| 1 | 
	1 | 
	
		/* -*- mode: C++; indent-tabs-mode: nil; -*-
 
	 | 
	| 2 | 
	2 | 
	
		 *
 
	 | 
	| 3 | 
	3 | 
	
		 * This file is a part of LEMON, a generic C++ optimization library.
 
	 | 
	| 4 | 
	4 | 
	
		 *
 
	 | 
	| 5 | 
	5 | 
	
		 * Copyright (C) 2003-2009
 
	 | 
	| 6 | 
	6 | 
	
		 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
	 | 
	| 7 | 
	7 | 
	
		 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
	 | 
	| 8 | 
	8 | 
	
		 *
 
	 | 
	| 9 | 
	9 | 
	
		 * Permission to use, modify and distribute this software is granted
 
	 | 
	| 10 | 
	10 | 
	
		 * provided that this copyright notice appears in all copies. For
 
	 | 
	| 11 | 
	11 | 
	
		 * precise terms see the accompanying LICENSE file.
 
	 | 
	| 12 | 
	12 | 
	
		 *
 
	 | 
	| 13 | 
	13 | 
	
		 * This software is provided "AS IS" with no warranty of any kind,
 
	 | 
	| 14 | 
	14 | 
	
		 * express or implied, and with no claim as to its suitability for any
 
	 | 
	| 15 | 
	15 | 
	
		 * purpose.
 
	 | 
	| 16 | 
	16 | 
	
		 *
 
	 | 
	| 17 | 
	17 | 
	
		 */
 
	 | 
	| 18 | 
	18 | 
	
		
 
	 | 
	| 19 | 
	19 | 
	
		#ifndef LEMON_MAPS_H
 
	 | 
	| 20 | 
	20 | 
	
		#define LEMON_MAPS_H
 
	 | 
	| 21 | 
	21 | 
	
		
 
	 | 
	| 22 | 
	22 | 
	
		#include <iterator>
 
	 | 
	| 23 | 
	23 | 
	
		#include <functional>
 
	 | 
	| 24 | 
	24 | 
	
		#include <vector>
 
	 | 
	| 25 | 
	25 | 
	
		
 
	 | 
	| 26 | 
	26 | 
	
		#include <lemon/core.h>
 
	 | 
	| 27 | 
	27 | 
	
		
 
	 | 
	| 28 | 
	28 | 
	
		///\file
 
	 | 
	| 29 | 
	29 | 
	
		///\ingroup maps
 
	 | 
	| 30 | 
	30 | 
	
		///\brief Miscellaneous property maps
 
	 | 
	| 31 | 
	31 | 
	
		
 
	 | 
	| 32 | 
	32 | 
	
		#include <map>
 
	 | 
	| 33 | 
	33 | 
	
		
 
	 | 
	| 34 | 
	34 | 
	
		namespace lemon {
	 | 
	| 35 | 
	35 | 
	
		
 
	 | 
	| 36 | 
	36 | 
	
		  /// \addtogroup maps
 
	 | 
	| 37 | 
	37 | 
	
		  /// @{
	 | 
	| 38 | 
	38 | 
	
		
 
	 | 
	| 39 | 
	39 | 
	
		  /// Base class of maps.
 
	 | 
	| 40 | 
	40 | 
	
		
 
	 | 
	| 41 | 
	41 | 
	
		  /// Base class of maps. It provides the necessary type definitions
 
	 | 
	| 42 | 
	42 | 
	
		  /// required by the map %concepts.
 
	 | 
	| 43 | 
	43 | 
	
		  template<typename K, typename V>
 
	 | 
	| 44 | 
	44 | 
	
		  class MapBase {
	 | 
	| 45 | 
	45 | 
	
		  public:
 
	 | 
	| 46 | 
	46 | 
	
		    /// \brief The key type of the map.
 
	 | 
	| 47 | 
	47 | 
	
		    typedef K Key;
 
	 | 
	| 48 | 
	48 | 
	
		    /// \brief The value type of the map.
 
	 | 
	| 49 | 
	49 | 
	
		    /// (The type of objects associated with the keys).
 
	 | 
	| 50 | 
	50 | 
	
		    typedef V Value;
 
	 | 
	| 51 | 
	51 | 
	
		  };
 
	 | 
	| 52 | 
	52 | 
	
		
 
	 | 
	| 53 | 
	53 | 
	
		
 
	 | 
	| 54 | 
	54 | 
	
		  /// Null map. (a.k.a. DoNothingMap)
 
	 | 
	| 55 | 
	55 | 
	
		
 
	 | 
	| 56 | 
	56 | 
	
		  /// This map can be used if you have to provide a map only for
 
	 | 
	| 57 | 
	57 | 
	
		  /// its type definitions, or if you have to provide a writable map,
 
	 | 
	| 58 | 
	58 | 
	
		  /// but data written to it is not required (i.e. it will be sent to
 
	 | 
	| 59 | 
	59 | 
	
		  /// <tt>/dev/null</tt>).
 
	 | 
	| 60 | 
	60 | 
	
		  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
	 | 
	| 61 | 
	61 | 
	
		  ///
 
	 | 
	| 62 | 
	62 | 
	
		  /// \sa ConstMap
 
	 | 
	| 63 | 
	63 | 
	
		  template<typename K, typename V>
 
	 | 
	| 64 | 
	64 | 
	
		  class NullMap : public MapBase<K, V> {
	 | 
	| 65 | 
	65 | 
	
		  public:
 
	 | 
	| 66 | 
	66 | 
	
		    ///\e
 
	 | 
	| 67 | 
	67 | 
	
		    typedef K Key;
 
	 | 
	| 68 | 
	68 | 
	
		    ///\e
 
	 | 
	| 69 | 
	69 | 
	
		    typedef V Value;
 
	 | 
	| 70 | 
	70 | 
	
		
 
	 | 
	| 71 | 
	71 | 
	
		    /// Gives back a default constructed element.
 
	 | 
	| 72 | 
	72 | 
	
		    Value operator[](const Key&) const { return Value(); }
	 | 
	| 73 | 
	73 | 
	
		    /// Absorbs the value.
 
	 | 
	| 74 | 
	74 | 
	
		    void set(const Key&, const Value&) {}
	 | 
	| 75 | 
	75 | 
	
		  };
 
	 | 
	| 76 | 
	76 | 
	
		
 
	 | 
	| 77 | 
	77 | 
	
		  /// Returns a \c NullMap class
 
	 | 
	| 78 | 
	78 | 
	
		
 
	 | 
	| 79 | 
	79 | 
	
		  /// This function just returns a \c NullMap class.
 
	 | 
	| 80 | 
	80 | 
	
		  /// \relates NullMap
 
	 | 
	| 81 | 
	81 | 
	
		  template <typename K, typename V>
 
	 | 
	| 82 | 
	82 | 
	
		  NullMap<K, V> nullMap() {
	 | 
	| 83 | 
	83 | 
	
		    return NullMap<K, V>();
 
	 | 
	| 84 | 
	84 | 
	
		  }
 
	 | 
	| 85 | 
	85 | 
	
		
 
	 | 
	| 86 | 
	86 | 
	
		
 
	 | 
	| 87 | 
	87 | 
	
		  /// Constant map.
 
	 | 
	| 88 | 
	88 | 
	
		
 
	 | 
	| 89 | 
	89 | 
	
		  /// This \ref concepts::ReadMap "readable map" assigns a specified
 
	 | 
	| 90 | 
	90 | 
	
		  /// value to each key.
 
	 | 
	| 91 | 
	91 | 
	
		  ///
 
	 | 
	| 92 | 
	92 | 
	
		  /// In other aspects it is equivalent to \c NullMap.
 
	 | 
	| 93 | 
	93 | 
	
		  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
 
	 | 
	| 94 | 
	94 | 
	
		  /// concept, but it absorbs the data written to it.
 
	 | 
	| 95 | 
	95 | 
	
		  ///
 
	 | 
	| 96 | 
	96 | 
	
		  /// The simplest way of using this map is through the constMap()
 
	 | 
	| 97 | 
	97 | 
	
		  /// function.
 
	 | 
	| 98 | 
	98 | 
	
		  ///
 
	 | 
	| 99 | 
	99 | 
	
		  /// \sa NullMap
 
	 | 
	| 100 | 
	100 | 
	
		  /// \sa IdentityMap
 
	 | 
	| 101 | 
	101 | 
	
		  template<typename K, typename V>
 
	 | 
	| 102 | 
	102 | 
	
		  class ConstMap : public MapBase<K, V> {
	 | 
	| 103 | 
	103 | 
	
		  private:
 
	 | 
	| 104 | 
	104 | 
	
		    V _value;
 
	 | 
	| 105 | 
	105 | 
	
		  public:
 
	 | 
	| 106 | 
	106 | 
	
		    ///\e
 
	 | 
	| 107 | 
	107 | 
	
		    typedef K Key;
 
	 | 
	| 108 | 
	108 | 
	
		    ///\e
 
	 | 
	| 109 | 
	109 | 
	
		    typedef V Value;
 
	 | 
	| 110 | 
	110 | 
	
		
 
	 | 
	| 111 | 
	111 | 
	
		    /// Default constructor
 
	 | 
	| 112 | 
	112 | 
	
		
 
	 | 
	| 113 | 
	113 | 
	
		    /// Default constructor.
 
	 | 
	| 114 | 
	114 | 
	
		    /// The value of the map will be default constructed.
 
	 | 
	| 115 | 
	115 | 
	
		    ConstMap() {}
	 | 
	| 116 | 
	116 | 
	
		
 
	 | 
	| 117 | 
	117 | 
	
		    /// Constructor with specified initial value
 
	 | 
	| 118 | 
	118 | 
	
		
 
	 | 
	| 119 | 
	119 | 
	
		    /// Constructor with specified initial value.
 
	 | 
	| 120 | 
	120 | 
	
		    /// \param v The initial value of the map.
 
	 | 
	| 121 | 
	121 | 
	
		    ConstMap(const Value &v) : _value(v) {}
	 | 
	| 122 | 
	122 | 
	
		
 
	 | 
	| 123 | 
	123 | 
	
		    /// Gives back the specified value.
 
	 | 
	| 124 | 
	124 | 
	
		    Value operator[](const Key&) const { return _value; }
	 | 
	| 125 | 
	125 | 
	
		
 
	 | 
	| 126 | 
	126 | 
	
		    /// Absorbs the value.
 
	 | 
	| 127 | 
	127 | 
	
		    void set(const Key&, const Value&) {}
	 | 
	| 128 | 
	128 | 
	
		
 
	 | 
	| 129 | 
	129 | 
	
		    /// Sets the value that is assigned to each key.
 
	 | 
	| 130 | 
	130 | 
	
		    void setAll(const Value &v) {
	 | 
	| 131 | 
	131 | 
	
		      _value = v;
 
	 | 
	| 132 | 
	132 | 
	
		    }
 
	 | 
	| 133 | 
	133 | 
	
		
 
	 | 
	| 134 | 
	134 | 
	
		    template<typename V1>
 
	 | 
	| 135 | 
	135 | 
	
		    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
	 | 
	| 136 | 
	136 | 
	
		  };
 
	 | 
	| 137 | 
	137 | 
	
		
 
	 | 
	| 138 | 
	138 | 
	
		  /// Returns a \c ConstMap class
 
	 | 
	| 139 | 
	139 | 
	
		
 
	 | 
	| 140 | 
	140 | 
	
		  /// This function just returns a \c ConstMap class.
 
	 | 
	| 141 | 
	141 | 
	
		  /// \relates ConstMap
 
	 | 
	| 142 | 
	142 | 
	
		  template<typename K, typename V>
 
	 | 
	| 143 | 
	143 | 
	
		  inline ConstMap<K, V> constMap(const V &v) {
	 | 
	| 144 | 
	144 | 
	
		    return ConstMap<K, V>(v);
 
	 | 
	| 145 | 
	145 | 
	
		  }
 
	 | 
	| 146 | 
	146 | 
	
		
 
	 | 
	| 147 | 
	147 | 
	
		  template<typename K, typename V>
 
	 | 
	| 148 | 
	148 | 
	
		  inline ConstMap<K, V> constMap() {
	 | 
	| 149 | 
	149 | 
	
		    return ConstMap<K, V>();
 
	 | 
	| 150 | 
	150 | 
	
		  }
 
	 | 
	| 151 | 
	151 | 
	
		
 
	 | 
	| 152 | 
	152 | 
	
		
 
	 | 
	| 153 | 
	153 | 
	
		  template<typename T, T v>
 
	 | 
	| 154 | 
	154 | 
	
		  struct Const {};
	 | 
	| 155 | 
	155 | 
	
		
 
	 | 
	| 156 | 
	156 | 
	
		  /// Constant map with inlined constant value.
 
	 | 
	| 157 | 
	157 | 
	
		
 
	 | 
	| 158 | 
	158 | 
	
		  /// This \ref concepts::ReadMap "readable map" assigns a specified
 
	 | 
	| 159 | 
	159 | 
	
		  /// value to each key.
 
	 | 
	| 160 | 
	160 | 
	
		  ///
 
	 | 
	| 161 | 
	161 | 
	
		  /// In other aspects it is equivalent to \c NullMap.
 
	 | 
	| 162 | 
	162 | 
	
		  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
 
	 | 
	| 163 | 
	163 | 
	
		  /// concept, but it absorbs the data written to it.
 
	 | 
	| 164 | 
	164 | 
	
		  ///
 
	 | 
	| 165 | 
	165 | 
	
		  /// The simplest way of using this map is through the constMap()
 
	 | 
	| 166 | 
	166 | 
	
		  /// function.
 
	 | 
	| 167 | 
	167 | 
	
		  ///
 
	 | 
	| 168 | 
	168 | 
	
		  /// \sa NullMap
 
	 | 
	| 169 | 
	169 | 
	
		  /// \sa IdentityMap
 
	 | 
	| 170 | 
	170 | 
	
		  template<typename K, typename V, V v>
 
	 | 
	| 171 | 
	171 | 
	
		  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
	 | 
	| 172 | 
	172 | 
	
		  public:
 
	 | 
	| 173 | 
	173 | 
	
		    ///\e
 
	 | 
	| 174 | 
	174 | 
	
		    typedef K Key;
 
	 | 
	| 175 | 
	175 | 
	
		    ///\e
 
	 | 
	| 176 | 
	176 | 
	
		    typedef V Value;
 
	 | 
	| 177 | 
	177 | 
	
		
 
	 | 
	| 178 | 
	178 | 
	
		    /// Constructor.
 
	 | 
	| 179 | 
	179 | 
	
		    ConstMap() {}
	 | 
	| 180 | 
	180 | 
	
		
 
	 | 
	| 181 | 
	181 | 
	
		    /// Gives back the specified value.
 
	 | 
	| 182 | 
	182 | 
	
		    Value operator[](const Key&) const { return v; }
	 | 
	| 183 | 
	183 | 
	
		
 
	 | 
	| 184 | 
	184 | 
	
		    /// Absorbs the value.
 
	 | 
	| 185 | 
	185 | 
	
		    void set(const Key&, const Value&) {}
	 | 
	| 186 | 
	186 | 
	
		  };
 
	 | 
	| 187 | 
	187 | 
	
		
 
	 | 
	| 188 | 
	188 | 
	
		  /// Returns a \c ConstMap class with inlined constant value
 
	 | 
	| 189 | 
	189 | 
	
		
 
	 | 
	| 190 | 
	190 | 
	
		  /// This function just returns a \c ConstMap class with inlined
 
	 | 
	| 191 | 
	191 | 
	
		  /// constant value.
 
	 | 
	| 192 | 
	192 | 
	
		  /// \relates ConstMap
 
	 | 
	| 193 | 
	193 | 
	
		  template<typename K, typename V, V v>
 
	 | 
	| 194 | 
	194 | 
	
		  inline ConstMap<K, Const<V, v> > constMap() {
	 | 
	| 195 | 
	195 | 
	
		    return ConstMap<K, Const<V, v> >();
 
	 | 
	| 196 | 
	196 | 
	
		  }
 
	 | 
	| 197 | 
	197 | 
	
		
 
	 | 
	| 198 | 
	198 | 
	
		
 
	 | 
	| 199 | 
	199 | 
	
		  /// Identity map.
 
	 | 
	| 200 | 
	200 | 
	
		
 
	 | 
	| 201 | 
	201 | 
	
		  /// This \ref concepts::ReadMap "read-only map" gives back the given
 
	 | 
	| 202 | 
	202 | 
	
		  /// key as value without any modification.
 
	 | 
	| 203 | 
	203 | 
	
		  ///
 
	 | 
	| 204 | 
	204 | 
	
		  /// \sa ConstMap
 
	 | 
	| 205 | 
	205 | 
	
		  template <typename T>
 
	 | 
	| 206 | 
	206 | 
	
		  class IdentityMap : public MapBase<T, T> {
	 | 
	| 207 | 
	207 | 
	
		  public:
 
	 | 
	| 208 | 
	208 | 
	
		    ///\e
 
	 | 
	| 209 | 
	209 | 
	
		    typedef T Key;
 
	 | 
	| 210 | 
	210 | 
	
		    ///\e
 
	 | 
	| 211 | 
	211 | 
	
		    typedef T Value;
 
	 | 
	| 212 | 
	212 | 
	
		
 
	 | 
	| 213 | 
	213 | 
	
		    /// Gives back the given value without any modification.
 
	 | 
	| 214 | 
	214 | 
	
		    Value operator[](const Key &k) const {
	 | 
	| 215 | 
	215 | 
	
		      return k;
 
	 | 
	| 216 | 
	216 | 
	
		    }
 
	 | 
	| 217 | 
	217 | 
	
		  };
 
	 | 
	| 218 | 
	218 | 
	
		
 
	 | 
	| 219 | 
	219 | 
	
		  /// Returns an \c IdentityMap class
 
	 | 
	| 220 | 
	220 | 
	
		
 
	 | 
	| 221 | 
	221 | 
	
		  /// This function just returns an \c IdentityMap class.
 
	 | 
	| 222 | 
	222 | 
	
		  /// \relates IdentityMap
 
	 | 
	| 223 | 
	223 | 
	
		  template<typename T>
 
	 | 
	| 224 | 
	224 | 
	
		  inline IdentityMap<T> identityMap() {
	 | 
	| 225 | 
	225 | 
	
		    return IdentityMap<T>();
 
	 | 
	| 226 | 
	226 | 
	
		  }
 
	 | 
	| 227 | 
	227 | 
	
		
 
	 | 
	| 228 | 
	228 | 
	
		
 
	 | 
	| 229 | 
	229 | 
	
		  /// \brief Map for storing values for integer keys from the range
 
	 | 
	| 230 | 
	230 | 
	
		  /// <tt>[0..size-1]</tt>.
 
	 | 
	| 231 | 
	231 | 
	
		  ///
 
	 | 
	| 232 | 
	232 | 
	
		  /// This map is essentially a wrapper for \c std::vector. It assigns
 
	 | 
	| 233 | 
	233 | 
	
		  /// values to integer keys from the range <tt>[0..size-1]</tt>.
 
	 | 
	| 234 | 
	234 | 
	
		  /// It can be used with some data structures, for example
 
	 | 
	| 235 | 
	235 | 
	
		  /// \c UnionFind, \c BinHeap, when the used items are small
 
	 | 
	| 236 | 
	236 | 
	
		  /// integers. This map conforms the \ref concepts::ReferenceMap
 
	 | 
	| 237 | 
	237 | 
	
		  /// "ReferenceMap" concept.
 
	 | 
	| 238 | 
	238 | 
	
		  ///
 
	 | 
	| 239 | 
	239 | 
	
		  /// The simplest way of using this map is through the rangeMap()
 
	 | 
	| 240 | 
	240 | 
	
		  /// function.
 
	 | 
	| 241 | 
	241 | 
	
		  template <typename V>
 
	 | 
	| 242 | 
	242 | 
	
		  class RangeMap : public MapBase<int, V> {
	 | 
	| 243 | 
	243 | 
	
		    template <typename V1>
 
	 | 
	| 244 | 
	244 | 
	
		    friend class RangeMap;
 
	 | 
	| 245 | 
	245 | 
	
		  private:
 
	 | 
	| 246 | 
	246 | 
	
		
 
	 | 
	| 247 | 
	247 | 
	
		    typedef std::vector<V> Vector;
 
	 | 
	| 248 | 
	248 | 
	
		    Vector _vector;
 
	 | 
	| 249 | 
	249 | 
	
		
 
	 | 
	| 250 | 
	250 | 
	
		  public:
 
	 | 
	| 251 | 
	251 | 
	
		
 
	 | 
	| 252 | 
	252 | 
	
		    /// Key type
 
	 | 
	| 253 | 
	253 | 
	
		    typedef int Key;
 
	 | 
	| 254 | 
	254 | 
	
		    /// Value type
 
	 | 
	| 255 | 
	255 | 
	
		    typedef V Value;
 
	 | 
	| 256 | 
	256 | 
	
		    /// Reference type
 
	 | 
	| 257 | 
	257 | 
	
		    typedef typename Vector::reference Reference;
 
	 | 
	| 258 | 
	258 | 
	
		    /// Const reference type
 
	 | 
	| 259 | 
	259 | 
	
		    typedef typename Vector::const_reference ConstReference;
 
	 | 
	| 260 | 
	260 | 
	
		
 
	 | 
	| 261 | 
	261 | 
	
		    typedef True ReferenceMapTag;
 
	 | 
	| 262 | 
	262 | 
	
		
 
	 | 
	| 263 | 
	263 | 
	
		  public:
 
	 | 
	| 264 | 
	264 | 
	
		
 
	 | 
	| 265 | 
	265 | 
	
		    /// Constructor with specified default value.
 
	 | 
	| 266 | 
	266 | 
	
		    RangeMap(int size = 0, const Value &value = Value())
 
	 | 
	| 267 | 
	267 | 
	
		      : _vector(size, value) {}
	 | 
	| 268 | 
	268 | 
	
		
 
	 | 
	| 269 | 
	269 | 
	
		    /// Constructs the map from an appropriate \c std::vector.
 
	 | 
	| 270 | 
	270 | 
	
		    template <typename V1>
 
	 | 
	| 271 | 
	271 | 
	
		    RangeMap(const std::vector<V1>& vector)
 
	 | 
	| 272 | 
	272 | 
	
		      : _vector(vector.begin(), vector.end()) {}
	 | 
	| 273 | 
	273 | 
	
		
 
	 | 
	| 274 | 
	274 | 
	
		    /// Constructs the map from another \c RangeMap.
 
	 | 
	| 275 | 
	275 | 
	
		    template <typename V1>
 
	 | 
	| 276 | 
	276 | 
	
		    RangeMap(const RangeMap<V1> &c)
 
	 | 
	| 277 | 
	277 | 
	
		      : _vector(c._vector.begin(), c._vector.end()) {}
	 | 
	| 278 | 
	278 | 
	
		
 
	 | 
	| 279 | 
	279 | 
	
		    /// Returns the size of the map.
 
	 | 
	| 280 | 
	280 | 
	
		    int size() {
	 | 
	| 281 | 
	281 | 
	
		      return _vector.size();
 
	 | 
	| 282 | 
	282 | 
	
		    }
 
	 | 
	| 283 | 
	283 | 
	
		
 
	 | 
	| 284 | 
	284 | 
	
		    /// Resizes the map.
 
	 | 
	| 285 | 
	285 | 
	
		
 
	 | 
	| 286 | 
	286 | 
	
		    /// Resizes the underlying \c std::vector container, so changes the
 
	 | 
	| 287 | 
	287 | 
	
		    /// keyset of the map.
 
	 | 
	| 288 | 
	288 | 
	
		    /// \param size The new size of the map. The new keyset will be the
 
	 | 
	| 289 | 
	289 | 
	
		    /// range <tt>[0..size-1]</tt>.
 
	 | 
	| 290 | 
	290 | 
	
		    /// \param value The default value to assign to the new keys.
 
	 | 
	| 291 | 
	291 | 
	
		    void resize(int size, const Value &value = Value()) {
	 | 
	| 292 | 
	292 | 
	
		      _vector.resize(size, value);
 
	 | 
	| 293 | 
	293 | 
	
		    }
 
	 | 
	| 294 | 
	294 | 
	
		
 
	 | 
	| 295 | 
	295 | 
	
		  private:
 
	 | 
	| 296 | 
	296 | 
	
		
 
	 | 
	| 297 | 
	297 | 
	
		    RangeMap& operator=(const RangeMap&);
 
	 | 
	| 298 | 
	298 | 
	
		
 
	 | 
	| 299 | 
	299 | 
	
		  public:
 
	 | 
	| 300 | 
	300 | 
	
		
 
	 | 
	| 301 | 
	301 | 
	
		    ///\e
 
	 | 
	| 302 | 
	302 | 
	
		    Reference operator[](const Key &k) {
	 | 
	| 303 | 
	303 | 
	
		      return _vector[k];
 
	 | 
	| 304 | 
	304 | 
	
		    }
 
	 | 
	| 305 | 
	305 | 
	
		
 
	 | 
	| 306 | 
	306 | 
	
		    ///\e
 
	 | 
	| 307 | 
	307 | 
	
		    ConstReference operator[](const Key &k) const {
	 | 
	| 308 | 
	308 | 
	
		      return _vector[k];
 
	 | 
	| 309 | 
	309 | 
	
		    }
 
	 | 
	| 310 | 
	310 | 
	
		
 
	 | 
	| 311 | 
	311 | 
	
		    ///\e
 
	 | 
	| 312 | 
	312 | 
	
		    void set(const Key &k, const Value &v) {
	 | 
	| 313 | 
	313 | 
	
		      _vector[k] = v;
 
	 | 
	| 314 | 
	314 | 
	
		    }
 
	 | 
	| 315 | 
	315 | 
	
		  };
 
	 | 
	| 316 | 
	316 | 
	
		
 
	 | 
	| 317 | 
	317 | 
	
		  /// Returns a \c RangeMap class
 
	 | 
	| 318 | 
	318 | 
	
		
 
	 | 
	| 319 | 
	319 | 
	
		  /// This function just returns a \c RangeMap class.
 
	 | 
	| 320 | 
	320 | 
	
		  /// \relates RangeMap
 
	 | 
	| 321 | 
	321 | 
	
		  template<typename V>
 
	 | 
	| 322 | 
	322 | 
	
		  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
	 | 
	| 323 | 
	323 | 
	
		    return RangeMap<V>(size, value);
 
	 | 
	| 324 | 
	324 | 
	
		  }
 
	 | 
	| 325 | 
	325 | 
	
		
 
	 | 
	| 326 | 
	326 | 
	
		  /// \brief Returns a \c RangeMap class created from an appropriate
 
	 | 
	| 327 | 
	327 | 
	
		  /// \c std::vector
 
	 | 
	| 328 | 
	328 | 
	
		
 
	 | 
	| 329 | 
	329 | 
	
		  /// This function just returns a \c RangeMap class created from an
 
	 | 
	| 330 | 
	330 | 
	
		  /// appropriate \c std::vector.
 
	 | 
	| 331 | 
	331 | 
	
		  /// \relates RangeMap
 
	 | 
	| 332 | 
	332 | 
	
		  template<typename V>
 
	 | 
	| 333 | 
	333 | 
	
		  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
	 | 
	| 334 | 
	334 | 
	
		    return RangeMap<V>(vector);
 
	 | 
	| 335 | 
	335 | 
	
		  }
 
	 | 
	| 336 | 
	336 | 
	
		
 
	 | 
	| 337 | 
	337 | 
	
		
 
	 | 
	| 338 | 
	338 | 
	
		  /// Map type based on \c std::map
 
	 | 
	| 339 | 
	339 | 
	
		
 
	 | 
	| 340 | 
	340 | 
	
		  /// This map is essentially a wrapper for \c std::map with addition
 
	 | 
	| 341 | 
	341 | 
	
		  /// that you can specify a default value for the keys that are not
 
	 | 
	| 342 | 
	342 | 
	
		  /// stored actually. This value can be different from the default
 
	 | 
	| 343 | 
	343 | 
	
		  /// contructed value (i.e. \c %Value()).
 
	 | 
	| 344 | 
	344 | 
	
		  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
 
	 | 
	| 345 | 
	345 | 
	
		  /// concept.
 
	 | 
	| 346 | 
	346 | 
	
		  ///
 
	 | 
	| 347 | 
	347 | 
	
		  /// This map is useful if a default value should be assigned to most of
 
	 | 
	| 348 | 
	348 | 
	
		  /// the keys and different values should be assigned only to a few
 
	 | 
	| 349 | 
	349 | 
	
		  /// keys (i.e. the map is "sparse").
 
	 | 
	| 350 | 
	350 | 
	
		  /// The name of this type also refers to this important usage.
 
	 | 
	| 351 | 
	351 | 
	
		  ///
 
	 | 
	| 352 | 
	352 | 
	
		  /// Apart form that this map can be used in many other cases since it
 
	 | 
	| 353 | 
	353 | 
	
		  /// is based on \c std::map, which is a general associative container.
 
	 | 
	| 354 | 
	354 | 
	
		  /// However keep in mind that it is usually not as efficient as other
 
	 | 
	| 355 | 
	355 | 
	
		  /// maps.
 
	 | 
	| 356 | 
	356 | 
	
		  ///
 
	 | 
	| 357 | 
	357 | 
	
		  /// The simplest way of using this map is through the sparseMap()
 
	 | 
	| 358 | 
	358 | 
	
		  /// function.
 
