 676 | 676 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 677 | 677 |
_sort_func ); |
| 678 | 678 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 679 | 679 |
return true; |
| 680 | 680 |
} |
| 681 | 681 |
|
| 682 | 682 |
}; //class AlteringListPivotRule |
| 683 | 683 |
|
| 684 | 684 |
public: |
| 685 | 685 |
|
| 686 | 686 |
/// \brief Constructor. |
| 687 | 687 |
/// |
| 688 | 688 |
/// The constructor of the class. |
| 689 | 689 |
/// |
| 690 | 690 |
/// \param graph The digraph the algorithm runs on. |
| 691 | 691 |
NetworkSimplex(const GR& graph) : |
| 692 | 692 |
_graph(graph), |
| 693 | 693 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
| 694 | 694 |
_psupply(NULL), _pstsup(false), _stype(GEQ), |
| 695 | 695 |
_flow_map(NULL), _potential_map(NULL), |
| 696 | 696 |
_local_flow(false), _local_potential(false), |
| 697 | 697 |
_node_id(graph), |
| 698 |
INF(std::numeric_limits<Flow>::has_infinity ? |
|
| 699 |
std::numeric_limits<Flow>::infinity() : |
|
| 700 |
|
|
| 698 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 699 |
std::numeric_limits<Value>::infinity() : |
|
| 700 |
std::numeric_limits<Value>::max()) |
|
| 701 | 701 |
{
|
| 702 | 702 |
// Check the value types |
| 703 |
LEMON_ASSERT(std::numeric_limits< |
|
| 703 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 704 | 704 |
"The flow type of NetworkSimplex must be signed"); |
| 705 | 705 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 706 | 706 |
"The cost type of NetworkSimplex must be signed"); |
| 707 | 707 |
} |
| 708 | 708 |
|
| 709 | 709 |
/// Destructor. |
| 710 | 710 |
~NetworkSimplex() {
|
| 711 | 711 |
if (_local_flow) delete _flow_map; |
| 712 | 712 |
if (_local_potential) delete _potential_map; |
| 713 | 713 |
} |
| 714 | 714 |
|
| 715 | 715 |
/// \name Parameters |
| 716 | 716 |
/// The parameters of the algorithm can be specified using these |
| 717 | 717 |
/// functions. |
| 718 | 718 |
|
| 719 | 719 |
/// @{
|
| 720 | 720 |
|
| 721 | 721 |
/// \brief Set the lower bounds on the arcs. |
| 722 | 722 |
/// |
| 723 | 723 |
/// This function sets the lower bounds on the arcs. |
| 724 | 724 |
/// If it is not used before calling \ref run(), the lower bounds |
| 725 | 725 |
/// will be set to zero on all arcs. |
| 726 | 726 |
/// |
| 727 | 727 |
/// \param map An arc map storing the lower bounds. |
| 728 |
/// Its \c Value type must be convertible to the \c |
|
| 728 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 729 | 729 |
/// of the algorithm. |
| 730 | 730 |
/// |
| 731 | 731 |
/// \return <tt>(*this)</tt> |
| 732 | 732 |
template <typename LowerMap> |
| 733 | 733 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
| 734 | 734 |
delete _plower; |
| 735 |
_plower = new |
|
| 735 |
_plower = new ValueArcMap(_graph); |
|
| 736 | 736 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 737 | 737 |
(*_plower)[a] = map[a]; |
| 738 | 738 |
} |
| 739 | 739 |
return *this; |
| 740 | 740 |
} |
| 741 | 741 |
|
| 742 | 742 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 743 | 743 |
/// |
| 744 | 744 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 745 | 745 |
/// If it is not used before calling \ref run(), the upper bounds |
| 746 | 746 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 747 | 747 |
/// unbounded from above on each arc). |
| 748 | 748 |
/// |
| 749 | 749 |
/// \param map An arc map storing the upper bounds. |
| 750 |
/// Its \c Value type must be convertible to the \c |
|
| 750 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 751 | 751 |
/// of the algorithm. |
| 752 | 752 |
/// |
| 753 | 753 |
/// \return <tt>(*this)</tt> |
| 754 | 754 |
template<typename UpperMap> |
| 755 | 755 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 756 | 756 |
delete _pupper; |
| 757 |
_pupper = new |
|
| 757 |
_pupper = new ValueArcMap(_graph); |
|
| 758 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 759 | 759 |
(*_pupper)[a] = map[a]; |
| 760 | 760 |
} |
| 761 | 761 |
return *this; |
| 762 | 762 |
} |
| 763 | 763 |
|
| 764 | 764 |
/// \brief Set the costs of the arcs. |
| 765 | 765 |
/// |
| 766 | 766 |
/// This function sets the costs of the arcs. |
| 767 | 767 |
/// If it is not used before calling \ref run(), the costs |
| 768 | 768 |
/// will be set to \c 1 on all arcs. |
| 769 | 769 |
/// |
| 770 | 770 |
/// \param map An arc map storing the costs. |
| 771 | 771 |
/// Its \c Value type must be convertible to the \c Cost type |
| 772 | 772 |
/// of the algorithm. |
| 773 | 773 |
/// |
| 774 | 774 |
/// \return <tt>(*this)</tt> |
| 775 | 775 |
template<typename CostMap> |
| 776 | 776 |
NetworkSimplex& costMap(const CostMap& map) {
|
| 777 | 777 |
delete _pcost; |
| 778 | 778 |
_pcost = new CostArcMap(_graph); |
| 779 | 779 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 780 | 780 |
(*_pcost)[a] = map[a]; |
| 781 | 781 |
} |
| 782 | 782 |
return *this; |
| 783 | 783 |
} |
| 784 | 784 |
|
| 785 | 785 |
/// \brief Set the supply values of the nodes. |
| 786 | 786 |
/// |
| 787 | 787 |
/// This function sets the supply values of the nodes. |
| 788 | 788 |
/// If neither this function nor \ref stSupply() is used before |
| 789 | 789 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 790 | 790 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 791 | 791 |
