0
2
0
... | ... |
@@ -31,68 +31,70 @@ |
31 | 31 |
|
32 | 32 |
///\ingroup matching |
33 | 33 |
///\file |
34 | 34 |
///\brief Maximum matching algorithms in general graphs. |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \ingroup matching |
39 | 39 |
/// |
40 | 40 |
/// \brief Maximum cardinality matching in general graphs |
41 | 41 |
/// |
42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
43 |
/// for finding a maximum cardinality matching in a general graph. |
|
43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
|
44 | 44 |
/// It can be started from an arbitrary initial matching |
45 | 45 |
/// (the default is the empty one). |
46 | 46 |
/// |
47 | 47 |
/// The dual solution of the problem is a map of the nodes to |
48 | 48 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
49 | 49 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
50 | 50 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
51 | 51 |
/// with factor-critical components, the nodes in \c ODD/A form the |
52 | 52 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
53 | 53 |
/// a perfect matching. The number of the factor-critical components |
54 | 54 |
/// minus the number of barrier nodes is a lower bound on the |
55 | 55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
56 |
/// tight. This decomposition can be obtained by calling \c |
|
57 |
/// decomposition() after running the algorithm. |
|
56 |
/// tight. This decomposition can be obtained using \ref status() or |
|
57 |
/// \ref statusMap() after running the algorithm. |
|
58 | 58 |
/// |
59 |
/// \tparam GR The graph type the algorithm runs on. |
|
59 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
60 | 60 |
template <typename GR> |
61 | 61 |
class MaxMatching { |
62 | 62 |
public: |
63 | 63 |
|
64 | 64 |
/// The graph type of the algorithm |
65 | 65 |
typedef GR Graph; |
66 |
/// The type of the matching map |
|
66 | 67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
67 | 68 |
MatchingMap; |
68 | 69 |
|
69 | 70 |
///\brief Status constants for Gallai-Edmonds decomposition. |
70 | 71 |
/// |
71 | 72 |
///These constants are used for indicating the Gallai-Edmonds |
72 | 73 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
73 | 74 |
///induce a subgraph with factor-critical components, the nodes with |
74 | 75 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
75 | 76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
76 | 77 |
///perfect matching. |
77 | 78 |
enum Status { |
78 | 79 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
79 | 80 |
D = 1, |
80 | 81 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
81 | 82 |
C = 0, |
82 | 83 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
83 | 84 |
A = -1, |
84 | 85 |
UNMATCHED = -2 ///< = -2. |
85 | 86 |
}; |
86 | 87 |
|
88 |
/// The type of the status map |
|
87 | 89 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
88 | 90 |
|
89 | 91 |
private: |
90 | 92 |
|
91 | 93 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
92 | 94 |
|
93 | 95 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
94 | 96 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
95 | 97 |
typedef RangeMap<Node> NodeIntMap; |
96 | 98 |
typedef MatchingMap EarMap; |
97 | 99 |
typedef std::vector<Node> NodeQueue; |
98 | 100 |
|
... | ... |
@@ -574,50 +576,67 @@ |
574 | 576 |
return edge == (*_matching)[_graph.u(edge)]; |
575 | 577 |
} |
576 | 578 |
|
577 | 579 |
/// \brief Return the matching arc (or edge) incident to the given node. |
578 | 580 |
/// |
579 | 581 |
/// This function returns the matching arc (or edge) incident to the |
580 | 582 |
