0
2
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MAX_MATCHING_H |
| 20 | 20 |
#define LEMON_MAX_MATCHING_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <queue> |
| 24 | 24 |
#include <set> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/unionfind.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
|
| 32 | 32 |
///\ingroup matching |
| 33 | 33 |
///\file |
| 34 | 34 |
///\brief Maximum matching algorithms in general graphs. |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
/// \ingroup matching |
| 39 | 39 |
/// |
| 40 | 40 |
/// \brief Maximum cardinality matching in general graphs |
| 41 | 41 |
/// |
| 42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
| 43 |
/// for finding a maximum cardinality matching in a general graph. |
|
| 43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
|
| 44 | 44 |
/// It can be started from an arbitrary initial matching |
| 45 | 45 |
/// (the default is the empty one). |
| 46 | 46 |
/// |
| 47 | 47 |
/// The dual solution of the problem is a map of the nodes to |
| 48 | 48 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
| 49 | 49 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
| 50 | 50 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
| 51 | 51 |
/// with factor-critical components, the nodes in \c ODD/A form the |
| 52 | 52 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
| 53 | 53 |
/// a perfect matching. The number of the factor-critical components |
| 54 | 54 |
/// minus the number of barrier nodes is a lower bound on the |
| 55 | 55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
| 56 |
/// tight. This decomposition can be obtained by calling \c |
|
| 57 |
/// decomposition() after running the algorithm. |
|
| 56 |
/// tight. This decomposition can be obtained using \ref status() or |
|
| 57 |
/// \ref statusMap() after running the algorithm. |
|
| 58 | 58 |
/// |
| 59 |
/// \tparam GR The graph type the algorithm runs on. |
|
| 59 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 60 | 60 |
template <typename GR> |
| 61 | 61 |
class MaxMatching {
|
| 62 | 62 |
public: |
| 63 | 63 |
|
| 64 | 64 |
/// The graph type of the algorithm |
| 65 | 65 |
typedef GR Graph; |
| 66 |
/// The type of the matching map |
|
| 66 | 67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 67 | 68 |
MatchingMap; |
| 68 | 69 |
|
| 69 | 70 |
///\brief Status constants for Gallai-Edmonds decomposition. |
| 70 | 71 |
/// |
| 71 | 72 |
///These constants are used for indicating the Gallai-Edmonds |
| 72 | 73 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
| 73 | 74 |
///induce a subgraph with factor-critical components, the nodes with |
| 74 | 75 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
| 75 | 76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
| 76 | 77 |
///perfect matching. |
| 77 | 78 |
enum Status {
|
| 78 | 79 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
| 79 | 80 |
D = 1, |
| 80 | 81 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
| 81 | 82 |
C = 0, |
| 82 | 83 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
| 83 | 84 |
A = -1, |
| 84 | 85 |
UNMATCHED = -2 ///< = -2. |
| 85 | 86 |
}; |
| 86 | 87 |
|
| 88 |
/// The type of the status map |
|
| 87 | 89 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
| 88 | 90 |
|
| 89 | 91 |
private: |
| 90 | 92 |
|
| 91 | 93 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 92 | 94 |
|
| 93 | 95 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
| 94 | 96 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| 95 | 97 |
typedef RangeMap<Node> NodeIntMap; |
| 96 | 98 |
typedef MatchingMap EarMap; |
| 97 | 99 |
typedef std::vector<Node> NodeQueue; |
| 98 | 100 |
|
| 99 | 101 |
const Graph& _graph; |
| 100 | 102 |
MatchingMap* _matching; |
| 101 | 103 |
StatusMap* _status; |
| 102 | 104 |
|
| 103 | 105 |
EarMap* _ear; |
| 104 | 106 |
|
| 105 | 107 |
IntNodeMap* _blossom_set_index; |
| 106 | 108 |
BlossomSet* _blossom_set; |
| 107 | 109 |
NodeIntMap* _blossom_rep; |
| 108 | 110 |
|
| 109 | 111 |
IntNodeMap* _tree_set_index; |
| 110 | 112 |
TreeSet* _tree_set; |
| 111 | 113 |
|
| 112 | 114 |
NodeQueue _node_queue; |
| 113 | 115 |
int _process, _postpone, _last; |
| 114 | 116 |
|
| 115 | 117 |
int _node_num; |
| 116 | 118 |
|
| 117 | 119 |
private: |
| 118 | 120 |
|
| 119 | 121 |
void createStructures() {
|
| 120 | 122 |
_node_num = countNodes(_graph); |
| 121 | 123 |
if (!_matching) {
|
| 122 | 124 |
_matching = new MatchingMap(_graph); |
| 123 | 125 |
} |
| 124 | 126 |
if (!_status) {
|
| 125 | 127 |
_status = new StatusMap(_graph); |
| 126 | 128 |
} |
| 127 | 129 |
if (!_ear) {
|
| 128 | 130 |
_ear = new EarMap(_graph); |
| 129 | 131 |
} |
| 130 | 132 |
if (!_blossom_set) {
|
| 131 | 133 |
_blossom_set_index = new IntNodeMap(_graph); |
| 132 | 134 |
_blossom_set = new BlossomSet(*_blossom_set_index); |
| 133 | 135 |
} |
| 134 | 136 |
if (!_blossom_rep) {
|
| 135 | 137 |
_blossom_rep = new NodeIntMap(_node_num); |
| 136 | 138 |
} |
| 137 | 139 |
if (!_tree_set) {
|
| 138 | 140 |
_tree_set_index = new IntNodeMap(_graph); |
| 139 | 141 |
_tree_set = new TreeSet(*_tree_set_index); |
| 140 | 142 |
} |
| 141 | 143 |
_node_queue.resize(_node_num); |
| 142 | 144 |
} |
| 143 | 145 |
|
| 144 | 146 |
void destroyStructures() {
|
| 145 | 147 |
if (_matching) {
|
| 146 | 148 |
delete _matching; |
| 147 | 149 |
} |
| 148 | 150 |
if (_status) {
|
| 149 | 151 |
delete _status; |
| 150 | 152 |
} |
| 151 | 153 |
if (_ear) {
|
| 152 | 154 |
delete _ear; |
| 153 | 155 |
} |
| 154 | 156 |
if (_blossom_set) {
|
| 155 | 157 |
delete _blossom_set; |
| 156 | 158 |
delete _blossom_set_index; |
| 157 | 159 |
} |
| 158 | 160 |
if (_blossom_rep) {
|
| 159 | 161 |
delete _blossom_rep; |
| 160 | 162 |
} |
| 161 | 163 |
if (_tree_set) {
|
| 162 | 164 |
delete _tree_set_index; |
| 163 | 165 |
delete _tree_set; |
| 164 | 166 |
} |
| 165 | 167 |
} |
| 166 | 168 |
|
| 167 | 169 |
void processDense(const Node& n) {
|
| 168 | 170 |
_process = _postpone = _last = 0; |
| 169 | 171 |
_node_queue[_last++] = n; |
| 170 | 172 |
|
| 171 | 173 |
while (_process != _last) {
|
| 172 | 174 |
Node u = _node_queue[_process++]; |
| 173 | 175 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
| 174 | 176 |
Node v = _graph.target(a); |
| 175 | 177 |
if ((*_status)[v] == MATCHED) {
|
| 176 | 178 |
extendOnArc(a); |
| 177 | 179 |
} else if ((*_status)[v] == UNMATCHED) {
|
| 178 | 180 |
augmentOnArc(a); |
| 179 | 181 |
return; |
| 180 | 182 |
} |
| 181 | 183 |
} |
| 182 | 184 |
} |
| ... | ... |
@@ -490,290 +492,308 @@ |
| 490 | 492 |
(*_status)[v] = MATCHED; |
| 491 | 493 |
} |
| 492 | 494 |
} |
| 493 | 495 |
return true; |
| 494 | 496 |
} |
| 495 | 497 |
|
| 496 | 498 |
/// \brief Start Edmonds' algorithm |
| 497 | 499 |
/// |
| 498 | 500 |
/// This function runs the original Edmonds' algorithm. |
| 499 | 501 |
/// |
| 500 | 502 |
/// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be |
| 501 | 503 |
/// called before using this function. |
| 502 | 504 |
void startSparse() {
|
| 503 | 505 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 504 | 506 |
if ((*_status)[n] == UNMATCHED) {
|
| 505 | 507 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 506 | 508 |
_tree_set->insert(n); |
| 507 | 509 |
(*_status)[n] = EVEN; |
| 508 | 510 |
processSparse(n); |
| 509 | 511 |
} |
| 510 | 512 |
} |
| 511 | 513 |
} |
| 512 | 514 |
|
| 513 | 515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
| 514 | 516 |
/// for dense graphs |
| 515 | 517 |
/// |
| 516 | 518 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
| 517 | 519 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
| 518 | 520 |