/// |
| 792 | 792 |
/// \param map A node map storing the supply values. |
| 793 |
/// Its \c Value type must be convertible to the \c |
|
| 793 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 794 | 794 |
/// of the algorithm. |
| 795 | 795 |
/// |
| 796 | 796 |
/// \return <tt>(*this)</tt> |
| 797 | 797 |
template<typename SupplyMap> |
| 798 | 798 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
| 799 | 799 |
delete _psupply; |
| 800 | 800 |
_pstsup = false; |
| 801 |
_psupply = new |
|
| 801 |
_psupply = new ValueNodeMap(_graph); |
|
| 802 | 802 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 803 | 803 |
(*_psupply)[n] = map[n]; |
| 804 | 804 |
} |
| 805 | 805 |
return *this; |
| 806 | 806 |
} |
| 807 | 807 |
|
| 808 | 808 |
/// \brief Set single source and target nodes and a supply value. |
| 809 | 809 |
/// |
| 810 | 810 |
/// This function sets a single source node and a single target node |
| 811 | 811 |
/// and the required flow value. |
| 812 | 812 |
/// If neither this function nor \ref supplyMap() is used before |
| 813 | 813 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 814 | 814 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 815 | 815 |
/// |
| 816 | 816 |
/// Using this function has the same effect as using \ref supplyMap() |
| 817 | 817 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 818 | 818 |
/// assigned to \c t and all other nodes have zero supply value. |
| 819 | 819 |
/// |
| 820 | 820 |
/// \param s The source node. |
| 821 | 821 |
/// \param t The target node. |
| 822 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
| 823 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 824 | 824 |
/// |
| 825 | 825 |
/// \return <tt>(*this)</tt> |
| 826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, |
|
| 826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 827 | 827 |
delete _psupply; |
| 828 | 828 |
_psupply = NULL; |
| 829 | 829 |
_pstsup = true; |
| 830 | 830 |
_psource = s; |
| 831 | 831 |
_ptarget = t; |
| 832 | 832 |
_pstflow = k; |
| 833 | 833 |
return *this; |
| 834 | 834 |
} |
| 835 | 835 |
|
| 836 | 836 |
/// \brief Set the type of the supply constraints. |
| 837 | 837 |
/// |
| 838 | 838 |
/// This function sets the type of the supply/demand constraints. |
| 839 | 839 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
| 840 | 840 |
/// type will be used. |
| 841 | 841 |
/// |
| 842 | 842 |
/// For more information see \ref SupplyType. |
| 843 | 843 |
/// |
| 844 | 844 |
/// \return <tt>(*this)</tt> |
| 845 | 845 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
| 846 | 846 |
_stype = supply_type; |
| 847 | 847 |
return *this; |
| 848 | 848 |
} |
| 849 | 849 |
|
| 850 | 850 |
/// \brief Set the flow map. |
| 851 | 851 |
/// |
| 852 | 852 |
/// This function sets the flow map. |
| 853 | 853 |
/// If it is not used before calling \ref run(), an instance will |
| 854 | 854 |
/// be allocated automatically. The destructor deallocates this |
| 855 | 855 |
/// automatically allocated map, of course. |
| 856 | 856 |
/// |
| 857 | 857 |
/// \return <tt>(*this)</tt> |
| 858 | 858 |
NetworkSimplex& flowMap(FlowMap& map) {
|
| ... | ... |
@@ -996,65 +996,65 @@ |
| 996 | 996 |
/// \code |
| 997 | 997 |
/// ns.totalCost<double>(); |
| 998 | 998 |
/// \endcode |
| 999 | 999 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 1000 | 1000 |
/// type of the algorithm, which is the default return type of the |
| 1001 | 1001 |
/// function. |
| 1002 | 1002 |
/// |
| 1003 | 1003 |
/// \pre \ref run() must be called before using this function. |
| 1004 | 1004 |
template <typename Value> |
| 1005 | 1005 |
Value totalCost() const {
|
| 1006 | 1006 |
Value c = 0; |
| 1007 | 1007 |
if (_pcost) {
|
| 1008 | 1008 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 1009 | 1009 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
| 1010 | 1010 |
} else {
|
| 1011 | 1011 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 1012 | 1012 |
c += (*_flow_map)[e]; |
| 1013 | 1013 |
} |
| 1014 | 1014 |
return c; |
| 1015 | 1015 |
} |
| 1016 | 1016 |
|
| 1017 | 1017 |
#ifndef DOXYGEN |
| 1018 | 1018 |
Cost totalCost() const {
|
| 1019 | 1019 |
return totalCost<Cost>(); |
| 1020 | 1020 |
} |
| 1021 | 1021 |
#endif |
| 1022 | 1022 |
|
| 1023 | 1023 |
/// \brief Return the flow on the given arc. |
| 1024 | 1024 |
/// |
| 1025 | 1025 |
/// This function returns the flow on the given arc. |
| 1026 | 1026 |
/// |
| 1027 | 1027 |
/// \pre \ref run() must be called before using this function. |
| 1028 |
|
|
| 1028 |
Value flow(const Arc& a) const {
|
|
| 1029 | 1029 |
return (*_flow_map)[a]; |
| 1030 | 1030 |
} |
| 1031 | 1031 |
|
| 1032 | 1032 |
/// \brief Return a const reference to the flow map. |
| 1033 | 1033 |
/// |
| 1034 | 1034 |
/// This function returns a const reference to an arc map storing |
| 1035 | 1035 |
/// the found flow. |
| 1036 | 1036 |
/// |
| 1037 | 1037 |
/// \pre \ref run() must be called before using this function. |
| 1038 | 1038 |
const FlowMap& flowMap() const {
|
| 1039 | 1039 |
return *_flow_map; |
| 1040 | 1040 |
} |
| 1041 | 1041 |
|
| 1042 | 1042 |
/// \brief Return the potential (dual value) of the given node. |
| 1043 | 1043 |
/// |
| 1044 | 1044 |
