|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2009
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#include <lemon/connectivity.h>
|
|
20 |
#include <lemon/list_graph.h>
|
|
21 |
#include <lemon/adaptors.h>
|
|
22 |
|
|
23 |
#include "test_tools.h"
|
|
24 |
|
|
25 |
using namespace lemon;
|
|
26 |
|
|
27 |
|
|
28 |
int main()
|
|
29 |
{
|
|
30 |
typedef ListDigraph Digraph;
|
|
31 |
typedef Undirector<Digraph> Graph;
|
|
32 |
|
|
33 |
{
|
|
34 |
Digraph d;
|
|
35 |
Digraph::NodeMap<int> order(d);
|
|
36 |
Graph g(d);
|
|
37 |
|
|
38 |
check(stronglyConnected(d), "The empty digraph is strongly connected");
|
|
39 |
check(countStronglyConnectedComponents(d) == 0,
|
|
40 |
"The empty digraph has 0 strongly connected component");
|
|
41 |
check(connected(g), "The empty graph is connected");
|
|
42 |
check(countConnectedComponents(g) == 0,
|
|
43 |
"The empty graph has 0 connected component");
|
|
44 |
|
|
45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected");
|
|
46 |
check(countBiNodeConnectedComponents(g) == 0,
|
|
47 |
"The empty graph has 0 bi-node-connected component");
|
|
48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
|
|
49 |
check(countBiEdgeConnectedComponents(g) == 0,
|
|
50 |
"The empty graph has 0 bi-edge-connected component");
|
|
51 |
|
|
52 |
check(dag(d), "The empty digraph is DAG.");
|
|
53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
|
|
54 |
check(loopFree(d), "The empty digraph is loop-free.");
|
|
55 |
check(parallelFree(d), "The empty digraph is parallel-free.");
|
|
56 |
check(simpleGraph(d), "The empty digraph is simple.");
|
|
57 |
|
|
58 |
check(acyclic(g), "The empty graph is acyclic.");
|
|
59 |
check(tree(g), "The empty graph is tree.");
|
|
60 |
check(bipartite(g), "The empty graph is bipartite.");
|
|
61 |
check(loopFree(g), "The empty graph is loop-free.");
|
|
62 |
check(parallelFree(g), "The empty graph is parallel-free.");
|
|
63 |
check(simpleGraph(g), "The empty graph is simple.");
|
|
64 |
}
|
|
65 |
|
|
66 |
{
|
|
67 |
Digraph d;
|
|
68 |
Digraph::NodeMap<int> order(d);
|
|
69 |
Graph g(d);
|
|
70 |
Digraph::Node n = d.addNode();
|
|
71 |
|
|
72 |
check(stronglyConnected(d), "This digraph is strongly connected");
|
|
73 |
check(countStronglyConnectedComponents(d) == 1,
|
|
74 |
"This digraph has 1 strongly connected component");
|
|
75 |
check(connected(g), "This graph is connected");
|
|
76 |
check(countConnectedComponents(g) == 1,
|
|
77 |
"This graph has 1 connected component");
|
|
78 |
|
|
79 |
check(biNodeConnected(g), "This graph is bi-node-connected");
|
|
80 |
check(countBiNodeConnectedComponents(g) == 0,
|
|
81 |
"This graph has 0 bi-node-connected component");
|
|
82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected");
|
|
83 |
check(countBiEdgeConnectedComponents(g) == 1,
|
|
84 |
"This graph has 1 bi-edge-connected component");
|
|
85 |
|
|
86 |
check(dag(d), "This digraph is DAG.");
|
|
87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG.");
|
|
88 |
check(loopFree(d), "This digraph is loop-free.");
|
|
89 |
check(parallelFree(d), "This digraph is parallel-free.");
|
|
90 |
check(simpleGraph(d), "This digraph is simple.");
|
|
91 |
|
|
92 |
check(acyclic(g), "This graph is acyclic.");
|
|
93 |
check(tree(g), "This graph is tree.");
|
|
94 |
check(bipartite(g), "This graph is bipartite.");
|
|
95 |
check(loopFree(g), "This graph is loop-free.");
|
|
96 |
check(parallelFree(g), "This graph is parallel-free.");
|
|
97 |
check(simpleGraph(g), "This graph is simple.");
|
|
98 |
}
|
|
99 |
|
|
100 |
{
|
|
101 |
Digraph d;
|
|
102 |
Digraph::NodeMap<int> order(d);
|
|
103 |
Graph g(d);
|
|
104 |
|
|
105 |
Digraph::Node n1 = d.addNode();
|
|
106 |
Digraph::Node n2 = d.addNode();
|
|
107 |
Digraph::Node n3 = d.addNode();
|
|
108 |