/// given node in the current matching or \c INVALID if the node is |
581 | 583 |
/// not covered by the matching. |
582 | 584 |
Arc matching(const Node& n) const { |
583 | 585 |
return (*_matching)[n]; |
584 | 586 |
} |
585 | 587 |
|
588 |
/// \brief Return a const reference to the matching map. |
|
589 |
/// |
|
590 |
/// This function returns a const reference to a node map that stores |
|
591 |
/// the matching arc (or edge) incident to each node. |
|
592 |
const MatchingMap& matchingMap() const { |
|
593 |
return *_matching; |
|
594 |
} |
|
595 |
|
|
586 | 596 |
/// \brief Return the mate of the given node. |
587 | 597 |
/// |
588 | 598 |
/// This function returns the mate of the given node in the current |
589 | 599 |
/// matching or \c INVALID if the node is not covered by the matching. |
590 | 600 |
Node mate(const Node& n) const { |
591 | 601 |
return (*_matching)[n] != INVALID ? |
592 | 602 |
_graph.target((*_matching)[n]) : INVALID; |
593 | 603 |
} |
594 | 604 |
|
595 | 605 |
/// @} |
596 | 606 |
|
597 | 607 |
/// \name Dual Solution |
598 | 608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
599 | 609 |
/// decomposition. |
600 | 610 |
|
601 | 611 |
/// @{ |
602 | 612 |
|
603 | 613 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
604 | 614 |
/// decomposition. |
605 | 615 |
/// |
606 | 616 |
/// This function returns the \ref Status "status" of the given node |
607 | 617 |
/// in the Edmonds-Gallai decomposition. |
608 |
Status |
|
618 |
Status status(const Node& n) const { |
|
609 | 619 |
return (*_status)[n]; |
610 | 620 |
} |
611 | 621 |
|
622 |
/// \brief Return a const reference to the status map, which stores |
|
623 |
/// the Edmonds-Gallai decomposition. |
|
624 |
/// |
|
625 |
/// This function returns a const reference to a node map that stores the |
|
626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
|
627 |
const StatusMap& statusMap() const { |
|
628 |
return *_status; |
|
629 |
} |
|
630 |
|
|
612 | 631 |
/// \brief Return \c true if the given node is in the barrier. |
613 | 632 |
/// |
614 | 633 |
/// This function returns \c true if the given node is in the barrier. |
615 | 634 |
bool barrier(const Node& n) const { |
616 | 635 |
return (*_status)[n] == ODD; |
617 | 636 |
} |
618 | 637 |
|
619 | 638 |
/// @} |
620 | 639 |
|
621 | 640 |
}; |
622 | 641 |
|
623 | 642 |
/// \ingroup matching |
... | ... |
@@ -653,43 +672,44 @@ |
653 | 672 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
654 | 673 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
655 | 674 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
656 | 675 |
/// |
657 | 676 |
/// The algorithm can be executed with the run() function. |
658 | 677 |
/// After it the matching (the primal solution) and the dual solution |
659 | 678 |
/// can be obtained using the query functions and the |
660 | 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
661 | 680 |
/// which is able to iterate on the nodes of a blossom. |
662 | 681 |
/// If the value type is integer, then the dual solution is multiplied |
663 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
664 | 683 |
/// |
665 |
/// \tparam GR The graph type the algorithm runs on. |
|
684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
666 | 685 |
/// \tparam WM The type edge weight map. The default type is |
667 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
668 | 687 |
#ifdef DOXYGEN |
669 | 688 |
template <typename GR, typename WM> |
670 | 689 |
#else |
671 | 690 |
template <typename GR, |
672 | 691 |
typename WM = typename GR::template EdgeMap<int> > |
673 | 692 |
#endif |
674 | 693 |
class MaxWeightedMatching { |
675 | 694 |
public: |
676 | 695 |
|
