| 1 | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
 | 
	| 2 | 2 |  *
 | 
	| 3 | 3 |  * This file is a part of LEMON, a generic C++ optimization library.
 | 
	| 4 | 4 |  *
 | 
	| 5 | 5 |  * Copyright (C) 2003-2009
 | 
	| 6 | 6 |  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 | 
	| 7 | 7 |  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 | 
	| 8 | 8 |  *
 | 
	| 9 | 9 |  * Permission to use, modify and distribute this software is granted
 | 
	| 10 | 10 |  * provided that this copyright notice appears in all copies. For
 | 
	| 11 | 11 |  * precise terms see the accompanying LICENSE file.
 | 
	| 12 | 12 |  *
 | 
	| 13 | 13 |  * This software is provided "AS IS" with no warranty of any kind,
 | 
	| 14 | 14 |  * express or implied, and with no claim as to its suitability for any
 | 
	| 15 | 15 |  * purpose.
 | 
	| 16 | 16 |  *
 | 
	| 17 | 17 |  */
 | 
	| 18 | 18 | 
 | 
	| 19 | 19 | #ifndef LEMON_MAPS_H
 | 
	| 20 | 20 | #define LEMON_MAPS_H
 | 
	| 21 | 21 | 
 | 
	| 22 | 22 | #include <iterator>
 | 
	| 23 | 23 | #include <functional>
 | 
	| 24 | 24 | #include <vector>
 | 
	| 25 | 25 | 
 | 
	| 26 | 26 | #include <lemon/core.h>
 | 
	| 27 | 27 | 
 | 
	| 28 | 28 | ///\file
 | 
	| 29 | 29 | ///\ingroup maps
 | 
	| 30 | 30 | ///\brief Miscellaneous property maps
 | 
	| 31 | 31 | 
 | 
	| 32 | 32 | #include <map>
 | 
	| 33 | 33 | 
 | 
	| 34 | 34 | namespace lemon {
 | 
	| 35 | 35 | 
 | 
	| 36 | 36 |   /// \addtogroup maps
 | 
	| 37 | 37 |   /// @{
 | 
	| 38 | 38 | 
 | 
	| 39 | 39 |   /// Base class of maps.
 | 
	| 40 | 40 | 
 | 
	| 41 | 41 |   /// Base class of maps. It provides the necessary type definitions
 | 
	| 42 | 42 |   /// required by the map %concepts.
 | 
	| 43 | 43 |   template<typename K, typename V>
 | 
	| 44 | 44 |   class MapBase {
 | 
	| 45 | 45 |   public:
 | 
	| 46 | 46 |     /// \brief The key type of the map.
 | 
	| 47 | 47 |     typedef K Key;
 | 
	| 48 | 48 |     /// \brief The value type of the map.
 | 
	| 49 | 49 |     /// (The type of objects associated with the keys).
 | 
	| 50 | 50 |     typedef V Value;
 | 
	| 51 | 51 |   };
 | 
	| 52 | 52 | 
 | 
	| 53 | 53 | 
 | 
	| 54 | 54 |   /// Null map. (a.k.a. DoNothingMap)
 | 
	| 55 | 55 | 
 | 
	| 56 | 56 |   /// This map can be used if you have to provide a map only for
 | 
	| 57 | 57 |   /// its type definitions, or if you have to provide a writable map,
 | 
	| 58 | 58 |   /// but data written to it is not required (i.e. it will be sent to
 | 
	| 59 | 59 |   /// <tt>/dev/null</tt>).
 | 
	| 60 | 60 |   /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 | 
	| 61 | 61 |   ///
 | 
	| 62 | 62 |   /// \sa ConstMap
 | 
	| 63 | 63 |   template<typename K, typename V>
 | 
	| 64 | 64 |   class NullMap : public MapBase<K, V> {
 | 
	| 65 | 65 |   public:
 | 
	| 66 | 66 |     ///\e
 | 
	| 67 | 67 |     typedef K Key;
 | 
	| 68 | 68 |     ///\e
 | 
	| 69 | 69 |     typedef V Value;
 | 
	| 70 | 70 | 
 | 
	| 71 | 71 |     /// Gives back a default constructed element.
 | 
	| 72 | 72 |     Value operator[](const Key&) const { return Value(); }
 | 
	| 73 | 73 |     /// Absorbs the value.
 | 
	| 74 | 74 |     void set(const Key&, const Value&) {}
 | 
	| 75 | 75 |   };
 | 
	| 76 | 76 | 
 | 
	| 77 | 77 |   /// Returns a \c NullMap class
 | 
	| 78 | 78 | 
 | 
	| 79 | 79 |   /// This function just returns a \c NullMap class.
 | 
	| 80 | 80 |   /// \relates NullMap
 | 
	| 81 | 81 |   template <typename K, typename V>
 | 
	| 82 | 82 |   NullMap<K, V> nullMap() {
 | 
	| 83 | 83 |     return NullMap<K, V>();
 | 
	| 84 | 84 |   }
 | 
	| 85 | 85 | 
 | 
	| 86 | 86 | 
 | 
	| 87 | 87 |   /// Constant map.
 | 
	| 88 | 88 | 
 | 
	| 89 | 89 |   /// This \ref concepts::ReadMap "readable map" assigns a specified
 | 
	| 90 | 90 |   /// value to each key.
 | 
	| 91 | 91 |   ///
 | 
	| 92 | 92 |   /// In other aspects it is equivalent to \c NullMap.
 | 
	| 93 | 93 |   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
 | 
	| 94 | 94 |   /// concept, but it absorbs the data written to it.
 | 
	| 95 | 95 |   ///
 | 
	| 96 | 96 |   /// The simplest way of using this map is through the constMap()
 | 
	| 97 | 97 |   /// function.
 | 
	| 98 | 98 |   ///
 | 
	| 99 | 99 |   /// \sa NullMap
 | 
	| 100 | 100 |   /// \sa IdentityMap
 | 
	| 101 | 101 |   template<typename K, typename V>
 | 
	| 102 | 102 |   class ConstMap : public MapBase<K, V> {
 | 
	| 103 | 103 |   private:
 | 
	| 104 | 104 |     V _value;
 | 
	| 105 | 105 |   public:
 | 
	| 106 | 106 |     ///\e
 | 
	| 107 | 107 |     typedef K Key;
 | 
	| 108 | 108 |     ///\e
 | 
	| 109 | 109 |     typedef V Value;
 | 
	| 110 | 110 | 
 | 
	| 111 | 111 |     /// Default constructor
 | 
	| 112 | 112 | 
 | 
	| 113 | 113 |     /// Default constructor.
 | 
	| 114 | 114 |     /// The value of the map will be default constructed.
 | 
	| 115 | 115 |     ConstMap() {}
 | 
	| 116 | 116 | 
 | 
	| 117 | 117 |     /// Constructor with specified initial value
 | 
	| 118 | 118 | 
 | 
	| 119 | 119 |     /// Constructor with specified initial value.
 | 
	| 120 | 120 |     /// \param v The initial value of the map.
 | 
	| 121 | 121 |     ConstMap(const Value &v) : _value(v) {}
 | 
	| 122 | 122 | 
 | 
	| 123 | 123 |     /// Gives back the specified value.
 | 
	| 124 | 124 |     Value operator[](const Key&) const { return _value; }
 | 
	| 125 | 125 | 
 | 
	| 126 | 126 |     /// Absorbs the value.
 | 
	| 127 | 127 |     void set(const Key&, const Value&) {}
 | 
	| 128 | 128 | 
 | 
	| 129 | 129 |     /// Sets the value that is assigned to each key.
 | 
	| 130 | 130 |     void setAll(const Value &v) {
 | 
	| 131 | 131 |       _value = v;
 | 
	| 132 | 132 |     }
 | 
	| 133 | 133 | 
 | 
	| 134 | 134 |     template<typename V1>
 | 
	| 135 | 135 |     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
 | 
	| 136 | 136 |   };
 | 
	| 137 | 137 | 
 | 
	| 138 | 138 |   /// Returns a \c ConstMap class
 | 
	| 139 | 139 | 
 | 
	| 140 | 140 |   /// This function just returns a \c ConstMap class.
 | 
	| 141 | 141 |   /// \relates ConstMap
 | 
	| 142 | 142 |   template<typename K, typename V>
 | 
	| 143 | 143 |   inline ConstMap<K, V> constMap(const V &v) {
 | 
	| 144 | 144 |     return ConstMap<K, V>(v);
 | 
	| 145 | 145 |   }
 | 
	| 146 | 146 | 
 | 
	| 147 | 147 |   template<typename K, typename V>
 | 
	| 148 | 148 |   inline ConstMap<K, V> constMap() {
 | 
	| 149 | 149 |     return ConstMap<K, V>();
 | 
	| 150 | 150 |   }
 | 
	| 151 | 151 | 
 | 
	| 152 | 152 | 
 | 
	| 153 | 153 |   template<typename T, T v>
 | 
	| 154 | 154 |   struct Const {};
 | 
	| 155 | 155 | 
 | 
	| 156 | 156 |   /// Constant map with inlined constant value.
 | 
	| 157 | 157 | 
 | 
	| 158 | 158 |   /// This \ref concepts::ReadMap "readable map" assigns a specified
 | 
	| 159 | 159 |   /// value to each key.
 | 
	| 160 | 160 |   ///
 | 
	| 161 | 161 |   /// In other aspects it is equivalent to \c NullMap.
 | 
	| 162 | 162 |   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
 | 
	| 163 | 163 |   /// concept, but it absorbs the data written to it.
 | 
	| 164 | 164 |   ///
 | 
	| 165 | 165 |   /// The simplest way of using this map is through the constMap()
 | 
	| 166 | 166 |   /// function.
 | 
	| 167 | 167 |   ///
 | 
	| 168 | 168 |   /// \sa NullMap
 | 
	| 169 | 169 |   /// \sa IdentityMap
 | 
	| 170 | 170 |   template<typename K, typename V, V v>
 | 
	| 171 | 171 |   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
 | 
	| 172 | 172 |   public:
 | 
	| 173 | 173 |     ///\e
 | 
	| 174 | 174 |     typedef K Key;
 | 
	| 175 | 175 |     ///\e
 | 
	| 176 | 176 |     typedef V Value;
 | 
	| 177 | 177 | 
 | 
	| 178 | 178 |     /// Constructor.
 | 
	| 179 | 179 |     ConstMap() {}
 | 
	| 180 | 180 | 
 | 
	| 181 | 181 |     /// Gives back the specified value.
 | 
	| 182 | 182 |     Value operator[](const Key&) const { return v; }
 | 
	| 183 | 183 | 
 | 
	| 184 | 184 |     /// Absorbs the value.
 | 
	| 185 | 185 |     void set(const Key&, const Value&) {}
 | 
	| 186 | 186 |   };
 | 
	| 187 | 187 | 
 | 
	| 188 | 188 |   /// Returns a \c ConstMap class with inlined constant value
 | 
	| 189 | 189 | 
 | 
	| 190 | 190 |   /// This function just returns a \c ConstMap class with inlined
 | 
	| 191 | 191 |   /// constant value.
 | 
	| 192 | 192 |   /// \relates ConstMap
 | 
	| 193 | 193 |   template<typename K, typename V, V v>
 | 
	| 194 | 194 |   inline ConstMap<K, Const<V, v> > constMap() {
 | 
	| 195 | 195 |     return ConstMap<K, Const<V, v> >();
 | 
	| 196 | 196 |   }
 | 
	| 197 | 197 | 
 | 
	| 198 | 198 | 
 | 
	| 199 | 199 |   /// Identity map.
 | 
	| 200 | 200 | 
 | 
	| 201 | 201 |   /// This \ref concepts::ReadMap "read-only map" gives back the given
 | 
	| 202 | 202 |   /// key as value without any modification.
 | 
	| 203 | 203 |   ///
 | 
	| 204 | 204 |   /// \sa ConstMap
 | 
	| 205 | 205 |   template <typename T>
 | 
	| 206 | 206 |   class IdentityMap : public MapBase<T, T> {
 | 
	| 207 | 207 |   public:
 | 
	| 208 | 208 |     ///\e
 | 
	| 209 | 209 |     typedef T Key;
 | 
	| 210 | 210 |     ///\e
 | 
	| 211 | 211 |     typedef T Value;
 | 
	| 212 | 212 | 
 | 
	| 213 | 213 |     /// Gives back the given value without any modification.
 | 
	| 214 | 214 |     Value operator[](const Key &k) const {
 | 
	| 215 | 215 |       return k;
 | 
	| 216 | 216 |     }
 | 
	| 217 | 217 |   };
 | 
	| 218 | 218 | 
 | 
	| 219 | 219 |   /// Returns an \c IdentityMap class
 | 
	| 220 | 220 | 
 | 
	| 221 | 221 |   /// This function just returns an \c IdentityMap class.
 | 
	| 222 | 222 |   /// \relates IdentityMap
 | 
	| 223 | 223 |   template<typename T>
 | 
	| 224 | 224 |   inline IdentityMap<T> identityMap() {
 | 
	| 225 | 225 |     return IdentityMap<T>();
 | 
	| 226 | 226 |   }
 | 
	| 227 | 227 | 
 | 
	| 228 | 228 | 
 | 
	| 229 | 229 |   /// \brief Map for storing values for integer keys from the range
 | 
	| 230 | 230 |   /// <tt>[0..size-1]</tt>.
 | 
	| 231 | 231 |   ///
 | 
	| 232 | 232 |   /// This map is essentially a wrapper for \c std::vector. It assigns
 | 
	| 233 | 233 |   /// values to integer keys from the range <tt>[0..size-1]</tt>.
 | 
	| 234 | 234 |   /// It can be used with some data structures, for example
 | 
	| 235 | 235 |   /// \c UnionFind, \c BinHeap, when the used items are small
 | 
	| 236 | 236 |   /// integers. This map conforms the \ref concepts::ReferenceMap
 | 
	| 237 | 237 |   /// "ReferenceMap" concept.
 | 
	| 238 | 238 |   ///
 | 
	| 239 | 239 |   /// The simplest way of using this map is through the rangeMap()
 | 
	| 240 | 240 |   /// function.
 | 
	| 241 | 241 |   template <typename V>
 | 
	| 242 | 242 |   class RangeMap : public MapBase<int, V> {
 | 
	| 243 | 243 |     template <typename V1>
 | 
	| 244 | 244 |     friend class RangeMap;
 | 
	| 245 | 245 |   private:
 | 
	| 246 | 246 | 
 | 
	| 247 | 247 |     typedef std::vector<V> Vector;
 | 
	| 248 | 248 |     Vector _vector;
 | 
	| 249 | 249 | 
 | 
	| 250 | 250 |   public:
 | 
	| 251 | 251 | 
 | 
	| 252 | 252 |     /// Key type
 | 
	| 253 | 253 |     typedef int Key;
 | 
	| 254 | 254 |     /// Value type
 | 
	| 255 | 255 |     typedef V Value;
 | 
	| 256 | 256 |     /// Reference type
 | 
	| 257 | 257 |     typedef typename Vector::reference Reference;
 | 
	| 258 | 258 |     /// Const reference type
 | 
	| 259 | 259 |     typedef typename Vector::const_reference ConstReference;
 | 
	| 260 | 260 | 
 | 
	| 261 | 261 |     typedef True ReferenceMapTag;
 | 
	| 262 | 262 | 
 | 
	| 263 | 263 |   public:
 | 
	| 264 | 264 | 
 | 
	| 265 | 265 |     /// Constructor with specified default value.
 | 
	| 266 | 266 |     RangeMap(int size = 0, const Value &value = Value())
 | 
	| 267 | 267 |       : _vector(size, value) {}
 | 
	| 268 | 268 | 
 | 
	| 269 | 269 |     /// Constructs the map from an appropriate \c std::vector.
 | 
	| 270 | 270 |     template <typename V1>
 | 
	| 271 | 271 |     RangeMap(const std::vector<V1>& vector)
 | 
	| 272 | 272 |       : _vector(vector.begin(), vector.end()) {}
 | 
	| 273 | 273 | 
 | 
	| 274 | 274 |     /// Constructs the map from another \c RangeMap.
 | 
	| 275 | 275 |     template <typename V1>
 | 
	| 276 | 276 |     RangeMap(const RangeMap<V1> &c)
 | 
	| 277 | 277 |       : _vector(c._vector.begin(), c._vector.end()) {}
 | 
	| 278 | 278 | 
 | 
	| 279 | 279 |     /// Returns the size of the map.
 | 
	| 280 | 280 |     int size() {
 | 
	| 281 | 281 |       return _vector.size();
 | 
	| 282 | 282 |     }
 | 
	| 283 | 283 | 
 | 
	| 284 | 284 |     /// Resizes the map.
 | 
	| 285 | 285 | 
 | 
	| 286 | 286 |     /// Resizes the underlying \c std::vector container, so changes the
 | 
	| 287 | 287 |     /// keyset of the map.
 | 
	| 288 | 288 |     /// \param size The new size of the map. The new keyset will be the
 | 
	| 289 | 289 |     /// range <tt>[0..size-1]</tt>.
 | 
	| 290 | 290 |     /// \param value The default value to assign to the new keys.
 | 
	| 291 | 291 |     void resize(int size, const Value &value = Value()) {
 | 
	| 292 | 292 |       _vector.resize(size, value);
 | 
	| 293 | 293 |     }
 | 
	| 294 | 294 | 
 | 
	| 295 | 295 |   private:
 | 
	| 296 | 296 | 
 | 
	| 297 | 297 |     RangeMap& operator=(const RangeMap&);
 | 
	| 298 | 298 | 
 | 
	| 299 | 299 |   public:
 | 
	| 300 | 300 | 
 | 
	| 301 | 301 |     ///\e
 | 
	| 302 | 302 |     Reference operator[](const Key &k) {
 | 
	| 303 | 303 |       return _vector[k];
 | 
	| 304 | 304 |     }
 | 
	| 305 | 305 | 
 | 
	| 306 | 306 |     ///\e
 | 
	| 307 | 307 |     ConstReference operator[](const Key &k) const {
 | 
	| 308 | 308 |       return _vector[k];
 | 
	| 309 | 309 |     }
 | 
	| 310 | 310 | 
 | 
	| 311 | 311 |     ///\e
 | 
	| 312 | 312 |     void set(const Key &k, const Value &v) {
 | 
	| 313 | 313 |       _vector[k] = v;
 | 
	| 314 | 314 |     }
 | 
	| 315 | 315 |   };
 | 
	| 316 | 316 | 
 | 
	| 317 | 317 |   /// Returns a \c RangeMap class
 | 
	| 318 | 318 | 
 | 
	| 319 | 319 |   /// This function just returns a \c RangeMap class.
 | 
	| 320 | 320 |   /// \relates RangeMap
 | 
	| 321 | 321 |   template<typename V>
 | 
	| 322 | 322 |   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
 | 
	| 323 | 323 |     return RangeMap<V>(size, value);
 | 
	| 324 | 324 |   }
 | 
	| 325 | 325 | 
 | 
	| 326 | 326 |   /// \brief Returns a \c RangeMap class created from an appropriate
 | 
	| 327 | 327 |   /// \c std::vector
 | 
	| 328 | 328 | 
 | 
	| 329 | 329 |   /// This function just returns a \c RangeMap class created from an
 | 
	| 330 | 330 |   /// appropriate \c std::vector.
 | 
	| 331 | 331 |   /// \relates RangeMap
 | 
	| 332 | 332 |   template<typename V>
 | 
	| 333 | 333 |   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
 | 
	| 334 | 334 |     return RangeMap<V>(vector);
 | 
	| 335 | 335 |   }
 | 
	| 336 | 336 | 
 | 
	| 337 | 337 | 
 | 
	| 338 | 338 |   /// Map type based on \c std::map
 | 
	| 339 | 339 | 
 | 
	| 340 | 340 |   /// This map is essentially a wrapper for \c std::map with addition
 | 
	| 341 | 341 |   /// that you can specify a default value for the keys that are not
 | 
	| 342 | 342 |   /// stored actually. This value can be different from the default
 | 
	| 343 | 343 |   /// contructed value (i.e. \c %Value()).
 | 
	| 344 | 344 |   /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
 | 
	| 345 | 345 |   /// concept.
 | 
	| 346 | 346 |   ///
 | 
	| 347 | 347 |   /// This map is useful if a default value should be assigned to most of
 | 
	| 348 | 348 |   /// the keys and different values should be assigned only to a few
 | 
	| 349 | 349 |   /// keys (i.e. the map is "sparse").
 | 
	| 350 | 350 |   /// The name of this type also refers to this important usage.
 | 
	| 351 | 351 |   ///
 | 
	| 352 | 352 |   /// Apart form that this map can be used in many other cases since it
 | 
	| 353 | 353 |   /// is based on \c std::map, which is a general associative container.
 | 
	| 354 | 354 |   /// However keep in mind that it is usually not as efficient as other
 | 
	| 355 | 355 |   /// maps.
 | 
	| 356 | 356 |   ///
 | 
	| 357 | 357 |   /// The simplest way of using this map is through the sparseMap()
 | 
	| 358 | 358 |   /// function.
 | 
	| 359 | 359 |   template <typename K, typename V, typename Comp = std::less<K> >
 | 
	| 360 | 360 |   class SparseMap : public MapBase<K, V> {
 | 
	| 361 | 361 |     template <typename K1, typename V1, typename C1>
 | 
	| 362 | 362 |     friend class SparseMap;
 | 
	| 363 | 363 |   public:
 | 
	| 364 | 364 | 
 | 
	| 365 | 365 |     /// Key type
 | 
	| 366 | 366 |     typedef K Key;
 | 
	| 367 | 367 |     /// Value type
 | 
	| 368 | 368 |     typedef V Value;
 | 
	| 369 | 369 |     /// Reference type
 | 
	| 370 | 370 |     typedef Value& Reference;
 | 
	| 371 | 371 |     /// Const reference type
 | 
	| 372 | 372 |     typedef const Value& ConstReference;
 | 
	| 373 | 373 | 
 | 
	| 374 | 374 |     typedef True ReferenceMapTag;
 | 
	| 375 | 375 | 
 | 
	| 376 | 376 |   private:
 | 
	| 377 | 377 | 
 | 
	| 378 | 378 |     typedef std::map<K, V, Comp> Map;
 | 
	| 379 | 379 |     Map _map;
 | 
	| 380 | 380 |     Value _value;
 | 
	| 381 | 381 | 
 | 
	| 382 | 382 |   public:
 | 
	| 383 | 383 | 
 | 
	| 384 | 384 |     /// \brief Constructor with specified default value.