/// This function returns the potential (dual value) of the |
| 1045 | 1045 |
/// given node. |
| 1046 | 1046 |
/// |
| 1047 | 1047 |
/// \pre \ref run() must be called before using this function. |
| 1048 | 1048 |
Cost potential(const Node& n) const {
|
| 1049 | 1049 |
return (*_potential_map)[n]; |
| 1050 | 1050 |
} |
| 1051 | 1051 |
|
| 1052 | 1052 |
/// \brief Return a const reference to the potential map |
| 1053 | 1053 |
/// (the dual solution). |
| 1054 | 1054 |
/// |
| 1055 | 1055 |
/// This function returns a const reference to a node map storing |
| 1056 | 1056 |
/// the found potentials, which form the dual solution of the |
| 1057 | 1057 |
/// \ref min_cost_flow "minimum cost flow problem". |
| 1058 | 1058 |
/// |
| 1059 | 1059 |
/// \pre \ref run() must be called before using this function. |
| 1060 | 1060 |
const PotentialMap& potentialMap() const {
|
| ... | ... |
@@ -1175,65 +1175,65 @@ |
| 1175 | 1175 |
_cap[i] = (*_pupper)[e]; |
| 1176 | 1176 |
_cost[i] = (*_pcost)[e]; |
| 1177 | 1177 |
_flow[i] = 0; |
| 1178 | 1178 |
_state[i] = STATE_LOWER; |
| 1179 | 1179 |
} |
| 1180 | 1180 |
} else {
|
| 1181 | 1181 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1182 | 1182 |
Arc e = _arc_ref[i]; |
| 1183 | 1183 |
_source[i] = _node_id[_graph.source(e)]; |
| 1184 | 1184 |
_target[i] = _node_id[_graph.target(e)]; |
| 1185 | 1185 |
_flow[i] = 0; |
| 1186 | 1186 |
_state[i] = STATE_LOWER; |
| 1187 | 1187 |
} |
| 1188 | 1188 |
if (_pupper) {
|
| 1189 | 1189 |
for (int i = 0; i != _arc_num; ++i) |
| 1190 | 1190 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
| 1191 | 1191 |
} else {
|
| 1192 | 1192 |
for (int i = 0; i != _arc_num; ++i) |
| 1193 | 1193 |
_cap[i] = INF; |
| 1194 | 1194 |
} |
| 1195 | 1195 |
if (_pcost) {
|
| 1196 | 1196 |
for (int i = 0; i != _arc_num; ++i) |
| 1197 | 1197 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
| 1198 | 1198 |
} else {
|
| 1199 | 1199 |
for (int i = 0; i != _arc_num; ++i) |
| 1200 | 1200 |
_cost[i] = 1; |
| 1201 | 1201 |
} |
| 1202 | 1202 |
} |
| 1203 | 1203 |
|
| 1204 | 1204 |
// Remove non-zero lower bounds |
| 1205 | 1205 |
if (_plower) {
|
| 1206 | 1206 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1207 |
|
|
| 1207 |
Value c = (*_plower)[_arc_ref[i]]; |
|
| 1208 | 1208 |
if (c > 0) {
|
| 1209 | 1209 |
if (_cap[i] < INF) _cap[i] -= c; |
| 1210 | 1210 |
_supply[_source[i]] -= c; |
| 1211 | 1211 |
_supply[_target[i]] += c; |
| 1212 | 1212 |
} |
| 1213 | 1213 |
else if (c < 0) {
|
| 1214 | 1214 |
if (_cap[i] < INF + c) {
|
| 1215 | 1215 |
_cap[i] -= c; |
| 1216 | 1216 |
} else {
|
| 1217 | 1217 |
_cap[i] = INF; |
| 1218 | 1218 |
} |
| 1219 | 1219 |
_supply[_source[i]] -= c; |
| 1220 | 1220 |
_supply[_target[i]] += c; |
| 1221 | 1221 |
} |
| 1222 | 1222 |
} |
| 1223 | 1223 |
} |
| 1224 | 1224 |
|
| 1225 | 1225 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1226 | 1226 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1227 | 1227 |
_thread[u] = u + 1; |
| 1228 | 1228 |
_rev_thread[u + 1] = u; |
| 1229 | 1229 |
_succ_num[u] = 1; |
| 1230 | 1230 |
_last_succ[u] = u; |
| 1231 | 1231 |
_parent[u] = _root; |
| 1232 | 1232 |
_pred[u] = e; |
| 1233 | 1233 |
_cost[e] = ART_COST; |
| 1234 | 1234 |
_cap[e] = INF; |
| 1235 | 1235 |
_state[e] = STATE_TREE; |
| 1236 | 1236 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
| 1237 | 1237 |
_flow[e] = _supply[u]; |
| 1238 | 1238 |
_forward[u] = true; |
| 1239 | 1239 |
_pi[u] = -ART_COST + _pi[_root]; |
| ... | ... |
@@ -1246,105 +1246,105 @@ |
| 1246 | 1246 |
|
| 1247 | 1247 |
return true; |
| 1248 | 1248 |
} |
| 1249 | 1249 |
|
| 1250 | 1250 |
// Find the join node |
| 1251 | 1251 |
void findJoinNode() {
|
| 1252 | 1252 |
int u = _source[in_arc]; |
| 1253 | 1253 |
int v = _target[in_arc]; |
| 1254 | 1254 |
while (u != v) {
|
| 1255 | 1255 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1256 | 1256 |
u = _parent[u]; |
| 1257 | 1257 |
} else {
|
| 1258 | 1258 |
v = _parent[v]; |
| 1259 | 1259 |
} |
| 1260 | 1260 |
} |
| 1261 | 1261 |
join = u; |
| 1262 | 1262 |
} |
| 1263 | 1263 |
|
| 1264 | 1264 |
// Find the leaving arc of the cycle and returns true if the |
| 1265 | 1265 |
// leaving arc is not the same as the entering arc |
| 1266 | 1266 |
bool findLeavingArc() {
|
| 1267 | 1267 |
// Initialize first and second nodes according to the direction |
| 1268 | 1268 |
// of the cycle |
| 1269 | 1269 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1270 | 1270 |
first = _source[in_arc]; |
| 1271 | 1271 |
second = _target[in_arc]; |
| 1272 | 1272 |
} else {
|
| 1273 | 1273 |
first = _target[in_arc]; |
| 1274 | 1274 |
second = _source[in_arc]; |
| 1275 | 1275 |
} |
| 1276 | 1276 |
delta = _cap[in_arc]; |
| 1277 | 1277 |
int result = 0; |
| 1278 |
|
|
| 1278 |
Value d; |
|
| 1279 | 1279 |
int e; |
| 1280 | 1280 |
|
| 1281 | 1281 |
// Search the cycle along the path form the first node to the root |
| 1282 | 1282 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1283 | 1283 |
e = _pred[u]; |
| 1284 | 1284 |
d = _forward[u] ? |
| 1285 | 1285 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
| 1286 | 1286 |
if (d < delta) {
|
| 1287 | 1287 |
delta = d; |
| 1288 | 1288 |
u_out = u; |
| 1289 | 1289 |
result = 1; |
| 1290 | 1290 |
} |
| 1291 | 1291 |
} |
| 1292 | 1292 |