677 | 696 |
/// The graph type of the algorithm |
678 | 697 |
typedef GR Graph; |
679 | 698 |
/// The type of the edge weight map |
680 | 699 |
typedef WM WeightMap; |
681 | 700 |
/// The value type of the edge weights |
682 | 701 |
typedef typename WeightMap::Value Value; |
683 | 702 |
|
703 |
/// The type of the matching map |
|
684 | 704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
685 | 705 |
MatchingMap; |
686 | 706 |
|
687 | 707 |
/// \brief Scaling factor for dual solution |
688 | 708 |
/// |
689 | 709 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
690 | 710 |
/// according to the value type. |
691 | 711 |
static const int dualScale = |
692 | 712 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
693 | 713 |
|
694 | 714 |
private: |
695 | 715 |
|
... | ... |
@@ -1820,25 +1840,25 @@ |
1820 | 1840 |
/// Functions to get the primal solution, i.e. the maximum weighted |
1821 | 1841 |
/// matching.\n |
1822 | 1842 |
/// Either \ref run() or \ref start() function should be called before |
1823 | 1843 |
/// using them. |
1824 | 1844 |
|
1825 | 1845 |
/// @{ |
1826 | 1846 |
|
1827 | 1847 |
/// \brief Return the weight of the matching. |
1828 | 1848 |
/// |
1829 | 1849 |
/// This function returns the weight of the found matching. |
1830 | 1850 |
/// |
1831 | 1851 |
/// \pre Either run() or start() must be called before using this function. |
1832 |
Value |
|
1852 |
Value matchingWeight() const { |
|
1833 | 1853 |
Value sum = 0; |
1834 | 1854 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1835 | 1855 |
if ((*_matching)[n] != INVALID) { |
1836 | 1856 |
sum += _weight[(*_matching)[n]]; |
1837 | 1857 |
} |
1838 | 1858 |
} |
1839 | 1859 |
return sum /= 2; |
1840 | 1860 |
} |
1841 | 1861 |
|
1842 | 1862 |
/// \brief Return the size (cardinality) of the matching. |
1843 | 1863 |
/// |
1844 | 1864 |
/// This function returns the size (cardinality) of the found matching. |
... | ... |
@@ -1866,24 +1886,32 @@ |
1866 | 1886 |
|
1867 | 1887 |
/// \brief Return the matching arc (or edge) incident to the given node. |
1868 | 1888 |
/// |
1869 | 1889 |
/// This function returns the matching arc (or edge) incident to the |
1870 | 1890 |
/// given node in the found matching or \c INVALID if the node is |
1871 | 1891 |
/// not covered by the matching. |
1872 | 1892 |
/// |
1873 | 1893 |
/// \pre Either run() or start() must be called before using this function. |
1874 | 1894 |
Arc matching(const Node& node) const { |
1875 | 1895 |
return (*_matching)[node]; |
1876 | 1896 |
} |
1877 | 1897 |
|
1898 |
/// \brief Return a const reference to the matching map. |
|
1899 |
/// |
|
1900 |
/// This function returns a const reference to a node map that stores |
|
1901 |
/// the matching arc (or edge) incident to each node. |
|
1902 |
const MatchingMap& matchingMap() const { |
|
1903 |
return *_matching; |
|
1904 |
} |
|
1905 |
|
|
1878 | 1906 |
/// \brief Return the mate of the given node. |
1879 | 1907 |
/// |
1880 | 1908 |
/// This function returns the mate of the given node in the found |
1881 | 1909 |
/// matching or \c INVALID if the node is not covered by the matching. |
1882 | 1910 |
/// |
1883 | 1911 |
/// \pre Either run() or start() must be called before using this function. |
1884 | 1912 |
Node mate(const Node& node) const { |
1885 | 1913 |
return (*_matching)[node] != INVALID ? |
1886 | 1914 |
_graph.target((*_matching)[node]) : INVALID; |
1887 | 1915 |
} |
1888 | 1916 |
|
1889 | 1917 |
/// @} |
... | ... |
@@ -2041,25 +2069,25 @@ |
2041 | 2069 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
2042 | 2070 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
