| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <sstream> |
| 20 | 20 |
#include <lemon/lp_skeleton.h> |
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
|
| 24 | 24 |
#ifdef HAVE_CONFIG_H |
| 25 | 25 |
#include <lemon/config.h> |
| 26 | 26 |
#endif |
| 27 | 27 |
|
| 28 | 28 |
#ifdef HAVE_GLPK |
| 29 | 29 |
#include <lemon/lp_glpk.h> |
| 30 | 30 |
#endif |
| 31 | 31 |
|
| 32 | 32 |
#ifdef HAVE_CPLEX |
| 33 | 33 |
#include <lemon/lp_cplex.h> |
| 34 | 34 |
#endif |
| 35 | 35 |
|
| 36 | 36 |
#ifdef HAVE_SOPLEX |
| 37 | 37 |
#include <lemon/lp_soplex.h> |
| 38 | 38 |
#endif |
| 39 | 39 |
|
| 40 | 40 |
#ifdef HAVE_CLP |
| 41 | 41 |
#include <lemon/lp_clp.h> |
| 42 | 42 |
#endif |
| 43 | 43 |
|
| 44 | 44 |
using namespace lemon; |
| 45 | 45 |
|
| 46 | 46 |
void lpTest(LpSolver& lp) |
| 47 | 47 |
{
|
| 48 | 48 |
|
| 49 | 49 |
typedef LpSolver LP; |
| 50 | 50 |
|
| 51 | 51 |
std::vector<LP::Col> x(10); |
| 52 | 52 |
// for(int i=0;i<10;i++) x.push_back(lp.addCol()); |
| 53 | 53 |
lp.addColSet(x); |
| 54 | 54 |
lp.colLowerBound(x,1); |
| 55 | 55 |
lp.colUpperBound(x,1); |
| 56 | 56 |
lp.colBounds(x,1,2); |
| 57 | 57 |
|
| 58 | 58 |
std::vector<LP::Col> y(10); |
| 59 | 59 |
lp.addColSet(y); |
| 60 | 60 |
|
| 61 | 61 |
lp.colLowerBound(y,1); |
| 62 | 62 |
lp.colUpperBound(y,1); |
| 63 | 63 |
lp.colBounds(y,1,2); |
| 64 | 64 |
|
| 65 | 65 |
std::map<int,LP::Col> z; |
| 66 | 66 |
|
| 67 | 67 |
z.insert(std::make_pair(12,INVALID)); |
| 68 | 68 |
z.insert(std::make_pair(2,INVALID)); |
| 69 | 69 |
z.insert(std::make_pair(7,INVALID)); |
| 70 | 70 |
z.insert(std::make_pair(5,INVALID)); |
| 71 | 71 |
|
| 72 | 72 |
lp.addColSet(z); |
| 73 | 73 |
|
| 74 | 74 |
lp.colLowerBound(z,1); |
| 75 | 75 |
lp.colUpperBound(z,1); |
| 76 | 76 |
lp.colBounds(z,1,2); |
| 77 | 77 |
|
| 78 | 78 |
{
|
| 79 | 79 |
LP::Expr e,f,g; |
| 80 | 80 |
LP::Col p1,p2,p3,p4,p5; |
| 81 | 81 |
LP::Constr c; |
| 82 | 82 |
|
| 83 | 83 |
p1=lp.addCol(); |
| 84 | 84 |
p2=lp.addCol(); |
| 85 | 85 |
p3=lp.addCol(); |
| 86 | 86 |
p4=lp.addCol(); |
| 87 | 87 |
p5=lp.addCol(); |
| 88 | 88 |
|
| 89 | 89 |
e[p1]=2; |
| 90 | 90 |
*e=12; |
| 91 | 91 |
e[p1]+=2; |
| 92 | 92 |
*e+=12; |
| 93 | 93 |
e[p1]-=2; |
| 94 | 94 |
*e-=12; |
| 95 | 95 |
|
| 96 | 96 |
e=2; |
| 97 | 97 |
e=2.2; |
| 98 | 98 |
e=p1; |
| 99 | 99 |
e=f; |
| 100 | 100 |
|
| 101 | 101 |
e+=2; |
| 102 | 102 |
e+=2.2; |
| 103 | 103 |
e+=p1; |
| 104 | 104 |
e+=f; |
| 105 | 105 |
|
| 106 | 106 |
e-=2; |
| 107 | 107 |
e-=2.2; |
| 108 | 108 |
e-=p1; |
| 109 | 109 |
e-=f; |
| 110 | 110 |
|
| 111 | 111 |
e*=2; |
| 112 | 112 |
e*=2.2; |
| 113 | 113 |
e/=2; |
| 114 | 114 |
e/=2.2; |
| 115 | 115 |
|
| 116 | 116 |
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+ |
| 117 | 117 |
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+ |
| 118 | 118 |
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+ |
| 119 | 119 |
2.2*f+f*2.2+f/2.2+ |
| 120 | 120 |
2*f+f*2+f/2+ |
| 121 | 121 |
2.2*p1+p1*2.2+p1/2.2+ |
| 122 | 122 |
2*p1+p1*2+p1/2 |
| 123 | 123 |
); |
| 124 | 124 |
|
| 125 | 125 |
|
| 126 | 126 |
c = (e <= f ); |
| 127 | 127 |
c = (e <= 2.2); |