	 | 
	| 359 | 
	359 | 
	
		  template <typename K, typename V, typename Comp = std::less<K> >
 
	 | 
	| 360 | 
	360 | 
	
		  class SparseMap : public MapBase<K, V> {
	 | 
	| 361 | 
	361 | 
	
		    template <typename K1, typename V1, typename C1>
 
	 | 
	| 362 | 
	362 | 
	
		    friend class SparseMap;
 
	 | 
	| 363 | 
	363 | 
	
		  public:
 
	 | 
	| 364 | 
	364 | 
	
		
 
	 | 
	| 365 | 
	365 | 
	
		    /// Key type
 
	 | 
	| 366 | 
	366 | 
	
		    typedef K Key;
 
	 | 
	| 367 | 
	367 | 
	
		    /// Value type
 
	 | 
	| 368 | 
	368 | 
	
		    typedef V Value;
 
	 | 
	| 369 | 
	369 | 
	
		    /// Reference type
 
	 | 
	| 370 | 
	370 | 
	
		    typedef Value& Reference;
 
	 | 
	| 371 | 
	371 | 
	
		    /// Const reference type
 
	 | 
	| 372 | 
	372 | 
	
		    typedef const Value& ConstReference;
 
	 | 
	| 373 | 
	373 | 
	
		
 
	 | 
	| 374 | 
	374 | 
	
		    typedef True ReferenceMapTag;
 
	 | 
	| 375 | 
	375 | 
	
		
 
	 | 
	| 376 | 
	376 | 
	
		  private:
 
	 | 
	| 377 | 
	377 | 
	
		
 
	 | 
	| 378 | 
	378 | 
	
		    typedef std::map<K, V, Comp> Map;
 
	 | 
	| 379 | 
	379 | 
	
		    Map _map;
 
	 | 
	| 380 | 
	380 | 
	
		    Value _value;
 
	 | 
	| 381 | 
	381 | 
	
		
 
	 | 
	| 382 | 
	382 | 
	
		  public:
 
	 | 
	| 383 | 
	383 | 
	
		
 
	 | 
	| 384 | 
	384 | 
	
		    /// \brief Constructor with specified default value.
 
	 | 
	| 385 | 
	385 | 
	
		    SparseMap(const Value &value = Value()) : _value(value) {}
	 | 
	| 386 | 
	386 | 
	
		    /// \brief Constructs the map from an appropriate \c std::map, and
 
	 | 
	| 387 | 
	387 | 
	
		    /// explicitly specifies a default value.
 
	 | 
	| 388 | 
	388 | 
	
		    template <typename V1, typename Comp1>
 
	 | 
	| 389 | 
	389 | 
	
		    SparseMap(const std::map<Key, V1, Comp1> &map,
 
	 | 
	| 390 | 
	390 | 
	
		              const Value &value = Value())
 
	 | 
	| 391 | 
	391 | 
	
		      : _map(map.begin(), map.end()), _value(value) {}
	 | 
	| 392 | 
	392 | 
	
		
 
	 | 
	| 393 | 
	393 | 
	
		    /// \brief Constructs the map from another \c SparseMap.
 
	 | 
	| 394 | 
	394 | 
	
		    template<typename V1, typename Comp1>
 
	 | 
	| 395 | 
	395 | 
	
		    SparseMap(const SparseMap<Key, V1, Comp1> &c)
 
	 | 
	| 396 | 
	396 | 
	
		      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
	 | 
	| 397 | 
	397 | 
	
		
 
	 | 
	| 398 | 
	398 | 
	
		  private:
 
	 | 
	| 399 | 
	399 | 
	
		
 
	 | 
	| 400 | 
	400 | 
	
		    SparseMap& operator=(const SparseMap&);
 
	 | 
	| 401 | 
	401 | 
	
		
 
	 | 
	| 402 | 
	402 | 
	
		  public:
 
	 | 
	| 403 | 
	403 | 
	
		
 
	 | 
	| 404 | 
	404 | 
	
		    ///\e
 
	 | 
	| 405 | 
	405 | 
	
		    Reference operator[](const Key &k) {
	 | 
	| 406 | 
	406 | 
	
		      typename Map::iterator it = _map.lower_bound(k);
 
	 | 
	| 407 | 
	407 | 
	
		      if (it != _map.end() && !_map.key_comp()(k, it->first))
 
	 | 
	| 408 | 
	408 | 
	
		        return it->second;
 
	 | 
	| 409 | 
	409 | 
	
		      else
 
	 | 
	| 410 | 
	410 | 
	
		        return _map.insert(it, std::make_pair(k, _value))->second;
 
	 | 
	| 411 | 
	411 | 
	
		    }
 
	 | 
	| 412 | 
	412 | 
	
		
 
	 | 
	| 413 | 
	413 | 
	
		    ///\e
 
	 | 
	| 414 | 
	414 | 
	
		    ConstReference operator[](const Key &k) const {
	 | 
	| 415 | 
	415 | 
	
		      typename Map::const_iterator it = _map.find(k);
 
	 | 
	| 416 | 
	416 | 
	
		      if (it != _map.end())
 
	 | 
	| 417 | 
	417 | 
	
		        return it->second;
 
	 | 
	| 418 | 
	418 | 
	
		      else
 
	 | 
	| 419 | 
	419 | 
	
		        return _value;
 
	 | 
	| 420 | 
	420 | 
	
		    }
 
	 | 
	| 421 | 
	421 | 
	
		
 
	 | 
	| 422 | 
	422 | 
	
		    ///\e
 
	 | 
	| 423 | 
	423 | 
	
		    void set(const Key &k, const Value &v) {
	 | 
	| 424 | 
	424 | 
	
		      typename Map::iterator it = _map.lower_bound(k);
 
	 | 
	| 425 | 
	425 | 
	
		      if (it != _map.end() && !_map.key_comp()(k, it->first))
 
	 | 
	| 426 | 
	426 | 
	
		        it->second = v;
 
	 | 
	| 427 | 
	427 | 
	
		      else
 
	 | 
	| 428 | 
	428 | 
	
		        _map.insert(it, std::make_pair(k, v));
 
	 | 
	| 429 | 
	429 | 
	
		    }
 
	 | 
	| 430 | 
	430 | 
	
		
 
	 | 
	| 431 | 
	431 | 
	
		    ///\e
 
	 | 
	| 432 | 
	432 | 
	
		    void setAll(const Value &v) {
	 | 
	| 433 | 
	433 | 
	
		      _value = v;
 
	 | 
	| 434 | 
	434 | 
	
		      _map.clear();
 
	 | 
	| 435 | 
	435 | 
	
		    }
 
	 | 
	| 436 | 
	436 | 
	
		  };
 
	 | 
	| 437 | 
	437 | 
	
		
 
	 | 
	| 438 | 
	438 | 
	
		  /// Returns a \c SparseMap class
 
	 | 
	| 439 | 
	439 | 
	
		
 
	 | 
	| 440 | 
	440 | 
	
		  /// This function just returns a \c SparseMap class with specified
 
	 | 
	| 441 | 
	441 | 
	
		  /// default value.
 
	 | 
	| 442 | 
	442 | 
	
		  /// \relates SparseMap
 
	 | 
	| 443 | 
	443 | 
	
		  template<typename K, typename V, typename Compare>
 
	 | 
	| 444 | 
	444 | 
	
		  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
	 | 
	| 445 | 
	445 | 
	
		    return SparseMap<K, V, Compare>(value);
 
	 | 
	| 446 | 
	446 | 
	
		  }
 
	 | 
	| 447 | 
	447 | 
	
		
 
	 | 
	| 448 | 
	448 | 
	
		  template<typename K, typename V>
 
	 | 
	| 449 | 
	449 | 
	
		  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
	 | 
	| 450 | 
	450 | 
	
		    return SparseMap<K, V, std::less<K> >(value);
 
	 | 
	| 451 | 
	451 | 
	
		  }
 
	 | 
	| 452 | 
	452 | 
	
		
 
	 | 
	| 453 | 
	453 | 
	
		  /// \brief Returns a \c SparseMap class created from an appropriate
 
	 | 
	| 454 | 
	454 | 
	
		  /// \c std::map
 
	 | 
	| 455 | 
	455 | 
	
		
 
	 | 
	| 456 | 
	456 | 
	
		  /// This function just returns a \c SparseMap class created from an
 
	 | 
	| 457 | 
	457 | 
	
		  /// appropriate \c std::map.
 
	 | 
	| 458 | 
	458 | 
	
		  /// \relates SparseMap
 
	 | 
	| 459 | 
	459 | 
	
		  template<typename K, typename V, typename Compare>
 
	 | 
	| 460 | 
	460 | 
	
		  inline SparseMap<K, V, Compare>
 
	 | 
	| 461 | 
	461 | 
	
		    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
 
	 | 
	| 462 | 
	462 | 
	
		  {
	 | 
	| 463 | 
	463 | 
	
		    return SparseMap<K, V, Compare>(map, value);
 
	 | 
	| 464 | 
	464 | 
	
		  }
 
	 | 
	| 465 | 
	465 | 
	
		
 
	 | 
	| 466 | 
	466 | 
	
		  /// @}
 
	 | 
	| 467 | 
	467 | 
	
		
 
	 | 
	| 468 | 
	468 | 
	
		  /// \addtogroup map_adaptors
 
	 | 
	| 469 | 
	469 | 
	
		  /// @{
	 | 
	| 470 | 
	470 | 
	
		
 
	 | 
	| 471 | 
	471 | 
	
		  /// Composition of two maps
 
	 | 
	| 472 | 
	472 | 
	
		
 
	 | 
	| 473 | 
	473 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the
 
	 | 
	| 474 | 
	474 | 
	
		  /// composition of two given maps. That is to say, if \c m1 is of
 
	 | 
	| 475 | 
	475 | 
	
		  /// type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 476 | 
	476 | 
	
		  /// \code
 
	 | 
	| 477 | 
	477 | 
	
		  ///   ComposeMap<M1, M2> cm(m1,m2);
 
	 | 
	| 478 | 
	478 | 
	
		  /// \endcode
 
	 | 
	| 479 | 
	479 | 
	
		  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
 
	 | 
	| 480 | 
	480 | 
	
		  ///
 
	 | 
	| 481 | 
	481 | 
	
		  /// The \c Key type of the map is inherited from \c M2 and the
 
	 | 
	| 482 | 
	482 | 
	
		  /// \c Value type is from \c M1.
 
	 | 
	| 483 | 
	483 | 
	
		  /// \c M2::Value must be convertible to \c M1::Key.
 
	 | 
	| 484 | 
	484 | 
	
		  ///
 
	 | 
	| 485 | 
	485 | 
	
		  /// The simplest way of using this map is through the composeMap()
 
	 | 
	| 486 | 
	486 | 
	
		  /// function.
 
	 | 
	| 487 | 
	487 | 
	
		  ///
 
	 | 
	| 488 | 
	488 | 
	
		  /// \sa CombineMap
 
	 | 
	| 489 | 
	489 | 
	
		  template <typename M1, typename M2>
 
	 | 
	| 490 | 
	490 | 
	
		  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
	 | 
	| 491 | 
	491 | 
	
		    const M1 &_m1;
 
	 | 
	| 492 | 
	492 | 
	
		    const M2 &_m2;
 
	 | 
	| 493 | 
	493 | 
	
		  public:
 
	 | 
	| 494 | 
	494 | 
	
		    ///\e
 
	 | 
	| 495 | 
	495 | 
	
		    typedef typename M2::Key Key;
 
	 | 
	| 496 | 
	496 | 
	
		    ///\e
 
	 | 
	| 497 | 
	497 | 
	
		    typedef typename M1::Value Value;
 
	 | 
	| 498 | 
	498 | 
	
		
 
	 | 
	| 499 | 
	499 | 
	
		    /// Constructor
 
	 | 
	| 500 | 
	500 | 
	
		    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 501 | 
	501 | 
	
		
 
	 | 
	| 502 | 
	502 | 
	
		    ///\e
 
	 | 
	| 503 | 
	503 | 
	
		    typename MapTraits<M1>::ConstReturnValue
 
	 | 
	| 504 | 
	504 | 
	
		    operator[](const Key &k) const { return _m1[_m2[k]]; }
	 | 
	| 505 | 
	505 | 
	
		  };
 
	 | 
	| 506 | 
	506 | 
	
		
 
	 | 
	| 507 | 
	507 | 
	
		  /// Returns a \c ComposeMap class
 
	 | 
	| 508 | 
	508 | 
	
		
 
	 | 
	| 509 | 
	509 | 
	
		  /// This function just returns a \c ComposeMap class.
 
	 | 
	| 510 | 
	510 | 
	
		  ///
 
	 | 
	| 511 | 
	511 | 
	
		  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
 
	 | 
	| 512 | 
	512 | 
	
		  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
 
	 | 
	| 513 | 
	513 | 
	
		  /// will be equal to <tt>m1[m2[x]]</tt>.
 
	 | 
	| 514 | 
	514 | 
	
		  ///
 
	 | 
	| 515 | 
	515 | 
	
		  /// \relates ComposeMap
 
	 | 
	| 516 | 
	516 | 
	
		  template <typename M1, typename M2>
 
	 | 
	| 517 | 
	517 | 
	
		  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
	 | 
	| 518 | 
	518 | 
	
		    return ComposeMap<M1, M2>(m1, m2);
 
	 | 
	| 519 | 
	519 | 
	
		  }
 
	 | 
	| 520 | 
	520 | 
	
		
 
	 | 
	| 521 | 
	521 | 
	
		
 
	 | 
	| 522 | 
	522 | 
	
		  /// Combination of two maps using an STL (binary) functor.
 
	 | 
	| 523 | 
	523 | 
	
		
 
	 | 
	| 524 | 
	524 | 
	
		  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
 
	 | 
	| 525 | 
	525 | 
	
		  /// binary functor and returns the combination of the two given maps
 
	 | 
	| 526 | 
	526 | 
	
		  /// using the functor.
 
	 | 
	| 527 | 
	527 | 
	
		  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
 
	 | 
	| 528 | 
	528 | 
	
		  /// and \c f is of \c F, then for
 
	 | 
	| 529 | 
	529 | 
	
		  /// \code
 
	 | 
	| 530 | 
	530 | 
	
		  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
 
	 | 
	| 531 | 
	531 | 
	
		  /// \endcode
 
	 | 
	| 532 | 
	532 | 
	
		  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
 
	 | 
	| 533 | 
	533 | 
	
		  ///
 
	 | 
	| 534 | 
	534 | 
	
		  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
 
	 | 
	| 535 | 
	535 | 
	
		  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
 
	 | 
	| 536 | 
	536 | 
	
		  /// \c M2::Value and \c M1::Value must be convertible to the
 
	 | 
	| 537 | 
	537 | 
	
		  /// corresponding input parameter of \c F and the return type of \c F
 
	 | 
	| 538 | 
	538 | 
	
		  /// must be convertible to \c V.
 
	 | 
	| 539 | 
	539 | 
	
		  ///
 
	 | 
	| 540 | 
	540 | 
	
		  /// The simplest way of using this map is through the combineMap()
 
	 | 
	| 541 | 
	541 | 
	
		  /// function.
 
	 | 
	| 542 | 
	542 | 
	
		  ///
 
	 | 
	| 543 | 
	543 | 
	
		  /// \sa ComposeMap
 
	 | 
	| 544 | 
	544 | 
	
		  template<typename M1, typename M2, typename F,
 
	 | 
	| 545 | 
	545 | 
	
		           typename V = typename F::result_type>
 
	 | 
	| 546 | 
	546 | 
	
		  class CombineMap : public MapBase<typename M1::Key, V> {
	 | 
	| 547 | 
	547 | 
	
		    const M1 &_m1;
 
	 | 
	| 548 | 
	548 | 
	
		    const M2 &_m2;
 
	 | 
	| 549 | 
	549 | 
	
		    F _f;
 
	 | 
	| 550 | 
	550 | 
	
		  public:
 
	 | 
	| 551 | 
	551 | 
	
		    ///\e
 
	 | 
	| 552 | 
	552 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 553 | 
	553 | 
	
		    ///\e
 
	 | 
	| 554 | 
	554 | 
	
		    typedef V Value;
 
	 | 
	| 555 | 
	555 | 
	
		
 
	 | 
	| 556 | 
	556 | 
	
		    /// Constructor
 
	 | 
	| 557 | 
	557 | 
	
		    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
 
	 | 
	| 558 | 
	558 | 
	
		      : _m1(m1), _m2(m2), _f(f) {}
	 | 
	| 559 | 
	559 | 
	
		    ///\e
 
	 | 
	| 560 | 
	560 | 
	
		    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
	 | 
	| 561 | 
	561 | 
	
		  };
 
	 | 
	| 562 | 
	562 | 
	
		
 
	 | 
	| 563 | 
	563 | 
	
		  /// Returns a \c CombineMap class
 
	 | 
	| 564 | 
	564 | 
	
		
 
	 | 
	| 565 | 
	565 | 
	
		  /// This function just returns a \c CombineMap class.
 
	 | 
	| 566 | 
	566 | 
	
		  ///
 
	 | 
	| 567 | 
	567 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c double
 
	 | 
	| 568 | 
	568 | 
	
		  /// values, then
 
	 | 
	| 569 | 
	569 | 
	
		  /// \code
 
	 | 
	| 570 | 
	570 | 
	
		  ///   combineMap(m1,m2,std::plus<double>())
 
	 | 
	| 571 | 
	571 | 
	
		  /// \endcode
 
	 | 
	| 572 | 
	572 | 
	
		  /// is equivalent to
 
	 | 
	| 573 | 
	573 | 
	
		  /// \code
 
	 | 
	| 574 | 
	574 | 
	
		  ///   addMap(m1,m2)
 
	 | 
	| 575 | 
	575 | 
	
		  /// \endcode
 
	 | 
	| 576 | 
	576 | 
	
		  ///
 
	 | 
	| 577 | 
	577 | 
	
		  /// This function is specialized for adaptable binary function
 
	 | 
	| 578 | 
	578 | 
	
		  /// classes and C++ functions.
 
	 | 
	| 579 | 
	579 | 
	
		  ///
 
	 | 
	| 580 | 
	580 | 
	
		  /// \relates CombineMap
 
	 | 
	| 581 | 
	581 | 
	
		  template<typename M1, typename M2, typename F, typename V>
 
	 | 
	| 582 | 
	582 | 
	
		  inline CombineMap<M1, M2, F, V>
 
	 | 
	| 583 | 
	583 | 
	
		  combineMap(const M1 &m1, const M2 &m2, const F &f) {
	 | 
	| 584 | 
	584 | 
	
		    return CombineMap<M1, M2, F, V>(m1,m2,f);
 
	 | 
	| 585 | 
	585 | 
	
		  }
 
	 | 
	| 586 | 
	586 | 
	
		
 
	 | 
	| 587 | 
	587 | 
	
		  template<typename M1, typename M2, typename F>
 
	 | 
	| 588 | 
	588 | 
	
		  inline CombineMap<M1, M2, F, typename F::result_type>
 
	 | 
	| 589 | 
	589 | 
	
		  combineMap(const M1 &m1, const M2 &m2, const F &f) {
	 | 
	| 590 | 
	590 | 
	
		    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
 
	 | 
	| 591 | 
	591 | 
	
		  }
 
	 | 
	| 592 | 
	592 | 
	
		
 
	 | 
	| 593 | 
	593 | 
	
		  template<typename M1, typename M2, typename K1, typename K2, typename V>
 
	 | 
	| 594 | 
	594 | 
	
		  inline CombineMap<M1, M2, V (*)(K1, K2), V>
 
	 | 
	| 595 | 
	595 | 
	
		  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
	 | 
	| 596 | 
	596 | 
	
		    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
 
	 | 
	| 597 | 
	597 | 
	
		  }
 
	 | 
	| 598 | 
	598 | 
	
		
 
	 | 
	| 599 | 
	599 | 
	
		
 
	 | 
	| 600 | 
	600 | 
	
		  /// Converts an STL style (unary) functor to a map
 
	 | 
	| 601 | 
	601 | 
	
		
 
	 | 
	| 602 | 
	602 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the value
 
	 | 
	| 603 | 
	603 | 
	
		  /// of a given functor. Actually, it just wraps the functor and
 
	 | 
	| 604 | 
	604 | 
	
		  /// provides the \c Key and \c Value typedefs.
 
	 | 
	| 605 | 
	605 | 
	
		  ///
 
	 | 
	| 606 | 
	606 | 
	
		  /// Template parameters \c K and \c V will become its \c Key and
 
	 | 
	| 607 | 
	607 | 
	
		  /// \c Value. In most cases they have to be given explicitly because
 
	 | 
	| 608 | 
	608 | 
	
		  /// a functor typically does not provide \c argument_type and
 
	 | 
	| 609 | 
	609 | 
	
		  /// \c result_type typedefs.
 
	 | 
	| 610 | 
	610 | 
	
		  /// Parameter \c F is the type of the used functor.
 
	 | 
	| 611 | 
	611 | 
	
		  ///
 
	 | 
	| 612 | 
	612 | 
	
		  /// The simplest way of using this map is through the functorToMap()
 
	 | 
	| 613 | 
	613 | 
	
		  /// function.
 
	 | 
	| 614 | 
	614 | 
	
		  ///
 
	 | 
	| 615 | 
	615 | 
	
		  /// \sa MapToFunctor
 
	 | 
	| 616 | 
	616 | 
	
		  template<typename F,
 
	 | 
	| 617 | 
	617 | 
	
		           typename K = typename F::argument_type,
 
	 | 
	| 618 | 
	618 | 
	
		           typename V = typename F::result_type>
 
	 | 
	| 619 | 
	619 | 
	
		  class FunctorToMap : public MapBase<K, V> {
	 | 
	| 620 | 
	620 | 
	
		    F _f;
 
	 | 
	| 621 | 
	621 | 
	
		  public:
 
	 | 
	| 622 | 
	622 | 
	
		    ///\e
 
	 | 
	| 623 | 
	623 | 
	
		    typedef K Key;
 
	 | 
	| 624 | 
	624 | 
	
		    ///\e
 
	 | 
	| 625 | 
	625 | 
	
		    typedef V Value;
 
	 | 
	| 626 | 
	626 | 
	
		
 
	 | 
	| 627 | 
	627 | 
	
		    /// Constructor
 
	 | 
	| 628 | 
	628 | 
	
		    FunctorToMap(const F &f = F()) : _f(f) {}
	 | 
	| 629 | 
	629 | 
	
		    ///\e
 
	 | 
	| 630 | 
	630 | 
	
		    Value operator[](const Key &k) const { return _f(k); }
	 | 
	| 631 | 
	631 | 
	
		  };
 
	 | 
	| 632 | 
	632 | 
	
		
 
	 | 
	| 633 | 
	633 | 
	
		  /// Returns a \c FunctorToMap class
 
	 | 
	| 634 | 
	634 | 
	
		
 
	 | 
	| 635 | 
	635 | 
	
		  /// This function just returns a \c FunctorToMap class.
 
	 | 
	| 636 | 
	636 | 
	
		  ///
 
	 | 
	| 637 | 
	637 | 
	
		  /// This function is specialized for adaptable binary function
 
	 | 
	| 638 | 
	638 | 
	
		  /// classes and C++ functions.
 
	 | 
	| 639 | 
	639 | 
	
		  ///
 
	 | 
	| 640 | 
	640 | 
	
		  /// \relates FunctorToMap
 
	 | 
	| 641 | 
	641 | 
	
		  template<typename K, typename V, typename F>
 
	 | 
	| 642 | 
	642 | 
	
		  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
	 | 
	| 643 | 
	643 | 
	
		    return FunctorToMap<F, K, V>(f);
 
	 | 
	| 644 | 
	644 | 
	
		  }
 
	 | 
	| 645 | 
	645 | 
	
		
 
	 | 
	| 646 | 
	646 | 
	
		  template <typename F>
 
	 | 
	| 647 | 
	647 | 
	
		  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
 
	 | 
	| 648 | 
	648 | 
	
		    functorToMap(const F &f)
 
	 | 
	| 649 | 
	649 | 
	
		  {
	 | 
	| 650 | 
	650 | 
	
		    return FunctorToMap<F, typename F::argument_type,
 
	 | 
	| 651 | 
	651 | 
	
		      typename F::result_type>(f);
 
	 | 
	| 652 | 
	652 | 
	
		  }
 
	 | 
	| 653 | 
	653 | 
	
		
 
	 | 
	| 654 | 
	654 | 
	
		  template <typename K, typename V>
 
	 | 
	| 655 | 
	655 | 
	
		  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
	 | 
	| 656 | 
	656 | 
	
		    return FunctorToMap<V (*)(K), K, V>(f);
 
	 | 
	| 657 | 
	657 | 
	
		  }
 
	 | 
	| 658 | 
	658 | 
	
		
 
	 | 
	| 659 | 
	659 | 
	
		
 
	 | 
	| 660 | 
	660 | 
	
		  /// Converts a map to an STL style (unary) functor
 
	 | 
	| 661 | 
	661 | 
	
		
 
	 | 
	| 662 | 
	662 | 
	
		  /// This class converts a map to an STL style (unary) functor.
 
	 | 
	| 663 | 
	663 | 
	
		  /// That is it provides an <tt>operator()</tt> to read its values.
 
	 | 
	| 664 | 
	664 | 
	
		  ///
 
	 | 
	| 665 | 
	665 | 
	
		  /// For the sake of convenience it also works as a usual
 
	 | 
	| 666 | 
	666 | 
	
		  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
 
	 | 
	| 667 | 
	667 | 
	
		  /// and the \c Key and \c Value typedefs also exist.
 
	 | 
	| 668 | 
	668 | 
	
		  ///
 
	 | 
	| 669 | 
	669 | 
	
		  /// The simplest way of using this map is through the mapToFunctor()
 
	 | 
	| 670 | 
	670 | 
	
		  /// function.
 
	 | 
	| 671 | 
	671 | 
	
		  ///
 
	 | 
	| 672 | 
	672 | 
	
		  ///\sa FunctorToMap
 
	 | 
	| 673 | 
	673 | 
	
		  template <typename M>
 
	 | 
	| 674 | 
	674 | 
	
		  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 675 | 
	675 | 
	
		    const M &_m;
 
	 | 
	| 676 | 
	676 | 
	
		  public:
 
	 | 
	| 677 | 
	677 | 
	
		    ///\e
 
	 | 
	| 678 | 
	678 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 679 | 
	679 | 
	
		    ///\e
 
	 | 
	| 680 | 
	680 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 681 | 
	681 | 
	
		
 
	 | 
	| 682 | 
	682 | 
	
		    typedef typename M::Key argument_type;
 
	 | 
	| 683 | 
	683 | 
	
		    typedef typename M::Value result_type;
 
	 | 
	| 684 | 
	684 | 
	
		
 
	 | 
	| 685 | 
	685 | 
	
		    /// Constructor
 
	 | 
	| 686 | 
	686 | 
	
		    MapToFunctor(const M &m) : _m(m) {}
	 | 
	| 687 | 
	687 | 
	
		    ///\e
 
	 | 
	| 688 | 
	688 | 
	
		    Value operator()(const Key &k) const { return _m[k]; }
	 | 
	| 689 | 
	689 | 
	
		    ///\e
 
	 | 
	| 690 | 
	690 | 
	
		    Value operator[](const Key &k) const { return _m[k]; }
	 | 
	| 691 | 
	691 | 
	
		  };
 
	 | 
	| 692 | 
	692 | 
	
		
 
	 | 
	| 693 | 
	693 | 
	
		  /// Returns a \c MapToFunctor class
 
	 | 
	| 694 | 
	694 | 
	
		
 
	 | 
	| 695 | 
	695 | 
	
		  /// This function just returns a \c MapToFunctor class.
 
	 | 
	| 696 | 
	696 | 
	
		  /// \relates MapToFunctor
 
	 | 
	| 697 | 
	697 | 
	
		  template<typename M>
 
	 | 
	| 698 | 
	698 | 
	
		  inline MapToFunctor<M> mapToFunctor(const M &m) {
	 | 
	| 699 | 
	699 | 
	
		    return MapToFunctor<M>(m);
 
	 | 
	| 700 | 
	700 | 
	
		  }
 
	 | 
	| 701 | 
	701 | 
	
		
 
	 | 
	| 702 | 
	702 | 
	
		
 
	 | 
	| 703 | 
	703 | 
	
		  /// \brief Map adaptor to convert the \c Value type of a map to
 
	 | 
	| 704 | 
	704 | 
	
		  /// another type using the default conversion.
 
	 | 
	| 705 | 
	705 | 
	
		
 
	 | 
	| 706 | 
	706 | 
	
		  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
 
	 | 
	| 707 | 
	707 | 
	
		  /// "readable map" to another type using the default conversion.
 
	 | 
	| 708 | 
	708 | 
	
		  /// The \c Key type of it is inherited from \c M and the \c Value
 
	 | 
	| 709 | 
	709 | 
	
		  /// type is \c V.
 
	 | 
	| 710 | 
	710 | 
	
		  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
 
	 | 
	| 711 | 
	711 | 
	
		  ///
 
	 | 
	| 712 | 
	712 | 
	
		  /// The simplest way of using this map is through the convertMap()
 
	 | 
	| 713 | 
	713 | 
	
		  /// function.
 
	 | 
	| 714 | 
	714 | 
	
		  template <typename M, typename V>
 
	 | 
	| 715 | 
	715 | 
	
		  class ConvertMap : public MapBase<typename M::Key, V> {
	 | 
	| 716 | 
	716 | 
	
		    const M &_m;
 
	 | 
	| 717 | 
	717 | 
	
		  public:
 
	 | 
	| 718 | 
	718 | 
	
		    ///\e
 
	 | 
	| 719 | 
	719 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 720 | 
	720 | 
	
