0
2
0
| ... | ... |
@@ -35,39 +35,40 @@ |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
/// \ingroup matching |
| 39 | 39 |
/// |
| 40 | 40 |
/// \brief Maximum cardinality matching in general graphs |
| 41 | 41 |
/// |
| 42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
| 43 |
/// for finding a maximum cardinality matching in a general graph. |
|
| 43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
|
| 44 | 44 |
/// It can be started from an arbitrary initial matching |
| 45 | 45 |
/// (the default is the empty one). |
| 46 | 46 |
/// |
| 47 | 47 |
/// The dual solution of the problem is a map of the nodes to |
| 48 | 48 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
| 49 | 49 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
| 50 | 50 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
| 51 | 51 |
/// with factor-critical components, the nodes in \c ODD/A form the |
| 52 | 52 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
| 53 | 53 |
/// a perfect matching. The number of the factor-critical components |
| 54 | 54 |
/// minus the number of barrier nodes is a lower bound on the |
| 55 | 55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
| 56 |
/// tight. This decomposition can be obtained by calling \c |
|
| 57 |
/// decomposition() after running the algorithm. |
|
| 56 |
/// tight. This decomposition can be obtained using \ref status() or |
|
| 57 |
/// \ref statusMap() after running the algorithm. |
|
| 58 | 58 |
/// |
| 59 |
/// \tparam GR The graph type the algorithm runs on. |
|
| 59 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 60 | 60 |
template <typename GR> |
| 61 | 61 |
class MaxMatching {
|
| 62 | 62 |
public: |
| 63 | 63 |
|
| 64 | 64 |
/// The graph type of the algorithm |
| 65 | 65 |
typedef GR Graph; |
| 66 |
/// The type of the matching map |
|
| 66 | 67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 67 | 68 |
MatchingMap; |
| 68 | 69 |
|
| 69 | 70 |
///\brief Status constants for Gallai-Edmonds decomposition. |
| 70 | 71 |
/// |
| 71 | 72 |
///These constants are used for indicating the Gallai-Edmonds |
| 72 | 73 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
| 73 | 74 |
///induce a subgraph with factor-critical components, the nodes with |
| ... | ... |
@@ -79,16 +80,17 @@ |
| 79 | 80 |
D = 1, |
| 80 | 81 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
| 81 | 82 |
C = 0, |
| 82 | 83 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
| 83 | 84 |
A = -1, |
| 84 | 85 |
UNMATCHED = -2 ///< = -2. |
| 85 | 86 |
}; |
| 86 | 87 |
|
| 88 |
/// The type of the status map |
|
| 87 | 89 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
| 88 | 90 |
|
| 89 | 91 |
private: |
| 90 | 92 |
|
| 91 | 93 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 92 | 94 |
|
| 93 | 95 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
| 94 | 96 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| ... | ... |
@@ -578,16 +580,24 @@ |
| 578 | 580 |
/// |
| 579 | 581 |
/// This function returns the matching arc (or edge) incident to the |
| 580 | 582 |
/// given node in the current matching or \c INVALID if the node is |
| 581 | 583 |
/// not covered by the matching. |
| 582 | 584 |
Arc matching(const Node& n) const {
|
| 583 | 585 |
return (*_matching)[n]; |
| 584 | 586 |
} |
| 585 | 587 |
|
| 588 |
/// \brief Return a const reference to the matching map. |
|
| 589 |
/// |
|
| 590 |
/// This function returns a const reference to a node map that stores |
|
| 591 |
/// the matching arc (or edge) incident to each node. |
|
| 592 |
const MatchingMap& matchingMap() const {
|
|
| 593 |
return *_matching; |
|
| 594 |
} |
|
| 595 |
|
|
| 586 | 596 |
/// \brief Return the mate of the given node. |