/// |
| 519 | 521 |
/// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be |
| 520 | 522 |
/// called before using this function. |
| 521 | 523 |
void startDense() {
|
| 522 | 524 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 523 | 525 |
if ((*_status)[n] == UNMATCHED) {
|
| 524 | 526 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 525 | 527 |
_tree_set->insert(n); |
| 526 | 528 |
(*_status)[n] = EVEN; |
| 527 | 529 |
processDense(n); |
| 528 | 530 |
} |
| 529 | 531 |
} |
| 530 | 532 |
} |
| 531 | 533 |
|
| 532 | 534 |
|
| 533 | 535 |
/// \brief Run Edmonds' algorithm |
| 534 | 536 |
/// |
| 535 | 537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
| 536 | 538 |
/// postponing shrinks is used for relatively dense graphs |
| 537 | 539 |
/// (for which <tt>m>=2*n</tt> holds). |
| 538 | 540 |
void run() {
|
| 539 | 541 |
if (countEdges(_graph) < 2 * countNodes(_graph)) {
|
| 540 | 542 |
greedyInit(); |
| 541 | 543 |
startSparse(); |
| 542 | 544 |
} else {
|
| 543 | 545 |
init(); |
| 544 | 546 |
startDense(); |
| 545 | 547 |
} |
| 546 | 548 |
} |
| 547 | 549 |
|
| 548 | 550 |
/// @} |
| 549 | 551 |
|
| 550 | 552 |
/// \name Primal Solution |
| 551 | 553 |
/// Functions to get the primal solution, i.e. the maximum matching. |
| 552 | 554 |
|
| 553 | 555 |
/// @{
|
| 554 | 556 |
|
| 555 | 557 |
/// \brief Return the size (cardinality) of the matching. |
| 556 | 558 |
/// |
| 557 | 559 |
/// This function returns the size (cardinality) of the current matching. |
| 558 | 560 |
/// After run() it returns the size of the maximum matching in the graph. |
| 559 | 561 |
int matchingSize() const {
|
| 560 | 562 |
int size = 0; |
| 561 | 563 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 562 | 564 |
if ((*_matching)[n] != INVALID) {
|
| 563 | 565 |
++size; |
| 564 | 566 |
} |
| 565 | 567 |
} |
| 566 | 568 |
return size / 2; |
| 567 | 569 |
} |
| 568 | 570 |
|
| 569 | 571 |
/// \brief Return \c true if the given edge is in the matching. |
| 570 | 572 |
/// |
| 571 | 573 |
/// This function returns \c true if the given edge is in the current |
| 572 | 574 |
/// matching. |
| 573 | 575 |
bool matching(const Edge& edge) const {
|
| 574 | 576 |
return edge == (*_matching)[_graph.u(edge)]; |
| 575 | 577 |
} |
| 576 | 578 |
|
| 577 | 579 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 578 | 580 |
/// |
| 579 | 581 |
/// This function returns the matching arc (or edge) incident to the |
| 580 | 582 |
/// given node in the current matching or \c INVALID if the node is |
| 581 | 583 |
/// not covered by the matching. |
| 582 | 584 |
Arc matching(const Node& n) const {
|
| 583 | 585 |
return (*_matching)[n]; |
| 584 | 586 |
} |
| 585 | 587 |
|
| 588 |
/// \brief Return a const reference to the matching map. |
|
| 589 |
/// |
|
| 590 |
/// This function returns a const reference to a node map that stores |
|
| 591 |
/// the matching arc (or edge) incident to each node. |
|
| 592 |
const MatchingMap& matchingMap() const {
|
|
| 593 |
return *_matching; |
|
| 594 |
} |
|
| 595 |
|
|
| 586 | 596 |
/// \brief Return the mate of the given node. |
| 587 | 597 |
/// |
| 588 | 598 |
/// This function returns the mate of the given node in the current |
| 589 | 599 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 590 | 600 |
Node mate(const Node& n) const {
|
| 591 | 601 |
return (*_matching)[n] != INVALID ? |
| 592 | 602 |
_graph.target((*_matching)[n]) : INVALID; |
| 593 | 603 |
} |
| 594 | 604 |
|
| 595 | 605 |
/// @} |
| 596 | 606 |
|
| 597 | 607 |
/// \name Dual Solution |
| 598 | 608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
| 599 | 609 |
/// decomposition. |
| 600 | 610 |
|
| 601 | 611 |
/// @{
|
| 602 | 612 |
|
| 603 | 613 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
| 604 | 614 |
/// decomposition. |
| 605 | 615 |
/// |
| 606 | 616 |
/// This function returns the \ref Status "status" of the given node |
| 607 | 617 |
/// in the Edmonds-Gallai decomposition. |
| 608 |
Status |
|
| 618 |
Status status(const Node& n) const {
|
|
| 609 | 619 |
return (*_status)[n]; |
| 610 | 620 |
} |
| 611 | 621 |
|
| 622 |
/// \brief Return a const reference to the status map, which stores |
|
| 623 |
/// the Edmonds-Gallai decomposition. |
|
| 624 |
/// |
|
| 625 |
/// This function returns a const reference to a node map that stores the |
|
| 626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
|
| 627 |
const StatusMap& statusMap() const {
|
|
| 628 |
return *_status; |
|
| 629 |
} |
|
| 630 |
|
|
| 612 | 631 |
/// \brief Return \c true if the given node is in the barrier. |
| 613 | 632 |
/// |
| 614 | 633 |
/// This function returns \c true if the given node is in the barrier. |
| 615 | 634 |
bool barrier(const Node& n) const {
|
| 616 | 635 |
return (*_status)[n] == ODD; |
| 617 | 636 |
} |
| 618 | 637 |
|
| 619 | 638 |
/// @} |
| 620 | 639 |
|
| 621 | 640 |
}; |
| 622 | 641 |
|
| 623 | 642 |
/// \ingroup matching |
| 624 | 643 |
/// |
| 625 | 644 |
/// \brief Weighted matching in general graphs |
| 626 | 645 |
/// |
| 627 | 646 |
/// This class provides an efficient implementation of Edmond's |
| 628 | 647 |
/// maximum weighted matching algorithm. The implementation is based |
| 629 | 648 |
/// on extensive use of priority queues and provides |
| 630 | 649 |
/// \f$O(nm\log n)\f$ time complexity. |
| 631 | 650 |
/// |
| 632 | 651 |
/// The maximum weighted matching problem is to find a subset of the |
| 633 | 652 |
/// edges in an undirected graph with maximum overall weight for which |
| 634 | 653 |
/// each node has at most one incident edge. |
| 635 | 654 |
/// It can be formulated with the following linear program. |
| 636 | 655 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
| 637 | 656 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 638 | 657 |
\quad \forall B\in\mathcal{O}\f] */
|
| 639 | 658 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 640 | 659 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 641 | 660 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 642 | 661 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 643 | 662 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
| 644 | 663 |
/// subsets of the nodes. |
| 645 | 664 |
/// |
| 646 | 665 |
/// The algorithm calculates an optimal matching and a proof of the |
| 647 | 666 |
/// optimality. The solution of the dual problem can be used to check |
| 648 | 667 |
/// the result of the algorithm. The dual linear problem is the |
| 649 | 668 |
/// following. |
| 650 | 669 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
|
| 651 | 670 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */
|
| 652 | 671 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 653 | 672 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 654 | 673 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 655 | 674 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 656 | 675 |
/// |
| 657 | 676 |
/// The algorithm can be executed with the run() function. |
| 658 | 677 |
/// After it the matching (the primal solution) and the dual solution |
| 659 | 678 |
/// can be obtained using the query functions and the |
| 660 | 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
| 661 | 680 |
/// which is able to iterate on the nodes of a blossom. |
| 662 | 681 |
/// If the value type is integer, then the dual solution is multiplied |
| 663 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 664 | 683 |
/// |
| 665 |
/// \tparam GR The graph type the algorithm runs on. |
|
| 684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 666 | 685 |
/// \tparam WM The type edge weight map. The default type is |