| 128 | 128 |
c = (e <= 2 ); |
| 129 | 129 |
c = (e <= p1 ); |
| 130 | 130 |
c = (2.2<= f ); |
| 131 | 131 |
c = (2 <= f ); |
| 132 | 132 |
c = (p1 <= f ); |
| 133 | 133 |
c = (p1 <= p2 ); |
| 134 | 134 |
c = (p1 <= 2.2); |
| 135 | 135 |
c = (p1 <= 2 ); |
| 136 | 136 |
c = (2.2<= p2 ); |
| 137 | 137 |
c = (2 <= p2 ); |
| 138 | 138 |
|
| 139 | 139 |
c = (e >= f ); |
| 140 | 140 |
c = (e >= 2.2); |
| 141 | 141 |
c = (e >= 2 ); |
| 142 | 142 |
c = (e >= p1 ); |
| 143 | 143 |
c = (2.2>= f ); |
| 144 | 144 |
c = (2 >= f ); |
| 145 | 145 |
c = (p1 >= f ); |
| 146 | 146 |
c = (p1 >= p2 ); |
| 147 | 147 |
c = (p1 >= 2.2); |
| 148 | 148 |
c = (p1 >= 2 ); |
| 149 | 149 |
c = (2.2>= p2 ); |
| 150 | 150 |
c = (2 >= p2 ); |
| 151 | 151 |
|
| 152 | 152 |
c = (e == f ); |
| 153 | 153 |
c = (e == 2.2); |
| 154 | 154 |
c = (e == 2 ); |
| 155 | 155 |
c = (e == p1 ); |
| 156 | 156 |
c = (2.2== f ); |
| 157 | 157 |
c = (2 == f ); |
| 158 | 158 |
c = (p1 == f ); |
| 159 | 159 |
//c = (p1 == p2 ); |
| 160 | 160 |
c = (p1 == 2.2); |
| 161 | 161 |
c = (p1 == 2 ); |
| 162 | 162 |
c = (2.2== p2 ); |
| 163 | 163 |
c = (2 == p2 ); |
| 164 | 164 |
|
| 165 |
c = (2 <= e <= 3); |
|
| 166 |
c = (2 <= p1<= 3); |
|
| 165 |
c = ((2 <= e) <= 3); |
|
| 166 |
c = ((2 <= p1) <= 3); |
|
| 167 | 167 |
|
| 168 |
c = (2 >= e >= 3); |
|
| 169 |
c = (2 >= p1>= 3); |
|
| 168 |
c = ((2 >= e) >= 3); |
|
| 169 |
c = ((2 >= p1) >= 3); |
|
| 170 | 170 |
|
| 171 | 171 |
e[x[3]]=2; |
| 172 | 172 |
e[x[3]]=4; |
| 173 | 173 |
e[x[3]]=1; |
| 174 | 174 |
*e=12; |
| 175 | 175 |
|
| 176 | 176 |
lp.addRow(-LP::INF,e,23); |
| 177 | 177 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23); |
| 178 | 178 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23); |
| 179 | 179 |
|
| 180 | 180 |
lp.addRow(x[1]+x[3]<=x[5]-3); |
| 181 |
lp.addRow(-7<=x[1]+x[3]-12<=3); |
|
| 181 |
lp.addRow((-7<=x[1]+x[3]-12)<=3); |
|
| 182 | 182 |
lp.addRow(x[1]<=x[5]); |
| 183 | 183 |
|
| 184 | 184 |
std::ostringstream buf; |
| 185 | 185 |
|
| 186 | 186 |
|
| 187 | 187 |
e=((p1+p2)+(p1-0.99*p2)); |
| 188 | 188 |
//e.prettyPrint(std::cout); |
| 189 | 189 |
//(e<=2).prettyPrint(std::cout); |
| 190 | 190 |
double tolerance=0.001; |
| 191 | 191 |
e.simplify(tolerance); |
| 192 | 192 |
buf << "Coeff. of p2 should be 0.01"; |
| 193 | 193 |
check(e[p2]>0, buf.str()); |
| 194 | 194 |
|
| 195 | 195 |
tolerance=0.02; |
| 196 | 196 |
e.simplify(tolerance); |
| 197 | 197 |
buf << "Coeff. of p2 should be 0"; |
| 198 | 198 |
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str()); |
| 199 | 199 |
|
| 200 | 200 |
|
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
{
|
| 204 | 204 |
LP::DualExpr e,f,g; |
| 205 | 205 |
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID, |
| 206 | 206 |
p4 = INVALID, p5 = INVALID; |
| 207 | 207 |
|
| 208 | 208 |
e[p1]=2; |
| 209 | 209 |
e[p1]+=2; |
| 210 | 210 |
e[p1]-=2; |
| 211 | 211 |
|
| 212 | 212 |
e=p1; |
| 213 | 213 |
e=f; |
| 214 | 214 |
|
| 215 | 215 |
e+=p1; |
| 216 | 216 |
e+=f; |
| 217 | 217 |
|
| 218 | 218 |
e-=p1; |
| 219 | 219 |
e-=f; |
| 220 | 220 |
|
| 221 | 221 |
e*=2; |
| 222 | 222 |