| 587 | 597 |
/// |
| 588 | 598 |
/// This function returns the mate of the given node in the current |
| 589 | 599 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 590 | 600 |
Node mate(const Node& n) const {
|
| 591 | 601 |
return (*_matching)[n] != INVALID ? |
| 592 | 602 |
_graph.target((*_matching)[n]) : INVALID; |
| 593 | 603 |
} |
| ... | ... |
@@ -600,20 +610,29 @@ |
| 600 | 610 |
|
| 601 | 611 |
/// @{
|
| 602 | 612 |
|
| 603 | 613 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
| 604 | 614 |
/// decomposition. |
| 605 | 615 |
/// |
| 606 | 616 |
/// This function returns the \ref Status "status" of the given node |
| 607 | 617 |
/// in the Edmonds-Gallai decomposition. |
| 608 |
Status |
|
| 618 |
Status status(const Node& n) const {
|
|
| 609 | 619 |
return (*_status)[n]; |
| 610 | 620 |
} |
| 611 | 621 |
|
| 622 |
/// \brief Return a const reference to the status map, which stores |
|
| 623 |
/// the Edmonds-Gallai decomposition. |
|
| 624 |
/// |
|
| 625 |
/// This function returns a const reference to a node map that stores the |
|
| 626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
|
| 627 |
const StatusMap& statusMap() const {
|
|
| 628 |
return *_status; |
|
| 629 |
} |
|
| 630 |
|
|
| 612 | 631 |
/// \brief Return \c true if the given node is in the barrier. |
| 613 | 632 |
/// |
| 614 | 633 |
/// This function returns \c true if the given node is in the barrier. |
| 615 | 634 |
bool barrier(const Node& n) const {
|
| 616 | 635 |
return (*_status)[n] == ODD; |
| 617 | 636 |
} |
| 618 | 637 |
|
| 619 | 638 |
/// @} |
| ... | ... |
@@ -657,17 +676,17 @@ |
| 657 | 676 |
/// The algorithm can be executed with the run() function. |
| 658 | 677 |
/// After it the matching (the primal solution) and the dual solution |
| 659 | 678 |
/// can be obtained using the query functions and the |
| 660 | 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
| 661 | 680 |
/// which is able to iterate on the nodes of a blossom. |
| 662 | 681 |
/// If the value type is integer, then the dual solution is multiplied |
| 663 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 664 | 683 |
/// |
| 665 |
/// \tparam GR The graph type the algorithm runs on. |
|
| 684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 666 | 685 |
/// \tparam WM The type edge weight map. The default type is |
| 667 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 668 | 687 |
#ifdef DOXYGEN |
| 669 | 688 |
template <typename GR, typename WM> |
| 670 | 689 |
#else |
| 671 | 690 |
template <typename GR, |
| 672 | 691 |
typename WM = typename GR::template EdgeMap<int> > |
| 673 | 692 |
#endif |
| ... | ... |
@@ -676,16 +695,17 @@ |
| 676 | 695 |
|
| 677 | 696 |
/// The graph type of the algorithm |
| 678 | 697 |
typedef GR Graph; |
| 679 | 698 |
/// The type of the edge weight map |
| 680 | 699 |
typedef WM WeightMap; |
| 681 | 700 |
/// The value type of the edge weights |
| 682 | 701 |
typedef typename WeightMap::Value Value; |
| 683 | 702 |
|
| 703 |
/// The type of the matching map |
|
| 684 | 704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 685 | 705 |
MatchingMap; |
| 686 | 706 |
|
| 687 | 707 |
/// \brief Scaling factor for dual solution |
| 688 | 708 |
/// |
| 689 | 709 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
| 690 | 710 |
/// according to the value type. |
| 691 | 711 |
static const int dualScale = |
| ... | ... |
@@ -1824,17 +1844,17 @@ |
| 1824 | 1844 |
|
| 1825 | 1845 |
/// @{
|
| 1826 | 1846 |
|
| 1827 | 1847 |
/// \brief Return the weight of the matching. |
| 1828 | 1848 |
/// |
| 1829 | 1849 |
/// This function returns the weight of the found matching. |
| 1830 | 1850 |
/// |
