0
5
6
39
27
1 |
%!PS-Adobe-3.0 EPSF-3.0 |
|
2 |
%%BoundingBox: 15 18 829 570 |
|
3 |
%%HiResBoundingBox: 15.1913 18.4493 828.078 569.438 |
|
4 |
%%Creator: Karbon14 EPS Exportfilter 0.5 |
|
5 |
%%CreationDate: (04/15/06 15:20:26) |
|
6 |
%%For: (Balazs Dezso) () |
|
7 |
%%Title: () |
|
8 |
|
|
9 |
/N {newpath} def |
|
10 |
/C {closepath} def |
|
11 |
/m {moveto} def |
|
12 |
/c {curveto} def |
|
13 |
/l {lineto} def |
|
14 |
/s {stroke} def |
|
15 |
/f {fill} def |
|
16 |
/w {setlinewidth} def |
|
17 |
/d {setdash} def |
|
18 |
/r {setrgbcolor} def |
|
19 |
/S {gsave} def |
|
20 |
/R {grestore} def |
|
21 |
|
|
22 |
N |
|
23 |
251.402 32.047 m |
|
24 |
532.945 293.946 814.484 555.844 814.484 555.844 c |
|
25 |
[] 0 d 1 0 0 r 3.92814 w s |
|
26 |
|
|
27 |
N |
|
28 |
749.012 32.047 m |
|
29 |
742.465 293.946 735.918 555.844 735.918 555.844 c |
|
30 |
[] 0 d 0 0 0 r 1.96407 w s |
|
31 |
|
|
32 |
N |
|
33 |
539.492 32.047 m |
|
34 |
637.703 293.946 735.918 555.844 735.918 555.844 c |
|
35 |
[] 0 d 0 0 0 r 1.96407 w s |
|
36 |
|
|
37 |
N |
|
38 |
172.832 32.047 m |
|
39 |
454.375 293.946 735.918 555.844 735.918 555.844 c |
|
40 |
[] 0 d 0 0 0 r 1.96407 w s |
|
41 |
|
|
42 |
N |
|
43 |
107.355 32.047 m |
|
44 |
421.637 293.946 735.918 555.844 735.918 555.844 c |
|
45 |
[] 0 d 1 0 0 r 3.92814 w s |
|
46 |
|
|
47 |
N |
|
48 |
644.25 555.844 m |
|
49 |
696.633 293.946 749.012 32.047 749.012 32.047 c |
|
50 |
[] 0 d 0 0 0 r 1.96407 w s |
|
51 |
|
|
52 |
N |
|
53 |
474.016 555.844 m |
|
54 |
611.516 293.946 749.012 32.047 749.012 32.047 c |
|
55 |
[] 0 d 1 0 0 r 3.92814 w s |
|
56 |
|
|
57 |
N |
|
58 |
683.535 32.047 m |
|
59 |
663.894 293.946 644.25 555.844 644.25 555.844 c |
|
60 |
[] 0 d 0 0 0 r 1.96407 w s |
|
61 |
|
|
62 |
N |
|
63 |
120.453 555.844 m |
|
64 |
401.992 293.946 683.535 32.047 683.535 32.047 c |
|
65 |
[] 0 d 0 0 0 r 1.96407 w s |
|
66 |
|
|
67 |
N |
|
68 |
28.7853 555.844 m |
|
69 |
356.16 293.946 683.535 32.047 683.535 32.047 c |
|
70 |
[] 0 d 1 0 0 r 3.92814 w s |
|
71 |
|
|
72 |
N |
|
73 |
539.492 32.047 m |
|
74 |
546.039 293.946 552.586 555.844 552.586 555.844 c |
|
75 |
[] 0 d 1 0 0 r 3.92814 w s |
|
76 |
|
|
77 |
N |
|
78 |
316.875 32.047 m |
|
79 |
349.613 293.946 382.351 555.844 382.351 555.844 c |
|
80 |
[] 0 d 1 0 0 r 3.92814 w s |
|
81 |
|
|
82 |
N |
|
83 |
107.355 32.047 m |
|
84 |
244.855 293.946 382.351 555.844 382.351 555.844 c |
|
85 |
[] 0 d 0 0 0 r 1.96407 w s |
|
86 |
|
|
87 |
N |
|
88 |
290.687 555.844 m |
|
89 |
375.805 293.946 460.922 32.047 460.922 32.047 c |
|
90 |
[] 0 d 1 0 0 r 3.92814 w s |
|
91 |
|
|
92 |
N |
|
93 |
120.453 555.844 m |
|
94 |
290.687 293.946 460.922 32.047 460.922 32.047 c |
|
95 |
[] 0 d 0 0 0 r 1.96407 w s |
|
96 |
|
|
97 |
N |
|
98 |
172.832 32.047 m |
|
99 |
146.64 293.946 120.453 555.844 120.453 555.844 c |
|
100 |
[] 0 d 1 0 0 r 3.92814 w s |
|
101 |
|
|
102 |
N |
|
103 |
15.6913 555.844 m |
|
104 |
15.6913 555.844 l |
|
105 |
15.6913 548.614 21.5553 542.75 28.7853 542.75 c |
|
106 |
36.0163 542.75 41.8833 548.614 41.8833 555.844 c |
|
107 |
41.8833 563.075 36.0163 568.938 28.7853 568.938 c |
|
108 |
21.5553 568.938 15.6913 563.075 15.6913 555.844 c |
|
109 |
15.6913 555.844 l |
|
110 |
C |
|
111 |
S 0 0 0 r f R |
|
112 |
|
|
113 |
N |
|
114 |
16.8833 555.844 m |
|
115 |
16.8833 555.844 l |
|
116 |
16.8833 549.27 22.2113 543.942 28.7853 543.942 c |
|
117 |
35.3593 543.942 40.6913 549.27 40.6913 555.844 c |
|
118 |
40.6913 562.418 35.3593 567.747 28.7853 567.747 c |
|
119 |
22.2113 567.747 16.8833 562.418 16.8833 555.844 c |
|
120 |
16.8833 555.844 l |
|
121 |
C |
|
122 |
S 1 0.5 1 r f R |
|
123 |
|
|
124 |
N |
|
125 |
107.355 555.844 m |
|
126 |
107.355 555.844 l |
|
127 |
107.355 548.614 113.223 542.75 120.453 542.75 c |
|
128 |
127.683 542.75 133.547 548.614 133.547 555.844 c |
|
129 |
133.547 563.075 127.683 568.938 120.453 568.938 c |
|
130 |
113.223 568.938 107.355 563.075 107.355 555.844 c |
|
131 |
107.355 555.844 l |
|
132 |
C |
|
133 |
S 0 0 0 r f R |
|
134 |
|
|
135 |
N |
|
136 |
108.547 555.844 m |
|
137 |
108.547 555.844 l |
|
138 |
108.547 549.27 113.879 543.942 120.453 543.942 c |
|
139 |
127.027 543.942 132.355 549.27 132.355 555.844 c |
|
140 |
132.355 562.418 127.027 567.747 120.453 567.747 c |
|
141 |
113.879 567.747 108.547 562.418 108.547 555.844 c |
|
142 |
108.547 555.844 l |
|
143 |
C |
|
144 |
S 1 0 1 r f R |
|
145 |
|
|
146 |
N |
|
147 |
199.019 555.844 m |
|
148 |
199.019 555.844 l |
|
149 |
199.019 548.614 204.887 542.75 212.117 542.75 c |
|
150 |
219.348 542.75 225.211 548.614 225.211 555.844 c |
|
151 |
225.211 563.075 219.348 568.938 212.117 568.938 c |
|
152 |
204.887 568.938 199.019 563.075 199.019 555.844 c |
|
153 |
199.019 555.844 l |
|
154 |
C |
|
155 |
S 0 0 0 r f R |
|
156 |
|
|
157 |
N |
|
158 |
200.211 555.844 m |
|
159 |
200.211 555.844 l |
|
160 |
200.211 549.27 205.543 543.942 212.117 543.942 c |
|
161 |
218.691 543.942 224.019 549.27 224.019 555.844 c |
|
162 |
224.019 562.418 218.691 567.747 212.117 567.747 c |
|
163 |
205.543 567.747 200.211 562.418 200.211 555.844 c |
|
164 |
200.211 555.844 l |
|
165 |
C |
|
166 |
S 1 0.5 1 r f R |
|
167 |
|
|
168 |
N |
|
169 |
277.59 555.844 m |
|
170 |
277.59 555.844 l |
|
171 |
277.59 548.614 283.457 542.75 290.687 542.75 c |
|
172 |
297.918 542.75 303.781 548.614 303.781 555.844 c |
|
173 |
303.781 563.075 297.918 568.938 290.687 568.938 c |
|
174 |
283.457 568.938 277.59 563.075 277.59 555.844 c |
|
175 |
277.59 555.844 l |
|
176 |
C |
|
177 |
S 0 0 0 r f R |
|
178 |
|
|
179 |
N |
|
180 |
278.781 555.844 m |
|
181 |
278.781 555.844 l |
|
182 |
278.781 549.27 284.113 543.942 290.687 543.942 c |
|
183 |
297.262 543.942 302.59 549.27 302.59 555.844 c |
|
184 |
302.59 562.418 297.262 567.747 290.687 567.747 c |
|
185 |
284.113 567.747 278.781 562.418 278.781 555.844 c |
|
186 |
278.781 555.844 l |
|
187 |
C |
|
188 |
S 1 0 1 r f R |
|
189 |
|
|
190 |
N |
|
191 |
369.258 555.844 m |
|
192 |
369.258 555.844 l |
|
193 |
369.258 548.614 375.121 542.75 382.351 542.75 c |
|
194 |
389.582 542.75 395.445 548.614 395.445 555.844 c |
|
195 |
395.445 563.075 389.582 568.938 382.351 568.938 c |
|
196 |
375.121 568.938 369.258 563.075 369.258 555.844 c |
|
197 |
369.258 555.844 l |
|
198 |
C |
|
199 |
S 0 0 0 r f R |
|
200 |
|
|
201 |
N |
|
202 |
370.445 555.844 m |
|
203 |
370.445 555.844 l |
|
204 |
370.445 549.27 375.777 543.942 382.351 543.942 c |
|
205 |
388.926 543.942 394.258 549.27 394.258 555.844 c |
|
206 |
394.258 562.418 388.926 567.747 382.351 567.747 c |
|
207 |
375.777 567.747 370.445 562.418 370.445 555.844 c |
|
208 |
370.445 555.844 l |
|
209 |
C |
|
210 |
S 1 0 1 r f R |
|
211 |
|
|
212 |
N |
|
213 |
460.922 555.844 m |
|
214 |
460.922 555.844 l |
|
215 |
460.922 548.614 466.785 542.75 474.016 542.75 c |
|
216 |
481.246 542.75 487.109 548.614 487.109 555.844 c |
|
217 |
487.109 563.075 481.246 568.938 474.016 568.938 c |
|
218 |
466.785 568.938 460.922 563.075 460.922 555.844 c |
|
219 |
460.922 555.844 l |
|
220 |
C |
|
221 |
S 0 0 0 r f R |
|
222 |
|
|
223 |
N |
|
224 |
462.113 555.844 m |
|
225 |
462.113 555.844 l |
|
226 |
462.113 549.27 467.441 543.942 474.016 543.942 c |
|
227 |
480.59 543.942 485.922 549.27 485.922 555.844 c |
|
228 |
485.922 562.418 480.59 567.747 474.016 567.747 c |
|
229 |
467.441 567.747 462.113 562.418 462.113 555.844 c |
|
230 |
462.113 555.844 l |
|
231 |
C |
|
232 |
S 1 0.5 1 r f R |
|
233 |
|
|
234 |
N |
|
235 |
539.492 555.844 m |
|
236 |
539.492 555.844 l |
|
237 |
539.492 548.614 545.355 542.75 552.586 542.75 c |
|
238 |
559.816 542.75 565.68 548.614 565.68 555.844 c |
|
239 |
565.68 563.075 559.816 568.938 552.586 568.938 c |
|
240 |
545.355 568.938 539.492 563.075 539.492 555.844 c |
|
241 |
539.492 555.844 l |
|
242 |
C |
|
243 |
S 0 0 0 r f R |
|
244 |
|
|
245 |
N |
|
246 |
540.683 555.844 m |
|
247 |
540.683 555.844 l |
|
248 |
540.683 549.27 546.012 543.942 552.586 543.942 c |
|
249 |
559.16 543.942 564.492 549.27 564.492 555.844 c |
|
250 |
564.492 562.418 559.16 567.747 552.586 567.747 c |
|
251 |
546.012 567.747 540.683 562.418 540.683 555.844 c |
|
252 |
540.683 555.844 l |
|
253 |
C |
|
254 |
S 1 0 1 r f R |
|
255 |
|
|
256 |
N |
|
257 |
631.156 555.844 m |
|
258 |
631.156 555.844 l |
|
259 |
631.156 548.614 637.019 542.75 644.25 542.75 c |
|
260 |
651.48 542.75 657.348 548.614 657.348 555.844 c |
|
261 |
657.348 563.075 651.48 568.938 644.25 568.938 c |
|
262 |
637.019 568.938 631.156 563.075 631.156 555.844 c |
|
263 |
631.156 555.844 l |
|
264 |
C |
|
265 |
S 0 0 0 r f R |
|
266 |
|
|
267 |
N |
|
268 |
632.348 555.844 m |
|
269 |
632.348 555.844 l |
|
270 |
632.348 549.27 637.676 543.942 644.25 543.942 c |
|
271 |
650.824 543.942 656.156 549.27 656.156 555.844 c |
|
272 |
656.156 562.418 650.824 567.747 644.25 567.747 c |
|
273 |
637.676 567.747 632.348 562.418 632.348 555.844 c |
|
274 |
632.348 555.844 l |
|
275 |
C |
|
276 |
S 1 0.5 1 r f R |
|
277 |
|
|
278 |
N |
|
279 |
722.82 555.844 m |
|
280 |
722.82 555.844 l |
|
281 |
722.82 548.614 728.687 542.75 735.918 542.75 c |
|
282 |
743.149 542.75 749.012 548.614 749.012 555.844 c |
|
283 |
749.012 563.075 743.149 568.938 735.918 568.938 c |
|
284 |
728.687 568.938 722.82 563.075 722.82 555.844 c |
|
285 |
722.82 555.844 l |
|
286 |
C |
|
287 |
S 0 0 0 r f R |
|
288 |
|
|
289 |
N |
|
290 |
724.012 555.844 m |
|
291 |
724.012 555.844 l |
|
292 |
724.012 549.27 729.344 543.942 735.918 543.942 c |
|
293 |
742.492 543.942 747.82 549.27 747.82 555.844 c |
|
294 |
747.82 562.418 742.492 567.747 735.918 567.747 c |
|
295 |
729.344 567.747 724.012 562.418 724.012 555.844 c |
|
296 |
724.012 555.844 l |
|
297 |
C |
|
298 |
S 1 0 1 r f R |
|
299 |
|
|
300 |
N |
|
301 |
801.391 555.844 m |
|
302 |
801.391 555.844 l |
|
303 |
801.391 548.614 807.254 542.75 814.484 542.75 c |
|
304 |
821.715 542.75 827.578 548.614 827.578 555.844 c |
|
305 |
827.578 563.075 821.715 568.938 814.484 568.938 c |
|
306 |
807.254 568.938 801.391 563.075 801.391 555.844 c |
|
307 |
801.391 555.844 l |
|
308 |
C |
|
309 |
S 0 0 0 r f R |
|
310 |
|
|
311 |
N |
|
312 |
802.582 555.844 m |
|
313 |
802.582 555.844 l |
|
314 |
802.582 549.27 807.91 543.942 814.484 543.942 c |
|
315 |
821.059 543.942 826.387 549.27 826.387 555.844 c |
|
316 |
826.387 562.418 821.059 567.747 814.484 567.747 c |
|
317 |
807.91 567.747 802.582 562.418 802.582 555.844 c |
|
318 |
802.582 555.844 l |
|
319 |
C |
|
320 |
S 1 0 1 r f R |
|
321 |
|
|
322 |
N |
|
323 |
15.6913 32.047 m |
|
324 |
15.6913 32.047 l |
|
325 |
15.6913 24.8165 21.5553 18.9493 28.7853 18.9493 c |
|
326 |
36.0163 18.9493 41.8833 24.8165 41.8833 32.047 c |
|
327 |
41.8833 39.2775 36.0163 45.1407 28.7853 45.1407 c |
|
328 |
21.5553 45.1407 15.6913 39.2775 15.6913 32.047 c |
|
329 |
15.6913 32.047 l |
|
330 |
C |
|
331 |
S 0 0 0 r f R |
|
332 |
|
|
333 |
N |
|
334 |
16.8833 32.047 m |
|
335 |
16.8833 32.047 l |
|
336 |
16.8833 25.4728 22.2113 20.1407 28.7853 20.1407 c |
|
337 |
35.3593 20.1407 40.6913 25.4728 40.6913 32.047 c |
|
338 |
40.6913 38.6212 35.3593 43.9493 28.7853 43.9493 c |
|
339 |
22.2113 43.9493 16.8833 38.6212 16.8833 32.047 c |
|
340 |
16.8833 32.047 l |
|
341 |
C |
|
342 |
S 0.5 0.5 1 r f R |
|
343 |
|
|
344 |
N |
|
345 |
94.2623 32.047 m |
|
346 |
94.2623 32.047 l |
|
347 |
94.2623 24.8165 100.125 18.9493 107.355 18.9493 c |
|
348 |
114.586 18.9493 120.453 24.8165 120.453 32.047 c |
|
349 |
120.453 39.2775 114.586 45.1407 107.355 45.1407 c |
|
350 |
100.125 45.1407 94.2623 39.2775 94.2623 32.047 c |
|
351 |
94.2623 32.047 l |
|
352 |
C |
|
353 |
S 0 0 0 r f R |
|
354 |
|
|
355 |
N |
|
356 |
95.4533 32.047 m |
|
357 |
95.4533 32.047 l |
|
358 |
95.4533 25.4728 100.781 20.1407 107.355 20.1407 c |
|
359 |
113.93 20.1407 119.262 25.4728 119.262 32.047 c |
|
360 |
119.262 38.6212 113.93 43.9493 107.355 43.9493 c |
|
361 |
100.781 43.9493 95.4533 38.6212 95.4533 32.047 c |
|
362 |
95.4533 32.047 l |
|
363 |
C |
|
364 |
