| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
| 20 | 20 |
#define LEMON_BELLMAN_FORD_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
#include <limits> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// This operation traits class defines all computational operations |
| 40 | 40 |
/// and constants that are used in the Bellman-Ford algorithm. |
| 41 | 41 |
/// The default implementation is based on the \c numeric_limits class. |
| 42 | 42 |
/// If the numeric type does not have infinity value, then the maximum |
| 43 | 43 |
/// value is used as extremal infinity value. |
| 44 | 44 |
template < |
| 45 | 45 |
typename V, |
| 46 | 46 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
| 47 | 47 |
struct BellmanFordDefaultOperationTraits {
|
| 48 | 48 |
/// \e |
| 49 | 49 |
typedef V Value; |
| 50 | 50 |
/// \brief Gives back the zero value of the type. |
| 51 | 51 |
static Value zero() {
|
| 52 | 52 |
return static_cast<Value>(0); |
| 53 | 53 |
} |
| 54 | 54 |
/// \brief Gives back the positive infinity value of the type. |
| 55 | 55 |
static Value infinity() {
|
| 56 | 56 |
return std::numeric_limits<Value>::infinity(); |
| 57 | 57 |
} |
| 58 | 58 |
/// \brief Gives back the sum of the given two elements. |
| 59 | 59 |
static Value plus(const Value& left, const Value& right) {
|
| 60 | 60 |
return left + right; |
| 61 | 61 |
} |
| 62 | 62 |
/// \brief Gives back \c true only if the first value is less than |
| 63 | 63 |
/// the second. |
| 64 | 64 |
static bool less(const Value& left, const Value& right) {
|
| 65 | 65 |
return left < right; |
| 66 | 66 |
} |
| 67 | 67 |
}; |
| 68 | 68 |
|
| 69 | 69 |
template <typename V> |
| 70 | 70 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
| 71 | 71 |
typedef V Value; |
| 72 | 72 |
static Value zero() {
|
| 73 | 73 |
return static_cast<Value>(0); |
| 74 | 74 |
} |
| 75 | 75 |
static Value infinity() {
|
| 76 | 76 |
return std::numeric_limits<Value>::max(); |
| 77 | 77 |
} |
| 78 | 78 |
static Value plus(const Value& left, const Value& right) {
|
| 79 | 79 |
if (left == infinity() || right == infinity()) return infinity(); |
| 80 | 80 |
return left + right; |
| 81 | 81 |
} |
| 82 | 82 |
static bool less(const Value& left, const Value& right) {
|
| 83 | 83 |
return left < right; |
| 84 | 84 |
} |
| 85 | 85 |
}; |
| 86 | 86 |
|
| 87 | 87 |
/// \brief Default traits class of BellmanFord class. |
| 88 | 88 |
/// |
| 89 | 89 |
/// Default traits class of BellmanFord class. |
| 90 | 90 |
/// \param GR The type of the digraph. |
| 91 | 91 |
/// \param LEN The type of the length map. |
| 92 | 92 |
template<typename GR, typename LEN> |
| 93 | 93 |
struct BellmanFordDefaultTraits {
|
| 94 | 94 |
/// The type of the digraph the algorithm runs on. |
| 95 | 95 |
typedef GR Digraph; |
| 96 | 96 |
|
| 97 | 97 |
/// \brief The type of the map that stores the arc lengths. |
| 98 | 98 |
/// |
| 99 | 99 |
/// The type of the map that stores the arc lengths. |
| 100 | 100 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 101 | 101 |
typedef LEN LengthMap; |
| 102 | 102 |
|
| 103 | 103 |
/// The type of the arc lengths. |
| 104 | 104 |
typedef typename LEN::Value Value; |
| 105 | 105 |
|
| 106 | 106 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 107 | 107 |
/// |
| 108 | 108 |
/// It defines the used operations and the infinity value for the |
| 109 | 109 |
/// given \c Value type. |
| 110 | 110 |
/// \see BellmanFordDefaultOperationTraits |
| 111 | 111 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 112 | 112 |
|
| 113 | 113 |
/// \brief The type of the map that stores the last arcs of the |
| 114 | 114 |
/// shortest paths. |
| 115 | 115 |
/// |
| 116 | 116 |
/// The type of the map that stores the last |
| 117 | 117 |
/// arcs of the shortest paths. |
| 118 | 118 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 119 | 119 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 120 | 120 |
|
| 121 | 121 |
/// \brief Instantiates a \c PredMap. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This function instantiates a \ref PredMap. |
| 124 | 124 |
/// \param g is the digraph to which we would like to define the |
| 125 | 125 |
/// \ref PredMap. |
| 126 | 126 |
static PredMap *createPredMap(const GR& g) {
|
| 127 | 127 |
return new PredMap(g); |
| 128 | 128 |
} |
| 129 | 129 |
|
| 130 | 130 |
/// \brief The type of the map that stores the distances of the nodes. |
| 131 | 131 |
/// |
| 132 | 132 |
/// The type of the map that stores the distances of the nodes. |
| 133 | 133 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 134 | 134 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
| 135 | 135 |
|
| 136 | 136 |
/// \brief Instantiates a \c DistMap. |
| 137 | 137 |
/// |
| 138 | 138 |
/// This function instantiates a \ref DistMap. |
| 139 | 139 |
/// \param g is the digraph to which we would like to define the |
| 140 | 140 |
/// \ref DistMap. |
| 141 | 141 |
static DistMap *createDistMap(const GR& g) {
|
| 142 | 142 |
return new DistMap(g); |
| 143 | 143 |
} |
| 144 | 144 |
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
/// \brief %BellmanFord algorithm class. |
| 148 | 148 |
/// |
| 149 | 149 |
/// \ingroup shortest_path |
| 150 | 150 |
/// This class provides an efficient implementation of the Bellman-Ford |
| 151 | 151 |
/// algorithm. The maximum time complexity of the algorithm is |
| 152 | 152 |
/// <tt>O(ne)</tt>. |
| 153 | 153 |
/// |
| 154 | 154 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
| 155 | 155 |
/// problem when the arcs can have negative lengths, but the digraph |
| 156 | 156 |
/// should not contain directed cycles with negative total length. |
| 157 | 157 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
| 158 | 158 |
/// algorithm instead, since it is more efficient. |
| 159 | 159 |
/// |
| 160 | 160 |
/// The arc lengths are passed to the algorithm using a |
| 161 | 161 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| 162 | 162 |
/// kind of length. The type of the length values is determined by the |
| 163 | 163 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
| 164 | 164 |
/// |
| 165 | 165 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
| 166 | 166 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
| 167 | 167 |
/// it can be used easier. |
| 168 | 168 |
/// |
| 169 | 169 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 170 | 170 |
/// The default type is \ref ListDigraph. |
| 171 | 171 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 172 | 172 |
/// the lengths of the arcs. The default map type is |
| 173 | 173 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 174 |
/// \tparam TR The traits class that defines various types used by the |
|
| 175 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
|
| 176 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
|
| 177 |
/// In most cases, this parameter should not be set directly, |
|
| 178 |
/// consider to use the named template parameters instead. |
|
| 174 | 179 |
#ifdef DOXYGEN |
| 175 | 180 |
template <typename GR, typename LEN, typename TR> |
| 176 | 181 |
#else |
| 177 | 182 |
template <typename GR=ListDigraph, |
| 178 | 183 |
typename LEN=typename GR::template ArcMap<int>, |
| 179 | 184 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
| 180 | 185 |
#endif |
| 181 | 186 |
class BellmanFord {
|
| 182 | 187 |
public: |
| 183 | 188 |
|
| 184 | 189 |
///The type of the underlying digraph. |
| 185 | 190 |
typedef typename TR::Digraph Digraph; |
| 186 | 191 |
|
| 187 | 192 |
/// \brief The type of the arc lengths. |
| 188 | 193 |
typedef typename TR::LengthMap::Value Value; |
| 189 | 194 |
/// \brief The type of the map that stores the arc lengths. |
| 190 | 195 |
typedef typename TR::LengthMap LengthMap; |
| 191 | 196 |
/// \brief The type of the map that stores the last |
| 192 | 197 |
/// arcs of the shortest paths. |
| 193 | 198 |
typedef typename TR::PredMap PredMap; |
| 194 | 199 |
/// \brief The type of the map that stores the distances of the nodes. |
| 195 | 200 |
typedef typename TR::DistMap DistMap; |
| 196 | 201 |
/// The type of the paths. |
| 197 | 202 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 198 | 203 |
///\brief The \ref BellmanFordDefaultOperationTraits |
| 199 | 204 |
/// "operation traits class" of the algorithm. |
| 200 | 205 |
typedef typename TR::OperationTraits OperationTraits; |
| 201 | 206 |
|
| 202 | 207 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
| 203 | 208 |
typedef TR Traits; |
| 204 | 209 |
|
| 205 | 210 |
private: |
| 206 | 211 |
|
| 207 | 212 |
typedef typename Digraph::Node Node; |
| 208 | 213 |
typedef typename Digraph::NodeIt NodeIt; |
| 209 | 214 |
typedef typename Digraph::Arc Arc; |
| 210 | 215 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 211 | 216 |
|
| 212 | 217 |
// Pointer to the underlying digraph. |
| 213 | 218 |
const Digraph *_gr; |
| 214 | 219 |
// Pointer to the length map |
| 215 | 220 |
const LengthMap *_length; |
| 216 | 221 |
// Pointer to the map of predecessors arcs. |
| 217 | 222 |
PredMap *_pred; |
| 218 | 223 |
// Indicates if _pred is locally allocated (true) or not. |
| 219 | 224 |
bool _local_pred; |
| 220 | 225 |
// Pointer to the map of distances. |
| 221 | 226 |
DistMap *_dist; |
| 222 | 227 |
// Indicates if _dist is locally allocated (true) or not. |
| 223 | 228 |
bool _local_dist; |
| 224 | 229 |
|
| 225 | 230 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 226 | 231 |
MaskMap *_mask; |
| 227 | 232 |
|
| 228 | 233 |
std::vector<Node> _process; |
| 229 | 234 |
|
| 230 | 235 |
// Creates the maps if necessary. |
| 231 | 236 |
void create_maps() {
|
| 232 | 237 |
if(!_pred) {
|
| 233 | 238 |
_local_pred = true; |
| 234 | 239 |
_pred = Traits::createPredMap(*_gr); |
| 235 | 240 |
} |
| 236 | 241 |
if(!_dist) {
|
| 237 | 242 |
_local_dist = true; |
| 238 | 243 |
_dist = Traits::createDistMap(*_gr); |
| 239 | 244 |
} |
| 240 | 245 |
if(!_mask) {
|
| 241 | 246 |
_mask = new MaskMap(*_gr); |
| 242 | 247 |
} |
| 243 | 248 |
} |
| 244 | 249 |
|
| 245 | 250 |
public : |
| 246 | 251 |
|
| 247 | 252 |
typedef BellmanFord Create; |
| 248 | 253 |
|
| 249 | 254 |
/// \name Named Template Parameters |
| 250 | 255 |
|
| 251 | 256 |
///@{
|
| 252 | 257 |
|
| 253 | 258 |
template <class T> |
| 254 | 259 |
struct SetPredMapTraits : public Traits {
|
| 255 | 260 |
typedef T PredMap; |
| 256 | 261 |
static PredMap *createPredMap(const Digraph&) {
|
| 257 | 262 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 258 | 263 |
return 0; // ignore warnings |
| 259 | 264 |
} |
| 260 | 265 |
}; |
| 261 | 266 |
|
| 262 | 267 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 263 | 268 |
/// \c PredMap type. |
| 264 | 269 |
/// |
| 265 | 270 |
/// \ref named-templ-param "Named parameter" for setting |
| 266 | 271 |
/// \c PredMap type. |
| 267 | 272 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 268 | 273 |
template <class T> |
| 269 | 274 |
struct SetPredMap |
| 270 | 275 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 271 | 276 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 272 | 277 |
}; |
| 273 | 278 |
|
| 274 | 279 |
template <class T> |
| 275 | 280 |
struct SetDistMapTraits : public Traits {
|
| 276 | 281 |
typedef T DistMap; |
| 277 | 282 |
static DistMap *createDistMap(const Digraph&) {
|
| 278 | 283 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 279 | 284 |
return 0; // ignore warnings |
| 280 | 285 |
} |
| 281 | 286 |
}; |
| 282 | 287 |
|
| 283 | 288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 284 | 289 |
/// \c DistMap type. |
| 285 | 290 |
/// |
| 286 | 291 |
/// \ref named-templ-param "Named parameter" for setting |
| 287 | 292 |
/// \c DistMap type. |
| 288 | 293 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 289 | 294 |
template <class T> |
| 290 | 295 |
struct SetDistMap |
| 291 | 296 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 292 | 297 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 293 | 298 |
}; |
| 294 | 299 |
|
| 295 | 300 |
template <class T> |
| 296 | 301 |
struct SetOperationTraitsTraits : public Traits {
|
| 297 | 302 |
typedef T OperationTraits; |
| 298 | 303 |
}; |
| 299 | 304 |
|
| 300 | 305 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 301 | 306 |
/// \c OperationTraits type. |
| 302 | 307 |
/// |
| 303 | 308 |
/// \ref named-templ-param "Named parameter" for setting |
| 304 | 309 |
/// \c OperationTraits type. |
| 305 | 310 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
| 306 | 311 |
template <class T> |
| 307 | 312 |
struct SetOperationTraits |
| 308 | 313 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 309 | 314 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 310 | 315 |
Create; |
| 311 | 316 |
}; |
| 312 | 317 |
|
| 313 | 318 |
///@} |
| 314 | 319 |
|
| 315 | 320 |
protected: |
| 316 | 321 |
|
| 317 | 322 |
BellmanFord() {}
|
| 318 | 323 |
|
| 319 | 324 |
public: |
| 320 | 325 |
|
| 321 | 326 |
/// \brief Constructor. |
| 322 | 327 |
/// |
| 323 | 328 |
/// Constructor. |
| 324 | 329 |
/// \param g The digraph the algorithm runs on. |
| 325 | 330 |
/// \param length The length map used by the algorithm. |
| 326 | 331 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
| 327 | 332 |
_gr(&g), _length(&length), |
| 328 | 333 |
_pred(0), _local_pred(false), |
| 329 | 334 |
_dist(0), _local_dist(false), _mask(0) {}
|
| 330 | 335 |
|
| 331 | 336 |
///Destructor. |
| 332 | 337 |
~BellmanFord() {
|
| 333 | 338 |
if(_local_pred) delete _pred; |
| 334 | 339 |
if(_local_dist) delete _dist; |
| 335 | 340 |
if(_mask) delete _mask; |
| 336 | 341 |
} |
| 337 | 342 |
|
| 338 | 343 |
/// \brief Sets the length map. |
| 339 | 344 |
/// |
| 340 | 345 |
/// Sets the length map. |
| 341 | 346 |
/// \return <tt>(*this)</tt> |
| 342 | 347 |
BellmanFord &lengthMap(const LengthMap &map) {
|
| 343 | 348 |
_length = ↦ |
| 344 | 349 |
return *this; |
| 345 | 350 |
} |
| 346 | 351 |
|
| 347 | 352 |
/// \brief Sets the map that stores the predecessor arcs. |
| 348 | 353 |
/// |
| 349 | 354 |
/// Sets the map that stores the predecessor arcs. |
| 350 | 355 |
/// If you don't use this function before calling \ref run() |
| 351 | 356 |
/// or \ref init(), an instance will be allocated automatically. |
| 352 | 357 |
/// The destructor deallocates this automatically allocated map, |
| 353 | 358 |
/// of course. |
| 354 | 359 |
/// \return <tt>(*this)</tt> |
| 355 | 360 |
BellmanFord &predMap(PredMap &map) {
|
| 356 | 361 |
if(_local_pred) {
|
| 357 | 362 |
delete _pred; |
| 358 | 363 |
_local_pred=false; |
| 359 | 364 |
} |
| 360 | 365 |
_pred = ↦ |
| 361 | 366 |
return *this; |
| 362 | 367 |
} |
| 363 | 368 |
|
| 364 | 369 |
/// \brief Sets the map that stores the distances of the nodes. |
| 365 | 370 |
/// |
| 366 | 371 |
/// Sets the map that stores the distances of the nodes calculated |
| 367 | 372 |
/// by the algorithm. |
| 368 | 373 |
/// If you don't use this function before calling \ref run() |
| 369 | 374 |
/// or \ref init(), an instance will be allocated automatically. |
| 370 | 375 |
/// The destructor deallocates this automatically allocated map, |
| 371 | 376 |
/// of course. |
| 372 | 377 |
/// \return <tt>(*this)</tt> |
| 373 | 378 |
BellmanFord &distMap(DistMap &map) {
|
| 374 | 379 |
if(_local_dist) {
|
| 375 | 380 |
delete _dist; |
| 376 | 381 |
_local_dist=false; |
| 377 | 382 |
} |
| 378 | 383 |
_dist = ↦ |
| 379 | 384 |
return *this; |
| 380 | 385 |
} |
| 381 | 386 |
|
| 382 | 387 |
/// \name Execution Control |
| 383 | 388 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
| 384 | 389 |
/// one of the member functions called \ref run().\n |
| 385 | 390 |
/// If you need better control on the execution, you have to call |
| 386 | 391 |
/// \ref init() first, then you can add several source nodes |
| 387 | 392 |
/// with \ref addSource(). Finally the actual path computation can be |
| 388 | 393 |
/// performed with \ref start(), \ref checkedStart() or |
| 389 | 394 |
/// \ref limitedStart(). |
| 390 | 395 |
|
| 391 | 396 |
///@{
|
| 392 | 397 |
|
| 393 | 398 |
/// \brief Initializes the internal data structures. |
| 394 | 399 |
/// |
| 395 | 400 |
/// Initializes the internal data structures. The optional parameter |
| 396 | 401 |
/// is the initial distance of each node. |
| 397 | 402 |
void init(const Value value = OperationTraits::infinity()) {
|
| 398 | 403 |
create_maps(); |
| 399 | 404 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
| 400 | 405 |
_pred->set(it, INVALID); |
| 401 | 406 |
_dist->set(it, value); |
| 402 | 407 |
} |
| 403 | 408 |
_process.clear(); |
| 404 | 409 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
| 405 | 410 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
| 406 | 411 |
_process.push_back(it); |
| 407 | 412 |
_mask->set(it, true); |
| 408 | 413 |
} |
| 409 | 414 |
} else {
|
| 410 | 415 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
| 411 | 416 |
_mask->set(it, false); |
| 412 | 417 |
} |
| 413 | 418 |
} |
| 414 | 419 |
} |
| 415 | 420 |
|
| 416 | 421 |
/// \brief Adds a new source node. |
| 417 | 422 |
/// |
| 418 | 423 |
/// This function adds a new source node. The optional second parameter |
| 419 | 424 |
/// is the initial distance of the node. |
| 420 | 425 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
| 421 | 426 |
_dist->set(source, dst); |
| 422 | 427 |
if (!(*_mask)[source]) {
|
| 423 | 428 |
_process.push_back(source); |
| 424 | 429 |
_mask->set(source, true); |
| 425 | 430 |
} |
| 426 | 431 |
} |
| 427 | 432 |
|
| 428 | 433 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
| 429 | 434 |
/// |
| 430 | 435 |
/// If the algoritm calculated the distances in the previous round |
| 431 | 436 |
/// exactly for the paths of at most \c k arcs, then this function |
| 432 | 437 |
/// will calculate the distances exactly for the paths of at most |
| 433 | 438 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
| 434 | 439 |
/// calculates the shortest path distances exactly for the paths |
| 435 | 440 |
/// consisting of at most \c k arcs. |
| 436 | 441 |
/// |
| 437 | 442 |
/// \warning The paths with limited arc number cannot be retrieved |
| 438 | 443 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 439 | 444 |
/// need the shortest paths and not only the distances, you should |
| 440 | 445 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 441 | 446 |
/// and build the path manually. |
| 442 | 447 |
/// |
| 443 | 448 |
/// \return \c true when the algorithm have not found more shorter |
| 444 | 449 |
/// paths. |
| 445 | 450 |
/// |
| 446 | 451 |
/// \see ActiveIt |
| 447 | 452 |
bool processNextRound() {
|
| 448 | 453 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 449 | 454 |
_mask->set(_process[i], false); |
| 450 | 455 |
} |
| 451 | 456 |
std::vector<Node> nextProcess; |
| 452 | 457 |
std::vector<Value> values(_process.size()); |
| 453 | 458 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 454 | 459 |
values[i] = (*_dist)[_process[i]]; |
| 455 | 460 |
} |
| 456 | 461 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 457 | 462 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
| 458 | 463 |
Node target = _gr->target(it); |
| 459 | 464 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
| 460 | 465 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
| 461 | 466 |
_pred->set(target, it); |
| 462 | 467 |
_dist->set(target, relaxed); |
| 463 | 468 |
if (!(*_mask)[target]) {
|
| 464 | 469 |
_mask->set(target, true); |
| 465 | 470 |
nextProcess.push_back(target); |
| 466 | 471 |
} |
| 467 | 472 |
} |
| 468 | 473 |
} |
| 469 | 474 |
} |
| 470 | 475 |
_process.swap(nextProcess); |
| 471 | 476 |
return _process.empty(); |
| 472 | 477 |
} |
| 473 | 478 |
|
| 474 | 479 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
| 475 | 480 |
/// |
| 476 | 481 |
/// If the algorithm calculated the distances in the previous round |
| 477 | 482 |
/// at least for the paths of at most \c k arcs, then this function |
| 478 | 483 |
/// will calculate the distances at least for the paths of at most |
| 479 | 484 |
/// <tt>k+1</tt> arcs. |
| 480 | 485 |
/// This function does not make it possible to calculate the shortest |
| 481 | 486 |
/// path distances exactly for paths consisting of at most \c k arcs, |
| 482 | 487 |
/// this is why it is called weak round. |
| 483 | 488 |
/// |
| 484 | 489 |
/// \return \c true when the algorithm have not found more shorter |
| 485 | 490 |
/// paths. |
| 486 | 491 |
/// |
| 487 | 492 |
/// \see ActiveIt |
| 488 | 493 |
bool processNextWeakRound() {
|
| 489 | 494 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 490 | 495 |
_mask->set(_process[i], false); |
| 491 | 496 |
} |
| 492 | 497 |
std::vector<Node> nextProcess; |
| 493 | 498 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 494 | 499 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
| 495 | 500 |
Node target = _gr->target(it); |
| 496 | 501 |
Value relaxed = |
| 497 | 502 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
| 498 | 503 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
| 499 | 504 |
_pred->set(target, it); |
| 500 | 505 |
_dist->set(target, relaxed); |
| 501 | 506 |
if (!(*_mask)[target]) {
|
| 502 | 507 |
_mask->set(target, true); |
| 503 | 508 |
nextProcess.push_back(target); |
| 504 | 509 |
} |
| 505 | 510 |
} |
| 506 | 511 |
} |
| 507 | 512 |
} |
| 508 | 513 |
_process.swap(nextProcess); |
| 509 | 514 |
return _process.empty(); |
| 510 | 515 |
} |
| 511 | 516 |
|
| 512 | 517 |
/// \brief Executes the algorithm. |
| 513 | 518 |
/// |
| 514 | 519 |
/// Executes the algorithm. |
| 515 | 520 |
/// |
| 516 | 521 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 517 | 522 |
/// in order to compute the shortest path to each node. |
| 518 | 523 |
/// |
| 519 | 524 |
/// The algorithm computes |
| 520 | 525 |
/// - the shortest path tree (forest), |
| 521 | 526 |
/// - the distance of each node from the root(s). |
| 522 | 527 |
/// |
| 523 | 528 |
/// \pre init() must be called and at least one root node should be |
| 524 | 529 |
/// added with addSource() before using this function. |
| 525 | 530 |
void start() {
|
| 526 | 531 |
int num = countNodes(*_gr) - 1; |
| 527 | 532 |
for (int i = 0; i < num; ++i) {
|
| 528 | 533 |
if (processNextWeakRound()) break; |
| 529 | 534 |
} |
| 530 | 535 |
} |
| 531 | 536 |
|
| 532 | 537 |
/// \brief Executes the algorithm and checks the negative cycles. |
| 533 | 538 |
/// |
| 534 | 539 |
/// Executes the algorithm and checks the negative cycles. |
| 535 | 540 |
/// |
| 536 | 541 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 537 | 542 |
/// in order to compute the shortest path to each node and also checks |
| 538 | 543 |
/// if the digraph contains cycles with negative total length. |
| 539 | 544 |
/// |
| 540 | 545 |
/// The algorithm computes |
| 541 | 546 |
/// - the shortest path tree (forest), |
| 542 | 547 |
/// - the distance of each node from the root(s). |
| 543 | 548 |
/// |
| 544 | 549 |
/// \return \c false if there is a negative cycle in the digraph. |
| 545 | 550 |
/// |
| 546 | 551 |
/// \pre init() must be called and at least one root node should be |
| 547 | 552 |
/// added with addSource() before using this function. |
| 548 | 553 |
bool checkedStart() {
|
| 549 | 554 |
int num = countNodes(*_gr); |
| 550 | 555 |
for (int i = 0; i < num; ++i) {
|
| 551 | 556 |
if (processNextWeakRound()) return true; |
| 552 | 557 |
} |
| 553 | 558 |
return _process.empty(); |
| 554 | 559 |
} |
| 555 | 560 |
|
| 556 | 561 |
/// \brief Executes the algorithm with arc number limit. |
| 557 | 562 |
/// |
| 558 | 563 |
/// Executes the algorithm with arc number limit. |
| 559 | 564 |
/// |
| 560 | 565 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 561 | 566 |
/// in order to compute the shortest path distance for each node |
| 562 | 567 |
/// using only the paths consisting of at most \c num arcs. |
| 563 | 568 |
/// |
| 564 | 569 |
/// The algorithm computes |
| 565 | 570 |
/// - the limited distance of each node from the root(s), |
| 566 | 571 |
/// - the predecessor arc for each node. |
| 567 | 572 |
/// |
| 568 | 573 |
/// \warning The paths with limited arc number cannot be retrieved |
| 569 | 574 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 570 | 575 |
/// need the shortest paths and not only the distances, you should |
| 571 | 576 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 572 | 577 |
/// and build the path manually. |
| 573 | 578 |
/// |
| 574 | 579 |
/// \pre init() must be called and at least one root node should be |
| 575 | 580 |
/// added with addSource() before using this function. |
| 576 | 581 |
void limitedStart(int num) {
|
| 577 | 582 |
for (int i = 0; i < num; ++i) {
|
| 578 | 583 |
if (processNextRound()) break; |
| 579 | 584 |
} |
| 580 | 585 |
} |
| 581 | 586 |
|
| 582 | 587 |
/// \brief Runs the algorithm from the given root node. |
| 583 | 588 |
/// |
| 584 | 589 |
/// This method runs the Bellman-Ford algorithm from the given root |
| 585 | 590 |
/// node \c s in order to compute the shortest path to each node. |
| 586 | 591 |
/// |
| 587 | 592 |
/// The algorithm computes |
| 588 | 593 |
/// - the shortest path tree (forest), |
| 589 | 594 |
/// - the distance of each node from the root(s). |
| 590 | 595 |
/// |
| 591 | 596 |
/// \note bf.run(s) is just a shortcut of the following code. |
| 592 | 597 |
/// \code |
| 593 | 598 |
/// bf.init(); |
| 594 | 599 |
/// bf.addSource(s); |
| 595 | 600 |
/// bf.start(); |
| 596 | 601 |
/// \endcode |
| 597 | 602 |
void run(Node s) {
|
| 598 | 603 |
init(); |
| 599 | 604 |
addSource(s); |
| 600 | 605 |
start(); |
| 601 | 606 |
} |
| 602 | 607 |
|
| 603 | 608 |
/// \brief Runs the algorithm from the given root node with arc |
| 604 | 609 |
/// number limit. |
| 605 | 610 |
/// |
| 606 | 611 |
/// This method runs the Bellman-Ford algorithm from the given root |
| 607 | 612 |
/// node \c s in order to compute the shortest path distance for each |
| 608 | 613 |
/// node using only the paths consisting of at most \c num arcs. |
| 609 | 614 |
/// |
| 610 | 615 |
/// The algorithm computes |
| 611 | 616 |
/// - the limited distance of each node from the root(s), |
| 612 | 617 |
/// - the predecessor arc for each node. |
| 613 | 618 |
/// |
| 614 | 619 |
/// \warning The paths with limited arc number cannot be retrieved |
| 615 | 620 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 616 | 621 |
/// need the shortest paths and not only the distances, you should |
| 617 | 622 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 618 | 623 |
/// and build the path manually. |
| 619 | 624 |
/// |
| 620 | 625 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
| 621 | 626 |
/// \code |
| 622 | 627 |
/// bf.init(); |
| 623 | 628 |
/// bf.addSource(s); |
| 624 | 629 |
/// bf.limitedStart(num); |
| 625 | 630 |
/// \endcode |
| 626 | 631 |
void run(Node s, int num) {
|
| 627 | 632 |
init(); |
| 628 | 633 |
addSource(s); |
| 629 | 634 |
limitedStart(num); |
| 630 | 635 |
} |
| 631 | 636 |
|
| 632 | 637 |
///@} |
| 633 | 638 |
|
| 634 | 639 |
/// \brief LEMON iterator for getting the active nodes. |
| 635 | 640 |
/// |
| 636 | 641 |
/// This class provides a common style LEMON iterator that traverses |
| 637 | 642 |
/// the active nodes of the Bellman-Ford algorithm after the last |
| 638 | 643 |
/// phase. These nodes should be checked in the next phase to |
| 639 | 644 |
/// find augmenting arcs outgoing from them. |
| 640 | 645 |
class ActiveIt {
|
| 641 | 646 |
public: |
| 642 | 647 |
|
| 643 | 648 |
/// \brief Constructor. |
| 644 | 649 |
/// |
| 645 | 650 |
/// Constructor for getting the active nodes of the given BellmanFord |
| 646 | 651 |
/// instance. |
| 647 | 652 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 648 | 653 |
{
|
| 649 | 654 |
_index = _algorithm->_process.size() - 1; |
| 650 | 655 |
} |
| 651 | 656 |
|
| 652 | 657 |
/// \brief Invalid constructor. |
| 653 | 658 |
/// |
| 654 | 659 |
/// Invalid constructor. |
| 655 | 660 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
| 656 | 661 |
|
| 657 | 662 |
/// \brief Conversion to \c Node. |
| 658 | 663 |
/// |
| 659 | 664 |
/// Conversion to \c Node. |
| 660 | 665 |
operator Node() const {
|
| 661 | 666 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 662 | 667 |
} |
| 663 | 668 |
|
| 664 | 669 |
/// \brief Increment operator. |
| 665 | 670 |
/// |
| 666 | 671 |
/// Increment operator. |
| 667 | 672 |
ActiveIt& operator++() {
|
| 668 | 673 |
--_index; |
| 669 | 674 |
return *this; |
| 670 | 675 |
} |
| 671 | 676 |
|
| 672 | 677 |
bool operator==(const ActiveIt& it) const {
|
| 673 | 678 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
| 674 | 679 |
} |
| 675 | 680 |
bool operator!=(const ActiveIt& it) const {
|
| 676 | 681 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
| 677 | 682 |
} |
| 678 | 683 |
bool operator<(const ActiveIt& it) const {
|
| 679 | 684 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
| 680 | 685 |
} |
| 681 | 686 |
|
| 682 | 687 |
private: |
| 683 | 688 |
const BellmanFord* _algorithm; |
| 684 | 689 |
int _index; |
| 685 | 690 |
}; |
| 686 | 691 |
|
| 687 | 692 |
/// \name Query Functions |
| 688 | 693 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
| 689 | 694 |
/// functions.\n |
| 690 | 695 |
/// Either \ref run() or \ref init() should be called before using them. |
| 691 | 696 |
|
| 692 | 697 |
///@{
|
| 693 | 698 |
|
| 694 | 699 |
/// \brief The shortest path to the given node. |
| 695 | 700 |
/// |
| 696 | 701 |
/// Gives back the shortest path to the given node from the root(s). |
| 697 | 702 |
/// |
| 698 | 703 |
/// \warning \c t should be reached from the root(s). |
| 699 | 704 |
/// |
| 700 | 705 |
/// \pre Either \ref run() or \ref init() must be called before |
| 701 | 706 |
/// using this function. |
| 702 | 707 |
Path path(Node t) const |
| 703 | 708 |
{
|
| 704 | 709 |
return Path(*_gr, *_pred, t); |
| 705 | 710 |
} |
| 706 | 711 |
|
| 707 | 712 |
/// \brief The distance of the given node from the root(s). |
| 708 | 713 |
/// |
| 709 | 714 |
/// Returns the distance of the given node from the root(s). |
| 710 | 715 |
/// |
| 711 | 716 |
/// \warning If node \c v is not reached from the root(s), then |
| 712 | 717 |
/// the return value of this function is undefined. |
| 713 | 718 |
/// |
| 714 | 719 |
/// \pre Either \ref run() or \ref init() must be called before |
| 715 | 720 |
/// using this function. |
| 716 | 721 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 717 | 722 |
|
| 718 | 723 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
| 719 | 724 |
/// the given node. |
| 720 | 725 |
/// |
| 721 | 726 |
/// This function returns the 'previous arc' of the shortest path |
| 722 | 727 |
/// tree for node \c v, i.e. it returns the last arc of a |
| 723 | 728 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
| 724 | 729 |
/// is not reached from the root(s) or if \c v is a root. |
| 725 | 730 |
/// |
| 726 | 731 |
/// The shortest path tree used here is equal to the shortest path |
| 727 | 732 |
/// tree used in \ref predNode() and \ref predMap(). |
| 728 | 733 |
/// |
| 729 | 734 |
/// \pre Either \ref run() or \ref init() must be called before |
| 730 | 735 |
/// using this function. |
| 731 | 736 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 732 | 737 |
|
| 733 | 738 |
/// \brief Returns the 'previous node' of the shortest path tree for |
| 734 | 739 |
/// the given node. |
| 735 | 740 |
/// |
| 736 | 741 |
/// This function returns the 'previous node' of the shortest path |
| 737 | 742 |
/// tree for node \c v, i.e. it returns the last but one node of |
| 738 | 743 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
| 739 | 744 |
/// is not reached from the root(s) or if \c v is a root. |
| 740 | 745 |
/// |
| 741 | 746 |
/// The shortest path tree used here is equal to the shortest path |
| 742 | 747 |
/// tree used in \ref predArc() and \ref predMap(). |
| 743 | 748 |
/// |
| 744 | 749 |
/// \pre Either \ref run() or \ref init() must be called before |
| 745 | 750 |
/// using this function. |
| 746 | 751 |
Node predNode(Node v) const {
|
| 747 | 752 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
| 748 | 753 |
} |
| 749 | 754 |
|
| 750 | 755 |
/// \brief Returns a const reference to the node map that stores the |
| 751 | 756 |
/// distances of the nodes. |
| 752 | 757 |
/// |
| 753 | 758 |
/// Returns a const reference to the node map that stores the distances |
| 754 | 759 |
/// of the nodes calculated by the algorithm. |
| 755 | 760 |
/// |
| 756 | 761 |
/// \pre Either \ref run() or \ref init() must be called before |
| 757 | 762 |
/// using this function. |
| 758 | 763 |
const DistMap &distMap() const { return *_dist;}
|
| 759 | 764 |
|
| 760 | 765 |
/// \brief Returns a const reference to the node map that stores the |
| 761 | 766 |
/// predecessor arcs. |
| 762 | 767 |
/// |
| 763 | 768 |
/// Returns a const reference to the node map that stores the predecessor |
| 764 | 769 |
/// arcs, which form the shortest path tree (forest). |
| 765 | 770 |
/// |
| 766 | 771 |
/// \pre Either \ref run() or \ref init() must be called before |
| 767 | 772 |
/// using this function. |
| 768 | 773 |
const PredMap &predMap() const { return *_pred; }
|
| 769 | 774 |
|
| 770 | 775 |
/// \brief Checks if a node is reached from the root(s). |
| 771 | 776 |
/// |
| 772 | 777 |
/// Returns \c true if \c v is reached from the root(s). |
| 773 | 778 |
/// |
| 774 | 779 |
/// \pre Either \ref run() or \ref init() must be called before |
| 775 | 780 |
/// using this function. |
| 776 | 781 |
bool reached(Node v) const {
|
| 777 | 782 |
return (*_dist)[v] != OperationTraits::infinity(); |
| 778 | 783 |
} |
| 779 | 784 |
|
| 780 | 785 |
/// \brief Gives back a negative cycle. |
| 781 | 786 |
/// |
| 782 | 787 |
/// This function gives back a directed cycle with negative total |
| 783 | 788 |
/// length if the algorithm has already found one. |
| 784 | 789 |
/// Otherwise it gives back an empty path. |
| 785 | 790 |
lemon::Path<Digraph> negativeCycle() const {
|
| 786 | 791 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
| 787 | 792 |
lemon::Path<Digraph> cycle; |
| 788 | 793 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 789 | 794 |
if (state[_process[i]] != -1) continue; |
| 790 | 795 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
| 791 | 796 |
v = _gr->source((*_pred)[v])) {
|
| 792 | 797 |
if (state[v] == i) {
|
| 793 | 798 |
cycle.addFront((*_pred)[v]); |
| 794 | 799 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
| 795 | 800 |
u = _gr->source((*_pred)[u])) {
|
| 796 | 801 |
cycle.addFront((*_pred)[u]); |
| 797 | 802 |
} |
| 798 | 803 |
return cycle; |
| 799 | 804 |
} |
| 800 | 805 |
else if (state[v] >= 0) {
|
| 801 | 806 |
break; |
| 802 | 807 |
} |
| 803 | 808 |
state[v] = i; |
| 804 | 809 |
} |
| 805 | 810 |
} |
| 806 | 811 |
return cycle; |
| 807 | 812 |
} |
| 808 | 813 |
|
| 809 | 814 |
///@} |
| 810 | 815 |
}; |
| 811 | 816 |
|
| 812 | 817 |
/// \brief Default traits class of bellmanFord() function. |
| 813 | 818 |
/// |
| 814 | 819 |
/// Default traits class of bellmanFord() function. |
| 815 | 820 |
/// \tparam GR The type of the digraph. |
| 816 | 821 |
/// \tparam LEN The type of the length map. |
| 817 | 822 |
template <typename GR, typename LEN> |
| 818 | 823 |
struct BellmanFordWizardDefaultTraits {
|
| 819 | 824 |
/// The type of the digraph the algorithm runs on. |
| 820 | 825 |
typedef GR Digraph; |
| 821 | 826 |
|
| 822 | 827 |
/// \brief The type of the map that stores the arc lengths. |
| 823 | 828 |
/// |
| 824 | 829 |
/// The type of the map that stores the arc lengths. |
| 825 | 830 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 826 | 831 |
typedef LEN LengthMap; |
| 827 | 832 |
|
| 828 | 833 |
/// The type of the arc lengths. |
| 829 | 834 |
typedef typename LEN::Value Value; |
| 830 | 835 |
|
| 831 | 836 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 832 | 837 |
/// |
| 833 | 838 |
/// It defines the used operations and the infinity value for the |
| 834 | 839 |
/// given \c Value type. |
| 835 | 840 |
/// \see BellmanFordDefaultOperationTraits |
| 836 | 841 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 837 | 842 |
|
| 838 | 843 |
/// \brief The type of the map that stores the last |
| 839 | 844 |
/// arcs of the shortest paths. |
| 840 | 845 |
/// |
| 841 | 846 |
/// The type of the map that stores the last arcs of the shortest paths. |
| 842 | 847 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 843 | 848 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 844 | 849 |
|
| 845 | 850 |
/// \brief Instantiates a \c PredMap. |
| 846 | 851 |
/// |
| 847 | 852 |
/// This function instantiates a \ref PredMap. |
| 848 | 853 |
/// \param g is the digraph to which we would like to define the |
| 849 | 854 |
/// \ref PredMap. |
| 850 | 855 |
static PredMap *createPredMap(const GR &g) {
|
| 851 | 856 |
return new PredMap(g); |
| 852 | 857 |
} |
| 853 | 858 |
|
| 854 | 859 |
/// \brief The type of the map that stores the distances of the nodes. |
| 855 | 860 |
/// |
| 856 | 861 |
/// The type of the map that stores the distances of the nodes. |
| 857 | 862 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 858 | 863 |
typedef typename GR::template NodeMap<Value> DistMap; |
| 859 | 864 |
|
| 860 | 865 |
/// \brief Instantiates a \c DistMap. |
| 861 | 866 |
/// |
| 862 | 867 |
/// This function instantiates a \ref DistMap. |
| 863 | 868 |
/// \param g is the digraph to which we would like to define the |
| 864 | 869 |
/// \ref DistMap. |
| 865 | 870 |
static DistMap *createDistMap(const GR &g) {
|
| 866 | 871 |
return new DistMap(g); |
| 867 | 872 |
} |
| 868 | 873 |
|
| 869 | 874 |
///The type of the shortest paths. |
| 870 | 875 |
|
| 871 | 876 |
///The type of the shortest paths. |
| 872 | 877 |
///It must meet the \ref concepts::Path "Path" concept. |
| 873 | 878 |
typedef lemon::Path<Digraph> Path; |
| 874 | 879 |
}; |
| 875 | 880 |
|
| 876 | 881 |
/// \brief Default traits class used by BellmanFordWizard. |
| 877 | 882 |
/// |
| 878 | 883 |
/// Default traits class used by BellmanFordWizard. |
| 879 | 884 |
