0
2
1
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/connectivity.h> |
|
20 |
#include <lemon/list_graph.h> |
|
21 |
#include <lemon/adaptors.h> |
|
22 |
|
|
23 |
#include "test_tools.h" |
|
24 |
|
|
25 |
using namespace lemon; |
|
26 |
|
|
27 |
|
|
28 |
int main() |
|
29 |
{ |
|
30 |
typedef ListDigraph Digraph; |
|
31 |
typedef Undirector<Digraph> Graph; |
|
32 |
|
|
33 |
{ |
|
34 |
Digraph d; |
|
35 |
Digraph::NodeMap<int> order(d); |
|
36 |
Graph g(d); |
|
37 |
|
|
38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
|
39 |
check(countStronglyConnectedComponents(d) == 0, |
|
40 |
"The empty digraph has 0 strongly connected component"); |
|
41 |
check(connected(g), "The empty graph is connected"); |
|
42 |
check(countConnectedComponents(g) == 0, |
|
43 |
"The empty graph has 0 connected component"); |
|
44 |
|
|
45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
|
46 |
check(countBiNodeConnectedComponents(g) == 0, |
|
47 |
"The empty graph has 0 bi-node-connected component"); |
|
48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
|
49 |
check(countBiEdgeConnectedComponents(g) == 0, |
|
50 |
"The empty graph has 0 bi-edge-connected component"); |
|
51 |
|
|
52 |
check(dag(d), "The empty digraph is DAG."); |
|
53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
|
54 |
check(loopFree(d), "The empty digraph is loop-free."); |
|
55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
|
56 |
check(simpleGraph(d), "The empty digraph is simple."); |
|
57 |
|
|
58 |
check(acyclic(g), "The empty graph is acyclic."); |
|
59 |
check(tree(g), "The empty graph is tree."); |
|
60 |
check(bipartite(g), "The empty graph is bipartite."); |
|
61 |
check(loopFree(g), "The empty graph is loop-free."); |
|
62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
|
63 |
check(simpleGraph(g), "The empty graph is simple."); |
|
64 |
} |
|
65 |
|
|
66 |
{ |
|
67 |
Digraph d; |
|
68 |
Digraph::NodeMap<int> order(d); |
|
69 |
Graph g(d); |
|
70 |
Digraph::Node n = d.addNode(); |
|
71 |
|
|
72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
|
73 |
check(countStronglyConnectedComponents(d) == 1, |
|
74 |
"This digraph has 1 strongly connected component"); |
|
75 |
check(connected(g), "This graph is connected"); |
|
76 |
check(countConnectedComponents(g) == 1, |
|
77 |
"This graph has 1 connected component"); |
|
78 |
|
|
79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
|
80 |
check(countBiNodeConnectedComponents(g) == 0, |
|
81 |
"This graph has 0 bi-node-connected component"); |
|
82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
|
83 |
check(countBiEdgeConnectedComponents(g) == 1, |
|
84 |
"This graph has 1 bi-edge-connected component"); |
|
85 |
|
|
86 |
check(dag(d), "This digraph is DAG."); |
|
87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
|
88 |
check(loopFree(d), "This digraph is loop-free."); |
|
89 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
90 |
check(simpleGraph(d), "This digraph is simple."); |
|
91 |
|
|
92 |
check(acyclic(g), "This graph is acyclic."); |
|
93 |
check(tree(g), "This graph is tree."); |
|
94 |
check(bipartite(g), "This graph is bipartite."); |
|
95 |
check(loopFree(g), "This graph is loop-free."); |
|
96 |
check(parallelFree(g), "This graph is parallel-free."); |
|
97 |
check(simpleGraph(g), "This graph is simple."); |
|
98 |
} |
|
99 |
|
|
100 |
{ |
|
101 |
Digraph d; |
|
102 |
Digraph::NodeMap<int> order(d); |
|
103 |
Graph g(d); |
|
104 |
|
|
105 |
Digraph::Node n1 = d.addNode(); |
|
106 |
Digraph::Node n2 = d.addNode(); |
|
107 |
Digraph::Node n3 = d.addNode(); |
|
108 |
Digraph::Node n4 = d.addNode(); |
|
109 |
Digraph::Node n5 = d.addNode(); |
|
110 |
Digraph::Node n6 = d.addNode(); |
|
111 |
|
|
112 |
