| 1 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
| 2 |
2 |
*
|
| 3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
| 4 |
4 |
*
|
| 5 |
5 |
* Copyright (C) 2003-2009
|
| 6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
| 7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
| 8 |
8 |
*
|
| 9 |
9 |
* Permission to use, modify and distribute this software is granted
|
| 10 |
10 |
* provided that this copyright notice appears in all copies. For
|
| 11 |
11 |
* precise terms see the accompanying LICENSE file.
|
| 12 |
12 |
*
|
| 13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
| 14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
| 15 |
15 |
* purpose.
|
| 16 |
16 |
*
|
| 17 |
17 |
*/
|
| 18 |
18 |
|
| 19 |
19 |
#ifndef LEMON_MAPS_H
|
| 20 |
20 |
#define LEMON_MAPS_H
|
| 21 |
21 |
|
| 22 |
22 |
#include <iterator>
|
| 23 |
23 |
#include <functional>
|
| 24 |
24 |
#include <vector>
|
| 25 |
25 |
|
| 26 |
26 |
#include <lemon/core.h>
|
| 27 |
27 |
|
| 28 |
28 |
///\file
|
| 29 |
29 |
///\ingroup maps
|
| 30 |
30 |
///\brief Miscellaneous property maps
|
| 31 |
31 |
|
| 32 |
32 |
#include <map>
|
| 33 |
33 |
|
| 34 |
34 |
namespace lemon {
|
| 35 |
35 |
|
| 36 |
36 |
/// \addtogroup maps
|
| 37 |
37 |
/// @{
|
| 38 |
38 |
|
| 39 |
39 |
/// Base class of maps.
|
| 40 |
40 |
|
| 41 |
41 |
/// Base class of maps. It provides the necessary type definitions
|
| 42 |
42 |
/// required by the map %concepts.
|
| 43 |
43 |
template<typename K, typename V>
|
| 44 |
44 |
class MapBase {
|
| 45 |
45 |
public:
|
| 46 |
46 |
/// \brief The key type of the map.
|
| 47 |
47 |
typedef K Key;
|
| 48 |
48 |
/// \brief The value type of the map.
|
| 49 |
49 |
/// (The type of objects associated with the keys).
|
| 50 |
50 |
typedef V Value;
|
| 51 |
51 |
};
|
| 52 |
52 |
|
| 53 |
53 |
|
| 54 |
54 |
/// Null map. (a.k.a. DoNothingMap)
|
| 55 |
55 |
|
| 56 |
56 |
/// This map can be used if you have to provide a map only for
|
| 57 |
57 |
/// its type definitions, or if you have to provide a writable map,
|
| 58 |
58 |
/// but data written to it is not required (i.e. it will be sent to
|
| 59 |
59 |
/// <tt>/dev/null</tt>).
|
| 60 |
60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
| 61 |
61 |
///
|
| 62 |
62 |
/// \sa ConstMap
|
| 63 |
63 |
template<typename K, typename V>
|
| 64 |
64 |
class NullMap : public MapBase<K, V> {
|
| 65 |
65 |
public:
|
| 66 |
66 |
///\e
|
| 67 |
67 |
typedef K Key;
|
| 68 |
68 |
///\e
|
| 69 |
69 |
typedef V Value;
|
| 70 |
70 |
|
| 71 |
71 |
/// Gives back a default constructed element.
|
| 72 |
72 |
Value operator[](const Key&) const { return Value(); }
|
| 73 |
73 |
/// Absorbs the value.
|
| 74 |
74 |
void set(const Key&, const Value&) {}
|
| 75 |
75 |
};
|
| 76 |
76 |
|
| 77 |
77 |
/// Returns a \c NullMap class
|
| 78 |
78 |
|
| 79 |
79 |
/// This function just returns a \c NullMap class.
|
| 80 |
80 |
/// \relates NullMap
|
| 81 |
81 |
template <typename K, typename V>
|
| 82 |
82 |
NullMap<K, V> nullMap() {
|
| 83 |
83 |
return NullMap<K, V>();
|
| 84 |
84 |
}
|
| 85 |
85 |
|
| 86 |
86 |
|
| 87 |
87 |
/// Constant map.
|
| 88 |
88 |
|
| 89 |
89 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
| 90 |
90 |
/// value to each key.
|
| 91 |
91 |
///
|
| 92 |
92 |
/// In other aspects it is equivalent to \c NullMap.
|
| 93 |
93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
| 94 |
94 |
/// concept, but it absorbs the data written to it.
|
| 95 |
95 |
///
|
| 96 |
96 |
/// The simplest way of using this map is through the constMap()
|
| 97 |
97 |
/// function.
|
| 98 |
98 |
///
|
| 99 |
99 |
/// \sa NullMap
|
| 100 |
100 |
/// \sa IdentityMap
|
| 101 |
101 |
template<typename K, typename V>
|
| 102 |
102 |
class ConstMap : public MapBase<K, V> {
|
| 103 |
103 |
private:
|
| 104 |
104 |
V _value;
|
| 105 |
105 |
public:
|
| 106 |
106 |
///\e
|
| 107 |
107 |
typedef K Key;
|
| 108 |
108 |
///\e
|
| 109 |
109 |
typedef V Value;
|
| 110 |
110 |
|
| 111 |
111 |
/// Default constructor
|
| 112 |
112 |
|
| 113 |
113 |
/// Default constructor.
|
| 114 |
114 |
/// The value of the map will be default constructed.
|
| 115 |
115 |
ConstMap() {}
|
| 116 |
116 |
|
| 117 |
117 |
/// Constructor with specified initial value
|
| 118 |
118 |
|
| 119 |
119 |
/// Constructor with specified initial value.
|
| 120 |
120 |
/// \param v The initial value of the map.
|
| 121 |
121 |
ConstMap(const Value &v) : _value(v) {}
|
| 122 |
122 |
|
| 123 |
123 |
/// Gives back the specified value.
|
| 124 |
124 |
Value operator[](const Key&) const { return _value; }
|
| 125 |
125 |
|
| 126 |
126 |
/// Absorbs the value.
|
| 127 |
127 |
void set(const Key&, const Value&) {}
|
| 128 |
128 |
|
| 129 |
129 |
/// Sets the value that is assigned to each key.
|
| 130 |
130 |
void setAll(const Value &v) {
|
| 131 |
131 |
_value = v;
|
| 132 |
132 |
}
|
| 133 |
133 |
|
| 134 |
134 |
template<typename V1>
|
| 135 |
135 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
| 136 |
136 |
};
|
| 137 |
137 |
|
| 138 |
138 |
/// Returns a \c ConstMap class
|
| 139 |
139 |
|
| 140 |
140 |
/// This function just returns a \c ConstMap class.
|
| 141 |
141 |
/// \relates ConstMap
|
| 142 |
142 |
template<typename K, typename V>
|
| 143 |
143 |
inline ConstMap<K, V> constMap(const V &v) {
|
| 144 |
144 |
return ConstMap<K, V>(v);
|
| 145 |
145 |
}
|
| 146 |
146 |
|
| 147 |
147 |
template<typename K, typename V>
|
| 148 |
148 |
inline ConstMap<K, V> constMap() {
|
| 149 |
149 |
return ConstMap<K, V>();
|
| 150 |
150 |
}
|
| 151 |
151 |
|
| 152 |
152 |
|
| 153 |
153 |
template<typename T, T v>
|
| 154 |
154 |
struct Const {};
|
| 155 |
155 |
|
| 156 |
156 |
/// Constant map with inlined constant value.
|
| 157 |
157 |
|
| 158 |
158 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
| 159 |
159 |
/// value to each key.
|
| 160 |
160 |
///
|
| 161 |
161 |
/// In other aspects it is equivalent to \c NullMap.
|
| 162 |
162 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
| 163 |
163 |
/// concept, but it absorbs the data written to it.
|
| 164 |
164 |
///
|
| 165 |
165 |
/// The simplest way of using this map is through the constMap()
|
| 166 |
166 |
/// function.
|
| 167 |
167 |
///
|
| 168 |
168 |
/// \sa NullMap
|
| 169 |
169 |
/// \sa IdentityMap
|
| 170 |
170 |
template<typename K, typename V, V v>
|
| 171 |
171 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
| 172 |
172 |
public:
|
| 173 |
173 |
///\e
|
| 174 |
174 |
typedef K Key;
|
| 175 |
175 |
///\e
|
| 176 |
176 |
typedef V Value;
|
| 177 |
177 |
|
| 178 |
178 |
/// Constructor.
|
| 179 |
179 |
ConstMap() {}
|
| 180 |
180 |
|
| 181 |
181 |
/// Gives back the specified value.
|
| 182 |
182 |
Value operator[](const Key&) const { return v; }
|
| 183 |
183 |
|
| 184 |
184 |
/// Absorbs the value.
|
| 185 |
185 |
void set(const Key&, const Value&) {}
|
| 186 |
186 |
};
|
| 187 |
187 |
|
| 188 |
188 |
/// Returns a \c ConstMap class with inlined constant value
|
| 189 |
189 |
|
| 190 |
190 |
/// This function just returns a \c ConstMap class with inlined
|
| 191 |
191 |
/// constant value.
|
| 192 |
192 |
/// \relates ConstMap
|
| 193 |
193 |
template<typename K, typename V, V v>
|
| 194 |
194 |
inline ConstMap<K, Const<V, v> > constMap() {
|
| 195 |
195 |
return ConstMap<K, Const<V, v> >();
|
| 196 |
196 |
}
|
| 197 |
197 |
|
| 198 |
198 |
|
| 199 |
199 |
/// Identity map.
|
| 200 |
200 |
|
| 201 |
201 |
/// This \ref concepts::ReadMap "read-only map" gives back the given
|
| 202 |
202 |
/// key as value without any modification.
|
| 203 |
203 |
///
|
| 204 |
204 |
/// \sa ConstMap
|
| 205 |
205 |
template <typename T>
|
| 206 |
206 |
class IdentityMap : public MapBase<T, T> {
|
| 207 |
207 |
public:
|
| 208 |
208 |
///\e
|
| 209 |
209 |
typedef T Key;
|
| 210 |
210 |
///\e
|
| 211 |
211 |
typedef T Value;
|
| 212 |
212 |
|
| 213 |
213 |
/// Gives back the given value without any modification.
|
| 214 |
214 |
Value operator[](const Key &k) const {
|
| 215 |
215 |
return k;
|
| 216 |
216 |
}
|
| 217 |
217 |
};
|
| 218 |
218 |
|
| 219 |
219 |
/// Returns an \c IdentityMap class
|
| 220 |
220 |
|
| 221 |
221 |
/// This function just returns an \c IdentityMap class.
|
| 222 |
222 |
/// \relates IdentityMap
|
| 223 |
223 |
template<typename T>
|
| 224 |
224 |
inline IdentityMap<T> identityMap() {
|
| 225 |
225 |
return IdentityMap<T>();
|
| 226 |
226 |
}
|
| 227 |
227 |
|
| 228 |
228 |
|
| 229 |
229 |
/// \brief Map for storing values for integer keys from the range
|
| 230 |
230 |
/// <tt>[0..size-1]</tt>.
|
| 231 |
231 |
///
|
| 232 |
232 |
/// This map is essentially a wrapper for \c std::vector. It assigns
|
| 233 |
233 |
/// values to integer keys from the range <tt>[0..size-1]</tt>.
|
| 234 |
234 |
/// It can be used with some data structures, for example
|
| 235 |
235 |
/// \c UnionFind, \c BinHeap, when the used items are small
|
| 236 |
236 |
/// integers. This map conforms the \ref concepts::ReferenceMap
|
| 237 |
237 |
/// "ReferenceMap" concept.
|
| 238 |
238 |
///
|
| 239 |
239 |
/// The simplest way of using this map is through the rangeMap()
|
| 240 |
240 |
/// function.
|
| 241 |
241 |
template <typename V>
|
| 242 |
242 |
class RangeMap : public MapBase<int, V> {
|
| 243 |
243 |
template <typename V1>
|
| 244 |
244 |
friend class RangeMap;
|
| 245 |
245 |
private:
|
| 246 |
246 |
|
| 247 |
247 |
typedef std::vector<V> Vector;
|
| 248 |
248 |
Vector _vector;
|
| 249 |
249 |
|
| 250 |
250 |
public:
|
| 251 |
251 |
|
| 252 |
252 |
/// Key type
|
| 253 |
253 |
typedef int Key;
|
| 254 |
254 |
/// Value type
|
| 255 |
255 |
typedef V Value;
|
| 256 |
256 |
/// Reference type
|
| 257 |
257 |
typedef typename Vector::reference Reference;
|
| 258 |
258 |
/// Const reference type
|
| 259 |
259 |
typedef typename Vector::const_reference ConstReference;
|
| 260 |
260 |
|
| 261 |
261 |
typedef True ReferenceMapTag;
|
| 262 |
262 |
|
| 263 |
263 |
public:
|
| 264 |
264 |
|
| 265 |
265 |
/// Constructor with specified default value.
|
| 266 |
266 |
RangeMap(int size = 0, const Value &value = Value())
|
| 267 |
267 |
: _vector(size, value) {}
|
| 268 |
268 |
|
| 269 |
269 |
/// Constructs the map from an appropriate \c std::vector.
|
| 270 |
270 |
template <typename V1>
|
| 271 |
271 |
RangeMap(const std::vector<V1>& vector)
|
| 272 |
272 |
: _vector(vector.begin(), vector.end()) {}
|
| 273 |
273 |
|
| 274 |
274 |
/// Constructs the map from another \c RangeMap.
|
| 275 |
275 |
template <typename V1>
|
| 276 |
276 |
RangeMap(const RangeMap<V1> &c)
|
| 277 |
277 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
| 278 |
278 |
|
| 279 |
279 |
/// Returns the size of the map.
|
| 280 |
280 |
int size() {
|
| 281 |
281 |
return _vector.size();
|
| 282 |
282 |
}
|
| 283 |
283 |
|
| 284 |
284 |
/// Resizes the map.
|
| 285 |
285 |
|
| 286 |
286 |
/// Resizes the underlying \c std::vector container, so changes the
|
| 287 |
287 |
/// keyset of the map.
|
| 288 |
288 |
/// \param size The new size of the map. The new keyset will be the
|
| 289 |
289 |
/// range <tt>[0..size-1]</tt>.
|
| 290 |
290 |
/// \param value The default value to assign to the new keys.
|
| 291 |
291 |
void resize(int size, const Value &value = Value()) {
|
| 292 |
292 |
_vector.resize(size, value);
|
| 293 |
293 |
}
|
| 294 |
294 |
|
| 295 |
295 |
private:
|
| 296 |
296 |
|
| 297 |
297 |
RangeMap& operator=(const RangeMap&);
|
| 298 |
298 |
|
| 299 |
299 |
public:
|
| 300 |
300 |
|
| 301 |
301 |
///\e
|
| 302 |
302 |
Reference operator[](const Key &k) {
|
| 303 |
303 |
return _vector[k];
|
| 304 |
304 |
}
|
| 305 |
305 |
|
| 306 |
306 |
///\e
|
| 307 |
307 |
ConstReference operator[](const Key &k) const {
|
| 308 |
308 |
return _vector[k];
|
| 309 |
309 |
}
|
| 310 |
310 |
|
| 311 |
311 |
///\e
|
| 312 |
312 |
void set(const Key &k, const Value &v) {
|
| 313 |
313 |
_vector[k] = v;
|
| 314 |
314 |
}
|
| 315 |
315 |
};
|
| 316 |
316 |
|
| 317 |
317 |
/// Returns a \c RangeMap class
|
| 318 |
318 |
|
| 319 |
319 |
/// This function just returns a \c RangeMap class.
|
| 320 |
320 |
/// \relates RangeMap
|
| 321 |
321 |
template<typename V>
|
| 322 |
322 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
| 323 |
323 |
return RangeMap<V>(size, value);
|
| 324 |
324 |
}
|
| 325 |
325 |
|
| 326 |
326 |
/// \brief Returns a \c RangeMap class created from an appropriate
|
| 327 |
327 |
/// \c std::vector
|
| 328 |
328 |
|
| 329 |
329 |
/// This function just returns a \c RangeMap class created from an
|
| 330 |
330 |
/// appropriate \c std::vector.
|
| 331 |
331 |
/// \relates RangeMap
|
| 332 |
332 |
template<typename V>
|
| 333 |
333 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
| 334 |
334 |
return RangeMap<V>(vector);
|
| 335 |
335 |
}
|
| 336 |
336 |
|
| 337 |
337 |
|
| 338 |
338 |
/// Map type based on \c std::map
|
| 339 |
339 |
|
| 340 |
340 |
/// This map is essentially a wrapper for \c std::map with addition
|
| 341 |
341 |
/// that you can specify a default value for the keys that are not
|
| 342 |
342 |
/// stored actually. This value can be different from the default
|
| 343 |
343 |
/// contructed value (i.e. \c %Value()).
|
| 344 |
344 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
|
| 345 |
345 |
/// concept.
|
| 346 |
346 |
///
|
| 347 |
347 |
/// This map is useful if a default value should be assigned to most of
|
| 348 |
348 |
/// the keys and different values should be assigned only to a few
|
| 349 |
349 |
/// keys (i.e. the map is "sparse").
|
| 350 |
350 |
/// The name of this type also refers to this important usage.
|
| 351 |
351 |
///
|
| 352 |
352 |
/// Apart form that this map can be used in many other cases since it
|
| 353 |
353 |
/// is based on \c std::map, which is a general associative container.
|
| 354 |
354 |
/// However keep in mind that it is usually not as efficient as other
|
| 355 |
355 |
/// maps.
|
| 356 |
356 |
///
|
| 357 |
357 |
/// The simplest way of using this map is through the sparseMap()
|
| 358 |
358 |
/// function.