 | 
	| 385 | 385 |     SparseMap(const Value &value = Value()) : _value(value) {}
 | 
	| 386 | 386 |     /// \brief Constructs the map from an appropriate \c std::map, and
 | 
	| 387 | 387 |     /// explicitly specifies a default value.
 | 
	| 388 | 388 |     template <typename V1, typename Comp1>
 | 
	| 389 | 389 |     SparseMap(const std::map<Key, V1, Comp1> &map,
 | 
	| 390 | 390 |               const Value &value = Value())
 | 
	| 391 | 391 |       : _map(map.begin(), map.end()), _value(value) {}
 | 
	| 392 | 392 | 
 | 
	| 393 | 393 |     /// \brief Constructs the map from another \c SparseMap.
 | 
	| 394 | 394 |     template<typename V1, typename Comp1>
 | 
	| 395 | 395 |     SparseMap(const SparseMap<Key, V1, Comp1> &c)
 | 
	| 396 | 396 |       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
 | 
	| 397 | 397 | 
 | 
	| 398 | 398 |   private:
 | 
	| 399 | 399 | 
 | 
	| 400 | 400 |     SparseMap& operator=(const SparseMap&);
 | 
	| 401 | 401 | 
 | 
	| 402 | 402 |   public:
 | 
	| 403 | 403 | 
 | 
	| 404 | 404 |     ///\e
 | 
	| 405 | 405 |     Reference operator[](const Key &k) {
 | 
	| 406 | 406 |       typename Map::iterator it = _map.lower_bound(k);
 | 
	| 407 | 407 |       if (it != _map.end() && !_map.key_comp()(k, it->first))
 | 
	| 408 | 408 |         return it->second;
 | 
	| 409 | 409 |       else
 | 
	| 410 | 410 |         return _map.insert(it, std::make_pair(k, _value))->second;
 | 
	| 411 | 411 |     }
 | 
	| 412 | 412 | 
 | 
	| 413 | 413 |     ///\e
 | 
	| 414 | 414 |     ConstReference operator[](const Key &k) const {
 | 
	| 415 | 415 |       typename Map::const_iterator it = _map.find(k);
 | 
	| 416 | 416 |       if (it != _map.end())
 | 
	| 417 | 417 |         return it->second;
 | 
	| 418 | 418 |       else
 | 
	| 419 | 419 |         return _value;
 | 
	| 420 | 420 |     }
 | 
	| 421 | 421 | 
 | 
	| 422 | 422 |     ///\e
 | 
	| 423 | 423 |     void set(const Key &k, const Value &v) {
 | 
	| 424 | 424 |       typename Map::iterator it = _map.lower_bound(k);
 | 
	| 425 | 425 |       if (it != _map.end() && !_map.key_comp()(k, it->first))
 | 
	| 426 | 426 |         it->second = v;
 | 
	| 427 | 427 |       else
 | 
	| 428 | 428 |         _map.insert(it, std::make_pair(k, v));
 | 
	| 429 | 429 |     }
 | 
	| 430 | 430 | 
 | 
	| 431 | 431 |     ///\e
 | 
	| 432 | 432 |     void setAll(const Value &v) {
 | 
	| 433 | 433 |       _value = v;
 | 
	| 434 | 434 |       _map.clear();
 | 
	| 435 | 435 |     }
 | 
	| 436 | 436 |   };
 | 
	| 437 | 437 | 
 | 
	| 438 | 438 |   /// Returns a \c SparseMap class
 | 
	| 439 | 439 | 
 | 
	| 440 | 440 |   /// This function just returns a \c SparseMap class with specified
 | 
	| 441 | 441 |   /// default value.
 | 
	| 442 | 442 |   /// \relates SparseMap
 | 
	| 443 | 443 |   template<typename K, typename V, typename Compare>
 | 
	| 444 | 444 |   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
 | 
	| 445 | 445 |     return SparseMap<K, V, Compare>(value);
 | 
	| 446 | 446 |   }
 | 
	| 447 | 447 | 
 | 
	| 448 | 448 |   template<typename K, typename V>
 | 
	| 449 | 449 |   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
 | 
	| 450 | 450 |     return SparseMap<K, V, std::less<K> >(value);
 | 
	| 451 | 451 |   }
 | 
	| 452 | 452 | 
 | 
	| 453 | 453 |   /// \brief Returns a \c SparseMap class created from an appropriate
 | 
	| 454 | 454 |   /// \c std::map
 | 
	| 455 | 455 | 
 | 
	| 456 | 456 |   /// This function just returns a \c SparseMap class created from an
 | 
	| 457 | 457 |   /// appropriate \c std::map.
 | 
	| 458 | 458 |   /// \relates SparseMap
 | 
	| 459 | 459 |   template<typename K, typename V, typename Compare>
 | 
	| 460 | 460 |   inline SparseMap<K, V, Compare>
 | 
	| 461 | 461 |     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
 | 
	| 462 | 462 |   {
 | 
	| 463 | 463 |     return SparseMap<K, V, Compare>(map, value);
 | 
	| 464 | 464 |   }
 | 
	| 465 | 465 | 
 | 
	| 466 | 466 |   /// @}
 | 
	| 467 | 467 | 
 | 
	| 468 | 468 |   /// \addtogroup map_adaptors
 | 
	| 469 | 469 |   /// @{
 | 
	| 470 | 470 | 
 | 
	| 471 | 471 |   /// Composition of two maps
 | 
	| 472 | 472 | 
 | 
	| 473 | 473 |   /// This \ref concepts::ReadMap "read-only map" returns the
 | 
	| 474 | 474 |   /// composition of two given maps. That is to say, if \c m1 is of
 | 
	| 475 | 475 |   /// type \c M1 and \c m2 is of \c M2, then for
 | 
	| 476 | 476 |   /// \code
 | 
	| 477 | 477 |   ///   ComposeMap<M1, M2> cm(m1,m2);
 | 
	| 478 | 478 |   /// \endcode
 | 
	| 479 | 479 |   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
 | 
	| 480 | 480 |   ///
 | 
	| 481 | 481 |   /// The \c Key type of the map is inherited from \c M2 and the
 | 
	| 482 | 482 |   /// \c Value type is from \c M1.
 | 
	| 483 | 483 |   /// \c M2::Value must be convertible to \c M1::Key.
 | 
	| 484 | 484 |   ///
 | 
	| 485 | 485 |   /// The simplest way of using this map is through the composeMap()
 | 
	| 486 | 486 |   /// function.
 | 
	| 487 | 487 |   ///
 | 
	| 488 | 488 |   /// \sa CombineMap
 | 
	| 489 | 489 |   template <typename M1, typename M2>
 | 
	| 490 | 490 |   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
 | 
	| 491 | 491 |     const M1 &_m1;
 | 
	| 492 | 492 |     const M2 &_m2;
 | 
	| 493 | 493 |   public:
 | 
	| 494 | 494 |     ///\e
 | 
	| 495 | 495 |     typedef typename M2::Key Key;
 | 
	| 496 | 496 |     ///\e
 | 
	| 497 | 497 |     typedef typename M1::Value Value;
 | 
	| 498 | 498 | 
 | 
	| 499 | 499 |     /// Constructor
 | 
	| 500 | 500 |     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 501 | 501 | 
 | 
	| 502 | 502 |     ///\e
 | 
	| 503 | 503 |     typename MapTraits<M1>::ConstReturnValue
 | 
	| 504 | 504 |     operator[](const Key &k) const { return _m1[_m2[k]]; }
 | 
	| 505 | 505 |   };
 | 
	| 506 | 506 | 
 | 
	| 507 | 507 |   /// Returns a \c ComposeMap class
 | 
	| 508 | 508 | 
 | 
	| 509 | 509 |   /// This function just returns a \c ComposeMap class.
 | 
	| 510 | 510 |   ///
 | 
	| 511 | 511 |   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
 | 
	| 512 | 512 |   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
 | 
	| 513 | 513 |   /// will be equal to <tt>m1[m2[x]]</tt>.
 | 
	| 514 | 514 |   ///
 | 
	| 515 | 515 |   /// \relates ComposeMap
 | 
	| 516 | 516 |   template <typename M1, typename M2>
 | 
	| 517 | 517 |   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
 | 
	| 518 | 518 |     return ComposeMap<M1, M2>(m1, m2);
 | 
	| 519 | 519 |   }
 | 
	| 520 | 520 | 
 | 
	| 521 | 521 | 
 | 
	| 522 | 522 |   /// Combination of two maps using an STL (binary) functor.
 | 
	| 523 | 523 | 
 | 
	| 524 | 524 |   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
 | 
	| 525 | 525 |   /// binary functor and returns the combination of the two given maps
 | 
	| 526 | 526 |   /// using the functor.
 | 
	| 527 | 527 |   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
 | 
	| 528 | 528 |   /// and \c f is of \c F, then for
 | 
	| 529 | 529 |   /// \code
 | 
	| 530 | 530 |   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
 | 
	| 531 | 531 |   /// \endcode
 | 
	| 532 | 532 |   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
 | 
	| 533 | 533 |   ///
 | 
	| 534 | 534 |   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
 | 
	| 535 | 535 |   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
 | 
	| 536 | 536 |   /// \c M2::Value and \c M1::Value must be convertible to the
 | 
	| 537 | 537 |   /// corresponding input parameter of \c F and the return type of \c F
 | 
	| 538 | 538 |   /// must be convertible to \c V.
 | 
	| 539 | 539 |   ///
 | 
	| 540 | 540 |   /// The simplest way of using this map is through the combineMap()
 | 
	| 541 | 541 |   /// function.
 | 
	| 542 | 542 |   ///
 | 
	| 543 | 543 |   /// \sa ComposeMap
 | 
	| 544 | 544 |   template<typename M1, typename M2, typename F,
 | 
	| 545 | 545 |            typename V = typename F::result_type>
 | 
	| 546 | 546 |   class CombineMap : public MapBase<typename M1::Key, V> {
 | 
	| 547 | 547 |     const M1 &_m1;
 | 
	| 548 | 548 |     const M2 &_m2;
 | 
	| 549 | 549 |     F _f;
 | 
	| 550 | 550 |   public:
 | 
	| 551 | 551 |     ///\e
 | 
	| 552 | 552 |     typedef typename M1::Key Key;
 | 
	| 553 | 553 |     ///\e
 | 
	| 554 | 554 |     typedef V Value;
 | 
	| 555 | 555 | 
 | 
	| 556 | 556 |     /// Constructor
 | 
	| 557 | 557 |     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
 | 
	| 558 | 558 |       : _m1(m1), _m2(m2), _f(f) {}
 | 
	| 559 | 559 |     ///\e
 | 
	| 560 | 560 |     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
 | 
	| 561 | 561 |   };
 | 
	| 562 | 562 | 
 | 
	| 563 | 563 |   /// Returns a \c CombineMap class
 | 
	| 564 | 564 | 
 | 
	| 565 | 565 |   /// This function just returns a \c CombineMap class.
 | 
	| 566 | 566 |   ///
 | 
	| 567 | 567 |   /// For example, if \c m1 and \c m2 are both maps with \c double
 | 
	| 568 | 568 |   /// values, then
 | 
	| 569 | 569 |   /// \code
 | 
	| 570 | 570 |   ///   combineMap(m1,m2,std::plus<double>())
 | 
	| 571 | 571 |   /// \endcode
 | 
	| 572 | 572 |   /// is equivalent to
 | 
	| 573 | 573 |   /// \code
 | 
	| 574 | 574 |   ///   addMap(m1,m2)
 | 
	| 575 | 575 |   /// \endcode
 | 
	| 576 | 576 |   ///
 | 
	| 577 | 577 |   /// This function is specialized for adaptable binary function
 | 
	| 578 | 578 |   /// classes and C++ functions.
 | 
	| 579 | 579 |   ///
 | 
	| 580 | 580 |   /// \relates CombineMap
 | 
	| 581 | 581 |   template<typename M1, typename M2, typename F, typename V>
 | 
	| 582 | 582 |   inline CombineMap<M1, M2, F, V>
 | 
	| 583 | 583 |   combineMap(const M1 &m1, const M2 &m2, const F &f) {
 | 
	| 584 | 584 |     return CombineMap<M1, M2, F, V>(m1,m2,f);
 | 
	| 585 | 585 |   }
 | 
	| 586 | 586 | 
 | 
	| 587 | 587 |   template<typename M1, typename M2, typename F>
 | 
	| 588 | 588 |   inline CombineMap<M1, M2, F, typename F::result_type>
 | 
	| 589 | 589 |   combineMap(const M1 &m1, const M2 &m2, const F &f) {
 | 
	| 590 | 590 |     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
 | 
	| 591 | 591 |   }
 | 
	| 592 | 592 | 
 | 
	| 593 | 593 |   template<typename M1, typename M2, typename K1, typename K2, typename V>
 | 
	| 594 | 594 |   inline CombineMap<M1, M2, V (*)(K1, K2), V>
 | 
	| 595 | 595 |   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
 | 
	| 596 | 596 |     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
 | 
	| 597 | 597 |   }
 | 
	| 598 | 598 | 
 | 
	| 599 | 599 | 
 | 
	| 600 | 600 |   /// Converts an STL style (unary) functor to a map
 | 
	| 601 | 601 | 
 | 
	| 602 | 602 |   /// This \ref concepts::ReadMap "read-only map" returns the value
 | 
	| 603 | 603 |   /// of a given functor. Actually, it just wraps the functor and
 | 
	| 604 | 604 |   /// provides the \c Key and \c Value typedefs.
 | 
	| 605 | 605 |   ///
 | 
	| 606 | 606 |   /// Template parameters \c K and \c V will become its \c Key and
 | 
	| 607 | 607 |   /// \c Value. In most cases they have to be given explicitly because
 | 
	| 608 | 608 |   /// a functor typically does not provide \c argument_type and
 | 
	| 609 | 609 |   /// \c result_type typedefs.
 | 
	| 610 | 610 |   /// Parameter \c F is the type of the used functor.
 | 
	| 611 | 611 |   ///
 | 
	| 612 | 612 |   /// The simplest way of using this map is through the functorToMap()
 | 
	| 613 | 613 |   /// function.
 | 
	| 614 | 614 |   ///
 | 
	| 615 | 615 |   /// \sa MapToFunctor
 | 
	| 616 | 616 |   template<typename F,
 | 
	| 617 | 617 |            typename K = typename F::argument_type,
 | 
	| 618 | 618 |            typename V = typename F::result_type>
 | 
	| 619 | 619 |   class FunctorToMap : public MapBase<K, V> {
 | 
	| 620 | 620 |     F _f;
 | 
	| 621 | 621 |   public:
 | 
	| 622 | 622 |     ///\e
 | 
	| 623 | 623 |     typedef K Key;
 | 
	| 624 | 624 |     ///\e
 | 
	| 625 | 625 |     typedef V Value;
 | 
	| 626 | 626 | 
 | 
	| 627 | 627 |     /// Constructor
 | 
	| 628 | 628 |     FunctorToMap(const F &f = F()) : _f(f) {}
 | 
	| 629 | 629 |     ///\e
 | 
	| 630 | 630 |     Value operator[](const Key &k) const { return _f(k); }
 | 
	| 631 | 631 |   };
 | 
	| 632 | 632 | 
 | 
	| 633 | 633 |   /// Returns a \c FunctorToMap class
 | 
	| 634 | 634 | 
 | 
	| 635 | 635 |   /// This function just returns a \c FunctorToMap class.
 | 
	| 636 | 636 |   ///
 | 
	| 637 | 637 |   /// This function is specialized for adaptable binary function
 | 
	| 638 | 638 |   /// classes and C++ functions.
 | 
	| 639 | 639 |   ///
 | 
	| 640 | 640 |   /// \relates FunctorToMap
 | 
	| 641 | 641 |   template<typename K, typename V, typename F>
 | 
	| 642 | 642 |   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
 | 
	| 643 | 643 |     return FunctorToMap<F, K, V>(f);
 | 
	| 644 | 644 |   }
 | 
	| 645 | 645 | 
 | 
	| 646 | 646 |   template <typename F>
 | 
	| 647 | 647 |   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
 | 
	| 648 | 648 |     functorToMap(const F &f)
 | 
	| 649 | 649 |   {
 | 
	| 650 | 650 |     return FunctorToMap<F, typename F::argument_type,
 | 
	| 651 | 651 |       typename F::result_type>(f);
 | 
	| 652 | 652 |   }
 | 
	| 653 | 653 | 
 | 
	| 654 | 654 |   template <typename K, typename V>
 | 
	| 655 | 655 |   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
 | 
	| 656 | 656 |     return FunctorToMap<V (*)(K), K, V>(f);
 | 
	| 657 | 657 |   }
 | 
	| 658 | 658 | 
 | 
	| 659 | 659 | 
 | 
	| 660 | 660 |   /// Converts a map to an STL style (unary) functor
 | 
	| 661 | 661 | 
 | 
	| 662 | 662 |   /// This class converts a map to an STL style (unary) functor.
 | 
	| 663 | 663 |   /// That is it provides an <tt>operator()</tt> to read its values.
 | 
	| 664 | 664 |   ///
 | 
	| 665 | 665 |   /// For the sake of convenience it also works as a usual
 | 
	| 666 | 666 |   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
 | 
	| 667 | 667 |   /// and the \c Key and \c Value typedefs also exist.
 | 
	| 668 | 668 |   ///
 | 
	| 669 | 669 |   /// The simplest way of using this map is through the mapToFunctor()
 | 
	| 670 | 670 |   /// function.
 | 
	| 671 | 671 |   ///
 | 
	| 672 | 672 |   ///\sa FunctorToMap
 | 
	| 673 | 673 |   template <typename M>
 | 
	| 674 | 674 |   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 675 | 675 |     const M &_m;
 | 
	| 676 | 676 |   public:
 | 
	| 677 | 677 |     ///\e
 | 
	| 678 | 678 |     typedef typename M::Key Key;
 | 
	| 679 | 679 |     ///\e
 | 
	| 680 | 680 |     typedef typename M::Value Value;
 | 
	| 681 | 681 | 
 | 
	| 682 | 682 |     typedef typename M::Key argument_type;
 | 
	| 683 | 683 |     typedef typename M::Value result_type;
 | 
	| 684 | 684 | 
 | 
	| 685 | 685 |     /// Constructor
 | 
	| 686 | 686 |     MapToFunctor(const M &m) : _m(m) {}
 | 
	| 687 | 687 |     ///\e
 | 
	| 688 | 688 |     Value operator()(const Key &k) const { return _m[k]; }
 | 
	| 689 | 689 |     ///\e
 | 
	| 690 | 690 |     Value operator[](const Key &k) const { return _m[k]; }
 | 
	| 691 | 691 |   };
 | 
	| 692 | 692 | 
 | 
	| 693 | 693 |   /// Returns a \c MapToFunctor class
 | 
	| 694 | 694 | 
 | 
	| 695 | 695 |   /// This function just returns a \c MapToFunctor class.
 | 
	| 696 | 696 |   /// \relates MapToFunctor
 | 
	| 697 | 697 |   template<typename M>
 | 
	| 698 | 698 |   inline MapToFunctor<M> mapToFunctor(const M &m) {
 | 
	| 699 | 699 |     return MapToFunctor<M>(m);
 | 
	| 700 | 700 |   }
 | 
	| 701 | 701 | 
 | 
	| 702 | 702 | 
 | 
	| 703 | 703 |   /// \brief Map adaptor to convert the \c Value type of a map to
 | 
	| 704 | 704 |   /// another type using the default conversion.
 | 
	| 705 | 705 | 
 | 
	| 706 | 706 |   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
 | 
	| 707 | 707 |   /// "readable map" to another type using the default conversion.
 | 
	| 708 | 708 |   /// The \c Key type of it is inherited from \c M and the \c Value
 | 
	| 709 | 709 |   /// type is \c V.
 | 
	| 710 | 710 |   /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
 | 
	| 711 | 711 |   ///
 | 
	| 712 | 712 |   /// The simplest way of using this map is through the convertMap()
 | 
	| 713 | 713 |   /// function.
 | 
	| 714 | 714 |   template <typename M, typename V>
 | 
	| 715 | 715 |   class ConvertMap : public MapBase<typename M::Key, V> {
 | 
	| 716 | 716 |     const M &_m;
 | 
	| 717 | 717 |   public:
 | 
	| 718 | 718 |     ///\e
 | 
	| 719 | 719 |     typedef typename M::Key Key;
 | 
	| 720 | 720 |     ///\e
 | 
	| 721 | 721 |     typedef V Value;
 | 
	| 722 | 722 | 
 | 
	| 723 | 723 |     /// Constructor
 | 
	| 724 | 724 | 
 | 
	| 725 | 725 |     /// Constructor.
 | 
	| 726 | 726 |     /// \param m The underlying map.
 | 
	| 727 | 727 |     ConvertMap(const M &m) : _m(m) {}
 | 
	| 728 | 728 | 
 | 
	| 729 | 729 |     ///\e
 | 
	| 730 | 730 |     Value operator[](const Key &k) const { return _m[k]; }
 | 
	| 731 | 731 |   };
 | 
	| 732 | 732 | 
 | 
	| 733 | 733 |   /// Returns a \c ConvertMap class
 | 
	| 734 | 734 | 
 | 
	| 735 | 735 |   /// This function just returns a \c ConvertMap class.
 | 
	| 736 | 736 |   /// \relates ConvertMap
 | 
	| 737 | 737 |   template<typename V, typename M>
 | 
	| 738 | 738 |   inline ConvertMap<M, V> convertMap(const M &map) {
 | 
	| 739 | 739 |     return ConvertMap<M, V>(map);
 | 
	| 740 | 740 |   }
 | 
	| 741 | 741 | 
 | 
	| 742 | 742 | 
 | 
	| 743 | 743 |   /// Applies all map setting operations to two maps
 | 
	| 744 | 744 | 
 | 
	| 745 | 745 |   /// This map has two \ref concepts::WriteMap "writable map" parameters
 | 
	| 746 | 746 |   /// and each write request will be passed to both of them.