d.addArc(n1, n3); |
|
113 |
d.addArc(n3, n2); |
|
114 |
d.addArc(n2, n1); |
|
115 |
d.addArc(n4, n2); |
|
116 |
d.addArc(n4, n3); |
|
117 |
d.addArc(n5, n6); |
|
118 |
d.addArc(n6, n5); |
|
119 |
|
|
120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
121 |
check(countStronglyConnectedComponents(d) == 3, |
|
122 |
"This digraph has 3 strongly connected components"); |
|
123 |
check(!connected(g), "This graph is not connected"); |
|
124 |
check(countConnectedComponents(g) == 2, |
|
125 |
"This graph has 2 connected components"); |
|
126 |
|
|
127 |
check(!dag(d), "This digraph is not DAG."); |
|
128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
|
129 |
check(loopFree(d), "This digraph is loop-free."); |
|
130 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
131 |
check(simpleGraph(d), "This digraph is simple."); |
|
132 |
|
|
133 |
check(!acyclic(g), "This graph is not acyclic."); |
|
134 |
check(!tree(g), "This graph is not tree."); |
|
135 |
check(!bipartite(g), "This graph is not bipartite."); |
|
136 |
check(loopFree(g), "This graph is loop-free."); |
|
137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
|
138 |
check(!simpleGraph(g), "This graph is not simple."); |
|
139 |
|
|
140 |
d.addArc(n3, n3); |
|
141 |
|
|
142 |
check(!loopFree(d), "This digraph is not loop-free."); |
|
143 |
check(!loopFree(g), "This graph is not loop-free."); |
|
144 |
check(!simpleGraph(d), "This digraph is not simple."); |
|
145 |
|
|
146 |
d.addArc(n3, n2); |
|
147 |
|
|
148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
|
149 |
} |
|
150 |
|
|
151 |
{ |
|
152 |
Digraph d; |
|
153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
|
154 |
Graph g(d); |
|
155 |
|
|
156 |
Digraph::Node n1 = d.addNode(); |
|
157 |
Digraph::Node n2 = d.addNode(); |
|
158 |
Digraph::Node n3 = d.addNode(); |
|
159 |
Digraph::Node n4 = d.addNode(); |
|
160 |
Digraph::Node n5 = d.addNode(); |
|
161 |
Digraph::Node n6 = d.addNode(); |
|
162 |
Digraph::Node n7 = d.addNode(); |
|
163 |
Digraph::Node n8 = d.addNode(); |
|
164 |
|
|
165 |
d.addArc(n1, n2); |
|
166 |
d.addArc(n5, n1); |
|
167 |
d.addArc(n2, n8); |
|
168 |
d.addArc(n8, n5); |
|
169 |
d.addArc(n6, n4); |
|
170 |
d.addArc(n4, n6); |
|
171 |
d.addArc(n2, n5); |
|
172 |
d.addArc(n1, n8); |
|
173 |
d.addArc(n6, n7); |
|
174 |
d.addArc(n7, n6); |
|
175 |
|
|
176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
177 |
check(countStronglyConnectedComponents(d) == 3, |
|
178 |
"This digraph has 3 strongly connected components"); |
|
179 |
Digraph::NodeMap<int> scomp1(d); |
|
180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
|
181 |
"This digraph has 3 strongly connected components"); |
|
182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
|
183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
|
184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
|
185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
|
186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
|
187 |
"Wrong stronglyConnectedComponents()"); |
|
188 |
Digraph::ArcMap<bool> scut1(d, false); |
|
189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
|
190 |
"This digraph has 0 strongly connected cut arc."); |
|
191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
|
193 |
} |
|
194 |
|
|
195 |
check(!connected(g), "This graph is not connected"); |
|
196 |
check(countConnectedComponents(g) == 3, |
|
197 |
"This graph has 3 connected components"); |
|
198 |
Graph::NodeMap<int> comp(g); |
|
199 |
check(connectedComponents(g, comp) == 3, |
|
200 |
"This graph has 3 connected components"); |
|
201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
|
202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
|
203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