|
| 359 |
359 |
template <typename K, typename V, typename Comp = std::less<K> >
|
| 360 |
360 |
class SparseMap : public MapBase<K, V> {
|
| 361 |
361 |
template <typename K1, typename V1, typename C1>
|
| 362 |
362 |
friend class SparseMap;
|
| 363 |
363 |
public:
|
| 364 |
364 |
|
| 365 |
365 |
/// Key type
|
| 366 |
366 |
typedef K Key;
|
| 367 |
367 |
/// Value type
|
| 368 |
368 |
typedef V Value;
|
| 369 |
369 |
/// Reference type
|
| 370 |
370 |
typedef Value& Reference;
|
| 371 |
371 |
/// Const reference type
|
| 372 |
372 |
typedef const Value& ConstReference;
|
| 373 |
373 |
|
| 374 |
374 |
typedef True ReferenceMapTag;
|
| 375 |
375 |
|
| 376 |
376 |
private:
|
| 377 |
377 |
|
| 378 |
378 |
typedef std::map<K, V, Comp> Map;
|
| 379 |
379 |
Map _map;
|
| 380 |
380 |
Value _value;
|
| 381 |
381 |
|
| 382 |
382 |
public:
|
| 383 |
383 |
|
| 384 |
384 |
/// \brief Constructor with specified default value.
|
| 385 |
385 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
| 386 |
386 |
/// \brief Constructs the map from an appropriate \c std::map, and
|
| 387 |
387 |
/// explicitly specifies a default value.
|
| 388 |
388 |
template <typename V1, typename Comp1>
|
| 389 |
389 |
SparseMap(const std::map<Key, V1, Comp1> &map,
|
| 390 |
390 |
const Value &value = Value())
|
| 391 |
391 |
: _map(map.begin(), map.end()), _value(value) {}
|
| 392 |
392 |
|
| 393 |
393 |
/// \brief Constructs the map from another \c SparseMap.
|
| 394 |
394 |
template<typename V1, typename Comp1>
|
| 395 |
395 |
SparseMap(const SparseMap<Key, V1, Comp1> &c)
|
| 396 |
396 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
| 397 |
397 |
|
| 398 |
398 |
private:
|
| 399 |
399 |
|
| 400 |
400 |
SparseMap& operator=(const SparseMap&);
|
| 401 |
401 |
|
| 402 |
402 |
public:
|
| 403 |
403 |
|
| 404 |
404 |
///\e
|
| 405 |
405 |
Reference operator[](const Key &k) {
|
| 406 |
406 |
typename Map::iterator it = _map.lower_bound(k);
|
| 407 |
407 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
| 408 |
408 |
return it->second;
|
| 409 |
409 |
else
|
| 410 |
410 |
return _map.insert(it, std::make_pair(k, _value))->second;
|
| 411 |
411 |
}
|
| 412 |
412 |
|
| 413 |
413 |
///\e
|
| 414 |
414 |
ConstReference operator[](const Key &k) const {
|
| 415 |
415 |
typename Map::const_iterator it = _map.find(k);
|
| 416 |
416 |
if (it != _map.end())
|
| 417 |
417 |
return it->second;
|
| 418 |
418 |
else
|
| 419 |
419 |
return _value;
|
| 420 |
420 |
}
|
| 421 |
421 |
|
| 422 |
422 |
///\e
|
| 423 |
423 |
void set(const Key &k, const Value &v) {
|
| 424 |
424 |
typename Map::iterator it = _map.lower_bound(k);
|
| 425 |
425 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
| 426 |
426 |
it->second = v;
|
| 427 |
427 |
else
|
| 428 |
428 |
_map.insert(it, std::make_pair(k, v));
|
| 429 |
429 |
}
|
| 430 |
430 |
|
| 431 |
431 |
///\e
|
| 432 |
432 |
void setAll(const Value &v) {
|
| 433 |
433 |
_value = v;
|
| 434 |
434 |
_map.clear();
|
| 435 |
435 |
}
|
| 436 |
436 |
};
|
| 437 |
437 |
|
| 438 |
438 |
/// Returns a \c SparseMap class
|
| 439 |
439 |
|
| 440 |
440 |
/// This function just returns a \c SparseMap class with specified
|
| 441 |
441 |
/// default value.
|
| 442 |
442 |
/// \relates SparseMap
|
| 443 |
443 |
template<typename K, typename V, typename Compare>
|
| 444 |
444 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
| 445 |
445 |
return SparseMap<K, V, Compare>(value);
|
| 446 |
446 |
}
|
| 447 |
447 |
|
| 448 |
448 |
template<typename K, typename V>
|
| 449 |
449 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
| 450 |
450 |
return SparseMap<K, V, std::less<K> >(value);
|
| 451 |
451 |
}
|
| 452 |
452 |
|
| 453 |
453 |
/// \brief Returns a \c SparseMap class created from an appropriate
|
| 454 |
454 |
/// \c std::map
|
| 455 |
455 |
|
| 456 |
456 |
/// This function just returns a \c SparseMap class created from an
|
| 457 |
457 |
/// appropriate \c std::map.
|
| 458 |
458 |
/// \relates SparseMap
|
| 459 |
459 |
template<typename K, typename V, typename Compare>
|
| 460 |
460 |
inline SparseMap<K, V, Compare>
|
| 461 |
461 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
|
| 462 |
462 |
{
|
| 463 |
463 |
return SparseMap<K, V, Compare>(map, value);
|
| 464 |
464 |
}
|
| 465 |
465 |
|
| 466 |
466 |
/// @}
|
| 467 |
467 |
|
| 468 |
468 |
/// \addtogroup map_adaptors
|
| 469 |
469 |
/// @{
|
| 470 |
470 |
|
| 471 |
471 |
/// Composition of two maps
|
| 472 |
472 |
|
| 473 |
473 |
/// This \ref concepts::ReadMap "read-only map" returns the
|
| 474 |
474 |
/// composition of two given maps. That is to say, if \c m1 is of
|
| 475 |
475 |
/// type \c M1 and \c m2 is of \c M2, then for
|
| 476 |
476 |
/// \code
|
| 477 |
477 |
/// ComposeMap<M1, M2> cm(m1,m2);
|
| 478 |
478 |
/// \endcode
|
| 479 |
479 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
|
| 480 |
480 |
///
|
| 481 |
481 |
/// The \c Key type of the map is inherited from \c M2 and the
|
| 482 |
482 |
/// \c Value type is from \c M1.
|
| 483 |
483 |
/// \c M2::Value must be convertible to \c M1::Key.
|
| 484 |
484 |
///
|
| 485 |
485 |
/// The simplest way of using this map is through the composeMap()
|
| 486 |
486 |
/// function.
|
| 487 |
487 |
///
|
| 488 |
488 |
/// \sa CombineMap
|
| 489 |
489 |
template <typename M1, typename M2>
|
| 490 |
490 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
| 491 |
491 |
const M1 &_m1;
|
| 492 |
492 |
const M2 &_m2;
|
| 493 |
493 |
public:
|
| 494 |
494 |
///\e
|
| 495 |
495 |
typedef typename M2::Key Key;
|
| 496 |
496 |
///\e
|
| 497 |
497 |
typedef typename M1::Value Value;
|
| 498 |
498 |
|
| 499 |
499 |
/// Constructor
|
| 500 |
500 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 501 |
501 |
|
| 502 |
502 |
///\e
|
| 503 |
503 |
typename MapTraits<M1>::ConstReturnValue
|
| 504 |
504 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
| 505 |
505 |
};
|
| 506 |
506 |
|
| 507 |
507 |
/// Returns a \c ComposeMap class
|
| 508 |
508 |
|
| 509 |
509 |
/// This function just returns a \c ComposeMap class.
|
| 510 |
510 |
///
|
| 511 |
511 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
|
| 512 |
512 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
|
| 513 |
513 |
/// will be equal to <tt>m1[m2[x]]</tt>.
|
| 514 |
514 |
///
|
| 515 |
515 |
/// \relates ComposeMap
|
| 516 |
516 |
template <typename M1, typename M2>
|
| 517 |
517 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
|
| 518 |
518 |
return ComposeMap<M1, M2>(m1, m2);
|
| 519 |
519 |
}
|
| 520 |
520 |
|
| 521 |
521 |
|
| 522 |
522 |
/// Combination of two maps using an STL (binary) functor.
|
| 523 |
523 |
|
| 524 |
524 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
|
| 525 |
525 |
/// binary functor and returns the combination of the two given maps
|
| 526 |
526 |
/// using the functor.
|
| 527 |
527 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
|
| 528 |
528 |
/// and \c f is of \c F, then for
|
| 529 |
529 |
/// \code
|
| 530 |
530 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
|
| 531 |
531 |
/// \endcode
|
| 532 |
532 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
|
| 533 |
533 |
///
|
| 534 |
534 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
|
| 535 |
535 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
|
| 536 |
536 |
/// \c M2::Value and \c M1::Value must be convertible to the
|
| 537 |
537 |
/// corresponding input parameter of \c F and the return type of \c F
|
| 538 |
538 |
/// must be convertible to \c V.
|
| 539 |
539 |
///
|
| 540 |
540 |
/// The simplest way of using this map is through the combineMap()
|
| 541 |
541 |
/// function.
|
| 542 |
542 |
///
|
| 543 |
543 |
/// \sa ComposeMap
|
| 544 |
544 |
template<typename M1, typename M2, typename F,
|
| 545 |
545 |
typename V = typename F::result_type>
|
| 546 |
546 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
| 547 |
547 |
const M1 &_m1;
|
| 548 |
548 |
const M2 &_m2;
|
| 549 |
549 |
F _f;
|
| 550 |
550 |
public:
|
| 551 |
551 |
///\e
|
| 552 |
552 |
typedef typename M1::Key Key;
|
| 553 |
553 |
///\e
|
| 554 |
554 |
typedef V Value;
|
| 555 |
555 |
|
| 556 |
556 |
/// Constructor
|
| 557 |
557 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
|
| 558 |
558 |
: _m1(m1), _m2(m2), _f(f) {}
|
| 559 |
559 |
///\e
|
| 560 |
560 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
| 561 |
561 |
};
|
| 562 |
562 |
|
| 563 |
563 |
/// Returns a \c CombineMap class
|
| 564 |
564 |
|
| 565 |
565 |
/// This function just returns a \c CombineMap class.
|
| 566 |
566 |
///
|
| 567 |
567 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 568 |
568 |
/// values, then
|
| 569 |
569 |
/// \code
|
| 570 |
570 |
/// combineMap(m1,m2,std::plus<double>())
|
| 571 |
571 |
/// \endcode
|
| 572 |
572 |
/// is equivalent to
|
| 573 |
573 |
/// \code
|
| 574 |
574 |
/// addMap(m1,m2)
|
| 575 |
575 |
/// \endcode
|
| 576 |
576 |
///
|
| 577 |
577 |
/// This function is specialized for adaptable binary function
|
| 578 |
578 |
/// classes and C++ functions.
|
| 579 |
579 |
///
|
| 580 |
580 |
/// \relates CombineMap
|
| 581 |
581 |
template<typename M1, typename M2, typename F, typename V>
|
| 582 |
582 |
inline CombineMap<M1, M2, F, V>
|
| 583 |
583 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 584 |
584 |
return CombineMap<M1, M2, F, V>(m1,m2,f);
|
| 585 |
585 |
}
|
| 586 |
586 |
|
| 587 |
587 |
template<typename M1, typename M2, typename F>
|
| 588 |
588 |
inline CombineMap<M1, M2, F, typename F::result_type>
|
| 589 |
589 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 590 |
590 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
|
| 591 |
591 |
}
|
| 592 |
592 |
|
| 593 |
593 |
template<typename M1, typename M2, typename K1, typename K2, typename V>
|
| 594 |
594 |
inline CombineMap<M1, M2, V (*)(K1, K2), V>
|
| 595 |
595 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 596 |
596 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
|
| 597 |
597 |
}
|
| 598 |
598 |
|
| 599 |
599 |
|
| 600 |
600 |
/// Converts an STL style (unary) functor to a map
|
| 601 |
601 |
|
| 602 |
602 |
/// This \ref concepts::ReadMap "read-only map" returns the value
|
| 603 |
603 |
/// of a given functor. Actually, it just wraps the functor and
|
| 604 |
604 |
/// provides the \c Key and \c Value typedefs.
|
| 605 |
605 |
///
|
| 606 |
606 |
/// Template parameters \c K and \c V will become its \c Key and
|
| 607 |
607 |
/// \c Value. In most cases they have to be given explicitly because
|
| 608 |
608 |
/// a functor typically does not provide \c argument_type and
|
| 609 |
609 |
/// \c result_type typedefs.
|
| 610 |
610 |
/// Parameter \c F is the type of the used functor.
|
| 611 |
611 |
///
|
| 612 |
612 |
/// The simplest way of using this map is through the functorToMap()
|
| 613 |
613 |
/// function.
|
| 614 |
614 |
///
|
| 615 |
615 |
/// \sa MapToFunctor
|
| 616 |
616 |
template<typename F,
|
| 617 |
617 |
typename K = typename F::argument_type,
|
| 618 |
618 |
typename V = typename F::result_type>
|
| 619 |
619 |
class FunctorToMap : public MapBase<K, V> {
|
| 620 |
620 |
F _f;
|
| 621 |
621 |
public:
|
| 622 |
622 |
///\e
|
| 623 |
623 |
typedef K Key;
|
| 624 |
624 |
///\e
|
| 625 |
625 |
typedef V Value;
|
| 626 |
626 |
|
| 627 |
627 |
/// Constructor
|
| 628 |
628 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
| 629 |
629 |
///\e
|
| 630 |
630 |
Value operator[](const Key &k) const { return _f(k); }
|
| 631 |
631 |
};
|
| 632 |
632 |
|
| 633 |
633 |
/// Returns a \c FunctorToMap class
|
| 634 |
634 |
|
| 635 |
635 |
/// This function just returns a \c FunctorToMap class.
|
| 636 |
636 |
///
|
| 637 |
637 |
/// This function is specialized for adaptable binary function
|
| 638 |
638 |
/// classes and C++ functions.
|
| 639 |
639 |
///
|
| 640 |
640 |
/// \relates FunctorToMap
|
| 641 |
641 |
template<typename K, typename V, typename F>
|
| 642 |
642 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
| 643 |
643 |
return FunctorToMap<F, K, V>(f);
|
| 644 |
644 |
}
|
| 645 |
645 |
|
| 646 |
646 |
template <typename F>
|
| 647 |
647 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
|
| 648 |
648 |
functorToMap(const F &f)
|
| 649 |
649 |
{
|
| 650 |
650 |
return FunctorToMap<F, typename F::argument_type,
|
| 651 |
651 |
typename F::result_type>(f);
|
| 652 |
652 |
}
|
| 653 |
653 |
|
| 654 |
654 |
template <typename K, typename V>
|
| 655 |
655 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
| 656 |
656 |
return FunctorToMap<V (*)(K), K, V>(f);
|
| 657 |
657 |
}
|
| 658 |
658 |
|
| 659 |
659 |
|
| 660 |
660 |
/// Converts a map to an STL style (unary) functor
|
| 661 |
661 |
|
| 662 |
662 |
/// This class converts a map to an STL style (unary) functor.
|
| 663 |
663 |
/// That is it provides an <tt>operator()</tt> to read its values.
|
| 664 |
664 |
///
|
| 665 |
665 |
/// For the sake of convenience it also works as a usual
|
| 666 |
666 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
|
| 667 |
667 |
/// and the \c Key and \c Value typedefs also exist.
|
| 668 |
668 |
///
|
| 669 |
669 |
/// The simplest way of using this map is through the mapToFunctor()
|
| 670 |
670 |
/// function.
|
| 671 |
671 |
///
|
| 672 |
672 |
///\sa FunctorToMap
|
| 673 |
673 |
template <typename M>
|
| 674 |
674 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 675 |
675 |
const M &_m;
|
| 676 |
676 |
public:
|
| 677 |
677 |
///\e
|
| 678 |
678 |
typedef typename M::Key Key;
|
| 679 |
679 |
///\e
|
| 680 |
680 |
typedef typename M::Value Value;
|
| 681 |
681 |
|
| 682 |
682 |
typedef typename M::Key argument_type;
|
| 683 |
683 |
typedef typename M::Value result_type;
|
| 684 |
684 |
|
| 685 |
685 |
/// Constructor
|
| 686 |
686 |
MapToFunctor(const M &m) : _m(m) {}
|
| 687 |
687 |
///\e
|
| 688 |
688 |
Value operator()(const Key &k) const { return _m[k]; }
|
| 689 |
689 |
///\e
|
| 690 |
690 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 691 |
691 |
};
|
| 692 |
692 |
|
| 693 |
693 |
/// Returns a \c MapToFunctor class
|
| 694 |
694 |
|
| 695 |
695 |
/// This function just returns a \c MapToFunctor class.
|
| 696 |
696 |
/// \relates MapToFunctor
|
| 697 |
697 |
template<typename M>
|
| 698 |
698 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
| 699 |
699 |
return MapToFunctor<M>(m);
|
| 700 |
700 |
}
|
| 701 |
701 |
|
| 702 |
702 |
|
| 703 |
703 |
/// \brief Map adaptor to convert the \c Value type of a map to
|
| 704 |
704 |
/// another type using the default conversion.
|
| 705 |
705 |
|
| 706 |
706 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
|
| 707 |
707 |
/// "readable map" to another type using the default conversion.
|
| 708 |
708 |
/// The \c Key type of it is inherited from \c M and the \c Value
|
| 709 |
709 |
/// type is \c V.
|
| 710 |
710 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
|
| 711 |
711 |
///
|
| 712 |
712 |
/// The simplest way of using this map is through the convertMap()
|
| 713 |
713 |
/// function.
|
| 714 |
714 |
template <typename M, typename V>
|
| 715 |
715 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 716 |
716 |
const M &_m;
|
| 717 |
717 |
public:
|
| 718 |
718 |
///\e
|
| 719 |
719 |
typedef typename M::Key Key;
|
| 720 |
720 |
///\e
|
| 721 |
721 |
typedef V Value;
|
| 722 |
722 |
|
| 723 |
723 |
/// Constructor
|
| 724 |
724 |
|
| 725 |
725 |
/// Constructor.
|
| 726 |
726 |
/// \param m The underlying map.
|
| 727 |
727 |
ConvertMap(const M &m) : _m(m) {}
|
| 728 |
728 |
|
| 729 |
729 |
///\e
|
| 730 |
730 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 731 |
731 |
};
|
| 732 |
732 |
|
| 733 |
733 |
/// Returns a \c ConvertMap class
|
| 734 |
734 |
|
| 735 |
735 |
/// This function just returns a \c ConvertMap class.