// Search the cycle along the path form the second node to the root |
| 1293 | 1293 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1294 | 1294 |
e = _pred[u]; |
| 1295 | 1295 |
d = _forward[u] ? |
| 1296 | 1296 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
| 1297 | 1297 |
if (d <= delta) {
|
| 1298 | 1298 |
delta = d; |
| 1299 | 1299 |
u_out = u; |
| 1300 | 1300 |
result = 2; |
| 1301 | 1301 |
} |
| 1302 | 1302 |
} |
| 1303 | 1303 |
|
| 1304 | 1304 |
if (result == 1) {
|
| 1305 | 1305 |
u_in = first; |
| 1306 | 1306 |
v_in = second; |
| 1307 | 1307 |
} else {
|
| 1308 | 1308 |
u_in = second; |
| 1309 | 1309 |
v_in = first; |
| 1310 | 1310 |
} |
| 1311 | 1311 |
return result != 0; |
| 1312 | 1312 |
} |
| 1313 | 1313 |
|
| 1314 | 1314 |
// Change _flow and _state vectors |
| 1315 | 1315 |
void changeFlow(bool change) {
|
| 1316 | 1316 |
// Augment along the cycle |
| 1317 | 1317 |
if (delta > 0) {
|
| 1318 |
|
|
| 1318 |
Value val = _state[in_arc] * delta; |
|
| 1319 | 1319 |
_flow[in_arc] += val; |
| 1320 | 1320 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1321 | 1321 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1322 | 1322 |
} |
| 1323 | 1323 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1324 | 1324 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1325 | 1325 |
} |
| 1326 | 1326 |
} |
| 1327 | 1327 |
// Update the state of the entering and leaving arcs |
| 1328 | 1328 |
if (change) {
|
| 1329 | 1329 |
_state[in_arc] = STATE_TREE; |
| 1330 | 1330 |
_state[_pred[u_out]] = |
| 1331 | 1331 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1332 | 1332 |
} else {
|
| 1333 | 1333 |
_state[in_arc] = -_state[in_arc]; |
| 1334 | 1334 |
} |
| 1335 | 1335 |
} |
| 1336 | 1336 |
|
| 1337 | 1337 |
// Update the tree structure |
| 1338 | 1338 |
void updateTreeStructure() {
|
| 1339 | 1339 |
int u, w; |
| 1340 | 1340 |
int old_rev_thread = _rev_thread[u_out]; |
| 1341 | 1341 |
int old_succ_num = _succ_num[u_out]; |
| 1342 | 1342 |
int old_last_succ = _last_succ[u_out]; |
| 1343 | 1343 |
v_out = _parent[u_out]; |
| 1344 | 1344 |
|
| 1345 | 1345 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1346 | 1346 |
right = _thread[u]; // the node after it |
| 1347 | 1347 |
|
| 1348 | 1348 |
// Handle the case when old_rev_thread equals to v_in |
| 1349 | 1349 |
// (it also means that join and v_out coincide) |
| 1350 | 1350 |
if (old_rev_thread == v_in) {
|
| ... | ... |
@@ -17,170 +17,170 @@ |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_PREFLOW_H |
| 20 | 20 |
#define LEMON_PREFLOW_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
|
| 25 | 25 |
/// \file |
| 26 | 26 |
/// \ingroup max_flow |
| 27 | 27 |
/// \brief Implementation of the preflow algorithm. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
/// \brief Default traits class of Preflow class. |
| 32 | 32 |
/// |
| 33 | 33 |
/// Default traits class of Preflow class. |
| 34 | 34 |
/// \tparam GR Digraph type. |
| 35 | 35 |
/// \tparam CAP Capacity map type. |
| 36 | 36 |
template <typename GR, typename CAP> |
| 37 | 37 |
struct PreflowDefaultTraits {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
| 40 | 40 |
typedef GR Digraph; |
| 41 | 41 |
|
| 42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
| 43 | 43 |
/// |
| 44 | 44 |
/// The type of the map that stores the arc capacities. |
| 45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | 46 |
typedef CAP CapacityMap; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief The type of the flow values. |
| 49 |
typedef typename CapacityMap::Value |
|
| 49 |
typedef typename CapacityMap::Value Value; |
|
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
typedef typename Digraph::template ArcMap< |
|
| 55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Instantiates a FlowMap. |
| 58 | 58 |
/// |
| 59 | 59 |
/// This function instantiates a \ref FlowMap. |
| 60 | 60 |
/// \param digraph The digraph for which we would like to define |
| 61 | 61 |
/// the flow map. |
| 62 | 62 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 63 | 63 |
return new FlowMap(digraph); |
| 64 | 64 |
} |
| 65 | 65 |
|
| 66 | 66 |
/// \brief The elevator type used by Preflow algorithm. |
| 67 | 67 |
/// |
| 68 | 68 |
/// The elevator type used by Preflow algorithm. |
| 69 | 69 |
/// |
| 70 | 70 |
/// \sa Elevator |
| 71 | 71 |
/// \sa LinkedElevator |
| 72 | 72 |
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; |
| 73 | 73 |
|
| 74 | 74 |
/// \brief Instantiates an Elevator. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This function instantiates an \ref Elevator. |
| 77 | 77 |
/// \param digraph The digraph for which we would like to define |
| 78 | 78 |
/// the elevator. |
| 79 | 79 |
/// \param max_level The maximum level of the elevator. |
| 80 | 80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 81 | 81 |
return new Elevator(digraph, max_level); |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
/// \brief The tolerance used by the algorithm |
| 85 | 85 |
/// |
| 86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 87 |
typedef lemon::Tolerance< |
|
| 87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 88 | 88 |
|
| 89 | 89 |
}; |
| 90 | 90 |
|
| 91 | 91 |
|
| 92 | 92 |
/// \ingroup max_flow |