 | 
	| 747 | 747 |   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
 | 
	| 748 | 748 |   /// operations will return the corresponding values of \c M1.
 | 
	| 749 | 749 |   ///
 | 
	| 750 | 750 |   /// The \c Key and \c Value types are inherited from \c M1.
 | 
	| 751 | 751 |   /// The \c Key and \c Value of \c M2 must be convertible from those
 | 
	| 752 | 752 |   /// of \c M1.
 | 
	| 753 | 753 |   ///
 | 
	| 754 | 754 |   /// The simplest way of using this map is through the forkMap()
 | 
	| 755 | 755 |   /// function.
 | 
	| 756 | 756 |   template<typename  M1, typename M2>
 | 
	| 757 | 757 |   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
 | 
	| 758 | 758 |     M1 &_m1;
 | 
	| 759 | 759 |     M2 &_m2;
 | 
	| 760 | 760 |   public:
 | 
	| 761 | 761 |     ///\e
 | 
	| 762 | 762 |     typedef typename M1::Key Key;
 | 
	| 763 | 763 |     ///\e
 | 
	| 764 | 764 |     typedef typename M1::Value Value;
 | 
	| 765 | 765 | 
 | 
	| 766 | 766 |     /// Constructor
 | 
	| 767 | 767 |     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 768 | 768 |     /// Returns the value associated with the given key in the first map.
 | 
	| 769 | 769 |     Value operator[](const Key &k) const { return _m1[k]; }
 | 
	| 770 | 770 |     /// Sets the value associated with the given key in both maps.
 | 
	| 771 | 771 |     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
 | 
	| 772 | 772 |   };
 | 
	| 773 | 773 | 
 | 
	| 774 | 774 |   /// Returns a \c ForkMap class
 | 
	| 775 | 775 | 
 | 
	| 776 | 776 |   /// This function just returns a \c ForkMap class.
 | 
	| 777 | 777 |   /// \relates ForkMap
 | 
	| 778 | 778 |   template <typename M1, typename M2>
 | 
	| 779 | 779 |   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
 | 
	| 780 | 780 |     return ForkMap<M1,M2>(m1,m2);
 | 
	| 781 | 781 |   }
 | 
	| 782 | 782 | 
 | 
	| 783 | 783 | 
 | 
	| 784 | 784 |   /// Sum of two maps
 | 
	| 785 | 785 | 
 | 
	| 786 | 786 |   /// This \ref concepts::ReadMap "read-only map" returns the sum
 | 
	| 787 | 787 |   /// of the values of the two given maps.
 | 
	| 788 | 788 |   /// Its \c Key and \c Value types are inherited from \c M1.
 | 
	| 789 | 789 |   /// The \c Key and \c Value of \c M2 must be convertible to those of
 | 
	| 790 | 790 |   /// \c M1.
 | 
	| 791 | 791 |   ///
 | 
	| 792 | 792 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 793 | 793 |   /// \code
 | 
	| 794 | 794 |   ///   AddMap<M1,M2> am(m1,m2);
 | 
	| 795 | 795 |   /// \endcode
 | 
	| 796 | 796 |   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
 | 
	| 797 | 797 |   ///
 | 
	| 798 | 798 |   /// The simplest way of using this map is through the addMap()
 | 
	| 799 | 799 |   /// function.
 | 
	| 800 | 800 |   ///
 | 
	| 801 | 801 |   /// \sa SubMap, MulMap, DivMap
 | 
	| 802 | 802 |   /// \sa ShiftMap, ShiftWriteMap
 | 
	| 803 | 803 |   template<typename M1, typename M2>
 | 
	| 804 | 804 |   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
 | 
	| 805 | 805 |     const M1 &_m1;
 | 
	| 806 | 806 |     const M2 &_m2;
 | 
	| 807 | 807 |   public:
 | 
	| 808 | 808 |     ///\e
 | 
	| 809 | 809 |     typedef typename M1::Key Key;
 | 
	| 810 | 810 |     ///\e
 | 
	| 811 | 811 |     typedef typename M1::Value Value;
 | 
	| 812 | 812 | 
 | 
	| 813 | 813 |     /// Constructor
 | 
	| 814 | 814 |     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 815 | 815 |     ///\e
 | 
	| 816 | 816 |     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
 | 
	| 817 | 817 |   };
 | 
	| 818 | 818 | 
 | 
	| 819 | 819 |   /// Returns an \c AddMap class
 | 
	| 820 | 820 | 
 | 
	| 821 | 821 |   /// This function just returns an \c AddMap class.
 | 
	| 822 | 822 |   ///
 | 
	| 823 | 823 |   /// For example, if \c m1 and \c m2 are both maps with \c double
 | 
	| 824 | 824 |   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
 | 
	| 825 | 825 |   /// <tt>m1[x]+m2[x]</tt>.
 | 
	| 826 | 826 |   ///
 | 
	| 827 | 827 |   /// \relates AddMap
 | 
	| 828 | 828 |   template<typename M1, typename M2>
 | 
	| 829 | 829 |   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
 | 
	| 830 | 830 |     return AddMap<M1, M2>(m1,m2);
 | 
	| 831 | 831 |   }
 | 
	| 832 | 832 | 
 | 
	| 833 | 833 | 
 | 
	| 834 | 834 |   /// Difference of two maps
 | 
	| 835 | 835 | 
 | 
	| 836 | 836 |   /// This \ref concepts::ReadMap "read-only map" returns the difference
 | 
	| 837 | 837 |   /// of the values of the two given maps.
 | 
	| 838 | 838 |   /// Its \c Key and \c Value types are inherited from \c M1.
 | 
	| 839 | 839 |   /// The \c Key and \c Value of \c M2 must be convertible to those of
 | 
	| 840 | 840 |   /// \c M1.
 | 
	| 841 | 841 |   ///
 | 
	| 842 | 842 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 843 | 843 |   /// \code
 | 
	| 844 | 844 |   ///   SubMap<M1,M2> sm(m1,m2);
 | 
	| 845 | 845 |   /// \endcode
 | 
	| 846 | 846 |   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
 | 
	| 847 | 847 |   ///
 | 
	| 848 | 848 |   /// The simplest way of using this map is through the subMap()
 | 
	| 849 | 849 |   /// function.
 | 
	| 850 | 850 |   ///
 | 
	| 851 | 851 |   /// \sa AddMap, MulMap, DivMap
 | 
	| 852 | 852 |   template<typename M1, typename M2>
 | 
	| 853 | 853 |   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
 | 
	| 854 | 854 |     const M1 &_m1;
 | 
	| 855 | 855 |     const M2 &_m2;
 | 
	| 856 | 856 |   public:
 | 
	| 857 | 857 |     ///\e
 | 
	| 858 | 858 |     typedef typename M1::Key Key;
 | 
	| 859 | 859 |     ///\e
 | 
	| 860 | 860 |     typedef typename M1::Value Value;
 | 
	| 861 | 861 | 
 | 
	| 862 | 862 |     /// Constructor
 | 
	| 863 | 863 |     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 864 | 864 |     ///\e
 | 
	| 865 | 865 |     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
 | 
	| 866 | 866 |   };
 | 
	| 867 | 867 | 
 | 
	| 868 | 868 |   /// Returns a \c SubMap class
 | 
	| 869 | 869 | 
 | 
	| 870 | 870 |   /// This function just returns a \c SubMap class.
 | 
	| 871 | 871 |   ///
 | 
	| 872 | 872 |   /// For example, if \c m1 and \c m2 are both maps with \c double
 | 
	| 873 | 873 |   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
 | 
	| 874 | 874 |   /// <tt>m1[x]-m2[x]</tt>.
 | 
	| 875 | 875 |   ///
 | 
	| 876 | 876 |   /// \relates SubMap
 | 
	| 877 | 877 |   template<typename M1, typename M2>
 | 
	| 878 | 878 |   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
 | 
	| 879 | 879 |     return SubMap<M1, M2>(m1,m2);
 | 
	| 880 | 880 |   }
 | 
	| 881 | 881 | 
 | 
	| 882 | 882 | 
 | 
	| 883 | 883 |   /// Product of two maps
 | 
	| 884 | 884 | 
 | 
	| 885 | 885 |   /// This \ref concepts::ReadMap "read-only map" returns the product
 | 
	| 886 | 886 |   /// of the values of the two given maps.
 | 
	| 887 | 887 |   /// Its \c Key and \c Value types are inherited from \c M1.
 | 
	| 888 | 888 |   /// The \c Key and \c Value of \c M2 must be convertible to those of
 | 
	| 889 | 889 |   /// \c M1.
 | 
	| 890 | 890 |   ///
 | 
	| 891 | 891 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 892 | 892 |   /// \code
 | 
	| 893 | 893 |   ///   MulMap<M1,M2> mm(m1,m2);
 | 
	| 894 | 894 |   /// \endcode
 | 
	| 895 | 895 |   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
 | 
	| 896 | 896 |   ///
 | 
	| 897 | 897 |   /// The simplest way of using this map is through the mulMap()
 | 
	| 898 | 898 |   /// function.
 | 
	| 899 | 899 |   ///
 | 
	| 900 | 900 |   /// \sa AddMap, SubMap, DivMap
 | 
	| 901 | 901 |   /// \sa ScaleMap, ScaleWriteMap
 | 
	| 902 | 902 |   template<typename M1, typename M2>
 | 
	| 903 | 903 |   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
 | 
	| 904 | 904 |     const M1 &_m1;
 | 
	| 905 | 905 |     const M2 &_m2;
 | 
	| 906 | 906 |   public:
 | 
	| 907 | 907 |     ///\e
 | 
	| 908 | 908 |     typedef typename M1::Key Key;
 | 
	| 909 | 909 |     ///\e
 | 
	| 910 | 910 |     typedef typename M1::Value Value;
 | 
	| 911 | 911 | 
 | 
	| 912 | 912 |     /// Constructor
 | 
	| 913 | 913 |     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 914 | 914 |     ///\e
 | 
	| 915 | 915 |     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
 | 
	| 916 | 916 |   };
 | 
	| 917 | 917 | 
 | 
	| 918 | 918 |   /// Returns a \c MulMap class
 | 
	| 919 | 919 | 
 | 
	| 920 | 920 |   /// This function just returns a \c MulMap class.
 | 
	| 921 | 921 |   ///
 | 
	| 922 | 922 |   /// For example, if \c m1 and \c m2 are both maps with \c double
 | 
	| 923 | 923 |   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
 | 
	| 924 | 924 |   /// <tt>m1[x]*m2[x]</tt>.
 | 
	| 925 | 925 |   ///
 | 
	| 926 | 926 |   /// \relates MulMap
 | 
	| 927 | 927 |   template<typename M1, typename M2>
 | 
	| 928 | 928 |   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
 | 
	| 929 | 929 |     return MulMap<M1, M2>(m1,m2);
 | 
	| 930 | 930 |   }
 | 
	| 931 | 931 | 
 | 
	| 932 | 932 | 
 | 
	| 933 | 933 |   /// Quotient of two maps
 | 
	| 934 | 934 | 
 | 
	| 935 | 935 |   /// This \ref concepts::ReadMap "read-only map" returns the quotient
 | 
	| 936 | 936 |   /// of the values of the two given maps.
 | 
	| 937 | 937 |   /// Its \c Key and \c Value types are inherited from \c M1.
 | 
	| 938 | 938 |   /// The \c Key and \c Value of \c M2 must be convertible to those of
 | 
	| 939 | 939 |   /// \c M1.
 | 
	| 940 | 940 |   ///
 | 
	| 941 | 941 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 942 | 942 |   /// \code
 | 
	| 943 | 943 |   ///   DivMap<M1,M2> dm(m1,m2);
 | 
	| 944 | 944 |   /// \endcode
 | 
	| 945 | 945 |   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
 | 
	| 946 | 946 |   ///
 | 
	| 947 | 947 |   /// The simplest way of using this map is through the divMap()
 | 
	| 948 | 948 |   /// function.
 | 
	| 949 | 949 |   ///
 | 
	| 950 | 950 |   /// \sa AddMap, SubMap, MulMap
 | 
	| 951 | 951 |   template<typename M1, typename M2>
 | 
	| 952 | 952 |   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
 | 
	| 953 | 953 |     const M1 &_m1;
 | 
	| 954 | 954 |     const M2 &_m2;
 | 
	| 955 | 955 |   public:
 | 
	| 956 | 956 |     ///\e
 | 
	| 957 | 957 |     typedef typename M1::Key Key;
 | 
	| 958 | 958 |     ///\e
 | 
	| 959 | 959 |     typedef typename M1::Value Value;
 | 
	| 960 | 960 | 
 | 
	| 961 | 961 |     /// Constructor
 | 
	| 962 | 962 |     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 963 | 963 |     ///\e
 | 
	| 964 | 964 |     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
 | 
	| 965 | 965 |   };
 | 
	| 966 | 966 | 
 | 
	| 967 | 967 |   /// Returns a \c DivMap class
 | 
	| 968 | 968 | 
 | 
	| 969 | 969 |   /// This function just returns a \c DivMap class.
 | 
	| 970 | 970 |   ///
 | 
	| 971 | 971 |   /// For example, if \c m1 and \c m2 are both maps with \c double
 | 
	| 972 | 972 |   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
 | 
	| 973 | 973 |   /// <tt>m1[x]/m2[x]</tt>.
 | 
	| 974 | 974 |   ///
 | 
	| 975 | 975 |   /// \relates DivMap
 | 
	| 976 | 976 |   template<typename M1, typename M2>
 | 
	| 977 | 977 |   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
 | 
	| 978 | 978 |     return DivMap<M1, M2>(m1,m2);
 | 
	| 979 | 979 |   }
 | 
	| 980 | 980 | 
 | 
	| 981 | 981 | 
 | 
	| 982 | 982 |   /// Shifts a map with a constant.
 | 
	| 983 | 983 | 
 | 
	| 984 | 984 |   /// This \ref concepts::ReadMap "read-only map" returns the sum of
 | 
	| 985 | 985 |   /// the given map and a constant value (i.e. it shifts the map with
 | 
	| 986 | 986 |   /// the constant). Its \c Key and \c Value are inherited from \c M.
 | 
	| 987 | 987 |   ///
 | 
	| 988 | 988 |   /// Actually,
 | 
	| 989 | 989 |   /// \code
 | 
	| 990 | 990 |   ///   ShiftMap<M> sh(m,v);
 | 
	| 991 | 991 |   /// \endcode
 | 
	| 992 | 992 |   /// is equivalent to
 | 
	| 993 | 993 |   /// \code
 | 
	| 994 | 994 |   ///   ConstMap<M::Key, M::Value> cm(v);
 | 
	| 995 | 995 |   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
 | 
	| 996 | 996 |   /// \endcode
 | 
	| 997 | 997 |   ///
 | 
	| 998 | 998 |   /// The simplest way of using this map is through the shiftMap()
 | 
	| 999 | 999 |   /// function.
 | 
	| 1000 | 1000 |   ///
 | 
	| 1001 | 1001 |   /// \sa ShiftWriteMap
 | 
	| 1002 | 1002 |   template<typename M, typename C = typename M::Value>
 | 
	| 1003 | 1003 |   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1004 | 1004 |     const M &_m;
 | 
	| 1005 | 1005 |     C _v;
 | 
	| 1006 | 1006 |   public:
 | 
	| 1007 | 1007 |     ///\e
 | 
	| 1008 | 1008 |     typedef typename M::Key Key;
 | 
	| 1009 | 1009 |     ///\e
 | 
	| 1010 | 1010 |     typedef typename M::Value Value;
 | 
	| 1011 | 1011 | 
 | 
	| 1012 | 1012 |     /// Constructor
 | 
	| 1013 | 1013 | 
 | 
	| 1014 | 1014 |     /// Constructor.
 | 
	| 1015 | 1015 |     /// \param m The undelying map.
 | 
	| 1016 | 1016 |     /// \param v The constant value.
 | 
	| 1017 | 1017 |     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
 | 
	| 1018 | 1018 |     ///\e
 | 
	| 1019 | 1019 |     Value operator[](const Key &k) const { return _m[k]+_v; }
 | 
	| 1020 | 1020 |   };
 | 
	| 1021 | 1021 | 
 | 
	| 1022 | 1022 |   /// Shifts a map with a constant (read-write version).
 | 
	| 1023 | 1023 | 
 | 
	| 1024 | 1024 |   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
 | 
	| 1025 | 1025 |   /// of the given map and a constant value (i.e. it shifts the map with
 | 
	| 1026 | 1026 |   /// the constant). Its \c Key and \c Value are inherited from \c M.
 | 
	| 1027 | 1027 |   /// It makes also possible to write the map.
 | 
	| 1028 | 1028 |   ///
 | 
	| 1029 | 1029 |   /// The simplest way of using this map is through the shiftWriteMap()
 | 
	| 1030 | 1030 |   /// function.
 | 
	| 1031 | 1031 |   ///
 | 
	| 1032 | 1032 |   /// \sa ShiftMap
 | 
	| 1033 | 1033 |   template<typename M, typename C = typename M::Value>
 | 
	| 1034 | 1034 |   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1035 | 1035 |     M &_m;
 | 
	| 1036 | 1036 |     C _v;
 | 
	| 1037 | 1037 |   public:
 | 
	| 1038 | 1038 |     ///\e
 | 
	| 1039 | 1039 |     typedef typename M::Key Key;
 | 
	| 1040 | 1040 |     ///\e
 | 
	| 1041 | 1041 |     typedef typename M::Value Value;
 | 
	| 1042 | 1042 | 
 | 
	| 1043 | 1043 |     /// Constructor
 | 
	| 1044 | 1044 | 
 | 
	| 1045 | 1045 |     /// Constructor.
 | 
	| 1046 | 1046 |     /// \param m The undelying map.
 | 
	| 1047 | 1047 |     /// \param v The constant value.
 | 
	| 1048 | 1048 |     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
 | 
	| 1049 | 1049 |     ///\e
 | 
	| 1050 | 1050 |     Value operator[](const Key &k) const { return _m[k]+_v; }
 | 
	| 1051 | 1051 |     ///\e
 | 
	| 1052 | 1052 |     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
 | 
	| 1053 | 1053 |   };
 | 
	| 1054 | 1054 | 
 | 
	| 1055 | 1055 |   /// Returns a \c ShiftMap class
 | 
	| 1056 | 1056 | 
 | 
	| 1057 | 1057 |   /// This function just returns a \c ShiftMap class.
 | 
	| 1058 | 1058 |   ///
 | 
	| 1059 | 1059 |   /// For example, if \c m is a map with \c double values and \c v is
 | 
	| 1060 | 1060 |   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
 | 
	| 1061 | 1061 |   /// <tt>m[x]+v</tt>.
 | 
	| 1062 | 1062 |   ///
 | 
	| 1063 | 1063 |   /// \relates ShiftMap
 | 
	| 1064 | 1064 |   template<typename M, typename C>
 | 
	| 1065 | 1065 |   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
 | 
	| 1066 | 1066 |     return ShiftMap<M, C>(m,v);
 | 
	| 1067 | 1067 |   }
 | 
	| 1068 | 1068 | 
 | 
	| 1069 | 1069 |   /// Returns a \c ShiftWriteMap class
 | 
	| 1070 | 1070 | 
 | 
	| 1071 | 1071 |   /// This function just returns a \c ShiftWriteMap class.
 | 
	| 1072 | 1072 |   ///
 | 
	| 1073 | 1073 |   /// For example, if \c m is a map with \c double values and \c v is
 | 
	| 1074 | 1074 |   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
 | 
	| 1075 | 1075 |   /// <tt>m[x]+v</tt>.
 | 
	| 1076 | 1076 |   /// Moreover it makes also possible to write the map.
 | 
	| 1077 | 1077 |   ///
 | 
	| 1078 | 1078 |   /// \relates ShiftWriteMap
 | 
	| 1079 | 1079 |   template<typename M, typename C>
 | 
	| 1080 | 1080 |   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
 | 
	| 1081 | 1081 |     return ShiftWriteMap<M, C>(m,v);
 | 
	| 1082 | 1082 |   }
 | 
	| 1083 | 1083 | 
 | 
	| 1084 | 1084 | 
 | 
	| 1085 | 1085 |   /// Scales a map with a constant.
 | 
	| 1086 | 1086 | 
 | 
	| 1087 | 1087 |   /// This \ref concepts::ReadMap "read-only map" returns the value of
 | 
	| 1088 | 1088 |   /// the given map multiplied from the left side with a constant value.
 | 
	| 1089 | 1089 |   /// Its \c Key and \c Value are inherited from \c M.
 | 
	| 1090 | 1090 |   ///
 | 
	| 1091 | 1091 |   /// Actually,
 | 
	| 1092 | 1092 |   /// \code
 | 
	| 1093 | 1093 |   ///   ScaleMap<M> sc(m,v);
 | 
	| 1094 | 1094 |   /// \endcode
 | 
	| 1095 | 1095 |   /// is equivalent to
 | 
	| 1096 | 1096 |   /// \code
 | 
	| 1097 | 1097 |   ///   ConstMap<M::Key, M::Value> cm(v);
 | 
	| 1098 | 1098 |   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
 | 
	| 1099 | 1099 |   /// \endcode
 | 
	| 1100 | 1100 |   ///
 | 
	| 1101 | 1101 |   /// The simplest way of using this map is through the scaleMap()
 | 
	| 1102 | 1102 |   /// function.
 | 
	| 1103 | 1103 |   ///
 | 
	| 1104 | 1104 |   /// \sa ScaleWriteMap
 | 
	| 1105 | 1105 |   template<typename M, typename C = typename M::Value>
 | 
	| 1106 | 1106 |   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1107 | 1107 |     const M &_m;
 | 
	| 1108 | 1108 |     C _v;
 | 
	| 1109 | 1109 |   public:
 | 
	| 1110 | 1110 |     ///\e
 | 
	| 1111 | 1111 |     typedef typename M::Key Key;
 | 
	| 1112 | 1112 |     ///\e
 | 
	| 1113 | 1113 |     typedef typename M::Value Value;
 | 
	| 1114 | 1114 | 
 | 
	| 1115 | 1115 |     /// Constructor
 | 
	| 1116 | 1116 | 
 | 
	| 1117 | 1117 |     /// Constructor.