|
| 736 |
736 |
/// \relates ConvertMap
|
| 737 |
737 |
template<typename V, typename M>
|
| 738 |
738 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
| 739 |
739 |
return ConvertMap<M, V>(map);
|
| 740 |
740 |
}
|
| 741 |
741 |
|
| 742 |
742 |
|
| 743 |
743 |
/// Applies all map setting operations to two maps
|
| 744 |
744 |
|
| 745 |
745 |
/// This map has two \ref concepts::WriteMap "writable map" parameters
|
| 746 |
746 |
/// and each write request will be passed to both of them.
|
| 747 |
747 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
|
| 748 |
748 |
/// operations will return the corresponding values of \c M1.
|
| 749 |
749 |
///
|
| 750 |
750 |
/// The \c Key and \c Value types are inherited from \c M1.
|
| 751 |
751 |
/// The \c Key and \c Value of \c M2 must be convertible from those
|
| 752 |
752 |
/// of \c M1.
|
| 753 |
753 |
///
|
| 754 |
754 |
/// The simplest way of using this map is through the forkMap()
|
| 755 |
755 |
/// function.
|
| 756 |
756 |
template<typename M1, typename M2>
|
| 757 |
757 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 758 |
758 |
M1 &_m1;
|
| 759 |
759 |
M2 &_m2;
|
| 760 |
760 |
public:
|
| 761 |
761 |
///\e
|
| 762 |
762 |
typedef typename M1::Key Key;
|
| 763 |
763 |
///\e
|
| 764 |
764 |
typedef typename M1::Value Value;
|
| 765 |
765 |
|
| 766 |
766 |
/// Constructor
|
| 767 |
767 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
|
| 768 |
768 |
/// Returns the value associated with the given key in the first map.
|
| 769 |
769 |
Value operator[](const Key &k) const { return _m1[k]; }
|
| 770 |
770 |
/// Sets the value associated with the given key in both maps.
|
| 771 |
771 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
|
| 772 |
772 |
};
|
| 773 |
773 |
|
| 774 |
774 |
/// Returns a \c ForkMap class
|
| 775 |
775 |
|
| 776 |
776 |
/// This function just returns a \c ForkMap class.
|
| 777 |
777 |
/// \relates ForkMap
|
| 778 |
778 |
template <typename M1, typename M2>
|
| 779 |
779 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
|
| 780 |
780 |
return ForkMap<M1,M2>(m1,m2);
|
| 781 |
781 |
}
|
| 782 |
782 |
|
| 783 |
783 |
|
| 784 |
784 |
/// Sum of two maps
|
| 785 |
785 |
|
| 786 |
786 |
/// This \ref concepts::ReadMap "read-only map" returns the sum
|
| 787 |
787 |
/// of the values of the two given maps.
|
| 788 |
788 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
| 789 |
789 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
| 790 |
790 |
/// \c M1.
|
| 791 |
791 |
///
|
| 792 |
792 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 793 |
793 |
/// \code
|
| 794 |
794 |
/// AddMap<M1,M2> am(m1,m2);
|
| 795 |
795 |
/// \endcode
|
| 796 |
796 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
|
| 797 |
797 |
///
|
| 798 |
798 |
/// The simplest way of using this map is through the addMap()
|
| 799 |
799 |
/// function.
|
| 800 |
800 |
///
|
| 801 |
801 |
/// \sa SubMap, MulMap, DivMap
|
| 802 |
802 |
/// \sa ShiftMap, ShiftWriteMap
|
| 803 |
803 |
template<typename M1, typename M2>
|
| 804 |
804 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 805 |
805 |
const M1 &_m1;
|
| 806 |
806 |
const M2 &_m2;
|
| 807 |
807 |
public:
|
| 808 |
808 |
///\e
|
| 809 |
809 |
typedef typename M1::Key Key;
|
| 810 |
810 |
///\e
|
| 811 |
811 |
typedef typename M1::Value Value;
|
| 812 |
812 |
|
| 813 |
813 |
/// Constructor
|
| 814 |
814 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 815 |
815 |
///\e
|
| 816 |
816 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
|
| 817 |
817 |
};
|
| 818 |
818 |
|
| 819 |
819 |
/// Returns an \c AddMap class
|
| 820 |
820 |
|
| 821 |
821 |
/// This function just returns an \c AddMap class.
|
| 822 |
822 |
///
|
| 823 |
823 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 824 |
824 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
|
| 825 |
825 |
/// <tt>m1[x]+m2[x]</tt>.
|
| 826 |
826 |
///
|
| 827 |
827 |
/// \relates AddMap
|
| 828 |
828 |
template<typename M1, typename M2>
|
| 829 |
829 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
|
| 830 |
830 |
return AddMap<M1, M2>(m1,m2);
|
| 831 |
831 |
}
|
| 832 |
832 |
|
| 833 |
833 |
|
| 834 |
834 |
/// Difference of two maps
|
| 835 |
835 |
|
| 836 |
836 |
/// This \ref concepts::ReadMap "read-only map" returns the difference
|
| 837 |
837 |
/// of the values of the two given maps.
|
| 838 |
838 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
| 839 |
839 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
| 840 |
840 |
/// \c M1.
|
| 841 |
841 |
///
|
| 842 |
842 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 843 |
843 |
/// \code
|
| 844 |
844 |
/// SubMap<M1,M2> sm(m1,m2);
|
| 845 |
845 |
/// \endcode
|
| 846 |
846 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
|
| 847 |
847 |
///
|
| 848 |
848 |
/// The simplest way of using this map is through the subMap()
|
| 849 |
849 |
/// function.
|
| 850 |
850 |
///
|
| 851 |
851 |
/// \sa AddMap, MulMap, DivMap
|
| 852 |
852 |
template<typename M1, typename M2>
|
| 853 |
853 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 854 |
854 |
const M1 &_m1;
|
| 855 |
855 |
const M2 &_m2;
|
| 856 |
856 |
public:
|
| 857 |
857 |
///\e
|
| 858 |
858 |
typedef typename M1::Key Key;
|
| 859 |
859 |
///\e
|
| 860 |
860 |
typedef typename M1::Value Value;
|
| 861 |
861 |
|
| 862 |
862 |
/// Constructor
|
| 863 |
863 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 864 |
864 |
///\e
|
| 865 |
865 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
|
| 866 |
866 |
};
|
| 867 |
867 |
|
| 868 |
868 |
/// Returns a \c SubMap class
|
| 869 |
869 |
|
| 870 |
870 |
/// This function just returns a \c SubMap class.
|
| 871 |
871 |
///
|
| 872 |
872 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 873 |
873 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
|
| 874 |
874 |
/// <tt>m1[x]-m2[x]</tt>.
|
| 875 |
875 |
///
|
| 876 |
876 |
/// \relates SubMap
|
| 877 |
877 |
template<typename M1, typename M2>
|
| 878 |
878 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
| 879 |
879 |
return SubMap<M1, M2>(m1,m2);
|
| 880 |
880 |
}
|
| 881 |
881 |
|
| 882 |
882 |
|
| 883 |
883 |
/// Product of two maps
|
| 884 |
884 |
|
| 885 |
885 |
/// This \ref concepts::ReadMap "read-only map" returns the product
|
| 886 |
886 |
/// of the values of the two given maps.
|
| 887 |
887 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
| 888 |
888 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
| 889 |
889 |
/// \c M1.
|
| 890 |
890 |
///
|
| 891 |
891 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 892 |
892 |
/// \code
|
| 893 |
893 |
/// MulMap<M1,M2> mm(m1,m2);
|
| 894 |
894 |
/// \endcode
|
| 895 |
895 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
|
| 896 |
896 |
///
|
| 897 |
897 |
/// The simplest way of using this map is through the mulMap()
|
| 898 |
898 |
/// function.
|
| 899 |
899 |
///
|
| 900 |
900 |
/// \sa AddMap, SubMap, DivMap
|
| 901 |
901 |
/// \sa ScaleMap, ScaleWriteMap
|
| 902 |
902 |
template<typename M1, typename M2>
|
| 903 |
903 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 904 |
904 |
const M1 &_m1;
|
| 905 |
905 |
const M2 &_m2;
|
| 906 |
906 |
public:
|
| 907 |
907 |
///\e
|
| 908 |
908 |
typedef typename M1::Key Key;
|
| 909 |
909 |
///\e
|
| 910 |
910 |
typedef typename M1::Value Value;
|
| 911 |
911 |
|
| 912 |
912 |
/// Constructor
|
| 913 |
913 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 914 |
914 |
///\e
|
| 915 |
915 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
| 916 |
916 |
};
|
| 917 |
917 |
|
| 918 |
918 |
/// Returns a \c MulMap class
|
| 919 |
919 |
|
| 920 |
920 |
/// This function just returns a \c MulMap class.
|
| 921 |
921 |
///
|
| 922 |
922 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 923 |
923 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
|
| 924 |
924 |
/// <tt>m1[x]*m2[x]</tt>.
|
| 925 |
925 |
///
|
| 926 |
926 |
/// \relates MulMap
|
| 927 |
927 |
template<typename M1, typename M2>
|
| 928 |
928 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
| 929 |
929 |
return MulMap<M1, M2>(m1,m2);
|
| 930 |
930 |
}
|
| 931 |
931 |
|
| 932 |
932 |
|
| 933 |
933 |
/// Quotient of two maps
|
| 934 |
934 |
|
| 935 |
935 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient
|
| 936 |
936 |
/// of the values of the two given maps.
|
| 937 |
937 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
| 938 |
938 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
| 939 |
939 |
/// \c M1.
|
| 940 |
940 |
///
|
| 941 |
941 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 942 |
942 |
/// \code
|
| 943 |
943 |
/// DivMap<M1,M2> dm(m1,m2);
|
| 944 |
944 |
/// \endcode
|
| 945 |
945 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
|
| 946 |
946 |
///
|
| 947 |
947 |
/// The simplest way of using this map is through the divMap()
|
| 948 |
948 |
/// function.
|
| 949 |
949 |
///
|
| 950 |
950 |
/// \sa AddMap, SubMap, MulMap
|
| 951 |
951 |
template<typename M1, typename M2>
|
| 952 |
952 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 953 |
953 |
const M1 &_m1;
|
| 954 |
954 |
const M2 &_m2;
|
| 955 |
955 |
public:
|
| 956 |
956 |
///\e
|
| 957 |
957 |
typedef typename M1::Key Key;
|
| 958 |
958 |
///\e
|
| 959 |
959 |
typedef typename M1::Value Value;
|
| 960 |
960 |
|
| 961 |
961 |
/// Constructor
|
| 962 |
962 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 963 |
963 |
///\e
|
| 964 |
964 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
| 965 |
965 |
};
|
| 966 |
966 |
|
| 967 |
967 |
/// Returns a \c DivMap class
|
| 968 |
968 |
|
| 969 |
969 |
/// This function just returns a \c DivMap class.
|
| 970 |
970 |
///
|
| 971 |
971 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 972 |
972 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
|
| 973 |
973 |
/// <tt>m1[x]/m2[x]</tt>.
|
| 974 |
974 |
///
|
| 975 |
975 |
/// \relates DivMap
|
| 976 |
976 |
template<typename M1, typename M2>
|
| 977 |
977 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
| 978 |
978 |
return DivMap<M1, M2>(m1,m2);
|
| 979 |
979 |
}
|
| 980 |
980 |
|
| 981 |
981 |
|
| 982 |
982 |
/// Shifts a map with a constant.
|
| 983 |
983 |
|
| 984 |
984 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of
|
| 985 |
985 |
/// the given map and a constant value (i.e. it shifts the map with
|
| 986 |
986 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
| 987 |
987 |
///
|
| 988 |
988 |
/// Actually,
|
| 989 |
989 |
/// \code
|
| 990 |
990 |
/// ShiftMap<M> sh(m,v);
|
| 991 |
991 |
/// \endcode
|
| 992 |
992 |
/// is equivalent to
|
| 993 |
993 |
/// \code
|
| 994 |
994 |
/// ConstMap<M::Key, M::Value> cm(v);
|
| 995 |
995 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
|
| 996 |
996 |
/// \endcode
|
| 997 |
997 |
///
|
| 998 |
998 |
/// The simplest way of using this map is through the shiftMap()
|
| 999 |
999 |
/// function.
|
| 1000 |
1000 |
///
|
| 1001 |
1001 |
/// \sa ShiftWriteMap
|
| 1002 |
1002 |
template<typename M, typename C = typename M::Value>
|
| 1003 |
1003 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1004 |
1004 |
const M &_m;
|
| 1005 |
1005 |
C _v;
|
| 1006 |
1006 |
public:
|
| 1007 |
1007 |
///\e
|
| 1008 |
1008 |
typedef typename M::Key Key;
|
| 1009 |
1009 |
///\e
|
| 1010 |
1010 |
typedef typename M::Value Value;
|
| 1011 |
1011 |
|
| 1012 |
1012 |
/// Constructor
|
| 1013 |
1013 |
|
| 1014 |
1014 |
/// Constructor.
|
| 1015 |
1015 |
/// \param m The undelying map.
|
| 1016 |
1016 |
/// \param v The constant value.
|
| 1017 |
1017 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1018 |
1018 |
///\e
|
| 1019 |
1019 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1020 |
1020 |
};
|
| 1021 |
1021 |
|
| 1022 |
1022 |
/// Shifts a map with a constant (read-write version).
|
| 1023 |
1023 |
|
| 1024 |
1024 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
|
| 1025 |
1025 |
/// of the given map and a constant value (i.e. it shifts the map with
|
| 1026 |
1026 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
| 1027 |
1027 |
/// It makes also possible to write the map.
|
| 1028 |
1028 |
///
|
| 1029 |
1029 |
/// The simplest way of using this map is through the shiftWriteMap()
|
| 1030 |
1030 |
/// function.
|
| 1031 |
1031 |
///
|
| 1032 |
1032 |
/// \sa ShiftMap
|
| 1033 |
1033 |
template<typename M, typename C = typename M::Value>
|
| 1034 |
1034 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1035 |
1035 |
M &_m;
|
| 1036 |
1036 |
C _v;
|
| 1037 |
1037 |
public:
|
| 1038 |
1038 |
///\e
|
| 1039 |
1039 |
typedef typename M::Key Key;
|
| 1040 |
1040 |
///\e
|
| 1041 |
1041 |
typedef typename M::Value Value;
|
| 1042 |
1042 |
|
| 1043 |
1043 |
/// Constructor
|
| 1044 |
1044 |
|
| 1045 |
1045 |
/// Constructor.
|
| 1046 |
1046 |
/// \param m The undelying map.
|
| 1047 |
1047 |
/// \param v The constant value.
|
| 1048 |
1048 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1049 |
1049 |
///\e
|
| 1050 |
1050 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1051 |
1051 |
///\e
|
| 1052 |
1052 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
| 1053 |
1053 |
};
|
| 1054 |
1054 |
|
| 1055 |
1055 |
/// Returns a \c ShiftMap class
|
| 1056 |
1056 |
|
| 1057 |
1057 |
/// This function just returns a \c ShiftMap class.
|
| 1058 |
1058 |
///
|
| 1059 |
1059 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1060 |
1060 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
|
| 1061 |
1061 |
/// <tt>m[x]+v</tt>.
|
| 1062 |
1062 |
///
|
| 1063 |
1063 |
/// \relates ShiftMap
|
| 1064 |
1064 |
template<typename M, typename C>
|
| 1065 |
1065 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
| 1066 |
1066 |
return ShiftMap<M, C>(m,v);
|
| 1067 |
1067 |
}
|
| 1068 |
1068 |
|
| 1069 |
1069 |
/// Returns a \c ShiftWriteMap class
|
| 1070 |
1070 |
|
| 1071 |
1071 |
/// This function just returns a \c ShiftWriteMap class.
|
| 1072 |
1072 |
///
|
| 1073 |
1073 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1074 |
1074 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
|
| 1075 |
1075 |
/// <tt>m[x]+v</tt>.
|
| 1076 |
1076 |
/// Moreover it makes also possible to write the map.
|
| 1077 |
1077 |
///
|
| 1078 |
1078 |
/// \relates ShiftWriteMap
|
| 1079 |
1079 |
template<typename M, typename C>
|
| 1080 |
1080 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
| 1081 |
1081 |
return ShiftWriteMap<M, C>(m,v);
|
| 1082 |
1082 |
}
|
| 1083 |
1083 |
|
| 1084 |
1084 |
|
| 1085 |
1085 |
/// Scales a map with a constant.
|
| 1086 |
1086 |
|
| 1087 |
1087 |
/// This \ref concepts::ReadMap "read-only map" returns the value of
|
| 1088 |
1088 |
/// the given map multiplied from the left side with a constant value.
|
| 1089 |
1089 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1090 |
1090 |
///
|
| 1091 |
1091 |
/// Actually,
|
| 1092 |
1092 |
/// \code
|
| 1093 |
1093 |
/// ScaleMap<M> sc(m,v);
|
| 1094 |
1094 |
/// \endcode
|
| 1095 |
1095 |
/// is equivalent to
|
| 1096 |
1096 |
/// \code
|
| 1097 |
1097 |
/// ConstMap<M::Key, M::Value> cm(v);
|
| 1098 |
1098 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
|
| 1099 |
1099 |
/// \endcode
|
| 1100 |
1100 |
///
|
| 1101 |
1101 |
/// The simplest way of using this map is through the scaleMap()
|
| 1102 |
1102 |
/// function.
|
| 1103 |
1103 |
///
|
| 1104 |
1104 |
/// \sa ScaleWriteMap
|
| 1105 |
1105 |
template<typename M, typename C = typename M::Value>
|
| 1106 |
1106 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1107 |
1107 |
const M &_m;
|
| 1108 |
1108 |
C _v;
|
| 1109 |
1109 |
public:
|
| 1110 |
1110 |
///\e
|
| 1111 |
1111 |
typedef typename M::Key Key;
|
| 1112 |
1112 |
///\e
|
| 1113 |
1113 |
typedef typename M::Value Value;
|
| 1114 |
1114 |
|
| 1115 |
1115 |
/// Constructor
|
| 1116 |
1116 |
|
| 1117 |
1117 |
/// Constructor.