| 93 | 93 |
/// |
| 94 | 94 |
/// \brief %Preflow algorithm class. |
| 95 | 95 |
/// |
| 96 | 96 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
| 97 | 97 |
/// \e push-relabel algorithm producing a \ref max_flow |
| 98 | 98 |
/// "flow of maximum value" in a digraph. |
| 99 | 99 |
/// The preflow algorithms are the fastest known maximum |
| 100 | 100 |
/// flow algorithms. The current implementation use a mixture of the |
| 101 | 101 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 102 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 103 | 103 |
/// |
| 104 | 104 |
/// The algorithm consists of two phases. After the first phase |
| 105 | 105 |
/// the maximum flow value and the minimum cut is obtained. The |
| 106 | 106 |
/// second phase constructs a feasible maximum flow on each arc. |
| 107 | 107 |
/// |
| 108 | 108 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 109 | 109 |
/// \tparam CAP The type of the capacity map. The default map |
| 110 | 110 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 111 | 111 |
#ifdef DOXYGEN |
| 112 | 112 |
template <typename GR, typename CAP, typename TR> |
| 113 | 113 |
#else |
| 114 | 114 |
template <typename GR, |
| 115 | 115 |
typename CAP = typename GR::template ArcMap<int>, |
| 116 | 116 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
| 117 | 117 |
#endif |
| 118 | 118 |
class Preflow {
|
| 119 | 119 |
public: |
| 120 | 120 |
|
| 121 | 121 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
| 122 | 122 |
typedef TR Traits; |
| 123 | 123 |
///The type of the digraph the algorithm runs on. |
| 124 | 124 |
typedef typename Traits::Digraph Digraph; |
| 125 | 125 |
///The type of the capacity map. |
| 126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
| 127 | 127 |
///The type of the flow values. |
| 128 |
typedef typename Traits:: |
|
| 128 |
typedef typename Traits::Value Value; |
|
| 129 | 129 |
|
| 130 | 130 |
///The type of the flow map. |
| 131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
| 132 | 132 |
///The type of the elevator. |
| 133 | 133 |
typedef typename Traits::Elevator Elevator; |
| 134 | 134 |
///The type of the tolerance. |
| 135 | 135 |
typedef typename Traits::Tolerance Tolerance; |
| 136 | 136 |
|
| 137 | 137 |
private: |
| 138 | 138 |
|
| 139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 140 | 140 |
|
| 141 | 141 |
const Digraph& _graph; |
| 142 | 142 |
const CapacityMap* _capacity; |
| 143 | 143 |
|
| 144 | 144 |
int _node_num; |
| 145 | 145 |
|
| 146 | 146 |
Node _source, _target; |
| 147 | 147 |
|
| 148 | 148 |
FlowMap* _flow; |
| 149 | 149 |
bool _local_flow; |
| 150 | 150 |
|
| 151 | 151 |
Elevator* _level; |
| 152 | 152 |
bool _local_level; |
| 153 | 153 |
|
| 154 |
typedef typename Digraph::template NodeMap< |
|
| 154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 155 | 155 |
ExcessMap* _excess; |
| 156 | 156 |
|
| 157 | 157 |
Tolerance _tolerance; |
| 158 | 158 |
|
| 159 | 159 |
bool _phase; |
| 160 | 160 |
|
| 161 | 161 |
|
| 162 | 162 |
void createStructures() {
|
| 163 | 163 |
_node_num = countNodes(_graph); |
| 164 | 164 |
|
| 165 | 165 |
if (!_flow) {
|
| 166 | 166 |
_flow = Traits::createFlowMap(_graph); |
| 167 | 167 |
_local_flow = true; |
| 168 | 168 |
} |
| 169 | 169 |
if (!_level) {
|
| 170 | 170 |
_level = Traits::createElevator(_graph, _node_num); |
| 171 | 171 |
_local_level = true; |
| 172 | 172 |
} |
| 173 | 173 |
if (!_excess) {
|
| 174 | 174 |
_excess = new ExcessMap(_graph); |
| 175 | 175 |
} |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
void destroyStructures() {
|
| 179 | 179 |
if (_local_flow) {
|
| 180 | 180 |
delete _flow; |
| 181 | 181 |
} |
| 182 | 182 |
if (_local_level) {
|
| 183 | 183 |
delete _level; |
| 184 | 184 |
} |
| 185 | 185 |
if (_excess) {
|
| 186 | 186 |
delete _excess; |
| ... | ... |
@@ -441,259 +441,259 @@ |
| 441 | 441 |
|
| 442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 443 | 443 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 444 | 444 |
Node u = _graph.target(e); |
| 445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 446 | 446 |
_flow->set(e, (*_capacity)[e]); |
| 447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
| 448 | 448 |
if (u != _target && !_level->active(u)) {
|
| 449 | 449 |
_level->activate(u); |
| 450 | 450 |
} |
| 451 | 451 |
} |
| 452 | 452 |
} |
| 453 | 453 |
} |
| 454 | 454 |
|
| 455 | 455 |
/// \brief Initializes the internal data structures using the |
| 456 | 456 |
/// given flow map. |
| 457 | 457 |
/// |
| 458 | 458 |
/// Initializes the internal data structures and sets the initial |
| 459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
| 461 | 461 |
/// source node the incoming flow should greater or equal to the |
| 462 | 462 |
/// outgoing flow. |
| 463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
| 464 | 464 |
template <typename FlowMap> |
| 465 | 465 |
bool init(const FlowMap& flowMap) {
|
| 466 | 466 |
createStructures(); |
| 467 | 467 |
|
| 468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 469 | 469 |
_flow->set(e, flowMap[e]); |
| 470 | 470 |
} |
| 471 | 471 |
|
| 472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 473 |
|
|
| 473 |
Value excess = 0; |
|
| 474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 475 | 475 |