 | 
	| 1118 | 1118 |     /// \param m The undelying map.
 | 
	| 1119 | 1119 |     /// \param v The constant value.
 | 
	| 1120 | 1120 |     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
 | 
	| 1121 | 1121 |     ///\e
 | 
	| 1122 | 1122 |     Value operator[](const Key &k) const { return _v*_m[k]; }
 | 
	| 1123 | 1123 |   };
 | 
	| 1124 | 1124 | 
 | 
	| 1125 | 1125 |   /// Scales a map with a constant (read-write version).
 | 
	| 1126 | 1126 | 
 | 
	| 1127 | 1127 |   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
 | 
	| 1128 | 1128 |   /// the given map multiplied from the left side with a constant value.
 | 
	| 1129 | 1129 |   /// Its \c Key and \c Value are inherited from \c M.
 | 
	| 1130 | 1130 |   /// It can also be used as write map if the \c / operator is defined
 | 
	| 1131 | 1131 |   /// between \c Value and \c C and the given multiplier is not zero.
 | 
	| 1132 | 1132 |   ///
 | 
	| 1133 | 1133 |   /// The simplest way of using this map is through the scaleWriteMap()
 | 
	| 1134 | 1134 |   /// function.
 | 
	| 1135 | 1135 |   ///
 | 
	| 1136 | 1136 |   /// \sa ScaleMap
 | 
	| 1137 | 1137 |   template<typename M, typename C = typename M::Value>
 | 
	| 1138 | 1138 |   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1139 | 1139 |     M &_m;
 | 
	| 1140 | 1140 |     C _v;
 | 
	| 1141 | 1141 |   public:
 | 
	| 1142 | 1142 |     ///\e
 | 
	| 1143 | 1143 |     typedef typename M::Key Key;
 | 
	| 1144 | 1144 |     ///\e
 | 
	| 1145 | 1145 |     typedef typename M::Value Value;
 | 
	| 1146 | 1146 | 
 | 
	| 1147 | 1147 |     /// Constructor
 | 
	| 1148 | 1148 | 
 | 
	| 1149 | 1149 |     /// Constructor.
 | 
	| 1150 | 1150 |     /// \param m The undelying map.
 | 
	| 1151 | 1151 |     /// \param v The constant value.
 | 
	| 1152 | 1152 |     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
 | 
	| 1153 | 1153 |     ///\e
 | 
	| 1154 | 1154 |     Value operator[](const Key &k) const { return _v*_m[k]; }
 | 
	| 1155 | 1155 |     ///\e
 | 
	| 1156 | 1156 |     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
 | 
	| 1157 | 1157 |   };
 | 
	| 1158 | 1158 | 
 | 
	| 1159 | 1159 |   /// Returns a \c ScaleMap class
 | 
	| 1160 | 1160 | 
 | 
	| 1161 | 1161 |   /// This function just returns a \c ScaleMap class.
 | 
	| 1162 | 1162 |   ///
 | 
	| 1163 | 1163 |   /// For example, if \c m is a map with \c double values and \c v is
 | 
	| 1164 | 1164 |   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
 | 
	| 1165 | 1165 |   /// <tt>v*m[x]</tt>.
 | 
	| 1166 | 1166 |   ///
 | 
	| 1167 | 1167 |   /// \relates ScaleMap
 | 
	| 1168 | 1168 |   template<typename M, typename C>
 | 
	| 1169 | 1169 |   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
 | 
	| 1170 | 1170 |     return ScaleMap<M, C>(m,v);
 | 
	| 1171 | 1171 |   }
 | 
	| 1172 | 1172 | 
 | 
	| 1173 | 1173 |   /// Returns a \c ScaleWriteMap class
 | 
	| 1174 | 1174 | 
 | 
	| 1175 | 1175 |   /// This function just returns a \c ScaleWriteMap class.
 | 
	| 1176 | 1176 |   ///
 | 
	| 1177 | 1177 |   /// For example, if \c m is a map with \c double values and \c v is
 | 
	| 1178 | 1178 |   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
 | 
	| 1179 | 1179 |   /// <tt>v*m[x]</tt>.
 | 
	| 1180 | 1180 |   /// Moreover it makes also possible to write the map.
 | 
	| 1181 | 1181 |   ///
 | 
	| 1182 | 1182 |   /// \relates ScaleWriteMap
 | 
	| 1183 | 1183 |   template<typename M, typename C>
 | 
	| 1184 | 1184 |   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
 | 
	| 1185 | 1185 |     return ScaleWriteMap<M, C>(m,v);
 | 
	| 1186 | 1186 |   }
 | 
	| 1187 | 1187 | 
 | 
	| 1188 | 1188 | 
 | 
	| 1189 | 1189 |   /// Negative of a map
 | 
	| 1190 | 1190 | 
 | 
	| 1191 | 1191 |   /// This \ref concepts::ReadMap "read-only map" returns the negative
 | 
	| 1192 | 1192 |   /// of the values of the given map (using the unary \c - operator).
 | 
	| 1193 | 1193 |   /// Its \c Key and \c Value are inherited from \c M.
 | 
	| 1194 | 1194 |   ///
 | 
	| 1195 | 1195 |   /// If M::Value is \c int, \c double etc., then
 | 
	| 1196 | 1196 |   /// \code
 | 
	| 1197 | 1197 |   ///   NegMap<M> neg(m);
 | 
	| 1198 | 1198 |   /// \endcode
 | 
	| 1199 | 1199 |   /// is equivalent to
 | 
	| 1200 | 1200 |   /// \code
 | 
	| 1201 | 1201 |   ///   ScaleMap<M> neg(m,-1);
 | 
	| 1202 | 1202 |   /// \endcode
 | 
	| 1203 | 1203 |   ///
 | 
	| 1204 | 1204 |   /// The simplest way of using this map is through the negMap()
 | 
	| 1205 | 1205 |   /// function.
 | 
	| 1206 | 1206 |   ///
 | 
	| 1207 | 1207 |   /// \sa NegWriteMap
 | 
	| 1208 | 1208 |   template<typename M>
 | 
	| 1209 | 1209 |   class NegMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1210 | 1210 |     const M& _m;
 | 
	| 1211 | 1211 |   public:
 | 
	| 1212 | 1212 |     ///\e
 | 
	| 1213 | 1213 |     typedef typename M::Key Key;
 | 
	| 1214 | 1214 |     ///\e
 | 
	| 1215 | 1215 |     typedef typename M::Value Value;
 | 
	| 1216 | 1216 | 
 | 
	| 1217 | 1217 |     /// Constructor
 | 
	| 1218 | 1218 |     NegMap(const M &m) : _m(m) {}
 | 
	| 1219 | 1219 |     ///\e
 | 
	| 1220 | 1220 |     Value operator[](const Key &k) const { return -_m[k]; }
 | 
	| 1221 | 1221 |   };
 | 
	| 1222 | 1222 | 
 | 
	| 1223 | 1223 |   /// Negative of a map (read-write version)
 | 
	| 1224 | 1224 | 
 | 
	| 1225 | 1225 |   /// This \ref concepts::ReadWriteMap "read-write map" returns the
 | 
	| 1226 | 1226 |   /// negative of the values of the given map (using the unary \c -
 | 
	| 1227 | 1227 |   /// operator).
 | 
	| 1228 | 1228 |   /// Its \c Key and \c Value are inherited from \c M.
 | 
	| 1229 | 1229 |   /// It makes also possible to write the map.
 | 
	| 1230 | 1230 |   ///
 | 
	| 1231 | 1231 |   /// If M::Value is \c int, \c double etc., then
 | 
	| 1232 | 1232 |   /// \code
 | 
	| 1233 | 1233 |   ///   NegWriteMap<M> neg(m);
 | 
	| 1234 | 1234 |   /// \endcode
 | 
	| 1235 | 1235 |   /// is equivalent to
 | 
	| 1236 | 1236 |   /// \code
 | 
	| 1237 | 1237 |   ///   ScaleWriteMap<M> neg(m,-1);
 | 
	| 1238 | 1238 |   /// \endcode
 | 
	| 1239 | 1239 |   ///
 | 
	| 1240 | 1240 |   /// The simplest way of using this map is through the negWriteMap()
 | 
	| 1241 | 1241 |   /// function.
 | 
	| 1242 | 1242 |   ///
 | 
	| 1243 | 1243 |   /// \sa NegMap
 | 
	| 1244 | 1244 |   template<typename M>
 | 
	| 1245 | 1245 |   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1246 | 1246 |     M &_m;
 | 
	| 1247 | 1247 |   public:
 | 
	| 1248 | 1248 |     ///\e
 | 
	| 1249 | 1249 |     typedef typename M::Key Key;
 | 
	| 1250 | 1250 |     ///\e
 | 
	| 1251 | 1251 |     typedef typename M::Value Value;
 | 
	| 1252 | 1252 | 
 | 
	| 1253 | 1253 |     /// Constructor
 | 
	| 1254 | 1254 |     NegWriteMap(M &m) : _m(m) {}
 | 
	| 1255 | 1255 |     ///\e
 | 
	| 1256 | 1256 |     Value operator[](const Key &k) const { return -_m[k]; }
 | 
	| 1257 | 1257 |     ///\e
 | 
	| 1258 | 1258 |     void set(const Key &k, const Value &v) { _m.set(k, -v); }
 | 
	| 1259 | 1259 |   };
 | 
	| 1260 | 1260 | 
 | 
	| 1261 | 1261 |   /// Returns a \c NegMap class
 | 
	| 1262 | 1262 | 
 | 
	| 1263 | 1263 |   /// This function just returns a \c NegMap class.
 | 
	| 1264 | 1264 |   ///
 | 
	| 1265 | 1265 |   /// For example, if \c m is a map with \c double values, then
 | 
	| 1266 | 1266 |   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
 | 
	| 1267 | 1267 |   ///
 | 
	| 1268 | 1268 |   /// \relates NegMap
 | 
	| 1269 | 1269 |   template <typename M>
 | 
	| 1270 | 1270 |   inline NegMap<M> negMap(const M &m) {
 | 
	| 1271 | 1271 |     return NegMap<M>(m);
 | 
	| 1272 | 1272 |   }
 | 
	| 1273 | 1273 | 
 | 
	| 1274 | 1274 |   /// Returns a \c NegWriteMap class
 | 
	| 1275 | 1275 | 
 | 
	| 1276 | 1276 |   /// This function just returns a \c NegWriteMap class.
 | 
	| 1277 | 1277 |   ///
 | 
	| 1278 | 1278 |   /// For example, if \c m is a map with \c double values, then
 | 
	| 1279 | 1279 |   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
 | 
	| 1280 | 1280 |   /// Moreover it makes also possible to write the map.
 | 
	| 1281 | 1281 |   ///
 | 
	| 1282 | 1282 |   /// \relates NegWriteMap
 | 
	| 1283 | 1283 |   template <typename M>
 | 
	| 1284 | 1284 |   inline NegWriteMap<M> negWriteMap(M &m) {
 | 
	| 1285 | 1285 |     return NegWriteMap<M>(m);
 | 
	| 1286 | 1286 |   }
 | 
	| 1287 | 1287 | 
 | 
	| 1288 | 1288 | 
 | 
	| 1289 | 1289 |   /// Absolute value of a map
 | 
	| 1290 | 1290 | 
 | 
	| 1291 | 1291 |   /// This \ref concepts::ReadMap "read-only map" returns the absolute
 | 
	| 1292 | 1292 |   /// value of the values of the given map.
 | 
	| 1293 | 1293 |   /// Its \c Key and \c Value are inherited from \c M.
 | 
	| 1294 | 1294 |   /// \c Value must be comparable to \c 0 and the unary \c -
 | 
	| 1295 | 1295 |   /// operator must be defined for it, of course.
 | 
	| 1296 | 1296 |   ///
 | 
	| 1297 | 1297 |   /// The simplest way of using this map is through the absMap()
 | 
	| 1298 | 1298 |   /// function.
 | 
	| 1299 | 1299 |   template<typename M>
 | 
	| 1300 | 1300 |   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
 | 
	| 1301 | 1301 |     const M &_m;
 | 
	| 1302 | 1302 |   public:
 | 
	| 1303 | 1303 |     ///\e
 | 
	| 1304 | 1304 |     typedef typename M::Key Key;
 | 
	| 1305 | 1305 |     ///\e
 | 
	| 1306 | 1306 |     typedef typename M::Value Value;
 | 
	| 1307 | 1307 | 
 | 
	| 1308 | 1308 |     /// Constructor
 | 
	| 1309 | 1309 |     AbsMap(const M &m) : _m(m) {}
 | 
	| 1310 | 1310 |     ///\e
 | 
	| 1311 | 1311 |     Value operator[](const Key &k) const {
 | 
	| 1312 | 1312 |       Value tmp = _m[k];
 | 
	| 1313 | 1313 |       return tmp >= 0 ? tmp : -tmp;
 | 
	| 1314 | 1314 |     }
 | 
	| 1315 | 1315 | 
 | 
	| 1316 | 1316 |   };
 | 
	| 1317 | 1317 | 
 | 
	| 1318 | 1318 |   /// Returns an \c AbsMap class
 | 
	| 1319 | 1319 | 
 | 
	| 1320 | 1320 |   /// This function just returns an \c AbsMap class.
 | 
	| 1321 | 1321 |   ///
 | 
	| 1322 | 1322 |   /// For example, if \c m is a map with \c double values, then
 | 
	| 1323 | 1323 |   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
 | 
	| 1324 | 1324 |   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
 | 
	| 1325 | 1325 |   /// negative.
 | 
	| 1326 | 1326 |   ///
 | 
	| 1327 | 1327 |   /// \relates AbsMap
 | 
	| 1328 | 1328 |   template<typename M>
 | 
	| 1329 | 1329 |   inline AbsMap<M> absMap(const M &m) {
 | 
	| 1330 | 1330 |     return AbsMap<M>(m);
 | 
	| 1331 | 1331 |   }
 | 
	| 1332 | 1332 | 
 | 
	| 1333 | 1333 |   /// @}
 | 
	| 1334 | 1334 | 
 | 
	| 1335 | 1335 |   // Logical maps and map adaptors:
 | 
	| 1336 | 1336 | 
 | 
	| 1337 | 1337 |   /// \addtogroup maps
 | 
	| 1338 | 1338 |   /// @{
 | 
	| 1339 | 1339 | 
 | 
	| 1340 | 1340 |   /// Constant \c true map.
 | 
	| 1341 | 1341 | 
 | 
	| 1342 | 1342 |   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 | 
	| 1343 | 1343 |   /// each key.
 | 
	| 1344 | 1344 |   ///
 | 
	| 1345 | 1345 |   /// Note that
 | 
	| 1346 | 1346 |   /// \code
 | 
	| 1347 | 1347 |   ///   TrueMap<K> tm;
 | 
	| 1348 | 1348 |   /// \endcode
 | 
	| 1349 | 1349 |   /// is equivalent to
 | 
	| 1350 | 1350 |   /// \code
 | 
	| 1351 | 1351 |   ///   ConstMap<K,bool> tm(true);
 | 
	| 1352 | 1352 |   /// \endcode
 | 
	| 1353 | 1353 |   ///
 | 
	| 1354 | 1354 |   /// \sa FalseMap
 | 
	| 1355 | 1355 |   /// \sa ConstMap
 | 
	| 1356 | 1356 |   template <typename K>
 | 
	| 1357 | 1357 |   class TrueMap : public MapBase<K, bool> {
 | 
	| 1358 | 1358 |   public:
 | 
	| 1359 | 1359 |     ///\e
 | 
	| 1360 | 1360 |     typedef K Key;
 | 
	| 1361 | 1361 |     ///\e
 | 
	| 1362 | 1362 |     typedef bool Value;
 | 
	| 1363 | 1363 | 
 | 
	| 1364 | 1364 |     /// Gives back \c true.
 | 
	| 1365 | 1365 |     Value operator[](const Key&) const { return true; }
 | 
	| 1366 | 1366 |   };
 | 
	| 1367 | 1367 | 
 | 
	| 1368 | 1368 |   /// Returns a \c TrueMap class
 | 
	| 1369 | 1369 | 
 | 
	| 1370 | 1370 |   /// This function just returns a \c TrueMap class.
 | 
	| 1371 | 1371 |   /// \relates TrueMap
 | 
	| 1372 | 1372 |   template<typename K>
 | 
	| 1373 | 1373 |   inline TrueMap<K> trueMap() {
 | 
	| 1374 | 1374 |     return TrueMap<K>();
 | 
	| 1375 | 1375 |   }
 | 
	| 1376 | 1376 | 
 | 
	| 1377 | 1377 | 
 | 
	| 1378 | 1378 |   /// Constant \c false map.
 | 
	| 1379 | 1379 | 
 | 
	| 1380 | 1380 |   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
 | 
	| 1381 | 1381 |   /// each key.
 | 
	| 1382 | 1382 |   ///
 | 
	| 1383 | 1383 |   /// Note that
 | 
	| 1384 | 1384 |   /// \code
 | 
	| 1385 | 1385 |   ///   FalseMap<K> fm;
 | 
	| 1386 | 1386 |   /// \endcode
 | 
	| 1387 | 1387 |   /// is equivalent to
 | 
	| 1388 | 1388 |   /// \code
 | 
	| 1389 | 1389 |   ///   ConstMap<K,bool> fm(false);
 | 
	| 1390 | 1390 |   /// \endcode
 | 
	| 1391 | 1391 |   ///
 | 
	| 1392 | 1392 |   /// \sa TrueMap
 | 
	| 1393 | 1393 |   /// \sa ConstMap
 | 
	| 1394 | 1394 |   template <typename K>
 | 
	| 1395 | 1395 |   class FalseMap : public MapBase<K, bool> {
 | 
	| 1396 | 1396 |   public:
 | 
	| 1397 | 1397 |     ///\e
 | 
	| 1398 | 1398 |     typedef K Key;
 | 
	| 1399 | 1399 |     ///\e
 | 
	| 1400 | 1400 |     typedef bool Value;
 | 
	| 1401 | 1401 | 
 | 
	| 1402 | 1402 |     /// Gives back \c false.
 | 
	| 1403 | 1403 |     Value operator[](const Key&) const { return false; }
 | 
	| 1404 | 1404 |   };
 | 
	| 1405 | 1405 | 
 | 
	| 1406 | 1406 |   /// Returns a \c FalseMap class
 | 
	| 1407 | 1407 | 
 | 
	| 1408 | 1408 |   /// This function just returns a \c FalseMap class.
 | 
	| 1409 | 1409 |   /// \relates FalseMap
 | 
	| 1410 | 1410 |   template<typename K>
 | 
	| 1411 | 1411 |   inline FalseMap<K> falseMap() {
 | 
	| 1412 | 1412 |     return FalseMap<K>();
 | 
	| 1413 | 1413 |   }
 | 
	| 1414 | 1414 | 
 | 
	| 1415 | 1415 |   /// @}
 | 
	| 1416 | 1416 | 
 | 
	| 1417 | 1417 |   /// \addtogroup map_adaptors
 | 
	| 1418 | 1418 |   /// @{
 | 
	| 1419 | 1419 | 
 | 
	| 1420 | 1420 |   /// Logical 'and' of two maps
 | 
	| 1421 | 1421 | 
 | 
	| 1422 | 1422 |   /// This \ref concepts::ReadMap "read-only map" returns the logical
 | 
	| 1423 | 1423 |   /// 'and' of the values of the two given maps.
 | 
	| 1424 | 1424 |   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 | 
	| 1425 | 1425 |   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 | 
	| 1426 | 1426 |   ///
 | 
	| 1427 | 1427 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 1428 | 1428 |   /// \code
 | 
	| 1429 | 1429 |   ///   AndMap<M1,M2> am(m1,m2);
 | 
	| 1430 | 1430 |   /// \endcode
 | 
	| 1431 | 1431 |   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
 | 
	| 1432 | 1432 |   ///
 | 
	| 1433 | 1433 |   /// The simplest way of using this map is through the andMap()
 | 
	| 1434 | 1434 |   /// function.
 | 
	| 1435 | 1435 |   ///
 | 
	| 1436 | 1436 |   /// \sa OrMap
 | 
	| 1437 | 1437 |   /// \sa NotMap, NotWriteMap
 | 
	| 1438 | 1438 |   template<typename M1, typename M2>
 | 
	| 1439 | 1439 |   class AndMap : public MapBase<typename M1::Key, bool> {
 | 
	| 1440 | 1440 |     const M1 &_m1;
 | 
	| 1441 | 1441 |     const M2 &_m2;
 | 
	| 1442 | 1442 |   public:
 | 
	| 1443 | 1443 |     ///\e
 | 
	| 1444 | 1444 |     typedef typename M1::Key Key;
 | 
	| 1445 | 1445 |     ///\e
 | 
	| 1446 | 1446 |     typedef bool Value;
 | 
	| 1447 | 1447 | 
 | 
	| 1448 | 1448 |     /// Constructor
 | 
	| 1449 | 1449 |     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 1450 | 1450 |     ///\e
 | 
	| 1451 | 1451 |     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
 | 
	| 1452 | 1452 |   };
 | 
	| 1453 | 1453 | 
 | 
	| 1454 | 1454 |   /// Returns an \c AndMap class
 | 
	| 1455 | 1455 | 
 | 
	| 1456 | 1456 |   /// This function just returns an \c AndMap class.
 | 
	| 1457 | 1457 |   ///
 | 
	| 1458 | 1458 |   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
 | 
	| 1459 | 1459 |   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
 | 
	| 1460 | 1460 |   /// <tt>m1[x]&&m2[x]</tt>.
 | 
	| 1461 | 1461 |   ///
 | 
	| 1462 | 1462 |   /// \relates AndMap
 | 
	| 1463 | 1463 |   template<typename M1, typename M2>
 | 
	| 1464 | 1464 |   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
 | 
	| 1465 | 1465 |     return AndMap<M1, M2>(m1,m2);
 | 
	| 1466 | 1466 |   }
 | 
	| 1467 | 1467 | 
 | 
	| 1468 | 1468 | 
 | 
	| 1469 | 1469 |   /// Logical 'or' of two maps
 | 
	| 1470 | 1470 | 
 | 
	| 1471 | 1471 |   /// This \ref concepts::ReadMap "read-only map" returns the logical
 | 
	| 1472 | 1472 |   /// 'or' of the values of the two given maps.