|
204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
|
205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
|
206 |
"Wrong connectedComponents()"); |
|
207 |
|
|
208 |
cutarcs[d.addArc(n3, n1)] = true; |
|
209 |
cutarcs[d.addArc(n3, n5)] = true; |
|
210 |
cutarcs[d.addArc(n3, n8)] = true; |
|
211 |
cutarcs[d.addArc(n8, n6)] = true; |
|
212 |
cutarcs[d.addArc(n8, n7)] = true; |
|
213 |
|
|
214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
215 |
check(countStronglyConnectedComponents(d) == 3, |
|
216 |
"This digraph has 3 strongly connected components"); |
|
217 |
Digraph::NodeMap<int> scomp2(d); |
|
218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
|
219 |
"This digraph has 3 strongly connected components"); |
|
220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
|
221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
|
222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
|
223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
|
224 |
"Wrong stronglyConnectedComponents()"); |
|
225 |
Digraph::ArcMap<bool> scut2(d, false); |
|
226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
|
227 |
"This digraph has 5 strongly connected cut arcs."); |
|
228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
|
230 |
} |
|
231 |
} |
|
232 |
|
|
233 |
{ |
|
234 |
// DAG example for topological sort from the book New Algorithms |
|
235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
|
236 |
Digraph d; |
|
237 |
Digraph::NodeMap<int> order(d); |
|
238 |
|
|
239 |
Digraph::Node belt = d.addNode(); |
|
240 |
Digraph::Node trousers = d.addNode(); |
|
241 |
Digraph::Node necktie = d.addNode(); |
|
242 |
Digraph::Node coat = d.addNode(); |
|
243 |
Digraph::Node socks = d.addNode(); |
|
244 |
Digraph::Node shirt = d.addNode(); |
|
245 |
Digraph::Node shoe = d.addNode(); |
|
246 |
Digraph::Node watch = d.addNode(); |
|
247 |
Digraph::Node pants = d.addNode(); |
|
248 |
|
|
249 |
d.addArc(socks, shoe); |
|
250 |
d.addArc(pants, shoe); |
|
251 |
d.addArc(pants, trousers); |
|
252 |
d.addArc(trousers, shoe); |
|
253 |
d.addArc(trousers, belt); |
|
254 |
d.addArc(belt, coat); |
|
255 |
d.addArc(shirt, belt); |
|
256 |
d.addArc(shirt, necktie); |
|
257 |
d.addArc(necktie, coat); |
|
258 |
|
|
259 |
check(dag(d), "This digraph is DAG."); |
|
260 |
topologicalSort(d, order); |
|
261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
262 |
check(order[d.source(a)] < order[d.target(a)], |
|
263 |
"Wrong topologicalSort()"); |
|
264 |
} |
|
265 |
} |
|
266 |
|
|
267 |
{ |
|
268 |
ListGraph g; |
|
269 |
ListGraph::NodeMap<bool> map(g); |
|
270 |
|
|
271 |
ListGraph::Node n1 = g.addNode(); |
|
272 |
ListGraph::Node n2 = g.addNode(); |
|
273 |
ListGraph::Node n3 = g.addNode(); |
|
274 |
ListGraph::Node n4 = g.addNode(); |
|
275 |
ListGraph::Node n5 = g.addNode(); |
|
276 |
ListGraph::Node n6 = g.addNode(); |
|
277 |
ListGraph::Node n7 = g.addNode(); |
|
278 |
|
|
279 |
g.addEdge(n1, n3); |
|
280 |
g.addEdge(n1, n4); |
|
281 |
g.addEdge(n2, n5); |
|
282 |
g.addEdge(n3, n6); |
|
283 |
g.addEdge(n4, n6); |
|
284 |
g.addEdge(n4, n7); |
|
285 |
g.addEdge(n5, n7); |
|
286 |
|
|
287 |
check(bipartite(g), "This graph is bipartite"); |
|
288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
|
289 |
|
|
290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
|
291 |
"Wrong bipartitePartitions()"); |
|
292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
|
293 |
"Wrong bipartitePartitions()"); |
|
294 |
} |
|
295 |
|
|
296 |
return 0; |
|
297 |
} |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
LINK_DIRECTORIES(${PROJECT_BINARY_DIR}/lemon) |
7 | 7 |
|
8 | 8 |
SET(TESTS |
9 | 9 |
adaptors_test |
10 | 10 |
bfs_test |
11 | 11 |
circulation_test |