|
| 1118 |
1118 |
/// \param m The undelying map.
|
| 1119 |
1119 |
/// \param v The constant value.
|
| 1120 |
1120 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1121 |
1121 |
///\e
|
| 1122 |
1122 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1123 |
1123 |
};
|
| 1124 |
1124 |
|
| 1125 |
1125 |
/// Scales a map with a constant (read-write version).
|
| 1126 |
1126 |
|
| 1127 |
1127 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
|
| 1128 |
1128 |
/// the given map multiplied from the left side with a constant value.
|
| 1129 |
1129 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1130 |
1130 |
/// It can also be used as write map if the \c / operator is defined
|
| 1131 |
1131 |
/// between \c Value and \c C and the given multiplier is not zero.
|
| 1132 |
1132 |
///
|
| 1133 |
1133 |
/// The simplest way of using this map is through the scaleWriteMap()
|
| 1134 |
1134 |
/// function.
|
| 1135 |
1135 |
///
|
| 1136 |
1136 |
/// \sa ScaleMap
|
| 1137 |
1137 |
template<typename M, typename C = typename M::Value>
|
| 1138 |
1138 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1139 |
1139 |
M &_m;
|
| 1140 |
1140 |
C _v;
|
| 1141 |
1141 |
public:
|
| 1142 |
1142 |
///\e
|
| 1143 |
1143 |
typedef typename M::Key Key;
|
| 1144 |
1144 |
///\e
|
| 1145 |
1145 |
typedef typename M::Value Value;
|
| 1146 |
1146 |
|
| 1147 |
1147 |
/// Constructor
|
| 1148 |
1148 |
|
| 1149 |
1149 |
/// Constructor.
|
| 1150 |
1150 |
/// \param m The undelying map.
|
| 1151 |
1151 |
/// \param v The constant value.
|
| 1152 |
1152 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1153 |
1153 |
///\e
|
| 1154 |
1154 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1155 |
1155 |
///\e
|
| 1156 |
1156 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
| 1157 |
1157 |
};
|
| 1158 |
1158 |
|
| 1159 |
1159 |
/// Returns a \c ScaleMap class
|
| 1160 |
1160 |
|
| 1161 |
1161 |
/// This function just returns a \c ScaleMap class.
|
| 1162 |
1162 |
///
|
| 1163 |
1163 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1164 |
1164 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
|
| 1165 |
1165 |
/// <tt>v*m[x]</tt>.
|
| 1166 |
1166 |
///
|
| 1167 |
1167 |
/// \relates ScaleMap
|
| 1168 |
1168 |
template<typename M, typename C>
|
| 1169 |
1169 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
| 1170 |
1170 |
return ScaleMap<M, C>(m,v);
|
| 1171 |
1171 |
}
|
| 1172 |
1172 |
|
| 1173 |
1173 |
/// Returns a \c ScaleWriteMap class
|
| 1174 |
1174 |
|
| 1175 |
1175 |
/// This function just returns a \c ScaleWriteMap class.
|
| 1176 |
1176 |
///
|
| 1177 |
1177 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1178 |
1178 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
|
| 1179 |
1179 |
/// <tt>v*m[x]</tt>.
|
| 1180 |
1180 |
/// Moreover it makes also possible to write the map.
|
| 1181 |
1181 |
///
|
| 1182 |
1182 |
/// \relates ScaleWriteMap
|
| 1183 |
1183 |
template<typename M, typename C>
|
| 1184 |
1184 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
| 1185 |
1185 |
return ScaleWriteMap<M, C>(m,v);
|
| 1186 |
1186 |
}
|
| 1187 |
1187 |
|
| 1188 |
1188 |
|
| 1189 |
1189 |
/// Negative of a map
|
| 1190 |
1190 |
|
| 1191 |
1191 |
/// This \ref concepts::ReadMap "read-only map" returns the negative
|
| 1192 |
1192 |
/// of the values of the given map (using the unary \c - operator).
|
| 1193 |
1193 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1194 |
1194 |
///
|
| 1195 |
1195 |
/// If M::Value is \c int, \c double etc., then
|
| 1196 |
1196 |
/// \code
|
| 1197 |
1197 |
/// NegMap<M> neg(m);
|
| 1198 |
1198 |
/// \endcode
|
| 1199 |
1199 |
/// is equivalent to
|
| 1200 |
1200 |
/// \code
|
| 1201 |
1201 |
/// ScaleMap<M> neg(m,-1);
|
| 1202 |
1202 |
/// \endcode
|
| 1203 |
1203 |
///
|
| 1204 |
1204 |
/// The simplest way of using this map is through the negMap()
|
| 1205 |
1205 |
/// function.
|
| 1206 |
1206 |
///
|
| 1207 |
1207 |
/// \sa NegWriteMap
|
| 1208 |
1208 |
template<typename M>
|
| 1209 |
1209 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1210 |
1210 |
const M& _m;
|
| 1211 |
1211 |
public:
|
| 1212 |
1212 |
///\e
|
| 1213 |
1213 |
typedef typename M::Key Key;
|
| 1214 |
1214 |
///\e
|
| 1215 |
1215 |
typedef typename M::Value Value;
|
| 1216 |
1216 |
|
| 1217 |
1217 |
/// Constructor
|
| 1218 |
1218 |
NegMap(const M &m) : _m(m) {}
|
| 1219 |
1219 |
///\e
|
| 1220 |
1220 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1221 |
1221 |
};
|
| 1222 |
1222 |
|
| 1223 |
1223 |
/// Negative of a map (read-write version)
|
| 1224 |
1224 |
|
| 1225 |
1225 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
| 1226 |
1226 |
/// negative of the values of the given map (using the unary \c -
|
| 1227 |
1227 |
/// operator).
|
| 1228 |
1228 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1229 |
1229 |
/// It makes also possible to write the map.
|
| 1230 |
1230 |
///
|
| 1231 |
1231 |
/// If M::Value is \c int, \c double etc., then
|
| 1232 |
1232 |
/// \code
|
| 1233 |
1233 |
/// NegWriteMap<M> neg(m);
|
| 1234 |
1234 |
/// \endcode
|
| 1235 |
1235 |
/// is equivalent to
|
| 1236 |
1236 |
/// \code
|
| 1237 |
1237 |
/// ScaleWriteMap<M> neg(m,-1);
|
| 1238 |
1238 |
/// \endcode
|
| 1239 |
1239 |
///
|
| 1240 |
1240 |
/// The simplest way of using this map is through the negWriteMap()
|
| 1241 |
1241 |
/// function.
|
| 1242 |
1242 |
///
|
| 1243 |
1243 |
/// \sa NegMap
|
| 1244 |
1244 |
template<typename M>
|
| 1245 |
1245 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1246 |
1246 |
M &_m;
|
| 1247 |
1247 |
public:
|
| 1248 |
1248 |
///\e
|
| 1249 |
1249 |
typedef typename M::Key Key;
|
| 1250 |
1250 |
///\e
|
| 1251 |
1251 |
typedef typename M::Value Value;
|
| 1252 |
1252 |
|
| 1253 |
1253 |
/// Constructor
|
| 1254 |
1254 |
NegWriteMap(M &m) : _m(m) {}
|
| 1255 |
1255 |
///\e
|
| 1256 |
1256 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1257 |
1257 |
///\e
|
| 1258 |
1258 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
| 1259 |
1259 |
};
|
| 1260 |
1260 |
|
| 1261 |
1261 |
/// Returns a \c NegMap class
|
| 1262 |
1262 |
|
| 1263 |
1263 |
/// This function just returns a \c NegMap class.
|
| 1264 |
1264 |
///
|
| 1265 |
1265 |
/// For example, if \c m is a map with \c double values, then
|
| 1266 |
1266 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
| 1267 |
1267 |
///
|
| 1268 |
1268 |
/// \relates NegMap
|
| 1269 |
1269 |
template <typename M>
|
| 1270 |
1270 |
inline NegMap<M> negMap(const M &m) {
|
| 1271 |
1271 |
return NegMap<M>(m);
|
| 1272 |
1272 |
}
|
| 1273 |
1273 |
|
| 1274 |
1274 |
/// Returns a \c NegWriteMap class
|
| 1275 |
1275 |
|
| 1276 |
1276 |
/// This function just returns a \c NegWriteMap class.
|
| 1277 |
1277 |
///
|
| 1278 |
1278 |
/// For example, if \c m is a map with \c double values, then
|
| 1279 |
1279 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
| 1280 |
1280 |
/// Moreover it makes also possible to write the map.
|
| 1281 |
1281 |
///
|
| 1282 |
1282 |
/// \relates NegWriteMap
|
| 1283 |
1283 |
template <typename M>
|
| 1284 |
1284 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
| 1285 |
1285 |
return NegWriteMap<M>(m);
|
| 1286 |
1286 |
}
|
| 1287 |
1287 |
|
| 1288 |
1288 |
|
| 1289 |
1289 |
/// Absolute value of a map
|
| 1290 |
1290 |
|
| 1291 |
1291 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute
|
| 1292 |
1292 |
/// value of the values of the given map.
|
| 1293 |
1293 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1294 |
1294 |
/// \c Value must be comparable to \c 0 and the unary \c -
|
| 1295 |
1295 |
/// operator must be defined for it, of course.
|
| 1296 |
1296 |
///
|
| 1297 |
1297 |
/// The simplest way of using this map is through the absMap()
|
| 1298 |
1298 |
/// function.
|
| 1299 |
1299 |
template<typename M>
|
| 1300 |
1300 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1301 |
1301 |
const M &_m;
|
| 1302 |
1302 |
public:
|
| 1303 |
1303 |
///\e
|
| 1304 |
1304 |
typedef typename M::Key Key;
|
| 1305 |
1305 |
///\e
|
| 1306 |
1306 |
typedef typename M::Value Value;
|
| 1307 |
1307 |
|
| 1308 |
1308 |
/// Constructor
|
| 1309 |
1309 |
AbsMap(const M &m) : _m(m) {}
|
| 1310 |
1310 |
///\e
|
| 1311 |
1311 |
Value operator[](const Key &k) const {
|
| 1312 |
1312 |
Value tmp = _m[k];
|
| 1313 |
1313 |
return tmp >= 0 ? tmp : -tmp;
|
| 1314 |
1314 |
}
|
| 1315 |
1315 |
|
| 1316 |
1316 |
};
|
| 1317 |
1317 |
|
| 1318 |
1318 |
/// Returns an \c AbsMap class
|
| 1319 |
1319 |
|
| 1320 |
1320 |
/// This function just returns an \c AbsMap class.
|
| 1321 |
1321 |
///
|
| 1322 |
1322 |
/// For example, if \c m is a map with \c double values, then
|
| 1323 |
1323 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
|
| 1324 |
1324 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
|
| 1325 |
1325 |
/// negative.
|
| 1326 |
1326 |
///
|
| 1327 |
1327 |
/// \relates AbsMap
|
| 1328 |
1328 |
template<typename M>
|
| 1329 |
1329 |
inline AbsMap<M> absMap(const M &m) {
|
| 1330 |
1330 |
return AbsMap<M>(m);
|
| 1331 |
1331 |
}
|
| 1332 |
1332 |
|
| 1333 |
1333 |
/// @}
|
| 1334 |
1334 |
|
| 1335 |
1335 |
// Logical maps and map adaptors:
|
| 1336 |
1336 |
|
| 1337 |
1337 |
/// \addtogroup maps
|
| 1338 |
1338 |
/// @{
|
| 1339 |
1339 |
|
| 1340 |
1340 |
/// Constant \c true map.
|
| 1341 |
1341 |
|
| 1342 |
1342 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1343 |
1343 |
/// each key.
|
| 1344 |
1344 |
///
|
| 1345 |
1345 |
/// Note that
|
| 1346 |
1346 |
/// \code
|
| 1347 |
1347 |
/// TrueMap<K> tm;
|
| 1348 |
1348 |
/// \endcode
|
| 1349 |
1349 |
/// is equivalent to
|
| 1350 |
1350 |
/// \code
|
| 1351 |
1351 |
/// ConstMap<K,bool> tm(true);
|
| 1352 |
1352 |
/// \endcode
|
| 1353 |
1353 |
///
|
| 1354 |
1354 |
/// \sa FalseMap
|
| 1355 |
1355 |
/// \sa ConstMap
|
| 1356 |
1356 |
template <typename K>
|
| 1357 |
1357 |
class TrueMap : public MapBase<K, bool> {
|
| 1358 |
1358 |
public:
|
| 1359 |
1359 |
///\e
|
| 1360 |
1360 |
typedef K Key;
|
| 1361 |
1361 |
///\e
|
| 1362 |
1362 |
typedef bool Value;
|
| 1363 |
1363 |
|
| 1364 |
1364 |
/// Gives back \c true.
|
| 1365 |
1365 |
Value operator[](const Key&) const { return true; }
|
| 1366 |
1366 |
};
|
| 1367 |
1367 |
|
| 1368 |
1368 |
/// Returns a \c TrueMap class
|
| 1369 |
1369 |
|
| 1370 |
1370 |
/// This function just returns a \c TrueMap class.
|
| 1371 |
1371 |
/// \relates TrueMap
|
| 1372 |
1372 |
template<typename K>
|
| 1373 |
1373 |
inline TrueMap<K> trueMap() {
|
| 1374 |
1374 |
return TrueMap<K>();
|
| 1375 |
1375 |
}
|
| 1376 |
1376 |
|
| 1377 |
1377 |
|
| 1378 |
1378 |
/// Constant \c false map.
|
| 1379 |
1379 |
|
| 1380 |
1380 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
|
| 1381 |
1381 |
/// each key.
|
| 1382 |
1382 |
///
|
| 1383 |
1383 |
/// Note that
|
| 1384 |
1384 |
/// \code
|
| 1385 |
1385 |
/// FalseMap<K> fm;
|
| 1386 |
1386 |
/// \endcode
|
| 1387 |
1387 |
/// is equivalent to
|
| 1388 |
1388 |
/// \code
|
| 1389 |
1389 |
/// ConstMap<K,bool> fm(false);
|
| 1390 |
1390 |
/// \endcode
|
| 1391 |
1391 |
///
|
| 1392 |
1392 |
/// \sa TrueMap
|
| 1393 |
1393 |
/// \sa ConstMap
|
| 1394 |
1394 |
template <typename K>
|
| 1395 |
1395 |
class FalseMap : public MapBase<K, bool> {
|
| 1396 |
1396 |
public:
|
| 1397 |
1397 |
///\e
|
| 1398 |
1398 |
typedef K Key;
|
| 1399 |
1399 |
///\e
|
| 1400 |
1400 |
typedef bool Value;
|
| 1401 |
1401 |
|
| 1402 |
1402 |
/// Gives back \c false.
|
| 1403 |
1403 |
Value operator[](const Key&) const { return false; }
|
| 1404 |
1404 |
};
|
| 1405 |
1405 |
|
| 1406 |
1406 |
/// Returns a \c FalseMap class
|
| 1407 |
1407 |
|
| 1408 |
1408 |
/// This function just returns a \c FalseMap class.
|
| 1409 |
1409 |
/// \relates FalseMap
|
| 1410 |
1410 |
template<typename K>
|
| 1411 |
1411 |
inline FalseMap<K> falseMap() {
|
| 1412 |
1412 |
return FalseMap<K>();
|
| 1413 |
1413 |
}
|
| 1414 |
1414 |
|
| 1415 |
1415 |
/// @}
|
| 1416 |
1416 |
|
| 1417 |
1417 |
/// \addtogroup map_adaptors
|
| 1418 |
1418 |
/// @{
|
| 1419 |
1419 |
|
| 1420 |
1420 |
/// Logical 'and' of two maps
|
| 1421 |
1421 |
|
| 1422 |
1422 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1423 |
1423 |
/// 'and' of the values of the two given maps.
|
| 1424 |
1424 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1425 |
1425 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1426 |
1426 |
///
|
| 1427 |
1427 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1428 |
1428 |
/// \code
|
| 1429 |
1429 |
/// AndMap<M1,M2> am(m1,m2);
|
| 1430 |
1430 |
/// \endcode
|
| 1431 |
1431 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
|
| 1432 |
1432 |
///
|
| 1433 |
1433 |
/// The simplest way of using this map is through the andMap()
|
| 1434 |
1434 |
/// function.
|
| 1435 |
1435 |
///
|
| 1436 |
1436 |
/// \sa OrMap
|
| 1437 |
1437 |
/// \sa NotMap, NotWriteMap
|
| 1438 |
1438 |
template<typename M1, typename M2>
|
| 1439 |
1439 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
| 1440 |
1440 |
const M1 &_m1;
|
| 1441 |
1441 |
const M2 &_m2;
|
| 1442 |
1442 |
public:
|
| 1443 |
1443 |
///\e
|
| 1444 |
1444 |
typedef typename M1::Key Key;
|
| 1445 |
1445 |
///\e
|
| 1446 |
1446 |
typedef bool Value;
|
| 1447 |
1447 |
|
| 1448 |
1448 |
/// Constructor
|
| 1449 |
1449 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1450 |
1450 |
///\e
|
| 1451 |
1451 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
| 1452 |
1452 |
};
|
| 1453 |
1453 |
|
| 1454 |
1454 |
/// Returns an \c AndMap class
|
| 1455 |
1455 |
|
| 1456 |
1456 |
/// This function just returns an \c AndMap class.
|
| 1457 |
1457 |
///
|
| 1458 |
1458 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
| 1459 |
1459 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
|
| 1460 |
1460 |
/// <tt>m1[x]&&m2[x]</tt>.
|
| 1461 |
1461 |
///
|
| 1462 |
1462 |
/// \relates AndMap
|
| 1463 |
1463 |
template<typename M1, typename M2>
|
| 1464 |
1464 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
| 1465 |
1465 |
return AndMap<M1, M2>(m1,m2);
|
| 1466 |
1466 |
}
|
| 1467 |
1467 |
|
| 1468 |
1468 |
|
| 1469 |
1469 |
/// Logical 'or' of two maps
|
| 1470 |
1470 |
|
| 1471 |
1471 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1472 |
1472 |
/// 'or' of the values of the two given maps.