S 0.5 0.5 1 r f R |
|
365 |
|
|
366 |
N |
|
367 |
159.734 32.047 m |
|
368 |
159.734 32.047 l |
|
369 |
159.734 24.8165 165.601 18.9493 172.832 18.9493 c |
|
370 |
180.062 18.9493 185.926 24.8165 185.926 32.047 c |
|
371 |
185.926 39.2775 180.062 45.1407 172.832 45.1407 c |
|
372 |
165.601 45.1407 159.734 39.2775 159.734 32.047 c |
|
373 |
159.734 32.047 l |
|
374 |
C |
|
375 |
S 0 0 0 r f R |
|
376 |
|
|
377 |
N |
|
378 |
160.926 32.047 m |
|
379 |
160.926 32.047 l |
|
380 |
160.926 25.4728 166.258 20.1407 172.832 20.1407 c |
|
381 |
179.406 20.1407 184.734 25.4728 184.734 32.047 c |
|
382 |
184.734 38.6212 179.406 43.9493 172.832 43.9493 c |
|
383 |
166.258 43.9493 160.926 38.6212 160.926 32.047 c |
|
384 |
160.926 32.047 l |
|
385 |
C |
|
386 |
S 0.5 0.5 1 r f R |
|
387 |
|
|
388 |
N |
|
389 |
238.305 32.047 m |
|
390 |
238.305 32.047 l |
|
391 |
238.305 24.8165 244.172 18.9493 251.402 18.9493 c |
|
392 |
258.633 18.9493 264.496 24.8165 264.496 32.047 c |
|
393 |
264.496 39.2775 258.633 45.1407 251.402 45.1407 c |
|
394 |
244.172 45.1407 238.305 39.2775 238.305 32.047 c |
|
395 |
238.305 32.047 l |
|
396 |
C |
|
397 |
S 0 0 0 r f R |
|
398 |
|
|
399 |
N |
|
400 |
239.496 32.047 m |
|
401 |
239.496 32.047 l |
|
402 |
239.496 25.4728 244.828 20.1407 251.402 20.1407 c |
|
403 |
257.976 20.1407 263.305 25.4728 263.305 32.047 c |
|
404 |
263.305 38.6212 257.976 43.9493 251.402 43.9493 c |
|
405 |
244.828 43.9493 239.496 38.6212 239.496 32.047 c |
|
406 |
239.496 32.047 l |
|
407 |
C |
|
408 |
S 0.5 0.5 1 r f R |
|
409 |
|
|
410 |
N |
|
411 |
303.781 32.047 m |
|
412 |
303.781 32.047 l |
|
413 |
303.781 24.8165 309.644 18.9493 316.875 18.9493 c |
|
414 |
324.105 18.9493 329.973 24.8165 329.973 32.047 c |
|
415 |
329.973 39.2775 324.105 45.1407 316.875 45.1407 c |
|
416 |
309.644 45.1407 303.781 39.2775 303.781 32.047 c |
|
417 |
303.781 32.047 l |
|
418 |
C |
|
419 |
S 0 0 0 r f R |
|
420 |
|
|
421 |
N |
|
422 |
304.973 32.047 m |
|
423 |
304.973 32.047 l |
|
424 |
304.973 25.4728 310.301 20.1407 316.875 20.1407 c |
|
425 |
323.449 20.1407 328.781 25.4728 328.781 32.047 c |
|
426 |
328.781 38.6212 323.449 43.9493 316.875 43.9493 c |
|
427 |
310.301 43.9493 304.973 38.6212 304.973 32.047 c |
|
428 |
304.973 32.047 l |
|
429 |
C |
|
430 |
S 0.5 0.5 1 r f R |
|
431 |
|
|
432 |
N |
|
433 |
382.351 32.047 m |
|
434 |
382.351 32.047 l |
|
435 |
382.351 24.8165 388.215 18.9493 395.445 18.9493 c |
|
436 |
402.676 18.9493 408.543 24.8165 408.543 32.047 c |
|
437 |
408.543 39.2775 402.676 45.1407 395.445 45.1407 c |
|
438 |
388.215 45.1407 382.351 39.2775 382.351 32.047 c |
|
439 |
382.351 32.047 l |
|
440 |
C |
|
441 |
S 0 0 0 r f R |
|
442 |
|
|
443 |
N |
|
444 |
383.543 32.047 m |
|
445 |
383.543 32.047 l |
|
446 |
383.543 25.4728 388.871 20.1407 395.445 20.1407 c |
|
447 |
402.019 20.1407 407.351 25.4728 407.351 32.047 c |
|
448 |
407.351 38.6212 402.019 43.9493 395.445 43.9493 c |
|
449 |
388.871 43.9493 383.543 38.6212 383.543 32.047 c |
|
450 |
383.543 32.047 l |
|
451 |
C |
|
452 |
S 0.5 0.5 1 r f R |
|
453 |
|
|
454 |
N |
|
455 |
447.828 32.047 m |
|
456 |
447.828 32.047 l |
|
457 |
447.828 24.8165 453.691 18.9493 460.922 18.9493 c |
|
458 |
468.152 18.9493 474.016 24.8165 474.016 32.047 c |
|
459 |
474.016 39.2775 468.152 45.1407 460.922 45.1407 c |
|
460 |
453.691 45.1407 447.828 39.2775 447.828 32.047 c |
|
461 |
447.828 32.047 l |
|
462 |
C |
|
463 |
S 0 0 0 r f R |
|
464 |
|
|
465 |
N |
|
466 |
449.016 32.047 m |
|
467 |
449.016 32.047 l |
|
468 |
449.016 25.4728 454.348 20.1407 460.922 20.1407 c |
|
469 |
467.496 20.1407 472.824 25.4728 472.824 32.047 c |
|
470 |
472.824 38.6212 467.496 43.9493 460.922 43.9493 c |
|
471 |
454.348 43.9493 449.016 38.6212 449.016 32.047 c |
|
472 |
449.016 32.047 l |
|
473 |
C |
|
474 |
S 0.5 0.5 1 r f R |
|
475 |
|
|
476 |
N |
|
477 |
526.394 32.047 m |
|
478 |
526.394 32.047 l |
|
479 |
526.394 24.8165 532.262 18.9493 539.492 18.9493 c |
|
480 |
546.723 18.9493 552.586 24.8165 552.586 32.047 c |
|
481 |
552.586 39.2775 546.723 45.1407 539.492 45.1407 c |
|
482 |
532.262 45.1407 526.394 39.2775 526.394 32.047 c |
|
483 |
526.394 32.047 l |
|
484 |
C |
|
485 |
S 0 0 0 r f R |
|
486 |
|
|
487 |
N |
|
488 |
527.586 32.047 m |
|
489 |
527.586 32.047 l |
|
490 |
527.586 25.4728 532.918 20.1407 539.492 20.1407 c |
|
491 |
546.066 20.1407 551.394 25.4728 551.394 32.047 c |
|
492 |
551.394 38.6212 546.066 43.9493 539.492 43.9493 c |
|
493 |
532.918 43.9493 527.586 38.6212 527.586 32.047 c |
|
494 |
527.586 32.047 l |
|
495 |
C |
|
496 |
S 0.5 0.5 1 r f R |
|
497 |
|
|
498 |
N |
|
499 |
591.871 32.047 m |
|
500 |
591.871 32.047 l |
|
501 |
591.871 24.8165 597.734 18.9493 604.965 18.9493 c |
|
502 |
612.195 18.9493 618.062 24.8165 618.062 32.047 c |
|
503 |
618.062 39.2775 612.195 45.1407 604.965 45.1407 c |
|
504 |
597.734 45.1407 591.871 39.2775 591.871 32.047 c |
|
505 |
591.871 32.047 l |
|
506 |
C |
|
507 |
S 0 0 0 r f R |
|
508 |
|
|
509 |
N |
|
510 |
593.062 32.047 m |
|
511 |
593.062 32.047 l |
|
512 |
593.062 25.4728 598.39 20.1407 604.965 20.1407 c |
|
513 |
611.539 20.1407 616.871 25.4728 616.871 32.047 c |
|
514 |
616.871 38.6212 611.539 43.9493 604.965 43.9493 c |
|
515 |
598.39 43.9493 593.062 38.6212 593.062 32.047 c |
|
516 |
593.062 32.047 l |
|
517 |
C |
|
518 |
S 0.5 0.5 1 r f R |
|
519 |
|
|
520 |
N |
|
521 |
670.441 32.047 m |
|
522 |
670.441 32.047 l |
|
523 |
670.441 24.8165 676.305 18.9493 683.535 18.9493 c |
|
524 |
690.766 18.9493 696.633 24.8165 696.633 32.047 c |
|
525 |
696.633 39.2775 690.766 45.1407 683.535 45.1407 c |
|
526 |
676.305 45.1407 670.441 39.2775 670.441 32.047 c |
|
527 |
670.441 32.047 l |
|
528 |
C |
|
529 |
S 0 0 0 r f R |
|
530 |
|
|
531 |
N |
|
532 |
671.633 32.047 m |
|
533 |
671.633 32.047 l |
|
534 |
671.633 25.4728 676.961 20.1407 683.535 20.1407 c |
|
535 |
690.109 20.1407 695.441 25.4728 695.441 32.047 c |
|
536 |
695.441 38.6212 690.109 43.9493 683.535 43.9493 c |
|
537 |
676.961 43.9493 671.633 38.6212 671.633 32.047 c |
|
538 |
671.633 32.047 l |
|
539 |
C |
|
540 |
S 0 0 1 r f R |
|
541 |
|
|
542 |
N |
|
543 |
735.918 32.047 m |
|
544 |
735.918 32.047 l |
|
545 |
735.918 24.8165 741.781 18.9493 749.012 18.9493 c |
|
546 |
756.242 18.9493 762.106 24.8165 762.106 32.047 c |
|
547 |
762.106 39.2775 756.242 45.1407 749.012 45.1407 c |
|
548 |
741.781 45.1407 735.918 39.2775 735.918 32.047 c |
|
549 |
735.918 32.047 l |
|
550 |
C |
|
551 |
S 0 0 0 r f R |
|
552 |
|
|
553 |
N |
|
554 |
737.105 32.047 m |
|
555 |
737.105 32.047 l |
|
556 |
737.105 25.4728 742.437 20.1407 749.012 20.1407 c |
|
557 |
755.586 20.1407 760.914 25.4728 760.914 32.047 c |
|
558 |
760.914 38.6212 755.586 43.9493 749.012 43.9493 c |
|
559 |
742.437 43.9493 737.105 38.6212 737.105 32.047 c |
|
560 |
737.105 32.047 l |
|
561 |
C |
|
562 |
S 0 0 1 r f R |
|
563 |
|
|
564 |
N |
|
565 |
801.391 32.047 m |
|
566 |
801.391 32.047 l |
|
567 |
801.391 24.8165 807.254 18.9493 814.484 18.9493 c |
|
568 |
821.715 18.9493 827.578 24.8165 827.578 32.047 c |
|
569 |
827.578 39.2775 821.715 45.1407 814.484 45.1407 c |
|
570 |
807.254 45.1407 801.391 39.2775 801.391 32.047 c |
|
571 |
801.391 32.047 l |
|
572 |
C |
|
573 |
S 0 0 0 r f R |
|
574 |
|
|
575 |
N |
|
576 |
802.582 32.047 m |
|
577 |
802.582 32.047 l |
|
578 |
802.582 25.4728 807.91 20.1407 814.484 20.1407 c |
|
579 |
821.059 20.1407 826.387 25.4728 826.387 32.047 c |
|
580 |
826.387 38.6212 821.059 43.9493 814.484 43.9493 c |
|
581 |
807.91 43.9493 802.582 38.6212 802.582 32.047 c |
|
582 |
802.582 32.047 l |
|
583 |
C |
|
584 |
S 0.5 0.5 1 r f R |
|
585 |
|
|
586 |
%%EOF |
1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
2 |
%%Creator: LEMON, graphToEps() |
|
3 |
%%CreationDate: Tue Nov 15 16:51:43 2005 |
|
4 |
%%BoundingBox: 0 0 596 842 |
|
5 |
%%DocumentPaperSizes: a4 |
|
6 |
%%EndComments |
|
7 |
/lb { setlinewidth setrgbcolor newpath moveto |
|
8 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
9 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def |
|
10 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def |
|
11 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto |
|
12 |
2 index 1 index sub 2 index 2 index add lineto |
|
13 |
2 index 1 index sub 2 index 2 index sub lineto |
|
14 |
2 index 1 index add 2 index 2 index sub lineto |
|
15 |
closepath pop pop pop} bind def |
|
16 |
/di { newpath 2 index 1 index add 2 index moveto |
|
17 |
2 index 2 index 2 index add lineto |
|
18 |
2 index 1 index sub 2 index lineto |
|
19 |
2 index 2 index 2 index sub lineto |
|
20 |
closepath pop pop pop} bind def |
|
21 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill |
|
22 |
setrgbcolor 1.1 div c fill |
|
23 |
} bind def |
|
24 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill |
|
25 |
setrgbcolor 1.1 div sq fill |
|
26 |
} bind def |
|
27 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill |
|
28 |
setrgbcolor 1.1 div di fill |
|
29 |
} bind def |
|
30 |
/arrl 1 def |
|
31 |
/arrw 0.3 def |
|
32 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def |
|
33 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def |
|
34 |
/w exch def /len exch def |
|
35 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
36 |
len w sub arrl sub dx dy lrl |
|
37 |
arrw dy dx neg lrl |
|
38 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
39 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
40 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
41 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
42 |
arrw dy dx neg lrl |
|
43 |
len w sub arrl sub neg dx dy lrl |
|
44 |
closepath fill } bind def |
|
45 |
/cshow { 2 index 2 index moveto dup stringwidth pop |
|
46 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
47 |
|
|
48 |
gsave |
|
49 |
71.6378 15 translate |
|
50 |
0.389093 dup scale |
|
51 |
90 rotate |
|
52 |
1197.47 -613.138 translate |
|
53 |
%Edges: |
|
54 |
gsave |
|
55 |
513.857 -446.322 296.569 -487.43 79.2808 -528.539 0 0 0 2 lb |
|
56 |
513.857 -446.322 575.52 -315.655 637.183 -184.989 0 0 0 2 lb |
|
57 |
393.468 566.711 494.771 434.577 596.074 302.442 0 0 0 2 lb |
|
58 |
393.468 566.711 155.625 579.925 -82.2171 593.138 0 0 0 2 lb |
|
59 |
393.468 566.711 251.056 450.726 108.644 334.741 0 0 0 2 lb |
|
60 |
869.153 52.8539 732.613 177.648 596.074 302.442 0 0 0 2 lb |
|
61 |
869.153 52.8539 753.168 -66.0676 637.183 -184.989 0 0 0 2 lb |
|
62 |
-82.2171 593.138 -91.0261 346.487 -99.8351 99.8351 0 0 0 2 lb |
|
63 |
-663.61 546.157 -753.168 394.936 -842.726 243.715 0 0 0 2 lb |
|
64 |
-663.61 546.157 -574.052 437.513 -484.494 328.869 0 0 0 2 lb |
|
65 |
-1077.63 161.498 -960.178 202.606 -842.726 243.715 0 0 0 2 lb |
|
66 |
-1077.63 161.498 -968.987 66.0674 -860.344 -29.3633 0 0 0 2 lb |
|
67 |
-1177.47 -234.906 -1029.18 -381.722 -880.898 -528.539 0 0 0 2 lb |
|
68 |
-1177.47 -234.906 -1018.91 -132.135 -860.344 -29.3633 0 0 0 2 lb |
|
69 |
-880.898 -528.539 -744.359 -387.595 -607.82 -246.651 0 0 0 2 lb |
|
70 |
-499.175 -499.175 -355.295 -475.685 -211.415 -452.194 0 0 0 2 lb |
|
71 |
-499.175 -499.175 -553.498 -372.913 -607.82 -246.651 0 0 0 2 lb |
|
72 |
-499.175 -499.175 -386.587 -315.087 -274 -131 0 0 0 2 lb |
|
73 |
79.2808 -528.539 -66.0671 -490.366 -211.415 -452.194 0 0 0 2 lb |
|
74 |
637.183 -184.989 421.363 -253.993 205.543 -322.996 0 0 0 2 lb |
|
75 |
205.543 -322.996 162.966 -226.097 120.389 -129.198 0 0 0 2 lb |
|
76 |
399.34 88.0898 259.865 -20.5541 120.389 -129.198 0 0 0 2 lb |
|
77 |
399.34 88.0898 253.992 211.415 108.644 334.741 0 0 0 2 lb |
|
78 |
-842.726 243.715 -471.281 171.775 -99.8351 99.8351 0 0 0 2 lb |
|
79 |
-842.726 243.715 -558.363 56.3575 -274 -131 0 0 0 2 lb |
|
80 |
-860.344 -29.3633 -734.082 -138.007 -607.82 -246.651 0 0 0 2 lb |
|
81 |
-211.415 -452.194 -45.513 -290.696 120.389 -129.198 0 0 0 2 lb |
|
82 |
-99.8351 99.8351 4.40445 217.288 108.644 334.741 0 0 0 2 lb |
|
83 |
-99.8351 99.8351 -292.165 214.352 -484.494 328.869 0 0 0 2 lb |