/// \tparam GR The type of the digraph. |
| 880 | 885 |
/// \tparam LEN The type of the length map. |
| 881 | 886 |
template <typename GR, typename LEN> |
| 882 | 887 |
class BellmanFordWizardBase |
| 883 | 888 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
| 884 | 889 |
|
| 885 | 890 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
| 886 | 891 |
protected: |
| 887 | 892 |
// Type of the nodes in the digraph. |
| 888 | 893 |
typedef typename Base::Digraph::Node Node; |
| 889 | 894 |
|
| 890 | 895 |
// Pointer to the underlying digraph. |
| 891 | 896 |
void *_graph; |
| 892 | 897 |
// Pointer to the length map |
| 893 | 898 |
void *_length; |
| 894 | 899 |
// Pointer to the map of predecessors arcs. |
| 895 | 900 |
void *_pred; |
| 896 | 901 |
// Pointer to the map of distances. |
| 897 | 902 |
void *_dist; |
| 898 | 903 |
//Pointer to the shortest path to the target node. |
| 899 | 904 |
void *_path; |
| 900 | 905 |
//Pointer to the distance of the target node. |
| 901 | 906 |
void *_di; |
| 902 | 907 |
|
| 903 | 908 |
public: |
| 904 | 909 |
/// Constructor. |
| 905 | 910 |
|
| 906 | 911 |
/// This constructor does not require parameters, it initiates |
| 907 | 912 |
/// all of the attributes to default values \c 0. |
| 908 | 913 |
BellmanFordWizardBase() : |
| 909 | 914 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 910 | 915 |
|
| 911 | 916 |
/// Constructor. |
| 912 | 917 |
|
| 913 | 918 |
/// This constructor requires two parameters, |
| 914 | 919 |
/// others are initiated to \c 0. |
| 915 | 920 |
/// \param gr The digraph the algorithm runs on. |
| 916 | 921 |
/// \param len The length map. |
| 917 | 922 |
BellmanFordWizardBase(const GR& gr, |
| 918 | 923 |
const LEN& len) : |
| 919 | 924 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
| 920 | 925 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
| 921 | 926 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
| 922 | 927 |
|
| 923 | 928 |
}; |
| 924 | 929 |
|
| 925 | 930 |
/// \brief Auxiliary class for the function-type interface of the |
| 926 | 931 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 927 | 932 |
/// |
| 928 | 933 |
/// This auxiliary class is created to implement the |
| 929 | 934 |
/// \ref bellmanFord() "function-type interface" of the |
| 930 | 935 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 931 | 936 |
/// It does not have own \ref run() method, it uses the |
| 932 | 937 |
/// functions and features of the plain \ref BellmanFord. |
| 933 | 938 |
/// |
| 934 | 939 |
/// This class should only be used through the \ref bellmanFord() |
| 935 | 940 |
/// function, which makes it easier to use the algorithm. |
| 941 |
/// |
|
| 942 |
/// \tparam TR The traits class that defines various types used by the |
|
| 943 |
/// algorithm. |
|
| 936 | 944 |
template<class TR> |
| 937 | 945 |
class BellmanFordWizard : public TR {
|
| 938 | 946 |
typedef TR Base; |
| 939 | 947 |
|
| 940 | 948 |
typedef typename TR::Digraph Digraph; |
| 941 | 949 |
|
| 942 | 950 |
typedef typename Digraph::Node Node; |
| 943 | 951 |
typedef typename Digraph::NodeIt NodeIt; |
| 944 | 952 |
typedef typename Digraph::Arc Arc; |
| 945 | 953 |
typedef typename Digraph::OutArcIt ArcIt; |
| 946 | 954 |
|
| 947 | 955 |
typedef typename TR::LengthMap LengthMap; |
| 948 | 956 |
typedef typename LengthMap::Value Value; |
| 949 | 957 |
typedef typename TR::PredMap PredMap; |
| 950 | 958 |
typedef typename TR::DistMap DistMap; |
| 951 | 959 |
typedef typename TR::Path Path; |
| 952 | 960 |
|
| 953 | 961 |
public: |
| 954 | 962 |
/// Constructor. |
| 955 | 963 |
BellmanFordWizard() : TR() {}
|
| 956 | 964 |
|
| 957 | 965 |
/// \brief Constructor that requires parameters. |
| 958 | 966 |
/// |
| 959 | 967 |
/// Constructor that requires parameters. |
| 960 | 968 |
/// These parameters will be the default values for the traits class. |
| 961 | 969 |
/// \param gr The digraph the algorithm runs on. |
| 962 | 970 |
/// \param len The length map. |
| 963 | 971 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
| 964 | 972 |
: TR(gr, len) {}
|
| 965 | 973 |
|
| 966 | 974 |
/// \brief Copy constructor |
| 967 | 975 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
| 968 | 976 |
|
| 969 | 977 |
~BellmanFordWizard() {}
|
| 970 | 978 |
|
| 971 | 979 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
| 972 | 980 |
/// |
| 973 | 981 |
/// This method runs the Bellman-Ford algorithm from the given source |
| 974 | 982 |
/// node in order to compute the shortest path to each node. |
| 975 | 983 |
void run(Node s) {
|
| 976 | 984 |
BellmanFord<Digraph,LengthMap,TR> |
| 977 | 985 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 978 | 986 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 979 | 987 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 980 | 988 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 981 | 989 |
bf.run(s); |
| 982 | 990 |
} |
| 983 | 991 |
|
| 984 | 992 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
| 985 | 993 |
/// between \c s and \c t. |
| 986 | 994 |
/// |
| 987 | 995 |
/// This method runs the Bellman-Ford algorithm from node \c s |
| 988 | 996 |
/// in order to compute the shortest path to node \c t. |
| 989 | 997 |
/// Actually, it computes the shortest path to each node, but using |
| 990 | 998 |
/// this function you can retrieve the distance and the shortest path |
| 991 | 999 |
/// for a single target node easier. |
| 992 | 1000 |
/// |
| 993 | 1001 |
/// \return \c true if \c t is reachable form \c s. |
| 994 | 1002 |
bool run(Node s, Node t) {
|
| 995 | 1003 |
BellmanFord<Digraph,LengthMap,TR> |
| 996 | 1004 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 997 | 1005 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 998 | 1006 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 999 | 1007 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1000 | 1008 |
bf.run(s); |
| 1001 | 1009 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
| 1002 | 1010 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
| 1003 | 1011 |
return bf.reached(t); |
| 1004 | 1012 |
} |
| 1005 | 1013 |
|
| 1006 | 1014 |
template<class T> |
| 1007 | 1015 |
struct SetPredMapBase : public Base {
|
| 1008 | 1016 |
typedef T PredMap; |
| 1009 | 1017 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1010 | 1018 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1011 | 1019 |
}; |
| 1012 | 1020 |
|
| 1013 | 1021 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1014 | 1022 |
/// the predecessor map. |
| 1015 | 1023 |
/// |
| 1016 | 1024 |
/// \ref named-templ-param "Named parameter" for setting |
| 1017 | 1025 |
/// the map that stores the predecessor arcs of the nodes. |
| 1018 | 1026 |
template<class T> |
| 1019 | 1027 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
| 1020 | 1028 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1021 | 1029 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
| 1022 | 1030 |
} |
| 1023 | 1031 |
|
| 1024 | 1032 |
template<class T> |
| 1025 | 1033 |
struct SetDistMapBase : public Base {
|
| 1026 | 1034 |
typedef T DistMap; |
| 1027 | 1035 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1028 | 1036 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1029 | 1037 |
}; |
| 1030 | 1038 |
|
| 1031 | 1039 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1032 | 1040 |
/// the distance map. |
| 1033 | 1041 |
/// |
| 1034 | 1042 |
/// \ref named-templ-param "Named parameter" for setting |
| 1035 | 1043 |
/// the map that stores the distances of the nodes calculated |
| 1036 | 1044 |
/// by the algorithm. |
| 1037 | 1045 |
template<class T> |
| 1038 | 1046 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
| 1039 | 1047 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1040 | 1048 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
| 1041 | 1049 |
} |
| 1042 | 1050 |
|
| 1043 | 1051 |
template<class T> |
| 1044 | 1052 |
struct SetPathBase : public Base {
|
| 1045 | 1053 |
typedef T Path; |
| 1046 | 1054 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1047 | 1055 |
}; |
| 1048 | 1056 |
|
| 1049 | 1057 |
/// \brief \ref named-func-param "Named parameter" for getting |
| 1050 | 1058 |
/// the shortest path to the target node. |
| 1051 | 1059 |
/// |
| 1052 | 1060 |
/// \ref named-func-param "Named parameter" for getting |
| 1053 | 1061 |
/// the shortest path to the target node. |
| 1054 | 1062 |
template<class T> |
| 1055 | 1063 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
| 1056 | 1064 |
{
|
| 1057 | 1065 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1058 | 1066 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
| 1059 | 1067 |
} |
| 1060 | 1068 |
|
| 1061 | 1069 |
/// \brief \ref named-func-param "Named parameter" for getting |
| 1062 | 1070 |
/// the distance of the target node. |
| 1063 | 1071 |
/// |
| 1064 | 1072 |
/// \ref named-func-param "Named parameter" for getting |
| 1065 | 1073 |
/// the distance of the target node. |
| 1066 | 1074 |
BellmanFordWizard dist(const Value &d) |
| 1067 | 1075 |
{
|
| 1068 | 1076 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
| 1069 | 1077 |
return *this; |
| 1070 | 1078 |
} |
| 1071 | 1079 |
|
| 1072 | 1080 |
}; |
| 1073 | 1081 |
|
| 1074 | 1082 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
| 1075 | 1083 |
/// algorithm. |
| 1076 | 1084 |
/// |
| 1077 | 1085 |
/// \ingroup shortest_path |
| 1078 | 1086 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
| 1079 | 1087 |
/// algorithm. |
| 1080 | 1088 |
/// |
| 1081 | 1089 |
/// This function also has several \ref named-templ-func-param |
| 1082 | 1090 |
/// "named parameters", they are declared as the members of class |
| 1083 | 1091 |
/// \ref BellmanFordWizard. |
| 1084 | 1092 |
/// The following examples show how to use these parameters. |
| 1085 | 1093 |
/// \code |
| 1086 | 1094 |
/// // Compute shortest path from node s to each node |
| 1087 | 1095 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
| 1088 | 1096 |
/// |
| 1089 | 1097 |
/// // Compute shortest path from s to t |
| 1090 | 1098 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
| 1091 | 1099 |
/// \endcode |
| 1092 | 1100 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
| 1093 | 1101 |
/// to the end of the parameter list. |
| 1094 | 1102 |
/// \sa BellmanFordWizard |
| 1095 | 1103 |
/// \sa BellmanFord |
| 1096 | 1104 |
template<typename GR, typename LEN> |
| 1097 | 1105 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
| 1098 | 1106 |
bellmanFord(const GR& digraph, |
| 1099 | 1107 |
const LEN& length) |
| 1100 | 1108 |
{
|
| 1101 | 1109 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
| 1102 | 1110 |
} |
| 1103 | 1111 |
|
| 1104 | 1112 |
} //END OF NAMESPACE LEMON |
| 1105 | 1113 |
|
| 1106 | 1114 |
#endif |
| 1107 | 1115 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct BfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 66 | 66 |
///By default, it is a NullMap. |
| 67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 68 | 68 |
///Instantiates a \c ProcessedMap. |
| 69 | 69 |
|
| 70 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 71 | 71 |
///\param g is the digraph, to which |
| 72 | 72 |
///we would like to define the \ref ProcessedMap |
| 73 | 73 |
#ifdef DOXYGEN |
| 74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 75 | 75 |
#else |
| 76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 77 | 77 |
#endif |
| 78 | 78 |
{
|
| 79 | 79 |
return new ProcessedMap(); |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
///The type of the map that indicates which nodes are reached. |
| 83 | 83 |
|
| 84 | 84 |
///The type of the map that indicates which nodes are reached. |
| 85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 87 | 87 |
///Instantiates a \c ReachedMap. |
| 88 | 88 |
|
| 89 | 89 |
///This function instantiates a \ref ReachedMap. |
| 90 | 90 |
///\param g is the digraph, to which |
| 91 | 91 |
///we would like to define the \ref ReachedMap. |
| 92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 93 | 93 |
{
|
| 94 | 94 |
return new ReachedMap(g); |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
///The type of the map that stores the distances of the nodes. |
| 98 | 98 |
|
| 99 | 99 |
///The type of the map that stores the distances of the nodes. |
| 100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 102 | 102 |
///Instantiates a \c DistMap. |
| 103 | 103 |
|
| 104 | 104 |
///This function instantiates a \ref DistMap. |
| 105 | 105 |
///\param g is the digraph, to which we would like to define the |
| 106 | 106 |
///\ref DistMap. |
| 107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 108 | 108 |
{
|
| 109 | 109 |
return new DistMap(g); |
| 110 | 110 |
} |
| 111 | 111 |
}; |
| 112 | 112 |
|
| 113 | 113 |
///%BFS algorithm class. |
| 114 | 114 |
|
| 115 | 115 |
///\ingroup search |
| 116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 117 | 117 |
/// |
| 118 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 120 | 120 |
///used easier. |
| 121 | 121 |
/// |
| 122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 123 | 123 |
///The default type is \ref ListDigraph. |
| 124 |
///\tparam TR The traits class that defines various types used by the |
|
| 125 |
///algorithm. By default, it is \ref BfsDefaultTraits |
|
| 126 |
///"BfsDefaultTraits<GR>". |
|
| 127 |
///In most cases, this parameter should not be set directly, |
|
| 128 |
///consider to use the named template parameters instead. |
|
| 124 | 129 |
#ifdef DOXYGEN |
| 125 | 130 |
template <typename GR, |
| 126 | 131 |
typename TR> |
| 127 | 132 |
#else |
| 128 | 133 |
template <typename GR=ListDigraph, |
| 129 | 134 |
typename TR=BfsDefaultTraits<GR> > |
| 130 | 135 |
#endif |
| 131 | 136 |
class Bfs {
|
| 132 | 137 |
public: |
| 133 | 138 |
|
| 134 | 139 |
///The type of the digraph the algorithm runs on. |
| 135 | 140 |
typedef typename TR::Digraph Digraph; |
| 136 | 141 |
|
| 137 | 142 |
///\brief The type of the map that stores the predecessor arcs of the |
| 138 | 143 |
///shortest paths. |
| 139 | 144 |
typedef typename TR::PredMap PredMap; |
| 140 | 145 |
///The type of the map that stores the distances of the nodes. |
| 141 | 146 |
typedef typename TR::DistMap DistMap; |
| 142 | 147 |
///The type of the map that indicates which nodes are reached. |
| 143 | 148 |
typedef typename TR::ReachedMap ReachedMap; |
| 144 | 149 |
///The type of the map that indicates which nodes are processed. |
| 145 | 150 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 146 | 151 |
///The type of the paths. |
| 147 | 152 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 148 | 153 |
|
| 149 | 154 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
| 150 | 155 |
typedef TR Traits; |
| 151 | 156 |
|
| 152 | 157 |
private: |
| 153 | 158 |
|
| 154 | 159 |
typedef typename Digraph::Node Node; |
| 155 | 160 |
typedef typename Digraph::NodeIt NodeIt; |
| 156 | 161 |
typedef typename Digraph::Arc Arc; |
| 157 | 162 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 158 | 163 |
|
| 159 | 164 |
//Pointer to the underlying digraph. |
| 160 | 165 |
const Digraph *G; |
| 161 | 166 |
//Pointer to the map of predecessor arcs. |
| 162 | 167 |
PredMap *_pred; |
| 163 | 168 |
//Indicates if _pred is locally allocated (true) or not. |
| 164 | 169 |
bool local_pred; |
| 165 | 170 |
//Pointer to the map of distances. |
| 166 | 171 |
DistMap *_dist; |
| 167 | 172 |
//Indicates if _dist is locally allocated (true) or not. |
| 168 | 173 |
bool local_dist; |
| 169 | 174 |
//Pointer to the map of reached status of the nodes. |
| 170 | 175 |
ReachedMap *_reached; |
| 171 | 176 |
//Indicates if _reached is locally allocated (true) or not. |
| 172 | 177 |
bool local_reached; |
| 173 | 178 |
//Pointer to the map of processed status of the nodes. |
| 174 | 179 |
ProcessedMap *_processed; |
| 175 | 180 |
//Indicates if _processed is locally allocated (true) or not. |
| 176 | 181 |
bool local_processed; |
| 177 | 182 |
|
| 178 | 183 |
std::vector<typename Digraph::Node> _queue; |
| 179 | 184 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 180 | 185 |
int _curr_dist; |
| 181 | 186 |
|
| 182 | 187 |
//Creates the maps if necessary. |
| 183 | 188 |
void create_maps() |
| 184 | 189 |
{
|
| 185 | 190 |
if(!_pred) {
|
| 186 | 191 |
local_pred = true; |
| 187 | 192 |
_pred = Traits::createPredMap(*G); |
| 188 | 193 |
} |
| 189 | 194 |
if(!_dist) {
|
| 190 | 195 |
local_dist = true; |
| 191 | 196 |
_dist = Traits::createDistMap(*G); |
| 192 | 197 |
} |
| 193 | 198 |
if(!_reached) {
|
| 194 | 199 |
local_reached = true; |
| 195 | 200 |
_reached = Traits::createReachedMap(*G); |
| 196 | 201 |
} |
| 197 | 202 |
if(!_processed) {
|
| 198 | 203 |
local_processed = true; |
| 199 | 204 |
_processed = Traits::createProcessedMap(*G); |
| 200 | 205 |
} |
| 201 | 206 |
} |
| 202 | 207 |
|
| 203 | 208 |
protected: |
| 204 | 209 |
|
| 205 | 210 |
Bfs() {}
|
| 206 | 211 |
|
| 207 | 212 |
public: |
| 208 | 213 |
|
| 209 | 214 |
typedef Bfs Create; |
| 210 | 215 |
|
| 211 | 216 |
///\name Named Template Parameters |
| 212 | 217 |
|
| 213 | 218 |
///@{
|
| 214 | 219 |
|
| 215 | 220 |
template <class T> |
| 216 | 221 |
struct SetPredMapTraits : public Traits {
|
| 217 | 222 |
typedef T PredMap; |
| 218 | 223 |
static PredMap *createPredMap(const Digraph &) |
| 219 | 224 |
{
|
| 220 | 225 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 221 | 226 |
return 0; // ignore warnings |
| 222 | 227 |
} |
| 223 | 228 |
}; |
| 224 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 225 | 230 |
///\c PredMap type. |
| 226 | 231 |
/// |
| 227 | 232 |
///\ref named-templ-param "Named parameter" for setting |
| 228 | 233 |
///\c PredMap type. |
| 229 | 234 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 230 | 235 |
template <class T> |
| 231 | 236 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 232 | 237 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 233 | 238 |
}; |
| 234 | 239 |
|
| 235 | 240 |
template <class T> |
| 236 | 241 |
struct SetDistMapTraits : public Traits {
|
| 237 | 242 |
typedef T DistMap; |
| 238 | 243 |
static DistMap *createDistMap(const Digraph &) |
| 239 | 244 |
{
|
| 240 | 245 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 241 | 246 |
return 0; // ignore warnings |
| 242 | 247 |
} |
| 243 | 248 |
}; |
| 244 | 249 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 245 | 250 |
///\c DistMap type. |
| 246 | 251 |
/// |
| 247 | 252 |
///\ref named-templ-param "Named parameter" for setting |
| 248 | 253 |
///\c DistMap type. |
| 249 | 254 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 250 | 255 |
template <class T> |
| 251 | 256 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 252 | 257 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 253 | 258 |
}; |
| 254 | 259 |
|
| 255 | 260 |
template <class T> |
| 256 | 261 |
struct SetReachedMapTraits : public Traits {
|
| 257 | 262 |
typedef T ReachedMap; |
| 258 | 263 |
static ReachedMap *createReachedMap(const Digraph &) |
| 259 | 264 |
{
|
| 260 | 265 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 261 | 266 |
return 0; // ignore warnings |
| 262 | 267 |
} |
| 263 | 268 |
}; |
| 264 | 269 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 265 | 270 |
///\c ReachedMap type. |
| 266 | 271 |
/// |
| 267 | 272 |
///\ref named-templ-param "Named parameter" for setting |
| 268 | 273 |
///\c ReachedMap type. |
| 269 | 274 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 270 | 275 |
template <class T> |
| 271 | 276 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 272 | 277 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 273 | 278 |
}; |
| 274 | 279 |
|
| 275 | 280 |
template <class T> |
| 276 | 281 |
struct SetProcessedMapTraits : public Traits {
|
| 277 | 282 |
typedef T ProcessedMap; |
| 278 | 283 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 279 | 284 |
{
|
| 280 | 285 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 281 | 286 |
return 0; // ignore warnings |
| 282 | 287 |
} |
| 283 | 288 |
}; |
| 284 | 289 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 285 | 290 |
///\c ProcessedMap type. |
| 286 | 291 |
/// |
| 287 | 292 |
///\ref named-templ-param "Named parameter" for setting |
| 288 | 293 |
///\c ProcessedMap type. |
| 289 | 294 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 290 | 295 |
template <class T> |
| 291 | 296 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 292 | 297 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 293 | 298 |
}; |
| 294 | 299 |
|
| 295 | 300 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 296 | 301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 297 | 302 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 298 | 303 |
{
|
| 299 | 304 |
return new ProcessedMap(g); |
| 300 | 305 |
return 0; // ignore warnings |
| 301 | 306 |
} |
| 302 | 307 |
}; |
| 303 | 308 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 304 | 309 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 305 | 310 |
/// |
| 306 | 311 |
///\ref named-templ-param "Named parameter" for setting |
| 307 | 312 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 308 | 313 |
///If you don't set it explicitly, it will be automatically allocated. |
| 309 | 314 |
struct SetStandardProcessedMap : |
| 310 | 315 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 311 | 316 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 312 | 317 |
}; |
| 313 | 318 |
|
| 314 | 319 |
///@} |
| 315 | 320 |
|
| 316 | 321 |
public: |
| 317 | 322 |
|
| 318 | 323 |
///Constructor. |
| 319 | 324 |
|
| 320 | 325 |
///Constructor. |
| 321 | 326 |
///\param g The digraph the algorithm runs on. |
| 322 | 327 |
Bfs(const Digraph &g) : |
| 323 | 328 |
G(&g), |
| 324 | 329 |
_pred(NULL), local_pred(false), |
| 325 | 330 |
_dist(NULL), local_dist(false), |
| 326 | 331 |
_reached(NULL), local_reached(false), |
| 327 | 332 |
_processed(NULL), local_processed(false) |
| 328 | 333 |
{ }
|
| 329 | 334 |
|
| 330 | 335 |
///Destructor. |
| 331 | 336 |
~Bfs() |
| 332 | 337 |
{
|
| 333 | 338 |
if(local_pred) delete _pred; |
| 334 | 339 |
if(local_dist) delete _dist; |
| 335 | 340 |
if(local_reached) delete _reached; |
| 336 | 341 |
if(local_processed) delete _processed; |
| 337 | 342 |
} |
| 338 | 343 |
|
| 339 | 344 |
///Sets the map that stores the predecessor arcs. |
| 340 | 345 |
|
| 341 | 346 |
///Sets the map that stores the predecessor arcs. |
| 342 | 347 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 343 | 348 |
///or \ref init(), an instance will be allocated automatically. |
| 344 | 349 |
///The destructor deallocates this automatically allocated map, |
| 345 | 350 |
///of course. |
| 346 | 351 |
///\return <tt> (*this) </tt> |
| 347 | 352 |
Bfs &predMap(PredMap &m) |
| 348 | 353 |
{
|
| 349 | 354 |
if(local_pred) {
|
| 350 | 355 |
delete _pred; |
| 351 | 356 |
local_pred=false; |
| 352 | 357 |
} |
| 353 | 358 |
_pred = &m; |
| 354 | 359 |
return *this; |
| 355 | 360 |
} |
| 356 | 361 |
|
| 357 | 362 |
///Sets the map that indicates which nodes are reached. |
| 358 | 363 |
|
| 359 | 364 |
///Sets the map that indicates which nodes are reached. |
| 360 | 365 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 361 | 366 |
///or \ref init(), an instance will be allocated automatically. |
| 362 | 367 |
///The destructor deallocates this automatically allocated map, |
| 363 | 368 |
///of course. |
| 364 | 369 |
///\return <tt> (*this) </tt> |
| 365 | 370 |
Bfs &reachedMap(ReachedMap &m) |
| 366 | 371 |
{
|
| 367 | 372 |
if(local_reached) {
|
| 368 | 373 |
delete _reached; |
| 369 | 374 |
local_reached=false; |
| 370 | 375 |
} |
| 371 | 376 |
_reached = &m; |
| 372 | 377 |
return *this; |
| 373 | 378 |
} |
| 374 | 379 |
|
| 375 | 380 |
///Sets the map that indicates which nodes are processed. |
| 376 | 381 |
|
| 377 | 382 |
///Sets the map that indicates which nodes are processed. |
| 378 | 383 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 379 | 384 |
///or \ref init(), an instance will be allocated automatically. |
| 380 | 385 |
///The destructor deallocates this automatically allocated map, |
| 381 | 386 |
///of course. |
| 382 | 387 |
///\return <tt> (*this) </tt> |
| 383 | 388 |
Bfs &processedMap(ProcessedMap &m) |
| 384 | 389 |
{
|
| 385 | 390 |
if(local_processed) {
|
| 386 | 391 |
delete _processed; |
| 387 | 392 |
local_processed=false; |
| 388 | 393 |
} |
| 389 | 394 |
_processed = &m; |
| 390 | 395 |
return *this; |
| 391 | 396 |
} |
| 392 | 397 |
|
| 393 | 398 |
///Sets the map that stores the distances of the nodes. |
| 394 | 399 |
|
| 395 | 400 |
///Sets the map that stores the distances of the nodes calculated by |
| 396 | 401 |
///the algorithm. |
| 397 | 402 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 398 | 403 |
///or \ref init(), an instance will be allocated automatically. |
| 399 | 404 |
///The destructor deallocates this automatically allocated map, |
| 400 | 405 |
///of course. |
| 401 | 406 |
///\return <tt> (*this) </tt> |
| 402 | 407 |
Bfs &distMap(DistMap &m) |
| 403 | 408 |
{
|
| 404 | 409 |
if(local_dist) {
|
| 405 | 410 |
delete _dist; |
| 406 | 411 |
local_dist=false; |
| 407 | 412 |
} |
| 408 | 413 |
_dist = &m; |
| 409 | 414 |
return *this; |
| 410 | 415 |
} |
| 411 | 416 |
|
| 412 | 417 |
public: |
| 413 | 418 |
|
| 414 | 419 |
///\name Execution Control |
| 415 | 420 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 416 | 421 |
///member functions called \ref run(Node) "run()".\n |
| 417 | 422 |
///If you need better control on the execution, you have to call |
| 418 | 423 |
///\ref init() first, then you can add several source nodes with |
| 419 | 424 |
///\ref addSource(). Finally the actual path computation can be |
| 420 | 425 |
///performed with one of the \ref start() functions. |
| 421 | 426 |
|
| 422 | 427 |
///@{
|
| 423 | 428 |
|
| 424 | 429 |
///\brief Initializes the internal data structures. |
| 425 | 430 |
/// |
| 426 | 431 |
///Initializes the internal data structures. |
| 427 | 432 |
void init() |
| 428 | 433 |
{
|
| 429 | 434 |
create_maps(); |
| 430 | 435 |
_queue.resize(countNodes(*G)); |
| 431 | 436 |
_queue_head=_queue_tail=0; |
| 432 | 437 |
_curr_dist=1; |
| 433 | 438 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 434 | 439 |
_pred->set(u,INVALID); |
| 435 | 440 |
_reached->set(u,false); |
| 436 | 441 |
_processed->set(u,false); |
| 437 | 442 |
} |
| 438 | 443 |
} |
| 439 | 444 |
|
| 440 | 445 |
///Adds a new source node. |
| 441 | 446 |
|
| 442 | 447 |
///Adds a new source node to the set of nodes to be processed. |
| 443 | 448 |
/// |
| 444 | 449 |
void addSource(Node s) |
| 445 | 450 |
{
|
| 446 | 451 |
if(!(*_reached)[s]) |
| 447 | 452 |
{
|
| 448 | 453 |
_reached->set(s,true); |
| 449 | 454 |
_pred->set(s,INVALID); |
| 450 | 455 |
_dist->set(s,0); |
| 451 | 456 |
_queue[_queue_head++]=s; |
| 452 | 457 |
_queue_next_dist=_queue_head; |
| 453 | 458 |
} |
| 454 | 459 |
} |
| 455 | 460 |
|
| 456 | 461 |
///Processes the next node. |
| 457 | 462 |
|
| 458 | 463 |
///Processes the next node. |
| 459 | 464 |
/// |
| 460 | 465 |
///\return The processed node. |
| 461 | 466 |
/// |
| 462 | 467 |
///\pre The queue must not be empty. |
| 463 | 468 |
Node processNextNode() |
| 464 | 469 |
{
|
| 465 | 470 |
if(_queue_tail==_queue_next_dist) {
|
| 466 | 471 |
_curr_dist++; |
| 467 | 472 |
_queue_next_dist=_queue_head; |
| 468 | 473 |
} |
| 469 | 474 |
Node n=_queue[_queue_tail++]; |
| 470 | 475 |
_processed->set(n,true); |
| 471 | 476 |
Node m; |
| 472 | 477 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 473 | 478 |
if(!(*_reached)[m=G->target(e)]) {
|
| 474 | 479 |
_queue[_queue_head++]=m; |
| 475 | 480 |
_reached->set(m,true); |
| 476 | 481 |
_pred->set(m,e); |
| 477 | 482 |
_dist->set(m,_curr_dist); |
| 478 | 483 |
} |
| 479 | 484 |
return n; |
| 480 | 485 |
} |
| 481 | 486 |
|
| 482 | 487 |
///Processes the next node. |
| 483 | 488 |
|
| 484 | 489 |
///Processes the next node and checks if the given target node |
| 485 | 490 |
///is reached. If the target node is reachable from the processed |
| 486 | 491 |
///node, then the \c reach parameter will be set to \c true. |
| 487 | 492 |
/// |
| 488 | 493 |
///\param target The target node. |
| 489 | 494 |
///\retval reach Indicates if the target node is reached. |
| 490 | 495 |
///It should be initially \c false. |
| 491 | 496 |
/// |
| 492 | 497 |
///\return The processed node. |
| 493 | 498 |
/// |
| 494 | 499 |
///\pre The queue must not be empty. |
| 495 | 500 |
Node processNextNode(Node target, bool& reach) |
| 496 | 501 |
{
|
| 497 | 502 |
if(_queue_tail==_queue_next_dist) {
|
| 498 | 503 |
_curr_dist++; |
| 499 | 504 |
_queue_next_dist=_queue_head; |
| 500 | 505 |
} |
| 501 | 506 |
Node n=_queue[_queue_tail++]; |
| 502 | 507 |
_processed->set(n,true); |
| 503 | 508 |
Node m; |
| 504 | 509 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 505 | 510 |
if(!(*_reached)[m=G->target(e)]) {
|
| 506 | 511 |
_queue[_queue_head++]=m; |
| 507 | 512 |
_reached->set(m,true); |
| 508 | 513 |
_pred->set(m,e); |
| 509 | 514 |
_dist->set(m,_curr_dist); |
| 510 | 515 |
reach = reach || (target == m); |
| 511 | 516 |
} |
| 512 | 517 |
return n; |
| 513 | 518 |
} |
| 514 | 519 |
|
| 515 | 520 |
///Processes the next node. |
| 516 | 521 |
|
| 517 | 522 |
///Processes the next node and checks if at least one of reached |
| 518 | 523 |
///nodes has \c true value in the \c nm node map. If one node |
| 519 | 524 |
///with \c true value is reachable from the processed node, then the |
| 520 | 525 |
///\c rnode parameter will be set to the first of such nodes. |
| 521 | 526 |
/// |
| 522 | 527 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 523 | 528 |
///possible targets. |
| 524 | 529 |
///\retval rnode The reached target node. |
| 525 | 530 |
///It should be initially \c INVALID. |
| 526 | 531 |
/// |
| 527 | 532 |
///\return The processed node. |
| 528 | 533 |
/// |
| 529 | 534 |
///\pre The queue must not be empty. |
| 530 | 535 |
template<class NM> |
| 531 | 536 |
Node processNextNode(const NM& nm, Node& rnode) |
| 532 | 537 |
{
|
| 533 | 538 |
if(_queue_tail==_queue_next_dist) {
|
| 534 | 539 |
_curr_dist++; |
| 535 | 540 |
_queue_next_dist=_queue_head; |
| 536 | 541 |
} |
| 537 | 542 |
Node n=_queue[_queue_tail++]; |
| 538 | 543 |
_processed->set(n,true); |
| 539 | 544 |
Node m; |
| 540 | 545 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 541 | 546 |
if(!(*_reached)[m=G->target(e)]) {
|
| 542 | 547 |
_queue[_queue_head++]=m; |
| 543 | 548 |
_reached->set(m,true); |
| 544 | 549 |
_pred->set(m,e); |
| 545 | 550 |
_dist->set(m,_curr_dist); |
| 546 | 551 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 547 | 552 |
} |
| 548 | 553 |
return n; |
| 549 | 554 |
} |
| 550 | 555 |
|
| 551 | 556 |
///The next node to be processed. |
| 552 | 557 |
|
| 553 | 558 |
///Returns the next node to be processed or \c INVALID if the queue |
| 554 | 559 |
///is empty. |
| 555 | 560 |
Node nextNode() const |
| 556 | 561 |
{
|
| 557 | 562 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 558 | 563 |
} |
| 559 | 564 |
|
| 560 | 565 |
///Returns \c false if there are nodes to be processed. |
| 561 | 566 |
|
| 562 | 567 |
///Returns \c false if there are nodes to be processed |
| 563 | 568 |
///in the queue. |
| 564 | 569 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 565 | 570 |
|
| 566 | 571 |
///Returns the number of the nodes to be processed. |
| 567 | 572 |
|
| 568 | 573 |
///Returns the number of the nodes to be processed |
| 569 | 574 |
///in the queue. |
| 570 | 575 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 571 | 576 |
|
| 572 | 577 |
///Executes the algorithm. |
| 573 | 578 |
|
| 574 | 579 |
///Executes the algorithm. |
| 575 | 580 |
/// |
| 576 | 581 |
///This method runs the %BFS algorithm from the root node(s) |
| 577 | 582 |
///in order to compute the shortest path to each node. |
| 578 | 583 |
/// |
| 579 | 584 |
///The algorithm computes |
| 580 | 585 |
///- the shortest path tree (forest), |
| 581 | 586 |
///- the distance of each node from the root(s). |
| 582 | 587 |
/// |
| 583 | 588 |
///\pre init() must be called and at least one root node should be |
| 584 | 589 |
///added with addSource() before using this function. |
| 585 | 590 |
/// |
| 586 | 591 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 587 | 592 |
///\code |
| 588 | 593 |
/// while ( !b.emptyQueue() ) {
|
| 589 | 594 |
/// b.processNextNode(); |
| 590 | 595 |
/// } |
| 591 | 596 |
///\endcode |
| 592 | 597 |
void start() |
| 593 | 598 |
{
|
| 594 | 599 |
while ( !emptyQueue() ) processNextNode(); |
| 595 | 600 |
} |
| 596 | 601 |
|
| 597 | 602 |
///Executes the algorithm until the given target node is reached. |
| 598 | 603 |
|
| 599 | 604 |
///Executes the algorithm until the given target node is reached. |
| 600 | 605 |
/// |
| 601 | 606 |
///This method runs the %BFS algorithm from the root node(s) |
| 602 | 607 |
///in order to compute the shortest path to \c t. |
| 603 | 608 |
/// |
| 604 | 609 |
///The algorithm computes |
| 605 | 610 |
///- the shortest path to \c t, |
| 606 | 611 |
///- the distance of \c t from the root(s). |
| 607 | 612 |
/// |
| 608 | 613 |
///\pre init() must be called and at least one root node should be |
| 609 | 614 |
///added with addSource() before using this function. |
| 610 | 615 |
/// |
| 611 | 616 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 612 | 617 |
///\code |
| 613 | 618 |
/// bool reach = false; |
| 614 | 619 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 615 | 620 |
/// b.processNextNode(t, reach); |
| 616 | 621 |
/// } |
| 617 | 622 |
///\endcode |
| 618 | 623 |
void start(Node t) |
| 619 | 624 |
{
|
| 620 | 625 |
bool reach = false; |
| 621 | 626 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 622 | 627 |
} |
| 623 | 628 |
|
| 624 | 629 |
///Executes the algorithm until a condition is met. |
| 625 | 630 |
|
| 626 | 631 |
///Executes the algorithm until a condition is met. |
| 627 | 632 |
/// |
| 628 | 633 |
///This method runs the %BFS algorithm from the root node(s) in |
| 629 | 634 |
///order to compute the shortest path to a node \c v with |
| 630 | 635 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 631 | 636 |
/// |
| 632 | 637 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 633 | 638 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 634 | 639 |
/// |
| 635 | 640 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 636 | 641 |
///\c INVALID if no such node was found. |
| 637 | 642 |
/// |
| 638 | 643 |
///\pre init() must be called and at least one root node should be |
| 639 | 644 |
///added with addSource() before using this function. |
| 640 | 645 |
/// |
| 641 | 646 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 642 | 647 |
///\code |
| 643 | 648 |
/// Node rnode = INVALID; |
| 644 | 649 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 645 | 650 |
/// b.processNextNode(nm, rnode); |
| 646 | 651 |
/// } |
| 647 | 652 |
/// return rnode; |
| 648 | 653 |
///\endcode |
| 649 | 654 |
template<class NodeBoolMap> |
| 650 | 655 |
Node start(const NodeBoolMap &nm) |
| 651 | 656 |
{
|
| 652 | 657 |
Node rnode = INVALID; |
| 653 | 658 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 654 | 659 |
processNextNode(nm, rnode); |
| 655 | 660 |
} |
| 656 | 661 |
return rnode; |
| 657 | 662 |
} |
| 658 | 663 |
|
| 659 | 664 |
///Runs the algorithm from the given source node. |
| 660 | 665 |
|
| 661 | 666 |
///This method runs the %BFS algorithm from node \c s |
| 662 | 667 |
///in order to compute the shortest path to each node. |
| 663 | 668 |
/// |
| 664 | 669 |
///The algorithm computes |
| 665 | 670 |
///- the shortest path tree, |
| 666 | 671 |
///- the distance of each node from the root. |
| 667 | 672 |
/// |
| 668 | 673 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 669 | 674 |
///\code |
| 670 | 675 |
/// b.init(); |
| 671 | 676 |
/// b.addSource(s); |
| 672 | 677 |
/// b.start(); |
| 673 | 678 |
///\endcode |
| 674 | 679 |
void run(Node s) {
|
| 675 | 680 |
init(); |
| 676 | 681 |
addSource(s); |
| 677 | 682 |
start(); |
| 678 | 683 |
} |
| 679 | 684 |
|
| 680 | 685 |
///Finds the shortest path between \c s and \c t. |
| 681 | 686 |
|
| 682 | 687 |
///This method runs the %BFS algorithm from node \c s |
| 683 | 688 |
///in order to compute the shortest path to node \c t |
| 684 | 689 |
///(it stops searching when \c t is processed). |
| 685 | 690 |
/// |
| 686 | 691 |
///\return \c true if \c t is reachable form \c s. |
| 687 | 692 |
/// |
| 688 | 693 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 689 | 694 |
///shortcut of the following code. |
| 690 | 695 |
///\code |
| 691 | 696 |
/// b.init(); |
| 692 | 697 |
/// b.addSource(s); |
| 693 | 698 |
/// b.start(t); |
| 694 | 699 |
///\endcode |
| 695 | 700 |
bool run(Node s,Node t) {
|
| 696 | 701 |
init(); |
| 697 | 702 |
addSource(s); |
| 698 | 703 |
start(t); |
| 699 | 704 |
return reached(t); |
| 700 | 705 |
} |
| 701 | 706 |
|
| 702 | 707 |
///Runs the algorithm to visit all nodes in the digraph. |
| 703 | 708 |
|
| 704 | 709 |
///This method runs the %BFS algorithm in order to visit all nodes |
| 705 | 710 |
///in the digraph. |
| 706 | 711 |
/// |
| 707 | 712 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 708 | 713 |
///\code |
| 709 | 714 |
/// b.init(); |
| 710 | 715 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 711 | 716 |
/// if (!b.reached(n)) {
|
| 712 | 717 |
/// b.addSource(n); |
| 713 | 718 |
/// b.start(); |
| 714 | 719 |
/// } |
| 715 | 720 |
/// } |
| 716 | 721 |
///\endcode |
| 717 | 722 |
void run() {
|
| 718 | 723 |
init(); |
| 719 | 724 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 720 | 725 |
if (!reached(n)) {
|
| 721 | 726 |
addSource(n); |
| 722 | 727 |
start(); |
| 723 | 728 |
} |
| 724 | 729 |
} |
| 725 | 730 |
} |
| 726 | 731 |
|
| 727 | 732 |
///@} |
| 728 | 733 |
|
| 729 | 734 |
///\name Query Functions |
| 730 | 735 |
///The results of the BFS algorithm can be obtained using these |
| 731 | 736 |
///functions.\n |
| 732 | 737 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 733 | 738 |
///before using them. |
| 734 | 739 |
|
| 735 | 740 |