| 667 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 668 | 687 |
#ifdef DOXYGEN |
| 669 | 688 |
template <typename GR, typename WM> |
| 670 | 689 |
#else |
| 671 | 690 |
template <typename GR, |
| 672 | 691 |
typename WM = typename GR::template EdgeMap<int> > |
| 673 | 692 |
#endif |
| 674 | 693 |
class MaxWeightedMatching {
|
| 675 | 694 |
public: |
| 676 | 695 |
|
| 677 | 696 |
/// The graph type of the algorithm |
| 678 | 697 |
typedef GR Graph; |
| 679 | 698 |
/// The type of the edge weight map |
| 680 | 699 |
typedef WM WeightMap; |
| 681 | 700 |
/// The value type of the edge weights |
| 682 | 701 |
typedef typename WeightMap::Value Value; |
| 683 | 702 |
|
| 703 |
/// The type of the matching map |
|
| 684 | 704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 685 | 705 |
MatchingMap; |
| 686 | 706 |
|
| 687 | 707 |
/// \brief Scaling factor for dual solution |
| 688 | 708 |
/// |
| 689 | 709 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
| 690 | 710 |
/// according to the value type. |
| 691 | 711 |
static const int dualScale = |
| 692 | 712 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 693 | 713 |
|
| 694 | 714 |
private: |
| 695 | 715 |
|
| 696 | 716 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 697 | 717 |
|
| 698 | 718 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 699 | 719 |
typedef std::vector<Node> BlossomNodeList; |
| 700 | 720 |
|
| 701 | 721 |
struct BlossomVariable {
|
| 702 | 722 |
int begin, end; |
| 703 | 723 |
Value value; |
| 704 | 724 |
|
| 705 | 725 |
BlossomVariable(int _begin, int _end, Value _value) |
| 706 | 726 |
: begin(_begin), end(_end), value(_value) {}
|
| 707 | 727 |
|
| 708 | 728 |
}; |
| 709 | 729 |
|
| 710 | 730 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 711 | 731 |
|
| 712 | 732 |
const Graph& _graph; |
| 713 | 733 |
const WeightMap& _weight; |
| 714 | 734 |
|
| 715 | 735 |
MatchingMap* _matching; |
| 716 | 736 |
|
| 717 | 737 |
NodePotential* _node_potential; |
| 718 | 738 |
|
| 719 | 739 |
BlossomPotential _blossom_potential; |
| 720 | 740 |
BlossomNodeList _blossom_node_list; |
| 721 | 741 |
|
| 722 | 742 |
int _node_num; |
| 723 | 743 |
int _blossom_num; |
| 724 | 744 |
|
| 725 | 745 |
typedef RangeMap<int> IntIntMap; |
| 726 | 746 |
|
| 727 | 747 |
enum Status {
|
| 728 | 748 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
| 729 | 749 |
}; |
| 730 | 750 |
|
| 731 | 751 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 732 | 752 |
struct BlossomData {
|
| 733 | 753 |
int tree; |
| 734 | 754 |
Status status; |
| 735 | 755 |
Arc pred, next; |
| 736 | 756 |
Value pot, offset; |
| 737 | 757 |
Node base; |
| 738 | 758 |
}; |
| 739 | 759 |
|
| 740 | 760 |
IntNodeMap *_blossom_index; |
| 741 | 761 |
BlossomSet *_blossom_set; |
| 742 | 762 |
RangeMap<BlossomData>* _blossom_data; |
| 743 | 763 |
|
| 744 | 764 |
IntNodeMap *_node_index; |
| 745 | 765 |
IntArcMap *_node_heap_index; |
| 746 | 766 |
|
| 747 | 767 |
struct NodeData {
|
| 748 | 768 |
|
| 749 | 769 |
NodeData(IntArcMap& node_heap_index) |
| 750 | 770 |
: heap(node_heap_index) {}
|
| 751 | 771 |
|
| 752 | 772 |
int blossom; |
| 753 | 773 |
Value pot; |
| 754 | 774 |
BinHeap<Value, IntArcMap> heap; |
| 755 | 775 |
std::map<int, Arc> heap_index; |
| 756 | 776 |
|
| 757 | 777 |
int tree; |
| 758 | 778 |
}; |
| 759 | 779 |
|
| 760 | 780 |
RangeMap<NodeData>* _node_data; |
| 761 | 781 |
|
| 762 | 782 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 763 | 783 |
|
| 764 | 784 |
IntIntMap *_tree_set_index; |
| 765 | 785 |
TreeSet *_tree_set; |
| 766 | 786 |
|
| 767 | 787 |
IntNodeMap *_delta1_index; |
| 768 | 788 |
BinHeap<Value, IntNodeMap> *_delta1; |
| 769 | 789 |
|
| 770 | 790 |
IntIntMap *_delta2_index; |
| 771 | 791 |
BinHeap<Value, IntIntMap> *_delta2; |
| 772 | 792 |
|
| 773 | 793 |
IntEdgeMap *_delta3_index; |
| 774 | 794 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 775 | 795 |
|
| 776 | 796 |
IntIntMap *_delta4_index; |
| 777 | 797 |
BinHeap<Value, IntIntMap> *_delta4; |
| 778 | 798 |
|
| 779 | 799 |
Value _delta_sum; |
| ... | ... |
@@ -1736,439 +1756,448 @@ |
| 1736 | 1756 |
|
| 1737 | 1757 |
Value d4 = !_delta4->empty() ? |
| 1738 | 1758 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1739 | 1759 |
|
| 1740 | 1760 |
_delta_sum = d1; OpType ot = D1; |
| 1741 | 1761 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1742 | 1762 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
| 1743 | 1763 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1744 | 1764 |
|
| 1745 | 1765 |
|
| 1746 | 1766 |
switch (ot) {
|
| 1747 | 1767 |
case D1: |
| 1748 | 1768 |
{
|
| 1749 | 1769 |
Node n = _delta1->top(); |
| 1750 | 1770 |
unmatchNode(n); |
| 1751 | 1771 |
--unmatched; |
| 1752 | 1772 |
} |
| 1753 | 1773 |
break; |
| 1754 | 1774 |
case D2: |
| 1755 | 1775 |
{
|
| 1756 | 1776 |
int blossom = _delta2->top(); |
| 1757 | 1777 |
Node n = _blossom_set->classTop(blossom); |
| 1758 | 1778 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 1759 | 1779 |
extendOnArc(e); |
| 1760 | 1780 |
} |
| 1761 | 1781 |
break; |
| 1762 | 1782 |
case D3: |
| 1763 | 1783 |
{
|
| 1764 | 1784 |
Edge e = _delta3->top(); |
| 1765 | 1785 |
|
| 1766 | 1786 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1767 | 1787 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1768 | 1788 |
|
| 1769 | 1789 |
if (left_blossom == right_blossom) {
|
| 1770 | 1790 |
_delta3->pop(); |
| 1771 | 1791 |
} else {
|
| 1772 | 1792 |
int left_tree; |
| 1773 | 1793 |
if ((*_blossom_data)[left_blossom].status == EVEN) {
|
| 1774 | 1794 |
left_tree = _tree_set->find(left_blossom); |
| 1775 | 1795 |
} else {
|
| 1776 | 1796 |
left_tree = -1; |
| 1777 | 1797 |
++unmatched; |
| 1778 | 1798 |
} |
| 1779 | 1799 |
int right_tree; |
| 1780 | 1800 |
if ((*_blossom_data)[right_blossom].status == EVEN) {
|
| 1781 | 1801 |
right_tree = _tree_set->find(right_blossom); |
| 1782 | 1802 |
} else {
|
| 1783 | 1803 |
right_tree = -1; |
| 1784 | 1804 |
++unmatched; |
| 1785 | 1805 |
} |
| 1786 | 1806 |
|
| 1787 | 1807 |
if (left_tree == right_tree) {
|
| 1788 | 1808 |
shrinkOnEdge(e, left_tree); |
| 1789 | 1809 |
} else {
|
| 1790 | 1810 |
augmentOnEdge(e); |
| 1791 | 1811 |
unmatched -= 2; |
| 1792 | 1812 |
} |
| 1793 | 1813 |
} |
| 1794 | 1814 |
} break; |
| 1795 | 1815 |
case D4: |
| 1796 | 1816 |
splitBlossom(_delta4->top()); |
| 1797 | 1817 |
break; |
| 1798 | 1818 |
} |
| 1799 | 1819 |
} |
| 1800 | 1820 |
extractMatching(); |
| 1801 | 1821 |
} |
| 1802 | 1822 |
|
| 1803 | 1823 |
/// \brief Run the algorithm. |
| 1804 | 1824 |
/// |
| 1805 | 1825 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
| 1806 | 1826 |
/// |
| 1807 | 1827 |
/// \note mwm.run() is just a shortcut of the following code. |
| 1808 | 1828 |
/// \code |
| 1809 | 1829 |
/// mwm.init(); |
| 1810 | 1830 |
/// mwm.start(); |
| 1811 | 1831 |
/// \endcode |
| 1812 | 1832 |
void run() {
|
| 1813 | 1833 |
init(); |
| 1814 | 1834 |
start(); |
| 1815 | 1835 |
} |
| 1816 | 1836 |
|
| 1817 | 1837 |
/// @} |
| 1818 | 1838 |
|
| 1819 | 1839 |
/// \name Primal Solution |
| 1820 | 1840 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 1821 | 1841 |
/// matching.\n |
| 1822 | 1842 |
/// Either \ref run() or \ref start() function should be called before |
| 1823 | 1843 |
/// using them. |
| 1824 | 1844 |
|
| 1825 | 1845 |
/// @{
|
| 1826 | 1846 |
|
| 1827 | 1847 |
/// \brief Return the weight of the matching. |
| 1828 | 1848 |
/// |
| 1829 | 1849 |
/// This function returns the weight of the found matching. |
| 1830 | 1850 |
/// |
| 1831 | 1851 |
/// \pre Either run() or start() must be called before using this function. |
| 1832 |
Value |
|
| 1852 |