 | 
	| 1473 | 1473 |   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 | 
	| 1474 | 1474 |   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 | 
	| 1475 | 1475 |   ///
 | 
	| 1476 | 1476 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 1477 | 1477 |   /// \code
 | 
	| 1478 | 1478 |   ///   OrMap<M1,M2> om(m1,m2);
 | 
	| 1479 | 1479 |   /// \endcode
 | 
	| 1480 | 1480 |   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
 | 
	| 1481 | 1481 |   ///
 | 
	| 1482 | 1482 |   /// The simplest way of using this map is through the orMap()
 | 
	| 1483 | 1483 |   /// function.
 | 
	| 1484 | 1484 |   ///
 | 
	| 1485 | 1485 |   /// \sa AndMap
 | 
	| 1486 | 1486 |   /// \sa NotMap, NotWriteMap
 | 
	| 1487 | 1487 |   template<typename M1, typename M2>
 | 
	| 1488 | 1488 |   class OrMap : public MapBase<typename M1::Key, bool> {
 | 
	| 1489 | 1489 |     const M1 &_m1;
 | 
	| 1490 | 1490 |     const M2 &_m2;
 | 
	| 1491 | 1491 |   public:
 | 
	| 1492 | 1492 |     ///\e
 | 
	| 1493 | 1493 |     typedef typename M1::Key Key;
 | 
	| 1494 | 1494 |     ///\e
 | 
	| 1495 | 1495 |     typedef bool Value;
 | 
	| 1496 | 1496 | 
 | 
	| 1497 | 1497 |     /// Constructor
 | 
	| 1498 | 1498 |     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 1499 | 1499 |     ///\e
 | 
	| 1500 | 1500 |     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
 | 
	| 1501 | 1501 |   };
 | 
	| 1502 | 1502 | 
 | 
	| 1503 | 1503 |   /// Returns an \c OrMap class
 | 
	| 1504 | 1504 | 
 | 
	| 1505 | 1505 |   /// This function just returns an \c OrMap class.
 | 
	| 1506 | 1506 |   ///
 | 
	| 1507 | 1507 |   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
 | 
	| 1508 | 1508 |   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
 | 
	| 1509 | 1509 |   /// <tt>m1[x]||m2[x]</tt>.
 | 
	| 1510 | 1510 |   ///
 | 
	| 1511 | 1511 |   /// \relates OrMap
 | 
	| 1512 | 1512 |   template<typename M1, typename M2>
 | 
	| 1513 | 1513 |   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
 | 
	| 1514 | 1514 |     return OrMap<M1, M2>(m1,m2);
 | 
	| 1515 | 1515 |   }
 | 
	| 1516 | 1516 | 
 | 
	| 1517 | 1517 | 
 | 
	| 1518 | 1518 |   /// Logical 'not' of a map
 | 
	| 1519 | 1519 | 
 | 
	| 1520 | 1520 |   /// This \ref concepts::ReadMap "read-only map" returns the logical
 | 
	| 1521 | 1521 |   /// negation of the values of the given map.
 | 
	| 1522 | 1522 |   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
 | 
	| 1523 | 1523 |   ///
 | 
	| 1524 | 1524 |   /// The simplest way of using this map is through the notMap()
 | 
	| 1525 | 1525 |   /// function.
 | 
	| 1526 | 1526 |   ///
 | 
	| 1527 | 1527 |   /// \sa NotWriteMap
 | 
	| 1528 | 1528 |   template <typename M>
 | 
	| 1529 | 1529 |   class NotMap : public MapBase<typename M::Key, bool> {
 | 
	| 1530 | 1530 |     const M &_m;
 | 
	| 1531 | 1531 |   public:
 | 
	| 1532 | 1532 |     ///\e
 | 
	| 1533 | 1533 |     typedef typename M::Key Key;
 | 
	| 1534 | 1534 |     ///\e
 | 
	| 1535 | 1535 |     typedef bool Value;
 | 
	| 1536 | 1536 | 
 | 
	| 1537 | 1537 |     /// Constructor
 | 
	| 1538 | 1538 |     NotMap(const M &m) : _m(m) {}
 | 
	| 1539 | 1539 |     ///\e
 | 
	| 1540 | 1540 |     Value operator[](const Key &k) const { return !_m[k]; }
 | 
	| 1541 | 1541 |   };
 | 
	| 1542 | 1542 | 
 | 
	| 1543 | 1543 |   /// Logical 'not' of a map (read-write version)
 | 
	| 1544 | 1544 | 
 | 
	| 1545 | 1545 |   /// This \ref concepts::ReadWriteMap "read-write map" returns the
 | 
	| 1546 | 1546 |   /// logical negation of the values of the given map.
 | 
	| 1547 | 1547 |   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
 | 
	| 1548 | 1548 |   /// It makes also possible to write the map. When a value is set,
 | 
	| 1549 | 1549 |   /// the opposite value is set to the original map.
 | 
	| 1550 | 1550 |   ///
 | 
	| 1551 | 1551 |   /// The simplest way of using this map is through the notWriteMap()
 | 
	| 1552 | 1552 |   /// function.
 | 
	| 1553 | 1553 |   ///
 | 
	| 1554 | 1554 |   /// \sa NotMap
 | 
	| 1555 | 1555 |   template <typename M>
 | 
	| 1556 | 1556 |   class NotWriteMap : public MapBase<typename M::Key, bool> {
 | 
	| 1557 | 1557 |     M &_m;
 | 
	| 1558 | 1558 |   public:
 | 
	| 1559 | 1559 |     ///\e
 | 
	| 1560 | 1560 |     typedef typename M::Key Key;
 | 
	| 1561 | 1561 |     ///\e
 | 
	| 1562 | 1562 |     typedef bool Value;
 | 
	| 1563 | 1563 | 
 | 
	| 1564 | 1564 |     /// Constructor
 | 
	| 1565 | 1565 |     NotWriteMap(M &m) : _m(m) {}
 | 
	| 1566 | 1566 |     ///\e
 | 
	| 1567 | 1567 |     Value operator[](const Key &k) const { return !_m[k]; }
 | 
	| 1568 | 1568 |     ///\e
 | 
	| 1569 | 1569 |     void set(const Key &k, bool v) { _m.set(k, !v); }
 | 
	| 1570 | 1570 |   };
 | 
	| 1571 | 1571 | 
 | 
	| 1572 | 1572 |   /// Returns a \c NotMap class
 | 
	| 1573 | 1573 | 
 | 
	| 1574 | 1574 |   /// This function just returns a \c NotMap class.
 | 
	| 1575 | 1575 |   ///
 | 
	| 1576 | 1576 |   /// For example, if \c m is a map with \c bool values, then
 | 
	| 1577 | 1577 |   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
 | 
	| 1578 | 1578 |   ///
 | 
	| 1579 | 1579 |   /// \relates NotMap
 | 
	| 1580 | 1580 |   template <typename M>
 | 
	| 1581 | 1581 |   inline NotMap<M> notMap(const M &m) {
 | 
	| 1582 | 1582 |     return NotMap<M>(m);
 | 
	| 1583 | 1583 |   }
 | 
	| 1584 | 1584 | 
 | 
	| 1585 | 1585 |   /// Returns a \c NotWriteMap class
 | 
	| 1586 | 1586 | 
 | 
	| 1587 | 1587 |   /// This function just returns a \c NotWriteMap class.
 | 
	| 1588 | 1588 |   ///
 | 
	| 1589 | 1589 |   /// For example, if \c m is a map with \c bool values, then
 | 
	| 1590 | 1590 |   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
 | 
	| 1591 | 1591 |   /// Moreover it makes also possible to write the map.
 | 
	| 1592 | 1592 |   ///
 | 
	| 1593 | 1593 |   /// \relates NotWriteMap
 | 
	| 1594 | 1594 |   template <typename M>
 | 
	| 1595 | 1595 |   inline NotWriteMap<M> notWriteMap(M &m) {
 | 
	| 1596 | 1596 |     return NotWriteMap<M>(m);
 | 
	| 1597 | 1597 |   }
 | 
	| 1598 | 1598 | 
 | 
	| 1599 | 1599 | 
 | 
	| 1600 | 1600 |   /// Combination of two maps using the \c == operator
 | 
	| 1601 | 1601 | 
 | 
	| 1602 | 1602 |   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 | 
	| 1603 | 1603 |   /// the keys for which the corresponding values of the two maps are
 | 
	| 1604 | 1604 |   /// equal.
 | 
	| 1605 | 1605 |   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 | 
	| 1606 | 1606 |   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 | 
	| 1607 | 1607 |   ///
 | 
	| 1608 | 1608 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 1609 | 1609 |   /// \code
 | 
	| 1610 | 1610 |   ///   EqualMap<M1,M2> em(m1,m2);
 | 
	| 1611 | 1611 |   /// \endcode
 | 
	| 1612 | 1612 |   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
 | 
	| 1613 | 1613 |   ///
 | 
	| 1614 | 1614 |   /// The simplest way of using this map is through the equalMap()
 | 
	| 1615 | 1615 |   /// function.
 | 
	| 1616 | 1616 |   ///
 | 
	| 1617 | 1617 |   /// \sa LessMap
 | 
	| 1618 | 1618 |   template<typename M1, typename M2>
 | 
	| 1619 | 1619 |   class EqualMap : public MapBase<typename M1::Key, bool> {
 | 
	| 1620 | 1620 |     const M1 &_m1;
 | 
	| 1621 | 1621 |     const M2 &_m2;
 | 
	| 1622 | 1622 |   public:
 | 
	| 1623 | 1623 |     ///\e
 | 
	| 1624 | 1624 |     typedef typename M1::Key Key;
 | 
	| 1625 | 1625 |     ///\e
 | 
	| 1626 | 1626 |     typedef bool Value;
 | 
	| 1627 | 1627 | 
 | 
	| 1628 | 1628 |     /// Constructor
 | 
	| 1629 | 1629 |     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 1630 | 1630 |     ///\e
 | 
	| 1631 | 1631 |     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
 | 
	| 1632 | 1632 |   };
 | 
	| 1633 | 1633 | 
 | 
	| 1634 | 1634 |   /// Returns an \c EqualMap class
 | 
	| 1635 | 1635 | 
 | 
	| 1636 | 1636 |   /// This function just returns an \c EqualMap class.
 | 
	| 1637 | 1637 |   ///
 | 
	| 1638 | 1638 |   /// For example, if \c m1 and \c m2 are maps with keys and values of
 | 
	| 1639 | 1639 |   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
 | 
	| 1640 | 1640 |   /// <tt>m1[x]==m2[x]</tt>.
 | 
	| 1641 | 1641 |   ///
 | 
	| 1642 | 1642 |   /// \relates EqualMap
 | 
	| 1643 | 1643 |   template<typename M1, typename M2>
 | 
	| 1644 | 1644 |   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
 | 
	| 1645 | 1645 |     return EqualMap<M1, M2>(m1,m2);
 | 
	| 1646 | 1646 |   }
 | 
	| 1647 | 1647 | 
 | 
	| 1648 | 1648 | 
 | 
	| 1649 | 1649 |   /// Combination of two maps using the \c < operator
 | 
	| 1650 | 1650 | 
 | 
	| 1651 | 1651 |   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 | 
	| 1652 | 1652 |   /// the keys for which the corresponding value of the first map is
 | 
	| 1653 | 1653 |   /// less then the value of the second map.
 | 
	| 1654 | 1654 |   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 | 
	| 1655 | 1655 |   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 | 
	| 1656 | 1656 |   ///
 | 
	| 1657 | 1657 |   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 | 
	| 1658 | 1658 |   /// \code
 | 
	| 1659 | 1659 |   ///   LessMap<M1,M2> lm(m1,m2);
 | 
	| 1660 | 1660 |   /// \endcode
 | 
	| 1661 | 1661 |   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
 | 
	| 1662 | 1662 |   ///
 | 
	| 1663 | 1663 |   /// The simplest way of using this map is through the lessMap()
 | 
	| 1664 | 1664 |   /// function.
 | 
	| 1665 | 1665 |   ///
 | 
	| 1666 | 1666 |   /// \sa EqualMap
 | 
	| 1667 | 1667 |   template<typename M1, typename M2>
 | 
	| 1668 | 1668 |   class LessMap : public MapBase<typename M1::Key, bool> {
 | 
	| 1669 | 1669 |     const M1 &_m1;
 | 
	| 1670 | 1670 |     const M2 &_m2;
 | 
	| 1671 | 1671 |   public:
 | 
	| 1672 | 1672 |     ///\e
 | 
	| 1673 | 1673 |     typedef typename M1::Key Key;
 | 
	| 1674 | 1674 |     ///\e
 | 
	| 1675 | 1675 |     typedef bool Value;
 | 
	| 1676 | 1676 | 
 | 
	| 1677 | 1677 |     /// Constructor
 | 
	| 1678 | 1678 |     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 | 
	| 1679 | 1679 |     ///\e
 | 
	| 1680 | 1680 |     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
 | 
	| 1681 | 1681 |   };
 | 
	| 1682 | 1682 | 
 | 
	| 1683 | 1683 |   /// Returns an \c LessMap class
 | 
	| 1684 | 1684 | 
 | 
	| 1685 | 1685 |   /// This function just returns an \c LessMap class.
 | 
	| 1686 | 1686 |   ///
 | 
	| 1687 | 1687 |   /// For example, if \c m1 and \c m2 are maps with keys and values of
 | 
	| 1688 | 1688 |   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
 | 
	| 1689 | 1689 |   /// <tt>m1[x]<m2[x]</tt>.
 | 
	| 1690 | 1690 |   ///
 | 
	| 1691 | 1691 |   /// \relates LessMap
 | 
	| 1692 | 1692 |   template<typename M1, typename M2>
 | 
	| 1693 | 1693 |   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
 | 
	| 1694 | 1694 |     return LessMap<M1, M2>(m1,m2);
 | 
	| 1695 | 1695 |   }
 | 
	| 1696 | 1696 | 
 | 
	| 1697 | 1697 |   namespace _maps_bits {
 | 
	| 1698 | 1698 | 
 | 
	| 1699 | 1699 |     template <typename _Iterator, typename Enable = void>
 | 
	| 1700 | 1700 |     struct IteratorTraits {
 | 
	| 1701 | 1701 |       typedef typename std::iterator_traits<_Iterator>::value_type Value;
 | 
	| 1702 | 1702 |     };
 | 
	| 1703 | 1703 | 
 | 
	| 1704 | 1704 |     template <typename _Iterator>
 | 
	| 1705 | 1705 |     struct IteratorTraits<_Iterator,
 | 
	| 1706 | 1706 |       typename exists<typename _Iterator::container_type>::type>
 | 
	| 1707 | 1707 |     {
 | 
	| 1708 | 1708 |       typedef typename _Iterator::container_type::value_type Value;
 | 
	| 1709 | 1709 |     };
 | 
	| 1710 | 1710 | 
 | 
	| 1711 | 1711 |   }
 | 
	| 1712 | 1712 | 
 | 
	| 1713 | 1713 |   /// @}
 | 
	| 1714 | 1714 | 
 | 
	| 1715 | 1715 |   /// \addtogroup maps
 | 
	| 1716 | 1716 |   /// @{
 | 
	| 1717 | 1717 | 
 | 
	| 1718 | 1718 |   /// \brief Writable bool map for logging each \c true assigned element
 | 
	| 1719 | 1719 |   ///
 | 
	| 1720 | 1720 |   /// A \ref concepts::WriteMap "writable" bool map for logging
 | 
	| 1721 | 1721 |   /// each \c true assigned element, i.e it copies subsequently each
 | 
	| 1722 | 1722 |   /// keys set to \c true to the given iterator.
 | 
	| 1723 | 1723 |   /// The most important usage of it is storing certain nodes or arcs
 | 
	| 1724 | 1724 |   /// that were marked \c true by an algorithm.
 | 
	| 1725 | 1725 |   ///
 | 
	| 1726 | 1726 |   /// There are several algorithms that provide solutions through bool
 | 
	| 1727 | 1727 |   /// maps and most of them assign \c true at most once for each key.
 | 
	| 1728 | 1728 |   /// In these cases it is a natural request to store each \c true
 | 
	| 1729 | 1729 |   /// assigned elements (in order of the assignment), which can be
 | 
	| 1730 | 1730 |   /// easily done with LoggerBoolMap.
 | 
	| 1731 | 1731 |   ///
 | 
	| 1732 | 1732 |   /// The simplest way of using this map is through the loggerBoolMap()
 | 
	| 1733 | 1733 |   /// function.
 | 
	| 1734 | 1734 |   ///
 | 
	| 1735 | 1735 |   /// \tparam IT The type of the iterator.
 | 
	| 1736 | 1736 |   /// \tparam KEY The key type of the map. The default value set
 | 
	| 1737 | 1737 |   /// according to the iterator type should work in most cases.
 | 
	| 1738 | 1738 |   ///
 | 
	| 1739 | 1739 |   /// \note The container of the iterator must contain enough space
 | 
	| 1740 | 1740 |   /// for the elements or the iterator should be an inserter iterator.
 | 
	| 1741 | 1741 | #ifdef DOXYGEN
 | 
	| 1742 | 1742 |   template <typename IT, typename KEY>
 | 
	| 1743 | 1743 | #else
 | 
	| 1744 | 1744 |   template <typename IT,
 | 
	| 1745 | 1745 |             typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
 | 
	| 1746 | 1746 | #endif
 | 
	| 1747 | 1747 |   class LoggerBoolMap : public MapBase<KEY, bool> {
 | 
	| 1748 | 1748 |   public:
 | 
	| 1749 | 1749 | 
 | 
	| 1750 | 1750 |     ///\e
 | 
	| 1751 | 1751 |     typedef KEY Key;
 | 
	| 1752 | 1752 |     ///\e
 | 
	| 1753 | 1753 |     typedef bool Value;
 | 
	| 1754 | 1754 |     ///\e
 | 
	| 1755 | 1755 |     typedef IT Iterator;
 | 
	| 1756 | 1756 | 
 | 
	| 1757 | 1757 |     /// Constructor
 | 
	| 1758 | 1758 |     LoggerBoolMap(Iterator it)
 | 
	| 1759 | 1759 |       : _begin(it), _end(it) {}
 | 
	| 1760 | 1760 | 
 | 
	| 1761 | 1761 |     /// Gives back the given iterator set for the first key
 | 
	| 1762 | 1762 |     Iterator begin() const {
 | 
	| 1763 | 1763 |       return _begin;
 | 
	| 1764 | 1764 |     }
 | 
	| 1765 | 1765 | 
 | 
	| 1766 | 1766 |     /// Gives back the the 'after the last' iterator
 | 
	| 1767 | 1767 |     Iterator end() const {
 | 
	| 1768 | 1768 |       return _end;
 | 
	| 1769 | 1769 |     }
 | 
	| 1770 | 1770 | 
 | 
	| 1771 | 1771 |     /// The set function of the map
 | 
	| 1772 | 1772 |     void set(const Key& key, Value value) {
 | 
	| 1773 | 1773 |       if (value) {
 | 
	| 1774 | 1774 |         *_end++ = key;
 | 
	| 1775 | 1775 |       }
 | 
	| 1776 | 1776 |     }
 | 
	| 1777 | 1777 | 
 | 
	| 1778 | 1778 |   private:
 | 
	| 1779 | 1779 |     Iterator _begin;
 | 
	| 1780 | 1780 |     Iterator _end;
 | 
	| 1781 | 1781 |   };
 | 
	| 1782 | 1782 | 
 | 
	| 1783 | 1783 |   /// Returns a \c LoggerBoolMap class
 | 
	| 1784 | 1784 | 
 | 
	| 1785 | 1785 |   /// This function just returns a \c LoggerBoolMap class.
 | 
	| 1786 | 1786 |   ///
 | 
	| 1787 | 1787 |   /// The most important usage of it is storing certain nodes or arcs
 | 
	| 1788 | 1788 |   /// that were marked \c true by an algorithm.
 | 
	| 1789 | 1789 |   /// For example it makes easier to store the nodes in the processing
 | 
	| 1790 | 1790 |   /// order of Dfs algorithm, as the following examples show.
 | 
	| 1791 | 1791 |   /// \code
 | 
	| 1792 | 1792 |   ///   std::vector<Node> v;
 | 
	| 1793 | 1793 |   ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
 | 
	| 1794 | 1794 |   /// \endcode
 | 
	| 1795 | 1795 |   /// \code
 | 
	| 1796 | 1796 |   ///   std::vector<Node> v(countNodes(g));
 | 
	| 1797 | 1797 |   ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
 | 
	| 1798 | 1798 |   /// \endcode
 | 
	| 1799 | 1799 |   ///
 | 
	| 1800 | 1800 |   /// \note The container of the iterator must contain enough space
 | 
	| 1801 | 1801 |   /// for the elements or the iterator should be an inserter iterator.
 | 
	| 1802 | 1802 |   ///
 | 
	| 1803 | 1803 |   /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
 | 
	| 1804 | 1804 |   /// it cannot be used when a readable map is needed, for example as
 | 
	| 1805 | 1805 |   /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
 | 
	| 1806 | 1806 |   ///
 | 
	| 1807 | 1807 |   /// \relates LoggerBoolMap
 | 
	| 1808 | 1808 |   template<typename Iterator>
 | 
	| 1809 | 1809 |   inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
 | 
	| 1810 | 1810 |     return LoggerBoolMap<Iterator>(it);
 | 
	| 1811 | 1811 |   }
 | 
	| 1812 | 1812 | 
 | 
	| 1813 | 1813 |   /// @}
 | 
	| 1814 | 1814 | 
 | 
	| 1815 | 1815 |   /// \addtogroup graph_maps
 | 
	| 1816 | 1816 |   /// @{
 | 
	| 1817 | 1817 | 
 | 
	| 1818 | 1818 |   /// \brief Provides an immutable and unique id for each item in a graph.