///@{
|
| 736 | 741 |
|
| 737 | 742 |
///The shortest path to the given node. |
| 738 | 743 |
|
| 739 | 744 |
///Returns the shortest path to the given node from the root(s). |
| 740 | 745 |
/// |
| 741 | 746 |
///\warning \c t should be reached from the root(s). |
| 742 | 747 |
/// |
| 743 | 748 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 744 | 749 |
///must be called before using this function. |
| 745 | 750 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 746 | 751 |
|
| 747 | 752 |
///The distance of the given node from the root(s). |
| 748 | 753 |
|
| 749 | 754 |
///Returns the distance of the given node from the root(s). |
| 750 | 755 |
/// |
| 751 | 756 |
///\warning If node \c v is not reached from the root(s), then |
| 752 | 757 |
///the return value of this function is undefined. |
| 753 | 758 |
/// |
| 754 | 759 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 755 | 760 |
///must be called before using this function. |
| 756 | 761 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 757 | 762 |
|
| 758 | 763 |
///\brief Returns the 'previous arc' of the shortest path tree for |
| 759 | 764 |
///the given node. |
| 760 | 765 |
/// |
| 761 | 766 |
///This function returns the 'previous arc' of the shortest path |
| 762 | 767 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 763 | 768 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 764 | 769 |
///is not reached from the root(s) or if \c v is a root. |
| 765 | 770 |
/// |
| 766 | 771 |
///The shortest path tree used here is equal to the shortest path |
| 767 | 772 |
///tree used in \ref predNode() and \ref predMap(). |
| 768 | 773 |
/// |
| 769 | 774 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 770 | 775 |
///must be called before using this function. |
| 771 | 776 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 772 | 777 |
|
| 773 | 778 |
///\brief Returns the 'previous node' of the shortest path tree for |
| 774 | 779 |
///the given node. |
| 775 | 780 |
/// |
| 776 | 781 |
///This function returns the 'previous node' of the shortest path |
| 777 | 782 |
///tree for the node \c v, i.e. it returns the last but one node |
| 778 | 783 |
///of a shortest path from a root to \c v. It is \c INVALID |
| 779 | 784 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 780 | 785 |
/// |
| 781 | 786 |
///The shortest path tree used here is equal to the shortest path |
| 782 | 787 |
///tree used in \ref predArc() and \ref predMap(). |
| 783 | 788 |
/// |
| 784 | 789 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 785 | 790 |
///must be called before using this function. |
| 786 | 791 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 787 | 792 |
G->source((*_pred)[v]); } |
| 788 | 793 |
|
| 789 | 794 |
///\brief Returns a const reference to the node map that stores the |
| 790 | 795 |
/// distances of the nodes. |
| 791 | 796 |
/// |
| 792 | 797 |
///Returns a const reference to the node map that stores the distances |
| 793 | 798 |
///of the nodes calculated by the algorithm. |
| 794 | 799 |
/// |
| 795 | 800 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 796 | 801 |
///must be called before using this function. |
| 797 | 802 |
const DistMap &distMap() const { return *_dist;}
|
| 798 | 803 |
|
| 799 | 804 |
///\brief Returns a const reference to the node map that stores the |
| 800 | 805 |
///predecessor arcs. |
| 801 | 806 |
/// |
| 802 | 807 |
///Returns a const reference to the node map that stores the predecessor |
| 803 | 808 |
///arcs, which form the shortest path tree (forest). |
| 804 | 809 |
/// |
| 805 | 810 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 806 | 811 |
///must be called before using this function. |
| 807 | 812 |
const PredMap &predMap() const { return *_pred;}
|
| 808 | 813 |
|
| 809 | 814 |
///Checks if the given node is reached from the root(s). |
| 810 | 815 |
|
| 811 | 816 |
///Returns \c true if \c v is reached from the root(s). |
| 812 | 817 |
/// |
| 813 | 818 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 814 | 819 |
///must be called before using this function. |
| 815 | 820 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 816 | 821 |
|
| 817 | 822 |
///@} |
| 818 | 823 |
}; |
| 819 | 824 |
|
| 820 | 825 |
///Default traits class of bfs() function. |
| 821 | 826 |
|
| 822 | 827 |
///Default traits class of bfs() function. |
| 823 | 828 |
///\tparam GR Digraph type. |
| 824 | 829 |
template<class GR> |
| 825 | 830 |
struct BfsWizardDefaultTraits |
| 826 | 831 |
{
|
| 827 | 832 |
///The type of the digraph the algorithm runs on. |
| 828 | 833 |
typedef GR Digraph; |
| 829 | 834 |
|
| 830 | 835 |
///\brief The type of the map that stores the predecessor |
| 831 | 836 |
///arcs of the shortest paths. |
| 832 | 837 |
/// |
| 833 | 838 |
///The type of the map that stores the predecessor |
| 834 | 839 |
///arcs of the shortest paths. |
| 835 | 840 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 836 | 841 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 837 | 842 |
///Instantiates a PredMap. |
| 838 | 843 |
|
| 839 | 844 |
///This function instantiates a PredMap. |
| 840 | 845 |
///\param g is the digraph, to which we would like to define the |
| 841 | 846 |
///PredMap. |
| 842 | 847 |
static PredMap *createPredMap(const Digraph &g) |
| 843 | 848 |
{
|
| 844 | 849 |
return new PredMap(g); |
| 845 | 850 |
} |
| 846 | 851 |
|
| 847 | 852 |
///The type of the map that indicates which nodes are processed. |
| 848 | 853 |
|
| 849 | 854 |
///The type of the map that indicates which nodes are processed. |
| 850 | 855 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 851 | 856 |
///By default, it is a NullMap. |
| 852 | 857 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 853 | 858 |
///Instantiates a ProcessedMap. |
| 854 | 859 |
|
| 855 | 860 |
///This function instantiates a ProcessedMap. |
| 856 | 861 |
///\param g is the digraph, to which |
| 857 | 862 |
///we would like to define the ProcessedMap. |
| 858 | 863 |
#ifdef DOXYGEN |
| 859 | 864 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 860 | 865 |
#else |
| 861 | 866 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 862 | 867 |
#endif |
| 863 | 868 |
{
|
| 864 | 869 |
return new ProcessedMap(); |
| 865 | 870 |
} |
| 866 | 871 |
|
| 867 | 872 |
///The type of the map that indicates which nodes are reached. |
| 868 | 873 |
|
| 869 | 874 |
///The type of the map that indicates which nodes are reached. |
| 870 | 875 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 871 | 876 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 872 | 877 |
///Instantiates a ReachedMap. |
| 873 | 878 |
|
| 874 | 879 |
///This function instantiates a ReachedMap. |
| 875 | 880 |
///\param g is the digraph, to which |
| 876 | 881 |
///we would like to define the ReachedMap. |
| 877 | 882 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 878 | 883 |
{
|
| 879 | 884 |
return new ReachedMap(g); |
| 880 | 885 |
} |
| 881 | 886 |
|
| 882 | 887 |
///The type of the map that stores the distances of the nodes. |
| 883 | 888 |
|
| 884 | 889 |
///The type of the map that stores the distances of the nodes. |
| 885 | 890 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 886 | 891 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 887 | 892 |
///Instantiates a DistMap. |
| 888 | 893 |
|
| 889 | 894 |
///This function instantiates a DistMap. |
| 890 | 895 |
///\param g is the digraph, to which we would like to define |
| 891 | 896 |
///the DistMap |
| 892 | 897 |
static DistMap *createDistMap(const Digraph &g) |
| 893 | 898 |
{
|
| 894 | 899 |
return new DistMap(g); |
| 895 | 900 |
} |
| 896 | 901 |
|
| 897 | 902 |
///The type of the shortest paths. |
| 898 | 903 |
|
| 899 | 904 |
///The type of the shortest paths. |
| 900 | 905 |
///It must conform to the \ref concepts::Path "Path" concept. |
| 901 | 906 |
typedef lemon::Path<Digraph> Path; |
| 902 | 907 |
}; |
| 903 | 908 |
|
| 904 | 909 |
/// Default traits class used by BfsWizard |
| 905 | 910 |
|
| 906 | 911 |
/// Default traits class used by BfsWizard. |
| 907 | 912 |
/// \tparam GR The type of the digraph. |
| 908 | 913 |
template<class GR> |
| 909 | 914 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 910 | 915 |
{
|
| 911 | 916 |
|
| 912 | 917 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 913 | 918 |
protected: |
| 914 | 919 |
//The type of the nodes in the digraph. |
| 915 | 920 |
typedef typename Base::Digraph::Node Node; |
| 916 | 921 |
|
| 917 | 922 |
//Pointer to the digraph the algorithm runs on. |
| 918 | 923 |
void *_g; |
| 919 | 924 |
//Pointer to the map of reached nodes. |
| 920 | 925 |
void *_reached; |
| 921 | 926 |
//Pointer to the map of processed nodes. |
| 922 | 927 |
void *_processed; |
| 923 | 928 |
//Pointer to the map of predecessors arcs. |
| 924 | 929 |
void *_pred; |
| 925 | 930 |
//Pointer to the map of distances. |
| 926 | 931 |
void *_dist; |
| 927 | 932 |
//Pointer to the shortest path to the target node. |
| 928 | 933 |
void *_path; |
| 929 | 934 |
//Pointer to the distance of the target node. |
| 930 | 935 |
int *_di; |
| 931 | 936 |
|
| 932 | 937 |
public: |
| 933 | 938 |
/// Constructor. |
| 934 | 939 |
|
| 935 | 940 |
/// This constructor does not require parameters, it initiates |
| 936 | 941 |
/// all of the attributes to \c 0. |
| 937 | 942 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 938 | 943 |
_dist(0), _path(0), _di(0) {}
|
| 939 | 944 |
|
| 940 | 945 |
/// Constructor. |
| 941 | 946 |
|
| 942 | 947 |
/// This constructor requires one parameter, |
| 943 | 948 |
/// others are initiated to \c 0. |
| 944 | 949 |
/// \param g The digraph the algorithm runs on. |
| 945 | 950 |
BfsWizardBase(const GR &g) : |
| 946 | 951 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 947 | 952 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 948 | 953 |
|
| 949 | 954 |
}; |
| 950 | 955 |
|
| 951 | 956 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 952 | 957 |
|
| 953 | 958 |
/// This auxiliary class is created to implement the |
| 954 | 959 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 955 | 960 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 956 | 961 |
/// functions and features of the plain \ref Bfs. |
| 957 | 962 |
/// |
| 958 | 963 |
/// This class should only be used through the \ref bfs() function, |
| 959 | 964 |
/// which makes it easier to use the algorithm. |
| 965 |
/// |
|
| 966 |
/// \tparam TR The traits class that defines various types used by the |
|
| 967 |
/// algorithm. |
|
| 960 | 968 |
template<class TR> |
| 961 | 969 |
class BfsWizard : public TR |
| 962 | 970 |
{
|
| 963 | 971 |
typedef TR Base; |
| 964 | 972 |
|
| 965 | 973 |
typedef typename TR::Digraph Digraph; |
| 966 | 974 |
|
| 967 | 975 |
typedef typename Digraph::Node Node; |
| 968 | 976 |
typedef typename Digraph::NodeIt NodeIt; |
| 969 | 977 |
typedef typename Digraph::Arc Arc; |
| 970 | 978 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 971 | 979 |
|
| 972 | 980 |
typedef typename TR::PredMap PredMap; |
| 973 | 981 |
typedef typename TR::DistMap DistMap; |
| 974 | 982 |
typedef typename TR::ReachedMap ReachedMap; |
| 975 | 983 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 976 | 984 |
typedef typename TR::Path Path; |
| 977 | 985 |
|
| 978 | 986 |
public: |
| 979 | 987 |
|
| 980 | 988 |
/// Constructor. |
| 981 | 989 |
BfsWizard() : TR() {}
|
| 982 | 990 |
|
| 983 | 991 |
/// Constructor that requires parameters. |
| 984 | 992 |
|
| 985 | 993 |
/// Constructor that requires parameters. |
| 986 | 994 |
/// These parameters will be the default values for the traits class. |
| 987 | 995 |
/// \param g The digraph the algorithm runs on. |
| 988 | 996 |
BfsWizard(const Digraph &g) : |
| 989 | 997 |
TR(g) {}
|
| 990 | 998 |
|
| 991 | 999 |
///Copy constructor |
| 992 | 1000 |
BfsWizard(const TR &b) : TR(b) {}
|
| 993 | 1001 |
|
| 994 | 1002 |
~BfsWizard() {}
|
| 995 | 1003 |
|
| 996 | 1004 |
///Runs BFS algorithm from the given source node. |
| 997 | 1005 |
|
| 998 | 1006 |
///This method runs BFS algorithm from node \c s |
| 999 | 1007 |
///in order to compute the shortest path to each node. |
| 1000 | 1008 |
void run(Node s) |
| 1001 | 1009 |
{
|
| 1002 | 1010 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1003 | 1011 |
if (Base::_pred) |
| 1004 | 1012 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1005 | 1013 |
if (Base::_dist) |
| 1006 | 1014 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1007 | 1015 |
if (Base::_reached) |
| 1008 | 1016 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1009 | 1017 |
if (Base::_processed) |
| 1010 | 1018 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1011 | 1019 |
if (s!=INVALID) |
| 1012 | 1020 |
alg.run(s); |
| 1013 | 1021 |
else |
| 1014 | 1022 |
alg.run(); |
| 1015 | 1023 |
} |
| 1016 | 1024 |
|
| 1017 | 1025 |
///Finds the shortest path between \c s and \c t. |
| 1018 | 1026 |
|
| 1019 | 1027 |
///This method runs BFS algorithm from node \c s |
| 1020 | 1028 |
///in order to compute the shortest path to node \c t |
| 1021 | 1029 |
///(it stops searching when \c t is processed). |
| 1022 | 1030 |
/// |
| 1023 | 1031 |
///\return \c true if \c t is reachable form \c s. |
| 1024 | 1032 |
bool run(Node s, Node t) |
| 1025 | 1033 |
{
|
| 1026 | 1034 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1027 | 1035 |
if (Base::_pred) |
| 1028 | 1036 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1029 | 1037 |
if (Base::_dist) |
| 1030 | 1038 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1031 | 1039 |
if (Base::_reached) |
| 1032 | 1040 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1033 | 1041 |
if (Base::_processed) |
| 1034 | 1042 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1035 | 1043 |
alg.run(s,t); |
| 1036 | 1044 |
if (Base::_path) |
| 1037 | 1045 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1038 | 1046 |
if (Base::_di) |
| 1039 | 1047 |
*Base::_di = alg.dist(t); |
| 1040 | 1048 |
return alg.reached(t); |
| 1041 | 1049 |
} |
| 1042 | 1050 |
|
| 1043 | 1051 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1044 | 1052 |
|
| 1045 | 1053 |
///This method runs BFS algorithm in order to visit all nodes |
| 1046 | 1054 |
///in the digraph. |
| 1047 | 1055 |
void run() |
| 1048 | 1056 |
{
|
| 1049 | 1057 |
run(INVALID); |
| 1050 | 1058 |
} |
| 1051 | 1059 |
|
| 1052 | 1060 |
template<class T> |
| 1053 | 1061 |
struct SetPredMapBase : public Base {
|
| 1054 | 1062 |
typedef T PredMap; |
| 1055 | 1063 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1056 | 1064 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1057 | 1065 |
}; |
| 1058 | 1066 |
|
| 1059 | 1067 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1060 | 1068 |
///the predecessor map. |
| 1061 | 1069 |
/// |
| 1062 | 1070 |
///\ref named-templ-param "Named parameter" function for setting |
| 1063 | 1071 |
///the map that stores the predecessor arcs of the nodes. |
| 1064 | 1072 |
template<class T> |
| 1065 | 1073 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1066 | 1074 |
{
|
| 1067 | 1075 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1068 | 1076 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1069 | 1077 |
} |
| 1070 | 1078 |
|
| 1071 | 1079 |
template<class T> |
| 1072 | 1080 |
struct SetReachedMapBase : public Base {
|
| 1073 | 1081 |
typedef T ReachedMap; |
| 1074 | 1082 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1075 | 1083 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1076 | 1084 |
}; |
| 1077 | 1085 |
|
| 1078 | 1086 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1079 | 1087 |
///the reached map. |
| 1080 | 1088 |
/// |
| 1081 | 1089 |
///\ref named-templ-param "Named parameter" function for setting |
| 1082 | 1090 |
///the map that indicates which nodes are reached. |
| 1083 | 1091 |
template<class T> |
| 1084 | 1092 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1085 | 1093 |
{
|
| 1086 | 1094 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1087 | 1095 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1088 | 1096 |
} |
| 1089 | 1097 |
|
| 1090 | 1098 |
template<class T> |
| 1091 | 1099 |
struct SetDistMapBase : public Base {
|
| 1092 | 1100 |
typedef T DistMap; |
| 1093 | 1101 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1094 | 1102 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1095 | 1103 |
}; |
| 1096 | 1104 |
|
| 1097 | 1105 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1098 | 1106 |
///the distance map. |
| 1099 | 1107 |
/// |
| 1100 | 1108 |
///\ref named-templ-param "Named parameter" function for setting |
| 1101 | 1109 |
///the map that stores the distances of the nodes calculated |
| 1102 | 1110 |
///by the algorithm. |
| 1103 | 1111 |
template<class T> |
| 1104 | 1112 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1105 | 1113 |
{
|
| 1106 | 1114 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1107 | 1115 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1108 | 1116 |
} |
| 1109 | 1117 |
|
| 1110 | 1118 |
template<class T> |
| 1111 | 1119 |
struct SetProcessedMapBase : public Base {
|
| 1112 | 1120 |
typedef T ProcessedMap; |
| 1113 | 1121 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1114 | 1122 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1115 | 1123 |
}; |
| 1116 | 1124 |
|
| 1117 | 1125 |
///\brief \ref named-func-param "Named parameter" for setting |
| 1118 | 1126 |
///the processed map. |
| 1119 | 1127 |
/// |
| 1120 | 1128 |
///\ref named-templ-param "Named parameter" function for setting |
| 1121 | 1129 |
///the map that indicates which nodes are processed. |
| 1122 | 1130 |
template<class T> |
| 1123 | 1131 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1124 | 1132 |
{
|
| 1125 | 1133 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1126 | 1134 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1127 | 1135 |
} |
| 1128 | 1136 |
|
| 1129 | 1137 |
template<class T> |
| 1130 | 1138 |
struct SetPathBase : public Base {
|
| 1131 | 1139 |
typedef T Path; |
| 1132 | 1140 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1133 | 1141 |
}; |
| 1134 | 1142 |
///\brief \ref named-func-param "Named parameter" |
| 1135 | 1143 |
///for getting the shortest path to the target node. |
| 1136 | 1144 |
/// |
| 1137 | 1145 |
///\ref named-func-param "Named parameter" |
| 1138 | 1146 |
///for getting the shortest path to the target node. |
| 1139 | 1147 |
template<class T> |
| 1140 | 1148 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1141 | 1149 |
{
|
| 1142 | 1150 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1143 | 1151 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1144 | 1152 |
} |
| 1145 | 1153 |
|
| 1146 | 1154 |
///\brief \ref named-func-param "Named parameter" |
| 1147 | 1155 |
///for getting the distance of the target node. |
| 1148 | 1156 |
/// |
| 1149 | 1157 |
///\ref named-func-param "Named parameter" |
| 1150 | 1158 |
///for getting the distance of the target node. |
| 1151 | 1159 |
BfsWizard dist(const int &d) |
| 1152 | 1160 |
{
|
| 1153 | 1161 |
Base::_di=const_cast<int*>(&d); |
| 1154 | 1162 |
return *this; |
| 1155 | 1163 |
} |
| 1156 | 1164 |
|
| 1157 | 1165 |
}; |
| 1158 | 1166 |
|
| 1159 | 1167 |
///Function-type interface for BFS algorithm. |
| 1160 | 1168 |
|
| 1161 | 1169 |
/// \ingroup search |
| 1162 | 1170 |
///Function-type interface for BFS algorithm. |
| 1163 | 1171 |
/// |
| 1164 | 1172 |
///This function also has several \ref named-func-param "named parameters", |
| 1165 | 1173 |
///they are declared as the members of class \ref BfsWizard. |
| 1166 | 1174 |
///The following examples show how to use these parameters. |
| 1167 | 1175 |
///\code |
| 1168 | 1176 |
/// // Compute shortest path from node s to each node |
| 1169 | 1177 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| 1170 | 1178 |
/// |
| 1171 | 1179 |
/// // Compute shortest path from s to t |
| 1172 | 1180 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
| 1173 | 1181 |
///\endcode |
| 1174 | 1182 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
| 1175 | 1183 |
///to the end of the parameter list. |
| 1176 | 1184 |
///\sa BfsWizard |
| 1177 | 1185 |
///\sa Bfs |
| 1178 | 1186 |
template<class GR> |
| 1179 | 1187 |
BfsWizard<BfsWizardBase<GR> > |
| 1180 | 1188 |
bfs(const GR &digraph) |
| 1181 | 1189 |
{
|
| 1182 | 1190 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
| 1183 | 1191 |
} |
| 1184 | 1192 |
|
| 1185 | 1193 |
#ifdef DOXYGEN |
| 1186 | 1194 |
/// \brief Visitor class for BFS. |
| 1187 | 1195 |
/// |
| 1188 | 1196 |
/// This class defines the interface of the BfsVisit events, and |
| 1189 | 1197 |
/// it could be the base of a real visitor class. |
| 1190 | 1198 |
template <typename GR> |
| 1191 | 1199 |
struct BfsVisitor {
|
| 1192 | 1200 |
typedef GR Digraph; |
| 1193 | 1201 |
typedef typename Digraph::Arc Arc; |
| 1194 | 1202 |
typedef typename Digraph::Node Node; |
| 1195 | 1203 |
/// \brief Called for the source node(s) of the BFS. |
| 1196 | 1204 |
/// |
| 1197 | 1205 |
/// This function is called for the source node(s) of the BFS. |
| 1198 | 1206 |
void start(const Node& node) {}
|
| 1199 | 1207 |
/// \brief Called when a node is reached first time. |
| 1200 | 1208 |
/// |
| 1201 | 1209 |
/// This function is called when a node is reached first time. |
| 1202 | 1210 |
void reach(const Node& node) {}
|
| 1203 | 1211 |
/// \brief Called when a node is processed. |
| 1204 | 1212 |
/// |
| 1205 | 1213 |
/// This function is called when a node is processed. |
| 1206 | 1214 |
void process(const Node& node) {}
|
| 1207 | 1215 |
/// \brief Called when an arc reaches a new node. |
| 1208 | 1216 |
/// |
| 1209 | 1217 |
/// This function is called when the BFS finds an arc whose target node |
| 1210 | 1218 |
/// is not reached yet. |
| 1211 | 1219 |
void discover(const Arc& arc) {}
|
| 1212 | 1220 |
/// \brief Called when an arc is examined but its target node is |
| 1213 | 1221 |
/// already discovered. |
| 1214 | 1222 |
/// |
| 1215 | 1223 |
/// This function is called when an arc is examined but its target node is |
| 1216 | 1224 |
/// already discovered. |
| 1217 | 1225 |
void examine(const Arc& arc) {}
|
| 1218 | 1226 |
}; |
| 1219 | 1227 |
#else |
| 1220 | 1228 |
template <typename GR> |
| 1221 | 1229 |
struct BfsVisitor {
|
| 1222 | 1230 |
typedef GR Digraph; |
| 1223 | 1231 |
typedef typename Digraph::Arc Arc; |
| 1224 | 1232 |
typedef typename Digraph::Node Node; |
| 1225 | 1233 |
void start(const Node&) {}
|
| 1226 | 1234 |
void reach(const Node&) {}
|
| 1227 | 1235 |
void process(const Node&) {}
|
| 1228 | 1236 |
void discover(const Arc&) {}
|
| 1229 | 1237 |
void examine(const Arc&) {}
|
| 1230 | 1238 |
|
| 1231 | 1239 |
template <typename _Visitor> |
| 1232 | 1240 |
struct Constraints {
|
| 1233 | 1241 |
void constraints() {
|
| 1234 | 1242 |
Arc arc; |
| 1235 | 1243 |
Node node; |
| 1236 | 1244 |
visitor.start(node); |
| 1237 | 1245 |
visitor.reach(node); |
| 1238 | 1246 |
visitor.process(node); |
| 1239 | 1247 |
visitor.discover(arc); |
| 1240 | 1248 |
visitor.examine(arc); |
| 1241 | 1249 |
} |
| 1242 | 1250 |
_Visitor& visitor; |
| 1243 | 1251 |
}; |
| 1244 | 1252 |
}; |
| 1245 | 1253 |
#endif |
| 1246 | 1254 |
|
| 1247 | 1255 |
/// \brief Default traits class of BfsVisit class. |
| 1248 | 1256 |
/// |
| 1249 | 1257 |
/// Default traits class of BfsVisit class. |
| 1250 | 1258 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1251 | 1259 |
template<class GR> |
| 1252 | 1260 |
struct BfsVisitDefaultTraits {
|
| 1253 | 1261 |
|
| 1254 | 1262 |
/// \brief The type of the digraph the algorithm runs on. |
| 1255 | 1263 |
typedef GR Digraph; |
| 1256 | 1264 |
|
| 1257 | 1265 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1258 | 1266 |
/// |
| 1259 | 1267 |
/// The type of the map that indicates which nodes are reached. |
| 1260 | 1268 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1261 | 1269 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1262 | 1270 |
|
| 1263 | 1271 |
/// \brief Instantiates a ReachedMap. |
| 1264 | 1272 |
/// |
| 1265 | 1273 |
/// This function instantiates a ReachedMap. |
| 1266 | 1274 |
/// \param digraph is the digraph, to which |
| 1267 | 1275 |
/// we would like to define the ReachedMap. |
| 1268 | 1276 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1269 | 1277 |
return new ReachedMap(digraph); |
| 1270 | 1278 |
} |
| 1271 | 1279 |
|
| 1272 | 1280 |
}; |
| 1273 | 1281 |
|
| 1274 | 1282 |
/// \ingroup search |
| 1275 | 1283 |
/// |
| 1276 | 1284 |
/// \brief BFS algorithm class with visitor interface. |
| 1277 | 1285 |
/// |
| 1278 | 1286 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1279 | 1287 |
/// with visitor interface. |
| 1280 | 1288 |
/// |
| 1281 | 1289 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1282 | 1290 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1283 | 1291 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1284 | 1292 |
/// |
| 1285 | 1293 |
/// This interface of the BFS algorithm should be used in special cases |
| 1286 | 1294 |
/// when extra actions have to be performed in connection with certain |
| 1287 | 1295 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1288 | 1296 |
/// instead. |
| 1289 | 1297 |
/// |
| 1290 | 1298 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1291 | 1299 |
/// The default type is \ref ListDigraph. |
| 1292 | 1300 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1293 | 1301 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1294 | 1302 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1295 | 1303 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1296 | 1304 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1297 | 1305 |
/// events, you should implement your own visitor class. |
| 1298 |
/// \tparam TR Traits class to set various data types used by the |
|
| 1299 |
/// algorithm. The default traits class is |
|
| 1300 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
|
| 1301 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
|
| 1302 |
/// |
|
| 1306 |
/// \tparam TR The traits class that defines various types used by the |
|
| 1307 |
/// algorithm. By default, it is \ref BfsVisitDefaultTraits |
|
| 1308 |
/// "BfsVisitDefaultTraits<GR>". |
|
| 1309 |
/// In most cases, this parameter should not be set directly, |
|
| 1310 |
/// consider to use the named template parameters instead. |
|
| 1303 | 1311 |
#ifdef DOXYGEN |
| 1304 | 1312 |
template <typename GR, typename VS, typename TR> |
| 1305 | 1313 |
#else |
| 1306 | 1314 |
template <typename GR = ListDigraph, |
| 1307 | 1315 |
typename VS = BfsVisitor<GR>, |
| 1308 | 1316 |
typename TR = BfsVisitDefaultTraits<GR> > |
| 1309 | 1317 |
#endif |
| 1310 | 1318 |
class BfsVisit {
|
| 1311 | 1319 |
public: |
| 1312 | 1320 |
|
| 1313 | 1321 |
///The traits class. |
| 1314 | 1322 |
typedef TR Traits; |
| 1315 | 1323 |
|
| 1316 | 1324 |
///The type of the digraph the algorithm runs on. |
| 1317 | 1325 |
typedef typename Traits::Digraph Digraph; |
| 1318 | 1326 |
|
| 1319 | 1327 |
///The visitor type used by the algorithm. |
| 1320 | 1328 |
typedef VS Visitor; |
| 1321 | 1329 |
|
| 1322 | 1330 |
///The type of the map that indicates which nodes are reached. |
| 1323 | 1331 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1324 | 1332 |
|
| 1325 | 1333 |
private: |
| 1326 | 1334 |
|
| 1327 | 1335 |
typedef typename Digraph::Node Node; |
| 1328 | 1336 |
typedef typename Digraph::NodeIt NodeIt; |
| 1329 | 1337 |
typedef typename Digraph::Arc Arc; |
| 1330 | 1338 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1331 | 1339 |
|
| 1332 | 1340 |
//Pointer to the underlying digraph. |
| 1333 | 1341 |
const Digraph *_digraph; |
| 1334 | 1342 |
//Pointer to the visitor object. |
| 1335 | 1343 |
Visitor *_visitor; |
| 1336 | 1344 |
//Pointer to the map of reached status of the nodes. |
| 1337 | 1345 |
ReachedMap *_reached; |
| 1338 | 1346 |
//Indicates if _reached is locally allocated (true) or not. |
| 1339 | 1347 |
bool local_reached; |
| 1340 | 1348 |
|
| 1341 | 1349 |
std::vector<typename Digraph::Node> _list; |
| 1342 | 1350 |
int _list_front, _list_back; |
| 1343 | 1351 |
|
| 1344 | 1352 |
//Creates the maps if necessary. |
| 1345 | 1353 |
void create_maps() {
|
| 1346 | 1354 |
if(!_reached) {
|
| 1347 | 1355 |
local_reached = true; |
| 1348 | 1356 |
_reached = Traits::createReachedMap(*_digraph); |
| 1349 | 1357 |
} |
| 1350 | 1358 |
} |
| 1351 | 1359 |
|
| 1352 | 1360 |
protected: |
| 1353 | 1361 |
|
| 1354 | 1362 |
BfsVisit() {}
|
| 1355 | 1363 |
|
| 1356 | 1364 |
public: |
| 1357 | 1365 |
|
| 1358 | 1366 |
typedef BfsVisit Create; |
| 1359 | 1367 |
|
| 1360 | 1368 |
/// \name Named Template Parameters |
| 1361 | 1369 |
|
| 1362 | 1370 |
///@{
|
| 1363 | 1371 |
template <class T> |
| 1364 | 1372 |
struct SetReachedMapTraits : public Traits {
|
| 1365 | 1373 |
typedef T ReachedMap; |
| 1366 | 1374 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1367 | 1375 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1368 | 1376 |
return 0; // ignore warnings |
| 1369 | 1377 |
} |
| 1370 | 1378 |
}; |
| 1371 | 1379 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1372 | 1380 |
/// ReachedMap type. |
| 1373 | 1381 |
/// |
| 1374 | 1382 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1375 | 1383 |
template <class T> |
| 1376 | 1384 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1377 | 1385 |
SetReachedMapTraits<T> > {
|
| 1378 | 1386 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1379 | 1387 |
}; |
| 1380 | 1388 |
///@} |
| 1381 | 1389 |
|
| 1382 | 1390 |
public: |
| 1383 | 1391 |
|
| 1384 | 1392 |
/// \brief Constructor. |
| 1385 | 1393 |
/// |
| 1386 | 1394 |
/// Constructor. |
| 1387 | 1395 |
/// |
| 1388 | 1396 |
/// \param digraph The digraph the algorithm runs on. |
| 1389 | 1397 |
/// \param visitor The visitor object of the algorithm. |
| 1390 | 1398 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1391 | 1399 |
: _digraph(&digraph), _visitor(&visitor), |
| 1392 | 1400 |
_reached(0), local_reached(false) {}
|
| 1393 | 1401 |
|
| 1394 | 1402 |
/// \brief Destructor. |
| 1395 | 1403 |
~BfsVisit() {
|
| 1396 | 1404 |
if(local_reached) delete _reached; |
| 1397 | 1405 |
} |
| 1398 | 1406 |
|
| 1399 | 1407 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1400 | 1408 |
/// |
| 1401 | 1409 |
/// Sets the map that indicates which nodes are reached. |
| 1402 | 1410 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1403 | 1411 |
/// or \ref init(), an instance will be allocated automatically. |
| 1404 | 1412 |
/// The destructor deallocates this automatically allocated map, |
| 1405 | 1413 |
/// of course. |
| 1406 | 1414 |
/// \return <tt> (*this) </tt> |
| 1407 | 1415 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1408 | 1416 |
if(local_reached) {
|
| 1409 | 1417 |
delete _reached; |
| 1410 | 1418 |
local_reached = false; |
| 1411 | 1419 |
} |
| 1412 | 1420 |
_reached = &m; |
| 1413 | 1421 |
return *this; |
| 1414 | 1422 |
} |
| 1415 | 1423 |
|
| 1416 | 1424 |
public: |
| 1417 | 1425 |
|
| 1418 | 1426 |
/// \name Execution Control |
| 1419 | 1427 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1420 | 1428 |
/// member functions called \ref run(Node) "run()".\n |
| 1421 | 1429 |
/// If you need better control on the execution, you have to call |
| 1422 | 1430 |
/// \ref init() first, then you can add several source nodes with |
| 1423 | 1431 |
/// \ref addSource(). Finally the actual path computation can be |
| 1424 | 1432 |
/// performed with one of the \ref start() functions. |
| 1425 | 1433 |
|
| 1426 | 1434 |
/// @{
|
| 1427 | 1435 |
|
| 1428 | 1436 |
/// \brief Initializes the internal data structures. |
| 1429 | 1437 |
/// |
| 1430 | 1438 |
/// Initializes the internal data structures. |
| 1431 | 1439 |
void init() {
|
| 1432 | 1440 |
create_maps(); |
| 1433 | 1441 |
_list.resize(countNodes(*_digraph)); |
| 1434 | 1442 |
_list_front = _list_back = -1; |
| 1435 | 1443 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1436 | 1444 |
_reached->set(u, false); |
| 1437 | 1445 |
} |
| 1438 | 1446 |
} |
| 1439 | 1447 |
|
| 1440 | 1448 |
/// \brief Adds a new source node. |
| 1441 | 1449 |
/// |
| 1442 | 1450 |
/// Adds a new source node to the set of nodes to be processed. |
| 1443 | 1451 |
void addSource(Node s) {
|
| 1444 | 1452 |
if(!(*_reached)[s]) {
|
| 1445 | 1453 |
_reached->set(s,true); |
| 1446 | 1454 |
_visitor->start(s); |
| 1447 | 1455 |
_visitor->reach(s); |
| 1448 | 1456 |
_list[++_list_back] = s; |
| 1449 | 1457 |
} |
| 1450 | 1458 |
} |
| 1451 | 1459 |
|
| 1452 | 1460 |
/// \brief Processes the next node. |
| 1453 | 1461 |
/// |
| 1454 | 1462 |
/// Processes the next node. |
| 1455 | 1463 |
/// |
| 1456 | 1464 |
/// \return The processed node. |
| 1457 | 1465 |
/// |
| 1458 | 1466 |
/// \pre The queue must not be empty. |
| 1459 | 1467 |
Node processNextNode() {
|
| 1460 | 1468 |
Node n = _list[++_list_front]; |
| 1461 | 1469 |
_visitor->process(n); |
| 1462 | 1470 |
Arc e; |
| 1463 | 1471 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1464 | 1472 |
Node m = _digraph->target(e); |
| 1465 | 1473 |
if (!(*_reached)[m]) {
|
| 1466 | 1474 |
_visitor->discover(e); |
| 1467 | 1475 |
_visitor->reach(m); |
| 1468 | 1476 |
_reached->set(m, true); |
| 1469 | 1477 |
_list[++_list_back] = m; |
| 1470 | 1478 |
} else {
|
| 1471 | 1479 |
_visitor->examine(e); |
| 1472 | 1480 |
} |
| 1473 | 1481 |
} |
| 1474 | 1482 |
return n; |
| 1475 | 1483 |
} |
| 1476 | 1484 |
|
| 1477 | 1485 |
/// \brief Processes the next node. |
| 1478 | 1486 |
/// |
| 1479 | 1487 |
/// Processes the next node and checks if the given target node |
| 1480 | 1488 |
/// is reached. If the target node is reachable from the processed |
| 1481 | 1489 |
/// node, then the \c reach parameter will be set to \c true. |
| 1482 | 1490 |
/// |
| 1483 | 1491 |
/// \param target The target node. |
| 1484 | 1492 |
/// \retval reach Indicates if the target node is reached. |
| 1485 | 1493 |
/// It should be initially \c false. |
| 1486 | 1494 |
/// |
| 1487 | 1495 |
/// \return The processed node. |
| 1488 | 1496 |
/// |
| 1489 | 1497 |
/// \pre The queue must not be empty. |
| 1490 | 1498 |
Node processNextNode(Node target, bool& reach) {
|
| 1491 | 1499 |
Node n = _list[++_list_front]; |
| 1492 | 1500 |
_visitor->process(n); |
| 1493 | 1501 |
Arc e; |
| 1494 | 1502 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1495 | 1503 |
Node m = _digraph->target(e); |
| 1496 | 1504 |
if (!(*_reached)[m]) {
|
| 1497 | 1505 |
_visitor->discover(e); |
| 1498 | 1506 |
_visitor->reach(m); |
| 1499 | 1507 |
_reached->set(m, true); |
| 1500 | 1508 |
_list[++_list_back] = m; |
| 1501 | 1509 |
reach = reach || (target == m); |
| 1502 | 1510 |
} else {
|
| 1503 | 1511 |
_visitor->examine(e); |
| 1504 | 1512 |
} |
| 1505 | 1513 |
} |
| 1506 | 1514 |
return n; |
| 1507 | 1515 |
} |
| 1508 | 1516 |
|
| 1509 | 1517 |
/// \brief Processes the next node. |
| 1510 | 1518 |
/// |
| 1511 | 1519 |
/// Processes the next node and checks if at least one of reached |
| 1512 | 1520 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1513 | 1521 |
/// with \c true value is reachable from the processed node, then the |
| 1514 | 1522 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1515 | 1523 |
/// |
| 1516 | 1524 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1517 | 1525 |
/// possible targets. |
| 1518 | 1526 |
/// \retval rnode The reached target node. |
| 1519 | 1527 |
/// It should be initially \c INVALID. |
| 1520 | 1528 |
/// |
| 1521 | 1529 |
/// \return The processed node. |
| 1522 | 1530 |
/// |
| 1523 | 1531 |
/// \pre The queue must not be empty. |
| 1524 | 1532 |
template <typename NM> |
| 1525 | 1533 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1526 | 1534 |
Node n = _list[++_list_front]; |
| 1527 | 1535 |
_visitor->process(n); |
| 1528 | 1536 |
Arc e; |
| 1529 | 1537 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1530 | 1538 |
Node m = _digraph->target(e); |
| 1531 | 1539 |
if (!(*_reached)[m]) {
|
| 1532 | 1540 |
_visitor->discover(e); |
| 1533 | 1541 |
_visitor->reach(m); |
| 1534 | 1542 |
_reached->set(m, true); |
| 1535 | 1543 |
_list[++_list_back] = m; |
| 1536 | 1544 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1537 | 1545 |
} else {
|
| 1538 | 1546 |
_visitor->examine(e); |
| 1539 | 1547 |
} |
| 1540 | 1548 |
} |
| 1541 | 1549 |
return n; |
| 1542 | 1550 |
} |
| 1543 | 1551 |
|
| 1544 | 1552 |
/// \brief The next node to be processed. |
| 1545 | 1553 |
/// |
| 1546 | 1554 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1547 | 1555 |
/// is empty. |
| 1548 | 1556 |
Node nextNode() const {
|
| 1549 | 1557 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1550 | 1558 |
} |
| 1551 | 1559 |
|
| 1552 | 1560 |
/// \brief Returns \c false if there are nodes |
| 1553 | 1561 |
/// to be processed. |
| 1554 | 1562 |
/// |
| 1555 | 1563 |
/// Returns \c false if there are nodes |
| 1556 | 1564 |
/// to be processed in the queue. |
| 1557 | 1565 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1558 | 1566 |
|
| 1559 | 1567 |
/// \brief Returns the number of the nodes to be processed. |
| 1560 | 1568 |
/// |
| 1561 | 1569 |
/// Returns the number of the nodes to be processed in the queue. |
| 1562 | 1570 |
int queueSize() const { return _list_back - _list_front; }
|
| 1563 | 1571 |
|
| 1564 | 1572 |
/// \brief Executes the algorithm. |
| 1565 | 1573 |
/// |
| 1566 | 1574 |
/// Executes the algorithm. |
| 1567 | 1575 |
/// |
| 1568 | 1576 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1569 | 1577 |
/// in order to compute the shortest path to each node. |
| 1570 | 1578 |
/// |
| 1571 | 1579 |
/// The algorithm computes |
| 1572 | 1580 |
/// - the shortest path tree (forest), |
| 1573 | 1581 |
/// - the distance of each node from the root(s). |
| 1574 | 1582 |
/// |
| 1575 | 1583 |
/// \pre init() must be called and at least one root node should be added |
| 1576 | 1584 |
/// with addSource() before using this function. |
| 1577 | 1585 |
/// |
| 1578 | 1586 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1579 | 1587 |
/// \code |
| 1580 | 1588 |
/// while ( !b.emptyQueue() ) {