Value matchingWeight() const {
|
|
| 1833 | 1853 |
Value sum = 0; |
| 1834 | 1854 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1835 | 1855 |
if ((*_matching)[n] != INVALID) {
|
| 1836 | 1856 |
sum += _weight[(*_matching)[n]]; |
| 1837 | 1857 |
} |
| 1838 | 1858 |
} |
| 1839 | 1859 |
return sum /= 2; |
| 1840 | 1860 |
} |
| 1841 | 1861 |
|
| 1842 | 1862 |
/// \brief Return the size (cardinality) of the matching. |
| 1843 | 1863 |
/// |
| 1844 | 1864 |
/// This function returns the size (cardinality) of the found matching. |
| 1845 | 1865 |
/// |
| 1846 | 1866 |
/// \pre Either run() or start() must be called before using this function. |
| 1847 | 1867 |
int matchingSize() const {
|
| 1848 | 1868 |
int num = 0; |
| 1849 | 1869 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1850 | 1870 |
if ((*_matching)[n] != INVALID) {
|
| 1851 | 1871 |
++num; |
| 1852 | 1872 |
} |
| 1853 | 1873 |
} |
| 1854 | 1874 |
return num /= 2; |
| 1855 | 1875 |
} |
| 1856 | 1876 |
|
| 1857 | 1877 |
/// \brief Return \c true if the given edge is in the matching. |
| 1858 | 1878 |
/// |
| 1859 | 1879 |
/// This function returns \c true if the given edge is in the found |
| 1860 | 1880 |
/// matching. |
| 1861 | 1881 |
/// |
| 1862 | 1882 |
/// \pre Either run() or start() must be called before using this function. |
| 1863 | 1883 |
bool matching(const Edge& edge) const {
|
| 1864 | 1884 |
return edge == (*_matching)[_graph.u(edge)]; |
| 1865 | 1885 |
} |
| 1866 | 1886 |
|
| 1867 | 1887 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 1868 | 1888 |
/// |
| 1869 | 1889 |
/// This function returns the matching arc (or edge) incident to the |
| 1870 | 1890 |
/// given node in the found matching or \c INVALID if the node is |
| 1871 | 1891 |
/// not covered by the matching. |
| 1872 | 1892 |
/// |
| 1873 | 1893 |
/// \pre Either run() or start() must be called before using this function. |
| 1874 | 1894 |
Arc matching(const Node& node) const {
|
| 1875 | 1895 |
return (*_matching)[node]; |
| 1876 | 1896 |
} |
| 1877 | 1897 |
|
| 1898 |
/// \brief Return a const reference to the matching map. |
|
| 1899 |
/// |
|
| 1900 |
/// This function returns a const reference to a node map that stores |
|
| 1901 |
/// the matching arc (or edge) incident to each node. |
|
| 1902 |
const MatchingMap& matchingMap() const {
|
|
| 1903 |
return *_matching; |
|
| 1904 |
} |
|
| 1905 |
|
|
| 1878 | 1906 |
/// \brief Return the mate of the given node. |
| 1879 | 1907 |
/// |
| 1880 | 1908 |
/// This function returns the mate of the given node in the found |
| 1881 | 1909 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 1882 | 1910 |
/// |
| 1883 | 1911 |
/// \pre Either run() or start() must be called before using this function. |
| 1884 | 1912 |
Node mate(const Node& node) const {
|
| 1885 | 1913 |
return (*_matching)[node] != INVALID ? |
| 1886 | 1914 |
_graph.target((*_matching)[node]) : INVALID; |
| 1887 | 1915 |
} |
| 1888 | 1916 |
|
| 1889 | 1917 |
/// @} |
| 1890 | 1918 |
|
| 1891 | 1919 |
/// \name Dual Solution |
| 1892 | 1920 |
/// Functions to get the dual solution.\n |
| 1893 | 1921 |
/// Either \ref run() or \ref start() function should be called before |
| 1894 | 1922 |
/// using them. |
| 1895 | 1923 |
|
| 1896 | 1924 |
/// @{
|
| 1897 | 1925 |
|
| 1898 | 1926 |
/// \brief Return the value of the dual solution. |
| 1899 | 1927 |
/// |
| 1900 | 1928 |
/// This function returns the value of the dual solution. |
| 1901 | 1929 |
/// It should be equal to the primal value scaled by \ref dualScale |
| 1902 | 1930 |
/// "dual scale". |
| 1903 | 1931 |
/// |
| 1904 | 1932 |
/// \pre Either run() or start() must be called before using this function. |
| 1905 | 1933 |
Value dualValue() const {
|
| 1906 | 1934 |
Value sum = 0; |
| 1907 | 1935 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1908 | 1936 |
sum += nodeValue(n); |
| 1909 | 1937 |
} |
| 1910 | 1938 |
for (int i = 0; i < blossomNum(); ++i) {
|
| 1911 | 1939 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
| 1912 | 1940 |
} |
| 1913 | 1941 |
return sum; |
| 1914 | 1942 |
} |
| 1915 | 1943 |
|
| 1916 | 1944 |
/// \brief Return the dual value (potential) of the given node. |
| 1917 | 1945 |
/// |
| 1918 | 1946 |
/// This function returns the dual value (potential) of the given node. |
| 1919 | 1947 |
/// |
| 1920 | 1948 |
/// \pre Either run() or start() must be called before using this function. |
| 1921 | 1949 |
Value nodeValue(const Node& n) const {
|
| 1922 | 1950 |
return (*_node_potential)[n]; |
| 1923 | 1951 |
} |
| 1924 | 1952 |
|
| 1925 | 1953 |
/// \brief Return the number of the blossoms in the basis. |
| 1926 | 1954 |
/// |
| 1927 | 1955 |
/// This function returns the number of the blossoms in the basis. |
| 1928 | 1956 |
/// |
| 1929 | 1957 |
/// \pre Either run() or start() must be called before using this function. |
| 1930 | 1958 |
/// \see BlossomIt |
| 1931 | 1959 |
int blossomNum() const {
|
| 1932 | 1960 |
return _blossom_potential.size(); |
| 1933 | 1961 |
} |
| 1934 | 1962 |
|
| 1935 | 1963 |
/// \brief Return the number of the nodes in the given blossom. |
| 1936 | 1964 |
/// |
| 1937 | 1965 |
/// This function returns the number of the nodes in the given blossom. |
| 1938 | 1966 |
/// |
| 1939 | 1967 |
/// \pre Either run() or start() must be called before using this function. |
| 1940 | 1968 |
/// \see BlossomIt |
| 1941 | 1969 |
int blossomSize(int k) const {
|
| 1942 | 1970 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
| 1943 | 1971 |
} |
| 1944 | 1972 |
|
| 1945 | 1973 |
/// \brief Return the dual value (ptential) of the given blossom. |
| 1946 | 1974 |
/// |
| 1947 | 1975 |
/// This function returns the dual value (ptential) of the given blossom. |
| 1948 | 1976 |
/// |
| 1949 | 1977 |
/// \pre Either run() or start() must be called before using this function. |
| 1950 | 1978 |
Value blossomValue(int k) const {
|
| 1951 | 1979 |
return _blossom_potential[k].value; |
| 1952 | 1980 |
} |
| 1953 | 1981 |
|
| 1954 | 1982 |
/// \brief Iterator for obtaining the nodes of a blossom. |
| 1955 | 1983 |
/// |
| 1956 | 1984 |
/// This class provides an iterator for obtaining the nodes of the |
| 1957 | 1985 |
/// given blossom. It lists a subset of the nodes. |
| 1958 | 1986 |
/// Before using this iterator, you must allocate a |
| 1959 | 1987 |
/// MaxWeightedMatching class and execute it. |
| 1960 | 1988 |
class BlossomIt {
|
| 1961 | 1989 |
public: |
| 1962 | 1990 |
|
| 1963 | 1991 |
/// \brief Constructor. |
| 1964 | 1992 |
/// |
| 1965 | 1993 |
/// Constructor to get the nodes of the given variable. |
| 1966 | 1994 |
/// |
| 1967 | 1995 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
| 1968 | 1996 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
| 1969 | 1997 |
/// called before initializing this iterator. |
| 1970 | 1998 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
| 1971 | 1999 |
: _algorithm(&algorithm) |
| 1972 | 2000 |
{
|
| 1973 | 2001 |
_index = _algorithm->_blossom_potential[variable].begin; |
| 1974 | 2002 |
_last = _algorithm->_blossom_potential[variable].end; |
| 1975 | 2003 |
} |
| 1976 | 2004 |
|
| 1977 | 2005 |
/// \brief Conversion to \c Node. |
| 1978 | 2006 |
/// |
| 1979 | 2007 |
/// Conversion to \c Node. |
| 1980 | 2008 |
operator Node() const {
|
| 1981 | 2009 |
return _algorithm->_blossom_node_list[_index]; |
| 1982 | 2010 |
} |
| 1983 | 2011 |
|
| 1984 | 2012 |
/// \brief Increment operator. |
| 1985 | 2013 |
/// |
| 1986 | 2014 |
/// Increment operator. |
| 1987 | 2015 |
BlossomIt& operator++() {
|
| 1988 | 2016 |
++_index; |
| 1989 | 2017 |
return *this; |
| 1990 | 2018 |
} |
| 1991 | 2019 |
|