|
| 1473 |
1473 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1474 |
1474 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1475 |
1475 |
///
|
| 1476 |
1476 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1477 |
1477 |
/// \code
|
| 1478 |
1478 |
/// OrMap<M1,M2> om(m1,m2);
|
| 1479 |
1479 |
/// \endcode
|
| 1480 |
1480 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
|
| 1481 |
1481 |
///
|
| 1482 |
1482 |
/// The simplest way of using this map is through the orMap()
|
| 1483 |
1483 |
/// function.
|
| 1484 |
1484 |
///
|
| 1485 |
1485 |
/// \sa AndMap
|
| 1486 |
1486 |
/// \sa NotMap, NotWriteMap
|
| 1487 |
1487 |
template<typename M1, typename M2>
|
| 1488 |
1488 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
| 1489 |
1489 |
const M1 &_m1;
|
| 1490 |
1490 |
const M2 &_m2;
|
| 1491 |
1491 |
public:
|
| 1492 |
1492 |
///\e
|
| 1493 |
1493 |
typedef typename M1::Key Key;
|
| 1494 |
1494 |
///\e
|
| 1495 |
1495 |
typedef bool Value;
|
| 1496 |
1496 |
|
| 1497 |
1497 |
/// Constructor
|
| 1498 |
1498 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1499 |
1499 |
///\e
|
| 1500 |
1500 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
| 1501 |
1501 |
};
|
| 1502 |
1502 |
|
| 1503 |
1503 |
/// Returns an \c OrMap class
|
| 1504 |
1504 |
|
| 1505 |
1505 |
/// This function just returns an \c OrMap class.
|
| 1506 |
1506 |
///
|
| 1507 |
1507 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
| 1508 |
1508 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
|
| 1509 |
1509 |
/// <tt>m1[x]||m2[x]</tt>.
|
| 1510 |
1510 |
///
|
| 1511 |
1511 |
/// \relates OrMap
|
| 1512 |
1512 |
template<typename M1, typename M2>
|
| 1513 |
1513 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
| 1514 |
1514 |
return OrMap<M1, M2>(m1,m2);
|
| 1515 |
1515 |
}
|
| 1516 |
1516 |
|
| 1517 |
1517 |
|
| 1518 |
1518 |
/// Logical 'not' of a map
|
| 1519 |
1519 |
|
| 1520 |
1520 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1521 |
1521 |
/// negation of the values of the given map.
|
| 1522 |
1522 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
| 1523 |
1523 |
///
|
| 1524 |
1524 |
/// The simplest way of using this map is through the notMap()
|
| 1525 |
1525 |
/// function.
|
| 1526 |
1526 |
///
|
| 1527 |
1527 |
/// \sa NotWriteMap
|
| 1528 |
1528 |
template <typename M>
|
| 1529 |
1529 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1530 |
1530 |
const M &_m;
|
| 1531 |
1531 |
public:
|
| 1532 |
1532 |
///\e
|
| 1533 |
1533 |
typedef typename M::Key Key;
|
| 1534 |
1534 |
///\e
|
| 1535 |
1535 |
typedef bool Value;
|
| 1536 |
1536 |
|
| 1537 |
1537 |
/// Constructor
|
| 1538 |
1538 |
NotMap(const M &m) : _m(m) {}
|
| 1539 |
1539 |
///\e
|
| 1540 |
1540 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1541 |
1541 |
};
|
| 1542 |
1542 |
|
| 1543 |
1543 |
/// Logical 'not' of a map (read-write version)
|
| 1544 |
1544 |
|
| 1545 |
1545 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
| 1546 |
1546 |
/// logical negation of the values of the given map.
|
| 1547 |
1547 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
| 1548 |
1548 |
/// It makes also possible to write the map. When a value is set,
|
| 1549 |
1549 |
/// the opposite value is set to the original map.
|
| 1550 |
1550 |
///
|
| 1551 |
1551 |
/// The simplest way of using this map is through the notWriteMap()
|
| 1552 |
1552 |
/// function.
|
| 1553 |
1553 |
///
|
| 1554 |
1554 |
/// \sa NotMap
|
| 1555 |
1555 |
template <typename M>
|
| 1556 |
1556 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1557 |
1557 |
M &_m;
|
| 1558 |
1558 |
public:
|
| 1559 |
1559 |
///\e
|
| 1560 |
1560 |
typedef typename M::Key Key;
|
| 1561 |
1561 |
///\e
|
| 1562 |
1562 |
typedef bool Value;
|
| 1563 |
1563 |
|
| 1564 |
1564 |
/// Constructor
|
| 1565 |
1565 |
NotWriteMap(M &m) : _m(m) {}
|
| 1566 |
1566 |
///\e
|
| 1567 |
1567 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1568 |
1568 |
///\e
|
| 1569 |
1569 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
| 1570 |
1570 |
};
|
| 1571 |
1571 |
|
| 1572 |
1572 |
/// Returns a \c NotMap class
|
| 1573 |
1573 |
|
| 1574 |
1574 |
/// This function just returns a \c NotMap class.
|
| 1575 |
1575 |
///
|
| 1576 |
1576 |
/// For example, if \c m is a map with \c bool values, then
|
| 1577 |
1577 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
| 1578 |
1578 |
///
|
| 1579 |
1579 |
/// \relates NotMap
|
| 1580 |
1580 |
template <typename M>
|
| 1581 |
1581 |
inline NotMap<M> notMap(const M &m) {
|
| 1582 |
1582 |
return NotMap<M>(m);
|
| 1583 |
1583 |
}
|
| 1584 |
1584 |
|
| 1585 |
1585 |
/// Returns a \c NotWriteMap class
|
| 1586 |
1586 |
|
| 1587 |
1587 |
/// This function just returns a \c NotWriteMap class.
|
| 1588 |
1588 |
///
|
| 1589 |
1589 |
/// For example, if \c m is a map with \c bool values, then
|
| 1590 |
1590 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
| 1591 |
1591 |
/// Moreover it makes also possible to write the map.
|
| 1592 |
1592 |
///
|
| 1593 |
1593 |
/// \relates NotWriteMap
|
| 1594 |
1594 |
template <typename M>
|
| 1595 |
1595 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
| 1596 |
1596 |
return NotWriteMap<M>(m);
|
| 1597 |
1597 |
}
|
| 1598 |
1598 |
|
| 1599 |
1599 |
|
| 1600 |
1600 |
/// Combination of two maps using the \c == operator
|
| 1601 |
1601 |
|
| 1602 |
1602 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1603 |
1603 |
/// the keys for which the corresponding values of the two maps are
|
| 1604 |
1604 |
/// equal.
|
| 1605 |
1605 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1606 |
1606 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1607 |
1607 |
///
|
| 1608 |
1608 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1609 |
1609 |
/// \code
|
| 1610 |
1610 |
/// EqualMap<M1,M2> em(m1,m2);
|
| 1611 |
1611 |
/// \endcode
|
| 1612 |
1612 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
|
| 1613 |
1613 |
///
|
| 1614 |
1614 |
/// The simplest way of using this map is through the equalMap()
|
| 1615 |
1615 |
/// function.
|
| 1616 |
1616 |
///
|
| 1617 |
1617 |
/// \sa LessMap
|
| 1618 |
1618 |
template<typename M1, typename M2>
|
| 1619 |
1619 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
| 1620 |
1620 |
const M1 &_m1;
|
| 1621 |
1621 |
const M2 &_m2;
|
| 1622 |
1622 |
public:
|
| 1623 |
1623 |
///\e
|
| 1624 |
1624 |
typedef typename M1::Key Key;
|
| 1625 |
1625 |
///\e
|
| 1626 |
1626 |
typedef bool Value;
|
| 1627 |
1627 |
|
| 1628 |
1628 |
/// Constructor
|
| 1629 |
1629 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1630 |
1630 |
///\e
|
| 1631 |
1631 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
| 1632 |
1632 |
};
|
| 1633 |
1633 |
|
| 1634 |
1634 |
/// Returns an \c EqualMap class
|
| 1635 |
1635 |
|
| 1636 |
1636 |
/// This function just returns an \c EqualMap class.
|
| 1637 |
1637 |
///
|
| 1638 |
1638 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
| 1639 |
1639 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
|
| 1640 |
1640 |
/// <tt>m1[x]==m2[x]</tt>.
|
| 1641 |
1641 |
///
|
| 1642 |
1642 |
/// \relates EqualMap
|
| 1643 |
1643 |
template<typename M1, typename M2>
|
| 1644 |
1644 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
| 1645 |
1645 |
return EqualMap<M1, M2>(m1,m2);
|
| 1646 |
1646 |
}
|
| 1647 |
1647 |
|
| 1648 |
1648 |
|
| 1649 |
1649 |
/// Combination of two maps using the \c < operator
|
| 1650 |
1650 |
|
| 1651 |
1651 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1652 |
1652 |
/// the keys for which the corresponding value of the first map is
|
| 1653 |
1653 |
/// less then the value of the second map.
|
| 1654 |
1654 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1655 |
1655 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1656 |
1656 |
///
|
| 1657 |
1657 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1658 |
1658 |
/// \code
|
| 1659 |
1659 |
/// LessMap<M1,M2> lm(m1,m2);
|
| 1660 |
1660 |
/// \endcode
|
| 1661 |
1661 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
|
| 1662 |
1662 |
///
|
| 1663 |
1663 |
/// The simplest way of using this map is through the lessMap()
|
| 1664 |
1664 |
/// function.
|
| 1665 |
1665 |
///
|
| 1666 |
1666 |
/// \sa EqualMap
|
| 1667 |
1667 |
template<typename M1, typename M2>
|
| 1668 |
1668 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
| 1669 |
1669 |
const M1 &_m1;
|
| 1670 |
1670 |
const M2 &_m2;
|
| 1671 |
1671 |
public:
|
| 1672 |
1672 |
///\e
|
| 1673 |
1673 |
typedef typename M1::Key Key;
|
| 1674 |
1674 |
///\e
|
| 1675 |
1675 |
typedef bool Value;
|
| 1676 |
1676 |
|
| 1677 |
1677 |
/// Constructor
|
| 1678 |
1678 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1679 |
1679 |
///\e
|
| 1680 |
1680 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
| 1681 |
1681 |
};
|
| 1682 |
1682 |
|
| 1683 |
1683 |
/// Returns an \c LessMap class
|
| 1684 |
1684 |
|
| 1685 |
1685 |
/// This function just returns an \c LessMap class.
|
| 1686 |
1686 |
///
|
| 1687 |
1687 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
| 1688 |
1688 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
|
| 1689 |
1689 |
/// <tt>m1[x]<m2[x]</tt>.
|
| 1690 |
1690 |
///
|
| 1691 |
1691 |
/// \relates LessMap
|
| 1692 |
1692 |
template<typename M1, typename M2>
|
| 1693 |
1693 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
| 1694 |
1694 |
return LessMap<M1, M2>(m1,m2);
|
| 1695 |
1695 |
}
|
| 1696 |
1696 |
|
| 1697 |
1697 |
namespace _maps_bits {
|
| 1698 |
1698 |
|
| 1699 |
1699 |
template <typename _Iterator, typename Enable = void>
|
| 1700 |
1700 |
struct IteratorTraits {
|
| 1701 |
1701 |
typedef typename std::iterator_traits<_Iterator>::value_type Value;
|
| 1702 |
1702 |
};
|
| 1703 |
1703 |
|
| 1704 |
1704 |
template <typename _Iterator>
|
| 1705 |
1705 |
struct IteratorTraits<_Iterator,
|
| 1706 |
1706 |
typename exists<typename _Iterator::container_type>::type>
|
| 1707 |
1707 |
{
|
| 1708 |
1708 |
typedef typename _Iterator::container_type::value_type Value;
|
| 1709 |
1709 |
};
|
| 1710 |
1710 |
|
| 1711 |
1711 |
}
|
| 1712 |
1712 |
|
| 1713 |
1713 |
/// @}
|
| 1714 |
1714 |
|
| 1715 |
1715 |
/// \addtogroup maps
|
| 1716 |
1716 |
/// @{
|
| 1717 |
1717 |
|
| 1718 |
1718 |
/// \brief Writable bool map for logging each \c true assigned element
|
| 1719 |
1719 |
///
|
| 1720 |
1720 |
/// A \ref concepts::WriteMap "writable" bool map for logging
|
| 1721 |
1721 |
/// each \c true assigned element, i.e it copies subsequently each
|
| 1722 |
1722 |
/// keys set to \c true to the given iterator.
|
| 1723 |
1723 |
/// The most important usage of it is storing certain nodes or arcs
|
| 1724 |
1724 |
/// that were marked \c true by an algorithm.
|
| 1725 |
1725 |
///
|
| 1726 |
1726 |
/// There are several algorithms that provide solutions through bool
|
| 1727 |
1727 |
/// maps and most of them assign \c true at most once for each key.
|
| 1728 |
1728 |
/// In these cases it is a natural request to store each \c true
|
| 1729 |
1729 |
/// assigned elements (in order of the assignment), which can be
|
| 1730 |
1730 |
/// easily done with LoggerBoolMap.
|
| 1731 |
1731 |
///
|
| 1732 |
1732 |
/// The simplest way of using this map is through the loggerBoolMap()
|
| 1733 |
1733 |
/// function.
|
| 1734 |
1734 |
///
|
| 1735 |
1735 |
/// \tparam IT The type of the iterator.
|
| 1736 |
1736 |
/// \tparam KEY The key type of the map. The default value set
|
| 1737 |
1737 |
/// according to the iterator type should work in most cases.
|
| 1738 |
1738 |
///
|
| 1739 |
1739 |
/// \note The container of the iterator must contain enough space
|
| 1740 |
1740 |
/// for the elements or the iterator should be an inserter iterator.
|
| 1741 |
1741 |
#ifdef DOXYGEN
|
| 1742 |
1742 |
template <typename IT, typename KEY>
|
| 1743 |
1743 |
#else
|
| 1744 |
1744 |
template <typename IT,
|
| 1745 |
1745 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
|
| 1746 |
1746 |
#endif
|
| 1747 |
1747 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
| 1748 |
1748 |
public:
|
| 1749 |
1749 |
|
| 1750 |
1750 |
///\e
|
| 1751 |
1751 |
typedef KEY Key;
|
| 1752 |
1752 |
///\e
|
| 1753 |
1753 |
typedef bool Value;
|
| 1754 |
1754 |
///\e
|
| 1755 |
1755 |
typedef IT Iterator;
|
| 1756 |
1756 |
|
| 1757 |
1757 |
/// Constructor
|
| 1758 |
1758 |
LoggerBoolMap(Iterator it)
|
| 1759 |
1759 |
: _begin(it), _end(it) {}
|
| 1760 |
1760 |
|
| 1761 |
1761 |
/// Gives back the given iterator set for the first key
|
| 1762 |
1762 |
Iterator begin() const {
|
| 1763 |
1763 |
return _begin;
|
| 1764 |
1764 |
}
|
| 1765 |
1765 |
|
| 1766 |
1766 |
/// Gives back the the 'after the last' iterator
|
| 1767 |
1767 |
Iterator end() const {
|
| 1768 |
1768 |
return _end;
|
| 1769 |
1769 |
}
|
| 1770 |
1770 |
|
| 1771 |
1771 |
/// The set function of the map
|
| 1772 |
1772 |
void set(const Key& key, Value value) {
|
| 1773 |
1773 |
if (value) {
|
| 1774 |
1774 |
*_end++ = key;
|
| 1775 |
1775 |
}
|
| 1776 |
1776 |
}
|
| 1777 |
1777 |
|
| 1778 |
1778 |
private:
|
| 1779 |
1779 |
Iterator _begin;
|
| 1780 |
1780 |
Iterator _end;
|
| 1781 |
1781 |
};
|
| 1782 |
1782 |
|
| 1783 |
1783 |
/// Returns a \c LoggerBoolMap class
|
| 1784 |
1784 |
|
| 1785 |
1785 |
/// This function just returns a \c LoggerBoolMap class.
|
| 1786 |
1786 |
///
|
| 1787 |
1787 |
/// The most important usage of it is storing certain nodes or arcs
|
| 1788 |
1788 |
/// that were marked \c true by an algorithm.
|
| 1789 |
1789 |
/// For example it makes easier to store the nodes in the processing
|
| 1790 |
1790 |
/// order of Dfs algorithm, as the following examples show.
|
| 1791 |
1791 |
/// \code
|
| 1792 |
1792 |
/// std::vector<Node> v;
|
| 1793 |
1793 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
|
| 1794 |
1794 |
/// \endcode
|
| 1795 |
1795 |
/// \code
|
| 1796 |
1796 |
/// std::vector<Node> v(countNodes(g));
|
| 1797 |
1797 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
|
| 1798 |
1798 |
/// \endcode
|
| 1799 |
1799 |
///
|
| 1800 |
1800 |
/// \note The container of the iterator must contain enough space
|
| 1801 |
1801 |
/// for the elements or the iterator should be an inserter iterator.
|
| 1802 |
1802 |
///
|
| 1803 |
1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
|
| 1804 |
1804 |
/// it cannot be used when a readable map is needed, for example as
|
| 1805 |
1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
|
| 1806 |
1806 |
///
|
| 1807 |
1807 |
/// \relates LoggerBoolMap
|
| 1808 |
1808 |
template<typename Iterator>
|
| 1809 |
1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1810 |
1810 |
return LoggerBoolMap<Iterator>(it);
|
| 1811 |
1811 |
}
|
| 1812 |
1812 |
|
| 1813 |
1813 |
/// @}
|
| 1814 |
1814 |
|
| 1815 |
1815 |
/// \addtogroup graph_maps
|
| 1816 |
1816 |
/// @{
|
| 1817 |
1817 |
|
| 1818 |
1818 |
/// \brief Provides an immutable and unique id for each item in a graph.
|
| 1819 |
1819 |
///
|
| 1820 |
1820 |
/// IdMap provides a unique and immutable id for each item of the
|
| 1821 |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
|
| 1822 |
1822 |
/// - \b unique: different items get different ids,
|
| 1823 |
1823 |
/// - \b immutable: the id of an item does not change (even if you
|
| 1824 |
1824 |
/// delete other nodes).