|
84 |
120.389 -129.198 -76.8055 -130.099 -274 -131 0 0 0 2 lb |
|
85 |
grestore |
|
86 |
%Nodes: |
|
87 |
gsave |
|
88 |
-274 -131 20 1 0 0 nc |
|
89 |
-607.82 -246.651 20 1 0 0 nc |
|
90 |
-484.494 328.869 20 0 0 1 nc |
|
91 |
108.644 334.741 20 0 0 1 nc |
|
92 |
120.389 -129.198 20 0 0 1 nc |
|
93 |
-99.8351 99.8351 20 1 0 0 nc |
|
94 |
-211.415 -452.194 20 1 0 0 nc |
|
95 |
-860.344 -29.3633 20 0 0 1 nc |
|
96 |
-842.726 243.715 20 0 0 1 nc |
|
97 |
399.34 88.0898 20 1 0 0 nc |
|
98 |
205.543 -322.996 20 1 0 0 nc |
|
99 |
637.183 -184.989 20 0 0 1 nc |
|
100 |
79.2808 -528.539 20 0 0 1 nc |
|
101 |
-499.175 -499.175 20 0 0 1 nc |
|
102 |
-880.898 -528.539 20 0 0 1 nc |
|
103 |
-1177.47 -234.906 20 1 0 0 nc |
|
104 |
-1077.63 161.498 20 1 0 0 nc |
|
105 |
-663.61 546.157 20 1 0 0 nc |
|
106 |
-82.2171 593.138 20 0 0 1 nc |
|
107 |
596.074 302.442 20 0 0 1 nc |
|
108 |
869.153 52.8539 20 1 0 0 nc |
|
109 |
393.468 566.711 20 1 0 0 nc |
|
110 |
513.857 -446.322 20 1 0 0 nc |
|
111 |
grestore |
|
112 |
grestore |
|
113 |
showpage |
1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
2 |
%%Creator: LEMON, graphToEps() |
|
3 |
%%CreationDate: Fri Nov 4 13:47:12 2005 |
|
4 |
%%BoundingBox: 0 0 596 842 |
|
5 |
%%DocumentPaperSizes: a4 |
|
6 |
%%EndComments |
|
7 |
/lb { setlinewidth setrgbcolor newpath moveto |
|
8 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
9 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def |
|
10 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def |
|
11 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto |
|
12 |
2 index 1 index sub 2 index 2 index add lineto |
|
13 |
2 index 1 index sub 2 index 2 index sub lineto |
|
14 |
2 index 1 index add 2 index 2 index sub lineto |
|
15 |
closepath pop pop pop} bind def |
|
16 |
/di { newpath 2 index 1 index add 2 index moveto |
|
17 |
2 index 2 index 2 index add lineto |
|
18 |
2 index 1 index sub 2 index lineto |
|
19 |
2 index 2 index 2 index sub lineto |
|
20 |
closepath pop pop pop} bind def |
|
21 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill |
|
22 |
setrgbcolor 1.1 div c fill |
|
23 |
} bind def |
|
24 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill |
|
25 |
setrgbcolor 1.1 div sq fill |
|
26 |
} bind def |
|
27 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill |
|
28 |
setrgbcolor 1.1 div di fill |
|
29 |
} bind def |
|
30 |
/arrl 1 def |
|
31 |
/arrw 0.3 def |
|
32 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def |
|
33 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def |
|
34 |
/w exch def /len exch def |
|
35 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
36 |
len w sub arrl sub dx dy lrl |
|
37 |
arrw dy dx neg lrl |
|
38 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
39 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
40 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
41 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
42 |
arrw dy dx neg lrl |
|
43 |
len w sub arrl sub neg dx dy lrl |
|
44 |
closepath fill } bind def |
|
45 |
/cshow { 2 index 2 index moveto dup stringwidth pop |
|
46 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
47 |
|
|
48 |
gsave |
|
49 |
71.0944 15 translate |
|
50 |
0.434694 dup scale |
|
51 |
90 rotate |
|
52 |
860.856 -588.349 translate |
|
53 |
%Edges: |
|
54 |
gsave |
|
55 |
574.035 177.301 622.149 225.748 670.264 274.195 0 0 0 2 lb |
|
56 |
694.579 115.483 682.421 194.839 670.264 274.195 0 0 0 2 lb |
|
57 |
280.402 10.3938 246.402 -6.60595 212.403 -23.6057 0 0 0 2 lb |
|
58 |
280.402 10.3938 283.493 -18.9695 286.584 -48.3327 0 0 0 2 lb |
|
59 |
212.403 -23.6057 249.493 -35.9692 286.584 -48.3327 0 0 0 2 lb |
|
60 |
286.584 -48.3327 326.765 -79.2414 366.947 -110.15 0 0 0 2 lb |
|
61 |
286.584 -48.3327 278.857 -111.695 271.13 -175.058 0 0 0 2 lb |
|
62 |
438.037 -88.514 417.946 -142.604 397.855 -196.694 0 0 0 2 lb |
|
63 |
438.037 -88.514 402.492 -99.332 366.947 -110.15 0 0 0 2 lb |
|
64 |
397.855 -196.694 382.401 -153.422 366.947 -110.15 0 0 0 2 lb |
|
65 |
366.947 -110.15 319.038 -142.604 271.13 -175.058 0 0 0 2 lb |
|
66 |
271.13 -175.058 274.221 -213.694 277.311 -252.33 0 0 0 2 lb |
|
67 |
271.13 -175.058 238.675 -190.512 206.221 -205.967 0 0 0 2 lb |
|
68 |
277.311 -252.33 241.766 -229.149 206.221 -205.967 0 0 0 2 lb |
|
69 |
-840.856 -246.718 -804.351 -66.7145 -767.847 113.289 0 0 0 2 lb |
|
70 |
-579.033 445.603 -673.44 279.446 -767.847 113.289 0 0 0 2 lb |
|
71 |
-579.033 445.603 -524.906 302.104 -470.779 158.605 0 0 0 2 lb |
|
72 |
-767.847 113.289 -619.313 135.947 -470.779 158.605 0 0 0 2 lb |
|
73 |
906.312 201.403 946.592 42.798 986.873 -115.807 0 0 0 2 lb |
|
74 |
906.312 201.403 834.562 91.8901 762.812 -17.6227 0 0 0 2 lb |
|
75 |
986.873 -115.807 874.842 -66.7148 762.812 -17.6227 0 0 0 2 lb |
|
76 |
-470.779 158.605 -390.218 50.3508 -309.657 -57.9033 0 0 0 2 lb |
|
77 |
422.945 521.129 208.955 541.269 -5.03507 561.41 0 0 0 2 lb |
|
78 |
422.945 521.129 376.371 417.911 329.797 314.692 0 0 0 2 lb |
|
79 |
422.945 521.129 474.554 276.928 526.164 32.7279 0 0 0 2 lb |
|
80 |
-5.03507 561.41 -36.5042 440.568 -67.9734 319.727 0 0 0 2 lb |
|
81 |
329.797 314.692 130.912 317.209 -67.9734 319.727 0 0 0 2 lb |
|
82 |
-67.9734 319.727 229.095 176.227 526.164 32.7279 0 0 0 2 lb |
|
83 |
762.812 -17.6227 644.488 7.5526 526.164 32.7279 0 0 0 2 lb |
|
84 |
762.812 -17.6227 746.448 -162.381 730.084 -307.139 0 0 0 2 lb |
|
85 |
526.164 32.7279 470.779 -128.394 415.393 -289.516 0 0 0 2 lb |
|
86 |
730.084 -307.139 572.738 -298.327 415.393 -289.516 0 0 0 2 lb |
|
87 |
415.393 -289.516 173.71 -318.468 -67.9734 -347.42 0 0 0 2 lb |
|
88 |
-67.9734 -347.42 -188.815 -202.662 -309.657 -57.9033 0 0 0 2 lb |
|
89 |
-67.9734 -347.42 -195.758 -390.692 -323.543 -433.964 0 0 0 2 lb |
|
90 |
-309.657 -57.9033 -424.775 -160.272 -539.894 -262.64 0 0 0 2 lb |
|
91 |
-323.543 -433.964 -431.719 -348.302 -539.894 -262.64 0 0 0 2 lb |
|
92 |
-26.6953 -19.9585 44.8558 -96.8093 116.407 -173.66 0 0 0 2 lb |
|
93 |
-26.6953 -19.9585 87.2563 9.19185 201.208 38.3422 0 0 0 2 lb |
|
94 |
-26.6953 -19.9585 -144.622 43.6422 -262.548 107.243 0 0 0 2 lb |
|
95 |
-26.6953 -19.9585 -20.0703 56.8923 -13.4452 133.743 0 0 0 2 lb |
|
96 |
116.407 -173.66 158.808 -67.6589 201.208 38.3422 0 0 0 2 lb |
|
97 |
-262.548 107.243 -137.997 120.493 -13.4452 133.743 0 0 0 2 lb |
|
98 |
-262.548 107.243 -221.472 176.144 -180.397 245.045 0 0 0 2 lb |
|
99 |
-13.4452 133.743 -96.9211 189.394 -180.397 245.045 0 0 0 2 lb |
|
100 |
-180.397 245.045 -142.256 345.099 -132.697 451.748 0 0 0 2 lb |
|
101 |
-180.397 245.045 -170.838 351.694 -132.697 451.748 0 0 0 2 lb |
|
102 |
-416.25 345.746 -274.474 398.747 -132.697 451.748 0 0 0 2 lb |
|
103 |
-416.25 345.746 -393.725 457.048 -371.2 568.349 0 0 0 2 lb |
|
104 |
-132.697 451.748 -251.948 510.048 -371.2 568.349 0 0 0 2 lb |
|
105 |
670.264 274.195 629.188 409.347 588.113 544.499 0 0 0 2 lb |
|
106 |
670.264 274.195 797.466 341.771 924.667 409.347 0 0 0 2 lb |
|
107 |
588.113 544.499 756.39 476.923 924.667 409.347 0 0 0 2 lb |
|
108 |
-689.204 -237.261 -614.799 -102.648 -567.302 43.6423 0 0 0 2 lb |
|
109 |
-689.204 -237.261 -641.707 -90.9706 -567.302 43.6423 0 0 0 2 lb |
|
110 |
grestore |
|
111 |
%Nodes: |
|
112 |
gsave |
|
113 |
-567.302 43.6423 20 0 0 0 nc |
|
114 |
-689.204 -237.261 20 0 0 0 nc |
|
115 |
924.667 409.347 20 1 0 0 nc |
|
116 |
588.113 544.499 20 1 0 0 nc |
|
117 |
670.264 274.195 20 1 0 0 nc |
|
118 |
-371.2 568.349 20 0 1 0 nc |
|
119 |
-132.697 451.748 20 0 1 0 nc |
|
120 |
-416.25 345.746 20 0 1 0 nc |
|
121 |
-180.397 245.045 20 0 1 0 nc |
|
122 |
-13.4452 133.743 20 0 1 0 nc |
|
123 |
-262.548 107.243 20 0 1 0 nc |
|
124 |
201.208 38.3422 20 0 1 0 nc |
|
125 |
116.407 -173.66 20 0 1 0 nc |
|
126 |
-26.6953 -19.9585 20 0 1 0 nc |
|
127 |
-539.894 -262.64 20 0 0 1 nc |
|
128 |
-323.543 -433.964 20 0 0 1 nc |
|
129 |
-309.657 -57.9033 20 0 0 1 nc |
|
130 |
-67.9734 -347.42 20 0 0 1 nc |
|
131 |
415.393 -289.516 20 0 0 1 nc |
|
132 |
730.084 -307.139 20 0 0 1 nc |
|
133 |
526.164 32.7279 20 0 0 1 nc |
|
134 |
762.812 -17.6227 20 0 0 1 nc |
|
135 |
-67.9734 319.727 20 0 0 1 nc |
|
136 |
329.797 314.692 20 0 0 1 nc |
|
137 |
-5.03507 561.41 20 0 0 1 nc |
|
138 |
422.945 521.129 20 0 0 1 nc |
|
139 |
-470.779 158.605 20 0 0 1 nc |
|
140 |
986.873 -115.807 20 0 0 1 nc |
|
141 |
906.312 201.403 20 0 0 1 nc |
|
142 |
-767.847 113.289 20 0 0 1 nc |
|
143 |
-579.033 445.603 20 0 0 1 nc |
|
144 |
-840.856 -246.718 20 0 0 1 nc |
|
145 |
206.221 -205.967 20 1 1 0 nc |
|
146 |
277.311 -252.33 20 1 1 0 nc |
|
147 |
271.13 -175.058 20 1 1 0 nc |
|
148 |
366.947 -110.15 20 1 1 0 nc |
|
149 |
397.855 -196.694 20 1 1 0 nc |
|
150 |
438.037 -88.514 20 1 1 0 nc |
|
151 |
286.584 -48.3327 20 1 1 0 nc |
|
152 |
212.403 -23.6057 20 1 1 0 nc |
|
153 |
280.402 10.3938 20 1 1 0 nc |
|
154 |
694.579 115.483 20 1 0 0 nc |
|
155 |
574.035 177.301 20 1 0 0 nc |
|
156 |
grestore |
|
157 |
grestore |
|
158 |
showpage |
1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
2 |
%%Creator: LEMON, graphToEps() |
|
3 |
%%CreationDate: Fri Nov 4 13:47:12 2005 |
|
4 |
%%BoundingBox: 0 0 596 842 |
|
5 |
%%DocumentPaperSizes: a4 |
|
6 |
%%EndComments |
|
7 |
/lb { setlinewidth setrgbcolor newpath moveto |
|
8 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
9 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def |
|
10 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def |
|
11 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto |
|
12 |
2 index 1 index sub 2 index 2 index add lineto |
|
13 |
2 index 1 index sub 2 index 2 index sub lineto |
|
14 |
2 index 1 index add 2 index 2 index sub lineto |
|
15 |
closepath pop pop pop} bind def |
|
16 |
/di { newpath 2 index 1 index add 2 index moveto |
|
17 |
2 index 2 index 2 index add lineto |
|
18 |
2 index 1 index sub 2 index lineto |
|
19 |
2 index 2 index 2 index sub lineto |
|
20 |
closepath pop pop pop} bind def |
|
21 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill |
|
22 |
setrgbcolor 1.1 div c fill |
|
23 |
} bind def |
|
24 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill |
|
25 |
setrgbcolor 1.1 div sq fill |
|
26 |
} bind def |
|
27 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill |
|
28 |
setrgbcolor 1.1 div di fill |
|
29 |
} bind def |
|
30 |
/arrl 1 def |
|
31 |
/arrw 0.3 def |
|
32 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def |
|
33 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def |
|
34 |
/w exch def /len exch def |
|
35 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
36 |
len w sub arrl sub dx dy lrl |
|
37 |
arrw dy dx neg lrl |
|
38 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
39 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
40 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
41 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
42 |
arrw dy dx neg lrl |
|
43 |
len w sub arrl sub neg dx dy lrl |
|
44 |
closepath fill } bind def |
|
45 |
/cshow { 2 index 2 index moveto dup stringwidth pop |
|
46 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
47 |
|
|
48 |
gsave |
|
49 |
71.0944 15 translate |
|
50 |
0.434694 dup scale |
|
51 |
90 rotate |
|
52 |
860.856 -588.349 translate |
|
53 |
%Edges: |
|
54 |
gsave |
|
55 |
574.035 177.301 622.149 225.748 670.264 274.195 1 0 0 2 lb |
|
56 |
694.579 115.483 682.421 194.839 670.264 274.195 1 0 0 2 lb |
|
57 |
280.402 10.3938 246.402 -6.60595 212.403 -23.6057 0 0 1 2 lb |
|
58 |
280.402 10.3938 283.493 -18.9695 286.584 -48.3327 0 0 1 2 lb |
|
59 |
212.403 -23.6057 249.493 -35.9692 286.584 -48.3327 0 0 1 2 lb |
|
60 |
286.584 -48.3327 326.765 -79.2414 366.947 -110.15 0 0 1 2 lb |
|
61 |
286.584 -48.3327 278.857 -111.695 271.13 -175.058 0 0 1 2 lb |
|
62 |
438.037 -88.514 417.946 -142.604 397.855 -196.694 0 0 1 2 lb |
|
63 |
438.037 -88.514 402.492 -99.332 366.947 -110.15 0 0 1 2 lb |
|
64 |
397.855 -196.694 382.401 -153.422 366.947 -110.15 0 0 1 2 lb |