| 1992 | 2020 |
/// \brief Validity checking |
| 1993 | 2021 |
/// |
| 1994 | 2022 |
/// Checks whether the iterator is invalid. |
| 1995 | 2023 |
bool operator==(Invalid) const { return _index == _last; }
|
| 1996 | 2024 |
|
| 1997 | 2025 |
/// \brief Validity checking |
| 1998 | 2026 |
/// |
| 1999 | 2027 |
/// Checks whether the iterator is valid. |
| 2000 | 2028 |
bool operator!=(Invalid) const { return _index != _last; }
|
| 2001 | 2029 |
|
| 2002 | 2030 |
private: |
| 2003 | 2031 |
const MaxWeightedMatching* _algorithm; |
| 2004 | 2032 |
int _last; |
| 2005 | 2033 |
int _index; |
| 2006 | 2034 |
}; |
| 2007 | 2035 |
|
| 2008 | 2036 |
/// @} |
| 2009 | 2037 |
|
| 2010 | 2038 |
}; |
| 2011 | 2039 |
|
| 2012 | 2040 |
/// \ingroup matching |
| 2013 | 2041 |
/// |
| 2014 | 2042 |
/// \brief Weighted perfect matching in general graphs |
| 2015 | 2043 |
/// |
| 2016 | 2044 |
/// This class provides an efficient implementation of Edmond's |
| 2017 | 2045 |
/// maximum weighted perfect matching algorithm. The implementation |
| 2018 | 2046 |
/// is based on extensive use of priority queues and provides |
| 2019 | 2047 |
/// \f$O(nm\log n)\f$ time complexity. |
| 2020 | 2048 |
/// |
| 2021 | 2049 |
/// The maximum weighted perfect matching problem is to find a subset of |
| 2022 | 2050 |
/// the edges in an undirected graph with maximum overall weight for which |
| 2023 | 2051 |
/// each node has exactly one incident edge. |
| 2024 | 2052 |
/// It can be formulated with the following linear program. |
| 2025 | 2053 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
| 2026 | 2054 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 2027 | 2055 |
\quad \forall B\in\mathcal{O}\f] */
|
| 2028 | 2056 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 2029 | 2057 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 2030 | 2058 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 2031 | 2059 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 2032 | 2060 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
| 2033 | 2061 |
/// subsets of the nodes. |
| 2034 | 2062 |
/// |
| 2035 | 2063 |
/// The algorithm calculates an optimal matching and a proof of the |
| 2036 | 2064 |
/// optimality. The solution of the dual problem can be used to check |
| 2037 | 2065 |
/// the result of the algorithm. The dual linear problem is the |
| 2038 | 2066 |
/// following. |
| 2039 | 2067 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
|
| 2040 | 2068 |
w_{uv} \quad \forall uv\in E\f] */
|
| 2041 | 2069 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 2042 | 2070 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 2043 | 2071 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 2044 | 2072 |
/// |
| 2045 | 2073 |
/// The algorithm can be executed with the run() function. |
| 2046 | 2074 |
/// After it the matching (the primal solution) and the dual solution |
| 2047 | 2075 |
/// can be obtained using the query functions and the |
| 2048 | 2076 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
| 2049 | 2077 |
/// which is able to iterate on the nodes of a blossom. |
| 2050 | 2078 |
/// If the value type is integer, then the dual solution is multiplied |
| 2051 | 2079 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 2052 | 2080 |
/// |
| 2053 |
/// \tparam GR The graph type the algorithm runs on. |
|
| 2081 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 2054 | 2082 |
/// \tparam WM The type edge weight map. The default type is |
| 2055 | 2083 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 2056 | 2084 |
#ifdef DOXYGEN |
| 2057 | 2085 |
template <typename GR, typename WM> |
| 2058 | 2086 |
#else |
| 2059 | 2087 |
template <typename GR, |
| 2060 | 2088 |
typename WM = typename GR::template EdgeMap<int> > |
| 2061 | 2089 |
#endif |
| 2062 | 2090 |
class MaxWeightedPerfectMatching {
|
| 2063 | 2091 |
public: |
| 2064 | 2092 |
|
| 2065 | 2093 |
/// The graph type of the algorithm |
| 2066 | 2094 |
typedef GR Graph; |
| 2067 | 2095 |
/// The type of the edge weight map |
| 2068 | 2096 |
typedef WM WeightMap; |
| 2069 | 2097 |
/// The value type of the edge weights |
| 2070 | 2098 |
typedef typename WeightMap::Value Value; |
| 2071 | 2099 |
|
| 2072 | 2100 |
/// \brief Scaling factor for dual solution |
| 2073 | 2101 |
/// |
| 2074 | 2102 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
| 2075 | 2103 |
/// according to the value type. |
| 2076 | 2104 |
static const int dualScale = |
| 2077 | 2105 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 2078 | 2106 |
|
| 2107 |
/// The type of the matching map |
|
| 2079 | 2108 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 2080 | 2109 |
MatchingMap; |
| 2081 | 2110 |
|
| 2082 | 2111 |
private: |
| 2083 | 2112 |
|
| 2084 | 2113 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2085 | 2114 |
|
| 2086 | 2115 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| 2087 | 2116 |
typedef std::vector<Node> BlossomNodeList; |
| 2088 | 2117 |
|
| 2089 | 2118 |
struct BlossomVariable {
|
| 2090 | 2119 |
int begin, end; |
| 2091 | 2120 |
Value value; |
| 2092 | 2121 |
|
| 2093 | 2122 |
BlossomVariable(int _begin, int _end, Value _value) |
| 2094 | 2123 |
: begin(_begin), end(_end), value(_value) {}
|
| 2095 | 2124 |
|
| 2096 | 2125 |
}; |
| 2097 | 2126 |
|
| 2098 | 2127 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 2099 | 2128 |
|
| 2100 | 2129 |
const Graph& _graph; |
| 2101 | 2130 |
const WeightMap& _weight; |
| 2102 | 2131 |
|
| 2103 | 2132 |
MatchingMap* _matching; |
| 2104 | 2133 |
|
| 2105 | 2134 |
NodePotential* _node_potential; |
| 2106 | 2135 |
|
| 2107 | 2136 |
BlossomPotential _blossom_potential; |
| 2108 | 2137 |
BlossomNodeList _blossom_node_list; |
| 2109 | 2138 |
|
| 2110 | 2139 |
int _node_num; |
| 2111 | 2140 |
int _blossom_num; |
| 2112 | 2141 |
|
| 2113 | 2142 |
typedef RangeMap<int> IntIntMap; |
| 2114 | 2143 |
|
| 2115 | 2144 |
enum Status {
|
| 2116 | 2145 |
EVEN = -1, MATCHED = 0, ODD = 1 |
| 2117 | 2146 |
}; |
| 2118 | 2147 |
|
| 2119 | 2148 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 2120 | 2149 |
struct BlossomData {
|
| 2121 | 2150 |
int tree; |
| 2122 | 2151 |
Status status; |
| 2123 | 2152 |
Arc pred, next; |
| 2124 | 2153 |
Value pot, offset; |
| 2125 | 2154 |
}; |
| 2126 | 2155 |
|
| 2127 | 2156 |
IntNodeMap *_blossom_index; |
| 2128 | 2157 |
BlossomSet *_blossom_set; |
| 2129 | 2158 |
RangeMap<BlossomData>* _blossom_data; |
| 2130 | 2159 |
|
| 2131 | 2160 |
IntNodeMap *_node_index; |
| 2132 | 2161 |
IntArcMap *_node_heap_index; |
| 2133 | 2162 |
|
| 2134 | 2163 |
struct NodeData {
|
| 2135 | 2164 |
|
| 2136 | 2165 |
NodeData(IntArcMap& node_heap_index) |
| 2137 | 2166 |
: heap(node_heap_index) {}
|
| 2138 | 2167 |
|
| 2139 | 2168 |
int blossom; |
| 2140 | 2169 |
Value pot; |
| 2141 | 2170 |
BinHeap<Value, IntArcMap> heap; |
| 2142 | 2171 |
std::map<int, Arc> heap_index; |
| 2143 | 2172 |
|
| 2144 | 2173 |
int tree; |
| 2145 | 2174 |
}; |
| 2146 | 2175 |
|
| 2147 | 2176 |
RangeMap<NodeData>* _node_data; |
| 2148 | 2177 |
|
| 2149 | 2178 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 2150 | 2179 |
|
| 2151 | 2180 |
IntIntMap *_tree_set_index; |
| 2152 | 2181 |
TreeSet *_tree_set; |
| 2153 | 2182 |
|
| 2154 | 2183 |
IntIntMap *_delta2_index; |
| 2155 | 2184 |
BinHeap<Value, IntIntMap> *_delta2; |
| 2156 | 2185 |
|
| 2157 | 2186 |
IntEdgeMap *_delta3_index; |
| 2158 | 2187 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 2159 | 2188 |
|
| 2160 | 2189 |
IntIntMap *_delta4_index; |
| 2161 | 2190 |
BinHeap<Value, IntIntMap> *_delta4; |
| 2162 | 2191 |
|
| 2163 | 2192 |
Value _delta_sum; |
| 2164 | 2193 |