		    ///\e
 
	 | 
	| 721 | 
	721 | 
	
		    typedef V Value;
 
	 | 
	| 722 | 
	722 | 
	
		
 
	 | 
	| 723 | 
	723 | 
	
		    /// Constructor
 
	 | 
	| 724 | 
	724 | 
	
		
 
	 | 
	| 725 | 
	725 | 
	
		    /// Constructor.
 
	 | 
	| 726 | 
	726 | 
	
		    /// \param m The underlying map.
 
	 | 
	| 727 | 
	727 | 
	
		    ConvertMap(const M &m) : _m(m) {}
	 | 
	| 728 | 
	728 | 
	
		
 
	 | 
	| 729 | 
	729 | 
	
		    ///\e
 
	 | 
	| 730 | 
	730 | 
	
		    Value operator[](const Key &k) const { return _m[k]; }
	 | 
	| 731 | 
	731 | 
	
		  };
 
	 | 
	| 732 | 
	732 | 
	
		
 
	 | 
	| 733 | 
	733 | 
	
		  /// Returns a \c ConvertMap class
 
	 | 
	| 734 | 
	734 | 
	
		
 
	 | 
	| 735 | 
	735 | 
	
		  /// This function just returns a \c ConvertMap class.
 
	 | 
	| 736 | 
	736 | 
	
		  /// \relates ConvertMap
 
	 | 
	| 737 | 
	737 | 
	
		  template<typename V, typename M>
 
	 | 
	| 738 | 
	738 | 
	
		  inline ConvertMap<M, V> convertMap(const M &map) {
	 | 
	| 739 | 
	739 | 
	
		    return ConvertMap<M, V>(map);
 
	 | 
	| 740 | 
	740 | 
	
		  }
 
	 | 
	| 741 | 
	741 | 
	
		
 
	 | 
	| 742 | 
	742 | 
	
		
 
	 | 
	| 743 | 
	743 | 
	
		  /// Applies all map setting operations to two maps
 
	 | 
	| 744 | 
	744 | 
	
		
 
	 | 
	| 745 | 
	745 | 
	
		  /// This map has two \ref concepts::WriteMap "writable map" parameters
 
	 | 
	| 746 | 
	746 | 
	
		  /// and each write request will be passed to both of them.
 
	 | 
	| 747 | 
	747 | 
	
		  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
 
	 | 
	| 748 | 
	748 | 
	
		  /// operations will return the corresponding values of \c M1.
 
	 | 
	| 749 | 
	749 | 
	
		  ///
 
	 | 
	| 750 | 
	750 | 
	
		  /// The \c Key and \c Value types are inherited from \c M1.
 
	 | 
	| 751 | 
	751 | 
	
		  /// The \c Key and \c Value of \c M2 must be convertible from those
 
	 | 
	| 752 | 
	752 | 
	
		  /// of \c M1.
 
	 | 
	| 753 | 
	753 | 
	
		  ///
 
	 | 
	| 754 | 
	754 | 
	
		  /// The simplest way of using this map is through the forkMap()
 
	 | 
	| 755 | 
	755 | 
	
		  /// function.
 
	 | 
	| 756 | 
	756 | 
	
		  template<typename  M1, typename M2>
 
	 | 
	| 757 | 
	757 | 
	
		  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
	 | 
	| 758 | 
	758 | 
	
		    M1 &_m1;
 
	 | 
	| 759 | 
	759 | 
	
		    M2 &_m2;
 
	 | 
	| 760 | 
	760 | 
	
		  public:
 
	 | 
	| 761 | 
	761 | 
	
		    ///\e
 
	 | 
	| 762 | 
	762 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 763 | 
	763 | 
	
		    ///\e
 
	 | 
	| 764 | 
	764 | 
	
		    typedef typename M1::Value Value;
 
	 | 
	| 765 | 
	765 | 
	
		
 
	 | 
	| 766 | 
	766 | 
	
		    /// Constructor
 
	 | 
	| 767 | 
	767 | 
	
		    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 768 | 
	768 | 
	
		    /// Returns the value associated with the given key in the first map.
 
	 | 
	| 769 | 
	769 | 
	
		    Value operator[](const Key &k) const { return _m1[k]; }
	 | 
	| 770 | 
	770 | 
	
		    /// Sets the value associated with the given key in both maps.
 
	 | 
	| 771 | 
	771 | 
	
		    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
	 | 
	| 772 | 
	772 | 
	
		  };
 
	 | 
	| 773 | 
	773 | 
	
		
 
	 | 
	| 774 | 
	774 | 
	
		  /// Returns a \c ForkMap class
 
	 | 
	| 775 | 
	775 | 
	
		
 
	 | 
	| 776 | 
	776 | 
	
		  /// This function just returns a \c ForkMap class.
 
	 | 
	| 777 | 
	777 | 
	
		  /// \relates ForkMap
 
	 | 
	| 778 | 
	778 | 
	
		  template <typename M1, typename M2>
 
	 | 
	| 779 | 
	779 | 
	
		  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
	 | 
	| 780 | 
	780 | 
	
		    return ForkMap<M1,M2>(m1,m2);
 
	 | 
	| 781 | 
	781 | 
	
		  }
 
	 | 
	| 782 | 
	782 | 
	
		
 
	 | 
	| 783 | 
	783 | 
	
		
 
	 | 
	| 784 | 
	784 | 
	
		  /// Sum of two maps
 
	 | 
	| 785 | 
	785 | 
	
		
 
	 | 
	| 786 | 
	786 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the sum
 
	 | 
	| 787 | 
	787 | 
	
		  /// of the values of the two given maps.
 
	 | 
	| 788 | 
	788 | 
	
		  /// Its \c Key and \c Value types are inherited from \c M1.
 
	 | 
	| 789 | 
	789 | 
	
		  /// The \c Key and \c Value of \c M2 must be convertible to those of
 
	 | 
	| 790 | 
	790 | 
	
		  /// \c M1.
 
	 | 
	| 791 | 
	791 | 
	
		  ///
 
	 | 
	| 792 | 
	792 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 793 | 
	793 | 
	
		  /// \code
 
	 | 
	| 794 | 
	794 | 
	
		  ///   AddMap<M1,M2> am(m1,m2);
 
	 | 
	| 795 | 
	795 | 
	
		  /// \endcode
 
	 | 
	| 796 | 
	796 | 
	
		  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
 
	 | 
	| 797 | 
	797 | 
	
		  ///
 
	 | 
	| 798 | 
	798 | 
	
		  /// The simplest way of using this map is through the addMap()
 
	 | 
	| 799 | 
	799 | 
	
		  /// function.
 
	 | 
	| 800 | 
	800 | 
	
		  ///
 
	 | 
	| 801 | 
	801 | 
	
		  /// \sa SubMap, MulMap, DivMap
 
	 | 
	| 802 | 
	802 | 
	
		  /// \sa ShiftMap, ShiftWriteMap
 
	 | 
	| 803 | 
	803 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 804 | 
	804 | 
	
		  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
	 | 
	| 805 | 
	805 | 
	
		    const M1 &_m1;
 
	 | 
	| 806 | 
	806 | 
	
		    const M2 &_m2;
 
	 | 
	| 807 | 
	807 | 
	
		  public:
 
	 | 
	| 808 | 
	808 | 
	
		    ///\e
 
	 | 
	| 809 | 
	809 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 810 | 
	810 | 
	
		    ///\e
 
	 | 
	| 811 | 
	811 | 
	
		    typedef typename M1::Value Value;
 
	 | 
	| 812 | 
	812 | 
	
		
 
	 | 
	| 813 | 
	813 | 
	
		    /// Constructor
 
	 | 
	| 814 | 
	814 | 
	
		    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 815 | 
	815 | 
	
		    ///\e
 
	 | 
	| 816 | 
	816 | 
	
		    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
	 | 
	| 817 | 
	817 | 
	
		  };
 
	 | 
	| 818 | 
	818 | 
	
		
 
	 | 
	| 819 | 
	819 | 
	
		  /// Returns an \c AddMap class
 
	 | 
	| 820 | 
	820 | 
	
		
 
	 | 
	| 821 | 
	821 | 
	
		  /// This function just returns an \c AddMap class.
 
	 | 
	| 822 | 
	822 | 
	
		  ///
 
	 | 
	| 823 | 
	823 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c double
 
	 | 
	| 824 | 
	824 | 
	
		  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 825 | 
	825 | 
	
		  /// <tt>m1[x]+m2[x]</tt>.
 
	 | 
	| 826 | 
	826 | 
	
		  ///
 
	 | 
	| 827 | 
	827 | 
	
		  /// \relates AddMap
 
	 | 
	| 828 | 
	828 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 829 | 
	829 | 
	
		  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
	 | 
	| 830 | 
	830 | 
	
		    return AddMap<M1, M2>(m1,m2);
 
	 | 
	| 831 | 
	831 | 
	
		  }
 
	 | 
	| 832 | 
	832 | 
	
		
 
	 | 
	| 833 | 
	833 | 
	
		
 
	 | 
	| 834 | 
	834 | 
	
		  /// Difference of two maps
 
	 | 
	| 835 | 
	835 | 
	
		
 
	 | 
	| 836 | 
	836 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the difference
 
	 | 
	| 837 | 
	837 | 
	
		  /// of the values of the two given maps.
 
	 | 
	| 838 | 
	838 | 
	
		  /// Its \c Key and \c Value types are inherited from \c M1.
 
	 | 
	| 839 | 
	839 | 
	
		  /// The \c Key and \c Value of \c M2 must be convertible to those of
 
	 | 
	| 840 | 
	840 | 
	
		  /// \c M1.
 
	 | 
	| 841 | 
	841 | 
	
		  ///
 
	 | 
	| 842 | 
	842 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 843 | 
	843 | 
	
		  /// \code
 
	 | 
	| 844 | 
	844 | 
	
		  ///   SubMap<M1,M2> sm(m1,m2);
 
	 | 
	| 845 | 
	845 | 
	
		  /// \endcode
 
	 | 
	| 846 | 
	846 | 
	
		  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
 
	 | 
	| 847 | 
	847 | 
	
		  ///
 
	 | 
	| 848 | 
	848 | 
	
		  /// The simplest way of using this map is through the subMap()
 
	 | 
	| 849 | 
	849 | 
	
		  /// function.
 
	 | 
	| 850 | 
	850 | 
	
		  ///
 
	 | 
	| 851 | 
	851 | 
	
		  /// \sa AddMap, MulMap, DivMap
 
	 | 
	| 852 | 
	852 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 853 | 
	853 | 
	
		  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
	 | 
	| 854 | 
	854 | 
	
		    const M1 &_m1;
 
	 | 
	| 855 | 
	855 | 
	
		    const M2 &_m2;
 
	 | 
	| 856 | 
	856 | 
	
		  public:
 
	 | 
	| 857 | 
	857 | 
	
		    ///\e
 
	 | 
	| 858 | 
	858 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 859 | 
	859 | 
	
		    ///\e
 
	 | 
	| 860 | 
	860 | 
	
		    typedef typename M1::Value Value;
 
	 | 
	| 861 | 
	861 | 
	
		
 
	 | 
	| 862 | 
	862 | 
	
		    /// Constructor
 
	 | 
	| 863 | 
	863 | 
	
		    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 864 | 
	864 | 
	
		    ///\e
 
	 | 
	| 865 | 
	865 | 
	
		    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
	 | 
	| 866 | 
	866 | 
	
		  };
 
	 | 
	| 867 | 
	867 | 
	
		
 
	 | 
	| 868 | 
	868 | 
	
		  /// Returns a \c SubMap class
 
	 | 
	| 869 | 
	869 | 
	
		
 
	 | 
	| 870 | 
	870 | 
	
		  /// This function just returns a \c SubMap class.
 
	 | 
	| 871 | 
	871 | 
	
		  ///
 
	 | 
	| 872 | 
	872 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c double
 
	 | 
	| 873 | 
	873 | 
	
		  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 874 | 
	874 | 
	
		  /// <tt>m1[x]-m2[x]</tt>.
 
	 | 
	| 875 | 
	875 | 
	
		  ///
 
	 | 
	| 876 | 
	876 | 
	
		  /// \relates SubMap
 
	 | 
	| 877 | 
	877 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 878 | 
	878 | 
	
		  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
	 | 
	| 879 | 
	879 | 
	
		    return SubMap<M1, M2>(m1,m2);
 
	 | 
	| 880 | 
	880 | 
	
		  }
 
	 | 
	| 881 | 
	881 | 
	
		
 
	 | 
	| 882 | 
	882 | 
	
		
 
	 | 
	| 883 | 
	883 | 
	
		  /// Product of two maps
 
	 | 
	| 884 | 
	884 | 
	
		
 
	 | 
	| 885 | 
	885 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the product
 
	 | 
	| 886 | 
	886 | 
	
		  /// of the values of the two given maps.
 
	 | 
	| 887 | 
	887 | 
	
		  /// Its \c Key and \c Value types are inherited from \c M1.
 
	 | 
	| 888 | 
	888 | 
	
		  /// The \c Key and \c Value of \c M2 must be convertible to those of
 
	 | 
	| 889 | 
	889 | 
	
		  /// \c M1.
 
	 | 
	| 890 | 
	890 | 
	
		  ///
 
	 | 
	| 891 | 
	891 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 892 | 
	892 | 
	
		  /// \code
 
	 | 
	| 893 | 
	893 | 
	
		  ///   MulMap<M1,M2> mm(m1,m2);
 
	 | 
	| 894 | 
	894 | 
	
		  /// \endcode
 
	 | 
	| 895 | 
	895 | 
	
		  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
 
	 | 
	| 896 | 
	896 | 
	
		  ///
 
	 | 
	| 897 | 
	897 | 
	
		  /// The simplest way of using this map is through the mulMap()
 
	 | 
	| 898 | 
	898 | 
	
		  /// function.
 
	 | 
	| 899 | 
	899 | 
	
		  ///
 
	 | 
	| 900 | 
	900 | 
	
		  /// \sa AddMap, SubMap, DivMap
 
	 | 
	| 901 | 
	901 | 
	
		  /// \sa ScaleMap, ScaleWriteMap
 
	 | 
	| 902 | 
	902 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 903 | 
	903 | 
	
		  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
	 | 
	| 904 | 
	904 | 
	
		    const M1 &_m1;
 
	 | 
	| 905 | 
	905 | 
	
		    const M2 &_m2;
 
	 | 
	| 906 | 
	906 | 
	
		  public:
 
	 | 
	| 907 | 
	907 | 
	
		    ///\e
 
	 | 
	| 908 | 
	908 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 909 | 
	909 | 
	
		    ///\e
 
	 | 
	| 910 | 
	910 | 
	
		    typedef typename M1::Value Value;
 
	 | 
	| 911 | 
	911 | 
	
		
 
	 | 
	| 912 | 
	912 | 
	
		    /// Constructor
 
	 | 
	| 913 | 
	913 | 
	
		    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 914 | 
	914 | 
	
		    ///\e
 
	 | 
	| 915 | 
	915 | 
	
		    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
	 | 
	| 916 | 
	916 | 
	
		  };
 
	 | 
	| 917 | 
	917 | 
	
		
 
	 | 
	| 918 | 
	918 | 
	
		  /// Returns a \c MulMap class
 
	 | 
	| 919 | 
	919 | 
	
		
 
	 | 
	| 920 | 
	920 | 
	
		  /// This function just returns a \c MulMap class.
 
	 | 
	| 921 | 
	921 | 
	
		  ///
 
	 | 
	| 922 | 
	922 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c double
 
	 | 
	| 923 | 
	923 | 
	
		  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 924 | 
	924 | 
	
		  /// <tt>m1[x]*m2[x]</tt>.
 
	 | 
	| 925 | 
	925 | 
	
		  ///
 
	 | 
	| 926 | 
	926 | 
	
		  /// \relates MulMap
 
	 | 
	| 927 | 
	927 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 928 | 
	928 | 
	
		  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
	 | 
	| 929 | 
	929 | 
	
		    return MulMap<M1, M2>(m1,m2);
 
	 | 
	| 930 | 
	930 | 
	
		  }
 
	 | 
	| 931 | 
	931 | 
	
		
 
	 | 
	| 932 | 
	932 | 
	
		
 
	 | 
	| 933 | 
	933 | 
	
		  /// Quotient of two maps
 
	 | 
	| 934 | 
	934 | 
	
		
 
	 | 
	| 935 | 
	935 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the quotient
 
	 | 
	| 936 | 
	936 | 
	
		  /// of the values of the two given maps.
 
	 | 
	| 937 | 
	937 | 
	
		  /// Its \c Key and \c Value types are inherited from \c M1.
 
	 | 
	| 938 | 
	938 | 
	
		  /// The \c Key and \c Value of \c M2 must be convertible to those of
 
	 | 
	| 939 | 
	939 | 
	
		  /// \c M1.
 
	 | 
	| 940 | 
	940 | 
	
		  ///
 
	 | 
	| 941 | 
	941 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 942 | 
	942 | 
	
		  /// \code
 
	 | 
	| 943 | 
	943 | 
	
		  ///   DivMap<M1,M2> dm(m1,m2);
 
	 | 
	| 944 | 
	944 | 
	
		  /// \endcode
 
	 | 
	| 945 | 
	945 | 
	
		  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
 
	 | 
	| 946 | 
	946 | 
	
		  ///
 
	 | 
	| 947 | 
	947 | 
	
		  /// The simplest way of using this map is through the divMap()
 
	 | 
	| 948 | 
	948 | 
	
		  /// function.
 
	 | 
	| 949 | 
	949 | 
	
		  ///
 
	 | 
	| 950 | 
	950 | 
	
		  /// \sa AddMap, SubMap, MulMap
 
	 | 
	| 951 | 
	951 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 952 | 
	952 | 
	
		  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
	 | 
	| 953 | 
	953 | 
	
		    const M1 &_m1;
 
	 | 
	| 954 | 
	954 | 
	
		    const M2 &_m2;
 
	 | 
	| 955 | 
	955 | 
	
		  public:
 
	 | 
	| 956 | 
	956 | 
	
		    ///\e
 
	 | 
	| 957 | 
	957 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 958 | 
	958 | 
	
		    ///\e
 
	 | 
	| 959 | 
	959 | 
	
		    typedef typename M1::Value Value;
 
	 | 
	| 960 | 
	960 | 
	
		
 
	 | 
	| 961 | 
	961 | 
	
		    /// Constructor
 
	 | 
	| 962 | 
	962 | 
	
		    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 963 | 
	963 | 
	
		    ///\e
 
	 | 
	| 964 | 
	964 | 
	
		    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
	 | 
	| 965 | 
	965 | 
	
		  };
 
	 | 
	| 966 | 
	966 | 
	
		
 
	 | 
	| 967 | 
	967 | 
	
		  /// Returns a \c DivMap class
 
	 | 
	| 968 | 
	968 | 
	
		
 
	 | 
	| 969 | 
	969 | 
	
		  /// This function just returns a \c DivMap class.
 
	 | 
	| 970 | 
	970 | 
	
		  ///
 
	 | 
	| 971 | 
	971 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c double
 
	 | 
	| 972 | 
	972 | 
	
		  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 973 | 
	973 | 
	
		  /// <tt>m1[x]/m2[x]</tt>.
 
	 | 
	| 974 | 
	974 | 
	
		  ///
 
	 | 
	| 975 | 
	975 | 
	
		  /// \relates DivMap
 
	 | 
	| 976 | 
	976 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 977 | 
	977 | 
	
		  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
	 | 
	| 978 | 
	978 | 
	
		    return DivMap<M1, M2>(m1,m2);
 
	 | 
	| 979 | 
	979 | 
	
		  }
 
	 | 
	| 980 | 
	980 | 
	
		
 
	 | 
	| 981 | 
	981 | 
	
		
 
	 | 
	| 982 | 
	982 | 
	
		  /// Shifts a map with a constant.
 
	 | 
	| 983 | 
	983 | 
	
		
 
	 | 
	| 984 | 
	984 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the sum of
 
	 | 
	| 985 | 
	985 | 
	
		  /// the given map and a constant value (i.e. it shifts the map with
 
	 | 
	| 986 | 
	986 | 
	
		  /// the constant). Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 987 | 
	987 | 
	
		  ///
 
	 | 
	| 988 | 
	988 | 
	
		  /// Actually,
 
	 | 
	| 989 | 
	989 | 
	
		  /// \code
 
	 | 
	| 990 | 
	990 | 
	
		  ///   ShiftMap<M> sh(m,v);
 
	 | 
	| 991 | 
	991 | 
	
		  /// \endcode
 
	 | 
	| 992 | 
	992 | 
	
		  /// is equivalent to
 
	 | 
	| 993 | 
	993 | 
	
		  /// \code
 
	 | 
	| 994 | 
	994 | 
	
		  ///   ConstMap<M::Key, M::Value> cm(v);
 
	 | 
	| 995 | 
	995 | 
	
		  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
 
	 | 
	| 996 | 
	996 | 
	
		  /// \endcode
 
	 | 
	| 997 | 
	997 | 
	
		  ///
 
	 | 
	| 998 | 
	998 | 
	
		  /// The simplest way of using this map is through the shiftMap()
 
	 | 
	| 999 | 
	999 | 
	
		  /// function.
 
	 | 
	| 1000 | 
	1000 | 
	
		  ///
 
	 | 
	| 1001 | 
	1001 | 
	
		  /// \sa ShiftWriteMap
 
	 | 
	| 1002 | 
	1002 | 
	
		  template<typename M, typename C = typename M::Value>
 
	 | 
	| 1003 | 
	1003 | 
	
		  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1004 | 
	1004 | 
	
		    const M &_m;
 
	 | 
	| 1005 | 
	1005 | 
	
		    C _v;
 
	 | 
	| 1006 | 
	1006 | 
	
		  public:
 
	 | 
	| 1007 | 
	1007 | 
	
		    ///\e
 
	 | 
	| 1008 | 
	1008 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1009 | 
	1009 | 
	
		    ///\e
 
	 | 
	| 1010 | 
	1010 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1011 | 
	1011 | 
	
		
 
	 | 
	| 1012 | 
	1012 | 
	
		    /// Constructor
 
	 | 
	| 1013 | 
	1013 | 
	
		
 
	 | 
	| 1014 | 
	1014 | 
	
		    /// Constructor.
 
	 | 
	| 1015 | 
	1015 | 
	
		    /// \param m The undelying map.
 
	 | 
	| 1016 | 
	1016 | 
	
		    /// \param v The constant value.
 
	 | 
	| 1017 | 
	1017 | 
	
		    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
	 | 
	| 1018 | 
	1018 | 
	
		    ///\e
 
	 | 
	| 1019 | 
	1019 | 
	
		    Value operator[](const Key &k) const { return _m[k]+_v; }
	 | 
	| 1020 | 
	1020 | 
	
		  };
 
	 | 
	| 1021 | 
	1021 | 
	
		
 
	 | 
	| 1022 | 
	1022 | 
	
		  /// Shifts a map with a constant (read-write version).
 
	 | 
	| 1023 | 
	1023 | 
	
		
 
	 | 
	| 1024 | 
	1024 | 
	
		  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
 
	 | 
	| 1025 | 
	1025 | 
	
		  /// of the given map and a constant value (i.e. it shifts the map with
 
	 | 
	| 1026 | 
	1026 | 
	
		  /// the constant). Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 1027 | 
	1027 | 
	
		  /// It makes also possible to write the map.
 
	 | 
	| 1028 | 
	1028 | 
	
		  ///
 
	 | 
	| 1029 | 
	1029 | 
	
		  /// The simplest way of using this map is through the shiftWriteMap()
 
	 | 
	| 1030 | 
	1030 | 
	
		  /// function.
 
	 | 
	| 1031 | 
	1031 | 
	
		  ///
 
	 | 
	| 1032 | 
	1032 | 
	
		  /// \sa ShiftMap
 
	 | 
	| 1033 | 
	1033 | 
	
		  template<typename M, typename C = typename M::Value>
 
	 | 
	| 1034 | 
	1034 | 
	
		  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1035 | 
	1035 | 
	
		    M &_m;
 
	 | 
	| 1036 | 
	1036 | 
	
		    C _v;
 
	 | 
	| 1037 | 
	1037 | 
	
		  public:
 
	 | 
	| 1038 | 
	1038 | 
	
		    ///\e
 
	 | 
	| 1039 | 
	1039 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1040 | 
	1040 | 
	
		    ///\e
 
	 | 
	| 1041 | 
	1041 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1042 | 
	1042 | 
	
		
 
	 | 
	| 1043 | 
	1043 | 
	
		    /// Constructor
 
	 | 
	| 1044 | 
	1044 | 
	
		
 
	 | 
	| 1045 | 
	1045 | 
	
		    /// Constructor.
 
	 | 
	| 1046 | 
	1046 | 
	
		    /// \param m The undelying map.
 
	 | 
	| 1047 | 
	1047 | 
	
		    /// \param v The constant value.
 
	 | 
	| 1048 | 
	1048 | 
	
		    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
	 | 
	| 1049 | 
	1049 | 
	
		    ///\e
 
	 | 
	| 1050 | 
	1050 | 
	
		    Value operator[](const Key &k) const { return _m[k]+_v; }
	 | 
	| 1051 | 
	1051 | 
	
		    ///\e
 
	 | 
	| 1052 | 
	1052 | 
	
		    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
	 | 
	| 1053 | 
	1053 | 
	
		  };
 
	 | 
	| 1054 | 
	1054 | 
	
		
 
	 | 
	| 1055 | 
	1055 | 
	
		  /// Returns a \c ShiftMap class
 
	 | 
	| 1056 | 
	1056 | 
	
		
 
	 | 
	| 1057 | 
	1057 | 
	
		  /// This function just returns a \c ShiftMap class.
 
	 | 
	| 1058 | 
	1058 | 
	
		  ///
 
	 | 
	| 1059 | 
	1059 | 
	
		  /// For example, if \c m is a map with \c double values and \c v is
 
	 | 
	| 1060 | 
	1060 | 
	
		  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
 
	 | 
	| 1061 | 
	1061 | 
	
		  /// <tt>m[x]+v</tt>.
 
	 | 
	| 1062 | 
	1062 | 
	
		  ///
 
	 | 
	| 1063 | 
	1063 | 
	
		  /// \relates ShiftMap
 
	 | 
	| 1064 | 
	1064 | 
	
		  template<typename M, typename C>
 
	 | 
	| 1065 | 
	1065 | 
	
		  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
	 | 
	| 1066 | 
	1066 | 
	
		    return ShiftMap<M, C>(m,v);
 
	 | 
	| 1067 | 
	1067 | 
	
		  }
 
	 | 
	| 1068 | 
	1068 | 
	
		
 
	 | 
	| 1069 | 
	1069 | 
	
		  /// Returns a \c ShiftWriteMap class
 
	 | 
	| 1070 | 
	1070 | 
	
		
 
	 | 
	| 1071 | 
	1071 | 
	
		  /// This function just returns a \c ShiftWriteMap class.
 
	 | 
	| 1072 | 
	1072 | 
	
		  ///
 
	 | 
	| 1073 | 
	1073 | 
	
		  /// For example, if \c m is a map with \c double values and \c v is
 
	 | 
	| 1074 | 
	1074 | 
	
		  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
 
	 | 
	| 1075 | 
	1075 | 
	
		  /// <tt>m[x]+v</tt>.
 
	 | 
	| 1076 | 
	1076 | 
	
		  /// Moreover it makes also possible to write the map.
 
	 | 
	| 1077 | 
	1077 | 
	
		  ///
 
	 | 
	| 1078 | 
	1078 | 
	
		  /// \relates ShiftWriteMap
 
	 | 
	| 1079 | 
	1079 | 
	
		  template<typename M, typename C>
 
	 | 
	| 1080 | 
	1080 | 
	
		  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
	 | 
	| 1081 | 
	1081 | 
	
		    return ShiftWriteMap<M, C>(m,v);
 
	 | 
	| 1082 | 
	1082 | 
	
		  }
 
	 | 
	| 1083 | 
	1083 | 
	
		
 
	 | 
	| 1084 | 
	1084 | 
	
		
 
	 | 
	| 1085 | 
	1085 | 
	
		  /// Scales a map with a constant.
 
	 | 
	| 1086 | 
	1086 | 
	
		
 
	 | 
	| 1087 | 
	1087 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the value of
 
	 | 
	| 1088 | 
	1088 | 
	
		  /// the given map multiplied from the left side with a constant value.
 
	 | 
	| 1089 | 
	1089 | 
	
		  /// Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 1090 | 
	1090 | 
	
		  ///
 
	 | 
	| 1091 | 
	1091 | 
	
		  /// Actually,
 
	 | 
	| 1092 | 
	1092 | 
	
		  /// \code
 
	 | 
	| 1093 | 
	1093 | 
	
		  ///   ScaleMap<M> sc(m,v);
 
	 | 
	| 1094 | 
	1094 | 
	
		  /// \endcode
 
	 | 
	| 1095 | 
	1095 | 
	
		  /// is equivalent to
 
	 | 
	| 1096 | 
	1096 | 
	
		  /// \code
 
	 | 
	| 1097 | 
	1097 | 
	
		  ///   ConstMap<M::Key, M::Value> cm(v);
 
	 | 
	| 1098 | 
	1098 | 
	
		  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
 
	 | 
	| 1099 | 
	1099 | 
	
		  /// \endcode
 
	 | 
	| 1100 | 
	1100 | 
	
		  ///
 
	 | 
	| 1101 | 
	1101 | 
	
		  /// The simplest way of using this map is through the scaleMap()
 
	 | 
	| 1102 | 
	1102 | 
	
		  /// function.
 