 | 
	| 1819 | 1819 |   ///
 | 
	| 1820 | 1820 |   /// IdMap provides a unique and immutable id for each item of the
 | 
	| 1821 | 1821 |   /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is 
 | 
	| 1822 | 1822 |   ///  - \b unique: different items get different ids,
 | 
	| 1823 | 1823 |   ///  - \b immutable: the id of an item does not change (even if you
 | 
	| 1824 | 1824 |   ///    delete other nodes).
 | 
	| 1825 | 1825 |   ///
 | 
	| 1826 | 1826 |   /// Using this map you get access (i.e. can read) the inner id values of
 | 
	| 1827 | 1827 |   /// the items stored in the graph, which is returned by the \c id()
 | 
	| 1828 | 1828 |   /// function of the graph. This map can be inverted with its member
 | 
	| 1829 | 1829 |   /// class \c InverseMap or with the \c operator() member.
 | 
	| 1830 | 1830 |   ///
 | 
	| 1831 | 1831 |   /// \tparam GR The graph type.
 | 
	| 1832 | 1832 |   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 | 
	| 1833 | 1833 |   /// \c GR::Edge).
 | 
	| 1834 | 1834 |   ///
 | 
	| 1835 | 1835 |   /// \see RangeIdMap
 | 
	| 1836 | 1836 |   template <typename GR, typename K>
 | 
	| 1837 | 1837 |   class IdMap : public MapBase<K, int> {
 | 
	| 1838 | 1838 |   public:
 | 
	| 1839 | 1839 |     /// The graph type of IdMap.
 | 
	| 1840 | 1840 |     typedef GR Graph;
 | 
	| 1841 | 1841 |     typedef GR Digraph;
 | 
	| 1842 | 1842 |     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
 | 
	| 1843 | 1843 |     typedef K Item;
 | 
	| 1844 | 1844 |     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
 | 
	| 1845 | 1845 |     typedef K Key;
 | 
	| 1846 | 1846 |     /// The value type of IdMap.
 | 
	| 1847 | 1847 |     typedef int Value;
 | 
	| 1848 | 1848 | 
 | 
	| 1849 | 1849 |     /// \brief Constructor.
 | 
	| 1850 | 1850 |     ///
 | 
	| 1851 | 1851 |     /// Constructor of the map.
 | 
	| 1852 | 1852 |     explicit IdMap(const Graph& graph) : _graph(&graph) {}
 | 
	| 1853 | 1853 | 
 | 
	| 1854 | 1854 |     /// \brief Gives back the \e id of the item.
 | 
	| 1855 | 1855 |     ///
 | 
	| 1856 | 1856 |     /// Gives back the immutable and unique \e id of the item.
 | 
	| 1857 | 1857 |     int operator[](const Item& item) const { return _graph->id(item);}
 | 
	| 1858 | 1858 | 
 | 
	| 1859 | 1859 |     /// \brief Gives back the \e item by its id.
 | 
	| 1860 | 1860 |     ///
 | 
	| 1861 | 1861 |     /// Gives back the \e item by its id.
 | 
	| 1862 | 1862 |     Item operator()(int id) { return _graph->fromId(id, Item()); }
 | 
	| 1863 | 1863 | 
 | 
	| 1864 | 1864 |   private:
 | 
	| 1865 | 1865 |     const Graph* _graph;
 | 
	| 1866 | 1866 | 
 | 
	| 1867 | 1867 |   public:
 | 
	| 1868 | 1868 | 
 | 
	| 1869 | 1869 |     /// \brief This class represents the inverse of its owner (IdMap).
 | 
	| 1870 | 1870 |     ///
 | 
	| 1871 | 1871 |     /// This class represents the inverse of its owner (IdMap).
 | 
	| 1872 | 1872 |     /// \see inverse()
 | 
	| 1873 | 1873 |     class InverseMap {
 | 
	| 1874 | 1874 |     public:
 | 
	| 1875 | 1875 | 
 | 
	| 1876 | 1876 |       /// \brief Constructor.
 | 
	| 1877 | 1877 |       ///
 | 
	| 1878 | 1878 |       /// Constructor for creating an id-to-item map.
 | 
	| 1879 | 1879 |       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
 | 
	| 1880 | 1880 | 
 | 
	| 1881 | 1881 |       /// \brief Constructor.
 | 
	| 1882 | 1882 |       ///
 | 
	| 1883 | 1883 |       /// Constructor for creating an id-to-item map.
 | 
	| 1884 | 1884 |       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
 | 
	| 1885 | 1885 | 
 | 
	| 1886 | 1886 |       /// \brief Gives back the given item from its id.
 | 
	| 1887 | 1887 |       ///
 | 
	| 1888 | 1888 |       /// Gives back the given item from its id.
 | 
	| 1889 | 1889 |       Item operator[](int id) const { return _graph->fromId(id, Item());}
 | 
	| 1890 | 1890 | 
 | 
	| 1891 | 1891 |     private:
 | 
	| 1892 | 1892 |       const Graph* _graph;
 | 
	| 1893 | 1893 |     };
 | 
	| 1894 | 1894 | 
 | 
	| 1895 | 1895 |     /// \brief Gives back the inverse of the map.
 | 
	| 1896 | 1896 |     ///
 | 
	| 1897 | 1897 |     /// Gives back the inverse of the IdMap.
 | 
	| 1898 | 1898 |     InverseMap inverse() const { return InverseMap(*_graph);}
 | 
	| 1899 | 1899 |   };
 | 
	| 1900 | 1900 | 
 | 
	| 1901 | 1901 | 
 | 
	| 1902 | 1902 |   /// \brief General cross reference graph map type.
 | 
	| 1903 | 1903 | 
 | 
	| 1904 | 1904 |   /// This class provides simple invertable graph maps.
 | 
	| 1905 |  |   /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
 | 
	| 1906 |  |   /// and if a key is set to a new value then store it
 | 
	| 1907 |  |   /// in the inverse map.
 | 
	| 1908 |  |   ///
 | 
	|  | 1905 |   /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
 | 
	|  | 1906 |   /// and if a key is set to a new value, then stores it in the inverse map.
 | 
	| 1909 | 1907 |   /// The values of the map can be accessed
 | 
	| 1910 | 1908 |   /// with stl compatible forward iterator.
 | 
	| 1911 | 1909 |   ///
 | 
	|  | 1910 |   /// This type is not reference map, so it cannot be modified with
 | 
	|  | 1911 |   /// the subscript operator.
 | 
	|  | 1912 |   ///
 | 
	| 1912 | 1913 |   /// \tparam GR The graph type.
 | 
	| 1913 | 1914 |   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 | 
	| 1914 | 1915 |   /// \c GR::Edge).
 | 
	| 1915 | 1916 |   /// \tparam V The value type of the map.
 | 
	| 1916 | 1917 |   ///
 | 
	| 1917 | 1918 |   /// \see IterableValueMap
 | 
	| 1918 | 1919 |   template <typename GR, typename K, typename V>
 | 
	| 1919 | 1920 |   class CrossRefMap
 | 
	| 1920 | 1921 |     : protected ItemSetTraits<GR, K>::template Map<V>::Type {
 | 
	| 1921 | 1922 |   private:
 | 
	| 1922 | 1923 | 
 | 
	| 1923 | 1924 |     typedef typename ItemSetTraits<GR, K>::
 | 
	| 1924 | 1925 |       template Map<V>::Type Map;
 | 
	| 1925 | 1926 | 
 | 
	| 1926 |  |     typedef std::map<V, K> Container; | 
	|  | 1927 |     typedef std::multimap<V, K> Container;
 | 
	| 1927 | 1928 |     Container _inv_map;
 | 
	| 1928 | 1929 | 
 | 
	| 1929 | 1930 |   public:
 | 
	| 1930 | 1931 | 
 | 
	| 1931 | 1932 |     /// The graph type of CrossRefMap.
 | 
	| 1932 | 1933 |     typedef GR Graph;
 | 
	| 1933 | 1934 |     typedef GR Digraph;
 | 
	| 1934 | 1935 |     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
 | 
	| 1935 | 1936 |     typedef K Item;
 | 
	| 1936 | 1937 |     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
 | 
	| 1937 | 1938 |     typedef K Key;
 | 
	| 1938 | 1939 |     /// The value type of CrossRefMap.
 | 
	| 1939 | 1940 |     typedef V Value;
 | 
	| 1940 | 1941 | 
 | 
	| 1941 | 1942 |     /// \brief Constructor.
 | 
	| 1942 | 1943 |     ///
 | 
	| 1943 | 1944 |     /// Construct a new CrossRefMap for the given graph.
 | 
	| 1944 | 1945 |     explicit CrossRefMap(const Graph& graph) : Map(graph) {}
 | 
	| 1945 | 1946 | 
 | 
	| 1946 | 1947 |     /// \brief Forward iterator for values.
 | 
	| 1947 | 1948 |     ///
 | 
	| 1948 | 1949 |     /// This iterator is an stl compatible forward
 | 
	| 1949 | 1950 |     /// iterator on the values of the map. The values can
 | 
	| 1950 | 1951 |     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
 | 
	|  | 1952 |     /// They are considered with multiplicity, so each value is
 | 
	|  | 1953 |     /// traversed for each item it is assigned to.
 | 
	| 1951 | 1954 |     class ValueIterator
 | 
	| 1952 | 1955 |       : public std::iterator<std::forward_iterator_tag, Value> {
 | 
	| 1953 | 1956 |       friend class CrossRefMap;
 | 
	| 1954 | 1957 |     private:
 | 
	| 1955 | 1958 |       ValueIterator(typename Container::const_iterator _it)
 | 
	| 1956 | 1959 |         : it(_it) {}
 | 
	| 1957 | 1960 |     public:
 | 
	| 1958 | 1961 | 
 | 
	| 1959 | 1962 |       ValueIterator() {}
 | 
	| 1960 | 1963 | 
 | 
	| 1961 | 1964 |       ValueIterator& operator++() { ++it; return *this; }
 | 
	| 1962 | 1965 |       ValueIterator operator++(int) {
 | 
	| 1963 | 1966 |         ValueIterator tmp(*this);
 | 
	| 1964 | 1967 |         operator++();
 | 
	| 1965 | 1968 |         return tmp;
 | 
	| 1966 | 1969 |       }
 | 
	| 1967 | 1970 | 
 | 
	| 1968 | 1971 |       const Value& operator*() const { return it->first; }
 | 
	| 1969 | 1972 |       const Value* operator->() const { return &(it->first); }
 | 
	| 1970 | 1973 | 
 | 
	| 1971 | 1974 |       bool operator==(ValueIterator jt) const { return it == jt.it; }
 | 
	| 1972 | 1975 |       bool operator!=(ValueIterator jt) const { return it != jt.it; }
 | 
	| 1973 | 1976 | 
 | 
	| 1974 | 1977 |     private:
 | 
	| 1975 | 1978 |       typename Container::const_iterator it;
 | 
	| 1976 | 1979 |     };
 | 
	| 1977 | 1980 | 
 | 
	| 1978 | 1981 |     /// \brief Returns an iterator to the first value.
 | 
	| 1979 | 1982 |     ///
 | 
	| 1980 | 1983 |     /// Returns an stl compatible iterator to the
 | 
	| 1981 | 1984 |     /// first value of the map. The values of the
 | 
	| 1982 | 1985 |     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 | 
	| 1983 | 1986 |     /// range.
 | 
	| 1984 | 1987 |     ValueIterator beginValue() const {
 | 
	| 1985 | 1988 |       return ValueIterator(_inv_map.begin());
 | 
	| 1986 | 1989 |     }
 | 
	| 1987 | 1990 | 
 | 
	| 1988 | 1991 |     /// \brief Returns an iterator after the last value.
 | 
	| 1989 | 1992 |     ///
 | 
	| 1990 | 1993 |     /// Returns an stl compatible iterator after the
 | 
	| 1991 | 1994 |     /// last value of the map. The values of the
 | 
	| 1992 | 1995 |     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 | 
	| 1993 | 1996 |     /// range.
 | 
	| 1994 | 1997 |     ValueIterator endValue() const {
 | 
	| 1995 | 1998 |       return ValueIterator(_inv_map.end());
 | 
	| 1996 | 1999 |     }
 | 
	| 1997 | 2000 | 
 | 
	| 1998 | 2001 |     /// \brief Sets the value associated with the given key.
 | 
	| 1999 | 2002 |     ///
 | 
	| 2000 | 2003 |     /// Sets the value associated with the given key.
 | 
	| 2001 | 2004 |     void set(const Key& key, const Value& val) {
 | 
	| 2002 | 2005 |       Value oldval = Map::operator[](key);
 | 
	| 2003 |  |       typename Container::iterator it = _inv_map.find(oldval);
 | 
	| 2004 |  |       if (it != _inv_map.end() && it->second == key) {
 | 
	| 2005 |  |        _inv_map.erase(it); | 
	|  | 2006 |       typename Container::iterator it;
 | 
	|  | 2007 |       for (it = _inv_map.equal_range(oldval).first;
 | 
	|  | 2008 |            it != _inv_map.equal_range(oldval).second; ++it) {
 | 
	|  | 2009 |         if (it->second == key) {
 | 
	|  | 2010 |           _inv_map.erase(it);
 | 
	|  | 2011 |           break;
 | 
	|  | 2012 |         }
 | 
	| 2006 | 2013 |       }
 | 
	| 2007 |  |       _inv_map.insert(make_pair(val, key));
 | 
	|  | 2014 |       _inv_map.insert(std::make_pair(val, key));
 | 
	| 2008 | 2015 |       Map::set(key, val);
 | 
	| 2009 | 2016 |     }
 | 
	| 2010 | 2017 | 
 | 
	| 2011 | 2018 |     /// \brief Returns the value associated with the given key.
 | 
	| 2012 | 2019 |     ///
 | 
	| 2013 | 2020 |     /// Returns the value associated with the given key.
 | 
	| 2014 | 2021 |     typename MapTraits<Map>::ConstReturnValue
 | 
	| 2015 | 2022 |     operator[](const Key& key) const {
 | 
	| 2016 | 2023 |       return Map::operator[](key);
 | 
	| 2017 | 2024 |     }
 | 
	| 2018 | 2025 | 
 | 
	| 2019 |  |     /// \brief Gives back theitem by its value. | 
	|  | 2026 |     /// \brief Gives back an item by its value.
 | 
	| 2020 | 2027 |     ///
 | 
	| 2021 |  |     /// Gives back the item by its value.
 | 
	| 2022 |  |     Key operator()(const Value& key) const {
 | 
	| 2023 |  |      typenameContainer::const_iteratorit=_inv_map.find(key); | 
	|  | 2028 |     /// This function gives back an item that is assigned to
 | 
	|  | 2029 |     /// the given value or \c INVALID if no such item exists.
 | 
	|  | 2030 |     /// If there are more items with the same associated value,
 | 
	|  | 2031 |     /// only one of them is returned.
 | 
	|  | 2032 |     Key operator()(const Value& val) const {
 | 
	|  | 2033 |       typename Container::const_iterator it = _inv_map.find(val);
 | 
	| 2024 | 2034 |       return it != _inv_map.end() ? it->second : INVALID;
 | 
	| 2025 | 2035 |     }
 | 
	| 2026 | 2036 | 
 | 
	| 2027 | 2037 |   protected:
 | 
	| 2028 | 2038 | 
 | 
	| 2029 | 2039 |     /// \brief Erase the key from the map and the inverse map.
 | 
	| 2030 | 2040 |     ///
 | 
	| 2031 | 2041 |     /// Erase the key from the map and the inverse map. It is called by the
 | 
	| 2032 | 2042 |     /// \c AlterationNotifier.
 | 
	| 2033 | 2043 |     virtual void erase(const Key& key) {
 | 
	| 2034 | 2044 |       Value val = Map::operator[](key);
 | 
	| 2035 |  |       typename Container::iterator it = _inv_map.find(val);
 | 
	| 2036 |  |       if (it != _inv_map.end() && it->second == key) {
 | 
	| 2037 |  |        _inv_map.erase(it); | 
	|  | 2045 |       typename Container::iterator it;
 | 
	|  | 2046 |       for (it = _inv_map.equal_range(val).first;
 | 
	|  | 2047 |            it != _inv_map.equal_range(val).second; ++it) {
 | 
	|  | 2048 |         if (it->second == key) {
 | 
	|  | 2049 |           _inv_map.erase(it);
 | 
	|  | 2050 |           break;
 | 
	|  | 2051 |         }
 | 
	| 2038 | 2052 |       }
 | 
	| 2039 | 2053 |       Map::erase(key);
 | 
	| 2040 | 2054 |     }
 | 
	| 2041 | 2055 | 
 | 
	| 2042 | 2056 |     /// \brief Erase more keys from the map and the inverse map.
 | 
	| 2043 | 2057 |     ///
 | 
	| 2044 | 2058 |     /// Erase more keys from the map and the inverse map. It is called by the
 | 
	| 2045 | 2059 |     /// \c AlterationNotifier.
 | 
	| 2046 | 2060 |     virtual void erase(const std::vector<Key>& keys) {
 | 
	| 2047 | 2061 |       for (int i = 0; i < int(keys.size()); ++i) {
 | 
	| 2048 | 2062 |         Value val = Map::operator[](keys[i]);
 | 
	| 2049 |  |         typename Container::iterator it = _inv_map.find(val);
 | 
	| 2050 |  |         if (it != _inv_map.end() && it->second == keys[i]) {
 | 
	| 2051 |  |          _inv_map.erase(it); | 
	|  | 2063 |         typename Container::iterator it;
 | 
	|  | 2064 |         for (it = _inv_map.equal_range(val).first;
 | 
	|  | 2065 |              it != _inv_map.equal_range(val).second; ++it) {
 | 
	|  | 2066 |           if (it->second == keys[i]) {
 | 
	|  | 2067 |             _inv_map.erase(it);
 | 
	|  | 2068 |             break;
 | 
	|  | 2069 |           }
 | 
	| 2052 | 2070 |         }
 | 
	| 2053 | 2071 |       }
 | 
	| 2054 | 2072 |       Map::erase(keys);
 | 
	| 2055 | 2073 |     }
 | 
	| 2056 | 2074 | 
 | 
	| 2057 | 2075 |     /// \brief Clear the keys from the map and the inverse map.
 | 
	| 2058 | 2076 |     ///
 | 
	| 2059 | 2077 |     /// Clear the keys from the map and the inverse map. It is called by the
 | 
	| 2060 | 2078 |     /// \c AlterationNotifier.
 | 
	| 2061 | 2079 |     virtual void clear() {
 | 
	| 2062 | 2080 |       _inv_map.clear();
 | 
	| 2063 | 2081 |       Map::clear();
 | 
	| 2064 | 2082 |     }
 | 
	| 2065 | 2083 | 
 | 
	| 2066 | 2084 |   public:
 | 
	| 2067 | 2085 | 
 | 
	| 2068 | 2086 |     /// \brief The inverse map type.
 | 
	| 2069 | 2087 |     ///
 | 
	| 2070 | 2088 |     /// The inverse of this map. The subscript operator of the map
 | 
	| 2071 | 2089 |     /// gives back the item that was last assigned to the value.
 | 
	| 2072 | 2090 |     class InverseMap {
 | 
	| 2073 | 2091 |     public:
 | 
	| 2074 | 2092 |       /// \brief Constructor
 | 
	| 2075 | 2093 |       ///
 | 
	| 2076 | 2094 |       /// Constructor of the InverseMap.
 | 
	| 2077 | 2095 |       explicit InverseMap(const CrossRefMap& inverted)
 | 
	| 2078 | 2096 |         : _inverted(inverted) {}
 | 
	| 2079 | 2097 | 
 | 
	| 2080 | 2098 |       /// The value type of the InverseMap.
 | 
	| 2081 | 2099 |       typedef typename CrossRefMap::Key Value;
 | 
	| 2082 | 2100 |       /// The key type of the InverseMap.
 | 
	| 2083 | 2101 |       typedef typename CrossRefMap::Value Key;
 | 
	| 2084 | 2102 | 
 | 
	| 2085 | 2103 |       /// \brief Subscript operator.
 | 
	| 2086 | 2104 |       ///
 | 
	| 2087 |  |       /// Subscript operator. It gives back the item
 | 
	| 2088 |  |       /// that was last assigned to the given value.
 | 
	|  | 2105 |       /// Subscript operator. It gives back an item
 | 
	|  | 2106 |       /// that is assigned to the given value or \c INVALID
 | 
	|  | 2107 |       /// if no such item exists.
 | 
	| 2089 | 2108 |       Value operator[](const Key& key) const {
 | 
	| 2090 | 2109 |         return _inverted(key);
 | 
	| 2091 | 2110 |       }
 | 
	| 2092 | 2111 | 
 | 
	| 2093 | 2112 |     private:
 | 
	| 2094 | 2113 |       const CrossRefMap& _inverted;
 | 
	| 2095 | 2114 |     };
 | 
	| 2096 | 2115 | 
 | 
	| 2097 | 2116 |     /// \brief It gives back the read-only inverse map.
 | 
	| 2098 | 2117 |     ///
 | 
	| 2099 | 2118 |     /// It gives back the read-only inverse map.
 | 
	| 2100 | 2119 |     InverseMap inverse() const {
 | 
	| 2101 | 2120 |       return InverseMap(*this);
 | 
	| 2102 | 2121 |     }
 | 
	| 2103 | 2122 | 
 | 
	| 2104 | 2123 |   };
 | 
	| 2105 | 2124 | 
 | 
	| 2106 | 2125 |   /// \brief Provides continuous and unique ID for the
 | 
	| 2107 | 2126 |   /// items of a graph.
 | 
	| 2108 | 2127 |   ///
 | 
	| 2109 | 2128 |   /// RangeIdMap provides a unique and continuous
 | 
	| 2110 | 2129 |   /// ID for each item of a given type (\c Node, \c Arc or
 | 
	| 2111 | 2130 |   /// \c Edge) in a graph. This id is
 | 
	| 2112 | 2131 |   ///  - \b unique: different items get different ids,
 | 
	| 2113 | 2132 |   ///  - \b continuous: the range of the ids is the set of integers
 | 
	| 2114 | 2133 |   ///    between 0 and \c n-1, where \c n is the number of the items of
 | 
	| 2115 | 2134 |   ///    this type (\c Node, \c Arc or \c Edge).