| 1831 | 1851 |
/// \pre Either run() or start() must be called before using this function. |
| 1832 |
Value |
|
| 1852 |
Value matchingWeight() const {
|
|
| 1833 | 1853 |
Value sum = 0; |
| 1834 | 1854 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1835 | 1855 |
if ((*_matching)[n] != INVALID) {
|
| 1836 | 1856 |
sum += _weight[(*_matching)[n]]; |
| 1837 | 1857 |
} |
| 1838 | 1858 |
} |
| 1839 | 1859 |
return sum /= 2; |
| 1840 | 1860 |
} |
| ... | ... |
@@ -1870,16 +1890,24 @@ |
| 1870 | 1890 |
/// given node in the found matching or \c INVALID if the node is |
| 1871 | 1891 |
/// not covered by the matching. |
| 1872 | 1892 |
/// |
| 1873 | 1893 |
/// \pre Either run() or start() must be called before using this function. |
| 1874 | 1894 |
Arc matching(const Node& node) const {
|
| 1875 | 1895 |
return (*_matching)[node]; |
| 1876 | 1896 |
} |
| 1877 | 1897 |
|
| 1898 |
/// \brief Return a const reference to the matching map. |
|
| 1899 |
/// |
|
| 1900 |
/// This function returns a const reference to a node map that stores |
|
| 1901 |
/// the matching arc (or edge) incident to each node. |
|
| 1902 |
const MatchingMap& matchingMap() const {
|
|
| 1903 |
return *_matching; |
|
| 1904 |
} |
|
| 1905 |
|
|
| 1878 | 1906 |
/// \brief Return the mate of the given node. |
| 1879 | 1907 |
/// |
| 1880 | 1908 |
/// This function returns the mate of the given node in the found |
| 1881 | 1909 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 1882 | 1910 |
/// |
| 1883 | 1911 |
/// \pre Either run() or start() must be called before using this function. |
| 1884 | 1912 |
Node mate(const Node& node) const {
|
| 1885 | 1913 |
return (*_matching)[node] != INVALID ? |
| ... | ... |
@@ -2045,17 +2073,17 @@ |
| 2045 | 2073 |
/// The algorithm can be executed with the run() function. |
| 2046 | 2074 |
/// After it the matching (the primal solution) and the dual solution |
| 2047 | 2075 |
/// can be obtained using the query functions and the |
| 2048 | 2076 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
| 2049 | 2077 |
/// which is able to iterate on the nodes of a blossom. |
| 2050 | 2078 |
/// If the value type is integer, then the dual solution is multiplied |
| 2051 | 2079 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 2052 | 2080 |
/// |
| 2053 |
/// \tparam GR The graph type the algorithm runs on. |
|
| 2081 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 2054 | 2082 |
/// \tparam WM The type edge weight map. The default type is |
| 2055 | 2083 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 2056 | 2084 |
#ifdef DOXYGEN |
| 2057 | 2085 |
template <typename GR, typename WM> |
| 2058 | 2086 |
#else |
| 2059 | 2087 |
template <typename GR, |
| 2060 | 2088 |
typename WM = typename GR::template EdgeMap<int> > |
| 2061 | 2089 |
#endif |
| ... | ... |
@@ -2071,16 +2099,17 @@ |
| 2071 | 2099 |
|
| 2072 | 2100 |
/// \brief Scaling factor for dual solution |
| 2073 | 2101 |
/// |
| 2074 | 2102 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
| 2075 | 2103 |
/// according to the value type. |
| 2076 | 2104 |
static const int dualScale = |
| 2077 | 2105 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 2078 | 2106 |
|
| 2107 |
/// The type of the matching map |
|
| 2079 | 2108 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 2080 | 2109 |
MatchingMap; |
| 2081 | 2110 |
|
| 2082 | 2111 |
private: |
| 2083 | 2112 |
|
| 2084 | 2113 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2085 | 2114 |
|
| 2086 | 2115 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
| ... | ... |
@@ -3033,17 +3062,17 @@ |
| 3033 | 3062 |
|
| 3034 | 3063 |
/// @{
|
| 3035 | 3064 |
|
| 3036 | 3065 |
/// \brief Return the weight of the matching. |