	 | 
	| 1103 | 
	1103 | 
	
		  ///
 
	 | 
	| 1104 | 
	1104 | 
	
		  /// \sa ScaleWriteMap
 
	 | 
	| 1105 | 
	1105 | 
	
		  template<typename M, typename C = typename M::Value>
 
	 | 
	| 1106 | 
	1106 | 
	
		  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1107 | 
	1107 | 
	
		    const M &_m;
 
	 | 
	| 1108 | 
	1108 | 
	
		    C _v;
 
	 | 
	| 1109 | 
	1109 | 
	
		  public:
 
	 | 
	| 1110 | 
	1110 | 
	
		    ///\e
 
	 | 
	| 1111 | 
	1111 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1112 | 
	1112 | 
	
		    ///\e
 
	 | 
	| 1113 | 
	1113 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1114 | 
	1114 | 
	
		
 
	 | 
	| 1115 | 
	1115 | 
	
		    /// Constructor
 
	 | 
	| 1116 | 
	1116 | 
	
		
 
	 | 
	| 1117 | 
	1117 | 
	
		    /// Constructor.
 
	 | 
	| 1118 | 
	1118 | 
	
		    /// \param m The undelying map.
 
	 | 
	| 1119 | 
	1119 | 
	
		    /// \param v The constant value.
 
	 | 
	| 1120 | 
	1120 | 
	
		    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
	 | 
	| 1121 | 
	1121 | 
	
		    ///\e
 
	 | 
	| 1122 | 
	1122 | 
	
		    Value operator[](const Key &k) const { return _v*_m[k]; }
	 | 
	| 1123 | 
	1123 | 
	
		  };
 
	 | 
	| 1124 | 
	1124 | 
	
		
 
	 | 
	| 1125 | 
	1125 | 
	
		  /// Scales a map with a constant (read-write version).
 
	 | 
	| 1126 | 
	1126 | 
	
		
 
	 | 
	| 1127 | 
	1127 | 
	
		  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
 
	 | 
	| 1128 | 
	1128 | 
	
		  /// the given map multiplied from the left side with a constant value.
 
	 | 
	| 1129 | 
	1129 | 
	
		  /// Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 1130 | 
	1130 | 
	
		  /// It can also be used as write map if the \c / operator is defined
 
	 | 
	| 1131 | 
	1131 | 
	
		  /// between \c Value and \c C and the given multiplier is not zero.
 
	 | 
	| 1132 | 
	1132 | 
	
		  ///
 
	 | 
	| 1133 | 
	1133 | 
	
		  /// The simplest way of using this map is through the scaleWriteMap()
 
	 | 
	| 1134 | 
	1134 | 
	
		  /// function.
 
	 | 
	| 1135 | 
	1135 | 
	
		  ///
 
	 | 
	| 1136 | 
	1136 | 
	
		  /// \sa ScaleMap
 
	 | 
	| 1137 | 
	1137 | 
	
		  template<typename M, typename C = typename M::Value>
 
	 | 
	| 1138 | 
	1138 | 
	
		  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1139 | 
	1139 | 
	
		    M &_m;
 
	 | 
	| 1140 | 
	1140 | 
	
		    C _v;
 
	 | 
	| 1141 | 
	1141 | 
	
		  public:
 
	 | 
	| 1142 | 
	1142 | 
	
		    ///\e
 
	 | 
	| 1143 | 
	1143 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1144 | 
	1144 | 
	
		    ///\e
 
	 | 
	| 1145 | 
	1145 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1146 | 
	1146 | 
	
		
 
	 | 
	| 1147 | 
	1147 | 
	
		    /// Constructor
 
	 | 
	| 1148 | 
	1148 | 
	
		
 
	 | 
	| 1149 | 
	1149 | 
	
		    /// Constructor.
 
	 | 
	| 1150 | 
	1150 | 
	
		    /// \param m The undelying map.
 
	 | 
	| 1151 | 
	1151 | 
	
		    /// \param v The constant value.
 
	 | 
	| 1152 | 
	1152 | 
	
		    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
	 | 
	| 1153 | 
	1153 | 
	
		    ///\e
 
	 | 
	| 1154 | 
	1154 | 
	
		    Value operator[](const Key &k) const { return _v*_m[k]; }
	 | 
	| 1155 | 
	1155 | 
	
		    ///\e
 
	 | 
	| 1156 | 
	1156 | 
	
		    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
	 | 
	| 1157 | 
	1157 | 
	
		  };
 
	 | 
	| 1158 | 
	1158 | 
	
		
 
	 | 
	| 1159 | 
	1159 | 
	
		  /// Returns a \c ScaleMap class
 
	 | 
	| 1160 | 
	1160 | 
	
		
 
	 | 
	| 1161 | 
	1161 | 
	
		  /// This function just returns a \c ScaleMap class.
 
	 | 
	| 1162 | 
	1162 | 
	
		  ///
 
	 | 
	| 1163 | 
	1163 | 
	
		  /// For example, if \c m is a map with \c double values and \c v is
 
	 | 
	| 1164 | 
	1164 | 
	
		  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
 
	 | 
	| 1165 | 
	1165 | 
	
		  /// <tt>v*m[x]</tt>.
 
	 | 
	| 1166 | 
	1166 | 
	
		  ///
 
	 | 
	| 1167 | 
	1167 | 
	
		  /// \relates ScaleMap
 
	 | 
	| 1168 | 
	1168 | 
	
		  template<typename M, typename C>
 
	 | 
	| 1169 | 
	1169 | 
	
		  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
	 | 
	| 1170 | 
	1170 | 
	
		    return ScaleMap<M, C>(m,v);
 
	 | 
	| 1171 | 
	1171 | 
	
		  }
 
	 | 
	| 1172 | 
	1172 | 
	
		
 
	 | 
	| 1173 | 
	1173 | 
	
		  /// Returns a \c ScaleWriteMap class
 
	 | 
	| 1174 | 
	1174 | 
	
		
 
	 | 
	| 1175 | 
	1175 | 
	
		  /// This function just returns a \c ScaleWriteMap class.
 
	 | 
	| 1176 | 
	1176 | 
	
		  ///
 
	 | 
	| 1177 | 
	1177 | 
	
		  /// For example, if \c m is a map with \c double values and \c v is
 
	 | 
	| 1178 | 
	1178 | 
	
		  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
 
	 | 
	| 1179 | 
	1179 | 
	
		  /// <tt>v*m[x]</tt>.
 
	 | 
	| 1180 | 
	1180 | 
	
		  /// Moreover it makes also possible to write the map.
 
	 | 
	| 1181 | 
	1181 | 
	
		  ///
 
	 | 
	| 1182 | 
	1182 | 
	
		  /// \relates ScaleWriteMap
 
	 | 
	| 1183 | 
	1183 | 
	
		  template<typename M, typename C>
 
	 | 
	| 1184 | 
	1184 | 
	
		  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
	 | 
	| 1185 | 
	1185 | 
	
		    return ScaleWriteMap<M, C>(m,v);
 
	 | 
	| 1186 | 
	1186 | 
	
		  }
 
	 | 
	| 1187 | 
	1187 | 
	
		
 
	 | 
	| 1188 | 
	1188 | 
	
		
 
	 | 
	| 1189 | 
	1189 | 
	
		  /// Negative of a map
 
	 | 
	| 1190 | 
	1190 | 
	
		
 
	 | 
	| 1191 | 
	1191 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the negative
 
	 | 
	| 1192 | 
	1192 | 
	
		  /// of the values of the given map (using the unary \c - operator).
 
	 | 
	| 1193 | 
	1193 | 
	
		  /// Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 1194 | 
	1194 | 
	
		  ///
 
	 | 
	| 1195 | 
	1195 | 
	
		  /// If M::Value is \c int, \c double etc., then
 
	 | 
	| 1196 | 
	1196 | 
	
		  /// \code
 
	 | 
	| 1197 | 
	1197 | 
	
		  ///   NegMap<M> neg(m);
 
	 | 
	| 1198 | 
	1198 | 
	
		  /// \endcode
 
	 | 
	| 1199 | 
	1199 | 
	
		  /// is equivalent to
 
	 | 
	| 1200 | 
	1200 | 
	
		  /// \code
 
	 | 
	| 1201 | 
	1201 | 
	
		  ///   ScaleMap<M> neg(m,-1);
 
	 | 
	| 1202 | 
	1202 | 
	
		  /// \endcode
 
	 | 
	| 1203 | 
	1203 | 
	
		  ///
 
	 | 
	| 1204 | 
	1204 | 
	
		  /// The simplest way of using this map is through the negMap()
 
	 | 
	| 1205 | 
	1205 | 
	
		  /// function.
 
	 | 
	| 1206 | 
	1206 | 
	
		  ///
 
	 | 
	| 1207 | 
	1207 | 
	
		  /// \sa NegWriteMap
 
	 | 
	| 1208 | 
	1208 | 
	
		  template<typename M>
 
	 | 
	| 1209 | 
	1209 | 
	
		  class NegMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1210 | 
	1210 | 
	
		    const M& _m;
 
	 | 
	| 1211 | 
	1211 | 
	
		  public:
 
	 | 
	| 1212 | 
	1212 | 
	
		    ///\e
 
	 | 
	| 1213 | 
	1213 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1214 | 
	1214 | 
	
		    ///\e
 
	 | 
	| 1215 | 
	1215 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1216 | 
	1216 | 
	
		
 
	 | 
	| 1217 | 
	1217 | 
	
		    /// Constructor
 
	 | 
	| 1218 | 
	1218 | 
	
		    NegMap(const M &m) : _m(m) {}
	 | 
	| 1219 | 
	1219 | 
	
		    ///\e
 
	 | 
	| 1220 | 
	1220 | 
	
		    Value operator[](const Key &k) const { return -_m[k]; }
	 | 
	| 1221 | 
	1221 | 
	
		  };
 
	 | 
	| 1222 | 
	1222 | 
	
		
 
	 | 
	| 1223 | 
	1223 | 
	
		  /// Negative of a map (read-write version)
 
	 | 
	| 1224 | 
	1224 | 
	
		
 
	 | 
	| 1225 | 
	1225 | 
	
		  /// This \ref concepts::ReadWriteMap "read-write map" returns the
 
	 | 
	| 1226 | 
	1226 | 
	
		  /// negative of the values of the given map (using the unary \c -
 
	 | 
	| 1227 | 
	1227 | 
	
		  /// operator).
 
	 | 
	| 1228 | 
	1228 | 
	
		  /// Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 1229 | 
	1229 | 
	
		  /// It makes also possible to write the map.
 
	 | 
	| 1230 | 
	1230 | 
	
		  ///
 
	 | 
	| 1231 | 
	1231 | 
	
		  /// If M::Value is \c int, \c double etc., then
 
	 | 
	| 1232 | 
	1232 | 
	
		  /// \code
 
	 | 
	| 1233 | 
	1233 | 
	
		  ///   NegWriteMap<M> neg(m);
 
	 | 
	| 1234 | 
	1234 | 
	
		  /// \endcode
 
	 | 
	| 1235 | 
	1235 | 
	
		  /// is equivalent to
 
	 | 
	| 1236 | 
	1236 | 
	
		  /// \code
 
	 | 
	| 1237 | 
	1237 | 
	
		  ///   ScaleWriteMap<M> neg(m,-1);
 
	 | 
	| 1238 | 
	1238 | 
	
		  /// \endcode
 
	 | 
	| 1239 | 
	1239 | 
	
		  ///
 
	 | 
	| 1240 | 
	1240 | 
	
		  /// The simplest way of using this map is through the negWriteMap()
 
	 | 
	| 1241 | 
	1241 | 
	
		  /// function.
 
	 | 
	| 1242 | 
	1242 | 
	
		  ///
 
	 | 
	| 1243 | 
	1243 | 
	
		  /// \sa NegMap
 
	 | 
	| 1244 | 
	1244 | 
	
		  template<typename M>
 
	 | 
	| 1245 | 
	1245 | 
	
		  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1246 | 
	1246 | 
	
		    M &_m;
 
	 | 
	| 1247 | 
	1247 | 
	
		  public:
 
	 | 
	| 1248 | 
	1248 | 
	
		    ///\e
 
	 | 
	| 1249 | 
	1249 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1250 | 
	1250 | 
	
		    ///\e
 
	 | 
	| 1251 | 
	1251 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1252 | 
	1252 | 
	
		
 
	 | 
	| 1253 | 
	1253 | 
	
		    /// Constructor
 
	 | 
	| 1254 | 
	1254 | 
	
		    NegWriteMap(M &m) : _m(m) {}
	 | 
	| 1255 | 
	1255 | 
	
		    ///\e
 
	 | 
	| 1256 | 
	1256 | 
	
		    Value operator[](const Key &k) const { return -_m[k]; }
	 | 
	| 1257 | 
	1257 | 
	
		    ///\e
 
	 | 
	| 1258 | 
	1258 | 
	
		    void set(const Key &k, const Value &v) { _m.set(k, -v); }
	 | 
	| 1259 | 
	1259 | 
	
		  };
 
	 | 
	| 1260 | 
	1260 | 
	
		
 
	 | 
	| 1261 | 
	1261 | 
	
		  /// Returns a \c NegMap class
 
	 | 
	| 1262 | 
	1262 | 
	
		
 
	 | 
	| 1263 | 
	1263 | 
	
		  /// This function just returns a \c NegMap class.
 
	 | 
	| 1264 | 
	1264 | 
	
		  ///
 
	 | 
	| 1265 | 
	1265 | 
	
		  /// For example, if \c m is a map with \c double values, then
 
	 | 
	| 1266 | 
	1266 | 
	
		  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
 
	 | 
	| 1267 | 
	1267 | 
	
		  ///
 
	 | 
	| 1268 | 
	1268 | 
	
		  /// \relates NegMap
 
	 | 
	| 1269 | 
	1269 | 
	
		  template <typename M>
 
	 | 
	| 1270 | 
	1270 | 
	
		  inline NegMap<M> negMap(const M &m) {
	 | 
	| 1271 | 
	1271 | 
	
		    return NegMap<M>(m);
 
	 | 
	| 1272 | 
	1272 | 
	
		  }
 
	 | 
	| 1273 | 
	1273 | 
	
		
 
	 | 
	| 1274 | 
	1274 | 
	
		  /// Returns a \c NegWriteMap class
 
	 | 
	| 1275 | 
	1275 | 
	
		
 
	 | 
	| 1276 | 
	1276 | 
	
		  /// This function just returns a \c NegWriteMap class.
 
	 | 
	| 1277 | 
	1277 | 
	
		  ///
 
	 | 
	| 1278 | 
	1278 | 
	
		  /// For example, if \c m is a map with \c double values, then
 
	 | 
	| 1279 | 
	1279 | 
	
		  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
 
	 | 
	| 1280 | 
	1280 | 
	
		  /// Moreover it makes also possible to write the map.
 
	 | 
	| 1281 | 
	1281 | 
	
		  ///
 
	 | 
	| 1282 | 
	1282 | 
	
		  /// \relates NegWriteMap
 
	 | 
	| 1283 | 
	1283 | 
	
		  template <typename M>
 
	 | 
	| 1284 | 
	1284 | 
	
		  inline NegWriteMap<M> negWriteMap(M &m) {
	 | 
	| 1285 | 
	1285 | 
	
		    return NegWriteMap<M>(m);
 
	 | 
	| 1286 | 
	1286 | 
	
		  }
 
	 | 
	| 1287 | 
	1287 | 
	
		
 
	 | 
	| 1288 | 
	1288 | 
	
		
 
	 | 
	| 1289 | 
	1289 | 
	
		  /// Absolute value of a map
 
	 | 
	| 1290 | 
	1290 | 
	
		
 
	 | 
	| 1291 | 
	1291 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the absolute
 
	 | 
	| 1292 | 
	1292 | 
	
		  /// value of the values of the given map.
 
	 | 
	| 1293 | 
	1293 | 
	
		  /// Its \c Key and \c Value are inherited from \c M.
 
	 | 
	| 1294 | 
	1294 | 
	
		  /// \c Value must be comparable to \c 0 and the unary \c -
 
	 | 
	| 1295 | 
	1295 | 
	
		  /// operator must be defined for it, of course.
 
	 | 
	| 1296 | 
	1296 | 
	
		  ///
 
	 | 
	| 1297 | 
	1297 | 
	
		  /// The simplest way of using this map is through the absMap()
 
	 | 
	| 1298 | 
	1298 | 
	
		  /// function.
 
	 | 
	| 1299 | 
	1299 | 
	
		  template<typename M>
 
	 | 
	| 1300 | 
	1300 | 
	
		  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
	 | 
	| 1301 | 
	1301 | 
	
		    const M &_m;
 
	 | 
	| 1302 | 
	1302 | 
	
		  public:
 
	 | 
	| 1303 | 
	1303 | 
	
		    ///\e
 
	 | 
	| 1304 | 
	1304 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1305 | 
	1305 | 
	
		    ///\e
 
	 | 
	| 1306 | 
	1306 | 
	
		    typedef typename M::Value Value;
 
	 | 
	| 1307 | 
	1307 | 
	
		
 
	 | 
	| 1308 | 
	1308 | 
	
		    /// Constructor
 
	 | 
	| 1309 | 
	1309 | 
	
		    AbsMap(const M &m) : _m(m) {}
	 | 
	| 1310 | 
	1310 | 
	
		    ///\e
 
	 | 
	| 1311 | 
	1311 | 
	
		    Value operator[](const Key &k) const {
	 | 
	| 1312 | 
	1312 | 
	
		      Value tmp = _m[k];
 
	 | 
	| 1313 | 
	1313 | 
	
		      return tmp >= 0 ? tmp : -tmp;
 
	 | 
	| 1314 | 
	1314 | 
	
		    }
 
	 | 
	| 1315 | 
	1315 | 
	
		
 
	 | 
	| 1316 | 
	1316 | 
	
		  };
 
	 | 
	| 1317 | 
	1317 | 
	
		
 
	 | 
	| 1318 | 
	1318 | 
	
		  /// Returns an \c AbsMap class
 
	 | 
	| 1319 | 
	1319 | 
	
		
 
	 | 
	| 1320 | 
	1320 | 
	
		  /// This function just returns an \c AbsMap class.
 
	 | 
	| 1321 | 
	1321 | 
	
		  ///
 
	 | 
	| 1322 | 
	1322 | 
	
		  /// For example, if \c m is a map with \c double values, then
 
	 | 
	| 1323 | 
	1323 | 
	
		  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
 
	 | 
	| 1324 | 
	1324 | 
	
		  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
 
	 | 
	| 1325 | 
	1325 | 
	
		  /// negative.
 
	 | 
	| 1326 | 
	1326 | 
	
		  ///
 
	 | 
	| 1327 | 
	1327 | 
	
		  /// \relates AbsMap
 
	 | 
	| 1328 | 
	1328 | 
	
		  template<typename M>
 
	 | 
	| 1329 | 
	1329 | 
	
		  inline AbsMap<M> absMap(const M &m) {
	 | 
	| 1330 | 
	1330 | 
	
		    return AbsMap<M>(m);
 
	 | 
	| 1331 | 
	1331 | 
	
		  }
 
	 | 
	| 1332 | 
	1332 | 
	
		
 
	 | 
	| 1333 | 
	1333 | 
	
		  /// @}
 
	 | 
	| 1334 | 
	1334 | 
	
		
 
	 | 
	| 1335 | 
	1335 | 
	
		  // Logical maps and map adaptors:
 
	 | 
	| 1336 | 
	1336 | 
	
		
 
	 | 
	| 1337 | 
	1337 | 
	
		  /// \addtogroup maps
 
	 | 
	| 1338 | 
	1338 | 
	
		  /// @{
	 | 
	| 1339 | 
	1339 | 
	
		
 
	 | 
	| 1340 | 
	1340 | 
	
		  /// Constant \c true map.
 
	 | 
	| 1341 | 
	1341 | 
	
		
 
	 | 
	| 1342 | 
	1342 | 
	
		  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 
	 | 
	| 1343 | 
	1343 | 
	
		  /// each key.
 
	 | 
	| 1344 | 
	1344 | 
	
		  ///
 
	 | 
	| 1345 | 
	1345 | 
	
		  /// Note that
 
	 | 
	| 1346 | 
	1346 | 
	
		  /// \code
 
	 | 
	| 1347 | 
	1347 | 
	
		  ///   TrueMap<K> tm;
 
	 | 
	| 1348 | 
	1348 | 
	
		  /// \endcode
 
	 | 
	| 1349 | 
	1349 | 
	
		  /// is equivalent to
 
	 | 
	| 1350 | 
	1350 | 
	
		  /// \code
 
	 | 
	| 1351 | 
	1351 | 
	
		  ///   ConstMap<K,bool> tm(true);
 
	 | 
	| 1352 | 
	1352 | 
	
		  /// \endcode
 
	 | 
	| 1353 | 
	1353 | 
	
		  ///
 
	 | 
	| 1354 | 
	1354 | 
	
		  /// \sa FalseMap
 
	 | 
	| 1355 | 
	1355 | 
	
		  /// \sa ConstMap
 
	 | 
	| 1356 | 
	1356 | 
	
		  template <typename K>
 
	 | 
	| 1357 | 
	1357 | 
	
		  class TrueMap : public MapBase<K, bool> {
	 | 
	| 1358 | 
	1358 | 
	
		  public:
 
	 | 
	| 1359 | 
	1359 | 
	
		    ///\e
 
	 | 
	| 1360 | 
	1360 | 
	
		    typedef K Key;
 
	 | 
	| 1361 | 
	1361 | 
	
		    ///\e
 
	 | 
	| 1362 | 
	1362 | 
	
		    typedef bool Value;
 
	 | 
	| 1363 | 
	1363 | 
	
		
 
	 | 
	| 1364 | 
	1364 | 
	
		    /// Gives back \c true.
 
	 | 
	| 1365 | 
	1365 | 
	
		    Value operator[](const Key&) const { return true; }
	 | 
	| 1366 | 
	1366 | 
	
		  };
 
	 | 
	| 1367 | 
	1367 | 
	
		
 
	 | 
	| 1368 | 
	1368 | 
	
		  /// Returns a \c TrueMap class
 
	 | 
	| 1369 | 
	1369 | 
	
		
 
	 | 
	| 1370 | 
	1370 | 
	
		  /// This function just returns a \c TrueMap class.
 
	 | 
	| 1371 | 
	1371 | 
	
		  /// \relates TrueMap
 
	 | 
	| 1372 | 
	1372 | 
	
		  template<typename K>
 
	 | 
	| 1373 | 
	1373 | 
	
		  inline TrueMap<K> trueMap() {
	 | 
	| 1374 | 
	1374 | 
	
		    return TrueMap<K>();
 
	 | 
	| 1375 | 
	1375 | 
	
		  }
 
	 | 
	| 1376 | 
	1376 | 
	
		
 
	 | 
	| 1377 | 
	1377 | 
	
		
 
	 | 
	| 1378 | 
	1378 | 
	
		  /// Constant \c false map.
 
	 | 
	| 1379 | 
	1379 | 
	
		
 
	 | 
	| 1380 | 
	1380 | 
	
		  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
 
	 | 
	| 1381 | 
	1381 | 
	
		  /// each key.
 
	 | 
	| 1382 | 
	1382 | 
	
		  ///
 
	 | 
	| 1383 | 
	1383 | 
	
		  /// Note that
 
	 | 
	| 1384 | 
	1384 | 
	
		  /// \code
 
	 | 
	| 1385 | 
	1385 | 
	
		  ///   FalseMap<K> fm;
 
	 | 
	| 1386 | 
	1386 | 
	
		  /// \endcode
 
	 | 
	| 1387 | 
	1387 | 
	
		  /// is equivalent to
 
	 | 
	| 1388 | 
	1388 | 
	
		  /// \code
 
	 | 
	| 1389 | 
	1389 | 
	
		  ///   ConstMap<K,bool> fm(false);
 
	 | 
	| 1390 | 
	1390 | 
	
		  /// \endcode
 
	 | 
	| 1391 | 
	1391 | 
	
		  ///
 
	 | 
	| 1392 | 
	1392 | 
	
		  /// \sa TrueMap
 
	 | 
	| 1393 | 
	1393 | 
	
		  /// \sa ConstMap
 
	 | 
	| 1394 | 
	1394 | 
	
		  template <typename K>
 
	 | 
	| 1395 | 
	1395 | 
	
		  class FalseMap : public MapBase<K, bool> {
	 | 
	| 1396 | 
	1396 | 
	
		  public:
 
	 | 
	| 1397 | 
	1397 | 
	
		    ///\e
 
	 | 
	| 1398 | 
	1398 | 
	
		    typedef K Key;
 
	 | 
	| 1399 | 
	1399 | 
	
		    ///\e
 
	 | 
	| 1400 | 
	1400 | 
	
		    typedef bool Value;
 
	 | 
	| 1401 | 
	1401 | 
	
		
 
	 | 
	| 1402 | 
	1402 | 
	
		    /// Gives back \c false.
 
	 | 
	| 1403 | 
	1403 | 
	
		    Value operator[](const Key&) const { return false; }
	 | 
	| 1404 | 
	1404 | 
	
		  };
 
	 | 
	| 1405 | 
	1405 | 
	
		
 
	 | 
	| 1406 | 
	1406 | 
	
		  /// Returns a \c FalseMap class
 
	 | 
	| 1407 | 
	1407 | 
	
		
 
	 | 
	| 1408 | 
	1408 | 
	
		  /// This function just returns a \c FalseMap class.
 
	 | 
	| 1409 | 
	1409 | 
	
		  /// \relates FalseMap
 
	 | 
	| 1410 | 
	1410 | 
	
		  template<typename K>
 
	 | 
	| 1411 | 
	1411 | 
	
		  inline FalseMap<K> falseMap() {
	 | 
	| 1412 | 
	1412 | 
	
		    return FalseMap<K>();
 
	 | 
	| 1413 | 
	1413 | 
	
		  }
 
	 | 
	| 1414 | 
	1414 | 
	
		
 
	 | 
	| 1415 | 
	1415 | 
	
		  /// @}
 
	 | 
	| 1416 | 
	1416 | 
	
		
 
	 | 
	| 1417 | 
	1417 | 
	
		  /// \addtogroup map_adaptors
 
	 | 
	| 1418 | 
	1418 | 
	
		  /// @{
	 | 
	| 1419 | 
	1419 | 
	
		
 
	 | 
	| 1420 | 
	1420 | 
	
		  /// Logical 'and' of two maps
 
	 | 
	| 1421 | 
	1421 | 
	
		
 
	 | 
	| 1422 | 
	1422 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the logical
 
	 | 
	| 1423 | 
	1423 | 
	
		  /// 'and' of the values of the two given maps.
 
	 | 
	| 1424 | 
	1424 | 
	
		  /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
	 | 
	| 1425 | 
	1425 | 
	
		  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
	 | 
	| 1426 | 
	1426 | 
	
		  ///
 
	 | 
	| 1427 | 
	1427 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 1428 | 
	1428 | 
	
		  /// \code
 
	 | 
	| 1429 | 
	1429 | 
	
		  ///   AndMap<M1,M2> am(m1,m2);
 
	 | 
	| 1430 | 
	1430 | 
	
		  /// \endcode
 
	 | 
	| 1431 | 
	1431 | 
	
		  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
 
	 | 
	| 1432 | 
	1432 | 
	
		  ///
 
	 | 
	| 1433 | 
	1433 | 
	
		  /// The simplest way of using this map is through the andMap()
 
	 | 
	| 1434 | 
	1434 | 
	
		  /// function.
 
	 | 
	| 1435 | 
	1435 | 
	
		  ///
 
	 | 
	| 1436 | 
	1436 | 
	
		  /// \sa OrMap
 
	 | 
	| 1437 | 
	1437 | 
	
		  /// \sa NotMap, NotWriteMap
 
	 | 
	| 1438 | 
	1438 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1439 | 
	1439 | 
	
		  class AndMap : public MapBase<typename M1::Key, bool> {
	 | 
	| 1440 | 
	1440 | 
	
		    const M1 &_m1;
 
	 | 
	| 1441 | 
	1441 | 
	
		    const M2 &_m2;
 
	 | 
	| 1442 | 
	1442 | 
	
		  public:
 
	 | 
	| 1443 | 
	1443 | 
	
		    ///\e
 
	 | 
	| 1444 | 
	1444 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 1445 | 
	1445 | 
	
		    ///\e
 
	 | 
	| 1446 | 
	1446 | 
	
		    typedef bool Value;
 
	 | 
	| 1447 | 
	1447 | 
	
		
 
	 | 
	| 1448 | 
	1448 | 
	
		    /// Constructor
 
	 | 
	| 1449 | 
	1449 | 
	
		    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 1450 | 
	1450 | 
	
		    ///\e
 
	 | 
	| 1451 | 
	1451 | 
	
		    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
	 | 
	| 1452 | 
	1452 | 
	
		  };
 
	 | 
	| 1453 | 
	1453 | 
	
		
 
	 | 
	| 1454 | 
	1454 | 
	
		  /// Returns an \c AndMap class
 
	 | 
	| 1455 | 
	1455 | 
	
		
 
	 | 
	| 1456 | 
	1456 | 
	
		  /// This function just returns an \c AndMap class.
 
	 | 
	| 1457 | 
	1457 | 
	
		  ///
 
	 | 
	| 1458 | 
	1458 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
 
	 | 
	| 1459 | 
	1459 | 
	
		  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 1460 | 
	1460 | 
	
		  /// <tt>m1[x]&&m2[x]</tt>.
 
	 | 
	| 1461 | 
	1461 | 
	
		  ///
 
	 | 
	| 1462 | 
	1462 | 
	
		  /// \relates AndMap
 
	 | 
	| 1463 | 
	1463 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1464 | 
	1464 | 
	