 | 
	| 2116 | 2135 |   ///  - So, the ids can change when deleting an item of the same type.
 | 
	| 2117 | 2136 |   ///
 | 
	| 2118 | 2137 |   /// Thus this id is not (necessarily) the same as what can get using
 | 
	| 2119 | 2138 |   /// the \c id() function of the graph or \ref IdMap.
 | 
	| 2120 | 2139 |   /// This map can be inverted with its member class \c InverseMap,
 | 
	| 2121 | 2140 |   /// or with the \c operator() member.
 | 
	| 2122 | 2141 |   ///
 | 
	| 2123 | 2142 |   /// \tparam GR The graph type.
 | 
	| 2124 | 2143 |   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 | 
	| 2125 | 2144 |   /// \c GR::Edge).
 | 
	| 2126 | 2145 |   ///
 | 
	| 2127 | 2146 |   /// \see IdMap
 | 
	| 2128 | 2147 |   template <typename GR, typename K>
 | 
	| 2129 | 2148 |   class RangeIdMap
 | 
	| 2130 | 2149 |     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
 | 
	| 2131 | 2150 | 
 | 
	| 2132 | 2151 |     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
 | 
	| 2133 | 2152 | 
 | 
	| 2134 | 2153 |   public:
 | 
	| 2135 | 2154 |     /// The graph type of RangeIdMap.
 | 
	| 2136 | 2155 |     typedef GR Graph;
 | 
	| 2137 | 2156 |     typedef GR Digraph;
 | 
	| 2138 | 2157 |     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
 | 
	| 2139 | 2158 |     typedef K Item;
 | 
	| 2140 | 2159 |     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
 | 
	| 2141 | 2160 |     typedef K Key;
 | 
	| 2142 | 2161 |     /// The value type of RangeIdMap.
 | 
	| 2143 | 2162 |     typedef int Value;
 | 
	| 2144 | 2163 | 
 | 
	| 2145 | 2164 |     /// \brief Constructor.
 | 
	| 2146 | 2165 |     ///
 | 
	| 2147 | 2166 |     /// Constructor.
 | 
	| 2148 | 2167 |     explicit RangeIdMap(const Graph& gr) : Map(gr) {
 | 
	| 2149 | 2168 |       Item it;
 | 
	| 2150 | 2169 |       const typename Map::Notifier* nf = Map::notifier();
 | 
	| 2151 | 2170 |       for (nf->first(it); it != INVALID; nf->next(it)) {
 | 
	| 2152 | 2171 |         Map::set(it, _inv_map.size());
 | 
	| 2153 | 2172 |         _inv_map.push_back(it);
 | 
	| 2154 | 2173 |       }
 | 
	| 2155 | 2174 |     }
 | 
	| 2156 | 2175 | 
 | 
	| 2157 | 2176 |   protected:
 | 
	| 2158 | 2177 | 
 | 
	| 2159 | 2178 |     /// \brief Adds a new key to the map.
 | 
	| 2160 | 2179 |     ///
 | 
	| 2161 | 2180 |     /// Add a new key to the map. It is called by the
 | 
	| 2162 | 2181 |     /// \c AlterationNotifier.
 | 
	| 2163 | 2182 |     virtual void add(const Item& item) {
 | 
	| 2164 | 2183 |       Map::add(item);
 | 
	| 2165 | 2184 |       Map::set(item, _inv_map.size());
 | 
	| 2166 | 2185 |       _inv_map.push_back(item);
 | 
	| 2167 | 2186 |     }
 | 
	| 2168 | 2187 | 
 | 
	| 2169 | 2188 |     /// \brief Add more new keys to the map.
 | 
	| 2170 | 2189 |     ///
 | 
	| 2171 | 2190 |     /// Add more new keys to the map. It is called by the
 | 
	| 2172 | 2191 |     /// \c AlterationNotifier.
 | 
	| 2173 | 2192 |     virtual void add(const std::vector<Item>& items) {
 | 
	| 2174 | 2193 |       Map::add(items);
 | 
	| 2175 | 2194 |       for (int i = 0; i < int(items.size()); ++i) {
 | 
	| 2176 | 2195 |         Map::set(items[i], _inv_map.size());
 | 
	| 2177 | 2196 |         _inv_map.push_back(items[i]);
 | 
	| 2178 | 2197 |       }
 | 
	| 2179 | 2198 |     }
 | 
	| 2180 | 2199 | 
 | 
	| 2181 | 2200 |     /// \brief Erase the key from the map.
 | 
	| 2182 | 2201 |     ///
 | 
	| 2183 | 2202 |     /// Erase the key from the map. It is called by the
 | 
	| 2184 | 2203 |     /// \c AlterationNotifier.
 | 
	| 2185 | 2204 |     virtual void erase(const Item& item) {
 | 
	| 2186 | 2205 |       Map::set(_inv_map.back(), Map::operator[](item));
 | 
	| 2187 | 2206 |       _inv_map[Map::operator[](item)] = _inv_map.back();
 | 
	| 2188 | 2207 |       _inv_map.pop_back();
 | 
	| 2189 | 2208 |       Map::erase(item);
 | 
	| 2190 | 2209 |     }
 | 
	| 2191 | 2210 | 
 | 
	| 2192 | 2211 |     /// \brief Erase more keys from the map.
 | 
	| 2193 | 2212 |     ///
 | 
	| 2194 | 2213 |     /// Erase more keys from the map. It is called by the
 | 
	| 2195 | 2214 |     /// \c AlterationNotifier.
 | 
	| 2196 | 2215 |     virtual void erase(const std::vector<Item>& items) {
 | 
	| 2197 | 2216 |       for (int i = 0; i < int(items.size()); ++i) {
 | 
	| 2198 | 2217 |         Map::set(_inv_map.back(), Map::operator[](items[i]));
 | 
	| 2199 | 2218 |         _inv_map[Map::operator[](items[i])] = _inv_map.back();
 | 
	| 2200 | 2219 |         _inv_map.pop_back();
 | 
	| 2201 | 2220 |       }
 | 
	| 2202 | 2221 |       Map::erase(items);
 | 
	| 2203 | 2222 |     }
 | 
	| 2204 | 2223 | 
 | 
	| 2205 | 2224 |     /// \brief Build the unique map.
 | 
	| 2206 | 2225 |     ///
 | 
	| 2207 | 2226 |     /// Build the unique map. It is called by the
 | 
	| 2208 | 2227 |     /// \c AlterationNotifier.
 | 
	| 2209 | 2228 |     virtual void build() {
 | 
	| 2210 | 2229 |       Map::build();
 | 
	| 2211 | 2230 |       Item it;
 | 
	| 2212 | 2231 |       const typename Map::Notifier* nf = Map::notifier();
 | 
	| 2213 | 2232 |       for (nf->first(it); it != INVALID; nf->next(it)) {
 | 
	| 2214 | 2233 |         Map::set(it, _inv_map.size());
 | 
	| 2215 | 2234 |         _inv_map.push_back(it);
 | 
	| 2216 | 2235 |       }
 | 
	| 2217 | 2236 |     }
 | 
	| 2218 | 2237 | 
 | 
	| 2219 | 2238 |     /// \brief Clear the keys from the map.
 | 
	| 2220 | 2239 |     ///
 | 
	| 2221 | 2240 |     /// Clear the keys from the map. It is called by the
 | 
	| 2222 | 2241 |     /// \c AlterationNotifier.
 | 
	| 2223 | 2242 |     virtual void clear() {
 | 
	| 2224 | 2243 |       _inv_map.clear();
 | 
	| 2225 | 2244 |       Map::clear();
 | 
	| 2226 | 2245 |     }
 | 
	| 2227 | 2246 | 
 | 
	| 2228 | 2247 |   public:
 | 
	| 2229 | 2248 | 
 | 
	| 2230 | 2249 |     /// \brief Returns the maximal value plus one.
 | 
	| 2231 | 2250 |     ///
 | 
	| 2232 | 2251 |     /// Returns the maximal value plus one in the map.
 | 
	| 2233 | 2252 |     unsigned int size() const {
 | 
	| 2234 | 2253 |       return _inv_map.size();
 | 
	| 2235 | 2254 |     }
 | 
	| 2236 | 2255 | 
 | 
	| 2237 | 2256 |     /// \brief Swaps the position of the two items in the map.
 | 
	| 2238 | 2257 |     ///
 | 
	| 2239 | 2258 |     /// Swaps the position of the two items in the map.
 | 
	| 2240 | 2259 |     void swap(const Item& p, const Item& q) {
 | 
	| 2241 | 2260 |       int pi = Map::operator[](p);
 | 
	| 2242 | 2261 |       int qi = Map::operator[](q);
 | 
	| 2243 | 2262 |       Map::set(p, qi);
 | 
	| 2244 | 2263 |       _inv_map[qi] = p;
 | 
	| 2245 | 2264 |       Map::set(q, pi);
 | 
	| 2246 | 2265 |       _inv_map[pi] = q;
 | 
	| 2247 | 2266 |     }
 | 
	| 2248 | 2267 | 
 | 
	| 2249 | 2268 |     /// \brief Gives back the \e RangeId of the item
 | 
	| 2250 | 2269 |     ///
 | 
	| 2251 | 2270 |     /// Gives back the \e RangeId of the item.
 | 
	| 2252 | 2271 |     int operator[](const Item& item) const {
 | 
	| 2253 | 2272 |       return Map::operator[](item);
 | 
	| 2254 | 2273 |     }
 | 
	| 2255 | 2274 | 
 | 
	| 2256 | 2275 |     /// \brief Gives back the item belonging to a \e RangeId
 | 
	| 2257 | 2276 |     /// 
 | 
	| 2258 | 2277 |     /// Gives back the item belonging to a \e RangeId.
 | 
	| 2259 | 2278 |     Item operator()(int id) const {
 | 
	| 2260 | 2279 |       return _inv_map[id];
 | 
	| 2261 | 2280 |     }
 | 
	| 2262 | 2281 | 
 | 
	| 2263 | 2282 |   private:
 | 
	| 2264 | 2283 | 
 | 
	| 2265 | 2284 |     typedef std::vector<Item> Container;
 | 
	| 2266 | 2285 |     Container _inv_map;
 | 
	| 2267 | 2286 | 
 | 
	| 2268 | 2287 |   public:
 | 
	| 2269 | 2288 | 
 | 
	| 2270 | 2289 |     /// \brief The inverse map type of RangeIdMap.
 | 
	| 2271 | 2290 |     ///
 | 
	| 2272 | 2291 |     /// The inverse map type of RangeIdMap.
 | 
	| 2273 | 2292 |     class InverseMap {
 | 
	| 2274 | 2293 |     public:
 | 
	| 2275 | 2294 |       /// \brief Constructor
 | 
	| 2276 | 2295 |       ///
 | 
	| 2277 | 2296 |       /// Constructor of the InverseMap.
 | 
	| 2278 | 2297 |       explicit InverseMap(const RangeIdMap& inverted)
 | 
	| 2279 | 2298 |         : _inverted(inverted) {}
 | 
	| 2280 | 2299 | 
 | 
	| 2281 | 2300 | 
 | 
	| 2282 | 2301 |       /// The value type of the InverseMap.
 | 
	| 2283 | 2302 |       typedef typename RangeIdMap::Key Value;
 | 
	| 2284 | 2303 |       /// The key type of the InverseMap.
 | 
	| 2285 | 2304 |       typedef typename RangeIdMap::Value Key;
 | 
	| 2286 | 2305 | 
 | 
	| 2287 | 2306 |       /// \brief Subscript operator.
 | 
	| 2288 | 2307 |       ///
 | 
	| 2289 | 2308 |       /// Subscript operator. It gives back the item
 | 
	| 2290 | 2309 |       /// that the descriptor currently belongs to.
 | 
	| 2291 | 2310 |       Value operator[](const Key& key) const {
 | 
	| 2292 | 2311 |         return _inverted(key);
 | 
	| 2293 | 2312 |       }
 | 
	| 2294 | 2313 | 
 | 
	| 2295 | 2314 |       /// \brief Size of the map.
 | 
	| 2296 | 2315 |       ///
 | 
	| 2297 | 2316 |       /// Returns the size of the map.
 | 
	| 2298 | 2317 |       unsigned int size() const {
 | 
	| 2299 | 2318 |         return _inverted.size();
 | 
	| 2300 | 2319 |       }
 | 
	| 2301 | 2320 | 
 | 
	| 2302 | 2321 |     private:
 | 
	| 2303 | 2322 |       const RangeIdMap& _inverted;
 | 
	| 2304 | 2323 |     };
 | 
	| 2305 | 2324 | 
 | 
	| 2306 | 2325 |     /// \brief Gives back the inverse of the map.
 | 
	| 2307 | 2326 |     ///
 | 
	| 2308 | 2327 |     /// Gives back the inverse of the map.
 | 
	| 2309 | 2328 |     const InverseMap inverse() const {
 | 
	| 2310 | 2329 |       return InverseMap(*this);
 | 
	| 2311 | 2330 |     }
 | 
	| 2312 | 2331 |   };
 | 
	| 2313 | 2332 | 
 | 
	| 2314 | 2333 |   /// \brief Map of the source nodes of arcs in a digraph.
 | 
	| 2315 | 2334 |   ///
 | 
	| 2316 | 2335 |   /// SourceMap provides access for the source node of each arc in a digraph,
 | 
	| 2317 | 2336 |   /// which is returned by the \c source() function of the digraph.
 | 
	| 2318 | 2337 |   /// \tparam GR The digraph type.
 | 
	| 2319 | 2338 |   /// \see TargetMap
 | 
	| 2320 | 2339 |   template <typename GR>
 | 
	| 2321 | 2340 |   class SourceMap {
 | 
	| 2322 | 2341 |   public:
 | 
	| 2323 | 2342 | 
 | 
	| 2324 | 2343 |     ///\e
 | 
	| 2325 | 2344 |     typedef typename GR::Arc Key;
 | 
	| 2326 | 2345 |     ///\e
 | 
	| 2327 | 2346 |     typedef typename GR::Node Value;
 | 
	| 2328 | 2347 | 
 | 
	| 2329 | 2348 |     /// \brief Constructor
 | 
	| 2330 | 2349 |     ///
 | 
	| 2331 | 2350 |     /// Constructor.
 | 
	| 2332 | 2351 |     /// \param digraph The digraph that the map belongs to.
 | 
	| 2333 | 2352 |     explicit SourceMap(const GR& digraph) : _graph(digraph) {}
 | 
	| 2334 | 2353 | 
 | 
	| 2335 | 2354 |     /// \brief Returns the source node of the given arc.
 | 
	| 2336 | 2355 |     ///
 | 
	| 2337 | 2356 |     /// Returns the source node of the given arc.
 | 
	| 2338 | 2357 |     Value operator[](const Key& arc) const {
 | 
	| 2339 | 2358 |       return _graph.source(arc);
 | 
	| 2340 | 2359 |     }
 | 
	| 2341 | 2360 | 
 | 
	| 2342 | 2361 |   private:
 | 
	| 2343 | 2362 |     const GR& _graph;
 | 
	| 2344 | 2363 |   };
 | 
	| 2345 | 2364 | 
 | 
	| 2346 | 2365 |   /// \brief Returns a \c SourceMap class.
 | 
	| 2347 | 2366 |   ///
 | 
	| 2348 | 2367 |   /// This function just returns an \c SourceMap class.
 | 
	| 2349 | 2368 |   /// \relates SourceMap
 | 
	| 2350 | 2369 |   template <typename GR>
 | 
	| 2351 | 2370 |   inline SourceMap<GR> sourceMap(const GR& graph) {
 | 
	| 2352 | 2371 |     return SourceMap<GR>(graph);
 | 
	| 2353 | 2372 |   }
 | 
	| 2354 | 2373 | 
 | 
	| 2355 | 2374 |   /// \brief Map of the target nodes of arcs in a digraph.
 | 
	| 2356 | 2375 |   ///
 | 
	| 2357 | 2376 |   /// TargetMap provides access for the target node of each arc in a digraph,
 | 
	| 2358 | 2377 |   /// which is returned by the \c target() function of the digraph.
 | 
	| 2359 | 2378 |   /// \tparam GR The digraph type.
 | 
	| 2360 | 2379 |   /// \see SourceMap
 | 
	| 2361 | 2380 |   template <typename GR>
 | 
	| 2362 | 2381 |   class TargetMap {
 | 
	| 2363 | 2382 |   public:
 | 
	| 2364 | 2383 | 
 | 
	| 2365 | 2384 |     ///\e
 | 
	| 2366 | 2385 |     typedef typename GR::Arc Key;
 | 
	| 2367 | 2386 |     ///\e
 | 
	| 2368 | 2387 |     typedef typename GR::Node Value;
 | 
	| 2369 | 2388 | 
 | 
	| 2370 | 2389 |     /// \brief Constructor
 | 
	| 2371 | 2390 |     ///
 | 
	| 2372 | 2391 |     /// Constructor.
 | 
	| 2373 | 2392 |     /// \param digraph The digraph that the map belongs to.
 | 
	| 2374 | 2393 |     explicit TargetMap(const GR& digraph) : _graph(digraph) {}
 | 
	| 2375 | 2394 | 
 | 
	| 2376 | 2395 |     /// \brief Returns the target node of the given arc.
 | 
	| 2377 | 2396 |     ///
 | 
	| 2378 | 2397 |     /// Returns the target node of the given arc.
 | 
	| 2379 | 2398 |     Value operator[](const Key& e) const {
 | 
	| 2380 | 2399 |       return _graph.target(e);
 | 
	| 2381 | 2400 |     }
 | 
	| 2382 | 2401 | 
 | 
	| 2383 | 2402 |   private:
 | 
	| 2384 | 2403 |     const GR& _graph;
 | 
	| 2385 | 2404 |   };
 | 
	| 2386 | 2405 | 
 | 
	| 2387 | 2406 |   /// \brief Returns a \c TargetMap class.
 | 
	| 2388 | 2407 |   ///
 | 
	| 2389 | 2408 |   /// This function just returns a \c TargetMap class.
 | 
	| 2390 | 2409 |   /// \relates TargetMap
 | 
	| 2391 | 2410 |   template <typename GR>
 | 
	| 2392 | 2411 |   inline TargetMap<GR> targetMap(const GR& graph) {
 | 
	| 2393 | 2412 |     return TargetMap<GR>(graph);
 | 
	| 2394 | 2413 |   }
 | 
	| 2395 | 2414 | 
 | 
	| 2396 | 2415 |   /// \brief Map of the "forward" directed arc view of edges in a graph.
 | 
	| 2397 | 2416 |   ///
 | 
	| 2398 | 2417 |   /// ForwardMap provides access for the "forward" directed arc view of
 | 
	| 2399 | 2418 |   /// each edge in a graph, which is returned by the \c direct() function
 | 
	| 2400 | 2419 |   /// of the graph with \c true parameter.
 | 
	| 2401 | 2420 |   /// \tparam GR The graph type.
 | 
	| 2402 | 2421 |   /// \see BackwardMap
 | 
	| 2403 | 2422 |   template <typename GR>
 | 
	| 2404 | 2423 |   class ForwardMap {
 | 
	| 2405 | 2424 |   public:
 | 
	| 2406 | 2425 | 
 | 
	| 2407 | 2426 |     typedef typename GR::Arc Value;
 | 
	| 2408 | 2427 |     typedef typename GR::Edge Key;
 | 
	| 2409 | 2428 | 
 | 
	| 2410 | 2429 |     /// \brief Constructor
 | 
	| 2411 | 2430 |     ///
 | 
	| 2412 | 2431 |     /// Constructor.
 | 
	| 2413 | 2432 |     /// \param graph The graph that the map belongs to.
 | 
	| 2414 | 2433 |     explicit ForwardMap(const GR& graph) : _graph(graph) {}
 | 
	| 2415 | 2434 | 
 | 
	| 2416 | 2435 |     /// \brief Returns the "forward" directed arc view of the given edge.
 | 
	| 2417 | 2436 |     ///
 | 
	| 2418 | 2437 |     /// Returns the "forward" directed arc view of the given edge.
 | 
	| 2419 | 2438 |     Value operator[](const Key& key) const {
 | 
	| 2420 | 2439 |       return _graph.direct(key, true);
 | 
	| 2421 | 2440 |     }
 | 
	| 2422 | 2441 | 
 | 
	| 2423 | 2442 |   private:
 | 
	| 2424 | 2443 |     const GR& _graph;
 | 
	| 2425 | 2444 |   };
 | 
	| 2426 | 2445 | 
 | 
	| 2427 | 2446 |   /// \brief Returns a \c ForwardMap class.
 | 
	| 2428 | 2447 |   ///
 | 
	| 2429 | 2448 |   /// This function just returns an \c ForwardMap class.
 | 
	| 2430 | 2449 |   /// \relates ForwardMap
 | 
	| 2431 | 2450 |   template <typename GR>
 | 
	| 2432 | 2451 |   inline ForwardMap<GR> forwardMap(const GR& graph) {
 | 
	| 2433 | 2452 |     return ForwardMap<GR>(graph);
 | 
	| 2434 | 2453 |   }
 | 
	| 2435 | 2454 | 
 | 
	| 2436 | 2455 |   /// \brief Map of the "backward" directed arc view of edges in a graph.
 | 
	| 2437 | 2456 |   ///
 | 
	| 2438 | 2457 |   /// BackwardMap provides access for the "backward" directed arc view of
 | 
	| 2439 | 2458 |   /// each edge in a graph, which is returned by the \c direct() function
 | 
	| 2440 | 2459 |   /// of the graph with \c false parameter.
 | 
	| 2441 | 2460 |   /// \tparam GR The graph type.
 | 
	| 2442 | 2461 |   /// \see ForwardMap
 | 
	| 2443 | 2462 |   template <typename GR>
 | 
	| 2444 | 2463 |   class BackwardMap {
 | 
	| 2445 | 2464 |   public:
 | 
	| 2446 | 2465 | 
 | 
	| 2447 | 2466 |     typedef typename GR::Arc Value;
 | 
	| 2448 | 2467 |     typedef typename GR::Edge Key;
 | 
	| 2449 | 2468 | 
 | 
	| 2450 | 2469 |     /// \brief Constructor
 | 
	| 2451 | 2470 |     ///
 | 
	| 2452 | 2471 |     /// Constructor.