2043 | 2071 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
2044 | 2072 |
/// |
2045 | 2073 |
/// The algorithm can be executed with the run() function. |
2046 | 2074 |
/// After it the matching (the primal solution) and the dual solution |
2047 | 2075 |
/// can be obtained using the query functions and the |
2048 | 2076 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
2049 | 2077 |
/// which is able to iterate on the nodes of a blossom. |
2050 | 2078 |
/// If the value type is integer, then the dual solution is multiplied |
2051 | 2079 |
/// by \ref MaxWeightedMatching::dualScale "4". |
2052 | 2080 |
/// |
2053 |
/// \tparam GR The graph type the algorithm runs on. |
|
2081 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
2054 | 2082 |
/// \tparam WM The type edge weight map. The default type is |
2055 | 2083 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
2056 | 2084 |
#ifdef DOXYGEN |
2057 | 2085 |
template <typename GR, typename WM> |
2058 | 2086 |
#else |
2059 | 2087 |
template <typename GR, |
2060 | 2088 |
typename WM = typename GR::template EdgeMap<int> > |
2061 | 2089 |
#endif |
2062 | 2090 |
class MaxWeightedPerfectMatching { |
2063 | 2091 |
public: |
2064 | 2092 |
|
2065 | 2093 |
/// The graph type of the algorithm |
... | ... |
@@ -2067,24 +2095,25 @@ |
2067 | 2095 |
/// The type of the edge weight map |
2068 | 2096 |
typedef WM WeightMap; |
2069 | 2097 |
/// The value type of the edge weights |
2070 | 2098 |
typedef typename WeightMap::Value Value; |
2071 | 2099 |
|
2072 | 2100 |
/// \brief Scaling factor for dual solution |
2073 | 2101 |
/// |
2074 | 2102 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
2075 | 2103 |
/// according to the value type. |
2076 | 2104 |
static const int dualScale = |
2077 | 2105 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
2078 | 2106 |
|
2107 |
/// The type of the matching map |
|
2079 | 2108 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
2080 | 2109 |
MatchingMap; |
2081 | 2110 |
|
2082 | 2111 |
private: |
2083 | 2112 |
|
2084 | 2113 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
2085 | 2114 |
|
2086 | 2115 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
2087 | 2116 |
typedef std::vector<Node> BlossomNodeList; |
2088 | 2117 |
|
2089 | 2118 |
struct BlossomVariable { |
2090 | 2119 |
int begin, end; |
... | ... |
@@ -3029,25 +3058,25 @@ |
3029 | 3058 |
/// Functions to get the primal solution, i.e. the maximum weighted |
3030 | 3059 |
/// perfect matching.\n |
3031 | 3060 |
/// Either \ref run() or \ref start() function should be called before |
3032 | 3061 |
/// using them. |
3033 | 3062 |
|
3034 | 3063 |
/// @{ |
3035 | 3064 |
|
3036 | 3065 |
/// \brief Return the weight of the matching. |
3037 | 3066 |
/// |
3038 | 3067 |
/// This function returns the weight of the found matching. |
3039 | 3068 |
/// |
3040 | 3069 |
/// \pre Either run() or start() must be called before using this function. |
3041 |
Value |
|
3070 |
Value matchingWeight() const { |
|
3042 | 3071 |
Value sum = 0; |
3043 | 3072 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3044 | 3073 |
if ((*_matching)[n] != INVALID) { |
3045 | 3074 |
sum += _weight[(*_matching)[n]]; |
3046 | 3075 |
} |
3047 | 3076 |
} |
3048 | 3077 |
return sum /= 2; |
3049 | 3078 |
} |
3050 | 3079 |
|
3051 | 3080 |
/// \brief Return \c true if the given edge is in the matching. |
3052 | 3081 |
/// |
3053 | 3082 |
/// This function returns \c true if the given edge is in the found |
... | ... |
@@ -3060,24 +3089,32 @@ |
3060 | 3089 |
|
3061 | 3090 |
/// \brief Return the matching arc (or edge) incident to the given node. |
3062 | 3091 |
/// |
3063 | 3092 |