		  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
	 | 
	| 1465 | 
	1465 | 
	
		    return AndMap<M1, M2>(m1,m2);
 
	 | 
	| 1466 | 
	1466 | 
	
		  }
 
	 | 
	| 1467 | 
	1467 | 
	
		
 
	 | 
	| 1468 | 
	1468 | 
	
		
 
	 | 
	| 1469 | 
	1469 | 
	
		  /// Logical 'or' of two maps
 
	 | 
	| 1470 | 
	1470 | 
	
		
 
	 | 
	| 1471 | 
	1471 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the logical
 
	 | 
	| 1472 | 
	1472 | 
	
		  /// 'or' of the values of the two given maps.
 
	 | 
	| 1473 | 
	1473 | 
	
		  /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
	 | 
	| 1474 | 
	1474 | 
	
		  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
	 | 
	| 1475 | 
	1475 | 
	
		  ///
 
	 | 
	| 1476 | 
	1476 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 1477 | 
	1477 | 
	
		  /// \code
 
	 | 
	| 1478 | 
	1478 | 
	
		  ///   OrMap<M1,M2> om(m1,m2);
 
	 | 
	| 1479 | 
	1479 | 
	
		  /// \endcode
 
	 | 
	| 1480 | 
	1480 | 
	
		  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
 
	 | 
	| 1481 | 
	1481 | 
	
		  ///
 
	 | 
	| 1482 | 
	1482 | 
	
		  /// The simplest way of using this map is through the orMap()
 
	 | 
	| 1483 | 
	1483 | 
	
		  /// function.
 
	 | 
	| 1484 | 
	1484 | 
	
		  ///
 
	 | 
	| 1485 | 
	1485 | 
	
		  /// \sa AndMap
 
	 | 
	| 1486 | 
	1486 | 
	
		  /// \sa NotMap, NotWriteMap
 
	 | 
	| 1487 | 
	1487 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1488 | 
	1488 | 
	
		  class OrMap : public MapBase<typename M1::Key, bool> {
	 | 
	| 1489 | 
	1489 | 
	
		    const M1 &_m1;
 
	 | 
	| 1490 | 
	1490 | 
	
		    const M2 &_m2;
 
	 | 
	| 1491 | 
	1491 | 
	
		  public:
 
	 | 
	| 1492 | 
	1492 | 
	
		    ///\e
 
	 | 
	| 1493 | 
	1493 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 1494 | 
	1494 | 
	
		    ///\e
 
	 | 
	| 1495 | 
	1495 | 
	
		    typedef bool Value;
 
	 | 
	| 1496 | 
	1496 | 
	
		
 
	 | 
	| 1497 | 
	1497 | 
	
		    /// Constructor
 
	 | 
	| 1498 | 
	1498 | 
	
		    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 1499 | 
	1499 | 
	
		    ///\e
 
	 | 
	| 1500 | 
	1500 | 
	
		    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
	 | 
	| 1501 | 
	1501 | 
	
		  };
 
	 | 
	| 1502 | 
	1502 | 
	
		
 
	 | 
	| 1503 | 
	1503 | 
	
		  /// Returns an \c OrMap class
 
	 | 
	| 1504 | 
	1504 | 
	
		
 
	 | 
	| 1505 | 
	1505 | 
	
		  /// This function just returns an \c OrMap class.
 
	 | 
	| 1506 | 
	1506 | 
	
		  ///
 
	 | 
	| 1507 | 
	1507 | 
	
		  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
 
	 | 
	| 1508 | 
	1508 | 
	
		  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 1509 | 
	1509 | 
	
		  /// <tt>m1[x]||m2[x]</tt>.
 
	 | 
	| 1510 | 
	1510 | 
	
		  ///
 
	 | 
	| 1511 | 
	1511 | 
	
		  /// \relates OrMap
 
	 | 
	| 1512 | 
	1512 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1513 | 
	1513 | 
	
		  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
	 | 
	| 1514 | 
	1514 | 
	
		    return OrMap<M1, M2>(m1,m2);
 
	 | 
	| 1515 | 
	1515 | 
	
		  }
 
	 | 
	| 1516 | 
	1516 | 
	
		
 
	 | 
	| 1517 | 
	1517 | 
	
		
 
	 | 
	| 1518 | 
	1518 | 
	
		  /// Logical 'not' of a map
 
	 | 
	| 1519 | 
	1519 | 
	
		
 
	 | 
	| 1520 | 
	1520 | 
	
		  /// This \ref concepts::ReadMap "read-only map" returns the logical
 
	 | 
	| 1521 | 
	1521 | 
	
		  /// negation of the values of the given map.
 
	 | 
	| 1522 | 
	1522 | 
	
		  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
 
	 | 
	| 1523 | 
	1523 | 
	
		  ///
 
	 | 
	| 1524 | 
	1524 | 
	
		  /// The simplest way of using this map is through the notMap()
 
	 | 
	| 1525 | 
	1525 | 
	
		  /// function.
 
	 | 
	| 1526 | 
	1526 | 
	
		  ///
 
	 | 
	| 1527 | 
	1527 | 
	
		  /// \sa NotWriteMap
 
	 | 
	| 1528 | 
	1528 | 
	
		  template <typename M>
 
	 | 
	| 1529 | 
	1529 | 
	
		  class NotMap : public MapBase<typename M::Key, bool> {
	 | 
	| 1530 | 
	1530 | 
	
		    const M &_m;
 
	 | 
	| 1531 | 
	1531 | 
	
		  public:
 
	 | 
	| 1532 | 
	1532 | 
	
		    ///\e
 
	 | 
	| 1533 | 
	1533 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1534 | 
	1534 | 
	
		    ///\e
 
	 | 
	| 1535 | 
	1535 | 
	
		    typedef bool Value;
 
	 | 
	| 1536 | 
	1536 | 
	
		
 
	 | 
	| 1537 | 
	1537 | 
	
		    /// Constructor
 
	 | 
	| 1538 | 
	1538 | 
	
		    NotMap(const M &m) : _m(m) {}
	 | 
	| 1539 | 
	1539 | 
	
		    ///\e
 
	 | 
	| 1540 | 
	1540 | 
	
		    Value operator[](const Key &k) const { return !_m[k]; }
	 | 
	| 1541 | 
	1541 | 
	
		  };
 
	 | 
	| 1542 | 
	1542 | 
	
		
 
	 | 
	| 1543 | 
	1543 | 
	
		  /// Logical 'not' of a map (read-write version)
 
	 | 
	| 1544 | 
	1544 | 
	
		
 
	 | 
	| 1545 | 
	1545 | 
	
		  /// This \ref concepts::ReadWriteMap "read-write map" returns the
 
	 | 
	| 1546 | 
	1546 | 
	
		  /// logical negation of the values of the given map.
 
	 | 
	| 1547 | 
	1547 | 
	
		  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
 
	 | 
	| 1548 | 
	1548 | 
	
		  /// It makes also possible to write the map. When a value is set,
 
	 | 
	| 1549 | 
	1549 | 
	
		  /// the opposite value is set to the original map.
 
	 | 
	| 1550 | 
	1550 | 
	
		  ///
 
	 | 
	| 1551 | 
	1551 | 
	
		  /// The simplest way of using this map is through the notWriteMap()
 
	 | 
	| 1552 | 
	1552 | 
	
		  /// function.
 
	 | 
	| 1553 | 
	1553 | 
	
		  ///
 
	 | 
	| 1554 | 
	1554 | 
	
		  /// \sa NotMap
 
	 | 
	| 1555 | 
	1555 | 
	
		  template <typename M>
 
	 | 
	| 1556 | 
	1556 | 
	
		  class NotWriteMap : public MapBase<typename M::Key, bool> {
	 | 
	| 1557 | 
	1557 | 
	
		    M &_m;
 
	 | 
	| 1558 | 
	1558 | 
	
		  public:
 
	 | 
	| 1559 | 
	1559 | 
	
		    ///\e
 
	 | 
	| 1560 | 
	1560 | 
	
		    typedef typename M::Key Key;
 
	 | 
	| 1561 | 
	1561 | 
	
		    ///\e
 
	 | 
	| 1562 | 
	1562 | 
	
		    typedef bool Value;
 
	 | 
	| 1563 | 
	1563 | 
	
		
 
	 | 
	| 1564 | 
	1564 | 
	
		    /// Constructor
 
	 | 
	| 1565 | 
	1565 | 
	
		    NotWriteMap(M &m) : _m(m) {}
	 | 
	| 1566 | 
	1566 | 
	
		    ///\e
 
	 | 
	| 1567 | 
	1567 | 
	
		    Value operator[](const Key &k) const { return !_m[k]; }
	 | 
	| 1568 | 
	1568 | 
	
		    ///\e
 
	 | 
	| 1569 | 
	1569 | 
	
		    void set(const Key &k, bool v) { _m.set(k, !v); }
	 | 
	| 1570 | 
	1570 | 
	
		  };
 
	 | 
	| 1571 | 
	1571 | 
	
		
 
	 | 
	| 1572 | 
	1572 | 
	
		  /// Returns a \c NotMap class
 
	 | 
	| 1573 | 
	1573 | 
	
		
 
	 | 
	| 1574 | 
	1574 | 
	
		  /// This function just returns a \c NotMap class.
 
	 | 
	| 1575 | 
	1575 | 
	
		  ///
 
	 | 
	| 1576 | 
	1576 | 
	
		  /// For example, if \c m is a map with \c bool values, then
 
	 | 
	| 1577 | 
	1577 | 
	
		  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
 
	 | 
	| 1578 | 
	1578 | 
	
		  ///
 
	 | 
	| 1579 | 
	1579 | 
	
		  /// \relates NotMap
 
	 | 
	| 1580 | 
	1580 | 
	
		  template <typename M>
 
	 | 
	| 1581 | 
	1581 | 
	
		  inline NotMap<M> notMap(const M &m) {
	 | 
	| 1582 | 
	1582 | 
	
		    return NotMap<M>(m);
 
	 | 
	| 1583 | 
	1583 | 
	
		  }
 
	 | 
	| 1584 | 
	1584 | 
	
		
 
	 | 
	| 1585 | 
	1585 | 
	
		  /// Returns a \c NotWriteMap class
 
	 | 
	| 1586 | 
	1586 | 
	
		
 
	 | 
	| 1587 | 
	1587 | 
	
		  /// This function just returns a \c NotWriteMap class.
 
	 | 
	| 1588 | 
	1588 | 
	
		  ///
 
	 | 
	| 1589 | 
	1589 | 
	
		  /// For example, if \c m is a map with \c bool values, then
 
	 | 
	| 1590 | 
	1590 | 
	
		  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
 
	 | 
	| 1591 | 
	1591 | 
	
		  /// Moreover it makes also possible to write the map.
 
	 | 
	| 1592 | 
	1592 | 
	
		  ///
 
	 | 
	| 1593 | 
	1593 | 
	
		  /// \relates NotWriteMap
 
	 | 
	| 1594 | 
	1594 | 
	
		  template <typename M>
 
	 | 
	| 1595 | 
	1595 | 
	
		  inline NotWriteMap<M> notWriteMap(M &m) {
	 | 
	| 1596 | 
	1596 | 
	
		    return NotWriteMap<M>(m);
 
	 | 
	| 1597 | 
	1597 | 
	
		  }
 
	 | 
	| 1598 | 
	1598 | 
	
		
 
	 | 
	| 1599 | 
	1599 | 
	
		
 
	 | 
	| 1600 | 
	1600 | 
	
		  /// Combination of two maps using the \c == operator
 
	 | 
	| 1601 | 
	1601 | 
	
		
 
	 | 
	| 1602 | 
	1602 | 
	
		  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 
	 | 
	| 1603 | 
	1603 | 
	
		  /// the keys for which the corresponding values of the two maps are
 
	 | 
	| 1604 | 
	1604 | 
	
		  /// equal.
 
	 | 
	| 1605 | 
	1605 | 
	
		  /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
	 | 
	| 1606 | 
	1606 | 
	
		  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
	 | 
	| 1607 | 
	1607 | 
	
		  ///
 
	 | 
	| 1608 | 
	1608 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 1609 | 
	1609 | 
	
		  /// \code
 
	 | 
	| 1610 | 
	1610 | 
	
		  ///   EqualMap<M1,M2> em(m1,m2);
 
	 | 
	| 1611 | 
	1611 | 
	
		  /// \endcode
 
	 | 
	| 1612 | 
	1612 | 
	
		  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
 
	 | 
	| 1613 | 
	1613 | 
	
		  ///
 
	 | 
	| 1614 | 
	1614 | 
	
		  /// The simplest way of using this map is through the equalMap()
 
	 | 
	| 1615 | 
	1615 | 
	
		  /// function.
 
	 | 
	| 1616 | 
	1616 | 
	
		  ///
 
	 | 
	| 1617 | 
	1617 | 
	
		  /// \sa LessMap
 
	 | 
	| 1618 | 
	1618 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1619 | 
	1619 | 
	
		  class EqualMap : public MapBase<typename M1::Key, bool> {
	 | 
	| 1620 | 
	1620 | 
	
		    const M1 &_m1;
 
	 | 
	| 1621 | 
	1621 | 
	
		    const M2 &_m2;
 
	 | 
	| 1622 | 
	1622 | 
	
		  public:
 
	 | 
	| 1623 | 
	1623 | 
	
		    ///\e
 
	 | 
	| 1624 | 
	1624 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 1625 | 
	1625 | 
	
		    ///\e
 
	 | 
	| 1626 | 
	1626 | 
	
		    typedef bool Value;
 
	 | 
	| 1627 | 
	1627 | 
	
		
 
	 | 
	| 1628 | 
	1628 | 
	
		    /// Constructor
 
	 | 
	| 1629 | 
	1629 | 
	
		    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 1630 | 
	1630 | 
	
		    ///\e
 
	 | 
	| 1631 | 
	1631 | 
	
		    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
	 | 
	| 1632 | 
	1632 | 
	
		  };
 
	 | 
	| 1633 | 
	1633 | 
	
		
 
	 | 
	| 1634 | 
	1634 | 
	
		  /// Returns an \c EqualMap class
 
	 | 
	| 1635 | 
	1635 | 
	
		
 
	 | 
	| 1636 | 
	1636 | 
	
		  /// This function just returns an \c EqualMap class.
 
	 | 
	| 1637 | 
	1637 | 
	
		  ///
 
	 | 
	| 1638 | 
	1638 | 
	
		  /// For example, if \c m1 and \c m2 are maps with keys and values of
 
	 | 
	| 1639 | 
	1639 | 
	
		  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 1640 | 
	1640 | 
	
		  /// <tt>m1[x]==m2[x]</tt>.
 
	 | 
	| 1641 | 
	1641 | 
	
		  ///
 
	 | 
	| 1642 | 
	1642 | 
	
		  /// \relates EqualMap
 
	 | 
	| 1643 | 
	1643 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1644 | 
	1644 | 
	
		  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
	 | 
	| 1645 | 
	1645 | 
	
		    return EqualMap<M1, M2>(m1,m2);
 
	 | 
	| 1646 | 
	1646 | 
	
		  }
 
	 | 
	| 1647 | 
	1647 | 
	
		
 
	 | 
	| 1648 | 
	1648 | 
	
		
 
	 | 
	| 1649 | 
	1649 | 
	
		  /// Combination of two maps using the \c < operator
 
	 | 
	| 1650 | 
	1650 | 
	
		
 
	 | 
	| 1651 | 
	1651 | 
	
		  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 
	 | 
	| 1652 | 
	1652 | 
	
		  /// the keys for which the corresponding value of the first map is
 
	 | 
	| 1653 | 
	1653 | 
	
		  /// less then the value of the second map.
 
	 | 
	| 1654 | 
	1654 | 
	
		  /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
	 | 
	| 1655 | 
	1655 | 
	
		  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
	 | 
	| 1656 | 
	1656 | 
	
		  ///
 
	 | 
	| 1657 | 
	1657 | 
	
		  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
	 | 
	| 1658 | 
	1658 | 
	
		  /// \code
 
	 | 
	| 1659 | 
	1659 | 
	
		  ///   LessMap<M1,M2> lm(m1,m2);
 
	 | 
	| 1660 | 
	1660 | 
	
		  /// \endcode
 
	 | 
	| 1661 | 
	1661 | 
	
		  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
 
	 | 
	| 1662 | 
	1662 | 
	
		  ///
 
	 | 
	| 1663 | 
	1663 | 
	
		  /// The simplest way of using this map is through the lessMap()
 
	 | 
	| 1664 | 
	1664 | 
	
		  /// function.
 
	 | 
	| 1665 | 
	1665 | 
	
		  ///
 
	 | 
	| 1666 | 
	1666 | 
	
		  /// \sa EqualMap
 
	 | 
	| 1667 | 
	1667 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1668 | 
	1668 | 
	
		  class LessMap : public MapBase<typename M1::Key, bool> {
	 | 
	| 1669 | 
	1669 | 
	
		    const M1 &_m1;
 
	 | 
	| 1670 | 
	1670 | 
	
		    const M2 &_m2;
 
	 | 
	| 1671 | 
	1671 | 
	
		  public:
 
	 | 
	| 1672 | 
	1672 | 
	
		    ///\e
 
	 | 
	| 1673 | 
	1673 | 
	
		    typedef typename M1::Key Key;
 
	 | 
	| 1674 | 
	1674 | 
	
		    ///\e
 
	 | 
	| 1675 | 
	1675 | 
	
		    typedef bool Value;
 
	 | 
	| 1676 | 
	1676 | 
	
		
 
	 | 
	| 1677 | 
	1677 | 
	
		    /// Constructor
 
	 | 
	| 1678 | 
	1678 | 
	
		    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
	 | 
	| 1679 | 
	1679 | 
	
		    ///\e
 
	 | 
	| 1680 | 
	1680 | 
	
		    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
	 | 
	| 1681 | 
	1681 | 
	
		  };
 
	 | 
	| 1682 | 
	1682 | 
	
		
 
	 | 
	| 1683 | 
	1683 | 
	
		  /// Returns an \c LessMap class
 
	 | 
	| 1684 | 
	1684 | 
	
		
 
	 | 
	| 1685 | 
	1685 | 
	
		  /// This function just returns an \c LessMap class.
 
	 | 
	| 1686 | 
	1686 | 
	
		  ///
 
	 | 
	| 1687 | 
	1687 | 
	
		  /// For example, if \c m1 and \c m2 are maps with keys and values of
 
	 | 
	| 1688 | 
	1688 | 
	
		  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
 
	 | 
	| 1689 | 
	1689 | 
	
		  /// <tt>m1[x]<m2[x]</tt>.
 
	 | 
	| 1690 | 
	1690 | 
	
		  ///
 
	 | 
	| 1691 | 
	1691 | 
	
		  /// \relates LessMap
 
	 | 
	| 1692 | 
	1692 | 
	
		  template<typename M1, typename M2>
 
	 | 
	| 1693 | 
	1693 | 
	
		  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
	 | 
	| 1694 | 
	1694 | 
	
		    return LessMap<M1, M2>(m1,m2);
 
	 | 
	| 1695 | 
	1695 | 
	
		  }
 
	 | 
	| 1696 | 
	1696 | 
	
		
 
	 | 
	| 1697 | 
	1697 | 
	
		  namespace _maps_bits {
	 | 
	| 1698 | 
	1698 | 
	
		
 
	 | 
	| 1699 | 
	1699 | 
	
		    template <typename _Iterator, typename Enable = void>
 
	 | 
	| 1700 | 
	1700 | 
	
		    struct IteratorTraits {
	 | 
	| 1701 | 
	1701 | 
	
		      typedef typename std::iterator_traits<_Iterator>::value_type Value;
 
	 | 
	| 1702 | 
	1702 | 
	
		    };
 
	 | 
	| 1703 | 
	1703 | 
	
		
 
	 | 
	| 1704 | 
	1704 | 
	
		    template <typename _Iterator>
 
	 | 
	| 1705 | 
	1705 | 
	
		    struct IteratorTraits<_Iterator,
 
	 | 
	| 1706 | 
	1706 | 
	
		      typename exists<typename _Iterator::container_type>::type>
 
	 | 
	| 1707 | 
	1707 | 
	
		    {
	 | 
	| 1708 | 
	1708 | 
	
		      typedef typename _Iterator::container_type::value_type Value;
 
	 | 
	| 1709 | 
	1709 | 
	
		    };
 
	 | 
	| 1710 | 
	1710 | 
	
		
 
	 | 
	| 1711 | 
	1711 | 
	
		  }
 
	 | 
	| 1712 | 
	1712 | 
	
		
 
	 | 
	| 1713 | 
	1713 | 
	
		  /// @}
 
	 | 
	| 1714 | 
	1714 | 
	
		
 
	 | 
	| 1715 | 
	1715 | 
	
		  /// \addtogroup maps
 
	 | 
	| 1716 | 
	1716 | 
	
		  /// @{
	 | 
	| 1717 | 
	1717 | 
	
		
 
	 | 
	| 1718 | 
	1718 | 
	
		  /// \brief Writable bool map for logging each \c true assigned element
 
	 | 
	| 1719 | 
	1719 | 
	
		  ///
 
	 | 
	| 1720 | 
	1720 | 
	
		  /// A \ref concepts::WriteMap "writable" bool map for logging
 
	 | 
	| 1721 | 
	1721 | 
	
		  /// each \c true assigned element, i.e it copies subsequently each
 
	 | 
	| 1722 | 
	1722 | 
	
		  /// keys set to \c true to the given iterator.
 
	 | 
	| 1723 | 
	1723 | 
	
		  /// The most important usage of it is storing certain nodes or arcs
 
	 | 
	| 1724 | 
	1724 | 
	
		  /// that were marked \c true by an algorithm.
 
	 | 
	| 1725 | 
	1725 | 
	
		  ///
 
	 | 
	| 1726 | 
	1726 | 
	
		  /// There are several algorithms that provide solutions through bool
 
	 | 
	| 1727 | 
	1727 | 
	
		  /// maps and most of them assign \c true at most once for each key.
 
	 | 
	| 1728 | 
	1728 | 
	
		  /// In these cases it is a natural request to store each \c true
 
	 | 
	| 1729 | 
	1729 | 
	
		  /// assigned elements (in order of the assignment), which can be
 
	 | 
	| 1730 | 
	1730 | 
	
		  /// easily done with LoggerBoolMap.
 
	 | 
	| 1731 | 
	1731 | 
	
		  ///
 
	 | 
	| 1732 | 
	1732 | 
	
		  /// The simplest way of using this map is through the loggerBoolMap()
 
	 | 
	| 1733 | 
	1733 | 
	
		  /// function.
 
	 | 
	| 1734 | 
	1734 | 
	
		  ///
 
	 | 
	| 1735 | 
	1735 | 
	
		  /// \tparam IT The type of the iterator.
 
	 | 
	| 1736 | 
	1736 | 
	
		  /// \tparam KEY The key type of the map. The default value set
 
	 | 
	| 1737 | 
	1737 | 
	
		  /// according to the iterator type should work in most cases.
 
	 | 
	| 1738 | 
	1738 | 
	
		  ///
 
	 | 
	| 1739 | 
	1739 | 
	
		  /// \note The container of the iterator must contain enough space
 
	 | 
	| 1740 | 
	1740 | 
	
		  /// for the elements or the iterator should be an inserter iterator.
 
	 | 
	| 1741 | 
	1741 | 
	
		#ifdef DOXYGEN
 
	 | 
	| 1742 | 
	1742 | 
	
		  template <typename IT, typename KEY>
 
	 | 
	| 1743 | 
	1743 | 
	
		#else
 
	 | 
	| 1744 | 
	1744 | 
	
		  template <typename IT,
 
	 | 
	| 1745 | 
	1745 | 
	
		            typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
 
	 | 
	| 1746 | 
	1746 | 
	
		#endif
 
	 | 
	| 1747 | 
	1747 | 
	
		  class LoggerBoolMap : public MapBase<KEY, bool> {
	 | 
	| 1748 | 
	1748 | 
	
		  public:
 
	 | 
	| 1749 | 
	1749 | 
	
		
 
	 | 
	| 1750 | 
	1750 | 
	
		    ///\e
 
	 | 
	| 1751 | 
	1751 | 
	
		    typedef KEY Key;
 
	 | 
	| 1752 | 
	1752 | 
	
		    ///\e
 
	 | 
	| 1753 | 
	1753 | 
	
		    typedef bool Value;
 
	 | 
	| 1754 | 
	1754 | 
	
		    ///\e
 
	 | 
	| 1755 | 
	1755 | 
	
		    typedef IT Iterator;
 
	 | 
	| 1756 | 
	1756 | 
	
		
 
	 | 
	| 1757 | 
	1757 | 
	
		    /// Constructor
 
	 | 
	| 1758 | 
	1758 | 
	
		    LoggerBoolMap(Iterator it)
 
	 | 
	| 1759 | 
	1759 | 
	
		      : _begin(it), _end(it) {}
	 | 
	| 1760 | 
	1760 | 
	
		
 
	 | 
	| 1761 | 
	1761 | 
	
		    /// Gives back the given iterator set for the first key
 
	 | 
	| 1762 | 
	1762 | 
	
		    Iterator begin() const {
	 | 
	| 1763 | 
	1763 | 
	
		      return _begin;
 
	 | 
	| 1764 | 
	1764 | 
	
		    }
 
	 | 
	| 1765 | 
	1765 | 
	
		
 
	 | 
	| 1766 | 
	1766 | 
	
		    /// Gives back the the 'after the last' iterator
 
	 | 
	| 1767 | 
	1767 | 
	
		    Iterator end() const {
	 | 
	| 1768 | 
	1768 | 
	
		      return _end;
 
	 | 
	| 1769 | 
	1769 | 
	
		    }
 
	 | 
	| 1770 | 
	1770 | 
	
		
 
	 | 
	| 1771 | 
	1771 | 
	
		    /// The set function of the map
 
	 | 
	| 1772 | 
	1772 | 
	
		    void set(const Key& key, Value value) {
	 | 
	| 1773 | 
	1773 | 
	
		      if (value) {
	 | 
	| 1774 | 
	1774 | 
	
		        *_end++ = key;
 
	 | 
	| 1775 | 
	1775 | 
	
		      }
 
	 | 
	| 1776 | 
	1776 | 
	
		    }
 
	 | 
	| 1777 | 
	1777 | 
	
		
 
	 | 
	| 1778 | 
	1778 | 
	
		  private:
 
	 | 
	| 1779 | 
	1779 | 
	
		    Iterator _begin;
 
	 | 
	| 1780 | 
	1780 | 
	
		    Iterator _end;
 
	 | 
	| 1781 | 
	1781 | 
	
		  };
 
	 | 
	| 1782 | 
	1782 | 
	
		
 
	 | 
	| 1783 | 
	1783 | 
	
		  /// Returns a \c LoggerBoolMap class
 
	 | 
	| 1784 | 
	1784 | 
	
		
 
	 | 
	| 1785 | 
	1785 | 
	
		  /// This function just returns a \c LoggerBoolMap class.
 
	 | 
	| 1786 | 
	1786 | 
	
		  ///
 
	 | 
	| 1787 | 
	1787 | 
	
		  /// The most important usage of it is storing certain nodes or arcs
 
	 | 
	| 1788 | 
	1788 | 
	
		  /// that were marked \c true by an algorithm.
 
	 | 
	| 1789 | 
	1789 | 
	
		  /// For example it makes easier to store the nodes in the processing
 
	 | 
	| 1790 | 
	1790 | 
	
		  /// order of Dfs algorithm, as the following examples show.
 
	 | 
	| 1791 | 
	1791 | 
	
		  /// \code
 
	 | 
	| 1792 | 
	1792 | 
	
		  ///   std::vector<Node> v;
 
	 | 
	| 1793 | 
	1793 | 
	
		  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
 
	 | 
	| 1794 | 
	1794 | 
	
		  /// \endcode
 
	 | 
	| 1795 | 
	1795 | 
	
		  /// \code
 
	 | 
	| 1796 | 
	1796 | 
	
		  ///   std::vector<Node> v(countNodes(g));
 
	 | 
	| 1797 | 
	1797 | 
	
		  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
 
	 | 
	| 1798 | 
	1798 | 
	
		  /// \endcode
 
	 | 
	| 1799 | 
	1799 | 
	
		  ///
 
	 | 
	| 1800 | 
	1800 | 
	
		  /// \note The container of the iterator must contain enough space
 
	 | 
	| 1801 | 
	1801 | 
	
		  /// for the elements or the iterator should be an inserter iterator.
 
	 | 
	| 1802 | 
	1802 | 
	
		  ///
 
	 | 
	| 1803 | 
	1803 | 
	
		  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
 
	 | 
	| 1804 | 
	1804 | 
	
		  /// it cannot be used when a readable map is needed, for example as
 
	 | 
	| 1805 | 
	1805 | 
	
		  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
 
	 | 
	| 1806 | 
	1806 | 
	
		  ///
 
	 | 
	| 1807 | 
	1807 | 
	
		  /// \relates LoggerBoolMap
 
	 | 
	| 1808 | 
	1808 | 
	
		  template<typename Iterator>
 
	 | 
	| 1809 | 
	1809 | 
	
		  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
	 | 
	| 1810 | 
	1810 | 
	
		    return LoggerBoolMap<Iterator>(it);
 
	 | 
	| 1811 | 
	1811 | 
	
		  }
 
	 | 
	| 1812 | 
	1812 | 
	
		
 
	 | 
	| 1813 | 
	1813 | 
	
		  /// @}
 
	 | 
	| 1814 | 
	1814 | 
	
		
 
	 | 
	| 1815 | 
	1815 | 
	
		  /// \addtogroup graph_maps
 
	 | 
	| 1816 | 
	1816 | 
	
		  /// @{
	 | 
	| 1817 | 
	1817 | 
	
		
 
	 | 
	| 1818 | 
	1818 | 
	
		  /// \brief Provides an immutable and unique id for each item in a graph.
 