 | 
	| 2453 | 2472 |     /// \param graph The graph that the map belongs to.
 | 
	| 2454 | 2473 |     explicit BackwardMap(const GR& graph) : _graph(graph) {}
 | 
	| 2455 | 2474 | 
 | 
	| 2456 | 2475 |     /// \brief Returns the "backward" directed arc view of the given edge.
 | 
	| 2457 | 2476 |     ///
 | 
	| 2458 | 2477 |     /// Returns the "backward" directed arc view of the given edge.
 | 
	| 2459 | 2478 |     Value operator[](const Key& key) const {
 | 
	| 2460 | 2479 |       return _graph.direct(key, false);
 | 
	| 2461 | 2480 |     }
 | 
	| 2462 | 2481 | 
 | 
	| 2463 | 2482 |   private:
 | 
	| 2464 | 2483 |     const GR& _graph;
 | 
	| 2465 | 2484 |   };
 | 
	| 2466 | 2485 | 
 | 
	| 2467 | 2486 |   /// \brief Returns a \c BackwardMap class
 | 
	| 2468 | 2487 | 
 | 
	| 2469 | 2488 |   /// This function just returns a \c BackwardMap class.
 | 
	| 2470 | 2489 |   /// \relates BackwardMap
 | 
	| 2471 | 2490 |   template <typename GR>
 | 
	| 2472 | 2491 |   inline BackwardMap<GR> backwardMap(const GR& graph) {
 | 
	| 2473 | 2492 |     return BackwardMap<GR>(graph);
 | 
	| 2474 | 2493 |   }
 | 
	| 2475 | 2494 | 
 | 
	| 2476 | 2495 |   /// \brief Map of the in-degrees of nodes in a digraph.
 | 
	| 2477 | 2496 |   ///
 | 
	| 2478 | 2497 |   /// This map returns the in-degree of a node. Once it is constructed,
 | 
	| 2479 | 2498 |   /// the degrees are stored in a standard \c NodeMap, so each query is done
 | 
	| 2480 | 2499 |   /// in constant time. On the other hand, the values are updated automatically
 | 
	| 2481 | 2500 |   /// whenever the digraph changes.
 | 
	| 2482 | 2501 |   ///
 | 
	| 2483 | 2502 |   /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
 | 
	| 2484 | 2503 |   /// may provide alternative ways to modify the digraph.
 | 
	| 2485 | 2504 |   /// The correct behavior of InDegMap is not guarantied if these additional
 | 
	| 2486 | 2505 |   /// features are used. For example the functions
 | 
	| 2487 | 2506 |   /// \ref ListDigraph::changeSource() "changeSource()",
 | 
	| 2488 | 2507 |   /// \ref ListDigraph::changeTarget() "changeTarget()" and
 | 
	| 2489 | 2508 |   /// \ref ListDigraph::reverseArc() "reverseArc()"
 | 
	| 2490 | 2509 |   /// of \ref ListDigraph will \e not update the degree values correctly.
 | 
	| 2491 | 2510 |   ///
 | 
	| 2492 | 2511 |   /// \sa OutDegMap
 | 
	| 2493 | 2512 |   template <typename GR>
 | 
	| 2494 | 2513 |   class InDegMap
 | 
	| 2495 | 2514 |     : protected ItemSetTraits<GR, typename GR::Arc>
 | 
	| 2496 | 2515 |       ::ItemNotifier::ObserverBase {
 | 
	| 2497 | 2516 | 
 | 
	| 2498 | 2517 |   public:
 | 
	| 2499 | 2518 |     
 | 
	| 2500 | 2519 |     /// The graph type of InDegMap
 | 
	| 2501 | 2520 |     typedef GR Graph;
 | 
	| 2502 | 2521 |     typedef GR Digraph;
 | 
	| 2503 | 2522 |     /// The key type
 | 
	| 2504 | 2523 |     typedef typename Digraph::Node Key;
 | 
	| 2505 | 2524 |     /// The value type
 | 
	| 2506 | 2525 |     typedef int Value;
 | 
	| 2507 | 2526 | 
 | 
	| 2508 | 2527 |     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
 | 
	| 2509 | 2528 |     ::ItemNotifier::ObserverBase Parent;
 | 
	| 2510 | 2529 | 
 | 
	| 2511 | 2530 |   private:
 | 
	| 2512 | 2531 | 
 | 
	| 2513 | 2532 |     class AutoNodeMap
 | 
	| 2514 | 2533 |       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
 | 
	| 2515 | 2534 |     public:
 | 
	| 2516 | 2535 | 
 | 
	| 2517 | 2536 |       typedef typename ItemSetTraits<Digraph, Key>::
 | 
	| 2518 | 2537 |       template Map<int>::Type Parent;
 | 
	| 2519 | 2538 | 
 | 
	| 2520 | 2539 |       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
 | 
	| 2521 | 2540 | 
 | 
	| 2522 | 2541 |       virtual void add(const Key& key) {
 | 
	| 2523 | 2542 |         Parent::add(key);
 | 
	| 2524 | 2543 |         Parent::set(key, 0);
 | 
	| 2525 | 2544 |       }
 | 
	| 2526 | 2545 | 
 | 
	| 2527 | 2546 |       virtual void add(const std::vector<Key>& keys) {
 | 
	| 2528 | 2547 |         Parent::add(keys);
 | 
	| 2529 | 2548 |         for (int i = 0; i < int(keys.size()); ++i) {
 | 
	| 2530 | 2549 |           Parent::set(keys[i], 0);
 | 
	| 2531 | 2550 |         }
 | 
	| 2532 | 2551 |       }
 | 
	| 2533 | 2552 | 
 | 
	| 2534 | 2553 |       virtual void build() {
 | 
	| 2535 | 2554 |         Parent::build();
 | 
	| 2536 | 2555 |         Key it;
 | 
	| 2537 | 2556 |         typename Parent::Notifier* nf = Parent::notifier();
 | 
	| 2538 | 2557 |         for (nf->first(it); it != INVALID; nf->next(it)) {
 | 
	| 2539 | 2558 |           Parent::set(it, 0);
 | 
	| 2540 | 2559 |         }
 | 
	| 2541 | 2560 |       }
 | 
	| 2542 | 2561 |     };
 | 
	| 2543 | 2562 | 
 | 
	| 2544 | 2563 |   public:
 | 
	| 2545 | 2564 | 
 | 
	| 2546 | 2565 |     /// \brief Constructor.
 | 
	| 2547 | 2566 |     ///
 | 
	| 2548 | 2567 |     /// Constructor for creating an in-degree map.
 | 
	| 2549 | 2568 |     explicit InDegMap(const Digraph& graph)
 | 
	| 2550 | 2569 |       : _digraph(graph), _deg(graph) {
 | 
	| 2551 | 2570 |       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
 | 
	| 2552 | 2571 | 
 | 
	| 2553 | 2572 |       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 | 
	| 2554 | 2573 |         _deg[it] = countInArcs(_digraph, it);
 | 
	| 2555 | 2574 |       }
 | 
	| 2556 | 2575 |     }
 | 
	| 2557 | 2576 | 
 | 
	| 2558 | 2577 |     /// \brief Gives back the in-degree of a Node.
 | 
	| 2559 | 2578 |     ///
 | 
	| 2560 | 2579 |     /// Gives back the in-degree of a Node.
 | 
	| 2561 | 2580 |     int operator[](const Key& key) const {
 | 
	| 2562 | 2581 |       return _deg[key];
 | 
	| 2563 | 2582 |     }
 | 
	| 2564 | 2583 | 
 | 
	| 2565 | 2584 |   protected:
 | 
	| 2566 | 2585 | 
 | 
	| 2567 | 2586 |     typedef typename Digraph::Arc Arc;
 | 
	| 2568 | 2587 | 
 | 
	| 2569 | 2588 |     virtual void add(const Arc& arc) {
 | 
	| 2570 | 2589 |       ++_deg[_digraph.target(arc)];
 | 
	| 2571 | 2590 |     }
 | 
	| 2572 | 2591 | 
 | 
	| 2573 | 2592 |     virtual void add(const std::vector<Arc>& arcs) {
 | 
	| 2574 | 2593 |       for (int i = 0; i < int(arcs.size()); ++i) {
 | 
	| 2575 | 2594 |         ++_deg[_digraph.target(arcs[i])];
 | 
	| 2576 | 2595 |       }
 | 
	| 2577 | 2596 |     }
 | 
	| 2578 | 2597 | 
 | 
	| 2579 | 2598 |     virtual void erase(const Arc& arc) {
 | 
	| 2580 | 2599 |       --_deg[_digraph.target(arc)];
 | 
	| 2581 | 2600 |     }
 | 
	| 2582 | 2601 | 
 | 
	| 2583 | 2602 |     virtual void erase(const std::vector<Arc>& arcs) {
 | 
	| 2584 | 2603 |       for (int i = 0; i < int(arcs.size()); ++i) {
 | 
	| 2585 | 2604 |         --_deg[_digraph.target(arcs[i])];
 | 
	| 2586 | 2605 |       }
 | 
	| 2587 | 2606 |     }
 | 
	| 2588 | 2607 | 
 | 
	| 2589 | 2608 |     virtual void build() {
 | 
	| 2590 | 2609 |       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 | 
	| 2591 | 2610 |         _deg[it] = countInArcs(_digraph, it);
 | 
	| 2592 | 2611 |       }
 | 
	| 2593 | 2612 |     }
 | 
	| 2594 | 2613 | 
 | 
	| 2595 | 2614 |     virtual void clear() {
 | 
	| 2596 | 2615 |       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 | 
	| 2597 | 2616 |         _deg[it] = 0;
 | 
	| 2598 | 2617 |       }
 | 
	| 2599 | 2618 |     }
 | 
	| 2600 | 2619 |   private:
 | 
	| 2601 | 2620 | 
 | 
	| 2602 | 2621 |     const Digraph& _digraph;
 | 
	| 2603 | 2622 |     AutoNodeMap _deg;
 | 
	| 2604 | 2623 |   };
 | 
	| 2605 | 2624 | 
 | 
	| 2606 | 2625 |   /// \brief Map of the out-degrees of nodes in a digraph.
 | 
	| 2607 | 2626 |   ///
 | 
	| 2608 | 2627 |   /// This map returns the out-degree of a node. Once it is constructed,
 | 
	| 2609 | 2628 |   /// the degrees are stored in a standard \c NodeMap, so each query is done
 | 
	| 2610 | 2629 |   /// in constant time. On the other hand, the values are updated automatically
 | 
	| 2611 | 2630 |   /// whenever the digraph changes.
 | 
	| 2612 | 2631 |   ///
 | 
	| 2613 | 2632 |   /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
 | 
	| 2614 | 2633 |   /// may provide alternative ways to modify the digraph.
 | 
	| 2615 | 2634 |   /// The correct behavior of OutDegMap is not guarantied if these additional
 | 
	| 2616 | 2635 |   /// features are used. For example the functions
 | 
	| 2617 | 2636 |   /// \ref ListDigraph::changeSource() "changeSource()",
 | 
	| 2618 | 2637 |   /// \ref ListDigraph::changeTarget() "changeTarget()" and
 | 
	| 2619 | 2638 |   /// \ref ListDigraph::reverseArc() "reverseArc()"
 | 
	| 2620 | 2639 |   /// of \ref ListDigraph will \e not update the degree values correctly.
 | 
	| 2621 | 2640 |   ///
 | 
	| 2622 | 2641 |   /// \sa InDegMap
 | 
	| 2623 | 2642 |   template <typename GR>
 | 
	| 2624 | 2643 |   class OutDegMap
 | 
	| 2625 | 2644 |     : protected ItemSetTraits<GR, typename GR::Arc>
 | 
	| 2626 | 2645 |       ::ItemNotifier::ObserverBase {
 | 
	| 2627 | 2646 | 
 | 
	| 2628 | 2647 |   public:
 | 
	| 2629 | 2648 | 
 | 
	| 2630 | 2649 |     /// The graph type of OutDegMap
 | 
	| 2631 | 2650 |     typedef GR Graph;
 | 
	| 2632 | 2651 |     typedef GR Digraph;
 | 
	| 2633 | 2652 |     /// The key type
 | 
	| 2634 | 2653 |     typedef typename Digraph::Node Key;
 | 
	| 2635 | 2654 |     /// The value type
 | 
	| 2636 | 2655 |     typedef int Value;
 | 
	| 2637 | 2656 | 
 | 
	| 2638 | 2657 |     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
 | 
	| 2639 | 2658 |     ::ItemNotifier::ObserverBase Parent;
 | 
	| 2640 | 2659 | 
 | 
	| 2641 | 2660 |   private:
 | 
	| 2642 | 2661 | 
 | 
	| 2643 | 2662 |     class AutoNodeMap
 | 
	| 2644 | 2663 |       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
 | 
	| 2645 | 2664 |     public:
 | 
	| 2646 | 2665 | 
 | 
	| 2647 | 2666 |       typedef typename ItemSetTraits<Digraph, Key>::
 | 
	| 2648 | 2667 |       template Map<int>::Type Parent;
 | 
	| 2649 | 2668 | 
 | 
	| 2650 | 2669 |       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
 | 
	| 2651 | 2670 | 
 | 
	| 2652 | 2671 |       virtual void add(const Key& key) {
 | 
	| 2653 | 2672 |         Parent::add(key);
 | 
	| 2654 | 2673 |         Parent::set(key, 0);
 | 
	| 2655 | 2674 |       }
 | 
	| 2656 | 2675 |       virtual void add(const std::vector<Key>& keys) {
 | 
	| 2657 | 2676 |         Parent::add(keys);
 | 
	| 2658 | 2677 |         for (int i = 0; i < int(keys.size()); ++i) {
 | 
	| 2659 | 2678 |           Parent::set(keys[i], 0);
 | 
	| 2660 | 2679 |         }
 | 
	| 2661 | 2680 |       }
 | 
	| 2662 | 2681 |       virtual void build() {
 | 
	| 2663 | 2682 |         Parent::build();
 | 
	| 2664 | 2683 |         Key it;
 | 
	| 2665 | 2684 |         typename Parent::Notifier* nf = Parent::notifier();
 | 
	| 2666 | 2685 |         for (nf->first(it); it != INVALID; nf->next(it)) {
 | 
	| 2667 | 2686 |           Parent::set(it, 0);
 | 
	| 2668 | 2687 |         }
 | 
	| 2669 | 2688 |       }
 | 
	| 2670 | 2689 |     };
 | 
	| 2671 | 2690 | 
 | 
	| 2672 | 2691 |   public:
 | 
	| 2673 | 2692 | 
 | 
	| 2674 | 2693 |     /// \brief Constructor.
 | 
	| 2675 | 2694 |     ///
 | 
	| 2676 | 2695 |     /// Constructor for creating an out-degree map.
 | 
	| 2677 | 2696 |     explicit OutDegMap(const Digraph& graph)
 | 
	| 2678 | 2697 |       : _digraph(graph), _deg(graph) {
 | 
	| 2679 | 2698 |       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
 | 
	| 2680 | 2699 | 
 | 
	| 2681 | 2700 |       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 | 
	| 2682 | 2701 |         _deg[it] = countOutArcs(_digraph, it);
 | 
	| 2683 | 2702 |       }
 | 
	| 2684 | 2703 |     }
 | 
	| 2685 | 2704 | 
 | 
	| 2686 | 2705 |     /// \brief Gives back the out-degree of a Node.
 | 
	| 2687 | 2706 |     ///
 | 
	| 2688 | 2707 |     /// Gives back the out-degree of a Node.
 | 
	| 2689 | 2708 |     int operator[](const Key& key) const {
 | 
	| 2690 | 2709 |       return _deg[key];
 | 
	| 2691 | 2710 |     }
 | 
	| 2692 | 2711 | 
 | 
	| 2693 | 2712 |   protected:
 | 
	| 2694 | 2713 | 
 | 
	| 2695 | 2714 |     typedef typename Digraph::Arc Arc;
 | 
	| 2696 | 2715 | 
 | 
	| 2697 | 2716 |     virtual void add(const Arc& arc) {
 | 
	| 2698 | 2717 |       ++_deg[_digraph.source(arc)];
 | 
	| 2699 | 2718 |     }
 | 
	| 2700 | 2719 | 
 | 
	| 2701 | 2720 |     virtual void add(const std::vector<Arc>& arcs) {
 | 
	| 2702 | 2721 |       for (int i = 0; i < int(arcs.size()); ++i) {
 | 
	| 2703 | 2722 |         ++_deg[_digraph.source(arcs[i])];
 | 
	| 2704 | 2723 |       }
 | 
	| 2705 | 2724 |     }
 | 
	| 2706 | 2725 | 
 | 
	| 2707 | 2726 |     virtual void erase(const Arc& arc) {
 | 
	| 2708 | 2727 |       --_deg[_digraph.source(arc)];
 | 
	| 2709 | 2728 |     }
 | 
	| 2710 | 2729 | 
 | 
	| 2711 | 2730 |     virtual void erase(const std::vector<Arc>& arcs) {
 | 
	| 2712 | 2731 |       for (int i = 0; i < int(arcs.size()); ++i) {
 | 
	| 2713 | 2732 |         --_deg[_digraph.source(arcs[i])];
 | 
	| 2714 | 2733 |       }
 | 
	| 2715 | 2734 |     }
 | 
	| 2716 | 2735 | 
 | 
	| 2717 | 2736 |     virtual void build() {
 | 
	| 2718 | 2737 |       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 | 
	| 2719 | 2738 |         _deg[it] = countOutArcs(_digraph, it);
 | 
	| 2720 | 2739 |       }
 | 
	| 2721 | 2740 |     }
 | 
	| 2722 | 2741 | 
 | 
	| 2723 | 2742 |     virtual void clear() {
 | 
	| 2724 | 2743 |       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 | 
	| 2725 | 2744 |         _deg[it] = 0;
 | 
	| 2726 | 2745 |       }
 | 
	| 2727 | 2746 |     }
 | 
	| 2728 | 2747 |   private:
 | 
	| 2729 | 2748 | 
 | 
	| 2730 | 2749 |     const Digraph& _digraph;
 | 
	| 2731 | 2750 |     AutoNodeMap _deg;
 | 
	| 2732 | 2751 |   };
 | 
	| 2733 | 2752 | 
 | 
	| 2734 | 2753 |   /// \brief Potential difference map
 | 
	| 2735 | 2754 |   ///
 | 
	| 2736 | 2755 |   /// PotentialDifferenceMap returns the difference between the potentials of
 | 
	| 2737 | 2756 |   /// the source and target nodes of each arc in a digraph, i.e. it returns
 | 
	| 2738 | 2757 |   /// \code
 | 
	| 2739 | 2758 |   ///   potential[gr.target(arc)] - potential[gr.source(arc)].
 | 
	| 2740 | 2759 |   /// \endcode
 | 
	| 2741 | 2760 |   /// \tparam GR The digraph type.
 | 
	| 2742 | 2761 |   /// \tparam POT A node map storing the potentials.
 | 
	| 2743 | 2762 |   template <typename GR, typename POT>
 | 
	| 2744 | 2763 |   class PotentialDifferenceMap {
 | 
	| 2745 | 2764 |   public:
 | 
	| 2746 | 2765 |     /// Key type
 | 
	| 2747 | 2766 |     typedef typename GR::Arc Key;
 | 
	| 2748 | 2767 |     /// Value type
 | 
	| 2749 | 2768 |     typedef typename POT::Value Value;
 | 
	| 2750 | 2769 | 
 | 
	| 2751 | 2770 |     /// \brief Constructor
 | 
	| 2752 | 2771 |     ///
 | 
	| 2753 | 2772 |     /// Contructor of the map.
 | 
	| 2754 | 2773 |     explicit PotentialDifferenceMap(const GR& gr,
 | 
	| 2755 | 2774 |                                     const POT& potential)
 | 
	| 2756 | 2775 |       : _digraph(gr), _potential(potential) {}
 | 
	| 2757 | 2776 | 
 | 
	| 2758 | 2777 |     /// \brief Returns the potential difference for the given arc.
 | 
	| 2759 | 2778 |     ///
 | 
	| 2760 | 2779 |     /// Returns the potential difference for the given arc, i.e.
 | 
	| 2761 | 2780 |     /// \code
 | 
	| 2762 | 2781 |     ///   potential[gr.target(arc)] - potential[gr.source(arc)].
 | 
	| 2763 | 2782 |     /// \endcode
 | 
	| 2764 | 2783 |     Value operator[](const Key& arc) const {
 | 
	| 2765 | 2784 |       return _potential[_digraph.target(arc)] -
 | 
	| 2766 | 2785 |         _potential[_digraph.source(arc)];
 | 
	| 2767 | 2786 |     }
 | 
	| 2768 | 2787 | 
 | 
	| 2769 | 2788 |   private:
 | 
	| 2770 | 2789 |     const GR& _digraph;
 | 
	| 2771 | 2790 |     const POT& _potential;
 | 
	| 2772 | 2791 |   };
 | 
	| 2773 | 2792 | 
 | 
	| 2774 | 2793 |   /// \brief Returns a PotentialDifferenceMap.
 | 
	| 2775 | 2794 |   ///
 | 
	| 2776 | 2795 |   /// This function just returns a PotentialDifferenceMap.
 | 
	| 2777 | 2796 |   /// \relates PotentialDifferenceMap
 | 
	| 2778 | 2797 |   template <typename GR, typename POT>
 | 
	| 2779 | 2798 |   PotentialDifferenceMap<GR, POT>
 | 
	| 2780 | 2799 |   potentialDifferenceMap(const GR& gr, const POT& potential) {
 | 
	| 2781 | 2800 |     return PotentialDifferenceMap<GR, POT>(gr, potential);
 | 
	| 2782 | 2801 |   }
 | 
	| 2783 | 2802 | 
 | 
	| 2784 | 2803 |   /// @}
 | 
	| 2785 | 2804 | }
 | 
	| 2786 | 2805 | 
 | 
	| 2787 | 2806 | #endif // LEMON_MAPS_H |