excess += (*_flow)[e]; |
| 476 | 476 |
} |
| 477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 478 | 478 |
excess -= (*_flow)[e]; |
| 479 | 479 |
} |
| 480 | 480 |
if (excess < 0 && n != _source) return false; |
| 481 | 481 |
(*_excess)[n] = excess; |
| 482 | 482 |
} |
| 483 | 483 |
|
| 484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 485 | 485 |
|
| 486 | 486 |
_level->initStart(); |
| 487 | 487 |
_level->initAddItem(_target); |
| 488 | 488 |
|
| 489 | 489 |
std::vector<Node> queue; |
| 490 | 490 |
reached[_source] = true; |
| 491 | 491 |
|
| 492 | 492 |
queue.push_back(_target); |
| 493 | 493 |
reached[_target] = true; |
| 494 | 494 |
while (!queue.empty()) {
|
| 495 | 495 |
_level->initNewLevel(); |
| 496 | 496 |
std::vector<Node> nqueue; |
| 497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 498 | 498 |
Node n = queue[i]; |
| 499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 500 | 500 |
Node u = _graph.source(e); |
| 501 | 501 |
if (!reached[u] && |
| 502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 503 | 503 |
reached[u] = true; |
| 504 | 504 |
_level->initAddItem(u); |
| 505 | 505 |
nqueue.push_back(u); |
| 506 | 506 |
} |
| 507 | 507 |
} |
| 508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 509 | 509 |
Node v = _graph.target(e); |
| 510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 511 | 511 |
reached[v] = true; |
| 512 | 512 |
_level->initAddItem(v); |
| 513 | 513 |
nqueue.push_back(v); |
| 514 | 514 |
} |
| 515 | 515 |
} |
| 516 | 516 |
} |
| 517 | 517 |
queue.swap(nqueue); |
| 518 | 518 |
} |
| 519 | 519 |
_level->initFinish(); |
| 520 | 520 |
|
| 521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 522 |
|
|
| 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 523 | 523 |
if (_tolerance.positive(rem)) {
|
| 524 | 524 |
Node u = _graph.target(e); |
| 525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 526 | 526 |
_flow->set(e, (*_capacity)[e]); |
| 527 | 527 |
(*_excess)[u] += rem; |
| 528 | 528 |
if (u != _target && !_level->active(u)) {
|
| 529 | 529 |
_level->activate(u); |
| 530 | 530 |
} |
| 531 | 531 |
} |
| 532 | 532 |
} |
| 533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 534 |
|
|
| 534 |
Value rem = (*_flow)[e]; |
|
| 535 | 535 |
if (_tolerance.positive(rem)) {
|
| 536 | 536 |
Node v = _graph.source(e); |
| 537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 538 | 538 |
_flow->set(e, 0); |
| 539 | 539 |
(*_excess)[v] += rem; |
| 540 | 540 |
if (v != _target && !_level->active(v)) {
|
| 541 | 541 |
_level->activate(v); |
| 542 | 542 |
} |
| 543 | 543 |
} |
| 544 | 544 |
} |
| 545 | 545 |
return true; |
| 546 | 546 |
} |
| 547 | 547 |
|
| 548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
| 549 | 549 |
/// |
| 550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
| 551 | 551 |
/// the first phase. After the first phase the maximum flow value |
| 552 | 552 |
/// and a minimum value cut can already be computed, although a |
| 553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
| 554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 555 | 555 |
/// minCut() returns a minimum cut. |
| 556 | 556 |
/// \pre One of the \ref init() functions must be called before |
| 557 | 557 |
/// using this function. |
| 558 | 558 |
void startFirstPhase() {
|
| 559 | 559 |
_phase = true; |
| 560 | 560 |
|
| 561 | 561 |
Node n = _level->highestActive(); |
| 562 | 562 |
int level = _level->highestActiveLevel(); |
| 563 | 563 |
while (n != INVALID) {
|
| 564 | 564 |
int num = _node_num; |
| 565 | 565 |
|
| 566 | 566 |
while (num > 0 && n != INVALID) {
|
| 567 |
|
|
| 567 |
Value excess = (*_excess)[n]; |
|
| 568 | 568 |
int new_level = _level->maxLevel(); |
| 569 | 569 |
|
| 570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 571 |
|
|
| 571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 572 | 572 |
if (!_tolerance.positive(rem)) continue; |
| 573 | 573 |
Node v = _graph.target(e); |
| 574 | 574 |
if ((*_level)[v] < level) {
|
| 575 | 575 |
if (!_level->active(v) && v != _target) {
|
| 576 | 576 |
_level->activate(v); |
| 577 | 577 |
} |
| 578 | 578 |
if (!_tolerance.less(rem, excess)) {
|
| 579 | 579 |
_flow->set(e, (*_flow)[e] + excess); |
| 580 | 580 |
(*_excess)[v] += excess; |
| 581 | 581 |
excess = 0; |
| 582 | 582 |
goto no_more_push_1; |
| 583 | 583 |
} else {
|
| 584 | 584 |
excess -= rem; |
| 585 | 585 |
(*_excess)[v] += rem; |
| 586 | 586 |
_flow->set(e, (*_capacity)[e]); |
| 587 | 587 |
} |
| 588 | 588 |
} else if (new_level > (*_level)[v]) {
|
| 589 | 589 |
new_level = (*_level)[v]; |
| 590 | 590 |
} |
| 591 | 591 |
} |
| 592 | 592 |
|
| 593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 594 |
|
|
| 594 |
Value rem = (*_flow)[e]; |
|
| 595 | 595 |
if (!_tolerance.positive(rem)) continue; |
| 596 | 596 |
Node v = _graph.source(e); |
| 597 | 597 |
if ((*_level)[v] < level) {
|
| 598 | 598 |
if (!_level->active(v) && v != _target) {
|
| 599 | 599 |
_level->activate(v); |
| 600 | 600 |
} |
| 601 | 601 |
if (!_tolerance.less(rem, excess)) {
|
| 602 | 602 |
_flow->set(e, (*_flow)[e] - excess); |
| 603 | 603 |
(*_excess)[v] += excess; |
| 604 | 604 |
excess = 0; |
| 605 | 605 |
goto no_more_push_1; |
| 606 | 606 |
} else {
|
| 607 | 607 |