Digraph::Node n4 = d.addNode();
|
|
109 |
Digraph::Node n5 = d.addNode();
|
|
110 |
Digraph::Node n6 = d.addNode();
|
|
111 |
|
|
112 |
d.addArc(n1, n3);
|
|
113 |
d.addArc(n3, n2);
|
|
114 |
d.addArc(n2, n1);
|
|
115 |
d.addArc(n4, n2);
|
|
116 |
d.addArc(n4, n3);
|
|
117 |
d.addArc(n5, n6);
|
|
118 |
d.addArc(n6, n5);
|
|
119 |
|
|
120 |
check(!stronglyConnected(d), "This digraph is not strongly connected");
|
|
121 |
check(countStronglyConnectedComponents(d) == 3,
|
|
122 |
"This digraph has 3 strongly connected components");
|
|
123 |
check(!connected(g), "This graph is not connected");
|
|
124 |
check(countConnectedComponents(g) == 2,
|
|
125 |
"This graph has 2 connected components");
|
|
126 |
|
|
127 |
check(!dag(d), "This digraph is not DAG.");
|
|
128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
|
|
129 |
check(loopFree(d), "This digraph is loop-free.");
|
|
130 |
check(parallelFree(d), "This digraph is parallel-free.");
|
|
131 |
check(simpleGraph(d), "This digraph is simple.");
|
|
132 |
|
|
133 |
check(!acyclic(g), "This graph is not acyclic.");
|
|
134 |
check(!tree(g), "This graph is not tree.");
|
|
135 |
check(!bipartite(g), "This graph is not bipartite.");
|
|
136 |
check(loopFree(g), "This graph is loop-free.");
|
|
137 |
check(!parallelFree(g), "This graph is not parallel-free.");
|
|
138 |
check(!simpleGraph(g), "This graph is not simple.");
|
|
139 |
|
|
140 |
d.addArc(n3, n3);
|
|
141 |
|
|
142 |
check(!loopFree(d), "This digraph is not loop-free.");
|
|
143 |
check(!loopFree(g), "This graph is not loop-free.");
|
|
144 |
check(!simpleGraph(d), "This digraph is not simple.");
|
|
145 |
|
|
146 |
d.addArc(n3, n2);
|
|
147 |
|
|
148 |
check(!parallelFree(d), "This digraph is not parallel-free.");
|
|
149 |
}
|
|
150 |
|
|
151 |
{
|
|
152 |
Digraph d;
|
|
153 |
Digraph::ArcMap<bool> cutarcs(d, false);
|
|
154 |
Graph g(d);
|
|
155 |
|
|
156 |
Digraph::Node n1 = d.addNode();
|
|
157 |
Digraph::Node n2 = d.addNode();
|
|
158 |
Digraph::Node n3 = d.addNode();
|
|
159 |
Digraph::Node n4 = d.addNode();
|
|
160 |
Digraph::Node n5 = d.addNode();
|
|
161 |
Digraph::Node n6 = d.addNode();
|
|
162 |
Digraph::Node n7 = d.addNode();
|
|
163 |
Digraph::Node n8 = d.addNode();
|
|
164 |
|
|
165 |
d.addArc(n1, n2);
|
|
166 |
d.addArc(n5, n1);
|
|
167 |
d.addArc(n2, n8);
|
|
168 |
d.addArc(n8, n5);
|
|
169 |
d.addArc(n6, n4);
|
|
170 |
d.addArc(n4, n6);
|
|
171 |
d.addArc(n2, n5);
|
|
172 |
d.addArc(n1, n8);
|
|
173 |
d.addArc(n6, n7);
|
|
174 |
d.addArc(n7, n6);
|
|
175 |
|
|
176 |
check(!stronglyConnected(d), "This digraph is not strongly connected");
|
|
177 |
check(countStronglyConnectedComponents(d) == 3,
|
|
178 |
"This digraph has 3 strongly connected components");
|
|
179 |
Digraph::NodeMap<int> scomp1(d);
|
|
180 |
check(stronglyConnectedComponents(d, scomp1) == 3,
|
|
181 |
"This digraph has 3 strongly connected components");
|
|
182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
|
|
183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
|
|
184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
|
|
185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
|
|
186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
|
|
187 |
"Wrong stronglyConnectedComponents()");
|
|
188 |
Digraph::ArcMap<bool> scut1(d, false);
|
|
189 |
check(stronglyConnectedCutArcs(d, scut1) == 0,
|
|
190 |
"This digraph has 0 strongly connected cut arc.");
|
|
191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
|
|
193 |
}
|
|
194 |
|
|
195 |
check(!connected(g), "This graph is not connected");
|
|
196 |
check(countConnectedComponents(g) == 3,
|
|
197 |
"This graph has 3 connected components");
|
|
198 |
Graph::NodeMap<int> comp(g);
|
|
199 |
check(connectedComponents(g, comp) == 3,
|
|
200 |