|
65 |
366.947 -110.15 319.038 -142.604 271.13 -175.058 0 0 1 2 lb |
|
66 |
271.13 -175.058 274.221 -213.694 277.311 -252.33 0 0 1 2 lb |
|
67 |
271.13 -175.058 238.675 -190.512 206.221 -205.967 0 0 1 2 lb |
|
68 |
277.311 -252.33 241.766 -229.149 206.221 -205.967 0 0 1 2 lb |
|
69 |
-840.856 -246.718 -804.351 -66.7145 -767.847 113.289 1 0 0 2 lb |
|
70 |
-579.033 445.603 -673.44 279.446 -767.847 113.289 0 0 1 2 lb |
|
71 |
-579.033 445.603 -524.906 302.104 -470.779 158.605 0 0 1 2 lb |
|
72 |
-767.847 113.289 -619.313 135.947 -470.779 158.605 0 0 1 2 lb |
|
73 |
906.312 201.403 946.592 42.798 986.873 -115.807 0 0 1 2 lb |
|
74 |
906.312 201.403 834.562 91.8901 762.812 -17.6227 0 0 1 2 lb |
|
75 |
986.873 -115.807 874.842 -66.7148 762.812 -17.6227 0 0 1 2 lb |
|
76 |
-470.779 158.605 -390.218 50.3508 -309.657 -57.9033 1 0 0 2 lb |
|
77 |
422.945 521.129 208.955 541.269 -5.03507 561.41 0 0 1 2 lb |
|
78 |
422.945 521.129 376.371 417.911 329.797 314.692 0 0 1 2 lb |
|
79 |
422.945 521.129 474.554 276.928 526.164 32.7279 0 0 1 2 lb |
|
80 |
-5.03507 561.41 -36.5042 440.568 -67.9734 319.727 0 0 1 2 lb |
|
81 |
329.797 314.692 130.912 317.209 -67.9734 319.727 0 0 1 2 lb |
|
82 |
-67.9734 319.727 229.095 176.227 526.164 32.7279 0 0 1 2 lb |
|
83 |
762.812 -17.6227 644.488 7.5526 526.164 32.7279 0 0 1 2 lb |
|
84 |
762.812 -17.6227 746.448 -162.381 730.084 -307.139 0 0 1 2 lb |
|
85 |
526.164 32.7279 470.779 -128.394 415.393 -289.516 0 0 1 2 lb |
|
86 |
730.084 -307.139 572.738 -298.327 415.393 -289.516 0 0 1 2 lb |
|
87 |
415.393 -289.516 173.71 -318.468 -67.9734 -347.42 1 0 0 2 lb |
|
88 |
-67.9734 -347.42 -188.815 -202.662 -309.657 -57.9033 0 0 1 2 lb |
|
89 |
-67.9734 -347.42 -195.758 -390.692 -323.543 -433.964 0 0 1 2 lb |
|
90 |
-309.657 -57.9033 -424.775 -160.272 -539.894 -262.64 0 0 1 2 lb |
|
91 |
-323.543 -433.964 -431.719 -348.302 -539.894 -262.64 0 0 1 2 lb |
|
92 |
-26.6953 -19.9585 44.8558 -96.8093 116.407 -173.66 0 0 1 2 lb |
|
93 |
-26.6953 -19.9585 87.2563 9.19185 201.208 38.3422 0 0 1 2 lb |
|
94 |
-26.6953 -19.9585 -144.622 43.6422 -262.548 107.243 0 0 1 2 lb |
|
95 |
-26.6953 -19.9585 -20.0703 56.8923 -13.4452 133.743 0 0 1 2 lb |
|
96 |
116.407 -173.66 158.808 -67.6589 201.208 38.3422 0 0 1 2 lb |
|
97 |
-262.548 107.243 -137.997 120.493 -13.4452 133.743 0 0 1 2 lb |
|
98 |
-262.548 107.243 -221.472 176.144 -180.397 245.045 0 0 1 2 lb |
|
99 |
-13.4452 133.743 -96.9211 189.394 -180.397 245.045 0 0 1 2 lb |
|
100 |
-180.397 245.045 -142.256 345.099 -132.697 451.748 0 0 1 2 lb |
|
101 |
-180.397 245.045 -170.838 351.694 -132.697 451.748 0 0 1 2 lb |
|
102 |
-416.25 345.746 -274.474 398.747 -132.697 451.748 0 0 1 2 lb |
|
103 |
-416.25 345.746 -393.725 457.048 -371.2 568.349 0 0 1 2 lb |
|
104 |
-132.697 451.748 -251.948 510.048 -371.2 568.349 0 0 1 2 lb |
|
105 |
670.264 274.195 629.188 409.347 588.113 544.499 0 0 1 2 lb |
|
106 |
670.264 274.195 797.466 341.771 924.667 409.347 0 0 1 2 lb |
|
107 |
588.113 544.499 756.39 476.923 924.667 409.347 0 0 1 2 lb |
|
108 |
-689.204 -237.261 -614.799 -102.648 -567.302 43.6423 0 0 1 2 lb |
|
109 |
-689.204 -237.261 -641.707 -90.9706 -567.302 43.6423 0 0 1 2 lb |
|
110 |
grestore |
|
111 |
%Nodes: |
|
112 |
gsave |
|
113 |
-567.302 43.6423 20 0 0 0 nc |
|
114 |
-689.204 -237.261 20 0 0 0 nc |
|
115 |
924.667 409.347 20 0 0 1 nc |
|
116 |
588.113 544.499 20 0 0 1 nc |
|
117 |
670.264 274.195 20 0 0 1 nc |
|
118 |
-371.2 568.349 20 1 1 0 nc |
|
119 |
-132.697 451.748 20 1 1 0 nc |
|
120 |
-416.25 345.746 20 1 1 0 nc |
|
121 |
-180.397 245.045 20 1 1 0 nc |
|
122 |
-13.4452 133.743 20 1 1 0 nc |
|
123 |
-262.548 107.243 20 1 1 0 nc |
|
124 |
201.208 38.3422 20 1 1 0 nc |
|
125 |
116.407 -173.66 20 1 1 0 nc |
|
126 |
-26.6953 -19.9585 20 1 1 0 nc |
|
127 |
-539.894 -262.64 20 0 0.5 0 nc |
|
128 |
-323.543 -433.964 20 0 0.5 0 nc |
|
129 |
-309.657 -57.9033 20 0 0.5 0 nc |
|
130 |
-67.9734 -347.42 20 0 0.5 0 nc |
|
131 |
415.393 -289.516 20 0.5 0 0 nc |
|
132 |
730.084 -307.139 20 0.5 0 0 nc |
|
133 |
526.164 32.7279 20 0.5 0 0 nc |
|
134 |
762.812 -17.6227 20 0.5 0 0 nc |
|
135 |
-67.9734 319.727 20 0.5 0 0 nc |
|
136 |
329.797 314.692 20 0.5 0 0 nc |
|
137 |
-5.03507 561.41 20 0.5 0 0 nc |
|
138 |
422.945 521.129 20 0.5 0 0 nc |
|
139 |
-470.779 158.605 20 0 1 1 nc |
|
140 |
986.873 -115.807 20 0.5 0 0 nc |
|
141 |
906.312 201.403 20 0.5 0 0 nc |
|
142 |
-767.847 113.289 20 0 1 1 nc |
|
143 |
-579.033 445.603 20 0 1 1 nc |
|
144 |
-840.856 -246.718 20 1 0 1 nc |
|
145 |
206.221 -205.967 20 0 0 0.5 nc |
|
146 |
277.311 -252.33 20 0 0 0.5 nc |
|
147 |
271.13 -175.058 20 0 0 0.5 nc |
|
148 |
366.947 -110.15 20 0 0 0.5 nc |
|
149 |
397.855 -196.694 20 0 0 0.5 nc |
|
150 |
438.037 -88.514 20 0 0 0.5 nc |
|
151 |
286.584 -48.3327 20 0 0 0.5 nc |
|
152 |
212.403 -23.6057 20 0 0 0.5 nc |
|
153 |
280.402 10.3938 20 0 0 0.5 nc |
|
154 |
694.579 115.483 20 1 0 0 nc |
|
155 |
574.035 177.301 20 0 1 0 nc |
|
156 |
grestore |
|
157 |
grestore |
|
158 |
showpage |
1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
2 |
%%Creator: LEMON, graphToEps() |
|
3 |
%%CreationDate: Fri Nov 4 13:47:12 2005 |
|
4 |
%%BoundingBox: 0 0 596 842 |
|
5 |
%%DocumentPaperSizes: a4 |
|
6 |
%%EndComments |
|
7 |
/lb { setlinewidth setrgbcolor newpath moveto |
|
8 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
9 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def |
|
10 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def |
|
11 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto |
|
12 |
2 index 1 index sub 2 index 2 index add lineto |
|
13 |
2 index 1 index sub 2 index 2 index sub lineto |
|
14 |
2 index 1 index add 2 index 2 index sub lineto |
|
15 |
closepath pop pop pop} bind def |
|
16 |
/di { newpath 2 index 1 index add 2 index moveto |
|
17 |
2 index 2 index 2 index add lineto |
|
18 |
2 index 1 index sub 2 index lineto |
|
19 |
2 index 2 index 2 index sub lineto |
|
20 |
closepath pop pop pop} bind def |
|
21 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill |
|
22 |
setrgbcolor 1.1 div c fill |
|
23 |
} bind def |
|
24 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill |
|
25 |
setrgbcolor 1.1 div sq fill |
|
26 |
} bind def |
|
27 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill |
|
28 |
setrgbcolor 1.1 div di fill |
|
29 |
} bind def |
|
30 |
/arrl 1 def |
|
31 |
/arrw 0.3 def |
|
32 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def |
|
33 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def |
|
34 |
/w exch def /len exch def |
|
35 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
36 |
len w sub arrl sub dx dy lrl |
|
37 |
arrw dy dx neg lrl |
|
38 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
39 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
40 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
41 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
42 |
arrw dy dx neg lrl |
|
43 |
len w sub arrl sub neg dx dy lrl |
|
44 |
closepath fill } bind def |
|
45 |
/cshow { 2 index 2 index moveto dup stringwidth pop |
|
46 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
47 |
|
|
48 |
gsave |
|
49 |
71.0944 15 translate |
|
50 |
0.434694 dup scale |
|
51 |
90 rotate |
|
52 |
860.856 -588.349 translate |
|
53 |
%Edges: |
|
54 |
gsave |
|
55 |
574.035 177.301 622.149 225.748 670.264 274.195 0 1 0 5 lb |
|
56 |
694.579 115.483 682.421 194.839 670.264 274.195 1 0 0 5 lb |
|
57 |
280.402 10.3938 246.402 -6.60595 212.403 -23.6057 1 1 0.5 5 lb |
|
58 |
280.402 10.3938 283.493 -18.9695 286.584 -48.3327 1 1 0.5 5 lb |
|
59 |
212.403 -23.6057 249.493 -35.9692 286.584 -48.3327 1 1 0.5 5 lb |
|
60 |
286.584 -48.3327 326.765 -79.2414 366.947 -110.15 1 0.5 1 5 lb |
|
61 |
286.584 -48.3327 278.857 -111.695 271.13 -175.058 1 0.5 1 5 lb |
|
62 |
438.037 -88.514 417.946 -142.604 397.855 -196.694 0.5 0.5 1 5 lb |
|
63 |
438.037 -88.514 402.492 -99.332 366.947 -110.15 0.5 0.5 1 5 lb |
|
64 |
397.855 -196.694 382.401 -153.422 366.947 -110.15 0.5 0.5 1 5 lb |
|
65 |
366.947 -110.15 319.038 -142.604 271.13 -175.058 1 0.5 1 5 lb |
|
66 |
271.13 -175.058 274.221 -213.694 277.311 -252.33 0.5 1 1 5 lb |
|
67 |
271.13 -175.058 238.675 -190.512 206.221 -205.967 0.5 1 1 5 lb |
|
68 |
277.311 -252.33 241.766 -229.149 206.221 -205.967 0.5 1 1 5 lb |
|
69 |
-840.856 -246.718 -804.351 -66.7145 -767.847 113.289 0 0.5 0 5 lb |
|
70 |
-579.033 445.603 -673.44 279.446 -767.847 113.289 0 0 0.5 5 lb |
|
71 |
-579.033 445.603 -524.906 302.104 -470.779 158.605 0 0 0.5 5 lb |
|
72 |
-767.847 113.289 -619.313 135.947 -470.779 158.605 0 0 0.5 5 lb |
|
73 |
906.312 201.403 946.592 42.798 986.873 -115.807 0 0.5 0.5 5 lb |
|
74 |
906.312 201.403 834.562 91.8901 762.812 -17.6227 0 0.5 0.5 5 lb |
|
75 |
986.873 -115.807 874.842 -66.7148 762.812 -17.6227 0 0.5 0.5 5 lb |
|
76 |
-470.779 158.605 -390.218 50.3508 -309.657 -57.9033 0.5 0.5 0 5 lb |
|
77 |
422.945 521.129 208.955 541.269 -5.03507 561.41 0.5 0 0.5 5 lb |
|
78 |
422.945 521.129 376.371 417.911 329.797 314.692 0.5 0 0.5 5 lb |
|
79 |
422.945 521.129 474.554 276.928 526.164 32.7279 0.5 0 0.5 5 lb |
|
80 |
-5.03507 561.41 -36.5042 440.568 -67.9734 319.727 0.5 0 0.5 5 lb |
|
81 |
329.797 314.692 130.912 317.209 -67.9734 319.727 0.5 0 0.5 5 lb |
|
82 |
-67.9734 319.727 229.095 176.227 526.164 32.7279 0.5 0 0.5 5 lb |
|
83 |
762.812 -17.6227 644.488 7.5526 526.164 32.7279 0.5 0.5 0.5 5 lb |
|
84 |
762.812 -17.6227 746.448 -162.381 730.084 -307.139 0.5 0.5 0.5 5 lb |
|
85 |
526.164 32.7279 470.779 -128.394 415.393 -289.516 0.5 0.5 0.5 5 lb |
|
86 |
730.084 -307.139 572.738 -298.327 415.393 -289.516 0.5 0.5 0.5 5 lb |
|
87 |
415.393 -289.516 173.71 -318.468 -67.9734 -347.42 1 0.5 0.5 5 lb |
|
88 |
-67.9734 -347.42 -188.815 -202.662 -309.657 -57.9033 0.5 1 0.5 5 lb |
|
89 |
-67.9734 -347.42 -195.758 -390.692 -323.543 -433.964 0.5 1 0.5 5 lb |
|
90 |
-309.657 -57.9033 -424.775 -160.272 -539.894 -262.64 0.5 1 0.5 5 lb |
|
91 |
-323.543 -433.964 -431.719 -348.302 -539.894 -262.64 0.5 1 0.5 5 lb |
|
92 |
-26.6953 -19.9585 44.8558 -96.8093 116.407 -173.66 1 1 0 5 lb |
|
93 |
-26.6953 -19.9585 87.2563 9.19185 201.208 38.3422 1 1 0 5 lb |
|
94 |
-26.6953 -19.9585 -144.622 43.6422 -262.548 107.243 1 0 1 5 lb |
|
95 |
-26.6953 -19.9585 -20.0703 56.8923 -13.4452 133.743 1 0 1 5 lb |
|
96 |
116.407 -173.66 158.808 -67.6589 201.208 38.3422 1 1 0 5 lb |
|
97 |
-262.548 107.243 -137.997 120.493 -13.4452 133.743 1 0 1 5 lb |
|
98 |
-262.548 107.243 -221.472 176.144 -180.397 245.045 1 0 1 5 lb |
|
99 |
-13.4452 133.743 -96.9211 189.394 -180.397 245.045 1 0 1 5 lb |
|
100 |
-180.397 245.045 -140.307 344.649 -132.697 451.748 0 1 1 5 lb |
|
101 |
-180.397 245.045 -172.787 352.144 -132.697 451.748 0 1 1 5 lb |
|
102 |
-416.25 345.746 -274.474 398.747 -132.697 451.748 0.5 0 0 5 lb |
|
103 |
-416.25 345.746 -393.725 457.048 -371.2 568.349 0.5 0 0 5 lb |
|
104 |
-132.697 451.748 -251.948 510.048 -371.2 568.349 0.5 0 0 5 lb |
|
105 |
670.264 274.195 629.188 409.347 588.113 544.499 0 0 1 5 lb |
|
106 |
670.264 274.195 797.466 341.771 924.667 409.347 0 0 1 5 lb |
|
107 |
588.113 544.499 756.39 476.923 924.667 409.347 0 0 1 5 lb |
|
108 |
-689.204 -237.261 -612.964 -103.444 -567.302 43.6423 0 0 0 5 lb |
|
109 |
-689.204 -237.261 -643.542 -90.1744 -567.302 43.6423 0 0 0 5 lb |
|
110 |
grestore |
|
111 |
%Nodes: |
|
112 |
gsave |
|
113 |
-567.302 43.6423 20 0 0 1 nc |
|
114 |
-689.204 -237.261 20 0 0 1 nc |
|
115 |
924.667 409.347 20 0 0 1 nc |
|
116 |
588.113 544.499 20 0 0 1 nc |
|
117 |
670.264 274.195 20 1 0 0 nc |
|
118 |
-371.2 568.349 20 0 0 1 nc |
|
119 |
-132.697 451.748 20 1 0 0 nc |
|
120 |
-416.25 345.746 20 0 0 1 nc |
|
121 |
-180.397 245.045 20 1 0 0 nc |
|
122 |
-13.4452 133.743 20 0 0 1 nc |
|
123 |
-262.548 107.243 20 0 0 1 nc |
|
124 |
201.208 38.3422 20 0 0 1 nc |
|
125 |
116.407 -173.66 20 0 0 1 nc |
|
126 |
-26.6953 -19.9585 20 1 0 0 nc |
|
127 |
-539.894 -262.64 20 0 0 1 nc |