e*=2.2; |
| 223 | 223 |
e/=2; |
| 224 | 224 |
e/=2.2; |
| 225 | 225 |
|
| 226 | 226 |
e=((p1+p2)+(p1-p2)+ |
| 227 | 227 |
(p1+f)+(f+p1)+(f+g)+ |
| 228 | 228 |
(p1-f)+(f-p1)+(f-g)+ |
| 229 | 229 |
2.2*f+f*2.2+f/2.2+ |
| 230 | 230 |
2*f+f*2+f/2+ |
| 231 | 231 |
2.2*p1+p1*2.2+p1/2.2+ |
| 232 | 232 |
2*p1+p1*2+p1/2 |
| 233 | 233 |
); |
| 234 | 234 |
} |
| 235 | 235 |
|
| 236 | 236 |
} |
| 237 | 237 |
|
| 238 | 238 |
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat, |
| 239 | 239 |
double exp_opt) {
|
| 240 | 240 |
using std::string; |
| 241 | 241 |
lp.solve(); |
| 242 | 242 |
|
| 243 | 243 |
std::ostringstream buf; |
| 244 | 244 |
buf << "PrimalType should be: " << int(stat) << int(lp.primalType()); |
| 245 | 245 |
|
| 246 | 246 |
check(lp.primalType()==stat, buf.str()); |
| 247 | 247 |
|
| 248 | 248 |
if (stat == LpSolver::OPTIMAL) {
|
| 249 | 249 |
std::ostringstream sbuf; |
| 250 | 250 |
sbuf << "Wrong optimal value: the right optimum is " << exp_opt; |
| 251 | 251 |
check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str()); |
| 252 | 252 |
} |
| 253 | 253 |
} |
| 254 | 254 |
|
| 255 | 255 |
void aTest(LpSolver & lp) |
| 256 | 256 |
{
|
| 257 | 257 |
typedef LpSolver LP; |
| 258 | 258 |
|
| 259 | 259 |
//The following example is very simple |
| 260 | 260 |
|
| 261 | 261 |
typedef LpSolver::Row Row; |
| 262 | 262 |
typedef LpSolver::Col Col; |
| 263 | 263 |
|
| 264 | 264 |
|
| 265 | 265 |
Col x1 = lp.addCol(); |
| 266 | 266 |
Col x2 = lp.addCol(); |
| 267 | 267 |
|
| 268 | 268 |
|
| 269 | 269 |
//Constraints |
| 270 | 270 |
Row upright=lp.addRow(x1+2*x2 <=1); |
| 271 | 271 |
lp.addRow(x1+x2 >=-1); |
| 272 | 272 |
lp.addRow(x1-x2 <=1); |
| 273 | 273 |
lp.addRow(x1-x2 >=-1); |
| 274 | 274 |
//Nonnegativity of the variables |
| 275 | 275 |
lp.colLowerBound(x1, 0); |
| 276 | 276 |
lp.colLowerBound(x2, 0); |
| 277 | 277 |
//Objective function |
| 278 | 278 |
lp.obj(x1+x2); |
| 279 | 279 |
|
| 280 | 280 |
lp.sense(lp.MAX); |
| 281 | 281 |
|
| 282 | 282 |
//Testing the problem retrieving routines |
| 283 | 283 |
check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
| 284 | 284 |
check(lp.sense() == lp.MAX,"This is a maximization!"); |
| 285 | 285 |
check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!"); |
| 286 | 286 |
check(lp.colLowerBound(x1)==0, |
| 287 | 287 |
"The lower bound for variable x1 should be 0."); |
| 288 | 288 |
check(lp.colUpperBound(x1)==LpSolver::INF, |
| 289 | 289 |
"The upper bound for variable x1 should be infty."); |
| 290 | 290 |
check(lp.rowLowerBound(upright) == -LpSolver::INF, |
| 291 | 291 |
"The lower bound for the first row should be -infty."); |
| 292 | 292 |
check(lp.rowUpperBound(upright)==1, |
| 293 | 293 |
"The upper bound for the first row should be 1."); |
| 294 | 294 |
LpSolver::Expr e = lp.row(upright); |
| 295 | 295 |
check(e[x1] == 1, "The first coefficient should 1."); |
| 296 | 296 |
check(e[x2] == 2, "The second coefficient should 1."); |
| 297 | 297 |
|
| 298 | 298 |
lp.row(upright, x1+x2 <=1); |
| 299 | 299 |
e = lp.row(upright); |
| 300 | 300 |
check(e[x1] == 1, "The first coefficient should 1."); |