excess -= rem; |
| 608 | 608 |
(*_excess)[v] += rem; |
| 609 | 609 |
_flow->set(e, 0); |
| 610 | 610 |
} |
| 611 | 611 |
} else if (new_level > (*_level)[v]) {
|
| 612 | 612 |
new_level = (*_level)[v]; |
| 613 | 613 |
} |
| 614 | 614 |
} |
| 615 | 615 |
|
| 616 | 616 |
no_more_push_1: |
| 617 | 617 |
|
| 618 | 618 |
(*_excess)[n] = excess; |
| 619 | 619 |
|
| 620 | 620 |
if (excess != 0) {
|
| 621 | 621 |
if (new_level + 1 < _level->maxLevel()) {
|
| 622 | 622 |
_level->liftHighestActive(new_level + 1); |
| 623 | 623 |
} else {
|
| 624 | 624 |
_level->liftHighestActiveToTop(); |
| 625 | 625 |
} |
| 626 | 626 |
if (_level->emptyLevel(level)) {
|
| 627 | 627 |
_level->liftToTop(level); |
| 628 | 628 |
} |
| 629 | 629 |
} else {
|
| 630 | 630 |
_level->deactivate(n); |
| 631 | 631 |
} |
| 632 | 632 |
|
| 633 | 633 |
n = _level->highestActive(); |
| 634 | 634 |
level = _level->highestActiveLevel(); |
| 635 | 635 |
--num; |
| 636 | 636 |
} |
| 637 | 637 |
|
| 638 | 638 |
num = _node_num * 20; |
| 639 | 639 |
while (num > 0 && n != INVALID) {
|
| 640 |
|
|
| 640 |
Value excess = (*_excess)[n]; |
|
| 641 | 641 |
int new_level = _level->maxLevel(); |
| 642 | 642 |
|
| 643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 644 |
|
|
| 644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 645 | 645 |
if (!_tolerance.positive(rem)) continue; |
| 646 | 646 |
Node v = _graph.target(e); |
| 647 | 647 |
if ((*_level)[v] < level) {
|
| 648 | 648 |
if (!_level->active(v) && v != _target) {
|
| 649 | 649 |
_level->activate(v); |
| 650 | 650 |
} |
| 651 | 651 |
if (!_tolerance.less(rem, excess)) {
|
| 652 | 652 |
_flow->set(e, (*_flow)[e] + excess); |
| 653 | 653 |
(*_excess)[v] += excess; |
| 654 | 654 |
excess = 0; |
| 655 | 655 |
goto no_more_push_2; |
| 656 | 656 |
} else {
|
| 657 | 657 |
excess -= rem; |
| 658 | 658 |
(*_excess)[v] += rem; |
| 659 | 659 |
_flow->set(e, (*_capacity)[e]); |
| 660 | 660 |
} |
| 661 | 661 |
} else if (new_level > (*_level)[v]) {
|
| 662 | 662 |
new_level = (*_level)[v]; |
| 663 | 663 |
} |
| 664 | 664 |
} |
| 665 | 665 |
|
| 666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 667 |
|
|
| 667 |
Value rem = (*_flow)[e]; |
|
| 668 | 668 |
if (!_tolerance.positive(rem)) continue; |
| 669 | 669 |
Node v = _graph.source(e); |
| 670 | 670 |
if ((*_level)[v] < level) {
|
| 671 | 671 |
if (!_level->active(v) && v != _target) {
|
| 672 | 672 |
_level->activate(v); |
| 673 | 673 |
} |
| 674 | 674 |
if (!_tolerance.less(rem, excess)) {
|
| 675 | 675 |
_flow->set(e, (*_flow)[e] - excess); |
| 676 | 676 |
(*_excess)[v] += excess; |
| 677 | 677 |
excess = 0; |
| 678 | 678 |
goto no_more_push_2; |
| 679 | 679 |
} else {
|
| 680 | 680 |
excess -= rem; |
| 681 | 681 |
(*_excess)[v] += rem; |
| 682 | 682 |
_flow->set(e, 0); |
| 683 | 683 |
} |
| 684 | 684 |
} else if (new_level > (*_level)[v]) {
|
| 685 | 685 |
new_level = (*_level)[v]; |
| 686 | 686 |
} |
| 687 | 687 |
} |
| 688 | 688 |
|
| 689 | 689 |
no_more_push_2: |
| 690 | 690 |
|
| 691 | 691 |
(*_excess)[n] = excess; |
| 692 | 692 |
|
| 693 | 693 |
if (excess != 0) {
|
| 694 | 694 |
if (new_level + 1 < _level->maxLevel()) {
|
| 695 | 695 |
_level->liftActiveOn(level, new_level + 1); |
| 696 | 696 |
} else {
|
| 697 | 697 |
_level->liftActiveToTop(level); |
| 698 | 698 |
} |
| 699 | 699 |
if (_level->emptyLevel(level)) {
|
| ... | ... |
@@ -749,93 +749,93 @@ |
| 749 | 749 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 750 | 750 |
Node v = _graph.target(e); |
| 751 | 751 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 752 | 752 |
reached[v] = true; |
| 753 | 753 |
_level->initAddItem(v); |
| 754 | 754 |
nqueue.push_back(v); |
| 755 | 755 |
} |
| 756 | 756 |
} |
| 757 | 757 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 758 | 758 |
Node u = _graph.source(e); |
| 759 | 759 |
if (!reached[u] && |
| 760 | 760 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 761 | 761 |
reached[u] = true; |
| 762 | 762 |
_level->initAddItem(u); |
| 763 | 763 |
nqueue.push_back(u); |
| 764 | 764 |
} |
| 765 | 765 |
} |
| 766 | 766 |
} |
| 767 | 767 |
queue.swap(nqueue); |
| 768 | 768 |
} |
| 769 | 769 |
_level->initFinish(); |
| 770 | 770 |
|
| 771 | 771 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 772 | 772 |
if (!reached[n]) {
|
| 773 | 773 |
_level->dirtyTopButOne(n); |
| 774 | 774 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 775 | 775 |
_level->activate(n); |
| 776 | 776 |
} |
| 777 | 777 |
} |
| 778 | 778 |
|
| 779 | 779 |
Node n; |
| 780 | 780 |
while ((n = _level->highestActive()) != INVALID) {
|
| 781 |
|
|
| 781 |
Value excess = (*_excess)[n]; |
|
| 782 | 782 |
int level = _level->highestActiveLevel(); |
| 783 | 783 |
int new_level = _level->maxLevel(); |
| 784 | 784 |
|
| 785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 786 |
|
|
| 786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 787 | 787 |
if (!_tolerance.positive(rem)) continue; |
| 788 | 788 |
Node v = _graph.target(e); |
| 789 | 789 |
if ((*_level)[v] < level) {
|
| 790 | 790 |
if (!_level->active(v) && v != _source) {
|
| 791 | 791 |
_level->activate(v); |
| 792 | 792 |
} |
| 793 | 793 |
if (!_tolerance.less(rem, excess)) {
|
| 794 | 794 |
_flow->set(e, (*_flow)[e] + excess); |
| 795 | 795 |
(*_excess)[v] += excess; |