	 | 
	| 1819 | 
	1819 | 
	
		  ///
 
	 | 
	| 1820 | 
	1820 | 
	
		  /// IdMap provides a unique and immutable id for each item of the
 
	 | 
	| 1821 | 
	1821 | 
	
		  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is 
 
	 | 
	| 1822 | 
	1822 | 
	
		  ///  - \b unique: different items get different ids,
 
	 | 
	| 1823 | 
	1823 | 
	
		  ///  - \b immutable: the id of an item does not change (even if you
 
	 | 
	| 1824 | 
	1824 | 
	
		  ///    delete other nodes).
 
	 | 
	| 1825 | 
	1825 | 
	
		  ///
 
	 | 
	| 1826 | 
	1826 | 
	
		  /// Using this map you get access (i.e. can read) the inner id values of
 
	 | 
	| 1827 | 
	1827 | 
	
		  /// the items stored in the graph, which is returned by the \c id()
 
	 | 
	| 1828 | 
	1828 | 
	
		  /// function of the graph. This map can be inverted with its member
 
	 | 
	| 1829 | 
	1829 | 
	
		  /// class \c InverseMap or with the \c operator() member.
 
	 | 
	| 1830 | 
	1830 | 
	
		  ///
 
	 | 
	| 1831 | 
	1831 | 
	
		  /// \tparam GR The graph type.
 
	 | 
	| 1832 | 
	1832 | 
	
		  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
	 | 
	| 1833 | 
	1833 | 
	
		  /// \c GR::Edge).
 
	 | 
	| 1834 | 
	1834 | 
	
		  ///
 
	 | 
	| 1835 | 
	1835 | 
	
		  /// \see RangeIdMap
 
	 | 
	| 1836 | 
	1836 | 
	
		  template <typename GR, typename K>
 
	 | 
	| 1837 | 
	1837 | 
	
		  class IdMap : public MapBase<K, int> {
	 | 
	| 1838 | 
	1838 | 
	
		  public:
 
	 | 
	| 1839 | 
	1839 | 
	
		    /// The graph type of IdMap.
 
	 | 
	| 1840 | 
	1840 | 
	
		    typedef GR Graph;
 
	 | 
	| 1841 | 
	1841 | 
	
		    typedef GR Digraph;
 
	 | 
	| 1842 | 
	1842 | 
	
		    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
 
	 | 
	| 1843 | 
	1843 | 
	
		    typedef K Item;
 
	 | 
	| 1844 | 
	1844 | 
	
		    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
 
	 | 
	| 1845 | 
	1845 | 
	
		    typedef K Key;
 
	 | 
	| 1846 | 
	1846 | 
	
		    /// The value type of IdMap.
 
	 | 
	| 1847 | 
	1847 | 
	
		    typedef int Value;
 
	 | 
	| 1848 | 
	1848 | 
	
		
 
	 | 
	| 1849 | 
	1849 | 
	
		    /// \brief Constructor.
 
	 | 
	| 1850 | 
	1850 | 
	
		    ///
 
	 | 
	| 1851 | 
	1851 | 
	
		    /// Constructor of the map.
 
	 | 
	| 1852 | 
	1852 | 
	
		    explicit IdMap(const Graph& graph) : _graph(&graph) {}
	 | 
	| 1853 | 
	1853 | 
	
		
 
	 | 
	| 1854 | 
	1854 | 
	
		    /// \brief Gives back the \e id of the item.
 
	 | 
	| 1855 | 
	1855 | 
	
		    ///
 
	 | 
	| 1856 | 
	1856 | 
	
		    /// Gives back the immutable and unique \e id of the item.
 
	 | 
	| 1857 | 
	1857 | 
	
		    int operator[](const Item& item) const { return _graph->id(item);}
	 | 
	| 1858 | 
	1858 | 
	
		
 
	 | 
	| 1859 | 
	1859 | 
	
		    /// \brief Gives back the \e item by its id.
 
	 | 
	| 1860 | 
	1860 | 
	
		    ///
 
	 | 
	| 1861 | 
	1861 | 
	
		    /// Gives back the \e item by its id.
 
	 | 
	| 1862 | 
	1862 | 
	
		    Item operator()(int id) { return _graph->fromId(id, Item()); }
	 | 
	| 1863 | 
	1863 | 
	
		
 
	 | 
	| 1864 | 
	1864 | 
	
		  private:
 
	 | 
	| 1865 | 
	1865 | 
	
		    const Graph* _graph;
 
	 | 
	| 1866 | 
	1866 | 
	
		
 
	 | 
	| 1867 | 
	1867 | 
	
		  public:
 
	 | 
	| 1868 | 
	1868 | 
	
		
 
	 | 
	| 1869 | 
	1869 | 
	
		    /// \brief This class represents the inverse of its owner (IdMap).
 
	 | 
	| 1870 | 
	1870 | 
	
		    ///
 
	 | 
	| 1871 | 
	1871 | 
	
		    /// This class represents the inverse of its owner (IdMap).
 
	 | 
	| 1872 | 
	1872 | 
	
		    /// \see inverse()
 
	 | 
	| 1873 | 
	1873 | 
	
		    class InverseMap {
	 | 
	| 1874 | 
	1874 | 
	
		    public:
 
	 | 
	| 1875 | 
	1875 | 
	
		
 
	 | 
	| 1876 | 
	1876 | 
	
		      /// \brief Constructor.
 
	 | 
	| 1877 | 
	1877 | 
	
		      ///
 
	 | 
	| 1878 | 
	1878 | 
	
		      /// Constructor for creating an id-to-item map.
 
	 | 
	| 1879 | 
	1879 | 
	
		      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
	 | 
	| 1880 | 
	1880 | 
	
		
 
	 | 
	| 1881 | 
	1881 | 
	
		      /// \brief Constructor.
 
	 | 
	| 1882 | 
	1882 | 
	
		      ///
 
	 | 
	| 1883 | 
	1883 | 
	
		      /// Constructor for creating an id-to-item map.
 
	 | 
	| 1884 | 
	1884 | 
	
		      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
	 | 
	| 1885 | 
	1885 | 
	
		
 
	 | 
	| 1886 | 
	1886 | 
	
		      /// \brief Gives back the given item from its id.
 
	 | 
	| 1887 | 
	1887 | 
	
		      ///
 
	 | 
	| 1888 | 
	1888 | 
	
		      /// Gives back the given item from its id.
 
	 | 
	| 1889 | 
	1889 | 
	
		      Item operator[](int id) const { return _graph->fromId(id, Item());}
	 | 
	| 1890 | 
	1890 | 
	
		
 
	 | 
	| 1891 | 
	1891 | 
	
		    private:
 
	 | 
	| 1892 | 
	1892 | 
	
		      const Graph* _graph;
 
	 | 
	| 1893 | 
	1893 | 
	
		    };
 
	 | 
	| 1894 | 
	1894 | 
	
		
 
	 | 
	| 1895 | 
	1895 | 
	
		    /// \brief Gives back the inverse of the map.
 
	 | 
	| 1896 | 
	1896 | 
	
		    ///
 
	 | 
	| 1897 | 
	1897 | 
	
		    /// Gives back the inverse of the IdMap.
 
	 | 
	| 1898 | 
	1898 | 
	
		    InverseMap inverse() const { return InverseMap(*_graph);}
	 | 
	| 1899 | 
	1899 | 
	
		  };
 
	 | 
	| 1900 | 
	1900 | 
	
		
 
	 | 
	| 1901 | 
	1901 | 
	
		
 
	 | 
	| 1902 | 
	1902 | 
	
		  /// \brief General cross reference graph map type.
 
	 | 
	| 1903 | 
	1903 | 
	
		
 
	 | 
	| 1904 | 
	1904 | 
	
		  /// This class provides simple invertable graph maps.
 
	 | 
	| 1905 | 
	 | 
	
		  /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
 
	 | 
	| 1906 | 
	 | 
	
		  /// and if a key is set to a new value then store it
 
	 | 
	| 1907 | 
	 | 
	
		  /// in the inverse map.
 
	 | 
	| 1908 | 
	 | 
	
		  ///
 
	 | 
	 | 
	1905 | 
	
		  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
 
	 | 
	 | 
	1906 | 
	
		  /// and if a key is set to a new value, then stores it in the inverse map.
 
	 | 
	| 1909 | 
	1907 | 
	
		  /// The values of the map can be accessed
 
	 | 
	| 1910 | 
	1908 | 
	
		  /// with stl compatible forward iterator.
 
	 | 
	| 1911 | 
	1909 | 
	
		  ///
 
	 | 
	 | 
	1910 | 
	
		  /// This type is not reference map, so it cannot be modified with
 
	 | 
	 | 
	1911 | 
	
		  /// the subscript operator.
 
	 | 
	 | 
	1912 | 
	
		  ///
 
	 | 
	| 1912 | 
	1913 | 
	
		  /// \tparam GR The graph type.
 
	 | 
	| 1913 | 
	1914 | 
	
		  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
	 | 
	| 1914 | 
	1915 | 
	
		  /// \c GR::Edge).
 
	 | 
	| 1915 | 
	1916 | 
	
		  /// \tparam V The value type of the map.
 
	 | 
	| 1916 | 
	1917 | 
	
		  ///
 
	 | 
	| 1917 | 
	1918 | 
	
		  /// \see IterableValueMap
 
	 | 
	| 1918 | 
	1919 | 
	
		  template <typename GR, typename K, typename V>
 
	 | 
	| 1919 | 
	1920 | 
	
		  class CrossRefMap
 
	 | 
	| 1920 | 
	1921 | 
	
		    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
	 | 
	| 1921 | 
	1922 | 
	
		  private:
 
	 | 
	| 1922 | 
	1923 | 
	
		
 
	 | 
	| 1923 | 
	1924 | 
	
		    typedef typename ItemSetTraits<GR, K>::
 
	 | 
	| 1924 | 
	1925 | 
	
		      template Map<V>::Type Map;
 
	 | 
	| 1925 | 
	1926 | 
	
		
 
	 | 
	| 1926 | 
	 | 
	
		    typedef std::map<V, K> Container;
 
	 | 
	 | 
	1927 | 
	
		    typedef std::multimap<V, K> Container;
 
	 | 
	| 1927 | 
	1928 | 
	
		    Container _inv_map;
 
	 | 
	| 1928 | 
	1929 | 
	
		
 
	 | 
	| 1929 | 
	1930 | 
	
		  public:
 
	 | 
	| 1930 | 
	1931 | 
	
		
 
	 | 
	| 1931 | 
	1932 | 
	
		    /// The graph type of CrossRefMap.
 
	 | 
	| 1932 | 
	1933 | 
	
		    typedef GR Graph;
 
	 | 
	| 1933 | 
	1934 | 
	
		    typedef GR Digraph;
 
	 | 
	| 1934 | 
	1935 | 
	
		    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
 
	 | 
	| 1935 | 
	1936 | 
	
		    typedef K Item;
 
	 | 
	| 1936 | 
	1937 | 
	
		    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
 
	 | 
	| 1937 | 
	1938 | 
	
		    typedef K Key;
 
	 | 
	| 1938 | 
	1939 | 
	
		    /// The value type of CrossRefMap.
 
	 | 
	| 1939 | 
	1940 | 
	
		    typedef V Value;
 
	 | 
	| 1940 | 
	1941 | 
	
		
 
	 | 
	| 1941 | 
	1942 | 
	
		    /// \brief Constructor.
 
	 | 
	| 1942 | 
	1943 | 
	
		    ///
 
	 | 
	| 1943 | 
	1944 | 
	
		    /// Construct a new CrossRefMap for the given graph.
 
	 | 
	| 1944 | 
	1945 | 
	
		    explicit CrossRefMap(const Graph& graph) : Map(graph) {}
	 | 
	| 1945 | 
	1946 | 
	
		
 
	 | 
	| 1946 | 
	1947 | 
	
		    /// \brief Forward iterator for values.
 
	 | 
	| 1947 | 
	1948 | 
	
		    ///
 
	 | 
	| 1948 | 
	1949 | 
	
		    /// This iterator is an stl compatible forward
 
	 | 
	| 1949 | 
	1950 | 
	
		    /// iterator on the values of the map. The values can
 
	 | 
	| 1950 | 
	1951 | 
	
		    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
 
	 | 
	 | 
	1952 | 
	
		    /// They are considered with multiplicity, so each value is
 
	 | 
	 | 
	1953 | 
	
		    /// traversed for each item it is assigned to.
 
	 | 
	| 1951 | 
	1954 | 
	
		    class ValueIterator
 
	 | 
	| 1952 | 
	1955 | 
	
		      : public std::iterator<std::forward_iterator_tag, Value> {
	 | 
	| 1953 | 
	1956 | 
	
		      friend class CrossRefMap;
 
	 | 
	| 1954 | 
	1957 | 
	
		    private:
 
	 | 
	| 1955 | 
	1958 | 
	
		      ValueIterator(typename Container::const_iterator _it)
 
	 | 
	| 1956 | 
	1959 | 
	
		        : it(_it) {}
	 | 
	| 1957 | 
	1960 | 
	
		    public:
 
	 | 
	| 1958 | 
	1961 | 
	
		
 
	 | 
	| 1959 | 
	1962 | 
	
		      ValueIterator() {}
	 | 
	| 1960 | 
	1963 | 
	
		
 
	 | 
	| 1961 | 
	1964 | 
	
		      ValueIterator& operator++() { ++it; return *this; }
	 | 
	| 1962 | 
	1965 | 
	
		      ValueIterator operator++(int) {
	 | 
	| 1963 | 
	1966 | 
	
		        ValueIterator tmp(*this);
 
	 | 
	| 1964 | 
	1967 | 
	
		        operator++();
 
	 | 
	| 1965 | 
	1968 | 
	
		        return tmp;
 
	 | 
	| 1966 | 
	1969 | 
	
		      }
 
	 | 
	| 1967 | 
	1970 | 
	
		
 
	 | 
	| 1968 | 
	1971 | 
	
		      const Value& operator*() const { return it->first; }
	 | 
	| 1969 | 
	1972 | 
	
		      const Value* operator->() const { return &(it->first); }
	 | 
	| 1970 | 
	1973 | 
	
		
 
	 | 
	| 1971 | 
	1974 | 
	
		      bool operator==(ValueIterator jt) const { return it == jt.it; }
	 | 
	| 1972 | 
	1975 | 
	
		      bool operator!=(ValueIterator jt) const { return it != jt.it; }
	 | 
	| 1973 | 
	1976 | 
	
		
 
	 | 
	| 1974 | 
	1977 | 
	
		    private:
 
	 | 
	| 1975 | 
	1978 | 
	
		      typename Container::const_iterator it;
 
	 | 
	| 1976 | 
	1979 | 
	
		    };
 
	 | 
	| 1977 | 
	1980 | 
	
		
 
	 | 
	| 1978 | 
	1981 | 
	
		    /// \brief Returns an iterator to the first value.
 
	 | 
	| 1979 | 
	1982 | 
	
		    ///
 
	 | 
	| 1980 | 
	1983 | 
	
		    /// Returns an stl compatible iterator to the
 
	 | 
	| 1981 | 
	1984 | 
	
		    /// first value of the map. The values of the
 
	 | 
	| 1982 | 
	1985 | 
	
		    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 
	 | 
	| 1983 | 
	1986 | 
	
		    /// range.
 
	 | 
	| 1984 | 
	1987 | 
	
		    ValueIterator beginValue() const {
	 | 
	| 1985 | 
	1988 | 
	
		      return ValueIterator(_inv_map.begin());
 
	 | 
	| 1986 | 
	1989 | 
	
		    }
 
	 | 
	| 1987 | 
	1990 | 
	
		
 
	 | 
	| 1988 | 
	1991 | 
	
		    /// \brief Returns an iterator after the last value.
 
	 | 
	| 1989 | 
	1992 | 
	
		    ///
 
	 | 
	| 1990 | 
	1993 | 
	
		    /// Returns an stl compatible iterator after the
 
	 | 
	| 1991 | 
	1994 | 
	
		    /// last value of the map. The values of the
 
	 | 
	| 1992 | 
	1995 | 
	
		    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 
	 | 
	| 1993 | 
	1996 | 
	
		    /// range.
 
	 | 
	| 1994 | 
	1997 | 
	
		    ValueIterator endValue() const {
	 | 
	| 1995 | 
	1998 | 
	
		      return ValueIterator(_inv_map.end());
 
	 | 
	| 1996 | 
	1999 | 
	
		    }
 
	 | 
	| 1997 | 
	2000 | 
	
		
 
	 | 
	| 1998 | 
	2001 | 
	
		    /// \brief Sets the value associated with the given key.
 
	 | 
	| 1999 | 
	2002 | 
	
		    ///
 
	 | 
	| 2000 | 
	2003 | 
	
		    /// Sets the value associated with the given key.
 
	 | 
	| 2001 | 
	2004 | 
	
		    void set(const Key& key, const Value& val) {
	 | 
	| 2002 | 
	2005 | 
	
		      Value oldval = Map::operator[](key);
 
	 | 
	| 2003 | 
	 | 
	
		      typename Container::iterator it = _inv_map.find(oldval);
 
	 | 
	| 2004 | 
	 | 
	
		      if (it != _inv_map.end() && it->second == key) {
	 | 
	| 2005 | 
	 | 
	
		        _inv_map.erase(it);
 
	 | 
	 | 
	2006 | 
	
		      typename Container::iterator it;
 
	 | 
	 | 
	2007 | 
	
		      for (it = _inv_map.equal_range(oldval).first;
 
	 | 
	 | 
	2008 | 
	
		           it != _inv_map.equal_range(oldval).second; ++it) {
	 | 
	 | 
	2009 | 
	
		        if (it->second == key) {
	 | 
	 | 
	2010 | 
	
		          _inv_map.erase(it);
 
	 | 
	 | 
	2011 | 
	
		          break;
 
	 | 
	 | 
	2012 | 
	
		        }
 
	 | 
	| 2006 | 
	2013 | 
	
		      }
 
	 | 
	| 2007 | 
	 | 
	
		      _inv_map.insert(make_pair(val, key));
 
	 | 
	 | 
	2014 | 
	
		      _inv_map.insert(std::make_pair(val, key));
 
	 | 
	| 2008 | 
	2015 | 
	
		      Map::set(key, val);
 
	 | 
	| 2009 | 
	2016 | 
	
		    }
 
	 | 
	| 2010 | 
	2017 | 
	
		
 
	 | 
	| 2011 | 
	2018 | 
	
		    /// \brief Returns the value associated with the given key.
 
	 | 
	| 2012 | 
	2019 | 
	
		    ///
 
	 | 
	| 2013 | 
	2020 | 
	
		    /// Returns the value associated with the given key.
 
	 | 
	| 2014 | 
	2021 | 
	
		    typename MapTraits<Map>::ConstReturnValue
 
	 | 
	| 2015 | 
	2022 | 
	
		    operator[](const Key& key) const {
	 | 
	| 2016 | 
	2023 | 
	
		      return Map::operator[](key);
 
	 | 
	| 2017 | 
	2024 | 
	
		    }
 
	 | 
	| 2018 | 
	2025 | 
	
		
 
	 | 
	| 2019 | 
	 | 
	
		    /// \brief Gives back the item by its value.
 
	 | 
	 | 
	2026 | 
	
		    /// \brief Gives back an item by its value.
 
	 | 
	| 2020 | 
	2027 | 
	
		    ///
 
	 | 
	| 2021 | 
	 | 
	
		    /// Gives back the item by its value.
 
	 | 
	| 2022 | 
	 | 
	
		    Key operator()(const Value& key) const {
	 | 
	| 2023 | 
	 | 
	
		      typename Container::const_iterator it = _inv_map.find(key);
 
	 | 
	 | 
	2028 | 
	
		    /// This function gives back an item that is assigned to
 
	 | 
	 | 
	2029 | 
	
		    /// the given value or \c INVALID if no such item exists.
 
	 | 
	 | 
	2030 | 
	
		    /// If there are more items with the same associated value,
 
	 | 
	 | 
	2031 | 
	
		    /// only one of them is returned.
 
	 | 
	 | 
	2032 | 
	
		    Key operator()(const Value& val) const {
	 | 
	 | 
	2033 | 
	
		      typename Container::const_iterator it = _inv_map.find(val);
 
	 | 
	| 2024 | 
	2034 | 
	
		      return it != _inv_map.end() ? it->second : INVALID;
 
	 | 
	| 2025 | 
	2035 | 
	
		    }
 
	 | 
	| 2026 | 
	2036 | 
	
		
 
	 | 
	| 2027 | 
	2037 | 
	
		  protected:
 
	 | 
	| 2028 | 
	2038 | 
	
		
 
	 | 
	| 2029 | 
	2039 | 
	
		    /// \brief Erase the key from the map and the inverse map.
 
	 | 
	| 2030 | 
	2040 | 
	
		    ///
 
	 | 
	| 2031 | 
	2041 | 
	
		    /// Erase the key from the map and the inverse map. It is called by the
 
	 | 
	| 2032 | 
	2042 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2033 | 
	2043 | 
	
		    virtual void erase(const Key& key) {
	 | 
	| 2034 | 
	2044 | 
	
		      Value val = Map::operator[](key);
 
	 | 
	| 2035 | 
	 | 
	
		      typename Container::iterator it = _inv_map.find(val);
 
	 | 
	| 2036 | 
	 | 
	
		      if (it != _inv_map.end() && it->second == key) {
	 | 
	| 2037 | 
	 | 
	
		        _inv_map.erase(it);
 
	 | 
	 | 
	2045 | 
	
		      typename Container::iterator it;
 
	 | 
	 | 
	2046 | 
	
		      for (it = _inv_map.equal_range(val).first;
 
	 | 
	 | 
	2047 | 
	
		           it != _inv_map.equal_range(val).second; ++it) {
	 | 
	 | 
	2048 | 
	
		        if (it->second == key) {
	 | 
	 | 
	2049 | 
	
		          _inv_map.erase(it);
 
	 | 
	 | 
	2050 | 
	
		          break;
 
	 | 
	 | 
	2051 | 
	
		        }
 
	 | 
	| 2038 | 
	2052 | 
	
		      }
 
	 | 
	| 2039 | 
	2053 | 
	
		      Map::erase(key);
 
	 | 
	| 2040 | 
	2054 | 
	
		    }
 
	 | 
	| 2041 | 
	2055 | 
	
		
 
	 | 
	| 2042 | 
	2056 | 
	
		    /// \brief Erase more keys from the map and the inverse map.
 
	 | 
	| 2043 | 
	2057 | 
	
		    ///
 
	 | 
	| 2044 | 
	2058 | 
	
		    /// Erase more keys from the map and the inverse map. It is called by the
 
	 | 
	| 2045 | 
	2059 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2046 | 
	2060 | 
	
		    virtual void erase(const std::vector<Key>& keys) {
	 | 
	| 2047 | 
	2061 | 
	
		      for (int i = 0; i < int(keys.size()); ++i) {
	 | 
	| 2048 | 
	2062 | 
	
		        Value val = Map::operator[](keys[i]);
 
	 | 
	| 2049 | 
	 | 
	
		        typename Container::iterator it = _inv_map.find(val);
 
	 | 
	| 2050 | 
	 | 
	
		        if (it != _inv_map.end() && it->second == keys[i]) {
	 | 
	| 2051 | 
	 | 
	
		          _inv_map.erase(it);
 
	 | 
	 | 
	2063 | 
	
		        typename Container::iterator it;
 
	 | 
	 | 
	2064 | 
	
		        for (it = _inv_map.equal_range(val).first;
 
	 | 
	 | 
	2065 | 
	
		             it != _inv_map.equal_range(val).second; ++it) {
	 | 
	 | 
	2066 | 
	
		          if (it->second == keys[i]) {
	 | 
	 | 
	2067 | 
	
		            _inv_map.erase(it);
 
	 | 
	 | 
	2068 | 
	
		            break;
 
	 | 
	 | 
	2069 | 
	
		          }
 
	 | 
	| 2052 | 
	2070 | 
	
		        }
 
	 | 
	| 2053 | 
	2071 | 
	
		      }
 
	 | 
	| 2054 | 
	2072 | 
	
		      Map::erase(keys);
 
	 | 
	| 2055 | 
	2073 | 
	
		    }
 
	 | 
	| 2056 | 
	2074 | 
	
		
 
	 | 
	| 2057 | 
	2075 | 
	
		    /// \brief Clear the keys from the map and the inverse map.
 
	 | 
	| 2058 | 
	2076 | 
	
		    ///
 
	 | 
	| 2059 | 
	2077 | 
	
		    /// Clear the keys from the map and the inverse map. It is called by the
 
	 | 
	| 2060 | 
	2078 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2061 | 
	2079 | 
	
		    virtual void clear() {
	 | 
	| 2062 | 
	2080 | 
	
		      _inv_map.clear();
 
	 | 
	| 2063 | 
	2081 | 
	
		      Map::clear();
 
	 | 
	| 2064 | 
	2082 | 
	
		    }
 
	 | 
	| 2065 | 
	2083 | 
	
		
 
	 | 
	| 2066 | 
	2084 | 
	
		  public:
 
	 | 
	| 2067 | 
	2085 | 
	
		
 
	 | 
	| 2068 | 
	2086 | 
	
		    /// \brief The inverse map type.
 
	 | 
	| 2069 | 
	2087 | 
	
		    ///
 
	 | 
	| 2070 | 
	2088 | 
	
		    /// The inverse of this map. The subscript operator of the map
 
	 | 
	| 2071 | 
	2089 | 
	
		    /// gives back the item that was last assigned to the value.
 
	 | 
	| 2072 | 
	2090 | 
	
		    class InverseMap {
	 | 
	| 2073 | 
	2091 | 
	
		    public:
 
	 | 
	| 2074 | 
	2092 | 
	
		      /// \brief Constructor
 
	 | 
	| 2075 | 
	2093 | 
	
		      ///
 
	 | 
	| 2076 | 
	2094 | 
	
		      /// Constructor of the InverseMap.
 
	 | 
	| 2077 | 
	2095 | 
	
		      explicit InverseMap(const CrossRefMap& inverted)
 
	 | 
	| 2078 | 
	2096 | 
	
		        : _inverted(inverted) {}
	 | 
	| 2079 | 
	2097 | 
	
		
 
	 | 
	| 2080 | 
	2098 | 
	
		      /// The value type of the InverseMap.
 
	 | 
	| 2081 | 
	2099 | 
	
		      typedef typename CrossRefMap::Key Value;
 
	 | 
	| 2082 | 
	2100 | 
	
		      /// The key type of the InverseMap.
 
	 | 
	| 2083 | 
	2101 | 
	
		      typedef typename CrossRefMap::Value Key;
 
	 | 
	| 2084 | 
	2102 | 
	
		
 
	 | 
	| 2085 | 
	2103 | 
	
		      /// \brief Subscript operator.
 
	 | 
	| 2086 | 
	2104 | 
	
		      ///
 
	 | 
	| 2087 | 
	 | 
	
		      /// Subscript operator. It gives back the item
 
	 | 
	| 2088 | 
	 | 
	
		      /// that was last assigned to the given value.
 
	 | 
	 | 
	2105 | 
	
		      /// Subscript operator. It gives back an item
 
	 | 
	 | 
	2106 | 
	
		      /// that is assigned to the given value or \c INVALID
 
	 | 
	 | 
	2107 | 
	
		      /// if no such item exists.
 
	 | 
	| 2089 | 
	2108 | 
	
		      Value operator[](const Key& key) const {
	 | 
	| 2090 | 
	2109 | 
	
		        return _inverted(key);
 
	 | 
	| 2091 | 
	2110 | 
	
		      }
 
	 | 
	| 2092 | 
	2111 | 
	
		
 
	 | 
	| 2093 | 
	2112 | 
	
		    private:
 
	 | 
	| 2094 | 
	2113 | 
	
		      const CrossRefMap& _inverted;
 
	 | 
	| 2095 | 
	2114 | 
	
		    };
 
	 | 
	| 2096 | 
	2115 | 
	
		
 
	 | 
	| 2097 | 
	2116 | 
	
		    /// \brief It gives back the read-only inverse map.
 
	 | 
	| 2098 | 
	2117 | 
	
		    ///
 
	 | 
	| 2099 | 
	2118 | 
	
		    /// It gives back the read-only inverse map.
 
	 | 
	| 2100 | 
	2119 | 
	
		    InverseMap inverse() const {
	 | 
	| 2101 | 
	2120 | 
	
		      return InverseMap(*this);
 
	 | 
	| 2102 | 
	2121 | 
	
		    }
 
	 | 
	| 2103 | 
	2122 | 
	
		
 
	 | 
	| 2104 | 
	2123 | 
	
		  };
 
	 | 
	| 2105 | 
	2124 | 
	
		
 
	 | 
	| 2106 | 
	2125 | 
	
		  /// \brief Provides continuous and unique ID for the
 
	 | 
	| 2107 | 
	2126 | 
	
		  /// items of a graph.
 
	 | 
	| 2108 | 
	2127 | 
	
		  ///
 
	 | 
	| 2109 | 
	2128 | 
	
		  /// RangeIdMap provides a unique and continuous
 
	 | 
	| 2110 | 
	2129 | 
	
		  /// ID for each item of a given type (\c Node, \c Arc or
 
	 | 
	| 2111 | 
	2130 | 
	
		  /// \c Edge) in a graph. This id is
 
	 | 
	| 2112 | 
	2131 | 
	
		  ///  - \b unique: different items get different ids,
 
	 | 
	| 2113 | 
	2132 | 
	
		  ///  - \b continuous: the range of the ids is the set of integers
 
	 | 
	| 2114 | 
	2133 | 
	
		  ///    between 0 and \c n-1, where \c n is the number of the items of
 
	 | 
	| 2115 | 
	2134 | 
	
		  ///    this type (\c Node, \c Arc or \c Edge).
 