"This graph has 3 connected components");
|
|
201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
|
|
202 |
comp[n3] != comp[n4], "Wrong connectedComponents()");
|
|
203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
|
|
204 |
comp[n1] == comp[n8], "Wrong connectedComponents()");
|
|
205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
|
|
206 |
"Wrong connectedComponents()");
|
|
207 |
|
|
208 |
cutarcs[d.addArc(n3, n1)] = true;
|
|
209 |
cutarcs[d.addArc(n3, n5)] = true;
|
|
210 |
cutarcs[d.addArc(n3, n8)] = true;
|
|
211 |
cutarcs[d.addArc(n8, n6)] = true;
|
|
212 |
cutarcs[d.addArc(n8, n7)] = true;
|
|
213 |
|
|
214 |
check(!stronglyConnected(d), "This digraph is not strongly connected");
|
|
215 |
check(countStronglyConnectedComponents(d) == 3,
|
|
216 |
"This digraph has 3 strongly connected components");
|
|
217 |
Digraph::NodeMap<int> scomp2(d);
|
|
218 |
check(stronglyConnectedComponents(d, scomp2) == 3,
|
|
219 |
"This digraph has 3 strongly connected components");
|
|
220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
|
|
221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
|
|
222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
|
|
223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
|
|
224 |
"Wrong stronglyConnectedComponents()");
|
|
225 |
Digraph::ArcMap<bool> scut2(d, false);
|
|
226 |
check(stronglyConnectedCutArcs(d, scut2) == 5,
|
|
227 |
"This digraph has 5 strongly connected cut arcs.");
|
|
228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
|
|
230 |
}
|
|
231 |
}
|
|
232 |
|
|
233 |
{
|
|
234 |
// DAG example for topological sort from the book New Algorithms
|
|
235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
|
|
236 |
Digraph d;
|
|
237 |
Digraph::NodeMap<int> order(d);
|
|
238 |
|
|
239 |
Digraph::Node belt = d.addNode();
|
|
240 |
Digraph::Node trousers = d.addNode();
|
|
241 |
Digraph::Node necktie = d.addNode();
|
|
242 |
Digraph::Node coat = d.addNode();
|
|
243 |
Digraph::Node socks = d.addNode();
|
|
244 |
Digraph::Node shirt = d.addNode();
|
|
245 |
Digraph::Node shoe = d.addNode();
|
|
246 |
Digraph::Node watch = d.addNode();
|
|
247 |
Digraph::Node pants = d.addNode();
|
|
248 |
|
|
249 |
d.addArc(socks, shoe);
|
|
250 |
d.addArc(pants, shoe);
|
|
251 |
d.addArc(pants, trousers);
|
|
252 |
d.addArc(trousers, shoe);
|
|
253 |
d.addArc(trousers, belt);
|
|
254 |
d.addArc(belt, coat);
|
|
255 |
d.addArc(shirt, belt);
|
|
256 |
d.addArc(shirt, necktie);
|
|
257 |
d.addArc(necktie, coat);
|
|
258 |
|
|
259 |
check(dag(d), "This digraph is DAG.");
|
|
260 |
topologicalSort(d, order);
|
|
261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
262 |
check(order[d.source(a)] < order[d.target(a)],
|
|
263 |
"Wrong topologicalSort()");
|
|
264 |
}
|
|
265 |
}
|
|
266 |
|
|
267 |
{
|
|
268 |
ListGraph g;
|
|
269 |
ListGraph::NodeMap<bool> map(g);
|
|
270 |
|
|
271 |
ListGraph::Node n1 = g.addNode();
|
|
272 |
ListGraph::Node n2 = g.addNode();
|
|
273 |
ListGraph::Node n3 = g.addNode();
|
|
274 |
ListGraph::Node n4 = g.addNode();
|
|
275 |
ListGraph::Node n5 = g.addNode();
|
|
276 |
ListGraph::Node n6 = g.addNode();
|
|
277 |
ListGraph::Node n7 = g.addNode();
|
|
278 |
|
|
279 |
g.addEdge(n1, n3);
|
|
280 |
g.addEdge(n1, n4);
|
|
281 |
g.addEdge(n2, n5);
|
|
282 |
g.addEdge(n3, n6);
|
|
283 |
g.addEdge(n4, n6);
|
|
284 |
g.addEdge(n4, n7);
|
|
285 |
g.addEdge(n5, n7);
|
|
286 |
|
|
287 |
check(bipartite(g), "This graph is bipartite");
|
|
288 |
check(bipartitePartitions(g, map), "This graph is bipartite");
|
|
289 |
|
|
290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
|
|
291 |
"Wrong bipartitePartitions()");
|
|
292 |
check(map[n3] == map[n4] && map[n3] == map[n5],
|
|
293 |
"Wrong bipartitePartitions()");
|
|
294 |
}
|
|
295 |
|
|
296 |
return 0;
|
|
297 |
}
|