|
| 1825 |
1825 |
///
|
| 1826 |
1826 |
/// Using this map you get access (i.e. can read) the inner id values of
|
| 1827 |
1827 |
/// the items stored in the graph, which is returned by the \c id()
|
| 1828 |
1828 |
/// function of the graph. This map can be inverted with its member
|
| 1829 |
1829 |
/// class \c InverseMap or with the \c operator() member.
|
| 1830 |
1830 |
///
|
| 1831 |
1831 |
/// \tparam GR The graph type.
|
| 1832 |
1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
| 1833 |
1833 |
/// \c GR::Edge).
|
| 1834 |
1834 |
///
|
| 1835 |
1835 |
/// \see RangeIdMap
|
| 1836 |
1836 |
template <typename GR, typename K>
|
| 1837 |
1837 |
class IdMap : public MapBase<K, int> {
|
| 1838 |
1838 |
public:
|
| 1839 |
1839 |
/// The graph type of IdMap.
|
| 1840 |
1840 |
typedef GR Graph;
|
| 1841 |
1841 |
typedef GR Digraph;
|
| 1842 |
1842 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
|
| 1843 |
1843 |
typedef K Item;
|
| 1844 |
1844 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
|
| 1845 |
1845 |
typedef K Key;
|
| 1846 |
1846 |
/// The value type of IdMap.
|
| 1847 |
1847 |
typedef int Value;
|
| 1848 |
1848 |
|
| 1849 |
1849 |
/// \brief Constructor.
|
| 1850 |
1850 |
///
|
| 1851 |
1851 |
/// Constructor of the map.
|
| 1852 |
1852 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1853 |
1853 |
|
| 1854 |
1854 |
/// \brief Gives back the \e id of the item.
|
| 1855 |
1855 |
///
|
| 1856 |
1856 |
/// Gives back the immutable and unique \e id of the item.
|
| 1857 |
1857 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1858 |
1858 |
|
| 1859 |
1859 |
/// \brief Gives back the \e item by its id.
|
| 1860 |
1860 |
///
|
| 1861 |
1861 |
/// Gives back the \e item by its id.
|
| 1862 |
1862 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1863 |
1863 |
|
| 1864 |
1864 |
private:
|
| 1865 |
1865 |
const Graph* _graph;
|
| 1866 |
1866 |
|
| 1867 |
1867 |
public:
|
| 1868 |
1868 |
|
| 1869 |
1869 |
/// \brief This class represents the inverse of its owner (IdMap).
|
| 1870 |
1870 |
///
|
| 1871 |
1871 |
/// This class represents the inverse of its owner (IdMap).
|
| 1872 |
1872 |
/// \see inverse()
|
| 1873 |
1873 |
class InverseMap {
|
| 1874 |
1874 |
public:
|
| 1875 |
1875 |
|
| 1876 |
1876 |
/// \brief Constructor.
|
| 1877 |
1877 |
///
|
| 1878 |
1878 |
/// Constructor for creating an id-to-item map.
|
| 1879 |
1879 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1880 |
1880 |
|
| 1881 |
1881 |
/// \brief Constructor.
|
| 1882 |
1882 |
///
|
| 1883 |
1883 |
/// Constructor for creating an id-to-item map.
|
| 1884 |
1884 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1885 |
1885 |
|
| 1886 |
1886 |
/// \brief Gives back the given item from its id.
|
| 1887 |
1887 |
///
|
| 1888 |
1888 |
/// Gives back the given item from its id.
|
| 1889 |
1889 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1890 |
1890 |
|
| 1891 |
1891 |
private:
|
| 1892 |
1892 |
const Graph* _graph;
|
| 1893 |
1893 |
};
|
| 1894 |
1894 |
|
| 1895 |
1895 |
/// \brief Gives back the inverse of the map.
|
| 1896 |
1896 |
///
|
| 1897 |
1897 |
/// Gives back the inverse of the IdMap.
|
| 1898 |
1898 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1899 |
1899 |
};
|
| 1900 |
1900 |
|
| 1901 |
1901 |
|
| 1902 |
1902 |
/// \brief General cross reference graph map type.
|
| 1903 |
1903 |
|
| 1904 |
1904 |
/// This class provides simple invertable graph maps.
|
| 1905 |
|
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
|
| 1906 |
|
/// and if a key is set to a new value then store it
|
| 1907 |
|
/// in the inverse map.
|
| 1908 |
|
///
|
|
1905 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
|
|
1906 |
/// and if a key is set to a new value, then stores it in the inverse map.
|
| 1909 |
1907 |
/// The values of the map can be accessed
|
| 1910 |
1908 |
/// with stl compatible forward iterator.
|
| 1911 |
1909 |
///
|
|
1910 |
/// This type is not reference map, so it cannot be modified with
|
|
1911 |
/// the subscript operator.
|
|
1912 |
///
|
| 1912 |
1913 |
/// \tparam GR The graph type.
|
| 1913 |
1914 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
| 1914 |
1915 |
/// \c GR::Edge).
|
| 1915 |
1916 |
/// \tparam V The value type of the map.
|
| 1916 |
1917 |
///
|
| 1917 |
1918 |
/// \see IterableValueMap
|
| 1918 |
1919 |
template <typename GR, typename K, typename V>
|
| 1919 |
1920 |
class CrossRefMap
|
| 1920 |
1921 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
| 1921 |
1922 |
private:
|
| 1922 |
1923 |
|
| 1923 |
1924 |
typedef typename ItemSetTraits<GR, K>::
|
| 1924 |
1925 |
template Map<V>::Type Map;
|
| 1925 |
1926 |
|
| 1926 |
|
typedef std::map<V, K> Container;
|
|
1927 |
typedef std::multimap<V, K> Container;
|
| 1927 |
1928 |
Container _inv_map;
|
| 1928 |
1929 |
|
| 1929 |
1930 |
public:
|
| 1930 |
1931 |
|
| 1931 |
1932 |
/// The graph type of CrossRefMap.
|
| 1932 |
1933 |
typedef GR Graph;
|
| 1933 |
1934 |
typedef GR Digraph;
|
| 1934 |
1935 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
|
| 1935 |
1936 |
typedef K Item;
|
| 1936 |
1937 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
|
| 1937 |
1938 |
typedef K Key;
|
| 1938 |
1939 |
/// The value type of CrossRefMap.
|
| 1939 |
1940 |
typedef V Value;
|
| 1940 |
1941 |
|
| 1941 |
1942 |
/// \brief Constructor.
|
| 1942 |
1943 |
///
|
| 1943 |
1944 |
/// Construct a new CrossRefMap for the given graph.
|
| 1944 |
1945 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
| 1945 |
1946 |
|
| 1946 |
1947 |
/// \brief Forward iterator for values.
|
| 1947 |
1948 |
///
|
| 1948 |
1949 |
/// This iterator is an stl compatible forward
|
| 1949 |
1950 |
/// iterator on the values of the map. The values can
|
| 1950 |
1951 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
|
|
1952 |
/// They are considered with multiplicity, so each value is
|
|
1953 |
/// traversed for each item it is assigned to.
|
| 1951 |
1954 |
class ValueIterator
|
| 1952 |
1955 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1953 |
1956 |
friend class CrossRefMap;
|
| 1954 |
1957 |
private:
|
| 1955 |
1958 |
ValueIterator(typename Container::const_iterator _it)
|
| 1956 |
1959 |
: it(_it) {}
|
| 1957 |
1960 |
public:
|
| 1958 |
1961 |
|
| 1959 |
1962 |
ValueIterator() {}
|
| 1960 |
1963 |
|
| 1961 |
1964 |
ValueIterator& operator++() { ++it; return *this; }
|
| 1962 |
1965 |
ValueIterator operator++(int) {
|
| 1963 |
1966 |
ValueIterator tmp(*this);
|
| 1964 |
1967 |
operator++();
|
| 1965 |
1968 |
return tmp;
|
| 1966 |
1969 |
}
|
| 1967 |
1970 |
|
| 1968 |
1971 |
const Value& operator*() const { return it->first; }
|
| 1969 |
1972 |
const Value* operator->() const { return &(it->first); }
|
| 1970 |
1973 |
|
| 1971 |
1974 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
| 1972 |
1975 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
| 1973 |
1976 |
|
| 1974 |
1977 |
private:
|
| 1975 |
1978 |
typename Container::const_iterator it;
|
| 1976 |
1979 |
};
|
| 1977 |
1980 |
|
| 1978 |
1981 |
/// \brief Returns an iterator to the first value.
|
| 1979 |
1982 |
///
|
| 1980 |
1983 |
/// Returns an stl compatible iterator to the
|
| 1981 |
1984 |
/// first value of the map. The values of the
|
| 1982 |
1985 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
| 1983 |
1986 |
/// range.
|
| 1984 |
1987 |
ValueIterator beginValue() const {
|
| 1985 |
1988 |
return ValueIterator(_inv_map.begin());
|
| 1986 |
1989 |
}
|
| 1987 |
1990 |
|
| 1988 |
1991 |
/// \brief Returns an iterator after the last value.
|
| 1989 |
1992 |
///
|
| 1990 |
1993 |
/// Returns an stl compatible iterator after the
|
| 1991 |
1994 |
/// last value of the map. The values of the
|
| 1992 |
1995 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
| 1993 |
1996 |
/// range.
|
| 1994 |
1997 |
ValueIterator endValue() const {
|
| 1995 |
1998 |
return ValueIterator(_inv_map.end());
|
| 1996 |
1999 |
}
|
| 1997 |
2000 |
|
| 1998 |
2001 |
/// \brief Sets the value associated with the given key.
|
| 1999 |
2002 |
///
|
| 2000 |
2003 |
/// Sets the value associated with the given key.
|
| 2001 |
2004 |
void set(const Key& key, const Value& val) {
|
| 2002 |
2005 |
Value oldval = Map::operator[](key);
|
| 2003 |
|
typename Container::iterator it = _inv_map.find(oldval);
|
| 2004 |
|
if (it != _inv_map.end() && it->second == key) {
|
| 2005 |
|
_inv_map.erase(it);
|
|
2006 |
typename Container::iterator it;
|
|
2007 |
for (it = _inv_map.equal_range(oldval).first;
|
|
2008 |
it != _inv_map.equal_range(oldval).second; ++it) {
|
|
2009 |
if (it->second == key) {
|
|
2010 |
_inv_map.erase(it);
|
|
2011 |
break;
|
|
2012 |
}
|
| 2006 |
2013 |
}
|
| 2007 |
|
_inv_map.insert(make_pair(val, key));
|
|
2014 |
_inv_map.insert(std::make_pair(val, key));
|
| 2008 |
2015 |
Map::set(key, val);
|
| 2009 |
2016 |
}
|
| 2010 |
2017 |
|
| 2011 |
2018 |
/// \brief Returns the value associated with the given key.
|
| 2012 |
2019 |
///
|
| 2013 |
2020 |
/// Returns the value associated with the given key.
|
| 2014 |
2021 |
typename MapTraits<Map>::ConstReturnValue
|
| 2015 |
2022 |
operator[](const Key& key) const {
|
| 2016 |
2023 |
return Map::operator[](key);
|
| 2017 |
2024 |
}
|
| 2018 |
2025 |
|
| 2019 |
|
/// \brief Gives back the item by its value.
|
|
2026 |
/// \brief Gives back an item by its value.
|
| 2020 |
2027 |
///
|
| 2021 |
|
/// Gives back the item by its value.
|
| 2022 |
|
Key operator()(const Value& key) const {
|
| 2023 |
|
typename Container::const_iterator it = _inv_map.find(key);
|
|
2028 |
/// This function gives back an item that is assigned to
|
|
2029 |
/// the given value or \c INVALID if no such item exists.
|
|
2030 |
/// If there are more items with the same associated value,
|
|
2031 |
/// only one of them is returned.
|
|
2032 |
Key operator()(const Value& val) const {
|
|
2033 |
typename Container::const_iterator it = _inv_map.find(val);
|
| 2024 |
2034 |
return it != _inv_map.end() ? it->second : INVALID;
|
| 2025 |
2035 |
}
|
| 2026 |
2036 |
|
| 2027 |
2037 |
protected:
|
| 2028 |
2038 |
|
| 2029 |
2039 |
/// \brief Erase the key from the map and the inverse map.
|
| 2030 |
2040 |
///
|
| 2031 |
2041 |
/// Erase the key from the map and the inverse map. It is called by the
|
| 2032 |
2042 |
/// \c AlterationNotifier.
|
| 2033 |
2043 |
virtual void erase(const Key& key) {
|
| 2034 |
2044 |
Value val = Map::operator[](key);
|
| 2035 |
|
typename Container::iterator it = _inv_map.find(val);
|
| 2036 |
|
if (it != _inv_map.end() && it->second == key) {
|
| 2037 |
|
_inv_map.erase(it);
|
|
2045 |
typename Container::iterator it;
|
|
2046 |
for (it = _inv_map.equal_range(val).first;
|
|
2047 |
it != _inv_map.equal_range(val).second; ++it) {
|
|
2048 |
if (it->second == key) {
|
|
2049 |
_inv_map.erase(it);
|
|
2050 |
break;
|
|
2051 |
}
|
| 2038 |
2052 |
}
|
| 2039 |
2053 |
Map::erase(key);
|
| 2040 |
2054 |
}
|
| 2041 |
2055 |
|
| 2042 |
2056 |
/// \brief Erase more keys from the map and the inverse map.
|
| 2043 |
2057 |
///
|
| 2044 |
2058 |
/// Erase more keys from the map and the inverse map. It is called by the
|
| 2045 |
2059 |
/// \c AlterationNotifier.
|
| 2046 |
2060 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2047 |
2061 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2048 |
2062 |
Value val = Map::operator[](keys[i]);
|
| 2049 |
|
typename Container::iterator it = _inv_map.find(val);
|
| 2050 |
|
if (it != _inv_map.end() && it->second == keys[i]) {
|
| 2051 |
|
_inv_map.erase(it);
|
|
2063 |
typename Container::iterator it;
|
|
2064 |
for (it = _inv_map.equal_range(val).first;
|
|
2065 |
it != _inv_map.equal_range(val).second; ++it) {
|
|
2066 |
if (it->second == keys[i]) {
|
|
2067 |
_inv_map.erase(it);
|
|
2068 |
break;
|
|
2069 |
}
|
| 2052 |
2070 |
}
|
| 2053 |
2071 |
}
|
| 2054 |
2072 |
Map::erase(keys);
|
| 2055 |
2073 |
}
|
| 2056 |
2074 |
|
| 2057 |
2075 |
/// \brief Clear the keys from the map and the inverse map.
|
| 2058 |
2076 |
///
|
| 2059 |
2077 |
/// Clear the keys from the map and the inverse map. It is called by the
|
| 2060 |
2078 |
/// \c AlterationNotifier.
|
| 2061 |
2079 |
virtual void clear() {
|
| 2062 |
2080 |
_inv_map.clear();
|
| 2063 |
2081 |
Map::clear();
|
| 2064 |
2082 |
}
|
| 2065 |
2083 |
|
| 2066 |
2084 |
public:
|
| 2067 |
2085 |
|
| 2068 |
2086 |
/// \brief The inverse map type.
|
| 2069 |
2087 |
///
|
| 2070 |
2088 |
/// The inverse of this map. The subscript operator of the map
|
| 2071 |
2089 |
/// gives back the item that was last assigned to the value.
|
| 2072 |
2090 |
class InverseMap {
|
| 2073 |
2091 |
public:
|
| 2074 |
2092 |
/// \brief Constructor
|
| 2075 |
2093 |
///
|
| 2076 |
2094 |
/// Constructor of the InverseMap.
|
| 2077 |
2095 |
explicit InverseMap(const CrossRefMap& inverted)
|
| 2078 |
2096 |
: _inverted(inverted) {}
|
| 2079 |
2097 |
|
| 2080 |
2098 |
/// The value type of the InverseMap.
|
| 2081 |
2099 |
typedef typename CrossRefMap::Key Value;
|
| 2082 |
2100 |
/// The key type of the InverseMap.
|
| 2083 |
2101 |
typedef typename CrossRefMap::Value Key;
|
| 2084 |
2102 |
|
| 2085 |
2103 |
/// \brief Subscript operator.
|
| 2086 |
2104 |
///
|
| 2087 |
|
/// Subscript operator. It gives back the item
|
| 2088 |
|
/// that was last assigned to the given value.
|
|
2105 |
/// Subscript operator. It gives back an item
|
|
2106 |
/// that is assigned to the given value or \c INVALID
|
|
2107 |
/// if no such item exists.
|
| 2089 |
2108 |
Value operator[](const Key& key) const {
|
| 2090 |
2109 |
return _inverted(key);
|
| 2091 |
2110 |
}
|
| 2092 |
2111 |
|
| 2093 |
2112 |
private:
|
| 2094 |
2113 |
const CrossRefMap& _inverted;
|
| 2095 |
2114 |
};
|
| 2096 |
2115 |
|
| 2097 |
2116 |
/// \brief It gives back the read-only inverse map.
|
| 2098 |
2117 |
///
|
| 2099 |
2118 |
/// It gives back the read-only inverse map.
|
| 2100 |
2119 |
InverseMap inverse() const {
|
| 2101 |
2120 |
return InverseMap(*this);
|
| 2102 |
2121 |
}
|
| 2103 |
2122 |
|
| 2104 |
2123 |
};
|
| 2105 |
2124 |
|
| 2106 |
2125 |
/// \brief Provides continuous and unique ID for the
|
| 2107 |
2126 |
/// items of a graph.
|
| 2108 |
2127 |
///
|
| 2109 |
2128 |
/// RangeIdMap provides a unique and continuous
|
| 2110 |
2129 |
/// ID for each item of a given type (\c Node, \c Arc or
|
| 2111 |
2130 |
/// \c Edge) in a graph. This id is
|
| 2112 |
2131 |
/// - \b unique: different items get different ids,
|
| 2113 |
2132 |
/// - \b continuous: the range of the ids is the set of integers
|
| 2114 |
2133 |
/// between 0 and \c n-1, where \c n is the number of the items of
|
| 2115 |
2134 |
/// this type (\c Node, \c Arc or \c Edge).
|
| 2116 |
2135 |
/// - So, the ids can change when deleting an item of the same type.