|
| 1581 | 1589 |
/// b.processNextNode(); |
| 1582 | 1590 |
/// } |
| 1583 | 1591 |
/// \endcode |
| 1584 | 1592 |
void start() {
|
| 1585 | 1593 |
while ( !emptyQueue() ) processNextNode(); |
| 1586 | 1594 |
} |
| 1587 | 1595 |
|
| 1588 | 1596 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1589 | 1597 |
/// |
| 1590 | 1598 |
/// Executes the algorithm until the given target node is reached. |
| 1591 | 1599 |
/// |
| 1592 | 1600 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1593 | 1601 |
/// in order to compute the shortest path to \c t. |
| 1594 | 1602 |
/// |
| 1595 | 1603 |
/// The algorithm computes |
| 1596 | 1604 |
/// - the shortest path to \c t, |
| 1597 | 1605 |
/// - the distance of \c t from the root(s). |
| 1598 | 1606 |
/// |
| 1599 | 1607 |
/// \pre init() must be called and at least one root node should be |
| 1600 | 1608 |
/// added with addSource() before using this function. |
| 1601 | 1609 |
/// |
| 1602 | 1610 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1603 | 1611 |
/// \code |
| 1604 | 1612 |
/// bool reach = false; |
| 1605 | 1613 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1606 | 1614 |
/// b.processNextNode(t, reach); |
| 1607 | 1615 |
/// } |
| 1608 | 1616 |
/// \endcode |
| 1609 | 1617 |
void start(Node t) {
|
| 1610 | 1618 |
bool reach = false; |
| 1611 | 1619 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 1612 | 1620 |
} |
| 1613 | 1621 |
|
| 1614 | 1622 |
/// \brief Executes the algorithm until a condition is met. |
| 1615 | 1623 |
/// |
| 1616 | 1624 |
/// Executes the algorithm until a condition is met. |
| 1617 | 1625 |
/// |
| 1618 | 1626 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1619 | 1627 |
/// order to compute the shortest path to a node \c v with |
| 1620 | 1628 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1621 | 1629 |
/// |
| 1622 | 1630 |
/// \param nm must be a bool (or convertible) node map. The |
| 1623 | 1631 |
/// algorithm will stop when it reaches a node \c v with |
| 1624 | 1632 |
/// <tt>nm[v]</tt> true. |
| 1625 | 1633 |
/// |
| 1626 | 1634 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1627 | 1635 |
/// \c INVALID if no such node was found. |
| 1628 | 1636 |
/// |
| 1629 | 1637 |
/// \pre init() must be called and at least one root node should be |
| 1630 | 1638 |
/// added with addSource() before using this function. |
| 1631 | 1639 |
/// |
| 1632 | 1640 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1633 | 1641 |
/// \code |
| 1634 | 1642 |
/// Node rnode = INVALID; |
| 1635 | 1643 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1636 | 1644 |
/// b.processNextNode(nm, rnode); |
| 1637 | 1645 |
/// } |
| 1638 | 1646 |
/// return rnode; |
| 1639 | 1647 |
/// \endcode |
| 1640 | 1648 |
template <typename NM> |
| 1641 | 1649 |
Node start(const NM &nm) {
|
| 1642 | 1650 |
Node rnode = INVALID; |
| 1643 | 1651 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1644 | 1652 |
processNextNode(nm, rnode); |
| 1645 | 1653 |
} |
| 1646 | 1654 |
return rnode; |
| 1647 | 1655 |
} |
| 1648 | 1656 |
|
| 1649 | 1657 |
/// \brief Runs the algorithm from the given source node. |
| 1650 | 1658 |
/// |
| 1651 | 1659 |
/// This method runs the %BFS algorithm from node \c s |
| 1652 | 1660 |
/// in order to compute the shortest path to each node. |
| 1653 | 1661 |
/// |
| 1654 | 1662 |
/// The algorithm computes |
| 1655 | 1663 |
/// - the shortest path tree, |
| 1656 | 1664 |
/// - the distance of each node from the root. |
| 1657 | 1665 |
/// |
| 1658 | 1666 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1659 | 1667 |
///\code |
| 1660 | 1668 |
/// b.init(); |
| 1661 | 1669 |
/// b.addSource(s); |
| 1662 | 1670 |
/// b.start(); |
| 1663 | 1671 |
///\endcode |
| 1664 | 1672 |
void run(Node s) {
|
| 1665 | 1673 |
init(); |
| 1666 | 1674 |
addSource(s); |
| 1667 | 1675 |
start(); |
| 1668 | 1676 |
} |
| 1669 | 1677 |
|
| 1670 | 1678 |
/// \brief Finds the shortest path between \c s and \c t. |
| 1671 | 1679 |
/// |
| 1672 | 1680 |
/// This method runs the %BFS algorithm from node \c s |
| 1673 | 1681 |
/// in order to compute the shortest path to node \c t |
| 1674 | 1682 |
/// (it stops searching when \c t is processed). |
| 1675 | 1683 |
/// |
| 1676 | 1684 |
/// \return \c true if \c t is reachable form \c s. |
| 1677 | 1685 |
/// |
| 1678 | 1686 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 1679 | 1687 |
/// shortcut of the following code. |
| 1680 | 1688 |
///\code |
| 1681 | 1689 |
/// b.init(); |
| 1682 | 1690 |
/// b.addSource(s); |
| 1683 | 1691 |
/// b.start(t); |
| 1684 | 1692 |
///\endcode |
| 1685 | 1693 |
bool run(Node s,Node t) {
|
| 1686 | 1694 |
init(); |
| 1687 | 1695 |
addSource(s); |
| 1688 | 1696 |
start(t); |
| 1689 | 1697 |
return reached(t); |
| 1690 | 1698 |
} |
| 1691 | 1699 |
|
| 1692 | 1700 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1693 | 1701 |
/// |
| 1694 | 1702 |
/// This method runs the %BFS algorithm in order to visit all nodes |
| 1695 | 1703 |
/// in the digraph. |
| 1696 | 1704 |
/// |
| 1697 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1698 | 1706 |
///\code |
| 1699 | 1707 |
/// b.init(); |
| 1700 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1701 | 1709 |
/// if (!b.reached(n)) {
|
| 1702 | 1710 |
/// b.addSource(n); |
| 1703 | 1711 |
/// b.start(); |
| 1704 | 1712 |
/// } |
| 1705 | 1713 |
/// } |
| 1706 | 1714 |
///\endcode |
| 1707 | 1715 |
void run() {
|
| 1708 | 1716 |
init(); |
| 1709 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1710 | 1718 |
if (!reached(it)) {
|
| 1711 | 1719 |
addSource(it); |
| 1712 | 1720 |
start(); |
| 1713 | 1721 |
} |
| 1714 | 1722 |
} |
| 1715 | 1723 |
} |
| 1716 | 1724 |
|
| 1717 | 1725 |
///@} |
| 1718 | 1726 |
|
| 1719 | 1727 |
/// \name Query Functions |
| 1720 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
| 1721 | 1729 |
/// functions.\n |
| 1722 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1723 | 1731 |
/// before using them. |
| 1724 | 1732 |
|
| 1725 | 1733 |
///@{
|
| 1726 | 1734 |
|
| 1727 | 1735 |
/// \brief Checks if the given node is reached from the root(s). |
| 1728 | 1736 |
/// |
| 1729 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
| 1730 | 1738 |
/// |
| 1731 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1732 | 1740 |
/// must be called before using this function. |
| 1733 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1734 | 1742 |
|
| 1735 | 1743 |
///@} |
| 1736 | 1744 |
|
| 1737 | 1745 |
}; |
| 1738 | 1746 |
|
| 1739 | 1747 |
} //END OF NAMESPACE LEMON |
| 1740 | 1748 |
|
| 1741 | 1749 |
#endif |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
| 20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow_algs |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <lemon/core.h> |
| 30 | 30 |
#include <lemon/bin_heap.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
| 35 | 35 |
/// |
| 36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
| 37 | 37 |
/// \tparam GR Digraph type. |
| 38 | 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 39 | 39 |
/// and supply values. By default it is \c int. |
| 40 | 40 |
/// \tparam C The number type used for costs and potentials. |
| 41 | 41 |
/// By default it is the same as \c V. |
| 42 | 42 |
template <typename GR, typename V = int, typename C = V> |
| 43 | 43 |
struct CapacityScalingDefaultTraits |
| 44 | 44 |
{
|
| 45 | 45 |
/// The type of the digraph |
| 46 | 46 |
typedef GR Digraph; |
| 47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
| 48 | 48 |
typedef V Value; |
| 49 | 49 |
/// The type of the arc costs |
| 50 | 50 |
typedef C Cost; |
| 51 | 51 |
|
| 52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
| 53 | 53 |
/// |
| 54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
| 55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
| 56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
| 57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
| 58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
| 59 | 59 |
}; |
| 60 | 60 |
|
| 61 | 61 |
/// \addtogroup min_cost_flow_algs |
| 62 | 62 |
/// @{
|
| 63 | 63 |
|
| 64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
| 65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
| 66 | 66 |
/// |
| 67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
| 68 | 68 |
/// of the successive shortest path algorithm for finding a |
| 69 | 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
| 70 | 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
| 71 | 71 |
/// solution method. |
| 72 | 72 |
/// |
| 73 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
| 74 | 74 |
/// can be given using separate functions, and the algorithm can be |
| 75 | 75 |
/// executed using the \ref run() function. If some parameters are not |
| 76 | 76 |
/// specified, then default values will be used. |
| 77 | 77 |
/// |
| 78 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
| 79 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 80 |
/// and supply values in the algorithm. By default it is \c int. |
|
| 80 |
/// and supply values in the algorithm. By default, it is \c int. |
|
| 81 | 81 |
/// \tparam C The number type used for costs and potentials in the |
| 82 |
/// algorithm. By default it is the same as \c V. |
|
| 82 |
/// algorithm. By default, it is the same as \c V. |
|
| 83 |
/// \tparam TR The traits class that defines various types used by the |
|
| 84 |
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits |
|
| 85 |
/// "CapacityScalingDefaultTraits<GR, V, C>". |
|
| 86 |
/// In most cases, this parameter should not be set directly, |
|
| 87 |
/// consider to use the named template parameters instead. |
|
| 83 | 88 |
/// |
| 84 | 89 |
/// \warning Both number types must be signed and all input data must |
| 85 | 90 |
/// be integer. |
| 86 | 91 |
/// \warning This algorithm does not support negative costs for such |
| 87 | 92 |
/// arcs that have infinite upper bound. |
| 88 | 93 |
#ifdef DOXYGEN |
| 89 | 94 |
template <typename GR, typename V, typename C, typename TR> |
| 90 | 95 |
#else |
| 91 | 96 |
template < typename GR, typename V = int, typename C = V, |
| 92 | 97 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
| 93 | 98 |
#endif |
| 94 | 99 |
class CapacityScaling |
| 95 | 100 |
{
|
| 96 | 101 |
public: |
| 97 | 102 |
|
| 98 | 103 |
/// The type of the digraph |
| 99 | 104 |
typedef typename TR::Digraph Digraph; |
| 100 | 105 |
/// The type of the flow amounts, capacity bounds and supply values |
| 101 | 106 |
typedef typename TR::Value Value; |
| 102 | 107 |
/// The type of the arc costs |
| 103 | 108 |
typedef typename TR::Cost Cost; |
| 104 | 109 |
|
| 105 | 110 |
/// The type of the heap used for internal Dijkstra computations |
| 106 | 111 |
typedef typename TR::Heap Heap; |
| 107 | 112 |
|
| 108 | 113 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
| 109 | 114 |
typedef TR Traits; |
| 110 | 115 |
|
| 111 | 116 |
public: |
| 112 | 117 |
|
| 113 | 118 |
/// \brief Problem type constants for the \c run() function. |
| 114 | 119 |
/// |
| 115 | 120 |
/// Enum type containing the problem type constants that can be |
| 116 | 121 |
/// returned by the \ref run() function of the algorithm. |
| 117 | 122 |
enum ProblemType {
|
| 118 | 123 |
/// The problem has no feasible solution (flow). |
| 119 | 124 |
INFEASIBLE, |
| 120 | 125 |
/// The problem has optimal solution (i.e. it is feasible and |
| 121 | 126 |
/// bounded), and the algorithm has found optimal flow and node |
| 122 | 127 |
/// potentials (primal and dual solutions). |
| 123 | 128 |
OPTIMAL, |
| 124 | 129 |
/// The digraph contains an arc of negative cost and infinite |
| 125 | 130 |
/// upper bound. It means that the objective function is unbounded |
| 126 | 131 |
/// on that arc, however, note that it could actually be bounded |
| 127 | 132 |
/// over the feasible flows, but this algroithm cannot handle |
| 128 | 133 |
/// these cases. |
| 129 | 134 |
UNBOUNDED |
| 130 | 135 |
}; |
| 131 | 136 |
|
| 132 | 137 |
private: |
| 133 | 138 |
|
| 134 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 135 | 140 |
|
| 136 | 141 |
typedef std::vector<int> IntVector; |
| 137 | 142 |
typedef std::vector<char> BoolVector; |
| 138 | 143 |
typedef std::vector<Value> ValueVector; |
| 139 | 144 |
typedef std::vector<Cost> CostVector; |
| 140 | 145 |
|
| 141 | 146 |
private: |
| 142 | 147 |
|
| 143 | 148 |
// Data related to the underlying digraph |
| 144 | 149 |
const GR &_graph; |
| 145 | 150 |
int _node_num; |
| 146 | 151 |
int _arc_num; |
| 147 | 152 |
int _res_arc_num; |
| 148 | 153 |
int _root; |
| 149 | 154 |
|
| 150 | 155 |
// Parameters of the problem |
| 151 | 156 |
bool _have_lower; |
| 152 | 157 |
Value _sum_supply; |
| 153 | 158 |
|
| 154 | 159 |
// Data structures for storing the digraph |
| 155 | 160 |
IntNodeMap _node_id; |
| 156 | 161 |
IntArcMap _arc_idf; |
| 157 | 162 |
IntArcMap _arc_idb; |
| 158 | 163 |
IntVector _first_out; |
| 159 | 164 |
BoolVector _forward; |
| 160 | 165 |
IntVector _source; |
| 161 | 166 |
IntVector _target; |
| 162 | 167 |
IntVector _reverse; |
| 163 | 168 |
|
| 164 | 169 |
// Node and arc data |
| 165 | 170 |
ValueVector _lower; |
| 166 | 171 |
ValueVector _upper; |
| 167 | 172 |
CostVector _cost; |
| 168 | 173 |
ValueVector _supply; |
| 169 | 174 |
|
| 170 | 175 |
ValueVector _res_cap; |
| 171 | 176 |
CostVector _pi; |
| 172 | 177 |
ValueVector _excess; |
| 173 | 178 |
IntVector _excess_nodes; |
| 174 | 179 |
IntVector _deficit_nodes; |
| 175 | 180 |
|
| 176 | 181 |
Value _delta; |
| 177 | 182 |
int _factor; |
| 178 | 183 |
IntVector _pred; |
| 179 | 184 |
|
| 180 | 185 |
public: |
| 181 | 186 |
|
| 182 | 187 |
/// \brief Constant for infinite upper bounds (capacities). |
| 183 | 188 |
/// |
| 184 | 189 |
/// Constant for infinite upper bounds (capacities). |
| 185 | 190 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 186 | 191 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 187 | 192 |
const Value INF; |
| 188 | 193 |
|
| 189 | 194 |
private: |
| 190 | 195 |
|
| 191 | 196 |
// Special implementation of the Dijkstra algorithm for finding |
| 192 | 197 |
// shortest paths in the residual network of the digraph with |
| 193 | 198 |
// respect to the reduced arc costs and modifying the node |
| 194 | 199 |
// potentials according to the found distance labels. |
| 195 | 200 |
class ResidualDijkstra |
| 196 | 201 |
{
|
| 197 | 202 |
private: |
| 198 | 203 |
|
| 199 | 204 |
int _node_num; |
| 200 | 205 |
bool _geq; |
| 201 | 206 |
const IntVector &_first_out; |
| 202 | 207 |
const IntVector &_target; |
| 203 | 208 |
const CostVector &_cost; |
| 204 | 209 |
const ValueVector &_res_cap; |
| 205 | 210 |
const ValueVector &_excess; |
| 206 | 211 |
CostVector &_pi; |
| 207 | 212 |
IntVector &_pred; |
| 208 | 213 |
|
| 209 | 214 |
IntVector _proc_nodes; |
| 210 | 215 |
CostVector _dist; |
| 211 | 216 |
|
| 212 | 217 |
public: |
| 213 | 218 |
|
| 214 | 219 |
ResidualDijkstra(CapacityScaling& cs) : |
| 215 | 220 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
| 216 | 221 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
| 217 | 222 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
| 218 | 223 |
_pred(cs._pred), _dist(cs._node_num) |
| 219 | 224 |
{}
|
| 220 | 225 |
|
| 221 | 226 |
int run(int s, Value delta = 1) {
|
| 222 | 227 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
| 223 | 228 |
Heap heap(heap_cross_ref); |
| 224 | 229 |
heap.push(s, 0); |
| 225 | 230 |
_pred[s] = -1; |
| 226 | 231 |
_proc_nodes.clear(); |
| 227 | 232 |
|
| 228 | 233 |
// Process nodes |
| 229 | 234 |
while (!heap.empty() && _excess[heap.top()] > -delta) {
|
| 230 | 235 |
int u = heap.top(), v; |
| 231 | 236 |
Cost d = heap.prio() + _pi[u], dn; |
| 232 | 237 |
_dist[u] = heap.prio(); |
| 233 | 238 |
_proc_nodes.push_back(u); |
| 234 | 239 |
heap.pop(); |
| 235 | 240 |
|
| 236 | 241 |
// Traverse outgoing residual arcs |
| 237 | 242 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
| 238 | 243 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 239 | 244 |
if (_res_cap[a] < delta) continue; |
| 240 | 245 |
v = _target[a]; |
| 241 | 246 |
switch (heap.state(v)) {
|
| 242 | 247 |
case Heap::PRE_HEAP: |
| 243 | 248 |
heap.push(v, d + _cost[a] - _pi[v]); |
| 244 | 249 |
_pred[v] = a; |
| 245 | 250 |
break; |
| 246 | 251 |
case Heap::IN_HEAP: |
| 247 | 252 |
dn = d + _cost[a] - _pi[v]; |
| 248 | 253 |
if (dn < heap[v]) {
|
| 249 | 254 |
heap.decrease(v, dn); |
| 250 | 255 |
_pred[v] = a; |
| 251 | 256 |
} |
| 252 | 257 |
break; |
| 253 | 258 |
case Heap::POST_HEAP: |
| 254 | 259 |
break; |
| 255 | 260 |
} |
| 256 | 261 |
} |
| 257 | 262 |
} |
| 258 | 263 |
if (heap.empty()) return -1; |
| 259 | 264 |
|
| 260 | 265 |
// Update potentials of processed nodes |
| 261 | 266 |
int t = heap.top(); |
| 262 | 267 |
Cost dt = heap.prio(); |
| 263 | 268 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) {
|
| 264 | 269 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
| 265 | 270 |
} |
| 266 | 271 |
|
| 267 | 272 |
return t; |
| 268 | 273 |
} |
| 269 | 274 |
|
| 270 | 275 |
}; //class ResidualDijkstra |
| 271 | 276 |
|
| 272 | 277 |
public: |
| 273 | 278 |
|
| 274 | 279 |
/// \name Named Template Parameters |
| 275 | 280 |
/// @{
|
| 276 | 281 |
|
| 277 | 282 |
template <typename T> |
| 278 | 283 |
struct SetHeapTraits : public Traits {
|
| 279 | 284 |
typedef T Heap; |
| 280 | 285 |
}; |
| 281 | 286 |
|
| 282 | 287 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 283 | 288 |
/// \c Heap type. |
| 284 | 289 |
/// |
| 285 | 290 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
| 286 | 291 |
/// type, which is used for internal Dijkstra computations. |
| 287 | 292 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
| 288 | 293 |
/// its priority type must be \c Cost and its cross reference type |
| 289 | 294 |
/// must be \ref RangeMap "RangeMap<int>". |
| 290 | 295 |
template <typename T> |
| 291 | 296 |
struct SetHeap |
| 292 | 297 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
|
| 293 | 298 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
| 294 | 299 |
}; |
| 295 | 300 |
|
| 296 | 301 |
/// @} |
| 297 | 302 |
|
| 298 | 303 |
public: |
| 299 | 304 |
|
| 300 | 305 |
/// \brief Constructor. |
| 301 | 306 |
/// |
| 302 | 307 |
/// The constructor of the class. |
| 303 | 308 |
/// |
| 304 | 309 |
/// \param graph The digraph the algorithm runs on. |
| 305 | 310 |
CapacityScaling(const GR& graph) : |
| 306 | 311 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
| 307 | 312 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 308 | 313 |
std::numeric_limits<Value>::infinity() : |
| 309 | 314 |
std::numeric_limits<Value>::max()) |
| 310 | 315 |
{
|
| 311 | 316 |
// Check the number types |
| 312 | 317 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 313 | 318 |
"The flow type of CapacityScaling must be signed"); |
| 314 | 319 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 315 | 320 |
"The cost type of CapacityScaling must be signed"); |
| 316 | 321 |
|
| 317 | 322 |
// Resize vectors |
| 318 | 323 |
_node_num = countNodes(_graph); |
| 319 | 324 |
_arc_num = countArcs(_graph); |
| 320 | 325 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 321 | 326 |
_root = _node_num; |
| 322 | 327 |
++_node_num; |
| 323 | 328 |
|
| 324 | 329 |
_first_out.resize(_node_num + 1); |
| 325 | 330 |
_forward.resize(_res_arc_num); |
| 326 | 331 |
_source.resize(_res_arc_num); |
| 327 | 332 |
_target.resize(_res_arc_num); |
| 328 | 333 |
_reverse.resize(_res_arc_num); |
| 329 | 334 |
|
| 330 | 335 |
_lower.resize(_res_arc_num); |
| 331 | 336 |
_upper.resize(_res_arc_num); |
| 332 | 337 |
_cost.resize(_res_arc_num); |
| 333 | 338 |
_supply.resize(_node_num); |
| 334 | 339 |
|
| 335 | 340 |
_res_cap.resize(_res_arc_num); |
| 336 | 341 |
_pi.resize(_node_num); |
| 337 | 342 |
_excess.resize(_node_num); |
| 338 | 343 |
_pred.resize(_node_num); |
| 339 | 344 |
|
| 340 | 345 |
// Copy the graph |
| 341 | 346 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
| 342 | 347 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 343 | 348 |
_node_id[n] = i; |
| 344 | 349 |
} |
| 345 | 350 |
i = 0; |
| 346 | 351 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 347 | 352 |
_first_out[i] = j; |
| 348 | 353 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 349 | 354 |
_arc_idf[a] = j; |
| 350 | 355 |
_forward[j] = true; |
| 351 | 356 |
_source[j] = i; |
| 352 | 357 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 353 | 358 |
} |
| 354 | 359 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 355 | 360 |
_arc_idb[a] = j; |
| 356 | 361 |
_forward[j] = false; |
| 357 | 362 |
_source[j] = i; |
| 358 | 363 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 359 | 364 |
} |
| 360 | 365 |
_forward[j] = false; |
| 361 | 366 |
_source[j] = i; |
| 362 | 367 |
_target[j] = _root; |
| 363 | 368 |
_reverse[j] = k; |
| 364 | 369 |
_forward[k] = true; |
| 365 | 370 |
_source[k] = _root; |
| 366 | 371 |
_target[k] = i; |
| 367 | 372 |
_reverse[k] = j; |
| 368 | 373 |
++j; ++k; |
| 369 | 374 |
} |
| 370 | 375 |
_first_out[i] = j; |
| 371 | 376 |
_first_out[_node_num] = k; |
| 372 | 377 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 373 | 378 |
int fi = _arc_idf[a]; |
| 374 | 379 |
int bi = _arc_idb[a]; |
| 375 | 380 |
_reverse[fi] = bi; |
| 376 | 381 |
_reverse[bi] = fi; |
| 377 | 382 |
} |
| 378 | 383 |
|
| 379 | 384 |
// Reset parameters |
| 380 | 385 |
reset(); |
| 381 | 386 |
} |
| 382 | 387 |
|
| 383 | 388 |
/// \name Parameters |
| 384 | 389 |
/// The parameters of the algorithm can be specified using these |
| 385 | 390 |
/// functions. |
| 386 | 391 |
|
| 387 | 392 |
/// @{
|
| 388 | 393 |
|
| 389 | 394 |
/// \brief Set the lower bounds on the arcs. |
| 390 | 395 |
/// |
| 391 | 396 |
/// This function sets the lower bounds on the arcs. |
| 392 | 397 |
/// If it is not used before calling \ref run(), the lower bounds |
| 393 | 398 |
/// will be set to zero on all arcs. |
| 394 | 399 |
/// |
| 395 | 400 |
/// \param map An arc map storing the lower bounds. |
| 396 | 401 |
/// Its \c Value type must be convertible to the \c Value type |
| 397 | 402 |
/// of the algorithm. |
| 398 | 403 |
/// |
| 399 | 404 |
/// \return <tt>(*this)</tt> |
| 400 | 405 |
template <typename LowerMap> |
| 401 | 406 |
CapacityScaling& lowerMap(const LowerMap& map) {
|
| 402 | 407 |
_have_lower = true; |
| 403 | 408 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 404 | 409 |
_lower[_arc_idf[a]] = map[a]; |
| 405 | 410 |
_lower[_arc_idb[a]] = map[a]; |
| 406 | 411 |
} |
| 407 | 412 |
return *this; |
| 408 | 413 |
} |
| 409 | 414 |
|
| 410 | 415 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 411 | 416 |
/// |
| 412 | 417 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 413 | 418 |
/// If it is not used before calling \ref run(), the upper bounds |
| 414 | 419 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 415 | 420 |
/// unbounded from above). |
| 416 | 421 |
/// |
| 417 | 422 |
/// \param map An arc map storing the upper bounds. |
| 418 | 423 |
/// Its \c Value type must be convertible to the \c Value type |
| 419 | 424 |
/// of the algorithm. |
| 420 | 425 |
/// |
| 421 | 426 |
/// \return <tt>(*this)</tt> |
| 422 | 427 |
template<typename UpperMap> |
| 423 | 428 |
CapacityScaling& upperMap(const UpperMap& map) {
|
| 424 | 429 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 425 | 430 |
_upper[_arc_idf[a]] = map[a]; |
| 426 | 431 |
} |
| 427 | 432 |
return *this; |
| 428 | 433 |
} |
| 429 | 434 |
|
| 430 | 435 |
/// \brief Set the costs of the arcs. |
| 431 | 436 |
/// |
| 432 | 437 |
/// This function sets the costs of the arcs. |
| 433 | 438 |
/// If it is not used before calling \ref run(), the costs |
| 434 | 439 |
/// will be set to \c 1 on all arcs. |
| 435 | 440 |
/// |
| 436 | 441 |
/// \param map An arc map storing the costs. |
| 437 | 442 |
/// Its \c Value type must be convertible to the \c Cost type |
| 438 | 443 |
/// of the algorithm. |
| 439 | 444 |
/// |
| 440 | 445 |
/// \return <tt>(*this)</tt> |
| 441 | 446 |
template<typename CostMap> |
| 442 | 447 |
CapacityScaling& costMap(const CostMap& map) {
|
| 443 | 448 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 444 | 449 |
_cost[_arc_idf[a]] = map[a]; |
| 445 | 450 |
_cost[_arc_idb[a]] = -map[a]; |
| 446 | 451 |
} |
| 447 | 452 |
return *this; |
| 448 | 453 |
} |
| 449 | 454 |
|
| 450 | 455 |
/// \brief Set the supply values of the nodes. |
| 451 | 456 |
/// |
| 452 | 457 |
/// This function sets the supply values of the nodes. |
| 453 | 458 |
/// If neither this function nor \ref stSupply() is used before |
| 454 | 459 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 455 | 460 |
/// |
| 456 | 461 |
/// \param map A node map storing the supply values. |
| 457 | 462 |
/// Its \c Value type must be convertible to the \c Value type |
| 458 | 463 |
/// of the algorithm. |
| 459 | 464 |
/// |
| 460 | 465 |
/// \return <tt>(*this)</tt> |
| 461 | 466 |
template<typename SupplyMap> |
| 462 | 467 |
CapacityScaling& supplyMap(const SupplyMap& map) {
|
| 463 | 468 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 464 | 469 |
_supply[_node_id[n]] = map[n]; |
| 465 | 470 |
} |
| 466 | 471 |
return *this; |
| 467 | 472 |
} |
| 468 | 473 |
|
| 469 | 474 |
/// \brief Set single source and target nodes and a supply value. |
| 470 | 475 |
/// |
| 471 | 476 |
/// This function sets a single source node and a single target node |
| 472 | 477 |
/// and the required flow value. |
| 473 | 478 |
/// If neither this function nor \ref supplyMap() is used before |
| 474 | 479 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 475 | 480 |
/// |
| 476 | 481 |
/// Using this function has the same effect as using \ref supplyMap() |
| 477 | 482 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 478 | 483 |
/// assigned to \c t and all other nodes have zero supply value. |
| 479 | 484 |
/// |
| 480 | 485 |
/// \param s The source node. |
| 481 | 486 |
/// \param t The target node. |
| 482 | 487 |
/// \param k The required amount of flow from node \c s to node \c t |
| 483 | 488 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 484 | 489 |
/// |
| 485 | 490 |
/// \return <tt>(*this)</tt> |
| 486 | 491 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
|
| 487 | 492 |
for (int i = 0; i != _node_num; ++i) {
|
| 488 | 493 |
_supply[i] = 0; |
| 489 | 494 |
} |
| 490 | 495 |
_supply[_node_id[s]] = k; |
| 491 | 496 |
_supply[_node_id[t]] = -k; |
| 492 | 497 |
return *this; |
| 493 | 498 |
} |
| 494 | 499 |
|
| 495 | 500 |
/// @} |
| 496 | 501 |
|
| 497 | 502 |
/// \name Execution control |
| 498 | 503 |
/// The algorithm can be executed using \ref run(). |
| 499 | 504 |
|
| 500 | 505 |
/// @{
|
| 501 | 506 |
|
| 502 | 507 |
/// \brief Run the algorithm. |
| 503 | 508 |
/// |
| 504 | 509 |
/// This function runs the algorithm. |
| 505 | 510 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 506 | 511 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 507 | 512 |
/// For example, |
| 508 | 513 |
/// \code |
| 509 | 514 |
/// CapacityScaling<ListDigraph> cs(graph); |
| 510 | 515 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 511 | 516 |
/// .supplyMap(sup).run(); |
| 512 | 517 |
/// \endcode |
| 513 | 518 |
/// |
| 514 | 519 |
/// This function can be called more than once. All the parameters |
| 515 | 520 |
/// that have been given are kept for the next call, unless |
| 516 | 521 |
/// \ref reset() is called, thus only the modified parameters |
| 517 | 522 |
/// have to be set again. See \ref reset() for examples. |
| 518 | 523 |
/// However, the underlying digraph must not be modified after this |
| 519 | 524 |
/// class have been constructed, since it copies and extends the graph. |
| 520 | 525 |
/// |
| 521 | 526 |
/// \param factor The capacity scaling factor. It must be larger than |
| 522 | 527 |
/// one to use scaling. If it is less or equal to one, then scaling |
| 523 | 528 |
/// will be disabled. |
| 524 | 529 |
/// |
| 525 | 530 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 526 | 531 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 527 | 532 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 528 | 533 |
/// optimal flow and node potentials (primal and dual solutions), |
| 529 | 534 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
| 530 | 535 |
/// and infinite upper bound. It means that the objective function |
| 531 | 536 |
/// is unbounded on that arc, however, note that it could actually be |
| 532 | 537 |
/// bounded over the feasible flows, but this algroithm cannot handle |
| 533 | 538 |
/// these cases. |
| 534 | 539 |
/// |
| 535 | 540 |
/// \see ProblemType |
| 536 | 541 |
ProblemType run(int factor = 4) {
|
| 537 | 542 |
_factor = factor; |
| 538 | 543 |
ProblemType pt = init(); |
| 539 | 544 |
if (pt != OPTIMAL) return pt; |
| 540 | 545 |
return start(); |
| 541 | 546 |
} |
| 542 | 547 |
|
| 543 | 548 |
/// \brief Reset all the parameters that have been given before. |
| 544 | 549 |
/// |
| 545 | 550 |
/// This function resets all the paramaters that have been given |
| 546 | 551 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 547 | 552 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 548 | 553 |
/// |
| 549 | 554 |
/// It is useful for multiple run() calls. If this function is not |
| 550 | 555 |
/// used, all the parameters given before are kept for the next |
| 551 | 556 |
/// \ref run() call. |
| 552 | 557 |
/// However, the underlying digraph must not be modified after this |
| 553 | 558 |
/// class have been constructed, since it copies and extends the graph. |
| 554 | 559 |
/// |
| 555 | 560 |
/// For example, |
| 556 | 561 |
/// \code |
| 557 | 562 |
/// CapacityScaling<ListDigraph> cs(graph); |
| 558 | 563 |
/// |
| 559 | 564 |
/// // First run |
| 560 | 565 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 561 | 566 |
/// .supplyMap(sup).run(); |
| 562 | 567 |
/// |
| 563 | 568 |
/// // Run again with modified cost map (reset() is not called, |
| 564 | 569 |
/// // so only the cost map have to be set again) |
| 565 | 570 |
/// cost[e] += 100; |
| 566 | 571 |
/// cs.costMap(cost).run(); |
| 567 | 572 |
/// |
| 568 | 573 |
/// // Run again from scratch using reset() |
| 569 | 574 |
/// // (the lower bounds will be set to zero on all arcs) |
| 570 | 575 |
/// cs.reset(); |
| 571 | 576 |
/// cs.upperMap(capacity).costMap(cost) |
| 572 | 577 |
/// .supplyMap(sup).run(); |
| 573 | 578 |
/// \endcode |
| 574 | 579 |
/// |
| 575 | 580 |
/// \return <tt>(*this)</tt> |
| 576 | 581 |
CapacityScaling& reset() {
|
| 577 | 582 |
for (int i = 0; i != _node_num; ++i) {
|
| 578 | 583 |
_supply[i] = 0; |
| 579 | 584 |
} |
| 580 | 585 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 581 | 586 |
_lower[j] = 0; |
| 582 | 587 |
_upper[j] = INF; |
| 583 | 588 |
_cost[j] = _forward[j] ? 1 : -1; |
| 584 | 589 |
} |
| 585 | 590 |
_have_lower = false; |
| 586 | 591 |
return *this; |
| 587 | 592 |
} |
| 588 | 593 |
|
| 589 | 594 |
/// @} |
| 590 | 595 |
|
| 591 | 596 |
/// \name Query Functions |
| 592 | 597 |
/// The results of the algorithm can be obtained using these |
| 593 | 598 |
/// functions.\n |
| 594 | 599 |
/// The \ref run() function must be called before using them. |
| 595 | 600 |
|
| 596 | 601 |
/// @{
|
| 597 | 602 |
|
| 598 | 603 |
/// \brief Return the total cost of the found flow. |
| 599 | 604 |
/// |
| 600 | 605 |
/// This function returns the total cost of the found flow. |
| 601 | 606 |
/// Its complexity is O(e). |
| 602 | 607 |
/// |
| 603 | 608 |
/// \note The return type of the function can be specified as a |
| 604 | 609 |
/// template parameter. For example, |
| 605 | 610 |
/// \code |
| 606 | 611 |
/// cs.totalCost<double>(); |
| 607 | 612 |
/// \endcode |
| 608 | 613 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 609 | 614 |
/// type of the algorithm, which is the default return type of the |
| 610 | 615 |
/// function. |
| 611 | 616 |
/// |
| 612 | 617 |
/// \pre \ref run() must be called before using this function. |
| 613 | 618 |
template <typename Number> |
| 614 | 619 |
Number totalCost() const {
|
| 615 | 620 |
Number c = 0; |
| 616 | 621 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 617 | 622 |
int i = _arc_idb[a]; |
| 618 | 623 |
c += static_cast<Number>(_res_cap[i]) * |
| 619 | 624 |
(-static_cast<Number>(_cost[i])); |
| 620 | 625 |
} |
| 621 | 626 |
return c; |
| 622 | 627 |
} |
| 623 | 628 |
|
| 624 | 629 |
#ifndef DOXYGEN |
| 625 | 630 |
Cost totalCost() const {
|
| 626 | 631 |
return totalCost<Cost>(); |
| 627 | 632 |
} |
| 628 | 633 |
#endif |
| 629 | 634 |
|
| 630 | 635 |
/// \brief Return the flow on the given arc. |
| 631 | 636 |
/// |
| 632 | 637 |
/// This function returns the flow on the given arc. |
| 633 | 638 |
/// |
| 634 | 639 |
/// \pre \ref run() must be called before using this function. |
| 635 | 640 |
Value flow(const Arc& a) const {
|
| 636 | 641 |
return _res_cap[_arc_idb[a]]; |
| 637 | 642 |
} |
| 638 | 643 |
|
| 639 | 644 |
/// \brief Return the flow map (the primal solution). |
| 640 | 645 |
/// |
| 641 | 646 |
/// This function copies the flow value on each arc into the given |
| 642 | 647 |
/// map. The \c Value type of the algorithm must be convertible to |
| 643 | 648 |
/// the \c Value type of the map. |
| 644 | 649 |
/// |
| 645 | 650 |
/// \pre \ref run() must be called before using this function. |
| 646 | 651 |
template <typename FlowMap> |
| 647 | 652 |
void flowMap(FlowMap &map) const {
|
| 648 | 653 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 649 | 654 |
map.set(a, _res_cap[_arc_idb[a]]); |
| 650 | 655 |
} |
| 651 | 656 |
} |
| 652 | 657 |
|
| 653 | 658 |
/// \brief Return the potential (dual value) of the given node. |
| 654 | 659 |
/// |
| 655 | 660 |
/// This function returns the potential (dual value) of the |
| 656 | 661 |
/// given node. |
| 657 | 662 |
/// |
| 658 | 663 |
/// \pre \ref run() must be called before using this function. |
| 659 | 664 |
Cost potential(const Node& n) const {
|
| 660 | 665 |
return _pi[_node_id[n]]; |
| 661 | 666 |
} |
| 662 | 667 |
|
| 663 | 668 |
/// \brief Return the potential map (the dual solution). |
| 664 | 669 |
/// |
| 665 | 670 |
/// This function copies the potential (dual value) of each node |
| 666 | 671 |
/// into the given map. |
| 667 | 672 |
/// The \c Cost type of the algorithm must be convertible to the |
| 668 | 673 |
/// \c Value type of the map. |
| 669 | 674 |
/// |
| 670 | 675 |
/// \pre \ref run() must be called before using this function. |
| 671 | 676 |
template <typename PotentialMap> |
| 672 | 677 |
void potentialMap(PotentialMap &map) const {
|
| 673 | 678 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 674 | 679 |
map.set(n, _pi[_node_id[n]]); |
| 675 | 680 |
} |
| 676 | 681 |
} |
| 677 | 682 |
|
| 678 | 683 |
/// @} |
| 679 | 684 |
|
| 680 | 685 |
private: |
| 681 | 686 |
|
| 682 | 687 |
// Initialize the algorithm |
| 683 | 688 |
ProblemType init() {
|
| 684 | 689 |
if (_node_num <= 1) return INFEASIBLE; |
| 685 | 690 |
|
| 686 | 691 |
// Check the sum of supply values |
| 687 | 692 |
_sum_supply = 0; |
| 688 | 693 |
for (int i = 0; i != _root; ++i) {
|
| 689 | 694 |
_sum_supply += _supply[i]; |
| 690 | 695 |
} |
| 691 | 696 |
if (_sum_supply > 0) return INFEASIBLE; |
| 692 | 697 |
|
| 693 | 698 |
// Initialize vectors |
| 694 | 699 |
for (int i = 0; i != _root; ++i) {
|
| 695 | 700 |
_pi[i] = 0; |
| 696 | 701 |
_excess[i] = _supply[i]; |
| 697 | 702 |
} |
| 698 | 703 |
|
| 699 | 704 |
// Remove non-zero lower bounds |
| 700 | 705 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 701 | 706 |
int last_out; |
| 702 | 707 |
if (_have_lower) {
|
| 703 | 708 |
for (int i = 0; i != _root; ++i) {
|
| 704 | 709 |
last_out = _first_out[i+1]; |
| 705 | 710 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 706 | 711 |
if (_forward[j]) {
|
| 707 | 712 |
Value c = _lower[j]; |
| 708 | 713 |
if (c >= 0) {
|
| 709 | 714 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
| 710 | 715 |
} else {
|
| 711 | 716 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
| 712 | 717 |
} |
| 713 | 718 |
_excess[i] -= c; |
| 714 | 719 |
_excess[_target[j]] += c; |
| 715 | 720 |
} else {
|
| 716 | 721 |
_res_cap[j] = 0; |
| 717 | 722 |
} |
| 718 | 723 |
} |
| 719 | 724 |
} |
| 720 | 725 |
} else {
|
| 721 | 726 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 722 | 727 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
| 723 | 728 |
} |
| 724 | 729 |
} |
| 725 | 730 |
|
| 726 | 731 |
// Handle negative costs |
| 727 | 732 |
for (int i = 0; i != _root; ++i) {
|
| 728 | 733 |
last_out = _first_out[i+1] - 1; |
| 729 | 734 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 730 | 735 |
Value rc = _res_cap[j]; |
| 731 | 736 |
if (_cost[j] < 0 && rc > 0) {
|
| 732 | 737 |
if (rc >= MAX) return UNBOUNDED; |
| 733 | 738 |
_excess[i] -= rc; |
| 734 | 739 |
_excess[_target[j]] += rc; |
| 735 | 740 |
_res_cap[j] = 0; |
| 736 | 741 |
_res_cap[_reverse[j]] += rc; |
| 737 | 742 |
} |
| 738 | 743 |
} |
| 739 | 744 |
} |
| 740 | 745 |
|
| 741 | 746 |
// Handle GEQ supply type |
| 742 | 747 |
if (_sum_supply < 0) {
|
| 743 | 748 |
_pi[_root] = 0; |
| 744 | 749 |
_excess[_root] = -_sum_supply; |
| 745 | 750 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 746 | 751 |
int ra = _reverse[a]; |
| 747 | 752 |
_res_cap[a] = -_sum_supply + 1; |
| 748 | 753 |
_res_cap[ra] = 0; |
| 749 | 754 |
_cost[a] = 0; |
| 750 | 755 |
_cost[ra] = 0; |
| 751 | 756 |
} |
| 752 | 757 |
} else {
|
| 753 | 758 |
_pi[_root] = 0; |
| 754 | 759 |
_excess[_root] = 0; |
| 755 | 760 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 756 | 761 |
int ra = _reverse[a]; |
| 757 | 762 |
_res_cap[a] = 1; |
| 758 | 763 |
_res_cap[ra] = 0; |
| 759 | 764 |
_cost[a] = 0; |
| 760 | 765 |
_cost[ra] = 0; |
| 761 | 766 |
} |
| 762 | 767 |
} |
| 763 | 768 |
|
| 764 | 769 |
// Initialize delta value |
| 765 | 770 |
if (_factor > 1) {
|
| 766 | 771 |
// With scaling |
| 767 | 772 |
Value max_sup = 0, max_dem = 0; |
| 768 | 773 |
for (int i = 0; i != _node_num; ++i) {
|
| 769 | 774 |
Value ex = _excess[i]; |
| 770 | 775 |