	 | 
	| 2116 | 
	2135 | 
	
		  ///  - So, the ids can change when deleting an item of the same type.
 
	 | 
	| 2117 | 
	2136 | 
	
		  ///
 
	 | 
	| 2118 | 
	2137 | 
	
		  /// Thus this id is not (necessarily) the same as what can get using
 
	 | 
	| 2119 | 
	2138 | 
	
		  /// the \c id() function of the graph or \ref IdMap.
 
	 | 
	| 2120 | 
	2139 | 
	
		  /// This map can be inverted with its member class \c InverseMap,
 
	 | 
	| 2121 | 
	2140 | 
	
		  /// or with the \c operator() member.
 
	 | 
	| 2122 | 
	2141 | 
	
		  ///
 
	 | 
	| 2123 | 
	2142 | 
	
		  /// \tparam GR The graph type.
 
	 | 
	| 2124 | 
	2143 | 
	
		  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
	 | 
	| 2125 | 
	2144 | 
	
		  /// \c GR::Edge).
 
	 | 
	| 2126 | 
	2145 | 
	
		  ///
 
	 | 
	| 2127 | 
	2146 | 
	
		  /// \see IdMap
 
	 | 
	| 2128 | 
	2147 | 
	
		  template <typename GR, typename K>
 
	 | 
	| 2129 | 
	2148 | 
	
		  class RangeIdMap
 
	 | 
	| 2130 | 
	2149 | 
	
		    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
	 | 
	| 2131 | 
	2150 | 
	
		
 
	 | 
	| 2132 | 
	2151 | 
	
		    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
 
	 | 
	| 2133 | 
	2152 | 
	
		
 
	 | 
	| 2134 | 
	2153 | 
	
		  public:
 
	 | 
	| 2135 | 
	2154 | 
	
		    /// The graph type of RangeIdMap.
 
	 | 
	| 2136 | 
	2155 | 
	
		    typedef GR Graph;
 
	 | 
	| 2137 | 
	2156 | 
	
		    typedef GR Digraph;
 
	 | 
	| 2138 | 
	2157 | 
	
		    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
 
	 | 
	| 2139 | 
	2158 | 
	
		    typedef K Item;
 
	 | 
	| 2140 | 
	2159 | 
	
		    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
 
	 | 
	| 2141 | 
	2160 | 
	
		    typedef K Key;
 
	 | 
	| 2142 | 
	2161 | 
	
		    /// The value type of RangeIdMap.
 
	 | 
	| 2143 | 
	2162 | 
	
		    typedef int Value;
 
	 | 
	| 2144 | 
	2163 | 
	
		
 
	 | 
	| 2145 | 
	2164 | 
	
		    /// \brief Constructor.
 
	 | 
	| 2146 | 
	2165 | 
	
		    ///
 
	 | 
	| 2147 | 
	2166 | 
	
		    /// Constructor.
 
	 | 
	| 2148 | 
	2167 | 
	
		    explicit RangeIdMap(const Graph& gr) : Map(gr) {
	 | 
	| 2149 | 
	2168 | 
	
		      Item it;
 
	 | 
	| 2150 | 
	2169 | 
	
		      const typename Map::Notifier* nf = Map::notifier();
 
	 | 
	| 2151 | 
	2170 | 
	
		      for (nf->first(it); it != INVALID; nf->next(it)) {
	 | 
	| 2152 | 
	2171 | 
	
		        Map::set(it, _inv_map.size());
 
	 | 
	| 2153 | 
	2172 | 
	
		        _inv_map.push_back(it);
 
	 | 
	| 2154 | 
	2173 | 
	
		      }
 
	 | 
	| 2155 | 
	2174 | 
	
		    }
 
	 | 
	| 2156 | 
	2175 | 
	
		
 
	 | 
	| 2157 | 
	2176 | 
	
		  protected:
 
	 | 
	| 2158 | 
	2177 | 
	
		
 
	 | 
	| 2159 | 
	2178 | 
	
		    /// \brief Adds a new key to the map.
 
	 | 
	| 2160 | 
	2179 | 
	
		    ///
 
	 | 
	| 2161 | 
	2180 | 
	
		    /// Add a new key to the map. It is called by the
 
	 | 
	| 2162 | 
	2181 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2163 | 
	2182 | 
	
		    virtual void add(const Item& item) {
	 | 
	| 2164 | 
	2183 | 
	
		      Map::add(item);
 
	 | 
	| 2165 | 
	2184 | 
	
		      Map::set(item, _inv_map.size());
 
	 | 
	| 2166 | 
	2185 | 
	
		      _inv_map.push_back(item);
 
	 | 
	| 2167 | 
	2186 | 
	
		    }
 
	 | 
	| 2168 | 
	2187 | 
	
		
 
	 | 
	| 2169 | 
	2188 | 
	
		    /// \brief Add more new keys to the map.
 
	 | 
	| 2170 | 
	2189 | 
	
		    ///
 
	 | 
	| 2171 | 
	2190 | 
	
		    /// Add more new keys to the map. It is called by the
 
	 | 
	| 2172 | 
	2191 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2173 | 
	2192 | 
	
		    virtual void add(const std::vector<Item>& items) {
	 | 
	| 2174 | 
	2193 | 
	
		      Map::add(items);
 
	 | 
	| 2175 | 
	2194 | 
	
		      for (int i = 0; i < int(items.size()); ++i) {
	 | 
	| 2176 | 
	2195 | 
	
		        Map::set(items[i], _inv_map.size());
 
	 | 
	| 2177 | 
	2196 | 
	
		        _inv_map.push_back(items[i]);
 
	 | 
	| 2178 | 
	2197 | 
	
		      }
 
	 | 
	| 2179 | 
	2198 | 
	
		    }
 
	 | 
	| 2180 | 
	2199 | 
	
		
 
	 | 
	| 2181 | 
	2200 | 
	
		    /// \brief Erase the key from the map.
 
	 | 
	| 2182 | 
	2201 | 
	
		    ///
 
	 | 
	| 2183 | 
	2202 | 
	
		    /// Erase the key from the map. It is called by the
 
	 | 
	| 2184 | 
	2203 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2185 | 
	2204 | 
	
		    virtual void erase(const Item& item) {
	 | 
	| 2186 | 
	2205 | 
	
		      Map::set(_inv_map.back(), Map::operator[](item));
 
	 | 
	| 2187 | 
	2206 | 
	
		      _inv_map[Map::operator[](item)] = _inv_map.back();
 
	 | 
	| 2188 | 
	2207 | 
	
		      _inv_map.pop_back();
 
	 | 
	| 2189 | 
	2208 | 
	
		      Map::erase(item);
 
	 | 
	| 2190 | 
	2209 | 
	
		    }
 
	 | 
	| 2191 | 
	2210 | 
	
		
 
	 | 
	| 2192 | 
	2211 | 
	
		    /// \brief Erase more keys from the map.
 
	 | 
	| 2193 | 
	2212 | 
	
		    ///
 
	 | 
	| 2194 | 
	2213 | 
	
		    /// Erase more keys from the map. It is called by the
 
	 | 
	| 2195 | 
	2214 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2196 | 
	2215 | 
	
		    virtual void erase(const std::vector<Item>& items) {
	 | 
	| 2197 | 
	2216 | 
	
		      for (int i = 0; i < int(items.size()); ++i) {
	 | 
	| 2198 | 
	2217 | 
	
		        Map::set(_inv_map.back(), Map::operator[](items[i]));
 
	 | 
	| 2199 | 
	2218 | 
	
		        _inv_map[Map::operator[](items[i])] = _inv_map.back();
 
	 | 
	| 2200 | 
	2219 | 
	
		        _inv_map.pop_back();
 
	 | 
	| 2201 | 
	2220 | 
	
		      }
 
	 | 
	| 2202 | 
	2221 | 
	
		      Map::erase(items);
 
	 | 
	| 2203 | 
	2222 | 
	
		    }
 
	 | 
	| 2204 | 
	2223 | 
	
		
 
	 | 
	| 2205 | 
	2224 | 
	
		    /// \brief Build the unique map.
 
	 | 
	| 2206 | 
	2225 | 
	
		    ///
 
	 | 
	| 2207 | 
	2226 | 
	
		    /// Build the unique map. It is called by the
 
	 | 
	| 2208 | 
	2227 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2209 | 
	2228 | 
	
		    virtual void build() {
	 | 
	| 2210 | 
	2229 | 
	
		      Map::build();
 
	 | 
	| 2211 | 
	2230 | 
	
		      Item it;
 
	 | 
	| 2212 | 
	2231 | 
	
		      const typename Map::Notifier* nf = Map::notifier();
 
	 | 
	| 2213 | 
	2232 | 
	
		      for (nf->first(it); it != INVALID; nf->next(it)) {
	 | 
	| 2214 | 
	2233 | 
	
		        Map::set(it, _inv_map.size());
 
	 | 
	| 2215 | 
	2234 | 
	
		        _inv_map.push_back(it);
 
	 | 
	| 2216 | 
	2235 | 
	
		      }
 
	 | 
	| 2217 | 
	2236 | 
	
		    }
 
	 | 
	| 2218 | 
	2237 | 
	
		
 
	 | 
	| 2219 | 
	2238 | 
	
		    /// \brief Clear the keys from the map.
 
	 | 
	| 2220 | 
	2239 | 
	
		    ///
 
	 | 
	| 2221 | 
	2240 | 
	
		    /// Clear the keys from the map. It is called by the
 
	 | 
	| 2222 | 
	2241 | 
	
		    /// \c AlterationNotifier.
 
	 | 
	| 2223 | 
	2242 | 
	
		    virtual void clear() {
	 | 
	| 2224 | 
	2243 | 
	
		      _inv_map.clear();
 
	 | 
	| 2225 | 
	2244 | 
	
		      Map::clear();
 
	 | 
	| 2226 | 
	2245 | 
	
		    }
 
	 | 
	| 2227 | 
	2246 | 
	
		
 
	 | 
	| 2228 | 
	2247 | 
	
		  public:
 
	 | 
	| 2229 | 
	2248 | 
	
		
 
	 | 
	| 2230 | 
	2249 | 
	
		    /// \brief Returns the maximal value plus one.
 
	 | 
	| 2231 | 
	2250 | 
	
		    ///
 
	 | 
	| 2232 | 
	2251 | 
	
		    /// Returns the maximal value plus one in the map.
 
	 | 
	| 2233 | 
	2252 | 
	
		    unsigned int size() const {
	 | 
	| 2234 | 
	2253 | 
	
		      return _inv_map.size();
 
	 | 
	| 2235 | 
	2254 | 
	
		    }
 
	 | 
	| 2236 | 
	2255 | 
	
		
 
	 | 
	| 2237 | 
	2256 | 
	
		    /// \brief Swaps the position of the two items in the map.
 
	 | 
	| 2238 | 
	2257 | 
	
		    ///
 
	 | 
	| 2239 | 
	2258 | 
	
		    /// Swaps the position of the two items in the map.
 
	 | 
	| 2240 | 
	2259 | 
	
		    void swap(const Item& p, const Item& q) {
	 | 
	| 2241 | 
	2260 | 
	
		      int pi = Map::operator[](p);
 
	 | 
	| 2242 | 
	2261 | 
	
		      int qi = Map::operator[](q);
 
	 | 
	| 2243 | 
	2262 | 
	
		      Map::set(p, qi);
 
	 | 
	| 2244 | 
	2263 | 
	
		      _inv_map[qi] = p;
 
	 | 
	| 2245 | 
	2264 | 
	
		      Map::set(q, pi);
 
	 | 
	| 2246 | 
	2265 | 
	
		      _inv_map[pi] = q;
 
	 | 
	| 2247 | 
	2266 | 
	
		    }
 
	 | 
	| 2248 | 
	2267 | 
	
		
 
	 | 
	| 2249 | 
	2268 | 
	
		    /// \brief Gives back the \e RangeId of the item
 
	 | 
	| 2250 | 
	2269 | 
	
		    ///
 
	 | 
	| 2251 | 
	2270 | 
	
		    /// Gives back the \e RangeId of the item.
 
	 | 
	| 2252 | 
	2271 | 
	
		    int operator[](const Item& item) const {
	 | 
	| 2253 | 
	2272 | 
	
		      return Map::operator[](item);
 
	 | 
	| 2254 | 
	2273 | 
	
		    }
 
	 | 
	| 2255 | 
	2274 | 
	
		
 
	 | 
	| 2256 | 
	2275 | 
	
		    /// \brief Gives back the item belonging to a \e RangeId
 
	 | 
	| 2257 | 
	2276 | 
	
		    /// 
 
	 | 
	| 2258 | 
	2277 | 
	
		    /// Gives back the item belonging to a \e RangeId.
 
	 | 
	| 2259 | 
	2278 | 
	
		    Item operator()(int id) const {
	 | 
	| 2260 | 
	2279 | 
	
		      return _inv_map[id];
 
	 | 
	| 2261 | 
	2280 | 
	
		    }
 
	 | 
	| 2262 | 
	2281 | 
	
		
 
	 | 
	| 2263 | 
	2282 | 
	
		  private:
 
	 | 
	| 2264 | 
	2283 | 
	
		
 
	 | 
	| 2265 | 
	2284 | 
	
		    typedef std::vector<Item> Container;
 
	 | 
	| 2266 | 
	2285 | 
	
		    Container _inv_map;
 
	 | 
	| 2267 | 
	2286 | 
	
		
 
	 | 
	| 2268 | 
	2287 | 
	
		  public:
 
	 | 
	| 2269 | 
	2288 | 
	
		
 
	 | 
	| 2270 | 
	2289 | 
	
		    /// \brief The inverse map type of RangeIdMap.
 
	 | 
	| 2271 | 
	2290 | 
	
		    ///
 
	 | 
	| 2272 | 
	2291 | 
	
		    /// The inverse map type of RangeIdMap.
 
	 | 
	| 2273 | 
	2292 | 
	
		    class InverseMap {
	 | 
	| 2274 | 
	2293 | 
	
		    public:
 
	 | 
	| 2275 | 
	2294 | 
	
		      /// \brief Constructor
 
	 | 
	| 2276 | 
	2295 | 
	
		      ///
 
	 | 
	| 2277 | 
	2296 | 
	
		      /// Constructor of the InverseMap.
 
	 | 
	| 2278 | 
	2297 | 
	
		      explicit InverseMap(const RangeIdMap& inverted)
 
	 | 
	| 2279 | 
	2298 | 
	
		        : _inverted(inverted) {}
	 | 
	| 2280 | 
	2299 | 
	
		
 
	 | 
	| 2281 | 
	2300 | 
	
		
 
	 | 
	| 2282 | 
	2301 | 
	
		      /// The value type of the InverseMap.
 
	 | 
	| 2283 | 
	2302 | 
	
		      typedef typename RangeIdMap::Key Value;
 
	 | 
	| 2284 | 
	2303 | 
	
		      /// The key type of the InverseMap.
 
	 | 
	| 2285 | 
	2304 | 
	
		      typedef typename RangeIdMap::Value Key;
 
	 | 
	| 2286 | 
	2305 | 
	
		
 
	 | 
	| 2287 | 
	2306 | 
	
		      /// \brief Subscript operator.
 
	 | 
	| 2288 | 
	2307 | 
	
		      ///
 
	 | 
	| 2289 | 
	2308 | 
	
		      /// Subscript operator. It gives back the item
 
	 | 
	| 2290 | 
	2309 | 
	
		      /// that the descriptor currently belongs to.
 
	 | 
	| 2291 | 
	2310 | 
	
		      Value operator[](const Key& key) const {
	 | 
	| 2292 | 
	2311 | 
	
		        return _inverted(key);
 
	 | 
	| 2293 | 
	2312 | 
	
		      }
 
	 | 
	| 2294 | 
	2313 | 
	
		
 
	 | 
	| 2295 | 
	2314 | 
	
		      /// \brief Size of the map.
 
	 | 
	| 2296 | 
	2315 | 
	
		      ///
 
	 | 
	| 2297 | 
	2316 | 
	
		      /// Returns the size of the map.
 
	 | 
	| 2298 | 
	2317 | 
	
		      unsigned int size() const {
	 | 
	| 2299 | 
	2318 | 
	
		        return _inverted.size();
 
	 | 
	| 2300 | 
	2319 | 
	
		      }
 
	 | 
	| 2301 | 
	2320 | 
	
		
 
	 | 
	| 2302 | 
	2321 | 
	
		    private:
 
	 | 
	| 2303 | 
	2322 | 
	
		      const RangeIdMap& _inverted;
 
	 | 
	| 2304 | 
	2323 | 
	
		    };
 
	 | 
	| 2305 | 
	2324 | 
	
		
 
	 | 
	| 2306 | 
	2325 | 
	
		    /// \brief Gives back the inverse of the map.
 
	 | 
	| 2307 | 
	2326 | 
	
		    ///
 
	 | 
	| 2308 | 
	2327 | 
	
		    /// Gives back the inverse of the map.
 
	 | 
	| 2309 | 
	2328 | 
	
		    const InverseMap inverse() const {
	 | 
	| 2310 | 
	2329 | 
	
		      return InverseMap(*this);
 
	 | 
	| 2311 | 
	2330 | 
	
		    }
 
	 | 
	| 2312 | 
	2331 | 
	
		  };
 
	 | 
	| 2313 | 
	2332 | 
	
		
 
	 | 
	| 2314 | 
	2333 | 
	
		  /// \brief Map of the source nodes of arcs in a digraph.
 
	 | 
	| 2315 | 
	2334 | 
	
		  ///
 
	 | 
	| 2316 | 
	2335 | 
	
		  /// SourceMap provides access for the source node of each arc in a digraph,
 
	 | 
	| 2317 | 
	2336 | 
	
		  /// which is returned by the \c source() function of the digraph.
 
	 | 
	| 2318 | 
	2337 | 
	
		  /// \tparam GR The digraph type.
 
	 | 
	| 2319 | 
	2338 | 
	
		  /// \see TargetMap
 
	 | 
	| 2320 | 
	2339 | 
	
		  template <typename GR>
 
	 | 
	| 2321 | 
	2340 | 
	
		  class SourceMap {
	 | 
	| 2322 | 
	2341 | 
	
		  public:
 
	 | 
	| 2323 | 
	2342 | 
	
		
 
	 | 
	| 2324 | 
	2343 | 
	
		    ///\e
 
	 | 
	| 2325 | 
	2344 | 
	
		    typedef typename GR::Arc Key;
 
	 | 
	| 2326 | 
	2345 | 
	
		    ///\e
 
	 | 
	| 2327 | 
	2346 | 
	
		    typedef typename GR::Node Value;
 
	 | 
	| 2328 | 
	2347 | 
	
		
 
	 | 
	| 2329 | 
	2348 | 
	
		    /// \brief Constructor
 
	 | 
	| 2330 | 
	2349 | 
	
		    ///
 
	 | 
	| 2331 | 
	2350 | 
	
		    /// Constructor.
 
	 | 
	| 2332 | 
	2351 | 
	
		    /// \param digraph The digraph that the map belongs to.
 
	 | 
	| 2333 | 
	2352 | 
	
		    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
	 | 
	| 2334 | 
	2353 | 
	
		
 
	 | 
	| 2335 | 
	2354 | 
	
		    /// \brief Returns the source node of the given arc.
 
	 | 
	| 2336 | 
	2355 | 
	
		    ///
 
	 | 
	| 2337 | 
	2356 | 
	
		    /// Returns the source node of the given arc.
 
	 | 
	| 2338 | 
	2357 | 
	
		    Value operator[](const Key& arc) const {
	 | 
	| 2339 | 
	2358 | 
	
		      return _graph.source(arc);
 
	 | 
	| 2340 | 
	2359 | 
	
		    }
 
	 | 
	| 2341 | 
	2360 | 
	
		
 
	 | 
	| 2342 | 
	2361 | 
	
		  private:
 
	 | 
	| 2343 | 
	2362 | 
	
		    const GR& _graph;
 
	 | 
	| 2344 | 
	2363 | 
	
		  };
 
	 | 
	| 2345 | 
	2364 | 
	
		
 
	 | 
	| 2346 | 
	2365 | 
	
		  /// \brief Returns a \c SourceMap class.
 
	 | 
	| 2347 | 
	2366 | 
	
		  ///
 
	 | 
	| 2348 | 
	2367 | 
	
		  /// This function just returns an \c SourceMap class.
 
	 | 
	| 2349 | 
	2368 | 
	
		  /// \relates SourceMap
 
	 | 
	| 2350 | 
	2369 | 
	
		  template <typename GR>
 
	 | 
	| 2351 | 
	2370 | 
	
		  inline SourceMap<GR> sourceMap(const GR& graph) {
	 | 
	| 2352 | 
	2371 | 
	
		    return SourceMap<GR>(graph);
 
	 | 
	| 2353 | 
	2372 | 
	
		  }
 
	 | 
	| 2354 | 
	2373 | 
	
		
 
	 | 
	| 2355 | 
	2374 | 
	
		  /// \brief Map of the target nodes of arcs in a digraph.
 
	 | 
	| 2356 | 
	2375 | 
	
		  ///
 
	 | 
	| 2357 | 
	2376 | 
	
		  /// TargetMap provides access for the target node of each arc in a digraph,
 
	 | 
	| 2358 | 
	2377 | 
	
		  /// which is returned by the \c target() function of the digraph.
 
	 | 
	| 2359 | 
	2378 | 
	
		  /// \tparam GR The digraph type.
 
	 | 
	| 2360 | 
	2379 | 
	
		  /// \see SourceMap
 
	 | 
	| 2361 | 
	2380 | 
	
		  template <typename GR>
 
	 | 
	| 2362 | 
	2381 | 
	
		  class TargetMap {
	 | 
	| 2363 | 
	2382 | 
	
		  public:
 
	 | 
	| 2364 | 
	2383 | 
	
		
 
	 | 
	| 2365 | 
	2384 | 
	
		    ///\e
 
	 | 
	| 2366 | 
	2385 | 
	
		    typedef typename GR::Arc Key;
 
	 | 
	| 2367 | 
	2386 | 
	
		    ///\e
 
	 | 
	| 2368 | 
	2387 | 
	
		    typedef typename GR::Node Value;
 
	 | 
	| 2369 | 
	2388 | 
	
		
 
	 | 
	| 2370 | 
	2389 | 
	
		    /// \brief Constructor
 
	 | 
	| 2371 | 
	2390 | 
	
		    ///
 
	 | 
	| 2372 | 
	2391 | 
	
		    /// Constructor.
 
	 | 
	| 2373 | 
	2392 | 
	
		    /// \param digraph The digraph that the map belongs to.
 
	 | 
	| 2374 | 
	2393 | 
	
		    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
	 | 
	| 2375 | 
	2394 | 
	
		
 
	 | 
	| 2376 | 
	2395 | 
	
		    /// \brief Returns the target node of the given arc.
 
	 | 
	| 2377 | 
	2396 | 
	
		    ///
 
	 | 
	| 2378 | 
	2397 | 
	
		    /// Returns the target node of the given arc.
 
	 | 
	| 2379 | 
	2398 | 
	
		    Value operator[](const Key& e) const {
	 | 
	| 2380 | 
	2399 | 
	
		      return _graph.target(e);
 
	 | 
	| 2381 | 
	2400 | 
	
		    }
 
	 | 
	| 2382 | 
	2401 | 
	
		
 
	 | 
	| 2383 | 
	2402 | 
	
		  private:
 
	 | 
	| 2384 | 
	2403 | 
	
		    const GR& _graph;
 
	 | 
	| 2385 | 
	2404 | 
	
		  };
 
	 | 
	| 2386 | 
	2405 | 
	
		
 
	 | 
	| 2387 | 
	2406 | 
	
		  /// \brief Returns a \c TargetMap class.
 
	 | 
	| 2388 | 
	2407 | 
	
		  ///
 
	 | 
	| 2389 | 
	2408 | 
	
		  /// This function just returns a \c TargetMap class.
 
	 | 
	| 2390 | 
	2409 | 
	
		  /// \relates TargetMap
 
	 | 
	| 2391 | 
	2410 | 
	
		  template <typename GR>
 
	 | 
	| 2392 | 
	2411 | 
	
		  inline TargetMap<GR> targetMap(const GR& graph) {
	 | 
	| 2393 | 
	2412 | 
	
		    return TargetMap<GR>(graph);
 
	 | 
	| 2394 | 
	2413 | 
	
		  }
 
	 | 
	| 2395 | 
	2414 | 
	
		
 
	 | 
	| 2396 | 
	2415 | 
	
		  /// \brief Map of the "forward" directed arc view of edges in a graph.
 
	 | 
	| 2397 | 
	2416 | 
	
		  ///
 
	 | 
	| 2398 | 
	2417 | 
	
		  /// ForwardMap provides access for the "forward" directed arc view of
 
	 | 
	| 2399 | 
	2418 | 
	
		  /// each edge in a graph, which is returned by the \c direct() function
 
	 | 
	| 2400 | 
	2419 | 
	
		  /// of the graph with \c true parameter.
 
	 | 
	| 2401 | 
	2420 | 
	
		  /// \tparam GR The graph type.
 
	 | 
	| 2402 | 
	2421 | 
	
		  /// \see BackwardMap
 
	 | 
	| 2403 | 
	2422 | 
	
		  template <typename GR>
 
	 | 
	| 2404 | 
	2423 | 
	
		  class ForwardMap {
	 | 
	| 2405 | 
	2424 | 
	
		  public:
 
	 | 
	| 2406 | 
	2425 | 
	
		
 
	 | 
	| 2407 | 
	2426 | 
	
		    typedef typename GR::Arc Value;
 
	 | 
	| 2408 | 
	2427 | 
	
		    typedef typename GR::Edge Key;
 
	 | 
	| 2409 | 
	2428 | 
	
		
 
	 | 
	| 2410 | 
	2429 | 
	
		    /// \brief Constructor
 
	 | 
	| 2411 | 
	2430 | 
	
		    ///
 
	 | 
	| 2412 | 
	2431 | 
	
		    /// Constructor.
 
	 | 
	| 2413 | 
	2432 | 
	
		    /// \param graph The graph that the map belongs to.
 
	 | 
	| 2414 | 
	2433 | 
	
		    explicit ForwardMap(const GR& graph) : _graph(graph) {}
	 | 
	| 2415 | 
	2434 | 
	
		
 
	 | 
	| 2416 | 
	2435 | 
	
		    /// \brief Returns the "forward" directed arc view of the given edge.
 
	 | 
	| 2417 | 
	2436 | 
	
		    ///
 
	 | 
	| 2418 | 
	2437 | 
	
		    /// Returns the "forward" directed arc view of the given edge.
 
	 | 
	| 2419 | 
	2438 | 
	
		    Value operator[](const Key& key) const {
	 | 
	| 2420 | 
	2439 | 
	
		      return _graph.direct(key, true);
 
	 | 
	| 2421 | 
	2440 | 
	
		    }
 
	 | 
	| 2422 | 
	2441 | 
	
		
 
	 | 
	| 2423 | 
	2442 | 
	
		  private:
 
	 | 
	| 2424 | 
	2443 | 
	
		    const GR& _graph;
 
	 | 
	| 2425 | 
	2444 | 
	
		  };
 
	 | 
	| 2426 | 
	2445 | 
	
		
 
	 | 
	| 2427 | 
	2446 | 
	
		  /// \brief Returns a \c ForwardMap class.
 
	 | 
	| 2428 | 
	2447 | 
	
		  ///
 
	 | 
	| 2429 | 
	2448 | 
	
		  /// This function just returns an \c ForwardMap class.
 
	 | 
	| 2430 | 
	2449 | 
	
		  /// \relates ForwardMap
 
	 | 
	| 2431 | 
	2450 | 
	
		  template <typename GR>
 
	 | 
	| 2432 | 
	2451 | 
	
		  inline ForwardMap<GR> forwardMap(const GR& graph) {
	 | 
	| 2433 | 
	2452 | 
	
		    return ForwardMap<GR>(graph);
 
	 | 
	| 2434 | 
	2453 | 
	
		  }
 
	 | 
	| 2435 | 
	2454 | 
	
		
 
	 | 
	| 2436 | 
	2455 | 
	
		  /// \brief Map of the "backward" directed arc view of edges in a graph.
 
	 | 
	| 2437 | 
	2456 | 
	
		  ///
 
	 | 
	| 2438 | 
	2457 | 
	
		  /// BackwardMap provides access for the "backward" directed arc view of
 
	 | 
	| 2439 | 
	2458 | 
	
		  /// each edge in a graph, which is returned by the \c direct() function
 
	 | 
	| 2440 | 
	2459 | 
	
		  /// of the graph with \c false parameter.
 
	 | 
	| 2441 | 
	2460 | 
	
		  /// \tparam GR The graph type.
 
	 | 
	| 2442 | 
	2461 | 
	
		  /// \see ForwardMap
 
	 | 
	| 2443 | 
	2462 | 
	
		  template <typename GR>
 
	 | 
	| 2444 | 
	2463 | 
	
		  class BackwardMap {
	 | 
	| 2445 | 
	2464 | 
	
		  public:
 
	 | 
	| 2446 | 
	2465 | 
	
		
 
	 | 
	| 2447 | 
	2466 | 
	
		    typedef typename GR::Arc Value;
 
	 | 
	| 2448 | 
	2467 | 
	
		    typedef typename GR::Edge Key;
 
	 | 
	| 2449 | 
	2468 | 
	
		
 
	 | 
	| 2450 | 
	2469 | 
	
		    /// \brief Constructor
 
	 | 
	| 2451 | 
	2470 | 
	
		    ///
 
	 | 
	| 2452 | 
	2471 | 
	
		    /// Constructor.
 