12 |
connectivity_test |
|
12 | 13 |
counter_test |
13 | 14 |
dfs_test |
14 | 15 |
digraph_test |
15 | 16 |
dijkstra_test |
16 | 17 |
dim_test |
17 | 18 |
edge_set_test |
18 | 19 |
error_test |
19 | 20 |
euler_test |
20 | 21 |
gomory_hu_test |
21 | 22 |
graph_copy_test |
22 | 23 |
graph_test |
23 | 24 |
graph_utils_test |
24 | 25 |
hao_orlin_test |
25 | 26 |
heap_test |
26 | 27 |
kruskal_test |
27 | 28 |
maps_test |
28 | 29 |
matching_test |
29 | 30 |
min_cost_arborescence_test |
30 | 31 |
min_cost_flow_test |
31 | 32 |
path_test |
32 | 33 |
preflow_test |
33 | 34 |
radix_sort_test |
34 | 35 |
random_test |
35 | 36 |
suurballe_test |
36 | 37 |
time_measure_test |
37 | 38 |
unionfind_test) |
38 | 39 |
|
39 | 40 |
IF(LEMON_HAVE_LP) |
40 | 41 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
41 | 42 |
SET(LP_TEST_LIBS lemon) |
42 | 43 |
IF(LEMON_HAVE_GLPK) |
43 | 44 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
44 | 45 |
ENDIF(LEMON_HAVE_GLPK) |
45 | 46 |
IF(LEMON_HAVE_CPLEX) |
46 | 47 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
47 | 48 |
ENDIF(LEMON_HAVE_CPLEX) |
48 | 49 |
IF(LEMON_HAVE_CLP) |
49 | 50 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
50 | 51 |
ENDIF(LEMON_HAVE_CLP) |
51 | 52 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
52 | 53 |
ADD_TEST(lp_test lp_test) |
53 | 54 |
|
54 | 55 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
55 | 56 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
56 | 57 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
57 | 58 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
58 | 59 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
59 | 60 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
60 | 61 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
61 | 62 |
) |
62 | 63 |
ENDIF(WIN32 AND LEMON_HAVE_GLPK) |
63 | 64 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
64 | 65 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
65 | 66 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
66 | 67 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
67 | 68 |
COMMAND cmake -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
68 | 69 |
) |
69 | 70 |
ENDIF(WIN32 AND LEMON_HAVE_CPLEX) |
70 | 71 |
ENDIF(LEMON_HAVE_LP) |
71 | 72 |
|
72 | 73 |
IF(LEMON_HAVE_MIP) |
73 | 74 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
74 | 75 |
SET(MIP_TEST_LIBS lemon) |
75 | 76 |
IF(LEMON_HAVE_GLPK) |
76 | 77 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES}) |
77 | 78 |
ENDIF(LEMON_HAVE_GLPK) |
78 | 79 |
IF(LEMON_HAVE_CPLEX) |
79 | 80 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
80 | 81 |
ENDIF(LEMON_HAVE_CPLEX) |
81 | 82 |
IF(LEMON_HAVE_CBC) |
82 | 83 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES}) |
83 | 84 |
ENDIF(LEMON_HAVE_CBC) |
84 | 85 |
TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS}) |
85 | 86 |
ADD_TEST(mip_test mip_test) |
86 | 87 |
|
87 | 88 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
88 | 89 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
89 | 90 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
90 | 91 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
91 | 92 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
92 | 93 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
93 | 94 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
94 | 95 |
) |
95 | 96 |
ENDIF(WIN32 AND LEMON_HAVE_GLPK) |
96 | 97 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
97 | 98 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
98 | 99 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
99 | 100 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
100 | 101 |
COMMAND cmake -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