|
128 |
-323.543 -433.964 20 0 0 1 nc |
|
129 |
-309.657 -57.9033 20 1 0 0 nc |
|
130 |
-67.9734 -347.42 20 1 0 0 nc |
|
131 |
415.393 -289.516 20 1 0 0 nc |
|
132 |
730.084 -307.139 20 0 0 1 nc |
|
133 |
526.164 32.7279 20 1 0 0 nc |
|
134 |
762.812 -17.6227 20 1 0 0 nc |
|
135 |
-67.9734 319.727 20 0 0 1 nc |
|
136 |
329.797 314.692 20 0 0 1 nc |
|
137 |
-5.03507 561.41 20 0 0 1 nc |
|
138 |
422.945 521.129 20 0 0 1 nc |
|
139 |
-470.779 158.605 20 1 0 0 nc |
|
140 |
986.873 -115.807 20 0 0 1 nc |
|
141 |
906.312 201.403 20 0 0 1 nc |
|
142 |
-767.847 113.289 20 1 0 0 nc |
|
143 |
-579.033 445.603 20 0 0 1 nc |
|
144 |
-840.856 -246.718 20 0 0 1 nc |
|
145 |
206.221 -205.967 20 0 0 1 nc |
|
146 |
277.311 -252.33 20 0 0 1 nc |
|
147 |
271.13 -175.058 20 1 0 0 nc |
|
148 |
366.947 -110.15 20 1 0 0 nc |
|
149 |
397.855 -196.694 20 0 0 1 nc |
|
150 |
438.037 -88.514 20 0 0 1 nc |
|
151 |
286.584 -48.3327 20 1 0 0 nc |
|
152 |
212.403 -23.6057 20 0 0 1 nc |
|
153 |
280.402 10.3938 20 0 0 1 nc |
|
154 |
694.579 115.483 20 0 0 1 nc |
|
155 |
574.035 177.301 20 0 0 1 nc |
|
156 |
grestore |
|
157 |
grestore |
|
158 |
showpage |
1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
2 |
%%Creator: LEMON, graphToEps() |
|
3 |
%%CreationDate: Fri Nov 4 13:47:12 2005 |
|
4 |
%%BoundingBox: 0 0 596 842 |
|
5 |
%%DocumentPaperSizes: a4 |
|
6 |
%%EndComments |
|
7 |
/lb { setlinewidth setrgbcolor newpath moveto |
|
8 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
9 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def |
|
10 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def |
|
11 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto |
|
12 |
2 index 1 index sub 2 index 2 index add lineto |
|
13 |
2 index 1 index sub 2 index 2 index sub lineto |
|
14 |
2 index 1 index add 2 index 2 index sub lineto |
|
15 |
closepath pop pop pop} bind def |
|
16 |
/di { newpath 2 index 1 index add 2 index moveto |
|
17 |
2 index 2 index 2 index add lineto |
|
18 |
2 index 1 index sub 2 index lineto |
|
19 |
2 index 2 index 2 index sub lineto |
|
20 |
closepath pop pop pop} bind def |
|
21 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill |
|
22 |
setrgbcolor 1.1 div c fill |
|
23 |
} bind def |
|
24 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill |
|
25 |
setrgbcolor 1.1 div sq fill |
|
26 |
} bind def |
|
27 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill |
|
28 |
setrgbcolor 1.1 div di fill |
|
29 |
} bind def |
|
30 |
/arrl 10 def |
|
31 |
/arrw 3 def |
|
32 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def |
|
33 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def |
|
34 |
/w exch def /len exch def |
|
35 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
36 |
len w sub arrl sub dx dy lrl |
|
37 |
arrw dy dx neg lrl |
|
38 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
39 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
40 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
41 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
42 |
arrw dy dx neg lrl |
|
43 |
len w sub arrl sub neg dx dy lrl |
|
44 |
closepath fill } bind def |
|
45 |
/cshow { 2 index 2 index moveto dup stringwidth pop |
|
46 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
47 |
|
|
48 |
gsave |
|
49 |
77.1122 15 translate |
|
50 |
0.585745 dup scale |
|
51 |
90 rotate |
|
52 |
695.963 -397.916 translate |
|
53 |
%Edges: |
|
54 |
gsave |
|
55 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
56 |
218.178 27.2723 moveto |
|
57 |
192.373 -40.1551 188.622 -49.9556 169.228 -100.631 curveto stroke |
|
58 |
newpath 164.939 -111.838 moveto 165.492 -99.2013 lineto 172.964 -102.061 lineto closepath fill |
|
59 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
60 |
44.8044 15.5841 moveto |
|
61 |
119.293 20.6059 129.775 21.3125 186.25 25.1199 curveto stroke |
|
62 |
newpath 198.223 25.927 moveto 186.519 21.1289 lineto 185.981 29.1108 lineto closepath fill |
|
63 |
2 setlinewidth 1 0 0 setrgbcolor newpath |
|
64 |
218.178 27.2723 moveto |
|
65 |
285.395 -87.4449 290.763 -96.6058 348.102 -194.464 curveto stroke |
|
66 |
newpath 354.169 -204.818 moveto 344.651 -196.487 lineto 351.554 -192.442 lineto closepath fill |
|
67 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
68 |
157.79 -130.517 moveto |
|
69 |
108.71 -67.0521 102.27 -58.7243 64.3804 -9.72954 curveto stroke |
|
70 |
newpath 57.0394 -0.236898 moveto 67.5446 -7.28254 lineto 61.2162 -12.1765 lineto closepath fill |
|
71 |
2 setlinewidth 1 0 0 setrgbcolor newpath |
|
72 |
-105.193 -261.035 moveto |
|
73 |
-35.6576 -132.801 -30.5923 -123.459 29.5506 -12.5464 curveto stroke |
|
74 |
newpath 35.2708 -1.99743 moveto 33.0669 -14.4531 lineto 26.0343 -10.6397 lineto closepath fill |
|
75 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
76 |
-465.576 -42.8564 moveto |
|
77 |
-559.078 -25.5413 -569.47 -23.6169 -644.498 -9.72286 curveto stroke |
|
78 |
newpath -656.297 -7.5378 moveto -643.77 -5.78973 lineto -645.226 -13.656 lineto closepath fill |
|
79 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
80 |
-574.666 -153.893 moveto |
|
81 |
-528.842 -107.252 -521.515 -99.794 -488.002 -65.683 curveto stroke |
|
82 |
newpath -479.592 -57.123 moveto -485.149 -68.4863 lineto -490.856 -62.8797 lineto closepath fill |
|
83 |
2 setlinewidth 1 0 0 setrgbcolor newpath |
|
84 |
-490.901 120.777 moveto |
|
85 |
-480.122 51.1328 -478.519 40.7713 -470.47 -11.2329 curveto stroke |
|
86 |
newpath -468.635 -23.0917 moveto -474.423 -11.8447 lineto -466.517 -10.6212 lineto closepath fill |
|
87 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
88 |
-675.963 -3.89604 moveto |
|
89 |
-632.116 -68.8235 -626.228 -77.5422 -592.575 -127.374 curveto stroke |
|
90 |
newpath -585.859 -137.319 moveto -595.89 -129.612 lineto -589.26 -125.135 lineto closepath fill |
|
91 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
92 |
-490.901 120.777 moveto |
|
93 |
-435.445 215.844 -430.107 224.995 -384.3 303.522 curveto stroke |
|
94 |
newpath -378.253 313.887 moveto -380.845 301.507 lineto -387.755 305.537 lineto closepath fill |
|
95 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
96 |
-266.879 114.933 moveto |
|
97 |
-367.067 117.547 -377.642 117.822 -458.912 119.943 curveto stroke |
|
98 |
newpath -470.908 120.255 moveto -458.807 123.941 lineto -459.016 115.944 lineto closepath fill |
|
99 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
100 |
-368.176 331.163 moveto |
|
101 |
-322.511 233.685 -318.018 224.095 -280.454 143.911 curveto stroke |
|
102 |
newpath -275.364 133.044 moveto -284.076 142.214 lineto -276.832 145.608 lineto closepath fill |
|
103 |
2 setlinewidth 1 0 0 setrgbcolor newpath |
|
104 |
-266.879 114.933 moveto |
|
105 |
-224.004 235.52 -220.448 245.52 -184.094 347.765 curveto stroke |
|
106 |
newpath -180.074 359.072 moveto -180.325 346.425 lineto -187.863 349.105 lineto closepath fill |
|
107 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
108 |
-251.294 -335.059 moveto |
|
109 |
-189.25 -303.624 -179.902 -298.887 -133.738 -275.498 curveto stroke |
|
110 |
newpath -123.034 -270.074 moveto -131.93 -279.066 lineto -135.546 -271.93 lineto closepath fill |
|
111 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
112 |
-389.604 -136.361 moveto |
|
113 |
-327.15 -226.083 -321.098 -234.777 -269.576 -308.795 curveto stroke |
|
114 |
newpath -262.72 -318.644 moveto -272.859 -311.081 lineto -266.293 -306.51 lineto closepath fill |
|
115 |
2 setlinewidth 1 0 0 setrgbcolor newpath |
|
116 |
5.84406 175.322 moveto |
|
117 |
-76.0754 267.926 -83.1051 275.873 -152.172 353.948 curveto stroke |
|
118 |
newpath -160.122 362.936 moveto -149.176 356.598 lineto -155.168 351.298 lineto closepath fill |
|
119 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
120 |
169.478 311.683 moveto |
|
121 |
96.8003 251.119 88.6819 244.353 30.4273 195.808 curveto stroke |
|
122 |
newpath 21.2086 188.126 moveto 27.8666 198.881 lineto 32.988 192.735 lineto closepath fill |
|
123 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
124 |
342.851 111.037 moveto |
|
125 |
263.766 202.563 256.831 210.589 190.4 287.47 curveto stroke |
|
126 |
newpath 182.554 296.55 moveto 193.427 290.085 lineto 187.373 284.855 lineto closepath fill |
|
127 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
128 |
5.84406 175.322 moveto |
|
129 |
163.16 145.314 173.605 143.321 311.418 117.033 curveto stroke |
|
130 |
newpath 323.205 114.784 moveto 310.668 113.104 lineto 312.167 120.962 lineto closepath fill |
|
131 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
132 |
342.851 111.037 moveto |
|
133 |
497.255 2.58683 505.964 -3.53033 643.932 -100.436 curveto stroke |
|
134 |
newpath 653.752 -107.334 moveto 641.633 -103.71 lineto 646.231 -97.163 lineto closepath fill |
|
135 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
136 |
364.28 -222.074 moveto |
|
137 |
354.298 -66.9063 353.616 -56.2971 344.905 79.1029 curveto stroke |
|
138 |
newpath 344.135 91.0781 moveto 348.897 79.3597 lineto 340.914 78.8461 lineto closepath fill |
|
139 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
140 |
670.118 -118.829 moveto |
|
141 |
528.037 -166.793 517.967 -170.192 394.599 -211.839 curveto stroke |
|
142 |
newpath 383.229 -215.677 moveto 393.32 -208.049 lineto 395.878 -215.629 lineto closepath fill |
|
143 |
2 setlinewidth 1 0 0 setrgbcolor newpath |
|
144 |
-105.193 -261.035 moveto |
|
145 |
118.401 -242.479 129.015 -241.598 332.39 -224.721 curveto stroke |
|
146 |
newpath 344.348 -223.728 moveto 332.72 -228.707 lineto 332.059 -220.734 lineto closepath fill |
|
147 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
148 |
-105.193 -261.035 moveto |
|
149 |
-160.867 -161.176 -166.028 -151.918 -212.336 -68.858 curveto stroke |
|
150 |
newpath -218.179 -58.3769 moveto -208.842 -66.9102 lineto -215.829 -70.8058 lineto closepath fill |
|
151 |
2 setlinewidth 0 0 1 setrgbcolor newpath |
|
152 |
-227.918 -40.9084 moveto |
|
153 |
-298.35 -82.4884 -307.42 -87.8432 -362.048 -120.093 curveto stroke |
|
154 |
newpath -372.381 -126.193 moveto -364.081 -116.648 lineto -360.014 -123.537 lineto closepath fill |
|
155 |
grestore |
|
156 |
%Nodes: |
|
157 |
gsave |
|
158 |
-389.604 -136.361 20 0 1 0 nc |
|
159 |
-227.918 -40.9084 20 0 1 0 nc |
|
160 |
-105.193 -261.035 20 0 1 0 nc |
|
161 |
364.28 -222.074 20 1 1 0 nc |
|
162 |
670.118 -118.829 20 1 1 0 nc |
|
163 |
342.851 111.037 20 1 1 0 nc |
|
164 |
5.84406 175.322 20 1 1 0 nc |
|
165 |
169.478 311.683 20 1 1 0 nc |
|
166 |
-173.374 377.916 20 1 0 1 nc |
|
167 |
-251.294 -335.059 20 0 1 0 nc |
|
168 |
-266.879 114.933 20 0 0 0 nc |
|
169 |
-368.176 331.163 20 0 0 0 nc |
|
170 |
-490.901 120.777 20 0 0 0 nc |
|
171 |
-574.666 -153.893 20 1 0 0 nc |
|
172 |
-675.963 -3.89604 20 1 0 0 nc |
|
173 |
-465.576 -42.8564 20 1 0 0 nc |
|
174 |
44.8044 15.5841 20 0 0 1 nc |
|
175 |
157.79 -130.517 20 0 0 1 nc |
|
176 |
218.178 27.2723 20 0 0 1 nc |
|
177 |
grestore |
|
178 |
grestore |
|
179 |
showpage |
1 | 1 |
SET(PACKAGE_NAME ${PROJECT_NAME}) |
2 | 2 |
SET(PACKAGE_VERSION ${PROJECT_VERSION}) |
3 | 3 |
SET(abs_top_srcdir ${PROJECT_SOURCE_DIR}) |
4 | 4 |
SET(abs_top_builddir ${PROJECT_BINARY_DIR}) |
5 | 5 |
|
6 | 6 |
CONFIGURE_FILE( |
7 | 7 |
${PROJECT_SOURCE_DIR}/doc/Doxyfile.in |
8 | 8 |
${PROJECT_BINARY_DIR}/doc/Doxyfile |
9 | 9 |
@ONLY) |
10 | 10 |
|
11 | 11 |
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
12 | 12 |
FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/) |
13 | 13 |
IF(UNIX) |
14 | 14 |
ADD_CUSTOM_TARGET(html |
15 | 15 |
COMMAND rm -rf gen-images |
16 | 16 |
COMMAND mkdir gen-images |
17 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps |
|
18 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps |
|
19 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps |
|
20 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps |
|
17 | 21 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps |
22 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps |
|
18 | 23 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps |
19 | 24 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps |
20 | 25 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps |
21 | 26 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps |
22 | 27 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps |
28 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps |
|
23 | 29 |
COMMAND rm -rf html |
24 | 30 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile |
25 | 31 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) |
26 | 32 |
ELSEIF(WIN32) |
27 | 33 |
ADD_CUSTOM_TARGET(html |
28 | 34 |
COMMAND if exist gen-images rmdir /s /q gen-images |
29 | 35 |
COMMAND mkdir gen-images |
36 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps |
|
37 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps |
|
38 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps |
|
39 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps |
|
40 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps |
|
41 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps |
|
30 | 42 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps |
31 | 43 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps |
32 | 44 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps |
33 | 45 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps |
34 | 46 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps |
47 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps |
|
35 | 48 |
COMMAND if exist html rmdir /s /q html |
36 | 49 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile |
37 | 50 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) |
38 | 51 |
ENDIF(UNIX) |
39 | 52 |
INSTALL( |
40 | 53 |
DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/ |
41 | 54 |
DESTINATION share/doc |
42 | 55 |
COMPONENT html_documentation) |
43 | 56 |
ENDIF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
doc/Doxyfile.in \ |
3 | 3 |
doc/DoxygenLayout.xml \ |
4 | 4 |
doc/coding_style.dox \ |
5 | 5 |
doc/dirs.dox \ |
6 | 6 |
doc/groups.dox \ |
7 | 7 |
doc/lgf.dox \ |
8 | 8 |
doc/license.dox \ |
9 | 9 |
doc/mainpage.dox \ |
10 | 10 |
doc/migration.dox \ |
11 | 11 |
doc/named-param.dox \ |
12 | 12 |
doc/namespaces.dox \ |
13 | 13 |
doc/html \ |
14 | 14 |
doc/CMakeLists.txt |
15 | 15 |
|
16 | 16 |
DOC_EPS_IMAGES18 = \ |
17 |
bipartite_matching.eps \ |
|
18 |
bipartite_partitions.eps \ |
|
19 |
connected_components.eps \ |
|
20 |
edge_biconnected_components.eps \ |
|
17 | 21 |
grid_graph.eps \ |
22 |
node_biconnected_components.eps \ |
|
18 | 23 |
nodeshape_0.eps \ |
19 | 24 |
nodeshape_1.eps \ |
20 | 25 |
nodeshape_2.eps \ |
21 | 26 |
nodeshape_3.eps \ |
22 |
nodeshape_4.eps |
|
27 |
nodeshape_4.eps \ |
|
28 |
strongly_connected_components.eps |
|
23 | 29 |
|
24 | 30 |
DOC_EPS_IMAGES = \ |
25 | 31 |
$(DOC_EPS_IMAGES18) |
26 | 32 |
|
27 | 33 |
DOC_PNG_IMAGES = \ |
28 | 34 |
$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png) |
29 | 35 |
|
30 | 36 |
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%) |
31 | 37 |
|
32 | 38 |
doc/html: |
33 | 39 |
$(MAKE) $(AM_MAKEFLAGS) html |
34 | 40 |
|
35 | 41 |
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 |
36 | 42 |
|
37 | 43 |
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
38 | 44 |
-mkdir doc/gen-images |
39 | 45 |
if test ${gs_found} = yes; then \ |
40 | 46 |
$(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \ |
41 | 47 |
else \ |
42 | 48 |
echo; \ |
43 | 49 |
echo "Ghostscript not found."; \ |
44 | 50 |
echo; \ |
45 | 51 |
exit 1; \ |
46 | 52 |
fi |
47 | 53 |
|
48 | 54 |
html-local: $(DOC_PNG_IMAGES) |
49 | 55 |
if test ${doxygen_found} = yes; then \ |
50 | 56 |
cd doc; \ |
51 | 57 |
doxygen Doxyfile; \ |
52 | 58 |
cd ..; \ |
53 | 59 |
else \ |
54 | 60 |
echo; \ |
55 | 61 |
echo "Doxygen not found."; \ |
56 | 62 |
echo; \ |
57 | 63 |
exit 1; \ |
58 | 64 |
fi |
59 | 65 |
|
60 | 66 |
clean-local: |
61 | 67 |
-rm -rf doc/html |
62 | 68 |
-rm -f doc/doxygen.log |
63 | 69 |
-rm -f $(DOC_PNG_IMAGES) |
64 | 70 |
-rm -rf doc/gen-images |
65 | 71 |
|
66 | 72 |
update-external-tags: |
67 | 73 |
wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \ |
68 | 74 |
mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \ |
69 | 75 |
rm doc/libstdc++.tag.tmp |
70 | 76 |
... | ... |
@@ -362,97 +362,97 @@ |
362 | 362 |
the following optimization problem. |
363 | 363 |
|
364 | 364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
365 | 365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
366 | 366 |
supply(v) \qquad \forall v\in V \f] |
367 | 367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
368 | 368 |
|
369 | 369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
370 | 370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
371 | 371 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
372 | 372 |
capacity scaling. |
373 | 373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
374 | 374 |
cost scaling. |
375 | 375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
376 | 376 |
pivot strategies. |
377 | 377 |
*/ |
378 | 378 |
|
379 | 379 |
/** |
380 | 380 |
@defgroup min_cut Minimum Cut Algorithms |
381 | 381 |
@ingroup algs |
382 | 382 |
|
383 | 383 |
\brief Algorithms for finding minimum cut in graphs. |
384 | 384 |
|
385 | 385 |
This group contains the algorithms for finding minimum cut in graphs. |
386 | 386 |
|
387 | 387 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
388 | 388 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
389 | 389 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
390 | 390 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
391 | 391 |
cut is the \f$X\f$ solution of the next optimization problem: |
392 | 392 |
|
393 | 393 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
394 | 394 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
395 | 395 |
|
396 | 396 |
LEMON contains several algorithms related to minimum cut problems: |
397 | 397 |
|
398 | 398 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
399 | 399 |
in directed graphs. |
400 | 400 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
401 | 401 |
calculating minimum cut in undirected graphs. |
402 | 402 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
403 | 403 |
all-pairs minimum cut in undirected graphs. |
404 | 404 |
|
405 | 405 |
If you want to find minimum cut just between two distinict nodes, |
406 | 406 |
see the \ref max_flow "maximum flow problem". |
407 | 407 |
*/ |
408 | 408 |
|
409 | 409 |
/** |
410 |
@defgroup |
|
410 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
411 | 411 |
@ingroup algs |
412 | 412 |
\brief Algorithms for discovering the graph properties |
413 | 413 |
|
414 | 414 |
This group contains the algorithms for discovering the graph properties |
415 | 415 |
like connectivity, bipartiteness, euler property, simplicity etc. |
416 | 416 |
|
417 | 417 |
\image html edge_biconnected_components.png |
418 | 418 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
419 | 419 |
*/ |
420 | 420 |
|
421 | 421 |
/** |
422 | 422 |
@defgroup planar Planarity Embedding and Drawing |
423 | 423 |
@ingroup algs |
424 | 424 |
\brief Algorithms for planarity checking, embedding and drawing |
425 | 425 |
|
426 | 426 |
This group contains the algorithms for planarity checking, |
427 | 427 |
embedding and drawing. |
428 | 428 |
|
429 | 429 |
\image html planar.png |
430 | 430 |
\image latex planar.eps "Plane graph" width=\textwidth |
431 | 431 |
*/ |
432 | 432 |
|
433 | 433 |
/** |
434 | 434 |
@defgroup matching Matching Algorithms |
435 | 435 |
@ingroup algs |
436 | 436 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
437 | 437 |
|
438 | 438 |
This group contains algorithm objects and functions to calculate |
439 | 439 |
matchings in graphs and bipartite graphs. The general matching problem is |
440 | 440 |
finding a subset of the arcs which does not shares common endpoints. |
441 | 441 |
|
442 | 442 |
There are several different algorithms for calculate matchings in |
443 | 443 |
graphs. The matching problems in bipartite graphs are generally |
444 | 444 |
easier than in general graphs. The goal of the matching optimization |
445 | 445 |
can be finding maximum cardinality, maximum weight or minimum cost |
446 | 446 |
matching. The search can be constrained to find perfect or |
447 | 447 |
maximum cardinality matching. |
448 | 448 |
|
449 | 449 |
The matching algorithms implemented in LEMON: |
450 | 450 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
451 | 451 |
for calculating maximum cardinality matching in bipartite graphs. |
452 | 452 |
- \ref PrBipartiteMatching Push-relabel algorithm |
453 | 453 |
for calculating maximum cardinality matching in bipartite graphs. |
454 | 454 |
- \ref MaxWeightedBipartiteMatching |
455 | 455 |
Successive shortest path algorithm for calculating maximum weighted |
456 | 456 |
matching and maximum weighted bipartite matching in bipartite graphs. |
457 | 457 |
- \ref MinCostMaxBipartiteMatching |
458 | 458 |
Successive shortest path algorithm for calculating minimum cost maximum |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
20 | 20 |
#define LEMON_CONNECTIVITY_H |
21 | 21 |
|
22 | 22 |
#include <lemon/dfs.h> |
23 | 23 |
#include <lemon/bfs.h> |
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
#include <lemon/adaptors.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concepts/digraph.h> |
29 | 29 |
#include <lemon/concepts/graph.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
#include <stack> |
33 | 33 |
#include <functional> |
34 | 34 |
|
35 |
/// \ingroup |
|
35 |
/// \ingroup graph_properties |
|
36 | 36 |
/// \file |
37 | 37 |
/// \brief Connectivity algorithms |
38 | 38 |
/// |
39 | 39 |
/// Connectivity algorithms |
40 | 40 |
|
41 | 41 |
namespace lemon { |
42 | 42 |
|
43 |
/// \ingroup |
|
43 |
/// \ingroup graph_properties |
|
44 | 44 |
/// |
45 | 45 |
/// \brief Check whether the given undirected graph is connected. |
46 | 46 |
/// |
47 | 47 |
/// Check whether the given undirected graph is connected. |
48 | 48 |
/// \param graph The undirected graph. |
49 | 49 |
/// \return \c true when there is path between any two nodes in the graph. |
50 | 50 |
/// \note By definition, the empty graph is connected. |
51 | 51 |
template <typename Graph> |
52 | 52 |
bool connected(const Graph& graph) { |
53 | 53 |
checkConcept<concepts::Graph, Graph>(); |
54 | 54 |
typedef typename Graph::NodeIt NodeIt; |
55 | 55 |
if (NodeIt(graph) == INVALID) return true; |
56 | 56 |
Dfs<Graph> dfs(graph); |
57 | 57 |
dfs.run(NodeIt(graph)); |
58 | 58 |
for (NodeIt it(graph); it != INVALID; ++it) { |
59 | 59 |
if (!dfs.reached(it)) { |
60 | 60 |
return false; |
61 | 61 |
} |
62 | 62 |
} |
63 | 63 |
return true; |
64 | 64 |
} |
65 | 65 |
|
66 |
/// \ingroup |
|
66 |
/// \ingroup graph_properties |
|
67 | 67 |
/// |
68 | 68 |
/// \brief Count the number of connected components of an undirected graph |
69 | 69 |
/// |
70 | 70 |
/// Count the number of connected components of an undirected graph |
71 | 71 |
/// |
72 | 72 |
/// \param graph The graph. It must be undirected. |
73 | 73 |
/// \return The number of components |
74 | 74 |
/// \note By definition, the empty graph consists |
75 | 75 |
/// of zero connected components. |
76 | 76 |
template <typename Graph> |
77 | 77 |
int countConnectedComponents(const Graph &graph) { |
78 | 78 |
checkConcept<concepts::Graph, Graph>(); |
79 | 79 |
typedef typename Graph::Node Node; |
80 | 80 |
typedef typename Graph::Arc Arc; |
81 | 81 |
|
82 | 82 |
typedef NullMap<Node, Arc> PredMap; |
83 | 83 |
typedef NullMap<Node, int> DistMap; |
84 | 84 |
|
85 | 85 |
int compNum = 0; |
86 | 86 |
typename Bfs<Graph>:: |
87 | 87 |
template SetPredMap<PredMap>:: |
88 | 88 |
template SetDistMap<DistMap>:: |
89 | 89 |
Create bfs(graph); |
90 | 90 |
|
91 | 91 |
PredMap predMap; |