if ( ex > max_sup) max_sup = ex; |
| 771 | 776 |
if (-ex > max_dem) max_dem = -ex; |
| 772 | 777 |
} |
| 773 | 778 |
Value max_cap = 0; |
| 774 | 779 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 775 | 780 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
| 776 | 781 |
} |
| 777 | 782 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
| 778 | 783 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
| 779 | 784 |
} else {
|
| 780 | 785 |
// Without scaling |
| 781 | 786 |
_delta = 1; |
| 782 | 787 |
} |
| 783 | 788 |
|
| 784 | 789 |
return OPTIMAL; |
| 785 | 790 |
} |
| 786 | 791 |
|
| 787 | 792 |
ProblemType start() {
|
| 788 | 793 |
// Execute the algorithm |
| 789 | 794 |
ProblemType pt; |
| 790 | 795 |
if (_delta > 1) |
| 791 | 796 |
pt = startWithScaling(); |
| 792 | 797 |
else |
| 793 | 798 |
pt = startWithoutScaling(); |
| 794 | 799 |
|
| 795 | 800 |
// Handle non-zero lower bounds |
| 796 | 801 |
if (_have_lower) {
|
| 797 | 802 |
int limit = _first_out[_root]; |
| 798 | 803 |
for (int j = 0; j != limit; ++j) {
|
| 799 | 804 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 800 | 805 |
} |
| 801 | 806 |
} |
| 802 | 807 |
|
| 803 | 808 |
// Shift potentials if necessary |
| 804 | 809 |
Cost pr = _pi[_root]; |
| 805 | 810 |
if (_sum_supply < 0 || pr > 0) {
|
| 806 | 811 |
for (int i = 0; i != _node_num; ++i) {
|
| 807 | 812 |
_pi[i] -= pr; |
| 808 | 813 |
} |
| 809 | 814 |
} |
| 810 | 815 |
|
| 811 | 816 |
return pt; |
| 812 | 817 |
} |
| 813 | 818 |
|
| 814 | 819 |
// Execute the capacity scaling algorithm |
| 815 | 820 |
ProblemType startWithScaling() {
|
| 816 | 821 |
// Perform capacity scaling phases |
| 817 | 822 |
int s, t; |
| 818 | 823 |
ResidualDijkstra _dijkstra(*this); |
| 819 | 824 |
while (true) {
|
| 820 | 825 |
// Saturate all arcs not satisfying the optimality condition |
| 821 | 826 |
int last_out; |
| 822 | 827 |
for (int u = 0; u != _node_num; ++u) {
|
| 823 | 828 |
last_out = _sum_supply < 0 ? |
| 824 | 829 |
_first_out[u+1] : _first_out[u+1] - 1; |
| 825 | 830 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 826 | 831 |
int v = _target[a]; |
| 827 | 832 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
| 828 | 833 |
Value rc = _res_cap[a]; |
| 829 | 834 |
if (c < 0 && rc >= _delta) {
|
| 830 | 835 |
_excess[u] -= rc; |
| 831 | 836 |
_excess[v] += rc; |
| 832 | 837 |
_res_cap[a] = 0; |
| 833 | 838 |
_res_cap[_reverse[a]] += rc; |
| 834 | 839 |
} |
| 835 | 840 |
} |
| 836 | 841 |
} |
| 837 | 842 |
|
| 838 | 843 |
// Find excess nodes and deficit nodes |
| 839 | 844 |
_excess_nodes.clear(); |
| 840 | 845 |
_deficit_nodes.clear(); |
| 841 | 846 |
for (int u = 0; u != _node_num; ++u) {
|
| 842 | 847 |
Value ex = _excess[u]; |
| 843 | 848 |
if (ex >= _delta) _excess_nodes.push_back(u); |
| 844 | 849 |
if (ex <= -_delta) _deficit_nodes.push_back(u); |
| 845 | 850 |
} |
| 846 | 851 |
int next_node = 0, next_def_node = 0; |
| 847 | 852 |
|
| 848 | 853 |
// Find augmenting shortest paths |
| 849 | 854 |
while (next_node < int(_excess_nodes.size())) {
|
| 850 | 855 |
// Check deficit nodes |
| 851 | 856 |
if (_delta > 1) {
|
| 852 | 857 |
bool delta_deficit = false; |
| 853 | 858 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
| 854 | 859 |
++next_def_node ) {
|
| 855 | 860 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
|
| 856 | 861 |
delta_deficit = true; |
| 857 | 862 |
break; |
| 858 | 863 |
} |
| 859 | 864 |
} |
| 860 | 865 |
if (!delta_deficit) break; |
| 861 | 866 |
} |
| 862 | 867 |
|
| 863 | 868 |
// Run Dijkstra in the residual network |
| 864 | 869 |
s = _excess_nodes[next_node]; |
| 865 | 870 |
if ((t = _dijkstra.run(s, _delta)) == -1) {
|
| 866 | 871 |
if (_delta > 1) {
|
| 867 | 872 |
++next_node; |
| 868 | 873 |
continue; |
| 869 | 874 |
} |
| 870 | 875 |
return INFEASIBLE; |
| 871 | 876 |
} |
| 872 | 877 |
|
| 873 | 878 |
// Augment along a shortest path from s to t |
| 874 | 879 |
Value d = std::min(_excess[s], -_excess[t]); |
| 875 | 880 |
int u = t; |
| 876 | 881 |
int a; |
| 877 | 882 |
if (d > _delta) {
|
| 878 | 883 |
while ((a = _pred[u]) != -1) {
|
| 879 | 884 |
if (_res_cap[a] < d) d = _res_cap[a]; |
| 880 | 885 |
u = _source[a]; |
| 881 | 886 |
} |
| 882 | 887 |
} |
| 883 | 888 |
u = t; |
| 884 | 889 |
while ((a = _pred[u]) != -1) {
|
| 885 | 890 |
_res_cap[a] -= d; |
| 886 | 891 |
_res_cap[_reverse[a]] += d; |
| 887 | 892 |
u = _source[a]; |
| 888 | 893 |
} |
| 889 | 894 |
_excess[s] -= d; |
| 890 | 895 |
_excess[t] += d; |
| 891 | 896 |
|
| 892 | 897 |
if (_excess[s] < _delta) ++next_node; |
| 893 | 898 |
} |
| 894 | 899 |
|
| 895 | 900 |
if (_delta == 1) break; |
| 896 | 901 |
_delta = _delta <= _factor ? 1 : _delta / _factor; |
| 897 | 902 |
} |
| 898 | 903 |
|
| 899 | 904 |
return OPTIMAL; |
| 900 | 905 |
} |
| 901 | 906 |
|
| 902 | 907 |
// Execute the successive shortest path algorithm |
| 903 | 908 |
ProblemType startWithoutScaling() {
|
| 904 | 909 |
// Find excess nodes |
| 905 | 910 |
_excess_nodes.clear(); |
| 906 | 911 |
for (int i = 0; i != _node_num; ++i) {
|
| 907 | 912 |
if (_excess[i] > 0) _excess_nodes.push_back(i); |
| 908 | 913 |
} |
| 909 | 914 |
if (_excess_nodes.size() == 0) return OPTIMAL; |
| 910 | 915 |
int next_node = 0; |
| 911 | 916 |
|
| 912 | 917 |
// Find shortest paths |
| 913 | 918 |
int s, t; |
| 914 | 919 |
ResidualDijkstra _dijkstra(*this); |
| 915 | 920 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
| 916 | 921 |
++next_node < int(_excess_nodes.size()) ) |
| 917 | 922 |
{
|
| 918 | 923 |
// Run Dijkstra in the residual network |
| 919 | 924 |
s = _excess_nodes[next_node]; |
| 920 | 925 |
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE; |
| 921 | 926 |
|
| 922 | 927 |
// Augment along a shortest path from s to t |
| 923 | 928 |
Value d = std::min(_excess[s], -_excess[t]); |
| 924 | 929 |
int u = t; |
| 925 | 930 |
int a; |
| 926 | 931 |
if (d > 1) {
|
| 927 | 932 |
while ((a = _pred[u]) != -1) {
|
| 928 | 933 |
if (_res_cap[a] < d) d = _res_cap[a]; |
| 929 | 934 |
u = _source[a]; |
| 930 | 935 |
} |
| 931 | 936 |
} |
| 932 | 937 |
u = t; |
| 933 | 938 |
while ((a = _pred[u]) != -1) {
|
| 934 | 939 |
_res_cap[a] -= d; |
| 935 | 940 |
_res_cap[_reverse[a]] += d; |
| 936 | 941 |
u = _source[a]; |
| 937 | 942 |
} |
| 938 | 943 |
_excess[s] -= d; |
| 939 | 944 |
_excess[t] += d; |
| 940 | 945 |
} |
| 941 | 946 |
|
| 942 | 947 |
return OPTIMAL; |
| 943 | 948 |
} |
| 944 | 949 |
|
| 945 | 950 |
}; //class CapacityScaling |
| 946 | 951 |
|
| 947 | 952 |
///@} |
| 948 | 953 |
|
| 949 | 954 |
} //namespace lemon |
| 950 | 955 |
|
| 951 | 956 |
#endif //LEMON_CAPACITY_SCALING_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CIRCULATION_H |
| 20 | 20 |
#define LEMON_CIRCULATION_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
///\ingroup max_flow |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 | 75 |
#ifdef DOXYGEN |
| 76 | 76 |
typedef GR::ArcMap<Value> FlowMap; |
| 77 | 77 |
#else |
| 78 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 | 79 |
#endif |
| 80 | 80 |
|
| 81 | 81 |
/// \brief Instantiates a FlowMap. |
| 82 | 82 |
/// |
| 83 | 83 |
/// This function instantiates a \ref FlowMap. |
| 84 | 84 |
/// \param digraph The digraph for which we would like to define |
| 85 | 85 |
/// the flow map. |
| 86 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 87 | 87 |
return new FlowMap(digraph); |
| 88 | 88 |
} |
| 89 | 89 |
|
| 90 | 90 |
/// \brief The elevator type used by the algorithm. |
| 91 | 91 |
/// |
| 92 | 92 |
/// The elevator type used by the algorithm. |
| 93 | 93 |
/// |
| 94 | 94 |
/// \sa Elevator, LinkedElevator |
| 95 | 95 |
#ifdef DOXYGEN |
| 96 | 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
| 97 | 97 |
#else |
| 98 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 | 99 |
#endif |
| 100 | 100 |
|
| 101 | 101 |
/// \brief Instantiates an Elevator. |
| 102 | 102 |
/// |
| 103 | 103 |
/// This function instantiates an \ref Elevator. |
| 104 | 104 |
/// \param digraph The digraph for which we would like to define |
| 105 | 105 |
/// the elevator. |
| 106 | 106 |
/// \param max_level The maximum level of the elevator. |
| 107 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 108 | 108 |
return new Elevator(digraph, max_level); |
| 109 | 109 |
} |
| 110 | 110 |
|
| 111 | 111 |
/// \brief The tolerance used by the algorithm |
| 112 | 112 |
/// |
| 113 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 114 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
| 115 | 115 |
|
| 116 | 116 |
}; |
| 117 | 117 |
|
| 118 | 118 |
/** |
| 119 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
| 120 | 120 |
|
| 121 | 121 |
\ingroup max_flow |
| 122 | 122 |
This class implements a push-relabel algorithm for the \e network |
| 123 | 123 |
\e circulation problem. |
| 124 | 124 |
It is to find a feasible circulation when lower and upper bounds |
| 125 | 125 |
are given for the flow values on the arcs and lower bounds are |
| 126 | 126 |
given for the difference between the outgoing and incoming flow |
| 127 | 127 |
at the nodes. |
| 128 | 128 |
|
| 129 | 129 |
The exact formulation of this problem is the following. |
| 130 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 131 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 132 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 133 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 134 | 134 |
denotes the signed supply values of the nodes. |
| 135 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 136 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 137 | 137 |
\f$-sup(u)\f$ demand. |
| 138 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 139 | 139 |
solution of the following problem. |
| 140 | 140 |
|
| 141 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 142 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 143 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 144 | 144 |
|
| 145 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 146 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 147 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| 148 | 148 |
It means that the total demand must be greater or equal to the total |
| 149 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
| 150 | 150 |
but there could be demands that are not satisfied. |
| 151 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 152 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
| 153 | 153 |
have to be satisfied and all supplies have to be used. |
| 154 | 154 |
|
| 155 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
| 156 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
| 157 | 157 |
have to be satisfied while there could be supplies that are not used), |
| 158 | 158 |
then you could easily transform the problem to the above form by reversing |
| 159 | 159 |
the direction of the arcs and taking the negative of the supply values |
| 160 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 161 | 161 |
|
| 162 | 162 |
This algorithm either calculates a feasible circulation, or provides |
| 163 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 164 | 164 |
cannot exist. |
| 165 | 165 |
|
| 166 | 166 |
Note that this algorithm also provides a feasible solution for the |
| 167 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
| 168 | 168 |
|
| 169 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
| 170 | 170 |
\tparam LM The type of the lower bound map. The default |
| 171 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 172 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
| 173 | 173 |
The default map type is \c LM. |
| 174 | 174 |
\tparam SM The type of the supply map. The default map type is |
| 175 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 176 |
\tparam TR The traits class that defines various types used by the |
|
| 177 |
algorithm. By default, it is \ref CirculationDefaultTraits |
|
| 178 |
"CirculationDefaultTraits<GR, LM, UM, SM>". |
|
| 179 |
In most cases, this parameter should not be set directly, |
|
| 180 |
consider to use the named template parameters instead. |
|
| 176 | 181 |
*/ |
| 177 | 182 |
#ifdef DOXYGEN |
| 178 | 183 |
template< typename GR, |
| 179 | 184 |
typename LM, |
| 180 | 185 |
typename UM, |
| 181 | 186 |
typename SM, |
| 182 | 187 |
typename TR > |
| 183 | 188 |
#else |
| 184 | 189 |
template< typename GR, |
| 185 | 190 |
typename LM = typename GR::template ArcMap<int>, |
| 186 | 191 |
typename UM = LM, |
| 187 | 192 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 188 | 193 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 189 | 194 |
#endif |
| 190 | 195 |
class Circulation {
|
| 191 | 196 |
public: |
| 192 | 197 |
|
| 193 | 198 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 194 | 199 |
typedef TR Traits; |
| 195 | 200 |
///The type of the digraph the algorithm runs on. |
| 196 | 201 |
typedef typename Traits::Digraph Digraph; |
| 197 | 202 |
///The type of the flow and supply values. |
| 198 | 203 |
typedef typename Traits::Value Value; |
| 199 | 204 |
|
| 200 | 205 |
///The type of the lower bound map. |
| 201 | 206 |
typedef typename Traits::LowerMap LowerMap; |
| 202 | 207 |
///The type of the upper bound (capacity) map. |
| 203 | 208 |
typedef typename Traits::UpperMap UpperMap; |
| 204 | 209 |
///The type of the supply map. |
| 205 | 210 |
typedef typename Traits::SupplyMap SupplyMap; |
| 206 | 211 |
///The type of the flow map. |
| 207 | 212 |
typedef typename Traits::FlowMap FlowMap; |
| 208 | 213 |
|
| 209 | 214 |
///The type of the elevator. |
| 210 | 215 |
typedef typename Traits::Elevator Elevator; |
| 211 | 216 |
///The type of the tolerance. |
| 212 | 217 |
typedef typename Traits::Tolerance Tolerance; |
| 213 | 218 |
|
| 214 | 219 |
private: |
| 215 | 220 |
|
| 216 | 221 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 217 | 222 |
|
| 218 | 223 |
const Digraph &_g; |
| 219 | 224 |
int _node_num; |
| 220 | 225 |
|
| 221 | 226 |
const LowerMap *_lo; |
| 222 | 227 |
const UpperMap *_up; |
| 223 | 228 |
const SupplyMap *_supply; |
| 224 | 229 |
|
| 225 | 230 |
FlowMap *_flow; |
| 226 | 231 |
bool _local_flow; |
| 227 | 232 |
|
| 228 | 233 |
Elevator* _level; |
| 229 | 234 |
bool _local_level; |
| 230 | 235 |
|
| 231 | 236 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 232 | 237 |
ExcessMap* _excess; |
| 233 | 238 |
|
| 234 | 239 |
Tolerance _tol; |
| 235 | 240 |
int _el; |
| 236 | 241 |
|
| 237 | 242 |
public: |
| 238 | 243 |
|
| 239 | 244 |
typedef Circulation Create; |
| 240 | 245 |
|
| 241 | 246 |
///\name Named Template Parameters |
| 242 | 247 |
|
| 243 | 248 |
///@{
|
| 244 | 249 |
|
| 245 | 250 |
template <typename T> |
| 246 | 251 |
struct SetFlowMapTraits : public Traits {
|
| 247 | 252 |
typedef T FlowMap; |
| 248 | 253 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 249 | 254 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 250 | 255 |
return 0; // ignore warnings |
| 251 | 256 |
} |
| 252 | 257 |
}; |
| 253 | 258 |
|
| 254 | 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 255 | 260 |
/// FlowMap type |
| 256 | 261 |
/// |
| 257 | 262 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 258 | 263 |
/// type. |
| 259 | 264 |
template <typename T> |
| 260 | 265 |
struct SetFlowMap |
| 261 | 266 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 262 | 267 |
SetFlowMapTraits<T> > {
|
| 263 | 268 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 264 | 269 |
SetFlowMapTraits<T> > Create; |
| 265 | 270 |
}; |
| 266 | 271 |
|
| 267 | 272 |
template <typename T> |
| 268 | 273 |
struct SetElevatorTraits : public Traits {
|
| 269 | 274 |
typedef T Elevator; |
| 270 | 275 |
static Elevator *createElevator(const Digraph&, int) {
|
| 271 | 276 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 272 | 277 |
return 0; // ignore warnings |
| 273 | 278 |
} |
| 274 | 279 |
}; |
| 275 | 280 |
|
| 276 | 281 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 277 | 282 |
/// Elevator type |
| 278 | 283 |
/// |
| 279 | 284 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 280 | 285 |
/// type. If this named parameter is used, then an external |
| 281 | 286 |
/// elevator object must be passed to the algorithm using the |
| 282 | 287 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 283 | 288 |
/// \ref run() or \ref init(). |
| 284 | 289 |
/// \sa SetStandardElevator |
| 285 | 290 |
template <typename T> |
| 286 | 291 |
struct SetElevator |
| 287 | 292 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 288 | 293 |
SetElevatorTraits<T> > {
|
| 289 | 294 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 290 | 295 |
SetElevatorTraits<T> > Create; |
| 291 | 296 |
}; |
| 292 | 297 |
|
| 293 | 298 |
template <typename T> |
| 294 | 299 |
struct SetStandardElevatorTraits : public Traits {
|
| 295 | 300 |
typedef T Elevator; |
| 296 | 301 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 297 | 302 |
return new Elevator(digraph, max_level); |
| 298 | 303 |
} |
| 299 | 304 |
}; |
| 300 | 305 |
|
| 301 | 306 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 302 | 307 |
/// Elevator type with automatic allocation |
| 303 | 308 |
/// |
| 304 | 309 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 305 | 310 |
/// type with automatic allocation. |
| 306 | 311 |
/// The Elevator should have standard constructor interface to be |
| 307 | 312 |
/// able to automatically created by the algorithm (i.e. the |
| 308 | 313 |
/// digraph and the maximum level should be passed to it). |
| 309 | 314 |
/// However, an external elevator object could also be passed to the |
| 310 | 315 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 311 | 316 |
/// before calling \ref run() or \ref init(). |
| 312 | 317 |
/// \sa SetElevator |
| 313 | 318 |
template <typename T> |
| 314 | 319 |
struct SetStandardElevator |
| 315 | 320 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 316 | 321 |
SetStandardElevatorTraits<T> > {
|
| 317 | 322 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 318 | 323 |
SetStandardElevatorTraits<T> > Create; |
| 319 | 324 |
}; |
| 320 | 325 |
|
| 321 | 326 |
/// @} |
| 322 | 327 |
|
| 323 | 328 |
protected: |
| 324 | 329 |
|
| 325 | 330 |
Circulation() {}
|
| 326 | 331 |
|
| 327 | 332 |
public: |
| 328 | 333 |
|
| 329 | 334 |
/// Constructor. |
| 330 | 335 |
|
| 331 | 336 |
/// The constructor of the class. |
| 332 | 337 |
/// |
| 333 | 338 |
/// \param graph The digraph the algorithm runs on. |
| 334 | 339 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 335 | 340 |
/// \param upper The upper bounds (capacities) for the flow values |
| 336 | 341 |
/// on the arcs. |
| 337 | 342 |
/// \param supply The signed supply values of the nodes. |
| 338 | 343 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 339 | 344 |
const UpperMap &upper, const SupplyMap &supply) |
| 340 | 345 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 341 | 346 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 342 | 347 |
_excess(NULL) {}
|
| 343 | 348 |
|
| 344 | 349 |
/// Destructor. |
| 345 | 350 |
~Circulation() {
|
| 346 | 351 |
destroyStructures(); |
| 347 | 352 |
} |
| 348 | 353 |
|
| 349 | 354 |
|
| 350 | 355 |
private: |
| 351 | 356 |
|
| 352 | 357 |
bool checkBoundMaps() {
|
| 353 | 358 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 354 | 359 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 355 | 360 |
} |
| 356 | 361 |
return true; |
| 357 | 362 |
} |
| 358 | 363 |
|
| 359 | 364 |
void createStructures() {
|
| 360 | 365 |
_node_num = _el = countNodes(_g); |
| 361 | 366 |
|
| 362 | 367 |
if (!_flow) {
|
| 363 | 368 |
_flow = Traits::createFlowMap(_g); |
| 364 | 369 |
_local_flow = true; |
| 365 | 370 |
} |
| 366 | 371 |
if (!_level) {
|
| 367 | 372 |
_level = Traits::createElevator(_g, _node_num); |
| 368 | 373 |
_local_level = true; |
| 369 | 374 |
} |
| 370 | 375 |
if (!_excess) {
|
| 371 | 376 |
_excess = new ExcessMap(_g); |
| 372 | 377 |
} |
| 373 | 378 |
} |
| 374 | 379 |
|
| 375 | 380 |
void destroyStructures() {
|
| 376 | 381 |
if (_local_flow) {
|
| 377 | 382 |
delete _flow; |
| 378 | 383 |
} |
| 379 | 384 |
if (_local_level) {
|
| 380 | 385 |
delete _level; |
| 381 | 386 |
} |
| 382 | 387 |
if (_excess) {
|
| 383 | 388 |
delete _excess; |
| 384 | 389 |
} |
| 385 | 390 |
} |
| 386 | 391 |
|
| 387 | 392 |
public: |
| 388 | 393 |
|
| 389 | 394 |
/// Sets the lower bound map. |
| 390 | 395 |
|
| 391 | 396 |
/// Sets the lower bound map. |
| 392 | 397 |
/// \return <tt>(*this)</tt> |
| 393 | 398 |
Circulation& lowerMap(const LowerMap& map) {
|
| 394 | 399 |
_lo = ↦ |
| 395 | 400 |
return *this; |
| 396 | 401 |
} |
| 397 | 402 |
|
| 398 | 403 |
/// Sets the upper bound (capacity) map. |
| 399 | 404 |
|
| 400 | 405 |
/// Sets the upper bound (capacity) map. |
| 401 | 406 |
/// \return <tt>(*this)</tt> |
| 402 | 407 |
Circulation& upperMap(const UpperMap& map) {
|
| 403 | 408 |
_up = ↦ |
| 404 | 409 |
return *this; |
| 405 | 410 |
} |
| 406 | 411 |
|
| 407 | 412 |
/// Sets the supply map. |
| 408 | 413 |
|
| 409 | 414 |
/// Sets the supply map. |
| 410 | 415 |
/// \return <tt>(*this)</tt> |
| 411 | 416 |
Circulation& supplyMap(const SupplyMap& map) {
|
| 412 | 417 |
_supply = ↦ |
| 413 | 418 |
return *this; |
| 414 | 419 |
} |
| 415 | 420 |
|
| 416 | 421 |
/// \brief Sets the flow map. |
| 417 | 422 |
/// |
| 418 | 423 |
/// Sets the flow map. |
| 419 | 424 |
/// If you don't use this function before calling \ref run() or |
| 420 | 425 |
/// \ref init(), an instance will be allocated automatically. |
| 421 | 426 |
/// The destructor deallocates this automatically allocated map, |
| 422 | 427 |
/// of course. |
| 423 | 428 |
/// \return <tt>(*this)</tt> |
| 424 | 429 |
Circulation& flowMap(FlowMap& map) {
|
| 425 | 430 |
if (_local_flow) {
|
| 426 | 431 |
delete _flow; |
| 427 | 432 |
_local_flow = false; |
| 428 | 433 |
} |
| 429 | 434 |
_flow = ↦ |
| 430 | 435 |
return *this; |
| 431 | 436 |
} |
| 432 | 437 |
|
| 433 | 438 |
/// \brief Sets the elevator used by algorithm. |
| 434 | 439 |
/// |
| 435 | 440 |
/// Sets the elevator used by algorithm. |
| 436 | 441 |
/// If you don't use this function before calling \ref run() or |
| 437 | 442 |
/// \ref init(), an instance will be allocated automatically. |
| 438 | 443 |
/// The destructor deallocates this automatically allocated elevator, |
| 439 | 444 |
/// of course. |
| 440 | 445 |
/// \return <tt>(*this)</tt> |
| 441 | 446 |
Circulation& elevator(Elevator& elevator) {
|
| 442 | 447 |
if (_local_level) {
|
| 443 | 448 |
delete _level; |
| 444 | 449 |
_local_level = false; |
| 445 | 450 |
} |
| 446 | 451 |
_level = &elevator; |
| 447 | 452 |
return *this; |
| 448 | 453 |
} |
| 449 | 454 |
|
| 450 | 455 |
/// \brief Returns a const reference to the elevator. |
| 451 | 456 |
/// |
| 452 | 457 |
/// Returns a const reference to the elevator. |
| 453 | 458 |
/// |
| 454 | 459 |
/// \pre Either \ref run() or \ref init() must be called before |
| 455 | 460 |
/// using this function. |
| 456 | 461 |
const Elevator& elevator() const {
|
| 457 | 462 |
return *_level; |
| 458 | 463 |
} |
| 459 | 464 |
|
| 460 | 465 |
/// \brief Sets the tolerance used by the algorithm. |
| 461 | 466 |
/// |
| 462 | 467 |
/// Sets the tolerance object used by the algorithm. |
| 463 | 468 |
/// \return <tt>(*this)</tt> |
| 464 | 469 |
Circulation& tolerance(const Tolerance& tolerance) {
|
| 465 | 470 |
_tol = tolerance; |
| 466 | 471 |
return *this; |
| 467 | 472 |
} |
| 468 | 473 |
|
| 469 | 474 |
/// \brief Returns a const reference to the tolerance. |
| 470 | 475 |
/// |
| 471 | 476 |
/// Returns a const reference to the tolerance object used by |
| 472 | 477 |
/// the algorithm. |
| 473 | 478 |
const Tolerance& tolerance() const {
|
| 474 | 479 |
return _tol; |
| 475 | 480 |
} |
| 476 | 481 |
|
| 477 | 482 |
/// \name Execution Control |
| 478 | 483 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 479 | 484 |
/// If you need better control on the initial solution or the execution, |
| 480 | 485 |
/// you have to call one of the \ref init() functions first, then |
| 481 | 486 |
/// the \ref start() function. |
| 482 | 487 |
|
| 483 | 488 |
///@{
|
| 484 | 489 |
|
| 485 | 490 |
/// Initializes the internal data structures. |
| 486 | 491 |
|
| 487 | 492 |
/// Initializes the internal data structures and sets all flow values |
| 488 | 493 |
/// to the lower bound. |
| 489 | 494 |
void init() |
| 490 | 495 |
{
|
| 491 | 496 |
LEMON_DEBUG(checkBoundMaps(), |
| 492 | 497 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 493 | 498 |
|
| 494 | 499 |
createStructures(); |
| 495 | 500 |
|
| 496 | 501 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 497 | 502 |
(*_excess)[n] = (*_supply)[n]; |
| 498 | 503 |
} |
| 499 | 504 |
|
| 500 | 505 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 501 | 506 |
_flow->set(e, (*_lo)[e]); |
| 502 | 507 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 503 | 508 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 504 | 509 |
} |
| 505 | 510 |
|
| 506 | 511 |
// global relabeling tested, but in general case it provides |
| 507 | 512 |
// worse performance for random digraphs |
| 508 | 513 |
_level->initStart(); |
| 509 | 514 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 510 | 515 |
_level->initAddItem(n); |
| 511 | 516 |
_level->initFinish(); |
| 512 | 517 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 513 | 518 |
if(_tol.positive((*_excess)[n])) |
| 514 | 519 |
_level->activate(n); |
| 515 | 520 |
} |
| 516 | 521 |
|
| 517 | 522 |
/// Initializes the internal data structures using a greedy approach. |
| 518 | 523 |
|
| 519 | 524 |
/// Initializes the internal data structures using a greedy approach |
| 520 | 525 |
/// to construct the initial solution. |
| 521 | 526 |
void greedyInit() |
| 522 | 527 |
{
|
| 523 | 528 |
LEMON_DEBUG(checkBoundMaps(), |
| 524 | 529 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 525 | 530 |
|
| 526 | 531 |
createStructures(); |
| 527 | 532 |
|
| 528 | 533 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 529 | 534 |
(*_excess)[n] = (*_supply)[n]; |
| 530 | 535 |
} |
| 531 | 536 |
|
| 532 | 537 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 533 | 538 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 534 | 539 |
_flow->set(e, (*_up)[e]); |
| 535 | 540 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 536 | 541 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 537 | 542 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 538 | 543 |
_flow->set(e, (*_lo)[e]); |
| 539 | 544 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 540 | 545 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 541 | 546 |
} else {
|
| 542 | 547 |
Value fc = -(*_excess)[_g.target(e)]; |
| 543 | 548 |
_flow->set(e, fc); |
| 544 | 549 |
(*_excess)[_g.target(e)] = 0; |
| 545 | 550 |
(*_excess)[_g.source(e)] -= fc; |
| 546 | 551 |
} |
| 547 | 552 |
} |
| 548 | 553 |
|
| 549 | 554 |
_level->initStart(); |
| 550 | 555 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 551 | 556 |
_level->initAddItem(n); |
| 552 | 557 |
_level->initFinish(); |
| 553 | 558 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 554 | 559 |
if(_tol.positive((*_excess)[n])) |
| 555 | 560 |
_level->activate(n); |
| 556 | 561 |
} |
| 557 | 562 |
|
| 558 | 563 |
///Executes the algorithm |
| 559 | 564 |
|
| 560 | 565 |
///This function executes the algorithm. |
| 561 | 566 |
/// |
| 562 | 567 |
///\return \c true if a feasible circulation is found. |
| 563 | 568 |
/// |
| 564 | 569 |
///\sa barrier() |
| 565 | 570 |
///\sa barrierMap() |
| 566 | 571 |
bool start() |
| 567 | 572 |
{
|
| 568 | 573 |
|
| 569 | 574 |
Node act; |
| 570 | 575 |
Node bact=INVALID; |
| 571 | 576 |
Node last_activated=INVALID; |
| 572 | 577 |
while((act=_level->highestActive())!=INVALID) {
|
| 573 | 578 |
int actlevel=(*_level)[act]; |
| 574 | 579 |
int mlevel=_node_num; |
| 575 | 580 |
Value exc=(*_excess)[act]; |
| 576 | 581 |
|
| 577 | 582 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 578 | 583 |
Node v = _g.target(e); |
| 579 | 584 |
Value fc=(*_up)[e]-(*_flow)[e]; |
| 580 | 585 |
if(!_tol.positive(fc)) continue; |
| 581 | 586 |
if((*_level)[v]<actlevel) {
|
| 582 | 587 |
if(!_tol.less(fc, exc)) {
|
| 583 | 588 |
_flow->set(e, (*_flow)[e] + exc); |
| 584 | 589 |
(*_excess)[v] += exc; |
| 585 | 590 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 586 | 591 |
_level->activate(v); |
| 587 | 592 |
(*_excess)[act] = 0; |
| 588 | 593 |
_level->deactivate(act); |
| 589 | 594 |
goto next_l; |
| 590 | 595 |
} |
| 591 | 596 |
else {
|
| 592 | 597 |
_flow->set(e, (*_up)[e]); |
| 593 | 598 |
(*_excess)[v] += fc; |
| 594 | 599 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 595 | 600 |
_level->activate(v); |
| 596 | 601 |
exc-=fc; |
| 597 | 602 |
} |
| 598 | 603 |
} |
| 599 | 604 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 600 | 605 |
} |
| 601 | 606 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 602 | 607 |
Node v = _g.source(e); |
| 603 | 608 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
| 604 | 609 |
if(!_tol.positive(fc)) continue; |
| 605 | 610 |
if((*_level)[v]<actlevel) {
|
| 606 | 611 |
if(!_tol.less(fc, exc)) {
|
| 607 | 612 |
_flow->set(e, (*_flow)[e] - exc); |
| 608 | 613 |
(*_excess)[v] += exc; |
| 609 | 614 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 610 | 615 |
_level->activate(v); |
| 611 | 616 |
(*_excess)[act] = 0; |
| 612 | 617 |
_level->deactivate(act); |
| 613 | 618 |
goto next_l; |
| 614 | 619 |
} |
| 615 | 620 |
else {
|
| 616 | 621 |
_flow->set(e, (*_lo)[e]); |
| 617 | 622 |
(*_excess)[v] += fc; |
| 618 | 623 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 619 | 624 |
_level->activate(v); |
| 620 | 625 |
exc-=fc; |
| 621 | 626 |
} |
| 622 | 627 |
} |
| 623 | 628 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 624 | 629 |
} |
| 625 | 630 |
|
| 626 | 631 |
(*_excess)[act] = exc; |
| 627 | 632 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 628 | 633 |
else if(mlevel==_node_num) {
|
| 629 | 634 |
_level->liftHighestActiveToTop(); |
| 630 | 635 |
_el = _node_num; |
| 631 | 636 |
return false; |
| 632 | 637 |
} |
| 633 | 638 |
else {
|
| 634 | 639 |
_level->liftHighestActive(mlevel+1); |
| 635 | 640 |
if(_level->onLevel(actlevel)==0) {
|
| 636 | 641 |
_el = actlevel; |
| 637 | 642 |
return false; |
| 638 | 643 |
} |
| 639 | 644 |
} |
| 640 | 645 |
next_l: |
| 641 | 646 |
; |
| 642 | 647 |
} |
| 643 | 648 |
return true; |
| 644 | 649 |
} |
| 645 | 650 |
|
| 646 | 651 |
/// Runs the algorithm. |
| 647 | 652 |
|
| 648 | 653 |
/// This function runs the algorithm. |
| 649 | 654 |
/// |
| 650 | 655 |
/// \return \c true if a feasible circulation is found. |
| 651 | 656 |
/// |
| 652 | 657 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 653 | 658 |
/// the following code. |
| 654 | 659 |
/// \code |
| 655 | 660 |
/// c.greedyInit(); |
| 656 | 661 |
/// c.start(); |
| 657 | 662 |
/// \endcode |
| 658 | 663 |
bool run() {
|
| 659 | 664 |
greedyInit(); |
| 660 | 665 |
return start(); |
| 661 | 666 |
} |
| 662 | 667 |
|
| 663 | 668 |
/// @} |
| 664 | 669 |
|
| 665 | 670 |
/// \name Query Functions |
| 666 | 671 |
/// The results of the circulation algorithm can be obtained using |
| 667 | 672 |
/// these functions.\n |
| 668 | 673 |
/// Either \ref run() or \ref start() should be called before |
| 669 | 674 |
/// using them. |
| 670 | 675 |
|
| 671 | 676 |
///@{
|
| 672 | 677 |
|
| 673 | 678 |
/// \brief Returns the flow value on the given arc. |
| 674 | 679 |
/// |
| 675 | 680 |
/// Returns the flow value on the given arc. |
| 676 | 681 |
/// |
| 677 | 682 |
/// \pre Either \ref run() or \ref init() must be called before |
| 678 | 683 |
/// using this function. |
| 679 | 684 |
Value flow(const Arc& arc) const {
|
| 680 | 685 |
return (*_flow)[arc]; |
| 681 | 686 |
} |
| 682 | 687 |
|
| 683 | 688 |
/// \brief Returns a const reference to the flow map. |
| 684 | 689 |
/// |
| 685 | 690 |
/// Returns a const reference to the arc map storing the found flow. |
| 686 | 691 |
/// |
| 687 | 692 |
/// \pre Either \ref run() or \ref init() must be called before |
| 688 | 693 |
/// using this function. |
| 689 | 694 |
const FlowMap& flowMap() const {
|
| 690 | 695 |
return *_flow; |
| 691 | 696 |
} |
| 692 | 697 |
|
| 693 | 698 |
/** |
| 694 | 699 |
\brief Returns \c true if the given node is in a barrier. |
| 695 | 700 |
|
| 696 | 701 |
Barrier is a set \e B of nodes for which |
| 697 | 702 |
|
| 698 | 703 |
\f[ \sum_{uv\in A: u\in B} upper(uv) -
|
| 699 | 704 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
|
| 700 | 705 |
|
| 701 | 706 |
holds. The existence of a set with this property prooves that a |
| 702 | 707 |
feasible circualtion cannot exist. |
| 703 | 708 |
|
| 704 | 709 |
This function returns \c true if the given node is in the found |
| 705 | 710 |
barrier. If a feasible circulation is found, the function |
| 706 | 711 |
gives back \c false for every node. |
| 707 | 712 |
|
| 708 | 713 |
\pre Either \ref run() or \ref init() must be called before |
| 709 | 714 |
using this function. |
| 710 | 715 |
|
| 711 | 716 |
\sa barrierMap() |
| 712 | 717 |
\sa checkBarrier() |
| 713 | 718 |
*/ |
| 714 | 719 |
bool barrier(const Node& node) const |
| 715 | 720 |
{
|
| 716 | 721 |
return (*_level)[node] >= _el; |
| 717 | 722 |
} |
| 718 | 723 |
|
| 719 | 724 |
/// \brief Gives back a barrier. |
| 720 | 725 |
/// |
| 721 | 726 |
/// This function sets \c bar to the characteristic vector of the |
| 722 | 727 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
| 723 | 728 |
/// node map with \c bool (or convertible) value type. |
| 724 | 729 |
/// |
| 725 | 730 |
/// If a feasible circulation is found, the function gives back an |
| 726 | 731 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
| 727 | 732 |
/// |
| 728 | 733 |
/// \note This function calls \ref barrier() for each node, |
| 729 | 734 |
/// so it runs in O(n) time. |
| 730 | 735 |
/// |
| 731 | 736 |
/// \pre Either \ref run() or \ref init() must be called before |
| 732 | 737 |
/// using this function. |
| 733 | 738 |
/// |
| 734 | 739 |
/// \sa barrier() |
| 735 | 740 |
/// \sa checkBarrier() |
| 736 | 741 |
template<class BarrierMap> |
| 737 | 742 |
void barrierMap(BarrierMap &bar) const |
| 738 | 743 |
{
|
| 739 | 744 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 740 | 745 |
bar.set(n, (*_level)[n] >= _el); |
| 741 | 746 |
} |
| 742 | 747 |
|
| 743 | 748 |
/// @} |
| 744 | 749 |
|
| 745 | 750 |
/// \name Checker Functions |
| 746 | 751 |
/// The feasibility of the results can be checked using |
| 747 | 752 |
/// these functions.\n |
| 748 | 753 |
/// Either \ref run() or \ref start() should be called before |
| 749 | 754 |
/// using them. |
| 750 | 755 |
|
| 751 | 756 |
///@{
|
| 752 | 757 |
|
| 753 | 758 |
///Check if the found flow is a feasible circulation |
| 754 | 759 |
|
| 755 | 760 |
///Check if the found flow is a feasible circulation, |
| 756 | 761 |
/// |
| 757 | 762 |
bool checkFlow() const {
|
| 758 | 763 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 759 | 764 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 760 | 765 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 761 | 766 |
{
|
| 762 | 767 |
Value dif=-(*_supply)[n]; |
| 763 | 768 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 764 | 769 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 765 | 770 |
if(_tol.negative(dif)) return false; |
| 766 | 771 |
} |
| 767 | 772 |
return true; |
| 768 | 773 |
} |
| 769 | 774 |
|
| 770 | 775 |
///Check whether or not the last execution provides a barrier |
| 771 | 776 |
|
| 772 | 777 |
///Check whether or not the last execution provides a barrier. |
| 773 | 778 |
///\sa barrier() |
| 774 | 779 |
///\sa barrierMap() |
| 775 | 780 |
bool checkBarrier() const |
| 776 | 781 |
{
|
| 777 | 782 |
Value delta=0; |
| 778 | 783 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
| 779 | 784 |
std::numeric_limits<Value>::infinity() : |
| 780 | 785 |
std::numeric_limits<Value>::max(); |
| 781 | 786 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 782 | 787 |
if(barrier(n)) |
| 783 | 788 |
delta-=(*_supply)[n]; |
| 784 | 789 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 785 | 790 |
{
|
| 786 | 791 |
Node s=_g.source(e); |
| 787 | 792 |
Node t=_g.target(e); |
| 788 | 793 |
if(barrier(s)&&!barrier(t)) {
|
| 789 | 794 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
| 790 | 795 |
delta+=(*_up)[e]; |
| 791 | 796 |
} |
| 792 | 797 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 793 | 798 |
} |
| 794 | 799 |
return _tol.negative(delta); |
| 795 | 800 |
} |
| 796 | 801 |
|
| 797 | 802 |
/// @} |
| 798 | 803 |
|
| 799 | 804 |
}; |
| 800 | 805 |
|
| 801 | 806 |
} |
| 802 | 807 |
|
| 803 | 808 |
#endif |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_COST_SCALING_H |
| 20 | 20 |
#define LEMON_COST_SCALING_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow_algs |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <deque> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
|
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
#include <lemon/static_graph.h> |
| 34 | 34 |
#include <lemon/circulation.h> |
| 35 | 35 |
#include <lemon/bellman_ford.h> |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
| 40 | 40 |
/// |
| 41 | 41 |
/// Default traits class of CostScaling algorithm. |
| 42 | 42 |
/// \tparam GR Digraph type. |
| 43 | 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 44 | 44 |
/// and supply values. By default it is \c int. |
| 45 | 45 |
/// \tparam C The number type used for costs and potentials. |
| 46 | 46 |
/// By default it is the same as \c V. |
| 47 | 47 |
#ifdef DOXYGEN |
| 48 | 48 |
template <typename GR, typename V = int, typename C = V> |
| 49 | 49 |
#else |
| 50 | 50 |
template < typename GR, typename V = int, typename C = V, |
| 51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
| 52 | 52 |
#endif |
| 53 | 53 |
struct CostScalingDefaultTraits |
| 54 | 54 |
{
|
| 55 | 55 |
/// The type of the digraph |
| 56 | 56 |
typedef GR Digraph; |
| 57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
| 58 | 58 |
typedef V Value; |
| 59 | 59 |
/// The type of the arc costs |