| 3037 | 3066 |
/// |
| 3038 | 3067 |
/// This function returns the weight of the found matching. |
| 3039 | 3068 |
/// |
| 3040 | 3069 |
/// \pre Either run() or start() must be called before using this function. |
| 3041 |
Value |
|
| 3070 |
Value matchingWeight() const {
|
|
| 3042 | 3071 |
Value sum = 0; |
| 3043 | 3072 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3044 | 3073 |
if ((*_matching)[n] != INVALID) {
|
| 3045 | 3074 |
sum += _weight[(*_matching)[n]]; |
| 3046 | 3075 |
} |
| 3047 | 3076 |
} |
| 3048 | 3077 |
return sum /= 2; |
| 3049 | 3078 |
} |
| ... | ... |
@@ -3064,16 +3093,24 @@ |
| 3064 | 3093 |
/// given node in the found matching or \c INVALID if the node is |
| 3065 | 3094 |
/// not covered by the matching. |
| 3066 | 3095 |
/// |
| 3067 | 3096 |
/// \pre Either run() or start() must be called before using this function. |
| 3068 | 3097 |
Arc matching(const Node& node) const {
|
| 3069 | 3098 |
return (*_matching)[node]; |
| 3070 | 3099 |
} |
| 3071 | 3100 |
|
| 3101 |
/// \brief Return a const reference to the matching map. |
|
| 3102 |
/// |
|
| 3103 |
/// This function returns a const reference to a node map that stores |
|
| 3104 |
/// the matching arc (or edge) incident to each node. |
|
| 3105 |
const MatchingMap& matchingMap() const {
|
|
| 3106 |
return *_matching; |
|
| 3107 |
} |
|
| 3108 |
|
|
| 3072 | 3109 |
/// \brief Return the mate of the given node. |
| 3073 | 3110 |
/// |
| 3074 | 3111 |
/// This function returns the mate of the given node in the found |
| 3075 | 3112 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 3076 | 3113 |
/// |
| 3077 | 3114 |
/// \pre Either run() or start() must be called before using this function. |
| 3078 | 3115 |
Node mate(const Node& node) const {
|
| 3079 | 3116 |
return _graph.target((*_matching)[node]); |
| ... | ... |
@@ -133,23 +133,27 @@ |
| 133 | 133 |
mat_test.matchingInit(mat); |
| 134 | 134 |
mat_test.startSparse(); |
| 135 | 135 |
mat_test.startDense(); |
| 136 | 136 |
mat_test.run(); |
| 137 | 137 |
|
| 138 | 138 |
const_mat_test.matchingSize(); |
| 139 | 139 |
const_mat_test.matching(e); |
| 140 | 140 |
const_mat_test.matching(n); |
| 141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
|
| 142 |
const_mat_test.matchingMap(); |
|
| 143 |
e = mmap[n]; |
|
| 141 | 144 |
const_mat_test.mate(n); |
| 142 | 145 |
|
| 143 | 146 |
MaxMatching<Graph>::Status stat = |
| 144 |
const_mat_test. |
|
| 147 |
const_mat_test.status(n); |
|
| 148 |
const MaxMatching<Graph>::StatusMap& smap = |
|
| 149 |
const_mat_test.statusMap(); |
|
| 150 |
stat = smap[n]; |
|
| 145 | 151 |
const_mat_test.barrier(n); |
| 146 |
|
|
| 147 |
ignore_unused_variable_warning(stat); |
|
| 148 | 152 |
} |
| 149 | 153 |
|
| 150 | 154 |
void checkMaxWeightedMatchingCompile() |
| 151 | 155 |
{
|
| 152 | 156 |
typedef concepts::Graph Graph; |
| 153 | 157 |
typedef Graph::Node Node; |
| 154 | 158 |
typedef Graph::Edge Edge; |
| 155 | 159 |
typedef Graph::EdgeMap<int> WeightMap; |
| ... | ... |
@@ -162,20 +166,23 @@ |
| 162 | 166 |
MaxWeightedMatching<Graph> mat_test(g, w); |
| 163 | 167 |
const MaxWeightedMatching<Graph>& |
| 164 | 168 |
const_mat_test = mat_test; |
| 165 | 169 |
|
| 166 | 170 |
mat_test.init(); |
| 167 | 171 |
mat_test.start(); |
| 168 | 172 |
mat_test.run(); |
| 169 | 173 |
|
| 170 |
const_mat_test. |
|
| 174 |
const_mat_test.matchingWeight(); |
|
| 171 | 175 |
const_mat_test.matchingSize(); |
| 172 | 176 |
const_mat_test.matching(e); |
| 173 | 177 |
const_mat_test.matching(n); |
| 178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
|
| 179 |
const_mat_test.matchingMap(); |
|
| 180 |
e = mmap[n]; |
|
| 174 | 181 |
const_mat_test.mate(n); |