|
| 2165 | 2194 |
void createStructures() {
|
| 2166 | 2195 |
_node_num = countNodes(_graph); |
| 2167 | 2196 |
_blossom_num = _node_num * 3 / 2; |
| 2168 | 2197 |
|
| 2169 | 2198 |
if (!_matching) {
|
| 2170 | 2199 |
_matching = new MatchingMap(_graph); |
| 2171 | 2200 |
} |
| 2172 | 2201 |
if (!_node_potential) {
|
| 2173 | 2202 |
_node_potential = new NodePotential(_graph); |
| 2174 | 2203 |
} |
| ... | ... |
@@ -2945,223 +2974,231 @@ |
| 2945 | 2974 |
/// |
| 2946 | 2975 |
/// This function starts the algorithm. |
| 2947 | 2976 |
/// |
| 2948 | 2977 |
/// \pre \ref init() must be called before using this function. |
| 2949 | 2978 |
bool start() {
|
| 2950 | 2979 |
enum OpType {
|
| 2951 | 2980 |
D2, D3, D4 |
| 2952 | 2981 |
}; |
| 2953 | 2982 |
|
| 2954 | 2983 |
int unmatched = _node_num; |
| 2955 | 2984 |
while (unmatched > 0) {
|
| 2956 | 2985 |
Value d2 = !_delta2->empty() ? |
| 2957 | 2986 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2958 | 2987 |
|
| 2959 | 2988 |
Value d3 = !_delta3->empty() ? |
| 2960 | 2989 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 2961 | 2990 |
|
| 2962 | 2991 |
Value d4 = !_delta4->empty() ? |
| 2963 | 2992 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 2964 | 2993 |
|
| 2965 | 2994 |
_delta_sum = d2; OpType ot = D2; |
| 2966 | 2995 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
| 2967 | 2996 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 2968 | 2997 |
|
| 2969 | 2998 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 2970 | 2999 |
return false; |
| 2971 | 3000 |
} |
| 2972 | 3001 |
|
| 2973 | 3002 |
switch (ot) {
|
| 2974 | 3003 |
case D2: |
| 2975 | 3004 |
{
|
| 2976 | 3005 |
int blossom = _delta2->top(); |
| 2977 | 3006 |
Node n = _blossom_set->classTop(blossom); |
| 2978 | 3007 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 2979 | 3008 |
extendOnArc(e); |
| 2980 | 3009 |
} |
| 2981 | 3010 |
break; |
| 2982 | 3011 |
case D3: |
| 2983 | 3012 |
{
|
| 2984 | 3013 |
Edge e = _delta3->top(); |
| 2985 | 3014 |
|
| 2986 | 3015 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 2987 | 3016 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 2988 | 3017 |
|
| 2989 | 3018 |
if (left_blossom == right_blossom) {
|
| 2990 | 3019 |
_delta3->pop(); |
| 2991 | 3020 |
} else {
|
| 2992 | 3021 |
int left_tree = _tree_set->find(left_blossom); |
| 2993 | 3022 |
int right_tree = _tree_set->find(right_blossom); |
| 2994 | 3023 |
|
| 2995 | 3024 |
if (left_tree == right_tree) {
|
| 2996 | 3025 |
shrinkOnEdge(e, left_tree); |
| 2997 | 3026 |
} else {
|
| 2998 | 3027 |
augmentOnEdge(e); |
| 2999 | 3028 |
unmatched -= 2; |
| 3000 | 3029 |
} |
| 3001 | 3030 |
} |
| 3002 | 3031 |
} break; |
| 3003 | 3032 |
case D4: |
| 3004 | 3033 |
splitBlossom(_delta4->top()); |
| 3005 | 3034 |
break; |
| 3006 | 3035 |
} |
| 3007 | 3036 |
} |
| 3008 | 3037 |
extractMatching(); |
| 3009 | 3038 |
return true; |
| 3010 | 3039 |
} |
| 3011 | 3040 |
|
| 3012 | 3041 |
/// \brief Run the algorithm. |
| 3013 | 3042 |
/// |
| 3014 | 3043 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
| 3015 | 3044 |
/// |
| 3016 | 3045 |
/// \note mwpm.run() is just a shortcut of the following code. |
| 3017 | 3046 |
/// \code |
| 3018 | 3047 |
/// mwpm.init(); |
| 3019 | 3048 |
/// mwpm.start(); |
| 3020 | 3049 |
/// \endcode |
| 3021 | 3050 |
bool run() {
|
| 3022 | 3051 |
init(); |
| 3023 | 3052 |
return start(); |
| 3024 | 3053 |
} |
| 3025 | 3054 |
|
| 3026 | 3055 |
/// @} |
| 3027 | 3056 |
|
| 3028 | 3057 |
/// \name Primal Solution |
| 3029 | 3058 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 3030 | 3059 |
/// perfect matching.\n |
| 3031 | 3060 |
/// Either \ref run() or \ref start() function should be called before |
| 3032 | 3061 |
/// using them. |
| 3033 | 3062 |
|
| 3034 | 3063 |
/// @{
|
| 3035 | 3064 |
|
| 3036 | 3065 |
/// \brief Return the weight of the matching. |
| 3037 | 3066 |
/// |
| 3038 | 3067 |
/// This function returns the weight of the found matching. |
| 3039 | 3068 |
/// |
| 3040 | 3069 |
/// \pre Either run() or start() must be called before using this function. |
| 3041 |
Value |
|
| 3070 |
Value matchingWeight() const {
|
|
| 3042 | 3071 |
Value sum = 0; |
| 3043 | 3072 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3044 | 3073 |
if ((*_matching)[n] != INVALID) {
|
| 3045 | 3074 |
sum += _weight[(*_matching)[n]]; |
| 3046 | 3075 |
} |
| 3047 | 3076 |
} |
| 3048 | 3077 |
return sum /= 2; |
| 3049 | 3078 |
} |
| 3050 | 3079 |
|
| 3051 | 3080 |
/// \brief Return \c true if the given edge is in the matching. |
| 3052 | 3081 |
/// |
| 3053 | 3082 |
/// This function returns \c true if the given edge is in the found |
| 3054 | 3083 |
/// matching. |
| 3055 | 3084 |
/// |
| 3056 | 3085 |
/// \pre Either run() or start() must be called before using this function. |
| 3057 | 3086 |
bool matching(const Edge& edge) const {
|
| 3058 | 3087 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
| 3059 | 3088 |
} |
| 3060 | 3089 |
|
| 3061 | 3090 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 3062 | 3091 |
/// |
| 3063 | 3092 |
/// This function returns the matching arc (or edge) incident to the |
| 3064 | 3093 |
/// given node in the found matching or \c INVALID if the node is |
| 3065 | 3094 |
/// not covered by the matching. |
| 3066 | 3095 |
/// |
| 3067 | 3096 |
/// \pre Either run() or start() must be called before using this function. |
| 3068 | 3097 |
Arc matching(const Node& node) const {
|
| 3069 | 3098 |
return (*_matching)[node]; |
| 3070 | 3099 |
} |
| 3071 | 3100 |
|
| 3101 |
/// \brief Return a const reference to the matching map. |
|
| 3102 |
/// |
|
| 3103 |
/// This function returns a const reference to a node map that stores |
|
| 3104 |
/// the matching arc (or edge) incident to each node. |
|
| 3105 |
const MatchingMap& matchingMap() const {
|
|
| 3106 |
return *_matching; |
|
| 3107 |
} |
|
| 3108 |
|
|
| 3072 | 3109 |
/// \brief Return the mate of the given node. |
| 3073 | 3110 |
/// |
| 3074 | 3111 |
/// This function returns the mate of the given node in the found |
| 3075 | 3112 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 3076 | 3113 |
/// |
| 3077 | 3114 |
/// \pre Either run() or start() must be called before using this function. |
| 3078 | 3115 |
Node mate(const Node& node) const {
|
| 3079 | 3116 |
return _graph.target((*_matching)[node]); |
| 3080 | 3117 |
} |
| 3081 | 3118 |
|
| 3082 | 3119 |
/// @} |
| 3083 | 3120 |
|
| 3084 | 3121 |
/// \name Dual Solution |
| 3085 | 3122 |
/// Functions to get the dual solution.\n |
| 3086 | 3123 |
/// Either \ref run() or \ref start() function should be called before |
| 3087 | 3124 |
/// using them. |
| 3088 | 3125 |
|
| 3089 | 3126 |
/// @{
|
| 3090 | 3127 |
|
| 3091 | 3128 |
/// \brief Return the value of the dual solution. |
| 3092 | 3129 |
/// |
| 3093 | 3130 |
/// This function returns the value of the dual solution. |
| 3094 | 3131 |
/// It should be equal to the primal value scaled by \ref dualScale |
| 3095 | 3132 |
/// "dual scale". |
| 3096 | 3133 |
/// |
| 3097 | 3134 |
/// \pre Either run() or start() must be called before using this function. |
| 3098 | 3135 |
Value dualValue() const {
|
| 3099 | 3136 |
Value sum = 0; |
| 3100 | 3137 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3101 | 3138 |
sum += nodeValue(n); |
| 3102 | 3139 |
} |
| 3103 | 3140 |
for (int i = 0; i < blossomNum(); ++i) {
|
| 3104 | 3141 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
| 3105 | 3142 |
} |
| 3106 | 3143 |
return sum; |
| 3107 | 3144 |
} |
| 3108 | 3145 |
|
| 3109 | 3146 |
/// \brief Return the dual value (potential) of the given node. |
| 3110 | 3147 |