| 301 | 301 |
check(e[x2] == 1, "The second coefficient should 1."); |
| 302 | 302 |
|
| 303 | 303 |
LpSolver::DualExpr de = lp.col(x1); |
| 304 | 304 |
check( de[upright] == 1, "The first coefficient should 1."); |
| 305 | 305 |
|
| 306 | 306 |
LpSolver* clp = lp.cloneSolver(); |
| 307 | 307 |
|
| 308 | 308 |
//Testing the problem retrieving routines |
| 309 | 309 |
check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
| 310 | 310 |
check(clp->sense() == clp->MAX,"This is a maximization!"); |
| 311 | 311 |
check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!"); |
| 312 | 312 |
// std::cout<<lp.colLowerBound(x1)<<std::endl; |
| 313 | 313 |
check(clp->colLowerBound(x1)==0, |
| 314 | 314 |
"The lower bound for variable x1 should be 0."); |
| 315 | 315 |
check(clp->colUpperBound(x1)==LpSolver::INF, |
| 316 | 316 |
"The upper bound for variable x1 should be infty."); |
| 317 | 317 |
|
| 318 | 318 |
check(lp.rowLowerBound(upright)==-LpSolver::INF, |
| 319 | 319 |
"The lower bound for the first row should be -infty."); |
| 320 | 320 |
check(lp.rowUpperBound(upright)==1, |
| 321 | 321 |
"The upper bound for the first row should be 1."); |
| 322 | 322 |
e = clp->row(upright); |
| 323 | 323 |
check(e[x1] == 1, "The first coefficient should 1."); |
| 324 | 324 |
check(e[x2] == 1, "The second coefficient should 1."); |
| 325 | 325 |
|
| 326 | 326 |
de = clp->col(x1); |
| 327 | 327 |
check(de[upright] == 1, "The first coefficient should 1."); |
| 328 | 328 |
|
| 329 | 329 |
delete clp; |
| 330 | 330 |
|
| 331 | 331 |
//Maximization of x1+x2 |
| 332 | 332 |
//over the triangle with vertices (0,0) (0,1) (1,0) |
| 333 | 333 |
double expected_opt=1; |
| 334 | 334 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
| 335 | 335 |
|
| 336 | 336 |
//Minimization |
| 337 | 337 |
lp.sense(lp.MIN); |
| 338 | 338 |
expected_opt=0; |
| 339 | 339 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
| 340 | 340 |
|
| 341 | 341 |
//Vertex (-1,0) instead of (0,0) |
| 342 | 342 |
lp.colLowerBound(x1, -LpSolver::INF); |
| 343 | 343 |
expected_opt=-1; |
| 344 | 344 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
| 345 | 345 |
|
| 346 | 346 |
//Erase one constraint and return to maximization |
| 347 | 347 |
lp.erase(upright); |
| 348 | 348 |
lp.sense(lp.MAX); |
| 349 | 349 |
expected_opt=LpSolver::INF; |
| 350 | 350 |
solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt); |
| 351 | 351 |
|
| 352 | 352 |
//Infeasibilty |
| 353 | 353 |
lp.addRow(x1+x2 <=-2); |
| 354 | 354 |
solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt); |
| 355 | 355 |
|
| 356 | 356 |
} |
| 357 | 357 |
|
| 358 | 358 |
int main() |
| 359 | 359 |
{
|
| 360 | 360 |
LpSkeleton lp_skel; |
| 361 | 361 |
lpTest(lp_skel); |
| 362 | 362 |
|
| 363 | 363 |
#ifdef HAVE_GLPK |
| 364 | 364 |
{
|
| 365 | 365 |
LpGlpk lp_glpk1,lp_glpk2; |
| 366 | 366 |
lpTest(lp_glpk1); |
| 367 | 367 |
aTest(lp_glpk2); |
| 368 | 368 |
} |
| 369 | 369 |
#endif |
| 370 | 370 |
|
| 371 | 371 |
#ifdef HAVE_CPLEX |
| 372 | 372 |
try {
|
| 373 | 373 |
LpCplex lp_cplex1,lp_cplex2; |
0 comments (0 inline)