|
| 2117 |
2136 |
///
|
| 2118 |
2137 |
/// Thus this id is not (necessarily) the same as what can get using
|
| 2119 |
2138 |
/// the \c id() function of the graph or \ref IdMap.
|
| 2120 |
2139 |
/// This map can be inverted with its member class \c InverseMap,
|
| 2121 |
2140 |
/// or with the \c operator() member.
|
| 2122 |
2141 |
///
|
| 2123 |
2142 |
/// \tparam GR The graph type.
|
| 2124 |
2143 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
| 2125 |
2144 |
/// \c GR::Edge).
|
| 2126 |
2145 |
///
|
| 2127 |
2146 |
/// \see IdMap
|
| 2128 |
2147 |
template <typename GR, typename K>
|
| 2129 |
2148 |
class RangeIdMap
|
| 2130 |
2149 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2131 |
2150 |
|
| 2132 |
2151 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
|
| 2133 |
2152 |
|
| 2134 |
2153 |
public:
|
| 2135 |
2154 |
/// The graph type of RangeIdMap.
|
| 2136 |
2155 |
typedef GR Graph;
|
| 2137 |
2156 |
typedef GR Digraph;
|
| 2138 |
2157 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
|
| 2139 |
2158 |
typedef K Item;
|
| 2140 |
2159 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
|
| 2141 |
2160 |
typedef K Key;
|
| 2142 |
2161 |
/// The value type of RangeIdMap.
|
| 2143 |
2162 |
typedef int Value;
|
| 2144 |
2163 |
|
| 2145 |
2164 |
/// \brief Constructor.
|
| 2146 |
2165 |
///
|
| 2147 |
2166 |
/// Constructor.
|
| 2148 |
2167 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
| 2149 |
2168 |
Item it;
|
| 2150 |
2169 |
const typename Map::Notifier* nf = Map::notifier();
|
| 2151 |
2170 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2152 |
2171 |
Map::set(it, _inv_map.size());
|
| 2153 |
2172 |
_inv_map.push_back(it);
|
| 2154 |
2173 |
}
|
| 2155 |
2174 |
}
|
| 2156 |
2175 |
|
| 2157 |
2176 |
protected:
|
| 2158 |
2177 |
|
| 2159 |
2178 |
/// \brief Adds a new key to the map.
|
| 2160 |
2179 |
///
|
| 2161 |
2180 |
/// Add a new key to the map. It is called by the
|
| 2162 |
2181 |
/// \c AlterationNotifier.
|
| 2163 |
2182 |
virtual void add(const Item& item) {
|
| 2164 |
2183 |
Map::add(item);
|
| 2165 |
2184 |
Map::set(item, _inv_map.size());
|
| 2166 |
2185 |
_inv_map.push_back(item);
|
| 2167 |
2186 |
}
|
| 2168 |
2187 |
|
| 2169 |
2188 |
/// \brief Add more new keys to the map.
|
| 2170 |
2189 |
///
|
| 2171 |
2190 |
/// Add more new keys to the map. It is called by the
|
| 2172 |
2191 |
/// \c AlterationNotifier.
|
| 2173 |
2192 |
virtual void add(const std::vector<Item>& items) {
|
| 2174 |
2193 |
Map::add(items);
|
| 2175 |
2194 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2176 |
2195 |
Map::set(items[i], _inv_map.size());
|
| 2177 |
2196 |
_inv_map.push_back(items[i]);
|
| 2178 |
2197 |
}
|
| 2179 |
2198 |
}
|
| 2180 |
2199 |
|
| 2181 |
2200 |
/// \brief Erase the key from the map.
|
| 2182 |
2201 |
///
|
| 2183 |
2202 |
/// Erase the key from the map. It is called by the
|
| 2184 |
2203 |
/// \c AlterationNotifier.
|
| 2185 |
2204 |
virtual void erase(const Item& item) {
|
| 2186 |
2205 |
Map::set(_inv_map.back(), Map::operator[](item));
|
| 2187 |
2206 |
_inv_map[Map::operator[](item)] = _inv_map.back();
|
| 2188 |
2207 |
_inv_map.pop_back();
|
| 2189 |
2208 |
Map::erase(item);
|
| 2190 |
2209 |
}
|
| 2191 |
2210 |
|
| 2192 |
2211 |
/// \brief Erase more keys from the map.
|
| 2193 |
2212 |
///
|
| 2194 |
2213 |
/// Erase more keys from the map. It is called by the
|
| 2195 |
2214 |
/// \c AlterationNotifier.
|
| 2196 |
2215 |
virtual void erase(const std::vector<Item>& items) {
|
| 2197 |
2216 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2198 |
2217 |
Map::set(_inv_map.back(), Map::operator[](items[i]));
|
| 2199 |
2218 |
_inv_map[Map::operator[](items[i])] = _inv_map.back();
|
| 2200 |
2219 |
_inv_map.pop_back();
|
| 2201 |
2220 |
}
|
| 2202 |
2221 |
Map::erase(items);
|
| 2203 |
2222 |
}
|
| 2204 |
2223 |
|
| 2205 |
2224 |
/// \brief Build the unique map.
|
| 2206 |
2225 |
///
|
| 2207 |
2226 |
/// Build the unique map. It is called by the
|
| 2208 |
2227 |
/// \c AlterationNotifier.
|
| 2209 |
2228 |
virtual void build() {
|
| 2210 |
2229 |
Map::build();
|
| 2211 |
2230 |
Item it;
|
| 2212 |
2231 |
const typename Map::Notifier* nf = Map::notifier();
|
| 2213 |
2232 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2214 |
2233 |
Map::set(it, _inv_map.size());
|
| 2215 |
2234 |
_inv_map.push_back(it);
|
| 2216 |
2235 |
}
|
| 2217 |
2236 |
}
|
| 2218 |
2237 |
|
| 2219 |
2238 |
/// \brief Clear the keys from the map.
|
| 2220 |
2239 |
///
|
| 2221 |
2240 |
/// Clear the keys from the map. It is called by the
|
| 2222 |
2241 |
/// \c AlterationNotifier.
|
| 2223 |
2242 |
virtual void clear() {
|
| 2224 |
2243 |
_inv_map.clear();
|
| 2225 |
2244 |
Map::clear();
|
| 2226 |
2245 |
}
|
| 2227 |
2246 |
|
| 2228 |
2247 |
public:
|
| 2229 |
2248 |
|
| 2230 |
2249 |
/// \brief Returns the maximal value plus one.
|
| 2231 |
2250 |
///
|
| 2232 |
2251 |
/// Returns the maximal value plus one in the map.
|
| 2233 |
2252 |
unsigned int size() const {
|
| 2234 |
2253 |
return _inv_map.size();
|
| 2235 |
2254 |
}
|
| 2236 |
2255 |
|
| 2237 |
2256 |
/// \brief Swaps the position of the two items in the map.
|
| 2238 |
2257 |
///
|
| 2239 |
2258 |
/// Swaps the position of the two items in the map.
|
| 2240 |
2259 |
void swap(const Item& p, const Item& q) {
|
| 2241 |
2260 |
int pi = Map::operator[](p);
|
| 2242 |
2261 |
int qi = Map::operator[](q);
|
| 2243 |
2262 |
Map::set(p, qi);
|
| 2244 |
2263 |
_inv_map[qi] = p;
|
| 2245 |
2264 |
Map::set(q, pi);
|
| 2246 |
2265 |
_inv_map[pi] = q;
|
| 2247 |
2266 |
}
|
| 2248 |
2267 |
|
| 2249 |
2268 |
/// \brief Gives back the \e RangeId of the item
|
| 2250 |
2269 |
///
|
| 2251 |
2270 |
/// Gives back the \e RangeId of the item.
|
| 2252 |
2271 |
int operator[](const Item& item) const {
|
| 2253 |
2272 |
return Map::operator[](item);
|
| 2254 |
2273 |
}
|
| 2255 |
2274 |
|
| 2256 |
2275 |
/// \brief Gives back the item belonging to a \e RangeId
|
| 2257 |
2276 |
///
|
| 2258 |
2277 |
/// Gives back the item belonging to a \e RangeId.
|
| 2259 |
2278 |
Item operator()(int id) const {
|
| 2260 |
2279 |
return _inv_map[id];
|
| 2261 |
2280 |
}
|
| 2262 |
2281 |
|
| 2263 |
2282 |
private:
|
| 2264 |
2283 |
|
| 2265 |
2284 |
typedef std::vector<Item> Container;
|
| 2266 |
2285 |
Container _inv_map;
|
| 2267 |
2286 |
|
| 2268 |
2287 |
public:
|
| 2269 |
2288 |
|
| 2270 |
2289 |
/// \brief The inverse map type of RangeIdMap.
|
| 2271 |
2290 |
///
|
| 2272 |
2291 |
/// The inverse map type of RangeIdMap.
|
| 2273 |
2292 |
class InverseMap {
|
| 2274 |
2293 |
public:
|
| 2275 |
2294 |
/// \brief Constructor
|
| 2276 |
2295 |
///
|
| 2277 |
2296 |
/// Constructor of the InverseMap.
|
| 2278 |
2297 |
explicit InverseMap(const RangeIdMap& inverted)
|
| 2279 |
2298 |
: _inverted(inverted) {}
|
| 2280 |
2299 |
|
| 2281 |
2300 |
|
| 2282 |
2301 |
/// The value type of the InverseMap.
|
| 2283 |
2302 |
typedef typename RangeIdMap::Key Value;
|
| 2284 |
2303 |
/// The key type of the InverseMap.
|
| 2285 |
2304 |
typedef typename RangeIdMap::Value Key;
|
| 2286 |
2305 |
|
| 2287 |
2306 |
/// \brief Subscript operator.
|
| 2288 |
2307 |
///
|
| 2289 |
2308 |
/// Subscript operator. It gives back the item
|
| 2290 |
2309 |
/// that the descriptor currently belongs to.
|
| 2291 |
2310 |
Value operator[](const Key& key) const {
|
| 2292 |
2311 |
return _inverted(key);
|
| 2293 |
2312 |
}
|
| 2294 |
2313 |
|
| 2295 |
2314 |
/// \brief Size of the map.
|
| 2296 |
2315 |
///
|
| 2297 |
2316 |
/// Returns the size of the map.
|
| 2298 |
2317 |
unsigned int size() const {
|
| 2299 |
2318 |
return _inverted.size();
|
| 2300 |
2319 |
}
|
| 2301 |
2320 |
|
| 2302 |
2321 |
private:
|
| 2303 |
2322 |
const RangeIdMap& _inverted;
|
| 2304 |
2323 |
};
|
| 2305 |
2324 |
|
| 2306 |
2325 |
/// \brief Gives back the inverse of the map.
|
| 2307 |
2326 |
///
|
| 2308 |
2327 |
/// Gives back the inverse of the map.
|
| 2309 |
2328 |
const InverseMap inverse() const {
|
| 2310 |
2329 |
return InverseMap(*this);
|
| 2311 |
2330 |
}
|
| 2312 |
2331 |
};
|
| 2313 |
2332 |
|
| 2314 |
2333 |
/// \brief Map of the source nodes of arcs in a digraph.
|
| 2315 |
2334 |
///
|
| 2316 |
2335 |
/// SourceMap provides access for the source node of each arc in a digraph,
|
| 2317 |
2336 |
/// which is returned by the \c source() function of the digraph.
|
| 2318 |
2337 |
/// \tparam GR The digraph type.
|
| 2319 |
2338 |
/// \see TargetMap
|
| 2320 |
2339 |
template <typename GR>
|
| 2321 |
2340 |
class SourceMap {
|
| 2322 |
2341 |
public:
|
| 2323 |
2342 |
|
| 2324 |
2343 |
///\e
|
| 2325 |
2344 |
typedef typename GR::Arc Key;
|
| 2326 |
2345 |
///\e
|
| 2327 |
2346 |
typedef typename GR::Node Value;
|
| 2328 |
2347 |
|
| 2329 |
2348 |
/// \brief Constructor
|
| 2330 |
2349 |
///
|
| 2331 |
2350 |
/// Constructor.
|
| 2332 |
2351 |
/// \param digraph The digraph that the map belongs to.
|
| 2333 |
2352 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
| 2334 |
2353 |
|
| 2335 |
2354 |
/// \brief Returns the source node of the given arc.
|
| 2336 |
2355 |
///
|
| 2337 |
2356 |
/// Returns the source node of the given arc.
|
| 2338 |
2357 |
Value operator[](const Key& arc) const {
|
| 2339 |
2358 |
return _graph.source(arc);
|
| 2340 |
2359 |
}
|
| 2341 |
2360 |
|
| 2342 |
2361 |
private:
|
| 2343 |
2362 |
const GR& _graph;
|
| 2344 |
2363 |
};
|
| 2345 |
2364 |
|
| 2346 |
2365 |
/// \brief Returns a \c SourceMap class.
|
| 2347 |
2366 |
///
|
| 2348 |
2367 |
/// This function just returns an \c SourceMap class.
|
| 2349 |
2368 |
/// \relates SourceMap
|
| 2350 |
2369 |
template <typename GR>
|
| 2351 |
2370 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
| 2352 |
2371 |
return SourceMap<GR>(graph);
|
| 2353 |
2372 |
}
|
| 2354 |
2373 |
|
| 2355 |
2374 |
/// \brief Map of the target nodes of arcs in a digraph.
|
| 2356 |
2375 |
///
|
| 2357 |
2376 |
/// TargetMap provides access for the target node of each arc in a digraph,
|
| 2358 |
2377 |
/// which is returned by the \c target() function of the digraph.
|
| 2359 |
2378 |
/// \tparam GR The digraph type.
|
| 2360 |
2379 |
/// \see SourceMap
|
| 2361 |
2380 |
template <typename GR>
|
| 2362 |
2381 |
class TargetMap {
|
| 2363 |
2382 |
public:
|
| 2364 |
2383 |
|
| 2365 |
2384 |
///\e
|
| 2366 |
2385 |
typedef typename GR::Arc Key;
|
| 2367 |
2386 |
///\e
|
| 2368 |
2387 |
typedef typename GR::Node Value;
|
| 2369 |
2388 |
|
| 2370 |
2389 |
/// \brief Constructor
|
| 2371 |
2390 |
///
|
| 2372 |
2391 |
/// Constructor.
|
| 2373 |
2392 |
/// \param digraph The digraph that the map belongs to.
|
| 2374 |
2393 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
| 2375 |
2394 |
|
| 2376 |
2395 |
/// \brief Returns the target node of the given arc.
|
| 2377 |
2396 |
///
|
| 2378 |
2397 |
/// Returns the target node of the given arc.
|
| 2379 |
2398 |
Value operator[](const Key& e) const {
|
| 2380 |
2399 |
return _graph.target(e);
|
| 2381 |
2400 |
}
|
| 2382 |
2401 |
|
| 2383 |
2402 |
private:
|
| 2384 |
2403 |
const GR& _graph;
|
| 2385 |
2404 |
};
|
| 2386 |
2405 |
|
| 2387 |
2406 |
/// \brief Returns a \c TargetMap class.
|
| 2388 |
2407 |
///
|
| 2389 |
2408 |
/// This function just returns a \c TargetMap class.
|
| 2390 |
2409 |
/// \relates TargetMap
|
| 2391 |
2410 |
template <typename GR>
|
| 2392 |
2411 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
| 2393 |
2412 |
return TargetMap<GR>(graph);
|
| 2394 |
2413 |
}
|
| 2395 |
2414 |
|
| 2396 |
2415 |
/// \brief Map of the "forward" directed arc view of edges in a graph.
|
| 2397 |
2416 |
///
|
| 2398 |
2417 |
/// ForwardMap provides access for the "forward" directed arc view of
|
| 2399 |
2418 |
/// each edge in a graph, which is returned by the \c direct() function
|
| 2400 |
2419 |
/// of the graph with \c true parameter.
|
| 2401 |
2420 |
/// \tparam GR The graph type.
|
| 2402 |
2421 |
/// \see BackwardMap
|
| 2403 |
2422 |
template <typename GR>
|
| 2404 |
2423 |
class ForwardMap {
|
| 2405 |
2424 |
public:
|
| 2406 |
2425 |
|
| 2407 |
2426 |
typedef typename GR::Arc Value;
|
| 2408 |
2427 |
typedef typename GR::Edge Key;
|
| 2409 |
2428 |
|
| 2410 |
2429 |
/// \brief Constructor
|
| 2411 |
2430 |
///
|
| 2412 |
2431 |
/// Constructor.
|
| 2413 |
2432 |
/// \param graph The graph that the map belongs to.
|
| 2414 |
2433 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| 2415 |
2434 |
|
| 2416 |
2435 |
/// \brief Returns the "forward" directed arc view of the given edge.
|
| 2417 |
2436 |
///
|
| 2418 |
2437 |
/// Returns the "forward" directed arc view of the given edge.
|
| 2419 |
2438 |
Value operator[](const Key& key) const {
|
| 2420 |
2439 |
return _graph.direct(key, true);
|
| 2421 |
2440 |
}
|
| 2422 |
2441 |
|
| 2423 |
2442 |
private:
|
| 2424 |
2443 |
const GR& _graph;
|
| 2425 |
2444 |
};
|
| 2426 |
2445 |
|
| 2427 |
2446 |
/// \brief Returns a \c ForwardMap class.
|
| 2428 |
2447 |
///
|
| 2429 |
2448 |
/// This function just returns an \c ForwardMap class.
|
| 2430 |
2449 |
/// \relates ForwardMap
|
| 2431 |
2450 |
template <typename GR>
|
| 2432 |
2451 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
| 2433 |
2452 |
return ForwardMap<GR>(graph);
|
| 2434 |
2453 |
}
|
| 2435 |
2454 |
|
| 2436 |
2455 |
/// \brief Map of the "backward" directed arc view of edges in a graph.
|
| 2437 |
2456 |
///
|
| 2438 |
2457 |
/// BackwardMap provides access for the "backward" directed arc view of
|
| 2439 |
2458 |
/// each edge in a graph, which is returned by the \c direct() function
|
| 2440 |
2459 |
/// of the graph with \c false parameter.
|
| 2441 |
2460 |
/// \tparam GR The graph type.