/// This function returns the matching arc (or edge) incident to the |
3064 | 3093 |
/// given node in the found matching or \c INVALID if the node is |
3065 | 3094 |
/// not covered by the matching. |
3066 | 3095 |
/// |
3067 | 3096 |
/// \pre Either run() or start() must be called before using this function. |
3068 | 3097 |
Arc matching(const Node& node) const { |
3069 | 3098 |
return (*_matching)[node]; |
3070 | 3099 |
} |
3071 | 3100 |
|
3101 |
/// \brief Return a const reference to the matching map. |
|
3102 |
/// |
|
3103 |
/// This function returns a const reference to a node map that stores |
|
3104 |
/// the matching arc (or edge) incident to each node. |
|
3105 |
const MatchingMap& matchingMap() const { |
|
3106 |
return *_matching; |
|
3107 |
} |
|
3108 |
|
|
3072 | 3109 |
/// \brief Return the mate of the given node. |
3073 | 3110 |
/// |
3074 | 3111 |
/// This function returns the mate of the given node in the found |
3075 | 3112 |
/// matching or \c INVALID if the node is not covered by the matching. |
3076 | 3113 |
/// |
3077 | 3114 |
/// \pre Either run() or start() must be called before using this function. |
3078 | 3115 |
Node mate(const Node& node) const { |
3079 | 3116 |
return _graph.target((*_matching)[node]); |
3080 | 3117 |
} |
3081 | 3118 |
|
3082 | 3119 |
/// @} |
3083 | 3120 |
... | ... |
@@ -129,57 +129,64 @@ |
129 | 129 |
const_mat_test = mat_test; |
130 | 130 |
|
131 | 131 |
mat_test.init(); |
132 | 132 |
mat_test.greedyInit(); |
133 | 133 |
mat_test.matchingInit(mat); |
134 | 134 |
mat_test.startSparse(); |
135 | 135 |
mat_test.startDense(); |
136 | 136 |
mat_test.run(); |
137 | 137 |
|
138 | 138 |
const_mat_test.matchingSize(); |
139 | 139 |
const_mat_test.matching(e); |
140 | 140 |
const_mat_test.matching(n); |
141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
|
142 |
const_mat_test.matchingMap(); |
|
143 |
e = mmap[n]; |
|
141 | 144 |
const_mat_test.mate(n); |
142 | 145 |
|
143 | 146 |
MaxMatching<Graph>::Status stat = |
144 |
const_mat_test. |
|
147 |
const_mat_test.status(n); |
|
148 |
const MaxMatching<Graph>::StatusMap& smap = |
|
149 |
const_mat_test.statusMap(); |
|
150 |
stat = smap[n]; |
|
145 | 151 |
const_mat_test.barrier(n); |
146 |
|
|
147 |
ignore_unused_variable_warning(stat); |
|
148 | 152 |
} |
149 | 153 |
|
150 | 154 |
void checkMaxWeightedMatchingCompile() |
151 | 155 |
{ |
152 | 156 |
typedef concepts::Graph Graph; |
153 | 157 |
typedef Graph::Node Node; |
154 | 158 |
typedef Graph::Edge Edge; |
155 | 159 |
typedef Graph::EdgeMap<int> WeightMap; |
156 | 160 |
|
157 | 161 |
Graph g; |
158 | 162 |
Node n; |
159 | 163 |
Edge e; |
160 | 164 |
WeightMap w(g); |
161 | 165 |
|
162 | 166 |
MaxWeightedMatching<Graph> mat_test(g, w); |
163 | 167 |
const MaxWeightedMatching<Graph>& |
164 | 168 |
const_mat_test = mat_test; |
165 | 169 |
|
166 | 170 |
mat_test.init(); |
167 | 171 |
mat_test.start(); |
168 | 172 |
mat_test.run(); |
169 | 173 |
|
170 |
const_mat_test. |
|
174 |
const_mat_test.matchingWeight(); |
|
171 | 175 |
const_mat_test.matchingSize(); |
172 | 176 |
const_mat_test.matching(e); |
173 | 177 |
const_mat_test.matching(n); |
178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
|
179 |
const_mat_test.matchingMap(); |
|
180 |
e = mmap[n]; |
|
174 | 181 |
const_mat_test.mate(n); |
175 | 182 |
|
176 | 183 |
int k = 0; |
177 | 184 |
const_mat_test.dualValue(); |
178 | 185 |
const_mat_test.nodeValue(n); |
179 | 186 |
const_mat_test.blossomNum(); |
180 | 187 |
const_mat_test.blossomSize(k); |
181 | 188 |
const_mat_test.blossomValue(k); |
182 | 189 |
} |
183 | 190 |
|
184 | 191 |
void checkMaxWeightedPerfectMatchingCompile() |
185 | 192 |
{ |
... | ... |