| 796 | 796 |
excess = 0; |
| 797 | 797 |
goto no_more_push; |
| 798 | 798 |
} else {
|
| 799 | 799 |
excess -= rem; |
| 800 | 800 |
(*_excess)[v] += rem; |
| 801 | 801 |
_flow->set(e, (*_capacity)[e]); |
| 802 | 802 |
} |
| 803 | 803 |
} else if (new_level > (*_level)[v]) {
|
| 804 | 804 |
new_level = (*_level)[v]; |
| 805 | 805 |
} |
| 806 | 806 |
} |
| 807 | 807 |
|
| 808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 809 |
|
|
| 809 |
Value rem = (*_flow)[e]; |
|
| 810 | 810 |
if (!_tolerance.positive(rem)) continue; |
| 811 | 811 |
Node v = _graph.source(e); |
| 812 | 812 |
if ((*_level)[v] < level) {
|
| 813 | 813 |
if (!_level->active(v) && v != _source) {
|
| 814 | 814 |
_level->activate(v); |
| 815 | 815 |
} |
| 816 | 816 |
if (!_tolerance.less(rem, excess)) {
|
| 817 | 817 |
_flow->set(e, (*_flow)[e] - excess); |
| 818 | 818 |
(*_excess)[v] += excess; |
| 819 | 819 |
excess = 0; |
| 820 | 820 |
goto no_more_push; |
| 821 | 821 |
} else {
|
| 822 | 822 |
excess -= rem; |
| 823 | 823 |
(*_excess)[v] += rem; |
| 824 | 824 |
_flow->set(e, 0); |
| 825 | 825 |
} |
| 826 | 826 |
} else if (new_level > (*_level)[v]) {
|
| 827 | 827 |
new_level = (*_level)[v]; |
| 828 | 828 |
} |
| 829 | 829 |
} |
| 830 | 830 |
|
| 831 | 831 |
no_more_push: |
| 832 | 832 |
|
| 833 | 833 |
(*_excess)[n] = excess; |
| 834 | 834 |
|
| 835 | 835 |
if (excess != 0) {
|
| 836 | 836 |
if (new_level + 1 < _level->maxLevel()) {
|
| 837 | 837 |
_level->liftHighestActive(new_level + 1); |
| 838 | 838 |
} else {
|
| 839 | 839 |
// Calculation error |
| 840 | 840 |
_level->liftHighestActiveToTop(); |
| 841 | 841 |
} |
| ... | ... |
@@ -868,76 +868,76 @@ |
| 868 | 868 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
| 869 | 869 |
/// |
| 870 | 870 |
/// Runs the preflow algorithm to compute the minimum cut. |
| 871 | 871 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
| 872 | 872 |
/// \code |
| 873 | 873 |
/// pf.init(); |
| 874 | 874 |
/// pf.startFirstPhase(); |
| 875 | 875 |
/// \endcode |
| 876 | 876 |
void runMinCut() {
|
| 877 | 877 |
init(); |
| 878 | 878 |
startFirstPhase(); |
| 879 | 879 |
} |
| 880 | 880 |
|
| 881 | 881 |
/// @} |
| 882 | 882 |
|
| 883 | 883 |
/// \name Query Functions |
| 884 | 884 |
/// The results of the preflow algorithm can be obtained using these |
| 885 | 885 |
/// functions.\n |
| 886 | 886 |
/// Either one of the \ref run() "run*()" functions or one of the |
| 887 | 887 |
/// \ref startFirstPhase() "start*()" functions should be called |
| 888 | 888 |
/// before using them. |
| 889 | 889 |
|
| 890 | 890 |
///@{
|
| 891 | 891 |
|
| 892 | 892 |
/// \brief Returns the value of the maximum flow. |
| 893 | 893 |
/// |
| 894 | 894 |
/// Returns the value of the maximum flow by returning the excess |
| 895 | 895 |
/// of the target node. This value equals to the value of |
| 896 | 896 |
/// the maximum flow already after the first phase of the algorithm. |
| 897 | 897 |
/// |
| 898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
| 899 | 899 |
/// using this function. |
| 900 |
|
|
| 900 |
Value flowValue() const {
|
|
| 901 | 901 |
return (*_excess)[_target]; |
| 902 | 902 |
} |
| 903 | 903 |
|
| 904 |
/// \brief Returns the flow on the given arc. |
|
| 904 |
/// \brief Returns the flow value on the given arc. |
|
| 905 | 905 |
/// |
| 906 |
/// Returns the flow on the given arc. This method can |
|
| 906 |
/// Returns the flow value on the given arc. This method can |
|
| 907 | 907 |
/// be called after the second phase of the algorithm. |
| 908 | 908 |
/// |
| 909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
| 910 | 910 |
/// using this function. |
| 911 |
|
|
| 911 |
Value flow(const Arc& arc) const {
|
|
| 912 | 912 |
return (*_flow)[arc]; |
| 913 | 913 |
} |
| 914 | 914 |
|
| 915 | 915 |
/// \brief Returns a const reference to the flow map. |
| 916 | 916 |
/// |
| 917 | 917 |
/// Returns a const reference to the arc map storing the found flow. |
| 918 | 918 |
/// This method can be called after the second phase of the algorithm. |
| 919 | 919 |
/// |
| 920 | 920 |
/// \pre Either \ref run() or \ref init() must be called before |
| 921 | 921 |
/// using this function. |
| 922 | 922 |
const FlowMap& flowMap() const {
|
| 923 | 923 |
return *_flow; |
| 924 | 924 |
} |
| 925 | 925 |
|
| 926 | 926 |
/// \brief Returns \c true when the node is on the source side of the |
| 927 | 927 |
/// minimum cut. |
| 928 | 928 |
/// |
| 929 | 929 |
/// Returns true when the node is on the source side of the found |
| 930 | 930 |
/// minimum cut. This method can be called both after running \ref |
| 931 | 931 |
/// startFirstPhase() and \ref startSecondPhase(). |
| 932 | 932 |
/// |
| 933 | 933 |
/// \pre Either \ref run() or \ref init() must be called before |
| 934 | 934 |
/// using this function. |
| 935 | 935 |
bool minCut(const Node& node) const {
|
| 936 | 936 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
| 937 | 937 |
} |
| 938 | 938 |
|
| 939 | 939 |
/// \brief Gives back a minimum value cut. |
| 940 | 940 |
/// |
| 941 | 941 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
| 942 | 942 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
| 943 | 943 |
/// node map with \c bool (or convertible) value type. |
0 comments (0 inline)