/// |
| 3111 | 3148 |
/// This function returns the dual value (potential) of the given node. |
| 3112 | 3149 |
/// |
| 3113 | 3150 |
/// \pre Either run() or start() must be called before using this function. |
| 3114 | 3151 |
Value nodeValue(const Node& n) const {
|
| 3115 | 3152 |
return (*_node_potential)[n]; |
| 3116 | 3153 |
} |
| 3117 | 3154 |
|
| 3118 | 3155 |
/// \brief Return the number of the blossoms in the basis. |
| 3119 | 3156 |
/// |
| 3120 | 3157 |
/// This function returns the number of the blossoms in the basis. |
| 3121 | 3158 |
/// |
| 3122 | 3159 |
/// \pre Either run() or start() must be called before using this function. |
| 3123 | 3160 |
/// \see BlossomIt |
| 3124 | 3161 |
int blossomNum() const {
|
| 3125 | 3162 |
return _blossom_potential.size(); |
| 3126 | 3163 |
} |
| 3127 | 3164 |
|
| 3128 | 3165 |
/// \brief Return the number of the nodes in the given blossom. |
| 3129 | 3166 |
/// |
| 3130 | 3167 |
/// This function returns the number of the nodes in the given blossom. |
| 3131 | 3168 |
/// |
| 3132 | 3169 |
/// \pre Either run() or start() must be called before using this function. |
| 3133 | 3170 |
/// \see BlossomIt |
| 3134 | 3171 |
int blossomSize(int k) const {
|
| 3135 | 3172 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
| 3136 | 3173 |
} |
| 3137 | 3174 |
|
| 3138 | 3175 |
/// \brief Return the dual value (ptential) of the given blossom. |
| 3139 | 3176 |
/// |
| 3140 | 3177 |
/// This function returns the dual value (ptential) of the given blossom. |
| 3141 | 3178 |
/// |
| 3142 | 3179 |
/// \pre Either run() or start() must be called before using this function. |
| 3143 | 3180 |
Value blossomValue(int k) const {
|
| 3144 | 3181 |
return _blossom_potential[k].value; |
| 3145 | 3182 |
} |
| 3146 | 3183 |
|
| 3147 | 3184 |
/// \brief Iterator for obtaining the nodes of a blossom. |
| 3148 | 3185 |
/// |
| 3149 | 3186 |
/// This class provides an iterator for obtaining the nodes of the |
| 3150 | 3187 |
/// given blossom. It lists a subset of the nodes. |
| 3151 | 3188 |
/// Before using this iterator, you must allocate a |
| 3152 | 3189 |
/// MaxWeightedPerfectMatching class and execute it. |
| 3153 | 3190 |
class BlossomIt {
|
| 3154 | 3191 |
public: |
| 3155 | 3192 |
|
| 3156 | 3193 |
/// \brief Constructor. |
| 3157 | 3194 |
/// |
| 3158 | 3195 |
/// Constructor to get the nodes of the given variable. |
| 3159 | 3196 |
/// |
| 3160 | 3197 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
| 3161 | 3198 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
| 3162 | 3199 |
/// must be called before initializing this iterator. |
| 3163 | 3200 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
| 3164 | 3201 |
: _algorithm(&algorithm) |
| 3165 | 3202 |
{
|
| 3166 | 3203 |
_index = _algorithm->_blossom_potential[variable].begin; |
| 3167 | 3204 |
_last = _algorithm->_blossom_potential[variable].end; |
| ... | ... |
@@ -45,311 +45,321 @@ |
| 45 | 45 |
"1\n" |
| 46 | 46 |
"2\n" |
| 47 | 47 |
"3\n" |
| 48 | 48 |
"4\n" |
| 49 | 49 |
"5\n" |
| 50 | 50 |
"6\n" |
| 51 | 51 |
"7\n" |
| 52 | 52 |
"@edges\n" |
| 53 | 53 |
" label weight\n" |
| 54 | 54 |
"7 4 0 984\n" |
| 55 | 55 |
"0 7 1 73\n" |
| 56 | 56 |
"7 1 2 204\n" |
| 57 | 57 |
"2 3 3 583\n" |
| 58 | 58 |
"2 7 4 565\n" |
| 59 | 59 |
"2 1 5 582\n" |
| 60 | 60 |
"0 4 6 551\n" |
| 61 | 61 |
"2 5 7 385\n" |
| 62 | 62 |
"1 5 8 561\n" |
| 63 | 63 |
"5 3 9 484\n" |
| 64 | 64 |
"7 5 10 904\n" |
| 65 | 65 |
"3 6 11 47\n" |
| 66 | 66 |
"7 6 12 888\n" |
| 67 | 67 |
"3 0 13 747\n" |
| 68 | 68 |
"6 1 14 310\n", |
| 69 | 69 |
|
| 70 | 70 |
"@nodes\n" |
| 71 | 71 |
"label\n" |
| 72 | 72 |
"0\n" |
| 73 | 73 |
"1\n" |
| 74 | 74 |
"2\n" |
| 75 | 75 |
"3\n" |
| 76 | 76 |
"4\n" |
| 77 | 77 |
"5\n" |
| 78 | 78 |
"6\n" |
| 79 | 79 |
"7\n" |
| 80 | 80 |
"@edges\n" |
| 81 | 81 |
" label weight\n" |
| 82 | 82 |
"2 5 0 710\n" |
| 83 | 83 |
"0 5 1 241\n" |
| 84 | 84 |
"2 4 2 856\n" |
| 85 | 85 |
"2 6 3 762\n" |
| 86 | 86 |
"4 1 4 747\n" |
| 87 | 87 |
"6 1 5 962\n" |
| 88 | 88 |
"4 7 6 723\n" |
| 89 | 89 |
"1 7 7 661\n" |
| 90 | 90 |
"2 3 8 376\n" |
| 91 | 91 |
"1 0 9 416\n" |
| 92 | 92 |
"6 7 10 391\n", |
| 93 | 93 |
|
| 94 | 94 |
"@nodes\n" |
| 95 | 95 |
"label\n" |
| 96 | 96 |
"0\n" |
| 97 | 97 |
"1\n" |
| 98 | 98 |
"2\n" |
| 99 | 99 |
"3\n" |
| 100 | 100 |
"4\n" |
| 101 | 101 |
"5\n" |
| 102 | 102 |
"6\n" |
| 103 | 103 |
"7\n" |
| 104 | 104 |
"@edges\n" |
| 105 | 105 |
" label weight\n" |
| 106 | 106 |
"6 2 0 553\n" |
| 107 | 107 |
"0 7 1 653\n" |
| 108 | 108 |
"6 3 2 22\n" |
| 109 | 109 |
"4 7 3 846\n" |
| 110 | 110 |
"7 2 4 981\n" |
| 111 | 111 |
"7 6 5 250\n" |
| 112 | 112 |
"5 2 6 539\n", |
| 113 | 113 |
}; |
| 114 | 114 |
|
| 115 | 115 |
void checkMaxMatchingCompile() |
| 116 | 116 |
{
|
| 117 | 117 |
typedef concepts::Graph Graph; |
| 118 | 118 |
typedef Graph::Node Node; |
| 119 | 119 |
typedef Graph::Edge Edge; |
| 120 | 120 |
typedef Graph::EdgeMap<bool> MatMap; |
| 121 | 121 |
|
| 122 | 122 |
Graph g; |
| 123 | 123 |
Node n; |
| 124 | 124 |
Edge e; |
| 125 | 125 |
MatMap mat(g); |
| 126 | 126 |
|
| 127 | 127 |
MaxMatching<Graph> mat_test(g); |
| 128 | 128 |
const MaxMatching<Graph>& |
| 129 | 129 |
const_mat_test = mat_test; |
| 130 | 130 |
|
| 131 | 131 |
mat_test.init(); |
| 132 | 132 |
mat_test.greedyInit(); |
| 133 | 133 |
mat_test.matchingInit(mat); |
| 134 | 134 |
mat_test.startSparse(); |
| 135 | 135 |
mat_test.startDense(); |
| 136 | 136 |
mat_test.run(); |
| 137 | 137 |
|
| 138 | 138 |
const_mat_test.matchingSize(); |
| 139 | 139 |
const_mat_test.matching(e); |
| 140 | 140 |
const_mat_test.matching(n); |
| 141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
|
| 142 |
const_mat_test.matchingMap(); |
|
| 143 |
e = mmap[n]; |
|
| 141 | 144 |
const_mat_test.mate(n); |
| 142 | 145 |
|
| 143 | 146 |
MaxMatching<Graph>::Status stat = |
| 144 |
const_mat_test. |
|
| 147 |
const_mat_test.status(n); |
|
| 148 |
const MaxMatching<Graph>::StatusMap& smap = |
|
| 149 |
const_mat_test.statusMap(); |
|
| 150 |
stat = smap[n]; |
|
| 145 | 151 |
const_mat_test.barrier(n); |
| 146 |
|
|
| 147 |
ignore_unused_variable_warning(stat); |
|
| 148 | 152 |
} |
| 149 | 153 |
|
| 150 | 154 |
void checkMaxWeightedMatchingCompile() |
| 151 | 155 |
{
|
| 152 | 156 |
typedef concepts::Graph Graph; |
| 153 | 157 |
typedef Graph::Node Node; |
| 154 | 158 |
typedef Graph::Edge Edge; |
| 155 | 159 |
typedef Graph::EdgeMap<int> WeightMap; |
| 156 | 160 |
|
| 157 | 161 |
Graph g; |
| 158 | 162 |
Node n; |
| 159 | 163 |
Edge e; |
| 160 | 164 |
WeightMap w(g); |
| 161 | 165 |
|
| 162 | 166 |
MaxWeightedMatching<Graph> mat_test(g, w); |
| 163 | 167 |
const MaxWeightedMatching<Graph>& |
| 164 | 168 |
const_mat_test = mat_test; |
| 165 | 169 |
|
| 166 | 170 |
mat_test.init(); |
| 167 | 171 |
mat_test.start(); |
| 168 | 172 |
mat_test.run(); |
| 169 | 173 |
|
| 170 |
const_mat_test. |
|
| 174 |
const_mat_test.matchingWeight(); |
|
| 171 | 175 |
const_mat_test.matchingSize(); |
| 172 | 176 |
const_mat_test.matching(e); |
| 173 | 177 |
const_mat_test.matching(n); |
| 178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
|
| 179 |
const_mat_test.matchingMap(); |
|
| 180 |
e = mmap[n]; |
|
| 174 | 181 |
const_mat_test.mate(n); |
| 175 | 182 |
|
| 176 | 183 |
int k = 0; |
| 177 | 184 |
const_mat_test.dualValue(); |
| 178 | 185 |
const_mat_test.nodeValue(n); |
| 179 | 186 |
const_mat_test.blossomNum(); |
| 180 | 187 |
const_mat_test.blossomSize(k); |
| 181 | 188 |
const_mat_test.blossomValue(k); |
| 182 | 189 |
} |
| 183 | 190 |
|
| 184 | 191 |
void checkMaxWeightedPerfectMatchingCompile() |
| 185 | 192 |
{
|
| 186 | 193 |
typedef concepts::Graph Graph; |