@@ -192,80 +199,83 @@ |
192 | 199 |
Node n; |
193 | 200 |
Edge e; |
194 | 201 |
WeightMap w(g); |
195 | 202 |
|
196 | 203 |
MaxWeightedPerfectMatching<Graph> mat_test(g, w); |
197 | 204 |
const MaxWeightedPerfectMatching<Graph>& |
198 | 205 |
const_mat_test = mat_test; |
199 | 206 |
|
200 | 207 |
mat_test.init(); |
201 | 208 |
mat_test.start(); |
202 | 209 |
mat_test.run(); |
203 | 210 |
|
204 |
const_mat_test. |
|
211 |
const_mat_test.matchingWeight(); |
|
205 | 212 |
const_mat_test.matching(e); |
206 | 213 |
const_mat_test.matching(n); |
214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
|
215 |
const_mat_test.matchingMap(); |
|
216 |
e = mmap[n]; |
|
207 | 217 |
const_mat_test.mate(n); |
208 | 218 |
|
209 | 219 |
int k = 0; |
210 | 220 |
const_mat_test.dualValue(); |
211 | 221 |
const_mat_test.nodeValue(n); |
212 | 222 |
const_mat_test.blossomNum(); |
213 | 223 |
const_mat_test.blossomSize(k); |
214 | 224 |
const_mat_test.blossomValue(k); |
215 | 225 |
} |
216 | 226 |
|
217 | 227 |
void checkMatching(const SmartGraph& graph, |
218 | 228 |
const MaxMatching<SmartGraph>& mm) { |
219 | 229 |
int num = 0; |
220 | 230 |
|
221 | 231 |
IntNodeMap comp_index(graph); |
222 | 232 |
UnionFind<IntNodeMap> comp(comp_index); |
223 | 233 |
|
224 | 234 |
int barrier_num = 0; |
225 | 235 |
|
226 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) { |
227 |
check(mm. |
|
237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
|
228 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
229 |
if (mm. |
|
239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) { |
|
230 | 240 |
++barrier_num; |
231 | 241 |
} else { |
232 | 242 |
comp.insert(n); |
233 | 243 |
} |
234 | 244 |
} |
235 | 245 |
|
236 | 246 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
237 | 247 |
if (mm.matching(e)) { |
238 | 248 |
check(e == mm.matching(graph.u(e)), "Wrong matching"); |
239 | 249 |
check(e == mm.matching(graph.v(e)), "Wrong matching"); |
240 | 250 |
++num; |
241 | 251 |
} |
242 |
check(mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
243 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
252 |
check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
253 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
244 | 254 |
"Wrong Gallai-Edmonds decomposition"); |
245 | 255 |
|
246 |
check(mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
247 |
mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
256 |
check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
257 |
mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
248 | 258 |
"Wrong Gallai-Edmonds decomposition"); |
249 | 259 |
|
250 |
if (mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
251 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::ODD) { |
|
260 |
if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
261 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) { |
|
252 | 262 |
comp.join(graph.u(e), graph.v(e)); |
253 | 263 |
} |
254 | 264 |
} |
255 | 265 |
|
256 | 266 |
std::set<int> comp_root; |
257 | 267 |
int odd_comp_num = 0; |
258 | 268 |
for (NodeIt n(graph); n != INVALID; ++n) { |
259 |
if (mm. |
|
269 |
if (mm.status(n) != MaxMatching<SmartGraph>::ODD) { |
|
260 | 270 |
int root = comp.find(n); |
261 | 271 |
if (comp_root.find(root) == comp_root.end()) { |
262 | 272 |
comp_root.insert(root); |
263 | 273 |
if (comp.size(n) % 2 == 1) { |
264 | 274 |
++odd_comp_num; |
265 | 275 |
} |
266 | 276 |
} |
267 | 277 |
} |
268 | 278 |
} |
269 | 279 |
|
270 | 280 |
check(mm.matchingSize() == num, "Wrong matching"); |
271 | 281 |
check(2 * num == countNodes(graph) - (odd_comp_num - barrier_num), |
0 comments (0 inline)