92 | 92 |
bfs.predMap(predMap); |
93 | 93 |
|
94 | 94 |
DistMap distMap; |
95 | 95 |
bfs.distMap(distMap); |
96 | 96 |
|
97 | 97 |
bfs.init(); |
98 | 98 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
99 | 99 |
if (!bfs.reached(n)) { |
100 | 100 |
bfs.addSource(n); |
101 | 101 |
bfs.start(); |
102 | 102 |
++compNum; |
103 | 103 |
} |
104 | 104 |
} |
105 | 105 |
return compNum; |
106 | 106 |
} |
107 | 107 |
|
108 |
/// \ingroup |
|
108 |
/// \ingroup graph_properties |
|
109 | 109 |
/// |
110 | 110 |
/// \brief Find the connected components of an undirected graph |
111 | 111 |
/// |
112 | 112 |
/// Find the connected components of an undirected graph. |
113 | 113 |
/// |
114 |
/// \image html connected_components.png |
|
115 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
|
116 |
/// |
|
114 | 117 |
/// \param graph The graph. It must be undirected. |
115 | 118 |
/// \retval compMap A writable node map. The values will be set from 0 to |
116 | 119 |
/// the number of the connected components minus one. Each values of the map |
117 | 120 |
/// will be set exactly once, the values of a certain component will be |
118 | 121 |
/// set continuously. |
119 | 122 |
/// \return The number of components |
120 |
/// |
|
121 | 123 |
template <class Graph, class NodeMap> |
122 | 124 |
int connectedComponents(const Graph &graph, NodeMap &compMap) { |
123 | 125 |
checkConcept<concepts::Graph, Graph>(); |
124 | 126 |
typedef typename Graph::Node Node; |
125 | 127 |
typedef typename Graph::Arc Arc; |
126 | 128 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
127 | 129 |
|
128 | 130 |
typedef NullMap<Node, Arc> PredMap; |
129 | 131 |
typedef NullMap<Node, int> DistMap; |
130 | 132 |
|
131 | 133 |
int compNum = 0; |
132 | 134 |
typename Bfs<Graph>:: |
133 | 135 |
template SetPredMap<PredMap>:: |
134 | 136 |
template SetDistMap<DistMap>:: |
135 | 137 |
Create bfs(graph); |
136 | 138 |
|
137 | 139 |
PredMap predMap; |
138 | 140 |
bfs.predMap(predMap); |
139 | 141 |
|
140 | 142 |
DistMap distMap; |
141 | 143 |
bfs.distMap(distMap); |
142 | 144 |
|
143 | 145 |
bfs.init(); |
144 | 146 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
145 | 147 |
if(!bfs.reached(n)) { |
146 | 148 |
bfs.addSource(n); |
147 | 149 |
while (!bfs.emptyQueue()) { |
148 | 150 |
compMap.set(bfs.nextNode(), compNum); |
149 | 151 |
bfs.processNextNode(); |
150 | 152 |
} |
151 | 153 |
++compNum; |
152 | 154 |
} |
153 | 155 |
} |
154 | 156 |
return compNum; |
155 | 157 |
} |
156 | 158 |
|
157 | 159 |
namespace _connectivity_bits { |
158 | 160 |
|
159 | 161 |
template <typename Digraph, typename Iterator > |
160 | 162 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
161 | 163 |
public: |
162 | 164 |
typedef typename Digraph::Node Node; |
163 | 165 |
LeaveOrderVisitor(Iterator it) : _it(it) {} |
164 | 166 |
|
165 | 167 |
void leave(const Node& node) { |
166 | 168 |
*(_it++) = node; |
167 | 169 |
} |
168 | 170 |
|
... | ... |
@@ -182,286 +184,288 @@ |
182 | 184 |
void reach(const Node& node) { |
183 | 185 |
_map.set(node, _value); |
184 | 186 |
} |
185 | 187 |
private: |
186 | 188 |
Map& _map; |
187 | 189 |
Value& _value; |
188 | 190 |
}; |
189 | 191 |
|
190 | 192 |
template <typename Digraph, typename ArcMap> |
191 | 193 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> { |
192 | 194 |
public: |
193 | 195 |
typedef typename Digraph::Node Node; |
194 | 196 |
typedef typename Digraph::Arc Arc; |
195 | 197 |
|
196 | 198 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
197 | 199 |
ArcMap& cutMap, |
198 | 200 |
int& cutNum) |
199 | 201 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
200 | 202 |
_compMap(digraph, -1), _num(-1) { |
201 | 203 |
} |
202 | 204 |
|
203 | 205 |
void start(const Node&) { |
204 | 206 |
++_num; |
205 | 207 |
} |
206 | 208 |
|
207 | 209 |
void reach(const Node& node) { |
208 | 210 |
_compMap.set(node, _num); |
209 | 211 |
} |
210 | 212 |
|
211 | 213 |
void examine(const Arc& arc) { |
212 | 214 |
if (_compMap[_digraph.source(arc)] != |
213 | 215 |
_compMap[_digraph.target(arc)]) { |
214 | 216 |
_cutMap.set(arc, true); |
215 | 217 |
++_cutNum; |
216 | 218 |
} |
217 | 219 |
} |
218 | 220 |
private: |
219 | 221 |
const Digraph& _digraph; |
220 | 222 |
ArcMap& _cutMap; |
221 | 223 |
int& _cutNum; |
222 | 224 |
|
223 | 225 |
typename Digraph::template NodeMap<int> _compMap; |
224 | 226 |
int _num; |
225 | 227 |
}; |
226 | 228 |
|
227 | 229 |
} |
228 | 230 |
|
229 | 231 |
|
230 |
/// \ingroup |
|
232 |
/// \ingroup graph_properties |
|
231 | 233 |
/// |
232 | 234 |
/// \brief Check whether the given directed graph is strongly connected. |
233 | 235 |
/// |
234 | 236 |
/// Check whether the given directed graph is strongly connected. The |
235 | 237 |
/// graph is strongly connected when any two nodes of the graph are |
236 | 238 |
/// connected with directed paths in both direction. |
237 | 239 |
/// \return \c false when the graph is not strongly connected. |
238 | 240 |
/// \see connected |
239 | 241 |
/// |
240 | 242 |
/// \note By definition, the empty graph is strongly connected. |
241 | 243 |
template <typename Digraph> |
242 | 244 |
bool stronglyConnected(const Digraph& digraph) { |
243 | 245 |
checkConcept<concepts::Digraph, Digraph>(); |
244 | 246 |
|
245 | 247 |
typedef typename Digraph::Node Node; |
246 | 248 |
typedef typename Digraph::NodeIt NodeIt; |
247 | 249 |
|
248 | 250 |
typename Digraph::Node source = NodeIt(digraph); |
249 | 251 |
if (source == INVALID) return true; |
250 | 252 |
|
251 | 253 |
using namespace _connectivity_bits; |
252 | 254 |
|
253 | 255 |
typedef DfsVisitor<Digraph> Visitor; |
254 | 256 |
Visitor visitor; |
255 | 257 |
|
256 | 258 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
257 | 259 |
dfs.init(); |
258 | 260 |
dfs.addSource(source); |
259 | 261 |
dfs.start(); |
260 | 262 |
|
261 | 263 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
262 | 264 |
if (!dfs.reached(it)) { |
263 | 265 |
return false; |
264 | 266 |
} |
265 | 267 |
} |
266 | 268 |
|
267 | 269 |
typedef ReverseDigraph<const Digraph> RDigraph; |
268 | 270 |
typedef typename RDigraph::NodeIt RNodeIt; |
269 | 271 |
RDigraph rdigraph(digraph); |
270 | 272 |
|
271 | 273 |
typedef DfsVisitor<Digraph> RVisitor; |
272 | 274 |
RVisitor rvisitor; |
273 | 275 |
|
274 | 276 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
275 | 277 |
rdfs.init(); |
276 | 278 |
rdfs.addSource(source); |
277 | 279 |
rdfs.start(); |
278 | 280 |
|
279 | 281 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
280 | 282 |
if (!rdfs.reached(it)) { |
281 | 283 |
return false; |
282 | 284 |
} |
283 | 285 |
} |
284 | 286 |
|
285 | 287 |
return true; |
286 | 288 |
} |
287 | 289 |
|
288 |
/// \ingroup |
|
290 |
/// \ingroup graph_properties |
|
289 | 291 |
/// |
290 | 292 |
/// \brief Count the strongly connected components of a directed graph |
291 | 293 |
/// |
292 | 294 |
/// Count the strongly connected components of a directed graph. |
293 | 295 |
/// The strongly connected components are the classes of an |
294 | 296 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
295 | 297 |
/// the same class if they are connected with directed paths in both |
296 | 298 |
/// direction. |
297 | 299 |
/// |
298 | 300 |
/// \param digraph The graph. |
299 | 301 |
/// \return The number of components |
300 | 302 |
/// \note By definition, the empty graph has zero |
301 | 303 |
/// strongly connected components. |
302 | 304 |
template <typename Digraph> |
303 | 305 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
304 | 306 |
checkConcept<concepts::Digraph, Digraph>(); |
305 | 307 |
|
306 | 308 |
using namespace _connectivity_bits; |
307 | 309 |
|
308 | 310 |
typedef typename Digraph::Node Node; |
309 | 311 |
typedef typename Digraph::Arc Arc; |
310 | 312 |
typedef typename Digraph::NodeIt NodeIt; |
311 | 313 |
typedef typename Digraph::ArcIt ArcIt; |
312 | 314 |
|
313 | 315 |
typedef std::vector<Node> Container; |
314 | 316 |
typedef typename Container::iterator Iterator; |
315 | 317 |
|
316 | 318 |
Container nodes(countNodes(digraph)); |
317 | 319 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
318 | 320 |
Visitor visitor(nodes.begin()); |
319 | 321 |
|
320 | 322 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
321 | 323 |
dfs.init(); |
322 | 324 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
323 | 325 |
if (!dfs.reached(it)) { |
324 | 326 |
dfs.addSource(it); |
325 | 327 |
dfs.start(); |
326 | 328 |
} |
327 | 329 |
} |
328 | 330 |
|
329 | 331 |
typedef typename Container::reverse_iterator RIterator; |
330 | 332 |
typedef ReverseDigraph<const Digraph> RDigraph; |
331 | 333 |
|
332 | 334 |
RDigraph rdigraph(digraph); |
333 | 335 |
|
334 | 336 |
typedef DfsVisitor<Digraph> RVisitor; |
335 | 337 |
RVisitor rvisitor; |
336 | 338 |
|
337 | 339 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
338 | 340 |
|
339 | 341 |
int compNum = 0; |
340 | 342 |
|
341 | 343 |
rdfs.init(); |
342 | 344 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
343 | 345 |
if (!rdfs.reached(*it)) { |
344 | 346 |
rdfs.addSource(*it); |
345 | 347 |
rdfs.start(); |
346 | 348 |
++compNum; |
347 | 349 |
} |
348 | 350 |
} |
349 | 351 |
return compNum; |
350 | 352 |
} |
351 | 353 |
|
352 |
/// \ingroup |
|
354 |
/// \ingroup graph_properties |
|
353 | 355 |
/// |
354 | 356 |
/// \brief Find the strongly connected components of a directed graph |
355 | 357 |
/// |
356 | 358 |
/// Find the strongly connected components of a directed graph. The |
357 | 359 |
/// strongly connected components are the classes of an equivalence |
358 | 360 |
/// relation on the nodes of the graph. Two nodes are in |
359 | 361 |
/// relationship when there are directed paths between them in both |
360 | 362 |
/// direction. In addition, the numbering of components will satisfy |
361 | 363 |
/// that there is no arc going from a higher numbered component to |
362 | 364 |
/// a lower. |
363 | 365 |
/// |
366 |
/// \image html strongly_connected_components.png |
|
367 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
|
368 |
/// |
|
364 | 369 |
/// \param digraph The digraph. |
365 | 370 |
/// \retval compMap A writable node map. The values will be set from 0 to |
366 | 371 |
/// the number of the strongly connected components minus one. Each value |
367 | 372 |
/// of the map will be set exactly once, the values of a certain component |
368 | 373 |
/// will be set continuously. |
369 | 374 |
/// \return The number of components |
370 |
/// |
|
371 | 375 |
template <typename Digraph, typename NodeMap> |
372 | 376 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
373 | 377 |
checkConcept<concepts::Digraph, Digraph>(); |
374 | 378 |
typedef typename Digraph::Node Node; |
375 | 379 |
typedef typename Digraph::NodeIt NodeIt; |
376 | 380 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
377 | 381 |
|
378 | 382 |
using namespace _connectivity_bits; |
379 | 383 |
|
380 | 384 |
typedef std::vector<Node> Container; |
381 | 385 |
typedef typename Container::iterator Iterator; |
382 | 386 |
|
383 | 387 |
Container nodes(countNodes(digraph)); |
384 | 388 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
385 | 389 |
Visitor visitor(nodes.begin()); |
386 | 390 |
|
387 | 391 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
388 | 392 |
dfs.init(); |
389 | 393 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
390 | 394 |
if (!dfs.reached(it)) { |
391 | 395 |
dfs.addSource(it); |
392 | 396 |
dfs.start(); |
393 | 397 |
} |
394 | 398 |
} |
395 | 399 |
|
396 | 400 |
typedef typename Container::reverse_iterator RIterator; |
397 | 401 |
typedef ReverseDigraph<const Digraph> RDigraph; |
398 | 402 |
|
399 | 403 |
RDigraph rdigraph(digraph); |
400 | 404 |
|
401 | 405 |
int compNum = 0; |
402 | 406 |
|
403 | 407 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
404 | 408 |
RVisitor rvisitor(compMap, compNum); |
405 | 409 |
|