| 60 | 60 |
typedef C Cost; |
| 61 | 61 |
|
| 62 | 62 |
/// \brief The large cost type used for internal computations |
| 63 | 63 |
/// |
| 64 | 64 |
/// The large cost type used for internal computations. |
| 65 | 65 |
/// It is \c long \c long if the \c Cost type is integer, |
| 66 | 66 |
/// otherwise it is \c double. |
| 67 | 67 |
/// \c Cost must be convertible to \c LargeCost. |
| 68 | 68 |
typedef double LargeCost; |
| 69 | 69 |
}; |
| 70 | 70 |
|
| 71 | 71 |
// Default traits class for integer cost types |
| 72 | 72 |
template <typename GR, typename V, typename C> |
| 73 | 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
| 74 | 74 |
{
|
| 75 | 75 |
typedef GR Digraph; |
| 76 | 76 |
typedef V Value; |
| 77 | 77 |
typedef C Cost; |
| 78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
| 79 | 79 |
typedef long long LargeCost; |
| 80 | 80 |
#else |
| 81 | 81 |
typedef long LargeCost; |
| 82 | 82 |
#endif |
| 83 | 83 |
}; |
| 84 | 84 |
|
| 85 | 85 |
|
| 86 | 86 |
/// \addtogroup min_cost_flow_algs |
| 87 | 87 |
/// @{
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
| 90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
| 91 | 91 |
/// |
| 92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
| 93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
| 94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
| 95 | 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
| 96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
| 97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
| 98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
| 99 | 99 |
/// |
| 100 | 100 |
/// Most of the parameters of the problem (except for the digraph) |
| 101 | 101 |
/// can be given using separate functions, and the algorithm can be |
| 102 | 102 |
/// executed using the \ref run() function. If some parameters are not |
| 103 | 103 |
/// specified, then default values will be used. |
| 104 | 104 |
/// |
| 105 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
| 106 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 107 |
/// and supply values in the algorithm. By default it is \c int. |
|
| 107 |
/// and supply values in the algorithm. By default, it is \c int. |
|
| 108 | 108 |
/// \tparam C The number type used for costs and potentials in the |
| 109 |
/// algorithm. By default it is the same as \c V. |
|
| 109 |
/// algorithm. By default, it is the same as \c V. |
|
| 110 |
/// \tparam TR The traits class that defines various types used by the |
|
| 111 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
|
| 112 |
/// "CostScalingDefaultTraits<GR, V, C>". |
|
| 113 |
/// In most cases, this parameter should not be set directly, |
|
| 114 |
/// consider to use the named template parameters instead. |
|
| 110 | 115 |
/// |
| 111 | 116 |
/// \warning Both number types must be signed and all input data must |
| 112 | 117 |
/// be integer. |
| 113 | 118 |
/// \warning This algorithm does not support negative costs for such |
| 114 | 119 |
/// arcs that have infinite upper bound. |
| 115 | 120 |
/// |
| 116 | 121 |
/// \note %CostScaling provides three different internal methods, |
| 117 | 122 |
/// from which the most efficient one is used by default. |
| 118 | 123 |
/// For more information, see \ref Method. |
| 119 | 124 |
#ifdef DOXYGEN |
| 120 | 125 |
template <typename GR, typename V, typename C, typename TR> |
| 121 | 126 |
#else |
| 122 | 127 |
template < typename GR, typename V = int, typename C = V, |
| 123 | 128 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
| 124 | 129 |
#endif |
| 125 | 130 |
class CostScaling |
| 126 | 131 |
{
|
| 127 | 132 |
public: |
| 128 | 133 |
|
| 129 | 134 |
/// The type of the digraph |
| 130 | 135 |
typedef typename TR::Digraph Digraph; |
| 131 | 136 |
/// The type of the flow amounts, capacity bounds and supply values |
| 132 | 137 |
typedef typename TR::Value Value; |
| 133 | 138 |
/// The type of the arc costs |
| 134 | 139 |
typedef typename TR::Cost Cost; |
| 135 | 140 |
|
| 136 | 141 |
/// \brief The large cost type |
| 137 | 142 |
/// |
| 138 | 143 |
/// The large cost type used for internal computations. |
| 139 |
/// Using the \ref CostScalingDefaultTraits "default traits class", |
|
| 140 |
/// it is \c long \c long if the \c Cost type is integer, |
|
| 144 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
|
| 141 | 145 |
/// otherwise it is \c double. |
| 142 | 146 |
typedef typename TR::LargeCost LargeCost; |
| 143 | 147 |
|
| 144 | 148 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
| 145 | 149 |
typedef TR Traits; |
| 146 | 150 |
|
| 147 | 151 |
public: |
| 148 | 152 |
|
| 149 | 153 |
/// \brief Problem type constants for the \c run() function. |
| 150 | 154 |
/// |
| 151 | 155 |
/// Enum type containing the problem type constants that can be |
| 152 | 156 |
/// returned by the \ref run() function of the algorithm. |
| 153 | 157 |
enum ProblemType {
|
| 154 | 158 |
/// The problem has no feasible solution (flow). |
| 155 | 159 |
INFEASIBLE, |
| 156 | 160 |
/// The problem has optimal solution (i.e. it is feasible and |
| 157 | 161 |
/// bounded), and the algorithm has found optimal flow and node |
| 158 | 162 |
/// potentials (primal and dual solutions). |
| 159 | 163 |
OPTIMAL, |
| 160 | 164 |
/// The digraph contains an arc of negative cost and infinite |
| 161 | 165 |
/// upper bound. It means that the objective function is unbounded |
| 162 | 166 |
/// on that arc, however, note that it could actually be bounded |
| 163 | 167 |
/// over the feasible flows, but this algroithm cannot handle |
| 164 | 168 |
/// these cases. |
| 165 | 169 |
UNBOUNDED |
| 166 | 170 |
}; |
| 167 | 171 |
|
| 168 | 172 |
/// \brief Constants for selecting the internal method. |
| 169 | 173 |
/// |
| 170 | 174 |
/// Enum type containing constants for selecting the internal method |
| 171 | 175 |
/// for the \ref run() function. |
| 172 | 176 |
/// |
| 173 | 177 |
/// \ref CostScaling provides three internal methods that differ mainly |
| 174 | 178 |
/// in their base operations, which are used in conjunction with the |
| 175 | 179 |
/// relabel operation. |
| 176 | 180 |
/// By default, the so called \ref PARTIAL_AUGMENT |
| 177 | 181 |
/// "Partial Augment-Relabel" method is used, which proved to be |
| 178 | 182 |
/// the most efficient and the most robust on various test inputs. |
| 179 | 183 |
/// However, the other methods can be selected using the \ref run() |
| 180 | 184 |
/// function with the proper parameter. |
| 181 | 185 |
enum Method {
|
| 182 | 186 |
/// Local push operations are used, i.e. flow is moved only on one |
| 183 | 187 |
/// admissible arc at once. |
| 184 | 188 |
PUSH, |
| 185 | 189 |
/// Augment operations are used, i.e. flow is moved on admissible |
| 186 | 190 |
/// paths from a node with excess to a node with deficit. |
| 187 | 191 |
AUGMENT, |
| 188 | 192 |
/// Partial augment operations are used, i.e. flow is moved on |
| 189 | 193 |
/// admissible paths started from a node with excess, but the |
| 190 | 194 |
/// lengths of these paths are limited. This method can be viewed |
| 191 | 195 |
/// as a combined version of the previous two operations. |
| 192 | 196 |
PARTIAL_AUGMENT |
| 193 | 197 |
}; |
| 194 | 198 |
|
| 195 | 199 |
private: |
| 196 | 200 |
|
| 197 | 201 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 198 | 202 |
|
| 199 | 203 |
typedef std::vector<int> IntVector; |
| 200 | 204 |
typedef std::vector<char> BoolVector; |
| 201 | 205 |
typedef std::vector<Value> ValueVector; |
| 202 | 206 |
typedef std::vector<Cost> CostVector; |
| 203 | 207 |
typedef std::vector<LargeCost> LargeCostVector; |
| 204 | 208 |
|
| 205 | 209 |
private: |
| 206 | 210 |
|
| 207 | 211 |
template <typename KT, typename VT> |
| 208 | 212 |
class StaticVectorMap {
|
| 209 | 213 |
public: |
| 210 | 214 |
typedef KT Key; |
| 211 | 215 |
typedef VT Value; |
| 212 | 216 |
|
| 213 | 217 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
| 214 | 218 |
|
| 215 | 219 |
const Value& operator[](const Key& key) const {
|
| 216 | 220 |
return _v[StaticDigraph::id(key)]; |
| 217 | 221 |
} |
| 218 | 222 |
|
| 219 | 223 |
Value& operator[](const Key& key) {
|
| 220 | 224 |
return _v[StaticDigraph::id(key)]; |
| 221 | 225 |
} |
| 222 | 226 |
|
| 223 | 227 |
void set(const Key& key, const Value& val) {
|
| 224 | 228 |
_v[StaticDigraph::id(key)] = val; |
| 225 | 229 |
} |
| 226 | 230 |
|
| 227 | 231 |
private: |
| 228 | 232 |
std::vector<Value>& _v; |
| 229 | 233 |
}; |
| 230 | 234 |
|
| 231 | 235 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
| 232 | 236 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
| 233 | 237 |
|
| 234 | 238 |
private: |
| 235 | 239 |
|
| 236 | 240 |
// Data related to the underlying digraph |
| 237 | 241 |
const GR &_graph; |
| 238 | 242 |
int _node_num; |
| 239 | 243 |
int _arc_num; |
| 240 | 244 |
int _res_node_num; |
| 241 | 245 |
int _res_arc_num; |
| 242 | 246 |
int _root; |
| 243 | 247 |
|
| 244 | 248 |
// Parameters of the problem |
| 245 | 249 |
bool _have_lower; |
| 246 | 250 |
Value _sum_supply; |
| 247 | 251 |
|
| 248 | 252 |
// Data structures for storing the digraph |
| 249 | 253 |
IntNodeMap _node_id; |
| 250 | 254 |
IntArcMap _arc_idf; |
| 251 | 255 |
IntArcMap _arc_idb; |
| 252 | 256 |
IntVector _first_out; |
| 253 | 257 |
BoolVector _forward; |
| 254 | 258 |
IntVector _source; |
| 255 | 259 |
IntVector _target; |
| 256 | 260 |
IntVector _reverse; |
| 257 | 261 |
|
| 258 | 262 |
// Node and arc data |
| 259 | 263 |
ValueVector _lower; |
| 260 | 264 |
ValueVector _upper; |
| 261 | 265 |
CostVector _scost; |
| 262 | 266 |
ValueVector _supply; |
| 263 | 267 |
|
| 264 | 268 |
ValueVector _res_cap; |
| 265 | 269 |
LargeCostVector _cost; |
| 266 | 270 |
LargeCostVector _pi; |
| 267 | 271 |
ValueVector _excess; |
| 268 | 272 |
IntVector _next_out; |
| 269 | 273 |
std::deque<int> _active_nodes; |
| 270 | 274 |
|
| 271 | 275 |
// Data for scaling |
| 272 | 276 |
LargeCost _epsilon; |
| 273 | 277 |
int _alpha; |
| 274 | 278 |
|
| 275 | 279 |
// Data for a StaticDigraph structure |
| 276 | 280 |
typedef std::pair<int, int> IntPair; |
| 277 | 281 |
StaticDigraph _sgr; |
| 278 | 282 |
std::vector<IntPair> _arc_vec; |
| 279 | 283 |
std::vector<LargeCost> _cost_vec; |
| 280 | 284 |
LargeCostArcMap _cost_map; |
| 281 | 285 |
LargeCostNodeMap _pi_map; |
| 282 | 286 |
|
| 283 | 287 |
public: |
| 284 | 288 |
|
| 285 | 289 |
/// \brief Constant for infinite upper bounds (capacities). |
| 286 | 290 |
/// |
| 287 | 291 |
/// Constant for infinite upper bounds (capacities). |
| 288 | 292 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 289 | 293 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 290 | 294 |
const Value INF; |
| 291 | 295 |
|
| 292 | 296 |
public: |
| 293 | 297 |
|
| 294 | 298 |
/// \name Named Template Parameters |
| 295 | 299 |
/// @{
|
| 296 | 300 |
|
| 297 | 301 |
template <typename T> |
| 298 | 302 |
struct SetLargeCostTraits : public Traits {
|
| 299 | 303 |
typedef T LargeCost; |
| 300 | 304 |
}; |
| 301 | 305 |
|
| 302 | 306 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 303 | 307 |
/// \c LargeCost type. |
| 304 | 308 |
/// |
| 305 | 309 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
| 306 | 310 |
/// type, which is used for internal computations in the algorithm. |
| 307 | 311 |
/// \c Cost must be convertible to \c LargeCost. |
| 308 | 312 |
template <typename T> |
| 309 | 313 |
struct SetLargeCost |
| 310 | 314 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
|
| 311 | 315 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
| 312 | 316 |
}; |
| 313 | 317 |
|
| 314 | 318 |
/// @} |
| 315 | 319 |
|
| 316 | 320 |
public: |
| 317 | 321 |
|
| 318 | 322 |
/// \brief Constructor. |
| 319 | 323 |
/// |
| 320 | 324 |
/// The constructor of the class. |
| 321 | 325 |
/// |
| 322 | 326 |
/// \param graph The digraph the algorithm runs on. |
| 323 | 327 |
CostScaling(const GR& graph) : |
| 324 | 328 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
| 325 | 329 |
_cost_map(_cost_vec), _pi_map(_pi), |
| 326 | 330 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 327 | 331 |
std::numeric_limits<Value>::infinity() : |
| 328 | 332 |
std::numeric_limits<Value>::max()) |
| 329 | 333 |
{
|
| 330 | 334 |
// Check the number types |
| 331 | 335 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 332 | 336 |
"The flow type of CostScaling must be signed"); |
| 333 | 337 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 334 | 338 |
"The cost type of CostScaling must be signed"); |
| 335 | 339 |
|
| 336 | 340 |
// Resize vectors |
| 337 | 341 |
_node_num = countNodes(_graph); |
| 338 | 342 |
_arc_num = countArcs(_graph); |
| 339 | 343 |
_res_node_num = _node_num + 1; |
| 340 | 344 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 341 | 345 |
_root = _node_num; |
| 342 | 346 |
|
| 343 | 347 |
_first_out.resize(_res_node_num + 1); |
| 344 | 348 |
_forward.resize(_res_arc_num); |
| 345 | 349 |
_source.resize(_res_arc_num); |
| 346 | 350 |
_target.resize(_res_arc_num); |
| 347 | 351 |
_reverse.resize(_res_arc_num); |
| 348 | 352 |
|
| 349 | 353 |
_lower.resize(_res_arc_num); |
| 350 | 354 |
_upper.resize(_res_arc_num); |
| 351 | 355 |
_scost.resize(_res_arc_num); |
| 352 | 356 |
_supply.resize(_res_node_num); |
| 353 | 357 |
|
| 354 | 358 |
_res_cap.resize(_res_arc_num); |
| 355 | 359 |
_cost.resize(_res_arc_num); |
| 356 | 360 |
_pi.resize(_res_node_num); |
| 357 | 361 |
_excess.resize(_res_node_num); |
| 358 | 362 |
_next_out.resize(_res_node_num); |
| 359 | 363 |
|
| 360 | 364 |
_arc_vec.reserve(_res_arc_num); |
| 361 | 365 |
_cost_vec.reserve(_res_arc_num); |
| 362 | 366 |
|
| 363 | 367 |
// Copy the graph |
| 364 | 368 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
| 365 | 369 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 366 | 370 |
_node_id[n] = i; |
| 367 | 371 |
} |
| 368 | 372 |
i = 0; |
| 369 | 373 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 370 | 374 |
_first_out[i] = j; |
| 371 | 375 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 372 | 376 |
_arc_idf[a] = j; |
| 373 | 377 |
_forward[j] = true; |
| 374 | 378 |
_source[j] = i; |
| 375 | 379 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 376 | 380 |
} |
| 377 | 381 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 378 | 382 |
_arc_idb[a] = j; |
| 379 | 383 |
_forward[j] = false; |
| 380 | 384 |
_source[j] = i; |
| 381 | 385 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 382 | 386 |
} |
| 383 | 387 |
_forward[j] = false; |
| 384 | 388 |
_source[j] = i; |
| 385 | 389 |
_target[j] = _root; |
| 386 | 390 |
_reverse[j] = k; |
| 387 | 391 |
_forward[k] = true; |
| 388 | 392 |
_source[k] = _root; |
| 389 | 393 |
_target[k] = i; |
| 390 | 394 |
_reverse[k] = j; |
| 391 | 395 |
++j; ++k; |
| 392 | 396 |
} |
| 393 | 397 |
_first_out[i] = j; |
| 394 | 398 |
_first_out[_res_node_num] = k; |
| 395 | 399 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 396 | 400 |
int fi = _arc_idf[a]; |
| 397 | 401 |
int bi = _arc_idb[a]; |
| 398 | 402 |
_reverse[fi] = bi; |
| 399 | 403 |
_reverse[bi] = fi; |
| 400 | 404 |
} |
| 401 | 405 |
|
| 402 | 406 |
// Reset parameters |
| 403 | 407 |
reset(); |
| 404 | 408 |
} |
| 405 | 409 |
|
| 406 | 410 |
/// \name Parameters |
| 407 | 411 |
/// The parameters of the algorithm can be specified using these |
| 408 | 412 |
/// functions. |
| 409 | 413 |
|
| 410 | 414 |
/// @{
|
| 411 | 415 |
|
| 412 | 416 |
/// \brief Set the lower bounds on the arcs. |
| 413 | 417 |
/// |
| 414 | 418 |
/// This function sets the lower bounds on the arcs. |
| 415 | 419 |
/// If it is not used before calling \ref run(), the lower bounds |
| 416 | 420 |
/// will be set to zero on all arcs. |
| 417 | 421 |
/// |
| 418 | 422 |
/// \param map An arc map storing the lower bounds. |
| 419 | 423 |
/// Its \c Value type must be convertible to the \c Value type |
| 420 | 424 |
/// of the algorithm. |
| 421 | 425 |
/// |
| 422 | 426 |
/// \return <tt>(*this)</tt> |
| 423 | 427 |
template <typename LowerMap> |
| 424 | 428 |
CostScaling& lowerMap(const LowerMap& map) {
|
| 425 | 429 |
_have_lower = true; |
| 426 | 430 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 427 | 431 |
_lower[_arc_idf[a]] = map[a]; |
| 428 | 432 |
_lower[_arc_idb[a]] = map[a]; |
| 429 | 433 |
} |
| 430 | 434 |
return *this; |
| 431 | 435 |
} |
| 432 | 436 |
|
| 433 | 437 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 434 | 438 |
/// |
| 435 | 439 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 436 | 440 |
/// If it is not used before calling \ref run(), the upper bounds |
| 437 | 441 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 438 | 442 |
/// unbounded from above). |
| 439 | 443 |
/// |
| 440 | 444 |
/// \param map An arc map storing the upper bounds. |
| 441 | 445 |
/// Its \c Value type must be convertible to the \c Value type |
| 442 | 446 |
/// of the algorithm. |
| 443 | 447 |
/// |
| 444 | 448 |
/// \return <tt>(*this)</tt> |
| 445 | 449 |
template<typename UpperMap> |
| 446 | 450 |
CostScaling& upperMap(const UpperMap& map) {
|
| 447 | 451 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 448 | 452 |
_upper[_arc_idf[a]] = map[a]; |
| 449 | 453 |
} |
| 450 | 454 |
return *this; |
| 451 | 455 |
} |
| 452 | 456 |
|
| 453 | 457 |
/// \brief Set the costs of the arcs. |
| 454 | 458 |
/// |
| 455 | 459 |
/// This function sets the costs of the arcs. |
| 456 | 460 |
/// If it is not used before calling \ref run(), the costs |
| 457 | 461 |
/// will be set to \c 1 on all arcs. |
| 458 | 462 |
/// |
| 459 | 463 |
/// \param map An arc map storing the costs. |
| 460 | 464 |
/// Its \c Value type must be convertible to the \c Cost type |
| 461 | 465 |
/// of the algorithm. |
| 462 | 466 |
/// |
| 463 | 467 |
/// \return <tt>(*this)</tt> |
| 464 | 468 |
template<typename CostMap> |
| 465 | 469 |
CostScaling& costMap(const CostMap& map) {
|
| 466 | 470 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 467 | 471 |
_scost[_arc_idf[a]] = map[a]; |
| 468 | 472 |
_scost[_arc_idb[a]] = -map[a]; |
| 469 | 473 |
} |
| 470 | 474 |
return *this; |
| 471 | 475 |
} |
| 472 | 476 |
|
| 473 | 477 |
/// \brief Set the supply values of the nodes. |
| 474 | 478 |
/// |
| 475 | 479 |
/// This function sets the supply values of the nodes. |
| 476 | 480 |
/// If neither this function nor \ref stSupply() is used before |
| 477 | 481 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 478 | 482 |
/// |
| 479 | 483 |
/// \param map A node map storing the supply values. |
| 480 | 484 |
/// Its \c Value type must be convertible to the \c Value type |
| 481 | 485 |
/// of the algorithm. |
| 482 | 486 |
/// |
| 483 | 487 |
/// \return <tt>(*this)</tt> |
| 484 | 488 |
template<typename SupplyMap> |
| 485 | 489 |
CostScaling& supplyMap(const SupplyMap& map) {
|
| 486 | 490 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 487 | 491 |
_supply[_node_id[n]] = map[n]; |
| 488 | 492 |
} |
| 489 | 493 |
return *this; |
| 490 | 494 |
} |
| 491 | 495 |
|
| 492 | 496 |
/// \brief Set single source and target nodes and a supply value. |
| 493 | 497 |
/// |
| 494 | 498 |
/// This function sets a single source node and a single target node |
| 495 | 499 |
/// and the required flow value. |
| 496 | 500 |
/// If neither this function nor \ref supplyMap() is used before |
| 497 | 501 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 498 | 502 |
/// |
| 499 | 503 |
/// Using this function has the same effect as using \ref supplyMap() |
| 500 | 504 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 501 | 505 |
/// assigned to \c t and all other nodes have zero supply value. |
| 502 | 506 |
/// |
| 503 | 507 |
/// \param s The source node. |
| 504 | 508 |
/// \param t The target node. |
| 505 | 509 |
/// \param k The required amount of flow from node \c s to node \c t |
| 506 | 510 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 507 | 511 |
/// |
| 508 | 512 |
/// \return <tt>(*this)</tt> |
| 509 | 513 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
|
| 510 | 514 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 511 | 515 |
_supply[i] = 0; |
| 512 | 516 |
} |
| 513 | 517 |
_supply[_node_id[s]] = k; |
| 514 | 518 |
_supply[_node_id[t]] = -k; |
| 515 | 519 |
return *this; |
| 516 | 520 |
} |
| 517 | 521 |
|
| 518 | 522 |
/// @} |
| 519 | 523 |
|
| 520 | 524 |
/// \name Execution control |
| 521 | 525 |
/// The algorithm can be executed using \ref run(). |
| 522 | 526 |
|
| 523 | 527 |
/// @{
|
| 524 | 528 |
|
| 525 | 529 |
/// \brief Run the algorithm. |
| 526 | 530 |
/// |
| 527 | 531 |
/// This function runs the algorithm. |
| 528 | 532 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 529 | 533 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 530 | 534 |
/// For example, |
| 531 | 535 |
/// \code |
| 532 | 536 |
/// CostScaling<ListDigraph> cs(graph); |
| 533 | 537 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 534 | 538 |
/// .supplyMap(sup).run(); |
| 535 | 539 |
/// \endcode |
| 536 | 540 |
/// |
| 537 | 541 |
/// This function can be called more than once. All the parameters |
| 538 | 542 |
/// that have been given are kept for the next call, unless |
| 539 | 543 |
/// \ref reset() is called, thus only the modified parameters |
| 540 | 544 |
/// have to be set again. See \ref reset() for examples. |
| 541 | 545 |
/// However, the underlying digraph must not be modified after this |
| 542 | 546 |
/// class have been constructed, since it copies and extends the graph. |
| 543 | 547 |
/// |
| 544 | 548 |
/// \param method The internal method that will be used in the |
| 545 | 549 |
/// algorithm. For more information, see \ref Method. |
| 546 | 550 |
/// \param factor The cost scaling factor. It must be larger than one. |
| 547 | 551 |
/// |
| 548 | 552 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 549 | 553 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 550 | 554 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 551 | 555 |
/// optimal flow and node potentials (primal and dual solutions), |
| 552 | 556 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
| 553 | 557 |
/// and infinite upper bound. It means that the objective function |
| 554 | 558 |
/// is unbounded on that arc, however, note that it could actually be |
| 555 | 559 |
/// bounded over the feasible flows, but this algroithm cannot handle |
| 556 | 560 |
/// these cases. |
| 557 | 561 |
/// |
| 558 | 562 |
/// \see ProblemType, Method |
| 559 | 563 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
|
| 560 | 564 |
_alpha = factor; |
| 561 | 565 |
ProblemType pt = init(); |
| 562 | 566 |
if (pt != OPTIMAL) return pt; |
| 563 | 567 |
start(method); |
| 564 | 568 |
return OPTIMAL; |
| 565 | 569 |
} |
| 566 | 570 |
|
| 567 | 571 |
/// \brief Reset all the parameters that have been given before. |
| 568 | 572 |
/// |
| 569 | 573 |
/// This function resets all the paramaters that have been given |
| 570 | 574 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 571 | 575 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 572 | 576 |
/// |
| 573 | 577 |
/// It is useful for multiple run() calls. If this function is not |
| 574 | 578 |
/// used, all the parameters given before are kept for the next |
| 575 | 579 |
/// \ref run() call. |
| 576 | 580 |
/// However, the underlying digraph must not be modified after this |
| 577 | 581 |
/// class have been constructed, since it copies and extends the graph. |
| 578 | 582 |
/// |
| 579 | 583 |
/// For example, |
| 580 | 584 |
/// \code |
| 581 | 585 |
/// CostScaling<ListDigraph> cs(graph); |
| 582 | 586 |
/// |
| 583 | 587 |
/// // First run |
| 584 | 588 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 585 | 589 |
/// .supplyMap(sup).run(); |
| 586 | 590 |
/// |
| 587 | 591 |
/// // Run again with modified cost map (reset() is not called, |
| 588 | 592 |
/// // so only the cost map have to be set again) |
| 589 | 593 |
/// cost[e] += 100; |
| 590 | 594 |
/// cs.costMap(cost).run(); |
| 591 | 595 |
/// |
| 592 | 596 |
/// // Run again from scratch using reset() |
| 593 | 597 |
/// // (the lower bounds will be set to zero on all arcs) |
| 594 | 598 |
/// cs.reset(); |
| 595 | 599 |
/// cs.upperMap(capacity).costMap(cost) |
| 596 | 600 |
/// .supplyMap(sup).run(); |
| 597 | 601 |
/// \endcode |
| 598 | 602 |
/// |
| 599 | 603 |
/// \return <tt>(*this)</tt> |
| 600 | 604 |
CostScaling& reset() {
|
| 601 | 605 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 602 | 606 |
_supply[i] = 0; |
| 603 | 607 |
} |
| 604 | 608 |
int limit = _first_out[_root]; |
| 605 | 609 |
for (int j = 0; j != limit; ++j) {
|
| 606 | 610 |
_lower[j] = 0; |
| 607 | 611 |
_upper[j] = INF; |
| 608 | 612 |
_scost[j] = _forward[j] ? 1 : -1; |
| 609 | 613 |
} |
| 610 | 614 |
for (int j = limit; j != _res_arc_num; ++j) {
|
| 611 | 615 |
_lower[j] = 0; |
| 612 | 616 |
_upper[j] = INF; |
| 613 | 617 |
_scost[j] = 0; |
| 614 | 618 |
_scost[_reverse[j]] = 0; |
| 615 | 619 |
} |
| 616 | 620 |
_have_lower = false; |
| 617 | 621 |
return *this; |
| 618 | 622 |
} |
| 619 | 623 |
|
| 620 | 624 |
/// @} |
| 621 | 625 |
|
| 622 | 626 |
/// \name Query Functions |
| 623 | 627 |
/// The results of the algorithm can be obtained using these |
| 624 | 628 |
/// functions.\n |
| 625 | 629 |
/// The \ref run() function must be called before using them. |
| 626 | 630 |
|
| 627 | 631 |
/// @{
|
| 628 | 632 |
|
| 629 | 633 |
/// \brief Return the total cost of the found flow. |
| 630 | 634 |
/// |
| 631 | 635 |
/// This function returns the total cost of the found flow. |
| 632 | 636 |
/// Its complexity is O(e). |
| 633 | 637 |
/// |
| 634 | 638 |
/// \note The return type of the function can be specified as a |
| 635 | 639 |
/// template parameter. For example, |
| 636 | 640 |
/// \code |
| 637 | 641 |
/// cs.totalCost<double>(); |
| 638 | 642 |
/// \endcode |
| 639 | 643 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 640 | 644 |
/// type of the algorithm, which is the default return type of the |
| 641 | 645 |
/// function. |
| 642 | 646 |
/// |
| 643 | 647 |
/// \pre \ref run() must be called before using this function. |
| 644 | 648 |
template <typename Number> |
| 645 | 649 |
Number totalCost() const {
|
| 646 | 650 |
Number c = 0; |
| 647 | 651 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 648 | 652 |
int i = _arc_idb[a]; |
| 649 | 653 |
c += static_cast<Number>(_res_cap[i]) * |
| 650 | 654 |
(-static_cast<Number>(_scost[i])); |
| 651 | 655 |
} |
| 652 | 656 |
return c; |
| 653 | 657 |
} |
| 654 | 658 |
|
| 655 | 659 |
#ifndef DOXYGEN |
| 656 | 660 |
Cost totalCost() const {
|
| 657 | 661 |
return totalCost<Cost>(); |
| 658 | 662 |
} |
| 659 | 663 |
#endif |
| 660 | 664 |
|
| 661 | 665 |
/// \brief Return the flow on the given arc. |
| 662 | 666 |
/// |
| 663 | 667 |
/// This function returns the flow on the given arc. |
| 664 | 668 |
/// |
| 665 | 669 |
/// \pre \ref run() must be called before using this function. |
| 666 | 670 |
Value flow(const Arc& a) const {
|
| 667 | 671 |
return _res_cap[_arc_idb[a]]; |
| 668 | 672 |
} |
| 669 | 673 |
|
| 670 | 674 |
/// \brief Return the flow map (the primal solution). |
| 671 | 675 |
/// |
| 672 | 676 |
/// This function copies the flow value on each arc into the given |
| 673 | 677 |
/// map. The \c Value type of the algorithm must be convertible to |
| 674 | 678 |
/// the \c Value type of the map. |
| 675 | 679 |
/// |
| 676 | 680 |
/// \pre \ref run() must be called before using this function. |
| 677 | 681 |
template <typename FlowMap> |
| 678 | 682 |
void flowMap(FlowMap &map) const {
|
| 679 | 683 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 680 | 684 |
map.set(a, _res_cap[_arc_idb[a]]); |
| 681 | 685 |
} |
| 682 | 686 |
} |
| 683 | 687 |
|
| 684 | 688 |
/// \brief Return the potential (dual value) of the given node. |
| 685 | 689 |
/// |
| 686 | 690 |
/// This function returns the potential (dual value) of the |
| 687 | 691 |
/// given node. |
| 688 | 692 |
/// |
| 689 | 693 |
/// \pre \ref run() must be called before using this function. |
| 690 | 694 |
Cost potential(const Node& n) const {
|
| 691 | 695 |
return static_cast<Cost>(_pi[_node_id[n]]); |
| 692 | 696 |
} |
| 693 | 697 |
|
| 694 | 698 |
/// \brief Return the potential map (the dual solution). |
| 695 | 699 |
/// |
| 696 | 700 |
/// This function copies the potential (dual value) of each node |
| 697 | 701 |
/// into the given map. |
| 698 | 702 |
/// The \c Cost type of the algorithm must be convertible to the |
| 699 | 703 |
/// \c Value type of the map. |
| 700 | 704 |
/// |
| 701 | 705 |
/// \pre \ref run() must be called before using this function. |
| 702 | 706 |
template <typename PotentialMap> |
| 703 | 707 |
void potentialMap(PotentialMap &map) const {
|
| 704 | 708 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 705 | 709 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
| 706 | 710 |
} |
| 707 | 711 |
} |
| 708 | 712 |
|
| 709 | 713 |
/// @} |
| 710 | 714 |
|
| 711 | 715 |
private: |
| 712 | 716 |
|
| 713 | 717 |
// Initialize the algorithm |
| 714 | 718 |
ProblemType init() {
|
| 715 | 719 |
if (_res_node_num <= 1) return INFEASIBLE; |
| 716 | 720 |
|
| 717 | 721 |
// Check the sum of supply values |
| 718 | 722 |
_sum_supply = 0; |
| 719 | 723 |
for (int i = 0; i != _root; ++i) {
|
| 720 | 724 |
_sum_supply += _supply[i]; |
| 721 | 725 |
} |
| 722 | 726 |
if (_sum_supply > 0) return INFEASIBLE; |
| 723 | 727 |
|
| 724 | 728 |
|
| 725 | 729 |
// Initialize vectors |
| 726 | 730 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 727 | 731 |
_pi[i] = 0; |
| 728 | 732 |
_excess[i] = _supply[i]; |
| 729 | 733 |
} |
| 730 | 734 |
|
| 731 | 735 |
// Remove infinite upper bounds and check negative arcs |
| 732 | 736 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 733 | 737 |
int last_out; |
| 734 | 738 |
if (_have_lower) {
|
| 735 | 739 |
for (int i = 0; i != _root; ++i) {
|
| 736 | 740 |
last_out = _first_out[i+1]; |
| 737 | 741 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 738 | 742 |
if (_forward[j]) {
|
| 739 | 743 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
| 740 | 744 |
if (c >= MAX) return UNBOUNDED; |
| 741 | 745 |
_excess[i] -= c; |
| 742 | 746 |
_excess[_target[j]] += c; |
| 743 | 747 |
} |
| 744 | 748 |
} |
| 745 | 749 |
} |
| 746 | 750 |
} else {
|
| 747 | 751 |
for (int i = 0; i != _root; ++i) {
|
| 748 | 752 |
last_out = _first_out[i+1]; |
| 749 | 753 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 750 | 754 |
if (_forward[j] && _scost[j] < 0) {
|
| 751 | 755 |
Value c = _upper[j]; |
| 752 | 756 |
if (c >= MAX) return UNBOUNDED; |
| 753 | 757 |
_excess[i] -= c; |
| 754 | 758 |
_excess[_target[j]] += c; |
| 755 | 759 |
} |
| 756 | 760 |
} |
| 757 | 761 |
} |
| 758 | 762 |
} |
| 759 | 763 |
Value ex, max_cap = 0; |
| 760 | 764 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 761 | 765 |
ex = _excess[i]; |
| 762 | 766 |
_excess[i] = 0; |
| 763 | 767 |
if (ex < 0) max_cap -= ex; |
| 764 | 768 |
} |
| 765 | 769 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 766 | 770 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
| 767 | 771 |
} |
| 768 | 772 |
|
| 769 | 773 |
// Initialize the large cost vector and the epsilon parameter |
| 770 | 774 |
_epsilon = 0; |
| 771 | 775 |
LargeCost lc; |
| 772 | 776 |
for (int i = 0; i != _root; ++i) {
|
| 773 | 777 |
last_out = _first_out[i+1]; |
| 774 | 778 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 775 | 779 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
| 776 | 780 |
_cost[j] = lc; |
| 777 | 781 |
if (lc > _epsilon) _epsilon = lc; |
| 778 | 782 |
} |
| 779 | 783 |
} |
| 780 | 784 |
_epsilon /= _alpha; |
| 781 | 785 |
|
| 782 | 786 |
// Initialize maps for Circulation and remove non-zero lower bounds |
| 783 | 787 |
ConstMap<Arc, Value> low(0); |
| 784 | 788 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
| 785 | 789 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
| 786 | 790 |
ValueArcMap cap(_graph), flow(_graph); |
| 787 | 791 |
ValueNodeMap sup(_graph); |
| 788 | 792 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 789 | 793 |
sup[n] = _supply[_node_id[n]]; |
| 790 | 794 |
} |
| 791 | 795 |
if (_have_lower) {
|
| 792 | 796 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 793 | 797 |
int j = _arc_idf[a]; |
| 794 | 798 |
Value c = _lower[j]; |
| 795 | 799 |
cap[a] = _upper[j] - c; |
| 796 | 800 |
sup[_graph.source(a)] -= c; |
| 797 | 801 |
sup[_graph.target(a)] += c; |
| 798 | 802 |
} |
| 799 | 803 |
} else {
|
| 800 | 804 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 801 | 805 |
cap[a] = _upper[_arc_idf[a]]; |
| 802 | 806 |
} |
| 803 | 807 |
} |
| 804 | 808 |
|
| 805 | 809 |
// Find a feasible flow using Circulation |
| 806 | 810 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
| 807 | 811 |
circ(_graph, low, cap, sup); |
| 808 | 812 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
| 809 | 813 |
|
| 810 | 814 |
// Set residual capacities and handle GEQ supply type |
| 811 | 815 |
if (_sum_supply < 0) {
|
| 812 | 816 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 813 | 817 |
Value fa = flow[a]; |
| 814 | 818 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 815 | 819 |
_res_cap[_arc_idb[a]] = fa; |
| 816 | 820 |
sup[_graph.source(a)] -= fa; |
| 817 | 821 |
sup[_graph.target(a)] += fa; |
| 818 | 822 |
} |
| 819 | 823 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 820 | 824 |
_excess[_node_id[n]] = sup[n]; |
| 821 | 825 |
} |
| 822 | 826 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 823 | 827 |
int u = _target[a]; |
| 824 | 828 |
int ra = _reverse[a]; |
| 825 | 829 |
_res_cap[a] = -_sum_supply + 1; |
| 826 | 830 |
_res_cap[ra] = -_excess[u]; |
| 827 | 831 |
_cost[a] = 0; |
| 828 | 832 |
_cost[ra] = 0; |
| 829 | 833 |
_excess[u] = 0; |
| 830 | 834 |
} |
| 831 | 835 |
} else {
|
| 832 | 836 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 833 | 837 |
Value fa = flow[a]; |
| 834 | 838 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 835 | 839 |
_res_cap[_arc_idb[a]] = fa; |
| 836 | 840 |
} |
| 837 | 841 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 838 | 842 |
int ra = _reverse[a]; |
| 839 | 843 |
_res_cap[a] = 1; |
| 840 | 844 |
_res_cap[ra] = 0; |
| 841 | 845 |
_cost[a] = 0; |
| 842 | 846 |
_cost[ra] = 0; |
| 843 | 847 |
} |
| 844 | 848 |
} |
| 845 | 849 |
|
| 846 | 850 |
return OPTIMAL; |
| 847 | 851 |
} |
| 848 | 852 |
|
| 849 | 853 |
// Execute the algorithm and transform the results |
| 850 | 854 |
void start(Method method) {
|
| 851 | 855 |
// Maximum path length for partial augment |
| 852 | 856 |
const int MAX_PATH_LENGTH = 4; |
| 853 | 857 |
|
| 854 | 858 |
// Execute the algorithm |
| 855 | 859 |
switch (method) {
|
| 856 | 860 |
case PUSH: |
| 857 | 861 |
startPush(); |
| 858 | 862 |
break; |
| 859 | 863 |
case AUGMENT: |
| 860 | 864 |
startAugment(); |
| 861 | 865 |
break; |
| 862 | 866 |
case PARTIAL_AUGMENT: |
| 863 | 867 |
startAugment(MAX_PATH_LENGTH); |
| 864 | 868 |
break; |
| 865 | 869 |
} |
| 866 | 870 |
|
| 867 | 871 |
// Compute node potentials for the original costs |
| 868 | 872 |
_arc_vec.clear(); |
| 869 | 873 |
_cost_vec.clear(); |
| 870 | 874 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 871 | 875 |
if (_res_cap[j] > 0) {
|
| 872 | 876 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 873 | 877 |
_cost_vec.push_back(_scost[j]); |
| 874 | 878 |
} |
| 875 | 879 |
} |
| 876 | 880 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 877 | 881 |
|
| 878 | 882 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
| 879 | 883 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
| 880 | 884 |
bf.distMap(_pi_map); |
| 881 | 885 |
bf.init(0); |
| 882 | 886 |
bf.start(); |
| 883 | 887 |
|
| 884 | 888 |
// Handle non-zero lower bounds |
| 885 | 889 |
if (_have_lower) {
|
| 886 | 890 |
int limit = _first_out[_root]; |
| 887 | 891 |
for (int j = 0; j != limit; ++j) {
|
| 888 | 892 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 889 | 893 |
} |
| 890 | 894 |
} |
| 891 | 895 |
} |
| 892 | 896 |
|
| 893 | 897 |
/// Execute the algorithm performing augment and relabel operations |
| 894 | 898 |
void startAugment(int max_length = std::numeric_limits<int>::max()) {
|
| 895 | 899 |
// Paramters for heuristics |
| 896 | 900 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
| 897 | 901 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
| 898 | 902 |
|
| 899 | 903 |
// Perform cost scaling phases |
| 900 | 904 |
IntVector pred_arc(_res_node_num); |
| 901 | 905 |
std::vector<int> path_nodes; |
| 902 | 906 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 903 | 907 |
1 : _epsilon / _alpha ) |
| 904 | 908 |
{
|
| 905 | 909 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
| 906 | 910 |
// to check if the current flow is optimal |
| 907 | 911 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
| 908 | 912 |
_arc_vec.clear(); |
| 909 | 913 |
_cost_vec.clear(); |
| 910 | 914 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 911 | 915 |
if (_res_cap[j] > 0) {
|
| 912 | 916 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 913 | 917 |
_cost_vec.push_back(_cost[j] + 1); |
| 914 | 918 |
} |
| 915 | 919 |
} |
| 916 | 920 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 917 | 921 |
|
| 918 | 922 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
| 919 | 923 |
bf.init(0); |
| 920 | 924 |
bool done = false; |
| 921 | 925 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
| 922 | 926 |
for (int i = 0; i < K && !done; ++i) |
| 923 | 927 |
done = bf.processNextWeakRound(); |
| 924 | 928 |
if (done) break; |
| 925 | 929 |
} |
| 926 | 930 |
|
| 927 | 931 |
// Saturate arcs not satisfying the optimality condition |
| 928 | 932 |
for (int a = 0; a != _res_arc_num; ++a) {
|
| 929 | 933 |
if (_res_cap[a] > 0 && |
| 930 | 934 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
| 931 | 935 |
Value delta = _res_cap[a]; |
| 932 | 936 |
_excess[_source[a]] -= delta; |
| 933 | 937 |
_excess[_target[a]] += delta; |
| 934 | 938 |
_res_cap[a] = 0; |
| 935 | 939 |
_res_cap[_reverse[a]] += delta; |
| 936 | 940 |
} |
| 937 | 941 |
} |
| 938 | 942 |
|
| 939 | 943 |