	 | 
	| 2453 | 
	2472 | 
	
		    /// \param graph The graph that the map belongs to.
 
	 | 
	| 2454 | 
	2473 | 
	
		    explicit BackwardMap(const GR& graph) : _graph(graph) {}
	 | 
	| 2455 | 
	2474 | 
	
		
 
	 | 
	| 2456 | 
	2475 | 
	
		    /// \brief Returns the "backward" directed arc view of the given edge.
 
	 | 
	| 2457 | 
	2476 | 
	
		    ///
 
	 | 
	| 2458 | 
	2477 | 
	
		    /// Returns the "backward" directed arc view of the given edge.
 
	 | 
	| 2459 | 
	2478 | 
	
		    Value operator[](const Key& key) const {
	 | 
	| 2460 | 
	2479 | 
	
		      return _graph.direct(key, false);
 
	 | 
	| 2461 | 
	2480 | 
	
		    }
 
	 | 
	| 2462 | 
	2481 | 
	
		
 
	 | 
	| 2463 | 
	2482 | 
	
		  private:
 
	 | 
	| 2464 | 
	2483 | 
	
		    const GR& _graph;
 
	 | 
	| 2465 | 
	2484 | 
	
		  };
 
	 | 
	| 2466 | 
	2485 | 
	
		
 
	 | 
	| 2467 | 
	2486 | 
	
		  /// \brief Returns a \c BackwardMap class
 
	 | 
	| 2468 | 
	2487 | 
	
		
 
	 | 
	| 2469 | 
	2488 | 
	
		  /// This function just returns a \c BackwardMap class.
 
	 | 
	| 2470 | 
	2489 | 
	
		  /// \relates BackwardMap
 
	 | 
	| 2471 | 
	2490 | 
	
		  template <typename GR>
 
	 | 
	| 2472 | 
	2491 | 
	
		  inline BackwardMap<GR> backwardMap(const GR& graph) {
	 | 
	| 2473 | 
	2492 | 
	
		    return BackwardMap<GR>(graph);
 
	 | 
	| 2474 | 
	2493 | 
	
		  }
 
	 | 
	| 2475 | 
	2494 | 
	
		
 
	 | 
	| 2476 | 
	2495 | 
	
		  /// \brief Map of the in-degrees of nodes in a digraph.
 
	 | 
	| 2477 | 
	2496 | 
	
		  ///
 
	 | 
	| 2478 | 
	2497 | 
	
		  /// This map returns the in-degree of a node. Once it is constructed,
 
	 | 
	| 2479 | 
	2498 | 
	
		  /// the degrees are stored in a standard \c NodeMap, so each query is done
 
	 | 
	| 2480 | 
	2499 | 
	
		  /// in constant time. On the other hand, the values are updated automatically
 
	 | 
	| 2481 | 
	2500 | 
	
		  /// whenever the digraph changes.
 
	 | 
	| 2482 | 
	2501 | 
	
		  ///
 
	 | 
	| 2483 | 
	2502 | 
	
		  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
 
	 | 
	| 2484 | 
	2503 | 
	
		  /// may provide alternative ways to modify the digraph.
 
	 | 
	| 2485 | 
	2504 | 
	
		  /// The correct behavior of InDegMap is not guarantied if these additional
 
	 | 
	| 2486 | 
	2505 | 
	
		  /// features are used. For example the functions
 
	 | 
	| 2487 | 
	2506 | 
	
		  /// \ref ListDigraph::changeSource() "changeSource()",
 
	 | 
	| 2488 | 
	2507 | 
	
		  /// \ref ListDigraph::changeTarget() "changeTarget()" and
 
	 | 
	| 2489 | 
	2508 | 
	
		  /// \ref ListDigraph::reverseArc() "reverseArc()"
 
	 | 
	| 2490 | 
	2509 | 
	
		  /// of \ref ListDigraph will \e not update the degree values correctly.
 
	 | 
	| 2491 | 
	2510 | 
	
		  ///
 
	 | 
	| 2492 | 
	2511 | 
	
		  /// \sa OutDegMap
 
	 | 
	| 2493 | 
	2512 | 
	
		  template <typename GR>
 
	 | 
	| 2494 | 
	2513 | 
	
		  class InDegMap
 
	 | 
	| 2495 | 
	2514 | 
	
		    : protected ItemSetTraits<GR, typename GR::Arc>
 
	 | 
	| 2496 | 
	2515 | 
	
		      ::ItemNotifier::ObserverBase {
	 | 
	| 2497 | 
	2516 | 
	
		
 
	 | 
	| 2498 | 
	2517 | 
	
		  public:
 
	 | 
	| 2499 | 
	2518 | 
	
		    
 
	 | 
	| 2500 | 
	2519 | 
	
		    /// The graph type of InDegMap
 
	 | 
	| 2501 | 
	2520 | 
	
		    typedef GR Graph;
 
	 | 
	| 2502 | 
	2521 | 
	
		    typedef GR Digraph;
 
	 | 
	| 2503 | 
	2522 | 
	
		    /// The key type
 
	 | 
	| 2504 | 
	2523 | 
	
		    typedef typename Digraph::Node Key;
 
	 | 
	| 2505 | 
	2524 | 
	
		    /// The value type
 
	 | 
	| 2506 | 
	2525 | 
	
		    typedef int Value;
 
	 | 
	| 2507 | 
	2526 | 
	
		
 
	 | 
	| 2508 | 
	2527 | 
	
		    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
 
	 | 
	| 2509 | 
	2528 | 
	
		    ::ItemNotifier::ObserverBase Parent;
 
	 | 
	| 2510 | 
	2529 | 
	
		
 
	 | 
	| 2511 | 
	2530 | 
	
		  private:
 
	 | 
	| 2512 | 
	2531 | 
	
		
 
	 | 
	| 2513 | 
	2532 | 
	
		    class AutoNodeMap
 
	 | 
	| 2514 | 
	2533 | 
	
		      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
	 | 
	| 2515 | 
	2534 | 
	
		    public:
 
	 | 
	| 2516 | 
	2535 | 
	
		
 
	 | 
	| 2517 | 
	2536 | 
	
		      typedef typename ItemSetTraits<Digraph, Key>::
 
	 | 
	| 2518 | 
	2537 | 
	
		      template Map<int>::Type Parent;
 
	 | 
	| 2519 | 
	2538 | 
	
		
 
	 | 
	| 2520 | 
	2539 | 
	
		      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
	 | 
	| 2521 | 
	2540 | 
	
		
 
	 | 
	| 2522 | 
	2541 | 
	
		      virtual void add(const Key& key) {
	 | 
	| 2523 | 
	2542 | 
	
		        Parent::add(key);
 
	 | 
	| 2524 | 
	2543 | 
	
		        Parent::set(key, 0);
 
	 | 
	| 2525 | 
	2544 | 
	
		      }
 
	 | 
	| 2526 | 
	2545 | 
	
		
 
	 | 
	| 2527 | 
	2546 | 
	
		      virtual void add(const std::vector<Key>& keys) {
	 | 
	| 2528 | 
	2547 | 
	
		        Parent::add(keys);
 
	 | 
	| 2529 | 
	2548 | 
	
		        for (int i = 0; i < int(keys.size()); ++i) {
	 | 
	| 2530 | 
	2549 | 
	
		          Parent::set(keys[i], 0);
 
	 | 
	| 2531 | 
	2550 | 
	
		        }
 
	 | 
	| 2532 | 
	2551 | 
	
		      }
 
	 | 
	| 2533 | 
	2552 | 
	
		
 
	 | 
	| 2534 | 
	2553 | 
	
		      virtual void build() {
	 | 
	| 2535 | 
	2554 | 
	
		        Parent::build();
 
	 | 
	| 2536 | 
	2555 | 
	
		        Key it;
 
	 | 
	| 2537 | 
	2556 | 
	
		        typename Parent::Notifier* nf = Parent::notifier();
 
	 | 
	| 2538 | 
	2557 | 
	
		        for (nf->first(it); it != INVALID; nf->next(it)) {
	 | 
	| 2539 | 
	2558 | 
	
		          Parent::set(it, 0);
 
	 | 
	| 2540 | 
	2559 | 
	
		        }
 
	 | 
	| 2541 | 
	2560 | 
	
		      }
 
	 | 
	| 2542 | 
	2561 | 
	
		    };
 
	 | 
	| 2543 | 
	2562 | 
	
		
 
	 | 
	| 2544 | 
	2563 | 
	
		  public:
 
	 | 
	| 2545 | 
	2564 | 
	
		
 
	 | 
	| 2546 | 
	2565 | 
	
		    /// \brief Constructor.
 
	 | 
	| 2547 | 
	2566 | 
	
		    ///
 
	 | 
	| 2548 | 
	2567 | 
	
		    /// Constructor for creating an in-degree map.
 
	 | 
	| 2549 | 
	2568 | 
	
		    explicit InDegMap(const Digraph& graph)
 
	 | 
	| 2550 | 
	2569 | 
	
		      : _digraph(graph), _deg(graph) {
	 | 
	| 2551 | 
	2570 | 
	
		      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
 
	 | 
	| 2552 | 
	2571 | 
	
		
 
	 | 
	| 2553 | 
	2572 | 
	
		      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
	 | 
	| 2554 | 
	2573 | 
	
		        _deg[it] = countInArcs(_digraph, it);
 
	 | 
	| 2555 | 
	2574 | 
	
		      }
 
	 | 
	| 2556 | 
	2575 | 
	
		    }
 
	 | 
	| 2557 | 
	2576 | 
	
		
 
	 | 
	| 2558 | 
	2577 | 
	
		    /// \brief Gives back the in-degree of a Node.
 
	 | 
	| 2559 | 
	2578 | 
	
		    ///
 
	 | 
	| 2560 | 
	2579 | 
	
		    /// Gives back the in-degree of a Node.
 
	 | 
	| 2561 | 
	2580 | 
	
		    int operator[](const Key& key) const {
	 | 
	| 2562 | 
	2581 | 
	
		      return _deg[key];
 
	 | 
	| 2563 | 
	2582 | 
	
		    }
 
	 | 
	| 2564 | 
	2583 | 
	
		
 
	 | 
	| 2565 | 
	2584 | 
	
		  protected:
 
	 | 
	| 2566 | 
	2585 | 
	
		
 
	 | 
	| 2567 | 
	2586 | 
	
		    typedef typename Digraph::Arc Arc;
 
	 | 
	| 2568 | 
	2587 | 
	
		
 
	 | 
	| 2569 | 
	2588 | 
	
		    virtual void add(const Arc& arc) {
	 | 
	| 2570 | 
	2589 | 
	
		      ++_deg[_digraph.target(arc)];
 
	 | 
	| 2571 | 
	2590 | 
	
		    }
 
	 | 
	| 2572 | 
	2591 | 
	
		
 
	 | 
	| 2573 | 
	2592 | 
	
		    virtual void add(const std::vector<Arc>& arcs) {
	 | 
	| 2574 | 
	2593 | 
	
		      for (int i = 0; i < int(arcs.size()); ++i) {
	 | 
	| 2575 | 
	2594 | 
	
		        ++_deg[_digraph.target(arcs[i])];
 
	 | 
	| 2576 | 
	2595 | 
	
		      }
 
	 | 
	| 2577 | 
	2596 | 
	
		    }
 
	 | 
	| 2578 | 
	2597 | 
	
		
 
	 | 
	| 2579 | 
	2598 | 
	
		    virtual void erase(const Arc& arc) {
	 | 
	| 2580 | 
	2599 | 
	
		      --_deg[_digraph.target(arc)];
 
	 | 
	| 2581 | 
	2600 | 
	
		    }
 
	 | 
	| 2582 | 
	2601 | 
	
		
 
	 | 
	| 2583 | 
	2602 | 
	
		    virtual void erase(const std::vector<Arc>& arcs) {
	 | 
	| 2584 | 
	2603 | 
	
		      for (int i = 0; i < int(arcs.size()); ++i) {
	 | 
	| 2585 | 
	2604 | 
	
		        --_deg[_digraph.target(arcs[i])];
 
	 | 
	| 2586 | 
	2605 | 
	
		      }
 
	 | 
	| 2587 | 
	2606 | 
	
		    }
 
	 | 
	| 2588 | 
	2607 | 
	
		
 
	 | 
	| 2589 | 
	2608 | 
	
		    virtual void build() {
	 | 
	| 2590 | 
	2609 | 
	
		      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
	 | 
	| 2591 | 
	2610 | 
	
		        _deg[it] = countInArcs(_digraph, it);
 
	 | 
	| 2592 | 
	2611 | 
	
		      }
 
	 | 
	| 2593 | 
	2612 | 
	
		    }
 
	 | 
	| 2594 | 
	2613 | 
	
		
 
	 | 
	| 2595 | 
	2614 | 
	
		    virtual void clear() {
	 | 
	| 2596 | 
	2615 | 
	
		      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
	 | 
	| 2597 | 
	2616 | 
	
		        _deg[it] = 0;
 
	 | 
	| 2598 | 
	2617 | 
	
		      }
 
	 | 
	| 2599 | 
	2618 | 
	
		    }
 
	 | 
	| 2600 | 
	2619 | 
	
		  private:
 
	 | 
	| 2601 | 
	2620 | 
	
		
 
	 | 
	| 2602 | 
	2621 | 
	
		    const Digraph& _digraph;
 
	 | 
	| 2603 | 
	2622 | 
	
		    AutoNodeMap _deg;
 
	 | 
	| 2604 | 
	2623 | 
	
		  };
 
	 | 
	| 2605 | 
	2624 | 
	
		
 
	 | 
	| 2606 | 
	2625 | 
	
		  /// \brief Map of the out-degrees of nodes in a digraph.
 
	 | 
	| 2607 | 
	2626 | 
	
		  ///
 
	 | 
	| 2608 | 
	2627 | 
	
		  /// This map returns the out-degree of a node. Once it is constructed,
 
	 | 
	| 2609 | 
	2628 | 
	
		  /// the degrees are stored in a standard \c NodeMap, so each query is done
 
	 | 
	| 2610 | 
	2629 | 
	
		  /// in constant time. On the other hand, the values are updated automatically
 
	 | 
	| 2611 | 
	2630 | 
	
		  /// whenever the digraph changes.
 
	 | 
	| 2612 | 
	2631 | 
	
		  ///
 
	 | 
	| 2613 | 
	2632 | 
	
		  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
 
	 | 
	| 2614 | 
	2633 | 
	
		  /// may provide alternative ways to modify the digraph.
 
	 | 
	| 2615 | 
	2634 | 
	
		  /// The correct behavior of OutDegMap is not guarantied if these additional
 
	 | 
	| 2616 | 
	2635 | 
	
		  /// features are used. For example the functions
 
	 | 
	| 2617 | 
	2636 | 
	
		  /// \ref ListDigraph::changeSource() "changeSource()",
 
	 | 
	| 2618 | 
	2637 | 
	
		  /// \ref ListDigraph::changeTarget() "changeTarget()" and
 
	 | 
	| 2619 | 
	2638 | 
	
		  /// \ref ListDigraph::reverseArc() "reverseArc()"
 
	 | 
	| 2620 | 
	2639 | 
	
		  /// of \ref ListDigraph will \e not update the degree values correctly.
 
	 | 
	| 2621 | 
	2640 | 
	
		  ///
 
	 | 
	| 2622 | 
	2641 | 
	
		  /// \sa InDegMap
 
	 | 
	| 2623 | 
	2642 | 
	
		  template <typename GR>
 
	 | 
	| 2624 | 
	2643 | 
	
		  class OutDegMap
 
	 | 
	| 2625 | 
	2644 | 
	
		    : protected ItemSetTraits<GR, typename GR::Arc>
 
	 | 
	| 2626 | 
	2645 | 
	
		      ::ItemNotifier::ObserverBase {
	 | 
	| 2627 | 
	2646 | 
	
		
 
	 | 
	| 2628 | 
	2647 | 
	
		  public:
 
	 | 
	| 2629 | 
	2648 | 
	
		
 
	 | 
	| 2630 | 
	2649 | 
	
		    /// The graph type of OutDegMap
 
	 | 
	| 2631 | 
	2650 | 
	
		    typedef GR Graph;
 
	 | 
	| 2632 | 
	2651 | 
	
		    typedef GR Digraph;
 
	 | 
	| 2633 | 
	2652 | 
	
		    /// The key type
 
	 | 
	| 2634 | 
	2653 | 
	
		    typedef typename Digraph::Node Key;
 
	 | 
	| 2635 | 
	2654 | 
	
		    /// The value type
 
	 | 
	| 2636 | 
	2655 | 
	
		    typedef int Value;
 
	 | 
	| 2637 | 
	2656 | 
	
		
 
	 | 
	| 2638 | 
	2657 | 
	
		    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
 
	 | 
	| 2639 | 
	2658 | 
	
		    ::ItemNotifier::ObserverBase Parent;
 
	 | 
	| 2640 | 
	2659 | 
	
		
 
	 | 
	| 2641 | 
	2660 | 
	
		  private:
 
	 | 
	| 2642 | 
	2661 | 
	
		
 
	 | 
	| 2643 | 
	2662 | 
	
		    class AutoNodeMap
 
	 | 
	| 2644 | 
	2663 | 
	
		      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
	 | 
	| 2645 | 
	2664 | 
	
		    public:
 
	 | 
	| 2646 | 
	2665 | 
	
		
 
	 | 
	| 2647 | 
	2666 | 
	
		      typedef typename ItemSetTraits<Digraph, Key>::
 
	 | 
	| 2648 | 
	2667 | 
	
		      template Map<int>::Type Parent;
 
	 | 
	| 2649 | 
	2668 | 
	
		
 
	 | 
	| 2650 | 
	2669 | 
	
		      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
	 | 
	| 2651 | 
	2670 | 
	
		
 
	 | 
	| 2652 | 
	2671 | 
	
		      virtual void add(const Key& key) {
	 | 
	| 2653 | 
	2672 | 
	
		        Parent::add(key);
 
	 | 
	| 2654 | 
	2673 | 
	
		        Parent::set(key, 0);
 
	 | 
	| 2655 | 
	2674 | 
	
		      }
 
	 | 
	| 2656 | 
	2675 | 
	
		      virtual void add(const std::vector<Key>& keys) {
	 | 
	| 2657 | 
	2676 | 
	
		        Parent::add(keys);
 
	 | 
	| 2658 | 
	2677 | 
	
		        for (int i = 0; i < int(keys.size()); ++i) {
	 | 
	| 2659 | 
	2678 | 
	
		          Parent::set(keys[i], 0);
 
	 | 
	| 2660 | 
	2679 | 
	
		        }
 
	 | 
	| 2661 | 
	2680 | 
	
		      }
 
	 | 
	| 2662 | 
	2681 | 
	
		      virtual void build() {
	 | 
	| 2663 | 
	2682 | 
	
		        Parent::build();
 
	 | 
	| 2664 | 
	2683 | 
	
		        Key it;
 
	 | 
	| 2665 | 
	2684 | 
	
		        typename Parent::Notifier* nf = Parent::notifier();
 
	 | 
	| 2666 | 
	2685 | 
	
		        for (nf->first(it); it != INVALID; nf->next(it)) {
	 | 
	| 2667 | 
	2686 | 
	
		          Parent::set(it, 0);
 
	 | 
	| 2668 | 
	2687 | 
	
		        }
 
	 | 
	| 2669 | 
	2688 | 
	
		      }
 
	 | 
	| 2670 | 
	2689 | 
	
		    };
 
	 | 
	| 2671 | 
	2690 | 
	
		
 
	 | 
	| 2672 | 
	2691 | 
	
		  public:
 
	 | 
	| 2673 | 
	2692 | 
	
		
 
	 | 
	| 2674 | 
	2693 | 
	
		    /// \brief Constructor.
 
	 | 
	| 2675 | 
	2694 | 
	
		    ///
 
	 | 
	| 2676 | 
	2695 | 
	
		    /// Constructor for creating an out-degree map.
 
	 | 
	| 2677 | 
	2696 | 
	
		    explicit OutDegMap(const Digraph& graph)
 
	 | 
	| 2678 | 
	2697 | 
	
		      : _digraph(graph), _deg(graph) {
	 | 
	| 2679 | 
	2698 | 
	
		      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
 
	 | 
	| 2680 | 
	2699 | 
	
		
 
	 | 
	| 2681 | 
	2700 | 
	
		      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
	 | 
	| 2682 | 
	2701 | 
	
		        _deg[it] = countOutArcs(_digraph, it);
 
	 | 
	| 2683 | 
	2702 | 
	
		      }
 
	 | 
	| 2684 | 
	2703 | 
	
		    }
 
	 | 
	| 2685 | 
	2704 | 
	
		
 
	 | 
	| 2686 | 
	2705 | 
	
		    /// \brief Gives back the out-degree of a Node.
 
	 | 
	| 2687 | 
	2706 | 
	
		    ///
 
	 | 
	| 2688 | 
	2707 | 
	
		    /// Gives back the out-degree of a Node.
 
	 | 
	| 2689 | 
	2708 | 
	
		    int operator[](const Key& key) const {
	 | 
	| 2690 | 
	2709 | 
	
		      return _deg[key];
 
	 | 
	| 2691 | 
	2710 | 
	
		    }
 
	 | 
	| 2692 | 
	2711 | 
	
		
 
	 | 
	| 2693 | 
	2712 | 
	
		  protected:
 
	 | 
	| 2694 | 
	2713 | 
	
		
 
	 | 
	| 2695 | 
	2714 | 
	
		    typedef typename Digraph::Arc Arc;
 
	 | 
	| 2696 | 
	2715 | 
	
		
 
	 | 
	| 2697 | 
	2716 | 
	
		    virtual void add(const Arc& arc) {
	 | 
	| 2698 | 
	2717 | 
	
		      ++_deg[_digraph.source(arc)];
 
	 | 
	| 2699 | 
	2718 | 
	
		    }
 
	 | 
	| 2700 | 
	2719 | 
	
		
 
	 | 
	| 2701 | 
	2720 | 
	
		    virtual void add(const std::vector<Arc>& arcs) {
	 | 
	| 2702 | 
	2721 | 
	
		      for (int i = 0; i < int(arcs.size()); ++i) {
	 | 
	| 2703 | 
	2722 | 
	
		        ++_deg[_digraph.source(arcs[i])];
 
	 | 
	| 2704 | 
	2723 | 
	
		      }
 
	 | 
	| 2705 | 
	2724 | 
	
		    }
 
	 | 
	| 2706 | 
	2725 | 
	
		
 
	 | 
	| 2707 | 
	2726 | 
	
		    virtual void erase(const Arc& arc) {
	 | 
	| 2708 | 
	2727 | 
	
		      --_deg[_digraph.source(arc)];
 
	 | 
	| 2709 | 
	2728 | 
	
		    }
 
	 | 
	| 2710 | 
	2729 | 
	
		
 
	 | 
	| 2711 | 
	2730 | 
	
		    virtual void erase(const std::vector<Arc>& arcs) {
	 | 
	| 2712 | 
	2731 | 
	
		      for (int i = 0; i < int(arcs.size()); ++i) {
	 | 
	| 2713 | 
	2732 | 
	
		        --_deg[_digraph.source(arcs[i])];
 
	 | 
	| 2714 | 
	2733 | 
	
		      }
 
	 | 
	| 2715 | 
	2734 | 
	
		    }
 
	 | 
	| 2716 | 
	2735 | 
	
		
 
	 | 
	| 2717 | 
	2736 | 
	
		    virtual void build() {
	 | 
	| 2718 | 
	2737 | 
	
		      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
	 | 
	| 2719 | 
	2738 | 
	
		        _deg[it] = countOutArcs(_digraph, it);
 
	 | 
	| 2720 | 
	2739 | 
	
		      }
 
	 | 
	| 2721 | 
	2740 | 
	
		    }
 
	 | 
	| 2722 | 
	2741 | 
	
		
 
	 | 
	| 2723 | 
	2742 | 
	
		    virtual void clear() {
	 | 
	| 2724 | 
	2743 | 
	
		      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
	 | 
	| 2725 | 
	2744 | 
	
		        _deg[it] = 0;
 
	 | 
	| 2726 | 
	2745 | 
	
		      }
 
	 | 
	| 2727 | 
	2746 | 
	
		    }
 
	 | 
	| 2728 | 
	2747 | 
	
		  private:
 
	 | 
	| 2729 | 
	2748 | 
	
		
 
	 | 
	| 2730 | 
	2749 | 
	
		    const Digraph& _digraph;
 
	 | 
	| 2731 | 
	2750 | 
	
		    AutoNodeMap _deg;
 
	 | 
	| 2732 | 
	2751 | 
	
		  };
 
	 | 
	| 2733 | 
	2752 | 
	
		
 
	 | 
	| 2734 | 
	2753 | 
	
		  /// \brief Potential difference map
 
	 | 
	| 2735 | 
	2754 | 
	
		  ///
 
	 | 
	| 2736 | 
	2755 | 
	
		  /// PotentialDifferenceMap returns the difference between the potentials of
 
	 | 
	| 2737 | 
	2756 | 
	
		  /// the source and target nodes of each arc in a digraph, i.e. it returns
 
	 | 
	| 2738 | 
	2757 | 
	
		  /// \code
 
	 | 
	| 2739 | 
	2758 | 
	
		  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
 
	 | 
	| 2740 | 
	2759 | 
	
		  /// \endcode
 
	 | 
	| 2741 | 
	2760 | 
	
		  /// \tparam GR The digraph type.
 
	 | 
	| 2742 | 
	2761 | 
	
		  /// \tparam POT A node map storing the potentials.
 
	 | 
	| 2743 | 
	2762 | 
	
		  template <typename GR, typename POT>
 
	 | 
	| 2744 | 
	2763 | 
	
		  class PotentialDifferenceMap {
	 | 
	| 2745 | 
	2764 | 
	
		  public:
 
	 | 
	| 2746 | 
	2765 | 
	
		    /// Key type
 
	 | 
	| 2747 | 
	2766 | 
	
		    typedef typename GR::Arc Key;
 
	 | 
	| 2748 | 
	2767 | 
	
		    /// Value type
 
	 | 
	| 2749 | 
	2768 | 
	
		    typedef typename POT::Value Value;
 
	 | 
	| 2750 | 
	2769 | 
	
		
 
	 | 
	| 2751 | 
	2770 | 
	
		    /// \brief Constructor
 
	 | 
	| 2752 | 
	2771 | 
	
		    ///
 
	 | 
	| 2753 | 
	2772 | 
	
		    /// Contructor of the map.
 
	 | 
	| 2754 | 
	2773 | 
	
		    explicit PotentialDifferenceMap(const GR& gr,
 
	 | 
	| 2755 | 
	2774 | 
	
		                                    const POT& potential)
 
	 | 
	| 2756 | 
	2775 | 
	
		      : _digraph(gr), _potential(potential) {}
	 | 
	| 2757 | 
	2776 | 
	
		
 
	 | 
	| 2758 | 
	2777 | 
	
		    /// \brief Returns the potential difference for the given arc.
 
	 | 
	| 2759 | 
	2778 | 
	
		    ///
 
	 | 
	| 2760 | 
	2779 | 
	
		    /// Returns the potential difference for the given arc, i.e.
 
	 | 
	| 2761 | 
	2780 | 
	
		    /// \code
 
	 | 
	| 2762 | 
	2781 | 
	
		    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
 
	 | 
	| 2763 | 
	2782 | 
	
		    /// \endcode
 
	 | 
	| 2764 | 
	2783 | 
	
		    Value operator[](const Key& arc) const {
	 | 
	| 2765 | 
	2784 | 
	
		      return _potential[_digraph.target(arc)] -
 
	 | 
	| 2766 | 
	2785 | 
	
		        _potential[_digraph.source(arc)];
 
	 | 
	| 2767 | 
	2786 | 
	
		    }
 
	 | 
	| 2768 | 
	2787 | 
	
		
 
	 | 
	| 2769 | 
	2788 | 
	
		  private:
 
	 | 
	| 2770 | 
	2789 | 
	
		    const GR& _digraph;
 
	 | 
	| 2771 | 
	2790 | 
	
		    const POT& _potential;
 
	 | 
	| 2772 | 
	2791 | 
	
		  };
 
	 | 
	| 2773 | 
	2792 | 
	
		
 
	 | 
	| 2774 | 
	2793 | 
	
		  /// \brief Returns a PotentialDifferenceMap.
 
	 | 
	| 2775 | 
	2794 | 
	
		  ///
 
	 | 
	| 2776 | 
	2795 | 
	
		  /// This function just returns a PotentialDifferenceMap.
 
	 | 
	| 2777 | 
	2796 | 
	
		  /// \relates PotentialDifferenceMap
 
	 | 
	| 2778 | 
	2797 | 
	
		  template <typename GR, typename POT>
 
	 | 
	| 2779 | 
	2798 | 
	
		  PotentialDifferenceMap<GR, POT>
 
	 | 
	| 2780 | 
	2799 | 
	
		  potentialDifferenceMap(const GR& gr, const POT& potential) {
	 | 
	| 2781 | 
	2800 | 
	
		    return PotentialDifferenceMap<GR, POT>(gr, potential);
 
	 | 
	| 2782 | 
	2801 | 
	
		  }
 
	 | 
	| 2783 | 
	2802 | 
	
		
 
	 | 
	| 2784 | 
	2803 | 
	
		  /// @}
 
	 | 
	| 2785 | 
	2804 | 
	
		}
 
	 | 
	| 2786 | 
	2805 | 
	
		
 
	 | 
	| 2787 | 
	2806 | 
	
		#endif // LEMON_MAPS_H 
	 |