|
| 2442 |
2461 |
/// \see ForwardMap
|
| 2443 |
2462 |
template <typename GR>
|
| 2444 |
2463 |
class BackwardMap {
|
| 2445 |
2464 |
public:
|
| 2446 |
2465 |
|
| 2447 |
2466 |
typedef typename GR::Arc Value;
|
| 2448 |
2467 |
typedef typename GR::Edge Key;
|
| 2449 |
2468 |
|
| 2450 |
2469 |
/// \brief Constructor
|
| 2451 |
2470 |
///
|
| 2452 |
2471 |
/// Constructor.
|
| 2453 |
2472 |
/// \param graph The graph that the map belongs to.
|
| 2454 |
2473 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| 2455 |
2474 |
|
| 2456 |
2475 |
/// \brief Returns the "backward" directed arc view of the given edge.
|
| 2457 |
2476 |
///
|
| 2458 |
2477 |
/// Returns the "backward" directed arc view of the given edge.
|
| 2459 |
2478 |
Value operator[](const Key& key) const {
|
| 2460 |
2479 |
return _graph.direct(key, false);
|
| 2461 |
2480 |
}
|
| 2462 |
2481 |
|
| 2463 |
2482 |
private:
|
| 2464 |
2483 |
const GR& _graph;
|
| 2465 |
2484 |
};
|
| 2466 |
2485 |
|
| 2467 |
2486 |
/// \brief Returns a \c BackwardMap class
|
| 2468 |
2487 |
|
| 2469 |
2488 |
/// This function just returns a \c BackwardMap class.
|
| 2470 |
2489 |
/// \relates BackwardMap
|
| 2471 |
2490 |
template <typename GR>
|
| 2472 |
2491 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
| 2473 |
2492 |
return BackwardMap<GR>(graph);
|
| 2474 |
2493 |
}
|
| 2475 |
2494 |
|
| 2476 |
2495 |
/// \brief Map of the in-degrees of nodes in a digraph.
|
| 2477 |
2496 |
///
|
| 2478 |
2497 |
/// This map returns the in-degree of a node. Once it is constructed,
|
| 2479 |
2498 |
/// the degrees are stored in a standard \c NodeMap, so each query is done
|
| 2480 |
2499 |
/// in constant time. On the other hand, the values are updated automatically
|
| 2481 |
2500 |
/// whenever the digraph changes.
|
| 2482 |
2501 |
///
|
| 2483 |
2502 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
|
| 2484 |
2503 |
/// may provide alternative ways to modify the digraph.
|
| 2485 |
2504 |
/// The correct behavior of InDegMap is not guarantied if these additional
|
| 2486 |
2505 |
/// features are used. For example the functions
|
| 2487 |
2506 |
/// \ref ListDigraph::changeSource() "changeSource()",
|
| 2488 |
2507 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
| 2489 |
2508 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
| 2490 |
2509 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
| 2491 |
2510 |
///
|
| 2492 |
2511 |
/// \sa OutDegMap
|
| 2493 |
2512 |
template <typename GR>
|
| 2494 |
2513 |
class InDegMap
|
| 2495 |
2514 |
: protected ItemSetTraits<GR, typename GR::Arc>
|
| 2496 |
2515 |
::ItemNotifier::ObserverBase {
|
| 2497 |
2516 |
|
| 2498 |
2517 |
public:
|
| 2499 |
2518 |
|
| 2500 |
2519 |
/// The graph type of InDegMap
|
| 2501 |
2520 |
typedef GR Graph;
|
| 2502 |
2521 |
typedef GR Digraph;
|
| 2503 |
2522 |
/// The key type
|
| 2504 |
2523 |
typedef typename Digraph::Node Key;
|
| 2505 |
2524 |
/// The value type
|
| 2506 |
2525 |
typedef int Value;
|
| 2507 |
2526 |
|
| 2508 |
2527 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
|
| 2509 |
2528 |
::ItemNotifier::ObserverBase Parent;
|
| 2510 |
2529 |
|
| 2511 |
2530 |
private:
|
| 2512 |
2531 |
|
| 2513 |
2532 |
class AutoNodeMap
|
| 2514 |
2533 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2515 |
2534 |
public:
|
| 2516 |
2535 |
|
| 2517 |
2536 |
typedef typename ItemSetTraits<Digraph, Key>::
|
| 2518 |
2537 |
template Map<int>::Type Parent;
|
| 2519 |
2538 |
|
| 2520 |
2539 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2521 |
2540 |
|
| 2522 |
2541 |
virtual void add(const Key& key) {
|
| 2523 |
2542 |
Parent::add(key);
|
| 2524 |
2543 |
Parent::set(key, 0);
|
| 2525 |
2544 |
}
|
| 2526 |
2545 |
|
| 2527 |
2546 |
virtual void add(const std::vector<Key>& keys) {
|
| 2528 |
2547 |
Parent::add(keys);
|
| 2529 |
2548 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2530 |
2549 |
Parent::set(keys[i], 0);
|
| 2531 |
2550 |
}
|
| 2532 |
2551 |
}
|
| 2533 |
2552 |
|
| 2534 |
2553 |
virtual void build() {
|
| 2535 |
2554 |
Parent::build();
|
| 2536 |
2555 |
Key it;
|
| 2537 |
2556 |
typename Parent::Notifier* nf = Parent::notifier();
|
| 2538 |
2557 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2539 |
2558 |
Parent::set(it, 0);
|
| 2540 |
2559 |
}
|
| 2541 |
2560 |
}
|
| 2542 |
2561 |
};
|
| 2543 |
2562 |
|
| 2544 |
2563 |
public:
|
| 2545 |
2564 |
|
| 2546 |
2565 |
/// \brief Constructor.
|
| 2547 |
2566 |
///
|
| 2548 |
2567 |
/// Constructor for creating an in-degree map.
|
| 2549 |
2568 |
explicit InDegMap(const Digraph& graph)
|
| 2550 |
2569 |
: _digraph(graph), _deg(graph) {
|
| 2551 |
2570 |
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
|
| 2552 |
2571 |
|
| 2553 |
2572 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2554 |
2573 |
_deg[it] = countInArcs(_digraph, it);
|
| 2555 |
2574 |
}
|
| 2556 |
2575 |
}
|
| 2557 |
2576 |
|
| 2558 |
2577 |
/// \brief Gives back the in-degree of a Node.
|
| 2559 |
2578 |
///
|
| 2560 |
2579 |
/// Gives back the in-degree of a Node.
|
| 2561 |
2580 |
int operator[](const Key& key) const {
|
| 2562 |
2581 |
return _deg[key];
|
| 2563 |
2582 |
}
|
| 2564 |
2583 |
|
| 2565 |
2584 |
protected:
|
| 2566 |
2585 |
|
| 2567 |
2586 |
typedef typename Digraph::Arc Arc;
|
| 2568 |
2587 |
|
| 2569 |
2588 |
virtual void add(const Arc& arc) {
|
| 2570 |
2589 |
++_deg[_digraph.target(arc)];
|
| 2571 |
2590 |
}
|
| 2572 |
2591 |
|
| 2573 |
2592 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2574 |
2593 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2575 |
2594 |
++_deg[_digraph.target(arcs[i])];
|
| 2576 |
2595 |
}
|
| 2577 |
2596 |
}
|
| 2578 |
2597 |
|
| 2579 |
2598 |
virtual void erase(const Arc& arc) {
|
| 2580 |
2599 |
--_deg[_digraph.target(arc)];
|
| 2581 |
2600 |
}
|
| 2582 |
2601 |
|
| 2583 |
2602 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2584 |
2603 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2585 |
2604 |
--_deg[_digraph.target(arcs[i])];
|
| 2586 |
2605 |
}
|
| 2587 |
2606 |
}
|
| 2588 |
2607 |
|
| 2589 |
2608 |
virtual void build() {
|
| 2590 |
2609 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2591 |
2610 |
_deg[it] = countInArcs(_digraph, it);
|
| 2592 |
2611 |
}
|
| 2593 |
2612 |
}
|
| 2594 |
2613 |
|
| 2595 |
2614 |
virtual void clear() {
|
| 2596 |
2615 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2597 |
2616 |
_deg[it] = 0;
|
| 2598 |
2617 |
}
|
| 2599 |
2618 |
}
|
| 2600 |
2619 |
private:
|
| 2601 |
2620 |
|
| 2602 |
2621 |
const Digraph& _digraph;
|
| 2603 |
2622 |
AutoNodeMap _deg;
|
| 2604 |
2623 |
};
|
| 2605 |
2624 |
|
| 2606 |
2625 |
/// \brief Map of the out-degrees of nodes in a digraph.
|
| 2607 |
2626 |
///
|
| 2608 |
2627 |
/// This map returns the out-degree of a node. Once it is constructed,
|
| 2609 |
2628 |
/// the degrees are stored in a standard \c NodeMap, so each query is done
|
| 2610 |
2629 |
/// in constant time. On the other hand, the values are updated automatically
|
| 2611 |
2630 |
/// whenever the digraph changes.
|
| 2612 |
2631 |
///
|
| 2613 |
2632 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
|
| 2614 |
2633 |
/// may provide alternative ways to modify the digraph.
|
| 2615 |
2634 |
/// The correct behavior of OutDegMap is not guarantied if these additional
|
| 2616 |
2635 |
/// features are used. For example the functions
|
| 2617 |
2636 |
/// \ref ListDigraph::changeSource() "changeSource()",
|
| 2618 |
2637 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
| 2619 |
2638 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
| 2620 |
2639 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
| 2621 |
2640 |
///
|
| 2622 |
2641 |
/// \sa InDegMap
|
| 2623 |
2642 |
template <typename GR>
|
| 2624 |
2643 |
class OutDegMap
|
| 2625 |
2644 |
: protected ItemSetTraits<GR, typename GR::Arc>
|
| 2626 |
2645 |
::ItemNotifier::ObserverBase {
|
| 2627 |
2646 |
|
| 2628 |
2647 |
public:
|
| 2629 |
2648 |
|
| 2630 |
2649 |
/// The graph type of OutDegMap
|
| 2631 |
2650 |
typedef GR Graph;
|
| 2632 |
2651 |
typedef GR Digraph;
|
| 2633 |
2652 |
/// The key type
|
| 2634 |
2653 |
typedef typename Digraph::Node Key;
|
| 2635 |
2654 |
/// The value type
|
| 2636 |
2655 |
typedef int Value;
|
| 2637 |
2656 |
|
| 2638 |
2657 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
|
| 2639 |
2658 |
::ItemNotifier::ObserverBase Parent;
|
| 2640 |
2659 |
|
| 2641 |
2660 |
private:
|
| 2642 |
2661 |
|
| 2643 |
2662 |
class AutoNodeMap
|
| 2644 |
2663 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2645 |
2664 |
public:
|
| 2646 |
2665 |
|
| 2647 |
2666 |
typedef typename ItemSetTraits<Digraph, Key>::
|
| 2648 |
2667 |
template Map<int>::Type Parent;
|
| 2649 |
2668 |
|
| 2650 |
2669 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2651 |
2670 |
|
| 2652 |
2671 |
virtual void add(const Key& key) {
|
| 2653 |
2672 |
Parent::add(key);
|
| 2654 |
2673 |
Parent::set(key, 0);
|
| 2655 |
2674 |
}
|
| 2656 |
2675 |
virtual void add(const std::vector<Key>& keys) {
|
| 2657 |
2676 |
Parent::add(keys);
|
| 2658 |
2677 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2659 |
2678 |
Parent::set(keys[i], 0);
|
| 2660 |
2679 |
}
|
| 2661 |
2680 |
}
|
| 2662 |
2681 |
virtual void build() {
|
| 2663 |
2682 |
Parent::build();
|
| 2664 |
2683 |
Key it;
|
| 2665 |
2684 |
typename Parent::Notifier* nf = Parent::notifier();
|
| 2666 |
2685 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2667 |
2686 |
Parent::set(it, 0);
|
| 2668 |
2687 |
}
|
| 2669 |
2688 |
}
|
| 2670 |
2689 |
};
|
| 2671 |
2690 |
|
| 2672 |
2691 |
public:
|
| 2673 |
2692 |
|
| 2674 |
2693 |
/// \brief Constructor.
|
| 2675 |
2694 |
///
|
| 2676 |
2695 |
/// Constructor for creating an out-degree map.
|
| 2677 |
2696 |
explicit OutDegMap(const Digraph& graph)
|
| 2678 |
2697 |
: _digraph(graph), _deg(graph) {
|
| 2679 |
2698 |
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
|
| 2680 |
2699 |
|
| 2681 |
2700 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2682 |
2701 |
_deg[it] = countOutArcs(_digraph, it);
|
| 2683 |
2702 |
}
|
| 2684 |
2703 |
}
|
| 2685 |
2704 |
|
| 2686 |
2705 |
/// \brief Gives back the out-degree of a Node.
|
| 2687 |
2706 |
///
|
| 2688 |
2707 |
/// Gives back the out-degree of a Node.
|
| 2689 |
2708 |
int operator[](const Key& key) const {
|
| 2690 |
2709 |
return _deg[key];
|
| 2691 |
2710 |
}
|
| 2692 |
2711 |
|
| 2693 |
2712 |
protected:
|
| 2694 |
2713 |
|
| 2695 |
2714 |
typedef typename Digraph::Arc Arc;
|
| 2696 |
2715 |
|
| 2697 |
2716 |
virtual void add(const Arc& arc) {
|
| 2698 |
2717 |
++_deg[_digraph.source(arc)];
|
| 2699 |
2718 |
}
|
| 2700 |
2719 |
|
| 2701 |
2720 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2702 |
2721 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2703 |
2722 |
++_deg[_digraph.source(arcs[i])];
|
| 2704 |
2723 |
}
|
| 2705 |
2724 |
}
|
| 2706 |
2725 |
|
| 2707 |
2726 |
virtual void erase(const Arc& arc) {
|
| 2708 |
2727 |
--_deg[_digraph.source(arc)];
|
| 2709 |
2728 |
}
|
| 2710 |
2729 |
|
| 2711 |
2730 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2712 |
2731 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2713 |
2732 |
--_deg[_digraph.source(arcs[i])];
|
| 2714 |
2733 |
}
|
| 2715 |
2734 |
}
|
| 2716 |
2735 |
|
| 2717 |
2736 |
virtual void build() {
|
| 2718 |
2737 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2719 |
2738 |
_deg[it] = countOutArcs(_digraph, it);
|
| 2720 |
2739 |
}
|
| 2721 |
2740 |
}
|
| 2722 |
2741 |
|
| 2723 |
2742 |
virtual void clear() {
|
| 2724 |
2743 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2725 |
2744 |
_deg[it] = 0;
|
| 2726 |
2745 |
}
|
| 2727 |
2746 |
}
|
| 2728 |
2747 |
private:
|
| 2729 |
2748 |
|
| 2730 |
2749 |
const Digraph& _digraph;
|
| 2731 |
2750 |
AutoNodeMap _deg;
|
| 2732 |
2751 |
};
|
| 2733 |
2752 |
|
| 2734 |
2753 |
/// \brief Potential difference map
|
| 2735 |
2754 |
///
|
| 2736 |
2755 |
/// PotentialDifferenceMap returns the difference between the potentials of
|
| 2737 |
2756 |
/// the source and target nodes of each arc in a digraph, i.e. it returns
|
| 2738 |
2757 |
/// \code
|
| 2739 |
2758 |
/// potential[gr.target(arc)] - potential[gr.source(arc)].
|
| 2740 |
2759 |
/// \endcode
|
| 2741 |
2760 |
/// \tparam GR The digraph type.
|
| 2742 |
2761 |
/// \tparam POT A node map storing the potentials.
|
| 2743 |
2762 |
template <typename GR, typename POT>
|
| 2744 |
2763 |
class PotentialDifferenceMap {
|
| 2745 |
2764 |
public:
|
| 2746 |
2765 |
/// Key type
|
| 2747 |
2766 |
typedef typename GR::Arc Key;
|
| 2748 |
2767 |
/// Value type
|
| 2749 |
2768 |
typedef typename POT::Value Value;
|
| 2750 |
2769 |
|
| 2751 |
2770 |
/// \brief Constructor
|
| 2752 |
2771 |
///
|
| 2753 |
2772 |
/// Contructor of the map.
|
| 2754 |
2773 |
explicit PotentialDifferenceMap(const GR& gr,
|
| 2755 |
2774 |
const POT& potential)
|
| 2756 |
2775 |
: _digraph(gr), _potential(potential) {}
|
| 2757 |
2776 |
|
| 2758 |
2777 |
/// \brief Returns the potential difference for the given arc.
|
| 2759 |
2778 |
///
|
| 2760 |
2779 |
/// Returns the potential difference for the given arc, i.e.
|
| 2761 |
2780 |
/// \code
|
| 2762 |
2781 |
/// potential[gr.target(arc)] - potential[gr.source(arc)].
|
| 2763 |
2782 |
/// \endcode
|
| 2764 |
2783 |
Value operator[](const Key& arc) const {
|
| 2765 |
2784 |
return _potential[_digraph.target(arc)] -
|
| 2766 |
2785 |
_potential[_digraph.source(arc)];
|
| 2767 |
2786 |
}
|
| 2768 |
2787 |
|
| 2769 |
2788 |
private:
|
| 2770 |
2789 |
const GR& _digraph;
|
| 2771 |
2790 |
const POT& _potential;
|
| 2772 |
2791 |
};
|
| 2773 |
2792 |
|
| 2774 |
2793 |
/// \brief Returns a PotentialDifferenceMap.
|
| 2775 |
2794 |
///
|
| 2776 |
2795 |
/// This function just returns a PotentialDifferenceMap.
|
| 2777 |
2796 |
/// \relates PotentialDifferenceMap
|
| 2778 |
2797 |
template <typename GR, typename POT>
|
| 2779 |
2798 |
PotentialDifferenceMap<GR, POT>
|
| 2780 |
2799 |
potentialDifferenceMap(const GR& gr, const POT& potential) {
|
| 2781 |
2800 |
return PotentialDifferenceMap<GR, POT>(gr, potential);
|
| 2782 |
2801 |
}
|
| 2783 |
2802 |
|
| 2784 |
2803 |
/// @}
|
| 2785 |
2804 |
}
|
| 2786 |
2805 |
|
| 2787 |
2806 |
#endif // LEMON_MAPS_H
|