// Find active nodes (i.e. nodes with positive excess) |
| 940 | 944 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 941 | 945 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
| 942 | 946 |
} |
| 943 | 947 |
|
| 944 | 948 |
// Initialize the next arcs |
| 945 | 949 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 946 | 950 |
_next_out[u] = _first_out[u]; |
| 947 | 951 |
} |
| 948 | 952 |
|
| 949 | 953 |
// Perform partial augment and relabel operations |
| 950 | 954 |
while (true) {
|
| 951 | 955 |
// Select an active node (FIFO selection) |
| 952 | 956 |
while (_active_nodes.size() > 0 && |
| 953 | 957 |
_excess[_active_nodes.front()] <= 0) {
|
| 954 | 958 |
_active_nodes.pop_front(); |
| 955 | 959 |
} |
| 956 | 960 |
if (_active_nodes.size() == 0) break; |
| 957 | 961 |
int start = _active_nodes.front(); |
| 958 | 962 |
path_nodes.clear(); |
| 959 | 963 |
path_nodes.push_back(start); |
| 960 | 964 |
|
| 961 | 965 |
// Find an augmenting path from the start node |
| 962 | 966 |
int tip = start; |
| 963 | 967 |
while (_excess[tip] >= 0 && |
| 964 | 968 |
int(path_nodes.size()) <= max_length) {
|
| 965 | 969 |
int u; |
| 966 | 970 |
LargeCost min_red_cost, rc; |
| 967 | 971 |
int last_out = _sum_supply < 0 ? |
| 968 | 972 |
_first_out[tip+1] : _first_out[tip+1] - 1; |
| 969 | 973 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
| 970 | 974 |
if (_res_cap[a] > 0 && |
| 971 | 975 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
| 972 | 976 |
u = _target[a]; |
| 973 | 977 |
pred_arc[u] = a; |
| 974 | 978 |
_next_out[tip] = a; |
| 975 | 979 |
tip = u; |
| 976 | 980 |
path_nodes.push_back(tip); |
| 977 | 981 |
goto next_step; |
| 978 | 982 |
} |
| 979 | 983 |
} |
| 980 | 984 |
|
| 981 | 985 |
// Relabel tip node |
| 982 | 986 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
| 983 | 987 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
| 984 | 988 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
| 985 | 989 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 986 | 990 |
min_red_cost = rc; |
| 987 | 991 |
} |
| 988 | 992 |
} |
| 989 | 993 |
_pi[tip] -= min_red_cost + _epsilon; |
| 990 | 994 |
|
| 991 | 995 |
// Reset the next arc of tip |
| 992 | 996 |
_next_out[tip] = _first_out[tip]; |
| 993 | 997 |
|
| 994 | 998 |
// Step back |
| 995 | 999 |
if (tip != start) {
|
| 996 | 1000 |
path_nodes.pop_back(); |
| 997 | 1001 |
tip = path_nodes.back(); |
| 998 | 1002 |
} |
| 999 | 1003 |
|
| 1000 | 1004 |
next_step: ; |
| 1001 | 1005 |
} |
| 1002 | 1006 |
|
| 1003 | 1007 |
// Augment along the found path (as much flow as possible) |
| 1004 | 1008 |
Value delta; |
| 1005 | 1009 |
int u, v = path_nodes.front(), pa; |
| 1006 | 1010 |
for (int i = 1; i < int(path_nodes.size()); ++i) {
|
| 1007 | 1011 |
u = v; |
| 1008 | 1012 |
v = path_nodes[i]; |
| 1009 | 1013 |
pa = pred_arc[v]; |
| 1010 | 1014 |
delta = std::min(_res_cap[pa], _excess[u]); |
| 1011 | 1015 |
_res_cap[pa] -= delta; |
| 1012 | 1016 |
_res_cap[_reverse[pa]] += delta; |
| 1013 | 1017 |
_excess[u] -= delta; |
| 1014 | 1018 |
_excess[v] += delta; |
| 1015 | 1019 |
if (_excess[v] > 0 && _excess[v] <= delta) |
| 1016 | 1020 |
_active_nodes.push_back(v); |
| 1017 | 1021 |
} |
| 1018 | 1022 |
} |
| 1019 | 1023 |
} |
| 1020 | 1024 |
} |
| 1021 | 1025 |
|
| 1022 | 1026 |
/// Execute the algorithm performing push and relabel operations |
| 1023 | 1027 |
void startPush() {
|
| 1024 | 1028 |
// Paramters for heuristics |
| 1025 | 1029 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
| 1026 | 1030 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
| 1027 | 1031 |
|
| 1028 | 1032 |
// Perform cost scaling phases |
| 1029 | 1033 |
BoolVector hyper(_res_node_num, false); |
| 1030 | 1034 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 1031 | 1035 |
1 : _epsilon / _alpha ) |
| 1032 | 1036 |
{
|
| 1033 | 1037 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
| 1034 | 1038 |
// to check if the current flow is optimal |
| 1035 | 1039 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
| 1036 | 1040 |
_arc_vec.clear(); |
| 1037 | 1041 |
_cost_vec.clear(); |
| 1038 | 1042 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 1039 | 1043 |
if (_res_cap[j] > 0) {
|
| 1040 | 1044 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 1041 | 1045 |
_cost_vec.push_back(_cost[j] + 1); |
| 1042 | 1046 |
} |
| 1043 | 1047 |
} |
| 1044 | 1048 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 1045 | 1049 |
|
| 1046 | 1050 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
| 1047 | 1051 |
bf.init(0); |
| 1048 | 1052 |
bool done = false; |
| 1049 | 1053 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
| 1050 | 1054 |
for (int i = 0; i < K && !done; ++i) |
| 1051 | 1055 |
done = bf.processNextWeakRound(); |
| 1052 | 1056 |
if (done) break; |
| 1053 | 1057 |
} |
| 1054 | 1058 |
|
| 1055 | 1059 |
// Saturate arcs not satisfying the optimality condition |
| 1056 | 1060 |
for (int a = 0; a != _res_arc_num; ++a) {
|
| 1057 | 1061 |
if (_res_cap[a] > 0 && |
| 1058 | 1062 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
| 1059 | 1063 |
Value delta = _res_cap[a]; |
| 1060 | 1064 |
_excess[_source[a]] -= delta; |
| 1061 | 1065 |
_excess[_target[a]] += delta; |
| 1062 | 1066 |
_res_cap[a] = 0; |
| 1063 | 1067 |
_res_cap[_reverse[a]] += delta; |
| 1064 | 1068 |
} |
| 1065 | 1069 |
} |
| 1066 | 1070 |
|
| 1067 | 1071 |
// Find active nodes (i.e. nodes with positive excess) |
| 1068 | 1072 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 1069 | 1073 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
| 1070 | 1074 |
} |
| 1071 | 1075 |
|
| 1072 | 1076 |
// Initialize the next arcs |
| 1073 | 1077 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 1074 | 1078 |
_next_out[u] = _first_out[u]; |
| 1075 | 1079 |
} |
| 1076 | 1080 |
|
| 1077 | 1081 |
// Perform push and relabel operations |
| 1078 | 1082 |
while (_active_nodes.size() > 0) {
|
| 1079 | 1083 |
LargeCost min_red_cost, rc; |
| 1080 | 1084 |
Value delta; |
| 1081 | 1085 |
int n, t, a, last_out = _res_arc_num; |
| 1082 | 1086 |
|
| 1083 | 1087 |
// Select an active node (FIFO selection) |
| 1084 | 1088 |
next_node: |
| 1085 | 1089 |
n = _active_nodes.front(); |
| 1086 | 1090 |
last_out = _sum_supply < 0 ? |
| 1087 | 1091 |
_first_out[n+1] : _first_out[n+1] - 1; |
| 1088 | 1092 |
|
| 1089 | 1093 |
// Perform push operations if there are admissible arcs |
| 1090 | 1094 |
if (_excess[n] > 0) {
|
| 1091 | 1095 |
for (a = _next_out[n]; a != last_out; ++a) {
|
| 1092 | 1096 |
if (_res_cap[a] > 0 && |
| 1093 | 1097 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
| 1094 | 1098 |
delta = std::min(_res_cap[a], _excess[n]); |
| 1095 | 1099 |
t = _target[a]; |
| 1096 | 1100 |
|
| 1097 | 1101 |
// Push-look-ahead heuristic |
| 1098 | 1102 |
Value ahead = -_excess[t]; |
| 1099 | 1103 |
int last_out_t = _sum_supply < 0 ? |
| 1100 | 1104 |
_first_out[t+1] : _first_out[t+1] - 1; |
| 1101 | 1105 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
| 1102 | 1106 |
if (_res_cap[ta] > 0 && |
| 1103 | 1107 |
_cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0) |
| 1104 | 1108 |
ahead += _res_cap[ta]; |
| 1105 | 1109 |
if (ahead >= delta) break; |
| 1106 | 1110 |
} |
| 1107 | 1111 |
if (ahead < 0) ahead = 0; |
| 1108 | 1112 |
|
| 1109 | 1113 |
// Push flow along the arc |
| 1110 | 1114 |
if (ahead < delta) {
|
| 1111 | 1115 |
_res_cap[a] -= ahead; |
| 1112 | 1116 |
_res_cap[_reverse[a]] += ahead; |
| 1113 | 1117 |
_excess[n] -= ahead; |
| 1114 | 1118 |
_excess[t] += ahead; |
| 1115 | 1119 |
_active_nodes.push_front(t); |
| 1116 | 1120 |
hyper[t] = true; |
| 1117 | 1121 |
_next_out[n] = a; |
| 1118 | 1122 |
goto next_node; |
| 1119 | 1123 |
} else {
|
| 1120 | 1124 |
_res_cap[a] -= delta; |
| 1121 | 1125 |
_res_cap[_reverse[a]] += delta; |
| 1122 | 1126 |
_excess[n] -= delta; |
| 1123 | 1127 |
_excess[t] += delta; |
| 1124 | 1128 |
if (_excess[t] > 0 && _excess[t] <= delta) |
| 1125 | 1129 |
_active_nodes.push_back(t); |
| 1126 | 1130 |
} |
| 1127 | 1131 |
|
| 1128 | 1132 |
if (_excess[n] == 0) {
|
| 1129 | 1133 |
_next_out[n] = a; |
| 1130 | 1134 |
goto remove_nodes; |
| 1131 | 1135 |
} |
| 1132 | 1136 |
} |
| 1133 | 1137 |
} |
| 1134 | 1138 |
_next_out[n] = a; |
| 1135 | 1139 |
} |
| 1136 | 1140 |
|
| 1137 | 1141 |
// Relabel the node if it is still active (or hyper) |
| 1138 | 1142 |
if (_excess[n] > 0 || hyper[n]) {
|
| 1139 | 1143 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
| 1140 | 1144 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
| 1141 | 1145 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
| 1142 | 1146 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 1143 | 1147 |
min_red_cost = rc; |
| 1144 | 1148 |
} |
| 1145 | 1149 |
} |
| 1146 | 1150 |
_pi[n] -= min_red_cost + _epsilon; |
| 1147 | 1151 |
hyper[n] = false; |
| 1148 | 1152 |
|
| 1149 | 1153 |
// Reset the next arc |
| 1150 | 1154 |
_next_out[n] = _first_out[n]; |
| 1151 | 1155 |
} |
| 1152 | 1156 |
|
| 1153 | 1157 |
// Remove nodes that are not active nor hyper |
| 1154 | 1158 |
remove_nodes: |
| 1155 | 1159 |
while ( _active_nodes.size() > 0 && |
| 1156 | 1160 |
_excess[_active_nodes.front()] <= 0 && |
| 1157 | 1161 |
!hyper[_active_nodes.front()] ) {
|
| 1158 | 1162 |
_active_nodes.pop_front(); |
| 1159 | 1163 |
} |
| 1160 | 1164 |
} |
| 1161 | 1165 |
} |
| 1162 | 1166 |
} |
| 1163 | 1167 |
|
| 1164 | 1168 |
}; //class CostScaling |
| 1165 | 1169 |
|
| 1166 | 1170 |
///@} |
| 1167 | 1171 |
|
| 1168 | 1172 |
} //namespace lemon |
| 1169 | 1173 |
|
| 1170 | 1174 |
#endif //LEMON_COST_SCALING_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 66 | 66 |
///By default, it is a NullMap. |
| 67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 68 | 68 |
///Instantiates a \c ProcessedMap. |
| 69 | 69 |
|
| 70 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 71 | 71 |
///\param g is the digraph, to which |
| 72 | 72 |
///we would like to define the \ref ProcessedMap. |
| 73 | 73 |
#ifdef DOXYGEN |
| 74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 75 | 75 |
#else |
| 76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 77 | 77 |
#endif |
| 78 | 78 |
{
|
| 79 | 79 |
return new ProcessedMap(); |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
///The type of the map that indicates which nodes are reached. |
| 83 | 83 |
|
| 84 | 84 |
///The type of the map that indicates which nodes are reached. |
| 85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 87 | 87 |
///Instantiates a \c ReachedMap. |
| 88 | 88 |
|
| 89 | 89 |
///This function instantiates a \ref ReachedMap. |
| 90 | 90 |
///\param g is the digraph, to which |
| 91 | 91 |
///we would like to define the \ref ReachedMap. |
| 92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 93 | 93 |
{
|
| 94 | 94 |
return new ReachedMap(g); |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
///The type of the map that stores the distances of the nodes. |
| 98 | 98 |
|
| 99 | 99 |
///The type of the map that stores the distances of the nodes. |
| 100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 102 | 102 |
///Instantiates a \c DistMap. |
| 103 | 103 |
|
| 104 | 104 |
///This function instantiates a \ref DistMap. |
| 105 | 105 |
///\param g is the digraph, to which we would like to define the |
| 106 | 106 |
///\ref DistMap. |
| 107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 108 | 108 |
{
|
| 109 | 109 |
return new DistMap(g); |
| 110 | 110 |
} |
| 111 | 111 |
}; |
| 112 | 112 |
|
| 113 | 113 |
///%DFS algorithm class. |
| 114 | 114 |
|
| 115 | 115 |
///\ingroup search |
| 116 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 117 | 117 |
/// |
| 118 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 120 | 120 |
///used easier. |
| 121 | 121 |
/// |
| 122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 123 | 123 |
///The default type is \ref ListDigraph. |
| 124 |
///\tparam TR The traits class that defines various types used by the |
|
| 125 |
///algorithm. By default, it is \ref DfsDefaultTraits |
|
| 126 |
///"DfsDefaultTraits<GR>". |
|
| 127 |
///In most cases, this parameter should not be set directly, |
|
| 128 |
///consider to use the named template parameters instead. |
|
| 124 | 129 |
#ifdef DOXYGEN |
| 125 | 130 |
template <typename GR, |
| 126 | 131 |
typename TR> |
| 127 | 132 |
#else |
| 128 | 133 |
template <typename GR=ListDigraph, |
| 129 | 134 |
typename TR=DfsDefaultTraits<GR> > |
| 130 | 135 |
#endif |
| 131 | 136 |
class Dfs {
|
| 132 | 137 |
public: |
| 133 | 138 |
|
| 134 | 139 |
///The type of the digraph the algorithm runs on. |
| 135 | 140 |
typedef typename TR::Digraph Digraph; |
| 136 | 141 |
|
| 137 | 142 |
///\brief The type of the map that stores the predecessor arcs of the |
| 138 | 143 |
///DFS paths. |
| 139 | 144 |
typedef typename TR::PredMap PredMap; |
| 140 | 145 |
///The type of the map that stores the distances of the nodes. |
| 141 | 146 |
typedef typename TR::DistMap DistMap; |
| 142 | 147 |
///The type of the map that indicates which nodes are reached. |
| 143 | 148 |
typedef typename TR::ReachedMap ReachedMap; |
| 144 | 149 |
///The type of the map that indicates which nodes are processed. |
| 145 | 150 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 146 | 151 |
///The type of the paths. |
| 147 | 152 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 148 | 153 |
|
| 149 | 154 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
| 150 | 155 |
typedef TR Traits; |
| 151 | 156 |
|
| 152 | 157 |
private: |
| 153 | 158 |
|
| 154 | 159 |
typedef typename Digraph::Node Node; |
| 155 | 160 |
typedef typename Digraph::NodeIt NodeIt; |
| 156 | 161 |
typedef typename Digraph::Arc Arc; |
| 157 | 162 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 158 | 163 |
|
| 159 | 164 |
//Pointer to the underlying digraph. |
| 160 | 165 |
const Digraph *G; |
| 161 | 166 |
//Pointer to the map of predecessor arcs. |
| 162 | 167 |
PredMap *_pred; |
| 163 | 168 |
//Indicates if _pred is locally allocated (true) or not. |
| 164 | 169 |
bool local_pred; |
| 165 | 170 |
//Pointer to the map of distances. |
| 166 | 171 |
DistMap *_dist; |
| 167 | 172 |
//Indicates if _dist is locally allocated (true) or not. |
| 168 | 173 |
bool local_dist; |
| 169 | 174 |
//Pointer to the map of reached status of the nodes. |
| 170 | 175 |
ReachedMap *_reached; |
| 171 | 176 |
//Indicates if _reached is locally allocated (true) or not. |
| 172 | 177 |
bool local_reached; |
| 173 | 178 |
//Pointer to the map of processed status of the nodes. |
| 174 | 179 |
ProcessedMap *_processed; |
| 175 | 180 |
//Indicates if _processed is locally allocated (true) or not. |
| 176 | 181 |
bool local_processed; |
| 177 | 182 |
|
| 178 | 183 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 179 | 184 |
int _stack_head; |
| 180 | 185 |
|
| 181 | 186 |
//Creates the maps if necessary. |
| 182 | 187 |
void create_maps() |
| 183 | 188 |
{
|
| 184 | 189 |
if(!_pred) {
|
| 185 | 190 |
local_pred = true; |
| 186 | 191 |
_pred = Traits::createPredMap(*G); |
| 187 | 192 |
} |
| 188 | 193 |
if(!_dist) {
|
| 189 | 194 |
local_dist = true; |
| 190 | 195 |
_dist = Traits::createDistMap(*G); |
| 191 | 196 |
} |
| 192 | 197 |
if(!_reached) {
|
| 193 | 198 |
local_reached = true; |
| 194 | 199 |
_reached = Traits::createReachedMap(*G); |
| 195 | 200 |
} |
| 196 | 201 |
if(!_processed) {
|
| 197 | 202 |
local_processed = true; |
| 198 | 203 |
_processed = Traits::createProcessedMap(*G); |
| 199 | 204 |
} |
| 200 | 205 |
} |
| 201 | 206 |
|
| 202 | 207 |
protected: |
| 203 | 208 |
|
| 204 | 209 |
Dfs() {}
|
| 205 | 210 |
|
| 206 | 211 |
public: |
| 207 | 212 |
|
| 208 | 213 |
typedef Dfs Create; |
| 209 | 214 |
|
| 210 | 215 |
///\name Named Template Parameters |
| 211 | 216 |
|
| 212 | 217 |
///@{
|
| 213 | 218 |
|
| 214 | 219 |
template <class T> |
| 215 | 220 |
struct SetPredMapTraits : public Traits {
|
| 216 | 221 |
typedef T PredMap; |
| 217 | 222 |
static PredMap *createPredMap(const Digraph &) |
| 218 | 223 |
{
|
| 219 | 224 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 220 | 225 |
return 0; // ignore warnings |
| 221 | 226 |
} |
| 222 | 227 |
}; |
| 223 | 228 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 224 | 229 |
///\c PredMap type. |
| 225 | 230 |
/// |
| 226 | 231 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 232 |
///\c PredMap type. |
| 228 | 233 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 229 | 234 |
template <class T> |
| 230 | 235 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 231 | 236 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 232 | 237 |
}; |
| 233 | 238 |
|
| 234 | 239 |
template <class T> |
| 235 | 240 |
struct SetDistMapTraits : public Traits {
|
| 236 | 241 |
typedef T DistMap; |
| 237 | 242 |
static DistMap *createDistMap(const Digraph &) |
| 238 | 243 |
{
|
| 239 | 244 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 240 | 245 |
return 0; // ignore warnings |
| 241 | 246 |
} |
| 242 | 247 |
}; |
| 243 | 248 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 244 | 249 |
///\c DistMap type. |
| 245 | 250 |
/// |
| 246 | 251 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 252 |
///\c DistMap type. |
| 248 | 253 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 249 | 254 |
template <class T> |
| 250 | 255 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 251 | 256 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 252 | 257 |
}; |
| 253 | 258 |
|
| 254 | 259 |
template <class T> |
| 255 | 260 |
struct SetReachedMapTraits : public Traits {
|
| 256 | 261 |
typedef T ReachedMap; |
| 257 | 262 |
static ReachedMap *createReachedMap(const Digraph &) |
| 258 | 263 |
{
|
| 259 | 264 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 260 | 265 |
return 0; // ignore warnings |
| 261 | 266 |
} |
| 262 | 267 |
}; |
| 263 | 268 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 269 |
///\c ReachedMap type. |
| 265 | 270 |
/// |
| 266 | 271 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 272 |
///\c ReachedMap type. |
| 268 | 273 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 269 | 274 |
template <class T> |
| 270 | 275 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 276 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 277 |
}; |
| 273 | 278 |
|
| 274 | 279 |
template <class T> |
| 275 | 280 |
struct SetProcessedMapTraits : public Traits {
|
| 276 | 281 |
typedef T ProcessedMap; |
| 277 | 282 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 278 | 283 |
{
|
| 279 | 284 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 280 | 285 |
return 0; // ignore warnings |
| 281 | 286 |
} |
| 282 | 287 |
}; |
| 283 | 288 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 289 |
///\c ProcessedMap type. |
| 285 | 290 |
/// |
| 286 | 291 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 292 |
///\c ProcessedMap type. |
| 288 | 293 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 289 | 294 |
template <class T> |
| 290 | 295 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 296 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 297 |
}; |
| 293 | 298 |
|
| 294 | 299 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 295 | 300 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 296 | 301 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 297 | 302 |
{
|
| 298 | 303 |
return new ProcessedMap(g); |
| 299 | 304 |
} |
| 300 | 305 |
}; |
| 301 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 302 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 303 | 308 |
/// |
| 304 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 305 | 310 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 306 | 311 |
///If you don't set it explicitly, it will be automatically allocated. |
| 307 | 312 |
struct SetStandardProcessedMap : |
| 308 | 313 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 309 | 314 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 310 | 315 |
}; |
| 311 | 316 |
|
| 312 | 317 |
///@} |
| 313 | 318 |
|
| 314 | 319 |
public: |
| 315 | 320 |
|
| 316 | 321 |
///Constructor. |
| 317 | 322 |
|
| 318 | 323 |
///Constructor. |
| 319 | 324 |
///\param g The digraph the algorithm runs on. |
| 320 | 325 |
Dfs(const Digraph &g) : |
| 321 | 326 |
G(&g), |
| 322 | 327 |
_pred(NULL), local_pred(false), |
| 323 | 328 |
_dist(NULL), local_dist(false), |
| 324 | 329 |
_reached(NULL), local_reached(false), |
| 325 | 330 |
_processed(NULL), local_processed(false) |
| 326 | 331 |
{ }
|
| 327 | 332 |
|
| 328 | 333 |
///Destructor. |
| 329 | 334 |
~Dfs() |
| 330 | 335 |
{
|
| 331 | 336 |
if(local_pred) delete _pred; |
| 332 | 337 |
if(local_dist) delete _dist; |
| 333 | 338 |
if(local_reached) delete _reached; |
| 334 | 339 |
if(local_processed) delete _processed; |
| 335 | 340 |
} |
| 336 | 341 |
|
| 337 | 342 |
///Sets the map that stores the predecessor arcs. |
| 338 | 343 |
|
| 339 | 344 |
///Sets the map that stores the predecessor arcs. |
| 340 | 345 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 341 | 346 |
///or \ref init(), an instance will be allocated automatically. |
| 342 | 347 |
///The destructor deallocates this automatically allocated map, |
| 343 | 348 |
///of course. |
| 344 | 349 |
///\return <tt> (*this) </tt> |
| 345 | 350 |
Dfs &predMap(PredMap &m) |
| 346 | 351 |
{
|
| 347 | 352 |
if(local_pred) {
|
| 348 | 353 |
delete _pred; |
| 349 | 354 |
local_pred=false; |
| 350 | 355 |
} |
| 351 | 356 |
_pred = &m; |
| 352 | 357 |
return *this; |
| 353 | 358 |
} |
| 354 | 359 |
|
| 355 | 360 |
///Sets the map that indicates which nodes are reached. |
| 356 | 361 |
|
| 357 | 362 |
///Sets the map that indicates which nodes are reached. |
| 358 | 363 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 359 | 364 |
///or \ref init(), an instance will be allocated automatically. |
| 360 | 365 |
///The destructor deallocates this automatically allocated map, |
| 361 | 366 |
///of course. |
| 362 | 367 |
///\return <tt> (*this) </tt> |
| 363 | 368 |
Dfs &reachedMap(ReachedMap &m) |
| 364 | 369 |
{
|
| 365 | 370 |
if(local_reached) {
|
| 366 | 371 |
delete _reached; |
| 367 | 372 |
local_reached=false; |
| 368 | 373 |
} |
| 369 | 374 |
_reached = &m; |
| 370 | 375 |
return *this; |
| 371 | 376 |
} |
| 372 | 377 |
|
| 373 | 378 |
///Sets the map that indicates which nodes are processed. |
| 374 | 379 |
|
| 375 | 380 |
///Sets the map that indicates which nodes are processed. |
| 376 | 381 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 377 | 382 |
///or \ref init(), an instance will be allocated automatically. |
| 378 | 383 |
///The destructor deallocates this automatically allocated map, |
| 379 | 384 |
///of course. |
| 380 | 385 |
///\return <tt> (*this) </tt> |
| 381 | 386 |
Dfs &processedMap(ProcessedMap &m) |
| 382 | 387 |
{
|
| 383 | 388 |
if(local_processed) {
|
| 384 | 389 |
delete _processed; |
| 385 | 390 |
local_processed=false; |
| 386 | 391 |
} |
| 387 | 392 |
_processed = &m; |
| 388 | 393 |
return *this; |
| 389 | 394 |
} |
| 390 | 395 |
|
| 391 | 396 |
///Sets the map that stores the distances of the nodes. |
| 392 | 397 |
|
| 393 | 398 |
///Sets the map that stores the distances of the nodes calculated by |
| 394 | 399 |
///the algorithm. |
| 395 | 400 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 396 | 401 |
///or \ref init(), an instance will be allocated automatically. |
| 397 | 402 |
///The destructor deallocates this automatically allocated map, |
| 398 | 403 |
///of course. |
| 399 | 404 |
///\return <tt> (*this) </tt> |
| 400 | 405 |
Dfs &distMap(DistMap &m) |
| 401 | 406 |
{
|
| 402 | 407 |
if(local_dist) {
|
| 403 | 408 |
delete _dist; |
| 404 | 409 |
local_dist=false; |
| 405 | 410 |
} |
| 406 | 411 |
_dist = &m; |
| 407 | 412 |
return *this; |
| 408 | 413 |
} |
| 409 | 414 |
|
| 410 | 415 |
public: |
| 411 | 416 |
|
| 412 | 417 |
///\name Execution Control |
| 413 | 418 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 414 | 419 |
///member functions called \ref run(Node) "run()".\n |
| 415 | 420 |
///If you need better control on the execution, you have to call |
| 416 | 421 |
///\ref init() first, then you can add a source node with \ref addSource() |
| 417 | 422 |
///and perform the actual computation with \ref start(). |
| 418 | 423 |
///This procedure can be repeated if there are nodes that have not |
| 419 | 424 |
///been reached. |
| 420 | 425 |
|
| 421 | 426 |
///@{
|
| 422 | 427 |
|
| 423 | 428 |
///\brief Initializes the internal data structures. |
| 424 | 429 |
/// |
| 425 | 430 |
///Initializes the internal data structures. |
| 426 | 431 |
void init() |
| 427 | 432 |
{
|
| 428 | 433 |
create_maps(); |
| 429 | 434 |
_stack.resize(countNodes(*G)); |
| 430 | 435 |
_stack_head=-1; |
| 431 | 436 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 432 | 437 |
_pred->set(u,INVALID); |
| 433 | 438 |
_reached->set(u,false); |
| 434 | 439 |
_processed->set(u,false); |
| 435 | 440 |
} |
| 436 | 441 |
} |
| 437 | 442 |
|
| 438 | 443 |
///Adds a new source node. |
| 439 | 444 |
|
| 440 | 445 |
///Adds a new source node to the set of nodes to be processed. |
| 441 | 446 |
/// |
| 442 | 447 |
///\pre The stack must be empty. Otherwise the algorithm gives |
| 443 | 448 |
///wrong results. (One of the outgoing arcs of all the source nodes |
| 444 | 449 |
///except for the last one will not be visited and distances will |
| 445 | 450 |
///also be wrong.) |
| 446 | 451 |
void addSource(Node s) |
| 447 | 452 |
{
|
| 448 | 453 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 449 | 454 |
if(!(*_reached)[s]) |
| 450 | 455 |
{
|
| 451 | 456 |
_reached->set(s,true); |
| 452 | 457 |
_pred->set(s,INVALID); |
| 453 | 458 |
OutArcIt e(*G,s); |
| 454 | 459 |
if(e!=INVALID) {
|
| 455 | 460 |
_stack[++_stack_head]=e; |
| 456 | 461 |
_dist->set(s,_stack_head); |
| 457 | 462 |
} |
| 458 | 463 |
else {
|
| 459 | 464 |
_processed->set(s,true); |
| 460 | 465 |
_dist->set(s,0); |
| 461 | 466 |
} |
| 462 | 467 |
} |
| 463 | 468 |
} |
| 464 | 469 |
|
| 465 | 470 |
///Processes the next arc. |
| 466 | 471 |
|
| 467 | 472 |
///Processes the next arc. |
| 468 | 473 |
/// |
| 469 | 474 |
///\return The processed arc. |
| 470 | 475 |
/// |
| 471 | 476 |
///\pre The stack must not be empty. |
| 472 | 477 |
Arc processNextArc() |
| 473 | 478 |
{
|
| 474 | 479 |
Node m; |
| 475 | 480 |
Arc e=_stack[_stack_head]; |
| 476 | 481 |
if(!(*_reached)[m=G->target(e)]) {
|
| 477 | 482 |
_pred->set(m,e); |
| 478 | 483 |
_reached->set(m,true); |
| 479 | 484 |
++_stack_head; |
| 480 | 485 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 481 | 486 |
_dist->set(m,_stack_head); |
| 482 | 487 |
} |
| 483 | 488 |
else {
|
| 484 | 489 |
m=G->source(e); |
| 485 | 490 |
++_stack[_stack_head]; |
| 486 | 491 |
} |
| 487 | 492 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 488 | 493 |
_processed->set(m,true); |
| 489 | 494 |
--_stack_head; |
| 490 | 495 |
if(_stack_head>=0) {
|
| 491 | 496 |
m=G->source(_stack[_stack_head]); |
| 492 | 497 |
++_stack[_stack_head]; |
| 493 | 498 |
} |
| 494 | 499 |
} |
| 495 | 500 |
return e; |
| 496 | 501 |
} |
| 497 | 502 |
|
| 498 | 503 |
///Next arc to be processed. |
| 499 | 504 |
|
| 500 | 505 |
///Next arc to be processed. |
| 501 | 506 |
/// |
| 502 | 507 |
///\return The next arc to be processed or \c INVALID if the stack |
| 503 | 508 |
///is empty. |
| 504 | 509 |
OutArcIt nextArc() const |
| 505 | 510 |
{
|
| 506 | 511 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 507 | 512 |
} |
| 508 | 513 |
|
| 509 | 514 |
///Returns \c false if there are nodes to be processed. |
| 510 | 515 |
|
| 511 | 516 |
///Returns \c false if there are nodes to be processed |
| 512 | 517 |
///in the queue (stack). |
| 513 | 518 |
bool emptyQueue() const { return _stack_head<0; }
|
| 514 | 519 |
|
| 515 | 520 |
///Returns the number of the nodes to be processed. |
| 516 | 521 |
|
| 517 | 522 |
///Returns the number of the nodes to be processed |
| 518 | 523 |
///in the queue (stack). |
| 519 | 524 |
int queueSize() const { return _stack_head+1; }
|
| 520 | 525 |
|
| 521 | 526 |
///Executes the algorithm. |
| 522 | 527 |
|
| 523 | 528 |
///Executes the algorithm. |
| 524 | 529 |
/// |
| 525 | 530 |
///This method runs the %DFS algorithm from the root node |
| 526 | 531 |
///in order to compute the DFS path to each node. |
| 527 | 532 |
/// |
| 528 | 533 |
/// The algorithm computes |
| 529 | 534 |
///- the %DFS tree, |
| 530 | 535 |
///- the distance of each node from the root in the %DFS tree. |
| 531 | 536 |
/// |
| 532 | 537 |
///\pre init() must be called and a root node should be |
| 533 | 538 |
///added with addSource() before using this function. |
| 534 | 539 |
/// |
| 535 | 540 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 536 | 541 |
///\code |
| 537 | 542 |
/// while ( !d.emptyQueue() ) {
|
| 538 | 543 |
/// d.processNextArc(); |
| 539 | 544 |
/// } |
| 540 | 545 |
///\endcode |
| 541 | 546 |
void start() |
| 542 | 547 |
{
|
| 543 | 548 |
while ( !emptyQueue() ) processNextArc(); |
| 544 | 549 |
} |
| 545 | 550 |
|
| 546 | 551 |
///Executes the algorithm until the given target node is reached. |
| 547 | 552 |
|
| 548 | 553 |
///Executes the algorithm until the given target node is reached. |
| 549 | 554 |
/// |
| 550 | 555 |
///This method runs the %DFS algorithm from the root node |
| 551 | 556 |
///in order to compute the DFS path to \c t. |
| 552 | 557 |
/// |
| 553 | 558 |
///The algorithm computes |
| 554 | 559 |
///- the %DFS path to \c t, |
| 555 | 560 |
///- the distance of \c t from the root in the %DFS tree. |
| 556 | 561 |
/// |
| 557 | 562 |
///\pre init() must be called and a root node should be |
| 558 | 563 |
///added with addSource() before using this function. |
| 559 | 564 |
void start(Node t) |
| 560 | 565 |
{
|
| 561 | 566 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
| 562 | 567 |
processNextArc(); |
| 563 | 568 |
} |
| 564 | 569 |
|
| 565 | 570 |
///Executes the algorithm until a condition is met. |
| 566 | 571 |
|
| 567 | 572 |
///Executes the algorithm until a condition is met. |
| 568 | 573 |
/// |
| 569 | 574 |
///This method runs the %DFS algorithm from the root node |
| 570 | 575 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 571 | 576 |
/// |
| 572 | 577 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 573 | 578 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 574 | 579 |
/// |
| 575 | 580 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 576 | 581 |
///\c INVALID if no such arc was found. |
| 577 | 582 |
/// |
| 578 | 583 |
///\pre init() must be called and a root node should be |
| 579 | 584 |
///added with addSource() before using this function. |
| 580 | 585 |
/// |
| 581 | 586 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 582 | 587 |
///not a node map. |
| 583 | 588 |
template<class ArcBoolMap> |
| 584 | 589 |
Arc start(const ArcBoolMap &am) |
| 585 | 590 |
{
|
| 586 | 591 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 587 | 592 |
processNextArc(); |
| 588 | 593 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 589 | 594 |
} |
| 590 | 595 |
|
| 591 | 596 |
///Runs the algorithm from the given source node. |
| 592 | 597 |
|
| 593 | 598 |
///This method runs the %DFS algorithm from node \c s |
| 594 | 599 |
///in order to compute the DFS path to each node. |
| 595 | 600 |
/// |
| 596 | 601 |
///The algorithm computes |
| 597 | 602 |
///- the %DFS tree, |
| 598 | 603 |
///- the distance of each node from the root in the %DFS tree. |
| 599 | 604 |
/// |
| 600 | 605 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 601 | 606 |
///\code |
| 602 | 607 |
/// d.init(); |
| 603 | 608 |
/// d.addSource(s); |
| 604 | 609 |
/// d.start(); |
| 605 | 610 |
///\endcode |
| 606 | 611 |
void run(Node s) {
|
| 607 | 612 |
init(); |
| 608 | 613 |
addSource(s); |
| 609 | 614 |
start(); |
| 610 | 615 |
} |
| 611 | 616 |
|
| 612 | 617 |
///Finds the %DFS path between \c s and \c t. |
| 613 | 618 |
|
| 614 | 619 |
///This method runs the %DFS algorithm from node \c s |
| 615 | 620 |
///in order to compute the DFS path to node \c t |
| 616 | 621 |
///(it stops searching when \c t is processed) |
| 617 | 622 |
/// |
| 618 | 623 |
///\return \c true if \c t is reachable form \c s. |
| 619 | 624 |
/// |
| 620 | 625 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 621 | 626 |
///just a shortcut of the following code. |
| 622 | 627 |
///\code |
| 623 | 628 |
/// d.init(); |
| 624 | 629 |
/// d.addSource(s); |
| 625 | 630 |
/// d.start(t); |
| 626 | 631 |
///\endcode |
| 627 | 632 |
bool run(Node s,Node t) {
|
| 628 | 633 |
init(); |
| 629 | 634 |
addSource(s); |
| 630 | 635 |
start(t); |
| 631 | 636 |
return reached(t); |
| 632 | 637 |
} |
| 633 | 638 |
|
| 634 | 639 |
///Runs the algorithm to visit all nodes in the digraph. |
| 635 | 640 |
|
| 636 | 641 |
///This method runs the %DFS algorithm in order to visit all nodes |
| 637 | 642 |
///in the digraph. |
| 638 | 643 |
/// |
| 639 | 644 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 640 | 645 |
///\code |
| 641 | 646 |
/// d.init(); |
| 642 | 647 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 643 | 648 |
/// if (!d.reached(n)) {
|
| 644 | 649 |
/// d.addSource(n); |
| 645 | 650 |
/// d.start(); |
| 646 | 651 |
/// } |
| 647 | 652 |
/// } |
| 648 | 653 |
///\endcode |
| 649 | 654 |
void run() {
|
| 650 | 655 |
init(); |
| 651 | 656 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 652 | 657 |
if (!reached(it)) {
|
| 653 | 658 |
addSource(it); |
| 654 | 659 |
start(); |
| 655 | 660 |
} |
| 656 | 661 |
} |
| 657 | 662 |
} |
| 658 | 663 |
|
| 659 | 664 |
///@} |
| 660 | 665 |
|
| 661 | 666 |
///\name Query Functions |
| 662 | 667 |
///The results of the DFS algorithm can be obtained using these |
| 663 | 668 |
///functions.\n |
| 664 | 669 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 665 | 670 |
///before using them. |
| 666 | 671 |
|
| 667 | 672 |
///@{
|
| 668 | 673 |
|
| 669 | 674 |
///The DFS path to the given node. |
| 670 | 675 |
|
| 671 | 676 |
///Returns the DFS path to the given node from the root(s). |
| 672 | 677 |
/// |
| 673 | 678 |
///\warning \c t should be reached from the root(s). |
| 674 | 679 |
/// |
| 675 | 680 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 676 | 681 |
///must be called before using this function. |
| 677 | 682 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 678 | 683 |
|
| 679 | 684 |
///The distance of the given node from the root(s). |
| 680 | 685 |
|
| 681 | 686 |
///Returns the distance of the given node from the root(s). |
| 682 | 687 |
/// |
| 683 | 688 |
///\warning If node \c v is not reached from the root(s), then |
| 684 | 689 |
///the return value of this function is undefined. |
| 685 | 690 |
/// |
| 686 | 691 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 687 | 692 |
///must be called before using this function. |
| 688 | 693 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 689 | 694 |
|
| 690 | 695 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
| 691 | 696 |
|
| 692 | 697 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 693 | 698 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 694 | 699 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 695 | 700 |
///root(s) or if \c v is a root. |
| 696 | 701 |
/// |
| 697 | 702 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 698 | 703 |
///\ref predNode() and \ref predMap(). |
| 699 | 704 |
/// |
| 700 | 705 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 701 | 706 |
///must be called before using this function. |
| 702 | 707 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 703 | 708 |
|
| 704 | 709 |
///Returns the 'previous node' of the %DFS tree for the given node. |
| 705 | 710 |
|
| 706 | 711 |
///This function returns the 'previous node' of the %DFS |
| 707 | 712 |
///tree for the node \c v, i.e. it returns the last but one node |
| 708 | 713 |
///of a %DFS path from a root to \c v. It is \c INVALID |
| 709 | 714 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 710 | 715 |
/// |
| 711 | 716 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 712 | 717 |
///\ref predArc() and \ref predMap(). |
| 713 | 718 |
/// |
| 714 | 719 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 715 | 720 |
///must be called before using this function. |
| 716 | 721 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 717 | 722 |
G->source((*_pred)[v]); } |
| 718 | 723 |
|
| 719 | 724 |
///\brief Returns a const reference to the node map that stores the |
| 720 | 725 |
///distances of the nodes. |
| 721 | 726 |
/// |
| 722 | 727 |
///Returns a const reference to the node map that stores the |
| 723 | 728 |
///distances of the nodes calculated by the algorithm. |
| 724 | 729 |
/// |
| 725 | 730 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 726 | 731 |
///must be called before using this function. |
| 727 | 732 |
const DistMap &distMap() const { return *_dist;}
|
| 728 | 733 |
|
| 729 | 734 |
///\brief Returns a const reference to the node map that stores the |
| 730 | 735 |
///predecessor arcs. |
| 731 | 736 |
/// |
| 732 | 737 |
///Returns a const reference to the node map that stores the predecessor |
| 733 | 738 |
///arcs, which form the DFS tree (forest). |
| 734 | 739 |
/// |
| 735 | 740 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 736 | 741 |
///must be called before using this function. |
| 737 | 742 |
const PredMap &predMap() const { return *_pred;}
|
| 738 | 743 |
|
| 739 | 744 |
///Checks if the given node. node is reached from the root(s). |
| 740 | 745 |
|
| 741 | 746 |
///Returns \c true if \c v is reached from the root(s). |
| 742 | 747 |
/// |
| 743 | 748 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 744 | 749 |
///must be called before using this function. |
| 745 | 750 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 746 | 751 |
|
| 747 | 752 |
///@} |
| 748 | 753 |
}; |
| 749 | 754 |
|
| 750 | 755 |
///Default traits class of dfs() function. |
| 751 | 756 |
|
| 752 | 757 |
///Default traits class of dfs() function. |
| 753 | 758 |
///\tparam GR Digraph type. |
| 754 | 759 |
template<class GR> |
| 755 | 760 |
struct DfsWizardDefaultTraits |
| 756 | 761 |
{
|
| 757 | 762 |