| 175 | 182 |
|
| 176 | 183 |
int k = 0; |
| 177 | 184 |
const_mat_test.dualValue(); |
| 178 | 185 |
const_mat_test.nodeValue(n); |
| 179 | 186 |
const_mat_test.blossomNum(); |
| 180 | 187 |
const_mat_test.blossomSize(k); |
| 181 | 188 |
const_mat_test.blossomValue(k); |
| ... | ... |
@@ -196,19 +203,22 @@ |
| 196 | 203 |
MaxWeightedPerfectMatching<Graph> mat_test(g, w); |
| 197 | 204 |
const MaxWeightedPerfectMatching<Graph>& |
| 198 | 205 |
const_mat_test = mat_test; |
| 199 | 206 |
|
| 200 | 207 |
mat_test.init(); |
| 201 | 208 |
mat_test.start(); |
| 202 | 209 |
mat_test.run(); |
| 203 | 210 |
|
| 204 |
const_mat_test. |
|
| 211 |
const_mat_test.matchingWeight(); |
|
| 205 | 212 |
const_mat_test.matching(e); |
| 206 | 213 |
const_mat_test.matching(n); |
| 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
|
| 215 |
const_mat_test.matchingMap(); |
|
| 216 |
e = mmap[n]; |
|
| 207 | 217 |
const_mat_test.mate(n); |
| 208 | 218 |
|
| 209 | 219 |
int k = 0; |
| 210 | 220 |
const_mat_test.dualValue(); |
| 211 | 221 |
const_mat_test.nodeValue(n); |
| 212 | 222 |
const_mat_test.blossomNum(); |
| 213 | 223 |
const_mat_test.blossomSize(k); |
| 214 | 224 |
const_mat_test.blossomValue(k); |
| ... | ... |
@@ -219,49 +229,49 @@ |
| 219 | 229 |
int num = 0; |
| 220 | 230 |
|
| 221 | 231 |
IntNodeMap comp_index(graph); |
| 222 | 232 |
UnionFind<IntNodeMap> comp(comp_index); |
| 223 | 233 |
|
| 224 | 234 |
int barrier_num = 0; |
| 225 | 235 |
|
| 226 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 227 |
check(mm. |
|
| 237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
|
| 228 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
| 229 |
if (mm. |
|
| 239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) {
|
|
| 230 | 240 |
++barrier_num; |
| 231 | 241 |
} else {
|
| 232 | 242 |
comp.insert(n); |
| 233 | 243 |
} |
| 234 | 244 |
} |
| 235 | 245 |
|
| 236 | 246 |
for (EdgeIt e(graph); e != INVALID; ++e) {
|
| 237 | 247 |
if (mm.matching(e)) {
|
| 238 | 248 |
check(e == mm.matching(graph.u(e)), "Wrong matching"); |
| 239 | 249 |
check(e == mm.matching(graph.v(e)), "Wrong matching"); |
| 240 | 250 |
++num; |
| 241 | 251 |
} |
| 242 |
check(mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 243 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 252 |
check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 253 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 244 | 254 |
"Wrong Gallai-Edmonds decomposition"); |
| 245 | 255 |
|
| 246 |
check(mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 247 |
mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 256 |
check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
| 257 |
mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
| 248 | 258 |
"Wrong Gallai-Edmonds decomposition"); |
| 249 | 259 |
|
| 250 |
if (mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
| 251 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::ODD) {
|
|
| 260 |
if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
| 261 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) {
|
|
| 252 | 262 |
comp.join(graph.u(e), graph.v(e)); |
| 253 | 263 |
} |
| 254 | 264 |
} |
| 255 | 265 |
|
| 256 | 266 |
std::set<int> comp_root; |
| 257 | 267 |
int odd_comp_num = 0; |
| 258 | 268 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 259 |
if (mm. |
|
| 269 |
if (mm.status(n) != MaxMatching<SmartGraph>::ODD) {
|
|
| 260 | 270 |
int root = comp.find(n); |
| 261 | 271 |
if (comp_root.find(root) == comp_root.end()) {
|
| 262 | 272 |
comp_root.insert(root); |
| 263 | 273 |
if (comp.size(n) % 2 == 1) {
|
| 264 | 274 |
++odd_comp_num; |
| 265 | 275 |
} |
| 266 | 276 |
} |
| 267 | 277 |
} |
0 comments (0 inline)