| 187 | 194 |
typedef Graph::Node Node; |
| 188 | 195 |
typedef Graph::Edge Edge; |
| 189 | 196 |
typedef Graph::EdgeMap<int> WeightMap; |
| 190 | 197 |
|
| 191 | 198 |
Graph g; |
| 192 | 199 |
Node n; |
| 193 | 200 |
Edge e; |
| 194 | 201 |
WeightMap w(g); |
| 195 | 202 |
|
| 196 | 203 |
MaxWeightedPerfectMatching<Graph> mat_test(g, w); |
| 197 | 204 |
const MaxWeightedPerfectMatching<Graph>& |
| 198 | 205 |
const_mat_test = mat_test; |
| 199 | 206 |
|
| 200 | 207 |
mat_test.init(); |
| 201 | 208 |
mat_test.start(); |
| 202 | 209 |
mat_test.run(); |
| 203 | 210 |
|
| 204 |
const_mat_test. |
|
| 211 |
const_mat_test.matchingWeight(); |
|
| 205 | 212 |
const_mat_test.matching(e); |
| 206 | 213 |
const_mat_test.matching(n); |
| 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
|
| 215 |
const_mat_test.matchingMap(); |
|
| 216 |
e = mmap[n]; |
|
| 207 | 217 |
const_mat_test.mate(n); |
| 208 | 218 |
|
| 209 | 219 |
int k = 0; |
| 210 | 220 |
const_mat_test.dualValue(); |
| 211 | 221 |
const_mat_test.nodeValue(n); |
| 212 | 222 |
const_mat_test.blossomNum(); |
| 213 | 223 |
const_mat_test.blossomSize(k); |
| 214 | 224 |
const_mat_test.blossomValue(k); |
| 215 | 225 |
} |
| 216 | 226 |
|
| 217 | 227 |
void checkMatching(const SmartGraph& graph, |
| 218 | 228 |
const MaxMatching<SmartGraph>& mm) {
|
| 219 | 229 |
int num = 0; |
| 220 | 230 |
|
| 221 | 231 |
IntNodeMap comp_index(graph); |
| 222 | 232 |
UnionFind<IntNodeMap> comp(comp_index); |
| 223 | 233 |
|
| 224 | 234 |
int barrier_num = 0; |
| 225 | 235 |
|
| 226 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 227 |
check(mm. |
|
| 237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
|
| 228 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
| 229 |
if (mm. |
|
| 239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) {
|
|
| 230 | 240 |
++barrier_num; |
| 231 | 241 |
} else {
|
| 232 | 242 |
comp.insert(n); |
| 233 | 243 |
} |
| 234 | 244 |
} |
| 235 | 245 |
|
| 236 | 246 |
for (EdgeIt e(graph); e != INVALID; ++e) {
|
| 237 | 247 |
if (mm.matching(e)) {
|
| 238 | 248 |
check(e == mm.matching(graph.u(e)), "Wrong matching"); |
| 239 | 249 |
check(e == mm.matching(graph.v(e)), "Wrong matching"); |
| 240 | 250 |
++num; |
| 241 | 251 |
} |
| 242 |
check(mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 243 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 252 |
check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 253 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 244 | 254 |
"Wrong Gallai-Edmonds decomposition"); |
| 245 | 255 |
|
| 246 |
check(mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 247 |
mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 256 |
check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 257 |
mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 248 | 258 |
"Wrong Gallai-Edmonds decomposition"); |
| 249 | 259 |
|
| 250 |
if (mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
| 251 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::ODD) {
|
|
| 260 |
if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
| 261 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) {
|
|
| 252 | 262 |
comp.join(graph.u(e), graph.v(e)); |
| 253 | 263 |
} |
| 254 | 264 |
} |
| 255 | 265 |
|
| 256 | 266 |
std::set<int> comp_root; |
| 257 | 267 |
int odd_comp_num = 0; |
| 258 | 268 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 259 |
if (mm. |
|
| 269 |
if (mm.status(n) != MaxMatching<SmartGraph>::ODD) {
|
|
| 260 | 270 |
int root = comp.find(n); |
| 261 | 271 |
if (comp_root.find(root) == comp_root.end()) {
|
| 262 | 272 |
comp_root.insert(root); |
| 263 | 273 |
if (comp.size(n) % 2 == 1) {
|
| 264 | 274 |
++odd_comp_num; |
| 265 | 275 |
} |
| 266 | 276 |
} |
| 267 | 277 |
} |
| 268 | 278 |
} |
| 269 | 279 |
|
| 270 | 280 |
check(mm.matchingSize() == num, "Wrong matching"); |
| 271 | 281 |
check(2 * num == countNodes(graph) - (odd_comp_num - barrier_num), |
| 272 | 282 |
"Wrong matching"); |
| 273 | 283 |
return; |
| 274 | 284 |
} |
| 275 | 285 |
|
| 276 | 286 |
void checkWeightedMatching(const SmartGraph& graph, |
| 277 | 287 |
const SmartGraph::EdgeMap<int>& weight, |
| 278 | 288 |
const MaxWeightedMatching<SmartGraph>& mwm) {
|
| 279 | 289 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
| 280 | 290 |
if (graph.u(e) == graph.v(e)) continue; |
| 281 | 291 |
int rw = mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e)); |
| 282 | 292 |
|
| 283 | 293 |
for (int i = 0; i < mwm.blossomNum(); ++i) {
|
| 284 | 294 |
bool s = false, t = false; |
| 285 | 295 |
for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i); |
| 286 | 296 |
n != INVALID; ++n) {
|
| 287 | 297 |
if (graph.u(e) == n) s = true; |
| 288 | 298 |
if (graph.v(e) == n) t = true; |
| 289 | 299 |
} |
| 290 | 300 |
if (s == true && t == true) {
|
| 291 | 301 |
rw += mwm.blossomValue(i); |
| 292 | 302 |
} |
| 293 | 303 |
} |
| 294 | 304 |
rw -= weight[e] * mwm.dualScale; |
| 295 | 305 |
|
| 296 | 306 |
check(rw >= 0, "Negative reduced weight"); |
| 297 | 307 |
check(rw == 0 || !mwm.matching(e), |
| 298 | 308 |
"Non-zero reduced weight on matching edge"); |
| 299 | 309 |
} |
| 300 | 310 |
|
| 301 | 311 |
int pv = 0; |
| 302 | 312 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 303 | 313 |
if (mwm.matching(n) != INVALID) {
|
| 304 | 314 |
check(mwm.nodeValue(n) >= 0, "Invalid node value"); |
| 305 | 315 |
pv += weight[mwm.matching(n)]; |
| 306 | 316 |
SmartGraph::Node o = graph.target(mwm.matching(n)); |
| 307 | 317 |
check(mwm.mate(n) == o, "Invalid matching"); |
| 308 | 318 |
check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)), |
| 309 | 319 |
"Invalid matching"); |
| 310 | 320 |
} else {
|
| 311 | 321 |
check(mwm.mate(n) == INVALID, "Invalid matching"); |
| 312 | 322 |
check(mwm.nodeValue(n) == 0, "Invalid matching"); |
| 313 | 323 |
} |
| 314 | 324 |
} |
| 315 | 325 |
|
| 316 | 326 |
int dv = 0; |
| 317 | 327 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 318 | 328 |
dv += mwm.nodeValue(n); |
| 319 | 329 |
} |
| 320 | 330 |
|
| 321 | 331 |
for (int i = 0; i < mwm.blossomNum(); ++i) {
|
| 322 | 332 |
check(mwm.blossomValue(i) >= 0, "Invalid blossom value"); |
| 323 | 333 |
check(mwm.blossomSize(i) % 2 == 1, "Even blossom size"); |
| 324 | 334 |
dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2); |
| 325 | 335 |
} |
| 326 | 336 |
|
| 327 | 337 |
check(pv * mwm.dualScale == dv * 2, "Wrong duality"); |
| 328 | 338 |
|
| 329 | 339 |
return; |
| 330 | 340 |
} |
| 331 | 341 |
|
| 332 | 342 |
void checkWeightedPerfectMatching(const SmartGraph& graph, |
| 333 | 343 |
const SmartGraph::EdgeMap<int>& weight, |
| 334 | 344 |
const MaxWeightedPerfectMatching<SmartGraph>& mwpm) {
|
| 335 | 345 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
| 336 | 346 |
if (graph.u(e) == graph.v(e)) continue; |
| 337 | 347 |
int rw = mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e)); |
| 338 | 348 |
|
| 339 | 349 |
for (int i = 0; i < mwpm.blossomNum(); ++i) {
|
| 340 | 350 |
bool s = false, t = false; |
| 341 | 351 |
for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i); |
| 342 | 352 |
n != INVALID; ++n) {
|
| 343 | 353 |
if (graph.u(e) == n) s = true; |
| 344 | 354 |
if (graph.v(e) == n) t = true; |
| 345 | 355 |
} |
| 346 | 356 |
if (s == true && t == true) {
|
| 347 | 357 |
rw += mwpm.blossomValue(i); |
| 348 | 358 |
} |
| 349 | 359 |
} |
| 350 | 360 |
rw -= weight[e] * mwpm.dualScale; |
| 351 | 361 |
|
| 352 | 362 |
check(rw >= 0, "Negative reduced weight"); |
| 353 | 363 |
check(rw == 0 || !mwpm.matching(e), |
| 354 | 364 |
"Non-zero reduced weight on matching edge"); |
| 355 | 365 |
} |
0 comments (0 inline)