///The type of the digraph the algorithm runs on. |
| 758 | 763 |
typedef GR Digraph; |
| 759 | 764 |
|
| 760 | 765 |
///\brief The type of the map that stores the predecessor |
| 761 | 766 |
///arcs of the %DFS paths. |
| 762 | 767 |
/// |
| 763 | 768 |
///The type of the map that stores the predecessor |
| 764 | 769 |
///arcs of the %DFS paths. |
| 765 | 770 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 766 | 771 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 767 | 772 |
///Instantiates a PredMap. |
| 768 | 773 |
|
| 769 | 774 |
///This function instantiates a PredMap. |
| 770 | 775 |
///\param g is the digraph, to which we would like to define the |
| 771 | 776 |
///PredMap. |
| 772 | 777 |
static PredMap *createPredMap(const Digraph &g) |
| 773 | 778 |
{
|
| 774 | 779 |
return new PredMap(g); |
| 775 | 780 |
} |
| 776 | 781 |
|
| 777 | 782 |
///The type of the map that indicates which nodes are processed. |
| 778 | 783 |
|
| 779 | 784 |
///The type of the map that indicates which nodes are processed. |
| 780 | 785 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 781 | 786 |
///By default, it is a NullMap. |
| 782 | 787 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 783 | 788 |
///Instantiates a ProcessedMap. |
| 784 | 789 |
|
| 785 | 790 |
///This function instantiates a ProcessedMap. |
| 786 | 791 |
///\param g is the digraph, to which |
| 787 | 792 |
///we would like to define the ProcessedMap. |
| 788 | 793 |
#ifdef DOXYGEN |
| 789 | 794 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 790 | 795 |
#else |
| 791 | 796 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 792 | 797 |
#endif |
| 793 | 798 |
{
|
| 794 | 799 |
return new ProcessedMap(); |
| 795 | 800 |
} |
| 796 | 801 |
|
| 797 | 802 |
///The type of the map that indicates which nodes are reached. |
| 798 | 803 |
|
| 799 | 804 |
///The type of the map that indicates which nodes are reached. |
| 800 | 805 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 801 | 806 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 802 | 807 |
///Instantiates a ReachedMap. |
| 803 | 808 |
|
| 804 | 809 |
///This function instantiates a ReachedMap. |
| 805 | 810 |
///\param g is the digraph, to which |
| 806 | 811 |
///we would like to define the ReachedMap. |
| 807 | 812 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 808 | 813 |
{
|
| 809 | 814 |
return new ReachedMap(g); |
| 810 | 815 |
} |
| 811 | 816 |
|
| 812 | 817 |
///The type of the map that stores the distances of the nodes. |
| 813 | 818 |
|
| 814 | 819 |
///The type of the map that stores the distances of the nodes. |
| 815 | 820 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 816 | 821 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 817 | 822 |
///Instantiates a DistMap. |
| 818 | 823 |
|
| 819 | 824 |
///This function instantiates a DistMap. |
| 820 | 825 |
///\param g is the digraph, to which we would like to define |
| 821 | 826 |
///the DistMap |
| 822 | 827 |
static DistMap *createDistMap(const Digraph &g) |
| 823 | 828 |
{
|
| 824 | 829 |
return new DistMap(g); |
| 825 | 830 |
} |
| 826 | 831 |
|
| 827 | 832 |
///The type of the DFS paths. |
| 828 | 833 |
|
| 829 | 834 |
///The type of the DFS paths. |
| 830 | 835 |
///It must conform to the \ref concepts::Path "Path" concept. |
| 831 | 836 |
typedef lemon::Path<Digraph> Path; |
| 832 | 837 |
}; |
| 833 | 838 |
|
| 834 | 839 |
/// Default traits class used by DfsWizard |
| 835 | 840 |
|
| 836 | 841 |
/// Default traits class used by DfsWizard. |
| 837 | 842 |
/// \tparam GR The type of the digraph. |
| 838 | 843 |
template<class GR> |
| 839 | 844 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 840 | 845 |
{
|
| 841 | 846 |
|
| 842 | 847 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 843 | 848 |
protected: |
| 844 | 849 |
//The type of the nodes in the digraph. |
| 845 | 850 |
typedef typename Base::Digraph::Node Node; |
| 846 | 851 |
|
| 847 | 852 |
//Pointer to the digraph the algorithm runs on. |
| 848 | 853 |
void *_g; |
| 849 | 854 |
//Pointer to the map of reached nodes. |
| 850 | 855 |
void *_reached; |
| 851 | 856 |
//Pointer to the map of processed nodes. |
| 852 | 857 |
void *_processed; |
| 853 | 858 |
//Pointer to the map of predecessors arcs. |
| 854 | 859 |
void *_pred; |
| 855 | 860 |
//Pointer to the map of distances. |
| 856 | 861 |
void *_dist; |
| 857 | 862 |
//Pointer to the DFS path to the target node. |
| 858 | 863 |
void *_path; |
| 859 | 864 |
//Pointer to the distance of the target node. |
| 860 | 865 |
int *_di; |
| 861 | 866 |
|
| 862 | 867 |
public: |
| 863 | 868 |
/// Constructor. |
| 864 | 869 |
|
| 865 | 870 |
/// This constructor does not require parameters, it initiates |
| 866 | 871 |
/// all of the attributes to \c 0. |
| 867 | 872 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 868 | 873 |
_dist(0), _path(0), _di(0) {}
|
| 869 | 874 |
|
| 870 | 875 |
/// Constructor. |
| 871 | 876 |
|
| 872 | 877 |
/// This constructor requires one parameter, |
| 873 | 878 |
/// others are initiated to \c 0. |
| 874 | 879 |
/// \param g The digraph the algorithm runs on. |
| 875 | 880 |
DfsWizardBase(const GR &g) : |
| 876 | 881 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 877 | 882 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 878 | 883 |
|
| 879 | 884 |
}; |
| 880 | 885 |
|
| 881 | 886 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 882 | 887 |
|
| 883 | 888 |
/// This auxiliary class is created to implement the |
| 884 | 889 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 885 | 890 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 886 | 891 |
/// functions and features of the plain \ref Dfs. |
| 887 | 892 |
/// |
| 888 | 893 |
/// This class should only be used through the \ref dfs() function, |
| 889 | 894 |
/// which makes it easier to use the algorithm. |
| 895 |
/// |
|
| 896 |
/// \tparam TR The traits class that defines various types used by the |
|
| 897 |
/// algorithm. |
|
| 890 | 898 |
template<class TR> |
| 891 | 899 |
class DfsWizard : public TR |
| 892 | 900 |
{
|
| 893 | 901 |
typedef TR Base; |
| 894 | 902 |
|
| 895 | 903 |
typedef typename TR::Digraph Digraph; |
| 896 | 904 |
|
| 897 | 905 |
typedef typename Digraph::Node Node; |
| 898 | 906 |
typedef typename Digraph::NodeIt NodeIt; |
| 899 | 907 |
typedef typename Digraph::Arc Arc; |
| 900 | 908 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 901 | 909 |
|
| 902 | 910 |
typedef typename TR::PredMap PredMap; |
| 903 | 911 |
typedef typename TR::DistMap DistMap; |
| 904 | 912 |
typedef typename TR::ReachedMap ReachedMap; |
| 905 | 913 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 906 | 914 |
typedef typename TR::Path Path; |
| 907 | 915 |
|
| 908 | 916 |
public: |
| 909 | 917 |
|
| 910 | 918 |
/// Constructor. |
| 911 | 919 |
DfsWizard() : TR() {}
|
| 912 | 920 |
|
| 913 | 921 |
/// Constructor that requires parameters. |
| 914 | 922 |
|
| 915 | 923 |
/// Constructor that requires parameters. |
| 916 | 924 |
/// These parameters will be the default values for the traits class. |
| 917 | 925 |
/// \param g The digraph the algorithm runs on. |
| 918 | 926 |
DfsWizard(const Digraph &g) : |
| 919 | 927 |
TR(g) {}
|
| 920 | 928 |
|
| 921 | 929 |
///Copy constructor |
| 922 | 930 |
DfsWizard(const TR &b) : TR(b) {}
|
| 923 | 931 |
|
| 924 | 932 |
~DfsWizard() {}
|
| 925 | 933 |
|
| 926 | 934 |
///Runs DFS algorithm from the given source node. |
| 927 | 935 |
|
| 928 | 936 |
///This method runs DFS algorithm from node \c s |
| 929 | 937 |
///in order to compute the DFS path to each node. |
| 930 | 938 |
void run(Node s) |
| 931 | 939 |
{
|
| 932 | 940 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 933 | 941 |
if (Base::_pred) |
| 934 | 942 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 935 | 943 |
if (Base::_dist) |
| 936 | 944 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 937 | 945 |
if (Base::_reached) |
| 938 | 946 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 939 | 947 |
if (Base::_processed) |
| 940 | 948 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 941 | 949 |
if (s!=INVALID) |
| 942 | 950 |
alg.run(s); |
| 943 | 951 |
else |
| 944 | 952 |
alg.run(); |
| 945 | 953 |
} |
| 946 | 954 |
|
| 947 | 955 |
///Finds the DFS path between \c s and \c t. |
| 948 | 956 |
|
| 949 | 957 |
///This method runs DFS algorithm from node \c s |
| 950 | 958 |
///in order to compute the DFS path to node \c t |
| 951 | 959 |
///(it stops searching when \c t is processed). |
| 952 | 960 |
/// |
| 953 | 961 |
///\return \c true if \c t is reachable form \c s. |
| 954 | 962 |
bool run(Node s, Node t) |
| 955 | 963 |
{
|
| 956 | 964 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 957 | 965 |
if (Base::_pred) |
| 958 | 966 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 959 | 967 |
if (Base::_dist) |
| 960 | 968 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 961 | 969 |
if (Base::_reached) |
| 962 | 970 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 963 | 971 |
if (Base::_processed) |
| 964 | 972 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 965 | 973 |
alg.run(s,t); |
| 966 | 974 |
if (Base::_path) |
| 967 | 975 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 968 | 976 |
if (Base::_di) |
| 969 | 977 |
*Base::_di = alg.dist(t); |
| 970 | 978 |
return alg.reached(t); |
| 971 | 979 |
} |
| 972 | 980 |
|
| 973 | 981 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 974 | 982 |
|
| 975 | 983 |
///This method runs DFS algorithm in order to visit all nodes |
| 976 | 984 |
///in the digraph. |
| 977 | 985 |
void run() |
| 978 | 986 |
{
|
| 979 | 987 |
run(INVALID); |
| 980 | 988 |
} |
| 981 | 989 |
|
| 982 | 990 |
template<class T> |
| 983 | 991 |
struct SetPredMapBase : public Base {
|
| 984 | 992 |
typedef T PredMap; |
| 985 | 993 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 986 | 994 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 987 | 995 |
}; |
| 988 | 996 |
|
| 989 | 997 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 990 | 998 |
///the predecessor map. |
| 991 | 999 |
/// |
| 992 | 1000 |
///\ref named-templ-param "Named parameter" function for setting |
| 993 | 1001 |
///the map that stores the predecessor arcs of the nodes. |
| 994 | 1002 |
template<class T> |
| 995 | 1003 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 996 | 1004 |
{
|
| 997 | 1005 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 998 | 1006 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 999 | 1007 |
} |
| 1000 | 1008 |
|
| 1001 | 1009 |
template<class T> |
| 1002 | 1010 |
struct SetReachedMapBase : public Base {
|
| 1003 | 1011 |
typedef T ReachedMap; |
| 1004 | 1012 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1005 | 1013 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1006 | 1014 |
}; |
| 1007 | 1015 |
|
| 1008 | 1016 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1009 | 1017 |
///the reached map. |
| 1010 | 1018 |
/// |
| 1011 | 1019 |
///\ref named-templ-param "Named parameter" function for setting |
| 1012 | 1020 |
///the map that indicates which nodes are reached. |
| 1013 | 1021 |
template<class T> |
| 1014 | 1022 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1015 | 1023 |
{
|
| 1016 | 1024 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1017 | 1025 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1018 | 1026 |
} |
| 1019 | 1027 |
|
| 1020 | 1028 |
template<class T> |
| 1021 | 1029 |
struct SetDistMapBase : public Base {
|
| 1022 | 1030 |
typedef T DistMap; |
| 1023 | 1031 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1024 | 1032 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1025 | 1033 |
}; |
| 1026 | 1034 |
|
| 1027 | 1035 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1028 | 1036 |
///the distance map. |
| 1029 | 1037 |
/// |
| 1030 | 1038 |
///\ref named-templ-param "Named parameter" function for setting |
| 1031 | 1039 |
///the map that stores the distances of the nodes calculated |
| 1032 | 1040 |
///by the algorithm. |
| 1033 | 1041 |
template<class T> |
| 1034 | 1042 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1035 | 1043 |
{
|
| 1036 | 1044 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1037 | 1045 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1038 | 1046 |
} |
| 1039 | 1047 |
|
| 1040 | 1048 |
template<class T> |
| 1041 | 1049 |
struct SetProcessedMapBase : public Base {
|
| 1042 | 1050 |
typedef T ProcessedMap; |
| 1043 | 1051 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1044 | 1052 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1045 | 1053 |
}; |
| 1046 | 1054 |
|
| 1047 | 1055 |
///\brief \ref named-func-param "Named parameter" for setting |
| 1048 | 1056 |
///the processed map. |
| 1049 | 1057 |
/// |
| 1050 | 1058 |
///\ref named-templ-param "Named parameter" function for setting |
| 1051 | 1059 |
///the map that indicates which nodes are processed. |
| 1052 | 1060 |
template<class T> |
| 1053 | 1061 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1054 | 1062 |
{
|
| 1055 | 1063 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1056 | 1064 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1057 | 1065 |
} |
| 1058 | 1066 |
|
| 1059 | 1067 |
template<class T> |
| 1060 | 1068 |
struct SetPathBase : public Base {
|
| 1061 | 1069 |
typedef T Path; |
| 1062 | 1070 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1063 | 1071 |
}; |
| 1064 | 1072 |
///\brief \ref named-func-param "Named parameter" |
| 1065 | 1073 |
///for getting the DFS path to the target node. |
| 1066 | 1074 |
/// |
| 1067 | 1075 |
///\ref named-func-param "Named parameter" |
| 1068 | 1076 |
///for getting the DFS path to the target node. |
| 1069 | 1077 |
template<class T> |
| 1070 | 1078 |
DfsWizard<SetPathBase<T> > path(const T &t) |
| 1071 | 1079 |
{
|
| 1072 | 1080 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1073 | 1081 |
return DfsWizard<SetPathBase<T> >(*this); |
| 1074 | 1082 |
} |
| 1075 | 1083 |
|
| 1076 | 1084 |
///\brief \ref named-func-param "Named parameter" |
| 1077 | 1085 |
///for getting the distance of the target node. |
| 1078 | 1086 |
/// |
| 1079 | 1087 |
///\ref named-func-param "Named parameter" |
| 1080 | 1088 |
///for getting the distance of the target node. |
| 1081 | 1089 |
DfsWizard dist(const int &d) |
| 1082 | 1090 |
{
|
| 1083 | 1091 |
Base::_di=const_cast<int*>(&d); |
| 1084 | 1092 |
return *this; |
| 1085 | 1093 |
} |
| 1086 | 1094 |
|
| 1087 | 1095 |
}; |
| 1088 | 1096 |
|
| 1089 | 1097 |
///Function-type interface for DFS algorithm. |
| 1090 | 1098 |
|
| 1091 | 1099 |
///\ingroup search |
| 1092 | 1100 |
///Function-type interface for DFS algorithm. |
| 1093 | 1101 |
/// |
| 1094 | 1102 |
///This function also has several \ref named-func-param "named parameters", |
| 1095 | 1103 |
///they are declared as the members of class \ref DfsWizard. |
| 1096 | 1104 |
///The following examples show how to use these parameters. |
| 1097 | 1105 |
///\code |
| 1098 | 1106 |
/// // Compute the DFS tree |
| 1099 | 1107 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
| 1100 | 1108 |
/// |
| 1101 | 1109 |
/// // Compute the DFS path from s to t |
| 1102 | 1110 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
| 1103 | 1111 |
///\endcode |
| 1104 | 1112 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
| 1105 | 1113 |
///to the end of the parameter list. |
| 1106 | 1114 |
///\sa DfsWizard |
| 1107 | 1115 |
///\sa Dfs |
| 1108 | 1116 |
template<class GR> |
| 1109 | 1117 |
DfsWizard<DfsWizardBase<GR> > |
| 1110 | 1118 |
dfs(const GR &digraph) |
| 1111 | 1119 |
{
|
| 1112 | 1120 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
| 1113 | 1121 |
} |
| 1114 | 1122 |
|
| 1115 | 1123 |
#ifdef DOXYGEN |
| 1116 | 1124 |
/// \brief Visitor class for DFS. |
| 1117 | 1125 |
/// |
| 1118 | 1126 |
/// This class defines the interface of the DfsVisit events, and |
| 1119 | 1127 |
/// it could be the base of a real visitor class. |
| 1120 | 1128 |
template <typename GR> |
| 1121 | 1129 |
struct DfsVisitor {
|
| 1122 | 1130 |
typedef GR Digraph; |
| 1123 | 1131 |
typedef typename Digraph::Arc Arc; |
| 1124 | 1132 |
typedef typename Digraph::Node Node; |
| 1125 | 1133 |
/// \brief Called for the source node of the DFS. |
| 1126 | 1134 |
/// |
| 1127 | 1135 |
/// This function is called for the source node of the DFS. |
| 1128 | 1136 |
void start(const Node& node) {}
|
| 1129 | 1137 |
/// \brief Called when the source node is leaved. |
| 1130 | 1138 |
/// |
| 1131 | 1139 |
/// This function is called when the source node is leaved. |
| 1132 | 1140 |
void stop(const Node& node) {}
|
| 1133 | 1141 |
/// \brief Called when a node is reached first time. |
| 1134 | 1142 |
/// |
| 1135 | 1143 |
/// This function is called when a node is reached first time. |
| 1136 | 1144 |
void reach(const Node& node) {}
|
| 1137 | 1145 |
/// \brief Called when an arc reaches a new node. |
| 1138 | 1146 |
/// |
| 1139 | 1147 |
/// This function is called when the DFS finds an arc whose target node |
| 1140 | 1148 |
/// is not reached yet. |
| 1141 | 1149 |
void discover(const Arc& arc) {}
|
| 1142 | 1150 |
/// \brief Called when an arc is examined but its target node is |
| 1143 | 1151 |
/// already discovered. |
| 1144 | 1152 |
/// |
| 1145 | 1153 |
/// This function is called when an arc is examined but its target node is |
| 1146 | 1154 |
/// already discovered. |
| 1147 | 1155 |
void examine(const Arc& arc) {}
|
| 1148 | 1156 |
/// \brief Called when the DFS steps back from a node. |
| 1149 | 1157 |
/// |
| 1150 | 1158 |
/// This function is called when the DFS steps back from a node. |
| 1151 | 1159 |
void leave(const Node& node) {}
|
| 1152 | 1160 |
/// \brief Called when the DFS steps back on an arc. |
| 1153 | 1161 |
/// |
| 1154 | 1162 |
/// This function is called when the DFS steps back on an arc. |
| 1155 | 1163 |
void backtrack(const Arc& arc) {}
|
| 1156 | 1164 |
}; |
| 1157 | 1165 |
#else |
| 1158 | 1166 |
template <typename GR> |
| 1159 | 1167 |
struct DfsVisitor {
|
| 1160 | 1168 |
typedef GR Digraph; |
| 1161 | 1169 |
typedef typename Digraph::Arc Arc; |
| 1162 | 1170 |
typedef typename Digraph::Node Node; |
| 1163 | 1171 |
void start(const Node&) {}
|
| 1164 | 1172 |
void stop(const Node&) {}
|
| 1165 | 1173 |
void reach(const Node&) {}
|
| 1166 | 1174 |
void discover(const Arc&) {}
|
| 1167 | 1175 |
void examine(const Arc&) {}
|
| 1168 | 1176 |
void leave(const Node&) {}
|
| 1169 | 1177 |
void backtrack(const Arc&) {}
|
| 1170 | 1178 |
|
| 1171 | 1179 |
template <typename _Visitor> |
| 1172 | 1180 |
struct Constraints {
|
| 1173 | 1181 |
void constraints() {
|
| 1174 | 1182 |
Arc arc; |
| 1175 | 1183 |
Node node; |
| 1176 | 1184 |
visitor.start(node); |
| 1177 | 1185 |
visitor.stop(arc); |
| 1178 | 1186 |
visitor.reach(node); |
| 1179 | 1187 |
visitor.discover(arc); |
| 1180 | 1188 |
visitor.examine(arc); |
| 1181 | 1189 |
visitor.leave(node); |
| 1182 | 1190 |
visitor.backtrack(arc); |
| 1183 | 1191 |
} |
| 1184 | 1192 |
_Visitor& visitor; |
| 1185 | 1193 |
}; |
| 1186 | 1194 |
}; |
| 1187 | 1195 |
#endif |
| 1188 | 1196 |
|
| 1189 | 1197 |
/// \brief Default traits class of DfsVisit class. |
| 1190 | 1198 |
/// |
| 1191 | 1199 |
/// Default traits class of DfsVisit class. |
| 1192 | 1200 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1193 | 1201 |
template<class GR> |
| 1194 | 1202 |
struct DfsVisitDefaultTraits {
|
| 1195 | 1203 |
|
| 1196 | 1204 |
/// \brief The type of the digraph the algorithm runs on. |
| 1197 | 1205 |
typedef GR Digraph; |
| 1198 | 1206 |
|
| 1199 | 1207 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1200 | 1208 |
/// |
| 1201 | 1209 |
/// The type of the map that indicates which nodes are reached. |
| 1202 | 1210 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1203 | 1211 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1204 | 1212 |
|
| 1205 | 1213 |
/// \brief Instantiates a ReachedMap. |
| 1206 | 1214 |
/// |
| 1207 | 1215 |
/// This function instantiates a ReachedMap. |
| 1208 | 1216 |
/// \param digraph is the digraph, to which |
| 1209 | 1217 |
/// we would like to define the ReachedMap. |
| 1210 | 1218 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1211 | 1219 |
return new ReachedMap(digraph); |
| 1212 | 1220 |
} |
| 1213 | 1221 |
|
| 1214 | 1222 |
}; |
| 1215 | 1223 |
|
| 1216 | 1224 |
/// \ingroup search |
| 1217 | 1225 |
/// |
| 1218 | 1226 |
/// \brief DFS algorithm class with visitor interface. |
| 1219 | 1227 |
/// |
| 1220 | 1228 |
/// This class provides an efficient implementation of the DFS algorithm |
| 1221 | 1229 |
/// with visitor interface. |
| 1222 | 1230 |
/// |
| 1223 | 1231 |
/// The DfsVisit class provides an alternative interface to the Dfs |
| 1224 | 1232 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1225 | 1233 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1226 | 1234 |
/// |
| 1227 | 1235 |
/// This interface of the DFS algorithm should be used in special cases |
| 1228 | 1236 |
/// when extra actions have to be performed in connection with certain |
| 1229 | 1237 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1230 | 1238 |
/// instead. |
| 1231 | 1239 |
/// |
| 1232 | 1240 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1233 | 1241 |
/// The default type is \ref ListDigraph. |
| 1234 | 1242 |
/// The value of GR is not used directly by \ref DfsVisit, |
| 1235 | 1243 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
| 1236 | 1244 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1237 | 1245 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
| 1238 | 1246 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1239 | 1247 |
/// events, you should implement your own visitor class. |
| 1240 |
/// \tparam TR Traits class to set various data types used by the |
|
| 1241 |
/// algorithm. The default traits class is |
|
| 1242 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
|
| 1243 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
|
| 1244 |
/// |
|
| 1248 |
/// \tparam TR The traits class that defines various types used by the |
|
| 1249 |
/// algorithm. By default, it is \ref DfsVisitDefaultTraits |
|
| 1250 |
/// "DfsVisitDefaultTraits<GR>". |
|
| 1251 |
/// In most cases, this parameter should not be set directly, |
|
| 1252 |
/// consider to use the named template parameters instead. |
|
| 1245 | 1253 |
#ifdef DOXYGEN |
| 1246 | 1254 |
template <typename GR, typename VS, typename TR> |
| 1247 | 1255 |
#else |
| 1248 | 1256 |
template <typename GR = ListDigraph, |
| 1249 | 1257 |
typename VS = DfsVisitor<GR>, |
| 1250 | 1258 |
typename TR = DfsVisitDefaultTraits<GR> > |
| 1251 | 1259 |
#endif |
| 1252 | 1260 |
class DfsVisit {
|
| 1253 | 1261 |
public: |
| 1254 | 1262 |
|
| 1255 | 1263 |
///The traits class. |
| 1256 | 1264 |
typedef TR Traits; |
| 1257 | 1265 |
|
| 1258 | 1266 |
///The type of the digraph the algorithm runs on. |
| 1259 | 1267 |
typedef typename Traits::Digraph Digraph; |
| 1260 | 1268 |
|
| 1261 | 1269 |
///The visitor type used by the algorithm. |
| 1262 | 1270 |
typedef VS Visitor; |
| 1263 | 1271 |
|
| 1264 | 1272 |
///The type of the map that indicates which nodes are reached. |
| 1265 | 1273 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1266 | 1274 |
|
| 1267 | 1275 |
private: |
| 1268 | 1276 |
|
| 1269 | 1277 |
typedef typename Digraph::Node Node; |
| 1270 | 1278 |
typedef typename Digraph::NodeIt NodeIt; |
| 1271 | 1279 |
typedef typename Digraph::Arc Arc; |
| 1272 | 1280 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1273 | 1281 |
|
| 1274 | 1282 |
//Pointer to the underlying digraph. |
| 1275 | 1283 |
const Digraph *_digraph; |
| 1276 | 1284 |
//Pointer to the visitor object. |
| 1277 | 1285 |
Visitor *_visitor; |
| 1278 | 1286 |
//Pointer to the map of reached status of the nodes. |
| 1279 | 1287 |
ReachedMap *_reached; |
| 1280 | 1288 |
//Indicates if _reached is locally allocated (true) or not. |
| 1281 | 1289 |
bool local_reached; |
| 1282 | 1290 |
|
| 1283 | 1291 |
std::vector<typename Digraph::Arc> _stack; |
| 1284 | 1292 |
int _stack_head; |
| 1285 | 1293 |
|
| 1286 | 1294 |
//Creates the maps if necessary. |
| 1287 | 1295 |
void create_maps() {
|
| 1288 | 1296 |
if(!_reached) {
|
| 1289 | 1297 |
local_reached = true; |
| 1290 | 1298 |
_reached = Traits::createReachedMap(*_digraph); |
| 1291 | 1299 |
} |
| 1292 | 1300 |
} |
| 1293 | 1301 |
|
| 1294 | 1302 |
protected: |
| 1295 | 1303 |
|
| 1296 | 1304 |
DfsVisit() {}
|
| 1297 | 1305 |
|
| 1298 | 1306 |
public: |
| 1299 | 1307 |
|
| 1300 | 1308 |
typedef DfsVisit Create; |
| 1301 | 1309 |
|
| 1302 | 1310 |
/// \name Named Template Parameters |
| 1303 | 1311 |
|
| 1304 | 1312 |
///@{
|
| 1305 | 1313 |
template <class T> |
| 1306 | 1314 |
struct SetReachedMapTraits : public Traits {
|
| 1307 | 1315 |
typedef T ReachedMap; |
| 1308 | 1316 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1309 | 1317 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1310 | 1318 |
return 0; // ignore warnings |
| 1311 | 1319 |
} |
| 1312 | 1320 |
}; |
| 1313 | 1321 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1314 | 1322 |
/// ReachedMap type. |
| 1315 | 1323 |
/// |
| 1316 | 1324 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1317 | 1325 |
template <class T> |
| 1318 | 1326 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1319 | 1327 |
SetReachedMapTraits<T> > {
|
| 1320 | 1328 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1321 | 1329 |
}; |
| 1322 | 1330 |
///@} |
| 1323 | 1331 |
|
| 1324 | 1332 |
public: |
| 1325 | 1333 |
|
| 1326 | 1334 |
/// \brief Constructor. |
| 1327 | 1335 |
/// |
| 1328 | 1336 |
/// Constructor. |
| 1329 | 1337 |
/// |
| 1330 | 1338 |
/// \param digraph The digraph the algorithm runs on. |
| 1331 | 1339 |
/// \param visitor The visitor object of the algorithm. |
| 1332 | 1340 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1333 | 1341 |
: _digraph(&digraph), _visitor(&visitor), |
| 1334 | 1342 |
_reached(0), local_reached(false) {}
|
| 1335 | 1343 |
|
| 1336 | 1344 |
/// \brief Destructor. |
| 1337 | 1345 |
~DfsVisit() {
|
| 1338 | 1346 |
if(local_reached) delete _reached; |
| 1339 | 1347 |
} |
| 1340 | 1348 |
|
| 1341 | 1349 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1342 | 1350 |
/// |
| 1343 | 1351 |
/// Sets the map that indicates which nodes are reached. |
| 1344 | 1352 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1345 | 1353 |
/// or \ref init(), an instance will be allocated automatically. |
| 1346 | 1354 |
/// The destructor deallocates this automatically allocated map, |
| 1347 | 1355 |
/// of course. |
| 1348 | 1356 |
/// \return <tt> (*this) </tt> |
| 1349 | 1357 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1350 | 1358 |
if(local_reached) {
|
| 1351 | 1359 |
delete _reached; |
| 1352 | 1360 |
local_reached=false; |
| 1353 | 1361 |
} |
| 1354 | 1362 |
_reached = &m; |
| 1355 | 1363 |
return *this; |
| 1356 | 1364 |
} |
| 1357 | 1365 |
|
| 1358 | 1366 |
public: |
| 1359 | 1367 |
|
| 1360 | 1368 |
/// \name Execution Control |
| 1361 | 1369 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1362 | 1370 |
/// member functions called \ref run(Node) "run()".\n |
| 1363 | 1371 |
/// If you need better control on the execution, you have to call |
| 1364 | 1372 |
/// \ref init() first, then you can add a source node with \ref addSource() |
| 1365 | 1373 |
/// and perform the actual computation with \ref start(). |
| 1366 | 1374 |
/// This procedure can be repeated if there are nodes that have not |
| 1367 | 1375 |
/// been reached. |
| 1368 | 1376 |
|
| 1369 | 1377 |
/// @{
|
| 1370 | 1378 |
|
| 1371 | 1379 |
/// \brief Initializes the internal data structures. |
| 1372 | 1380 |
/// |
| 1373 | 1381 |
/// Initializes the internal data structures. |
| 1374 | 1382 |
void init() {
|
| 1375 | 1383 |
create_maps(); |
| 1376 | 1384 |
_stack.resize(countNodes(*_digraph)); |
| 1377 | 1385 |
_stack_head = -1; |
| 1378 | 1386 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1379 | 1387 |
_reached->set(u, false); |
| 1380 | 1388 |
} |
| 1381 | 1389 |
} |
| 1382 | 1390 |
|
| 1383 | 1391 |
/// \brief Adds a new source node. |
| 1384 | 1392 |
/// |
| 1385 | 1393 |
/// Adds a new source node to the set of nodes to be processed. |
| 1386 | 1394 |
/// |
| 1387 | 1395 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
| 1388 | 1396 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
| 1389 | 1397 |
/// except for the last one will not be visited and distances will |
| 1390 | 1398 |
/// also be wrong.) |
| 1391 | 1399 |
void addSource(Node s) |
| 1392 | 1400 |
{
|
| 1393 | 1401 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1394 | 1402 |
if(!(*_reached)[s]) {
|
| 1395 | 1403 |
_reached->set(s,true); |
| 1396 | 1404 |
_visitor->start(s); |
| 1397 | 1405 |
_visitor->reach(s); |
| 1398 | 1406 |
Arc e; |
| 1399 | 1407 |
_digraph->firstOut(e, s); |
| 1400 | 1408 |
if (e != INVALID) {
|
| 1401 | 1409 |
_stack[++_stack_head] = e; |
| 1402 | 1410 |
} else {
|
| 1403 | 1411 |
_visitor->leave(s); |
| 1404 | 1412 |
_visitor->stop(s); |
| 1405 | 1413 |
} |
| 1406 | 1414 |
} |
| 1407 | 1415 |
} |
| 1408 | 1416 |
|
| 1409 | 1417 |
/// \brief Processes the next arc. |
| 1410 | 1418 |
/// |
| 1411 | 1419 |
/// Processes the next arc. |
| 1412 | 1420 |
/// |
| 1413 | 1421 |
/// \return The processed arc. |
| 1414 | 1422 |
/// |
| 1415 | 1423 |
/// \pre The stack must not be empty. |
| 1416 | 1424 |
Arc processNextArc() {
|
| 1417 | 1425 |
Arc e = _stack[_stack_head]; |
| 1418 | 1426 |
Node m = _digraph->target(e); |
| 1419 | 1427 |
if(!(*_reached)[m]) {
|
| 1420 | 1428 |
_visitor->discover(e); |
| 1421 | 1429 |
_visitor->reach(m); |
| 1422 | 1430 |
_reached->set(m, true); |
| 1423 | 1431 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1424 | 1432 |
} else {
|
| 1425 | 1433 |
_visitor->examine(e); |
| 1426 | 1434 |
m = _digraph->source(e); |
| 1427 | 1435 |
_digraph->nextOut(_stack[_stack_head]); |
| 1428 | 1436 |
} |
| 1429 | 1437 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1430 | 1438 |
_visitor->leave(m); |
| 1431 | 1439 |
--_stack_head; |
| 1432 | 1440 |
if (_stack_head >= 0) {
|
| 1433 | 1441 |
_visitor->backtrack(_stack[_stack_head]); |
| 1434 | 1442 |
m = _digraph->source(_stack[_stack_head]); |
| 1435 | 1443 |
_digraph->nextOut(_stack[_stack_head]); |
| 1436 | 1444 |
} else {
|
| 1437 | 1445 |
_visitor->stop(m); |
| 1438 | 1446 |
} |
| 1439 | 1447 |
} |
| 1440 | 1448 |
return e; |
| 1441 | 1449 |
} |
| 1442 | 1450 |
|
| 1443 | 1451 |
/// \brief Next arc to be processed. |
| 1444 | 1452 |
/// |
| 1445 | 1453 |
/// Next arc to be processed. |
| 1446 | 1454 |
/// |
| 1447 | 1455 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1448 | 1456 |
/// empty. |
| 1449 | 1457 |
Arc nextArc() const {
|
| 1450 | 1458 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1451 | 1459 |
} |
| 1452 | 1460 |
|
| 1453 | 1461 |
/// \brief Returns \c false if there are nodes |
| 1454 | 1462 |
/// to be processed. |
| 1455 | 1463 |
/// |
| 1456 | 1464 |
/// Returns \c false if there are nodes |
| 1457 | 1465 |
/// to be processed in the queue (stack). |
| 1458 | 1466 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1459 | 1467 |
|
| 1460 | 1468 |
/// \brief Returns the number of the nodes to be processed. |
| 1461 | 1469 |
/// |
| 1462 | 1470 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1463 | 1471 |
int queueSize() const { return _stack_head + 1; }
|
| 1464 | 1472 |
|
| 1465 | 1473 |
/// \brief Executes the algorithm. |
| 1466 | 1474 |
/// |
| 1467 | 1475 |
/// Executes the algorithm. |
| 1468 | 1476 |
/// |
| 1469 | 1477 |
/// This method runs the %DFS algorithm from the root node |
| 1470 | 1478 |
/// in order to compute the %DFS path to each node. |
| 1471 | 1479 |
/// |
| 1472 | 1480 |
/// The algorithm computes |
| 1473 | 1481 |
/// - the %DFS tree, |
| 1474 | 1482 |
/// - the distance of each node from the root in the %DFS tree. |
| 1475 | 1483 |
/// |
| 1476 | 1484 |
/// \pre init() must be called and a root node should be |
| 1477 | 1485 |
/// added with addSource() before using this function. |
| 1478 | 1486 |
/// |
| 1479 | 1487 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
| 1480 | 1488 |
/// \code |
| 1481 | 1489 |
/// while ( !d.emptyQueue() ) {
|
| 1482 | 1490 |
/// d.processNextArc(); |
| 1483 | 1491 |
/// } |
| 1484 | 1492 |
/// \endcode |
| 1485 | 1493 |
void start() {
|
| 1486 | 1494 |
while ( !emptyQueue() ) processNextArc(); |
| 1487 | 1495 |
} |
| 1488 | 1496 |
|
| 1489 | 1497 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1490 | 1498 |
/// |
| 1491 | 1499 |
/// Executes the algorithm until the given target node is reached. |
| 1492 | 1500 |
/// |
| 1493 | 1501 |
/// This method runs the %DFS algorithm from the root node |
| 1494 | 1502 |
/// in order to compute the DFS path to \c t. |
| 1495 | 1503 |
/// |
| 1496 | 1504 |
/// The algorithm computes |
| 1497 | 1505 |
/// - the %DFS path to \c t, |
| 1498 | 1506 |
/// - the distance of \c t from the root in the %DFS tree. |
| 1499 | 1507 |
/// |
| 1500 | 1508 |
/// \pre init() must be called and a root node should be added |
| 1501 | 1509 |
/// with addSource() before using this function. |
| 1502 | 1510 |
void start(Node t) {
|
| 1503 | 1511 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
| 1504 | 1512 |
processNextArc(); |
| 1505 | 1513 |
} |
| 1506 | 1514 |
|
| 1507 | 1515 |
/// \brief Executes the algorithm until a condition is met. |
| 1508 | 1516 |
/// |
| 1509 | 1517 |
/// Executes the algorithm until a condition is met. |
| 1510 | 1518 |
/// |
| 1511 | 1519 |
/// This method runs the %DFS algorithm from the root node |
| 1512 | 1520 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
| 1513 | 1521 |
/// |
| 1514 | 1522 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
| 1515 | 1523 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 1516 | 1524 |
/// |
| 1517 | 1525 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
| 1518 | 1526 |
/// \c INVALID if no such arc was found. |
| 1519 | 1527 |
/// |
| 1520 | 1528 |
/// \pre init() must be called and a root node should be added |
| 1521 | 1529 |
/// with addSource() before using this function. |
| 1522 | 1530 |
/// |
| 1523 | 1531 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 1524 | 1532 |
/// not a node map. |
| 1525 | 1533 |
template <typename AM> |
| 1526 | 1534 |
Arc start(const AM &am) {
|
| 1527 | 1535 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 1528 | 1536 |
processNextArc(); |
| 1529 | 1537 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 1530 | 1538 |
} |
| 1531 | 1539 |
|
| 1532 | 1540 |
/// \brief Runs the algorithm from the given source node. |
| 1533 | 1541 |
/// |
| 1534 | 1542 |
/// This method runs the %DFS algorithm from node \c s. |
| 1535 | 1543 |
/// in order to compute the DFS path to each node. |
| 1536 | 1544 |
/// |
| 1537 | 1545 |
/// The algorithm computes |
| 1538 | 1546 |
/// - the %DFS tree, |
| 1539 | 1547 |
/// - the distance of each node from the root in the %DFS tree. |
| 1540 | 1548 |
/// |
| 1541 | 1549 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 1542 | 1550 |
///\code |
| 1543 | 1551 |
/// d.init(); |
| 1544 | 1552 |
/// d.addSource(s); |
| 1545 | 1553 |
/// d.start(); |
| 1546 | 1554 |
///\endcode |
| 1547 | 1555 |
void run(Node s) {
|
| 1548 | 1556 |
init(); |
| 1549 | 1557 |
addSource(s); |
| 1550 | 1558 |
start(); |
| 1551 | 1559 |
} |
| 1552 | 1560 |
|
| 1553 | 1561 |
/// \brief Finds the %DFS path between \c s and \c t. |
| 1554 | 1562 |
|
| 1555 | 1563 |
/// This method runs the %DFS algorithm from node \c s |
| 1556 | 1564 |
/// in order to compute the DFS path to node \c t |
| 1557 | 1565 |
/// (it stops searching when \c t is processed). |
| 1558 | 1566 |
/// |
| 1559 | 1567 |
/// \return \c true if \c t is reachable form \c s. |
| 1560 | 1568 |
/// |
| 1561 | 1569 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 1562 | 1570 |
/// just a shortcut of the following code. |
| 1563 | 1571 |
///\code |
| 1564 | 1572 |
/// d.init(); |
| 1565 | 1573 |
/// d.addSource(s); |
| 1566 | 1574 |
/// d.start(t); |
| 1567 | 1575 |
///\endcode |
| 1568 | 1576 |
bool run(Node s,Node t) {
|
| 1569 | 1577 |
init(); |
| 1570 | 1578 |
addSource(s); |
| 1571 | 1579 |
start(t); |
| 1572 | 1580 |
return reached(t); |
| 1573 | 1581 |
} |
| 1574 | 1582 |
|
| 1575 | 1583 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1576 | 1584 |
|
| 1577 | 1585 |
/// This method runs the %DFS algorithm in order to visit all nodes |
| 1578 | 1586 |
/// in the digraph. |
| 1579 | 1587 |
/// |
| 1580 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1581 | 1589 |
///\code |
| 1582 | 1590 |
/// d.init(); |
| 1583 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1584 | 1592 |
/// if (!d.reached(n)) {
|
| 1585 | 1593 |
/// d.addSource(n); |
| 1586 | 1594 |
/// d.start(); |
| 1587 | 1595 |
/// } |
| 1588 | 1596 |
/// } |
| 1589 | 1597 |
///\endcode |
| 1590 | 1598 |
void run() {
|
| 1591 | 1599 |
init(); |
| 1592 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1593 | 1601 |
if (!reached(it)) {
|
| 1594 | 1602 |
addSource(it); |
| 1595 | 1603 |
start(); |
| 1596 | 1604 |
} |
| 1597 | 1605 |
} |
| 1598 | 1606 |
} |
| 1599 | 1607 |
|
| 1600 | 1608 |
///@} |
| 1601 | 1609 |
|
| 1602 | 1610 |
/// \name Query Functions |
| 1603 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
| 1604 | 1612 |
/// functions.\n |
| 1605 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1606 | 1614 |
/// before using them. |
| 1607 | 1615 |
|
| 1608 | 1616 |
///@{
|
| 1609 | 1617 |
|
| 1610 | 1618 |
/// \brief Checks if the given node is reached from the root(s). |
| 1611 | 1619 |
/// |
| 1612 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
| 1613 | 1621 |
/// |
| 1614 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1615 | 1623 |
/// must be called before using this function. |
| 1616 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1617 | 1625 |
|
| 1618 | 1626 |
///@} |
| 1619 | 1627 |
|
| 1620 | 1628 |
}; |
| 1621 | 1629 |
|
| 1622 | 1630 |
} //END OF NAMESPACE LEMON |
| 1623 | 1631 |
|
| 1624 | 1632 |
#endif |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)