101 | 102 |
) |
102 | 103 |
ENDIF(WIN32 AND LEMON_HAVE_CPLEX) |
103 | 104 |
ENDIF(LEMON_HAVE_MIP) |
104 | 105 |
|
105 | 106 |
FOREACH(TEST_NAME ${TESTS}) |
106 | 107 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
107 | 108 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 | 10 |
test/bfs_test \ |
11 | 11 |
test/circulation_test \ |
12 |
test/connectivity_test \ |
|
12 | 13 |
test/counter_test \ |
13 | 14 |
test/dfs_test \ |
14 | 15 |
test/digraph_test \ |
15 | 16 |
test/dijkstra_test \ |
16 | 17 |
test/dim_test \ |
17 | 18 |
test/edge_set_test \ |
18 | 19 |
test/error_test \ |
19 | 20 |
test/euler_test \ |
20 | 21 |
test/gomory_hu_test \ |
21 | 22 |
test/graph_copy_test \ |
22 | 23 |
test/graph_test \ |
23 | 24 |
test/graph_utils_test \ |
24 | 25 |
test/hao_orlin_test \ |
25 | 26 |
test/heap_test \ |
26 | 27 |
test/kruskal_test \ |
27 | 28 |
test/maps_test \ |
28 | 29 |
test/matching_test \ |
29 | 30 |
test/min_cost_arborescence_test \ |
30 | 31 |
test/min_cost_flow_test \ |
31 | 32 |
test/path_test \ |
32 | 33 |
test/preflow_test \ |
33 | 34 |
test/radix_sort_test \ |
34 | 35 |
test/random_test \ |
35 | 36 |
test/suurballe_test \ |
36 | 37 |
test/test_tools_fail \ |
37 | 38 |
test/test_tools_pass \ |
38 | 39 |
test/time_measure_test \ |
39 | 40 |
test/unionfind_test |
40 | 41 |
|
41 | 42 |
test_test_tools_pass_DEPENDENCIES = demo |
42 | 43 |
|
43 | 44 |
if HAVE_LP |
44 | 45 |
check_PROGRAMS += test/lp_test |
45 | 46 |
endif HAVE_LP |
46 | 47 |
if HAVE_MIP |
47 | 48 |
check_PROGRAMS += test/mip_test |
48 | 49 |
endif HAVE_MIP |
49 | 50 |
|
50 | 51 |
TESTS += $(check_PROGRAMS) |
51 | 52 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
52 | 53 |
|
53 | 54 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
54 | 55 |
test_bfs_test_SOURCES = test/bfs_test.cc |
55 | 56 |
test_circulation_test_SOURCES = test/circulation_test.cc |
56 | 57 |
test_counter_test_SOURCES = test/counter_test.cc |
58 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
|
57 | 59 |
test_dfs_test_SOURCES = test/dfs_test.cc |
58 | 60 |
test_digraph_test_SOURCES = test/digraph_test.cc |
59 | 61 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
60 | 62 |
test_dim_test_SOURCES = test/dim_test.cc |
61 | 63 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
62 | 64 |
test_error_test_SOURCES = test/error_test.cc |
63 | 65 |
test_euler_test_SOURCES = test/euler_test.cc |
64 | 66 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
65 | 67 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
66 | 68 |
test_graph_test_SOURCES = test/graph_test.cc |
67 | 69 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
68 | 70 |
test_heap_test_SOURCES = test/heap_test.cc |
69 | 71 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
70 | 72 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
71 | 73 |
test_lp_test_SOURCES = test/lp_test.cc |
72 | 74 |
test_maps_test_SOURCES = test/maps_test.cc |
73 | 75 |
test_mip_test_SOURCES = test/mip_test.cc |
74 | 76 |
test_matching_test_SOURCES = test/matching_test.cc |
75 | 77 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
76 | 78 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
77 | 79 |
test_path_test_SOURCES = test/path_test.cc |
78 | 80 |
test_preflow_test_SOURCES = test/preflow_test.cc |
79 | 81 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
80 | 82 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
81 | 83 |
test_random_test_SOURCES = test/random_test.cc |
82 | 84 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
83 | 85 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
84 | 86 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
85 | 87 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
0 comments (0 inline)