406 | 410 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
407 | 411 |
|
408 | 412 |
rdfs.init(); |
409 | 413 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
410 | 414 |
if (!rdfs.reached(*it)) { |
411 | 415 |
rdfs.addSource(*it); |
412 | 416 |
rdfs.start(); |
413 | 417 |
++compNum; |
414 | 418 |
} |
415 | 419 |
} |
416 | 420 |
return compNum; |
417 | 421 |
} |
418 | 422 |
|
419 |
/// \ingroup |
|
423 |
/// \ingroup graph_properties |
|
420 | 424 |
/// |
421 | 425 |
/// \brief Find the cut arcs of the strongly connected components. |
422 | 426 |
/// |
423 | 427 |
/// Find the cut arcs of the strongly connected components. |
424 | 428 |
/// The strongly connected components are the classes of an equivalence |
425 | 429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
426 | 430 |
/// when there are directed paths between them in both direction. |
427 | 431 |
/// The strongly connected components are separated by the cut arcs. |
428 | 432 |
/// |
429 | 433 |
/// \param graph The graph. |
430 | 434 |
/// \retval cutMap A writable node map. The values will be set true when the |
431 | 435 |
/// arc is a cut arc. |
432 | 436 |
/// |
433 | 437 |
/// \return The number of cut arcs |
434 | 438 |
template <typename Digraph, typename ArcMap> |
435 | 439 |
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) { |
436 | 440 |
checkConcept<concepts::Digraph, Digraph>(); |
437 | 441 |
typedef typename Digraph::Node Node; |
438 | 442 |
typedef typename Digraph::Arc Arc; |
439 | 443 |
typedef typename Digraph::NodeIt NodeIt; |
440 | 444 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
441 | 445 |
|
442 | 446 |
using namespace _connectivity_bits; |
443 | 447 |
|
444 | 448 |
typedef std::vector<Node> Container; |
445 | 449 |
typedef typename Container::iterator Iterator; |
446 | 450 |
|
447 | 451 |
Container nodes(countNodes(graph)); |
448 | 452 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
449 | 453 |
Visitor visitor(nodes.begin()); |
450 | 454 |
|
451 | 455 |
DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
452 | 456 |
dfs.init(); |
453 | 457 |
for (NodeIt it(graph); it != INVALID; ++it) { |
454 | 458 |
if (!dfs.reached(it)) { |
455 | 459 |
dfs.addSource(it); |
456 | 460 |
dfs.start(); |
457 | 461 |
} |
458 | 462 |
} |
459 | 463 |
|
460 | 464 |
typedef typename Container::reverse_iterator RIterator; |
461 | 465 |
typedef ReverseDigraph<const Digraph> RDigraph; |
462 | 466 |
|
463 | 467 |
RDigraph rgraph(graph); |
464 | 468 |
|
465 | 469 |
int cutNum = 0; |
466 | 470 |
|
467 | 471 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
... | ... |
@@ -655,190 +659,192 @@ |
655 | 659 |
} |
656 | 660 |
return; |
657 | 661 |
} |
658 | 662 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
659 | 663 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
660 | 664 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
661 | 665 |
} |
662 | 666 |
} |
663 | 667 |
|
664 | 668 |
void backtrack(const Arc& edge) { |
665 | 669 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
666 | 670 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
667 | 671 |
} |
668 | 672 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
669 | 673 |
if (_predMap[_graph.source(edge)] != INVALID) { |
670 | 674 |
if (!_cutMap[_graph.source(edge)]) { |
671 | 675 |
_cutMap.set(_graph.source(edge), true); |
672 | 676 |
++_cutNum; |
673 | 677 |
} |
674 | 678 |
} else if (rootCut) { |
675 | 679 |
if (!_cutMap[_graph.source(edge)]) { |
676 | 680 |
_cutMap.set(_graph.source(edge), true); |
677 | 681 |
++_cutNum; |
678 | 682 |
} |
679 | 683 |
} else { |
680 | 684 |
rootCut = true; |
681 | 685 |
} |
682 | 686 |
} |
683 | 687 |
} |
684 | 688 |
|
685 | 689 |
private: |
686 | 690 |
const Digraph& _graph; |
687 | 691 |
NodeMap& _cutMap; |
688 | 692 |
int& _cutNum; |
689 | 693 |
|
690 | 694 |
typename Digraph::template NodeMap<int> _numMap; |
691 | 695 |
typename Digraph::template NodeMap<int> _retMap; |
692 | 696 |
typename Digraph::template NodeMap<Node> _predMap; |
693 | 697 |
std::stack<Edge> _edgeStack; |
694 | 698 |
int _num; |
695 | 699 |
bool rootCut; |
696 | 700 |
}; |
697 | 701 |
|
698 | 702 |
} |
699 | 703 |
|
700 | 704 |
template <typename Graph> |
701 | 705 |
int countBiNodeConnectedComponents(const Graph& graph); |
702 | 706 |
|
703 |
/// \ingroup |
|
707 |
/// \ingroup graph_properties |
|
704 | 708 |
/// |
705 | 709 |
/// \brief Checks the graph is bi-node-connected. |
706 | 710 |
/// |
707 | 711 |
/// This function checks that the undirected graph is bi-node-connected |
708 | 712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
709 | 713 |
/// on same circle. |
710 | 714 |
/// |
711 | 715 |
/// \param graph The graph. |
712 | 716 |
/// \return \c true when the graph bi-node-connected. |
713 | 717 |
template <typename Graph> |
714 | 718 |
bool biNodeConnected(const Graph& graph) { |
715 | 719 |
return countBiNodeConnectedComponents(graph) <= 1; |
716 | 720 |
} |
717 | 721 |
|
718 |
/// \ingroup |
|
722 |
/// \ingroup graph_properties |
|
719 | 723 |
/// |
720 | 724 |
/// \brief Count the biconnected components. |
721 | 725 |
/// |
722 | 726 |
/// This function finds the bi-node-connected components in an undirected |
723 | 727 |
/// graph. The biconnected components are the classes of an equivalence |
724 | 728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
725 | 729 |
/// when they are on same circle. |
726 | 730 |
/// |
727 | 731 |
/// \param graph The graph. |
728 | 732 |
/// \return The number of components. |
729 | 733 |
template <typename Graph> |
730 | 734 |
int countBiNodeConnectedComponents(const Graph& graph) { |
731 | 735 |
checkConcept<concepts::Graph, Graph>(); |
732 | 736 |
typedef typename Graph::NodeIt NodeIt; |
733 | 737 |
|
734 | 738 |
using namespace _connectivity_bits; |
735 | 739 |
|
736 | 740 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
737 | 741 |
|
738 | 742 |
int compNum = 0; |
739 | 743 |
Visitor visitor(graph, compNum); |
740 | 744 |
|
741 | 745 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
742 | 746 |
dfs.init(); |
743 | 747 |
|
744 | 748 |
for (NodeIt it(graph); it != INVALID; ++it) { |
745 | 749 |
if (!dfs.reached(it)) { |
746 | 750 |
dfs.addSource(it); |
747 | 751 |
dfs.start(); |
748 | 752 |
} |
749 | 753 |
} |
750 | 754 |
return compNum; |
751 | 755 |
} |
752 | 756 |
|
753 |
/// \ingroup |
|
757 |
/// \ingroup graph_properties |
|
754 | 758 |
/// |
755 | 759 |
/// \brief Find the bi-node-connected components. |
756 | 760 |
/// |
757 | 761 |
/// This function finds the bi-node-connected components in an undirected |
758 | 762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
759 | 763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
760 | 764 |
/// when they are on same circle. |
761 | 765 |
/// |
766 |
/// \image html node_biconnected_components.png |
|
767 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
|
768 |
/// |
|
762 | 769 |
/// \param graph The graph. |
763 | 770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
764 | 771 |
/// to the number of the biconnected components minus one. Each values |
765 | 772 |
/// of the map will be set exactly once, the values of a certain component |
766 | 773 |
/// will be set continuously. |
767 | 774 |
/// \return The number of components. |
768 |
/// |
|
769 | 775 |
template <typename Graph, typename EdgeMap> |
770 | 776 |
int biNodeConnectedComponents(const Graph& graph, |
771 | 777 |
EdgeMap& compMap) { |
772 | 778 |
checkConcept<concepts::Graph, Graph>(); |
773 | 779 |
typedef typename Graph::NodeIt NodeIt; |
774 | 780 |
typedef typename Graph::Edge Edge; |
775 | 781 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
776 | 782 |
|
777 | 783 |
using namespace _connectivity_bits; |
778 | 784 |
|
779 | 785 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
780 | 786 |
|
781 | 787 |
int compNum = 0; |
782 | 788 |
Visitor visitor(graph, compMap, compNum); |
783 | 789 |
|
784 | 790 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
785 | 791 |
dfs.init(); |
786 | 792 |
|
787 | 793 |
for (NodeIt it(graph); it != INVALID; ++it) { |
788 | 794 |
if (!dfs.reached(it)) { |
789 | 795 |
dfs.addSource(it); |
790 | 796 |
dfs.start(); |
791 | 797 |
} |
792 | 798 |
} |
793 | 799 |
return compNum; |
794 | 800 |
} |
795 | 801 |
|
796 |
/// \ingroup |
|
802 |
/// \ingroup graph_properties |
|
797 | 803 |
/// |
798 | 804 |
/// \brief Find the bi-node-connected cut nodes. |
799 | 805 |
/// |
800 | 806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
801 | 807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
802 | 808 |
/// relation on the undirected edges. Two undirected edges are in |
803 | 809 |
/// relationship when they are on same circle. The biconnected components |
804 | 810 |
/// are separted by nodes which are the cut nodes of the components. |
805 | 811 |
/// |
806 | 812 |
/// \param graph The graph. |
807 | 813 |
/// \retval cutMap A writable edge map. The values will be set true when |
808 | 814 |
/// the node separate two or more components. |
809 | 815 |
/// \return The number of the cut nodes. |
810 | 816 |
template <typename Graph, typename NodeMap> |
811 | 817 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
812 | 818 |
checkConcept<concepts::Graph, Graph>(); |
813 | 819 |
typedef typename Graph::Node Node; |
814 | 820 |
typedef typename Graph::NodeIt NodeIt; |
815 | 821 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
816 | 822 |
|
817 | 823 |
using namespace _connectivity_bits; |
818 | 824 |
|
819 | 825 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
820 | 826 |
|
821 | 827 |
int cutNum = 0; |
822 | 828 |
Visitor visitor(graph, cutMap, cutNum); |
823 | 829 |
|
824 | 830 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
825 | 831 |
dfs.init(); |
826 | 832 |
|
827 | 833 |
for (NodeIt it(graph); it != INVALID; ++it) { |
828 | 834 |
if (!dfs.reached(it)) { |
829 | 835 |
dfs.addSource(it); |
830 | 836 |
dfs.start(); |
831 | 837 |
} |
832 | 838 |
} |
833 | 839 |
return cutNum; |
834 | 840 |
} |
835 | 841 |
|
836 | 842 |
namespace _connectivity_bits { |
837 | 843 |
|
838 | 844 |
template <typename Digraph> |
839 | 845 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
840 | 846 |
public: |
841 | 847 |
typedef typename Digraph::Node Node; |
842 | 848 |
typedef typename Digraph::Arc Arc; |
843 | 849 |
typedef typename Digraph::Edge Edge; |
844 | 850 |
|
... | ... |
@@ -978,559 +984,565 @@ |
978 | 984 |
_numMap.set(node, _num); |
979 | 985 |
_retMap.set(node, _num); |
980 | 986 |
++_num; |
981 | 987 |
} |
982 | 988 |
|
983 | 989 |
void leave(const Node& node) { |
984 | 990 |
if (_numMap[node] <= _retMap[node]) { |
985 | 991 |
if (_predMap[node] != INVALID) { |
986 | 992 |
_cutMap.set(_predMap[node], true); |
987 | 993 |
++_cutNum; |
988 | 994 |
} |
989 | 995 |
} |
990 | 996 |
} |
991 | 997 |
|
992 | 998 |
void discover(const Arc& edge) { |
993 | 999 |
_predMap.set(_graph.target(edge), edge); |
994 | 1000 |
} |
995 | 1001 |
|
996 | 1002 |
void examine(const Arc& edge) { |
997 | 1003 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
998 | 1004 |
return; |
999 | 1005 |
} |
1000 | 1006 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1001 | 1007 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1002 | 1008 |
} |
1003 | 1009 |
} |
1004 | 1010 |
|
1005 | 1011 |
void backtrack(const Arc& edge) { |
1006 | 1012 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1007 | 1013 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1008 | 1014 |
} |
1009 | 1015 |
} |
1010 | 1016 |
|
1011 | 1017 |
private: |
1012 | 1018 |
const Digraph& _graph; |
1013 | 1019 |
ArcMap& _cutMap; |
1014 | 1020 |
int& _cutNum; |
1015 | 1021 |
|
1016 | 1022 |
typename Digraph::template NodeMap<int> _numMap; |
1017 | 1023 |
typename Digraph::template NodeMap<int> _retMap; |
1018 | 1024 |
typename Digraph::template NodeMap<Arc> _predMap; |
1019 | 1025 |
int _num; |
1020 | 1026 |
}; |
1021 | 1027 |
} |
1022 | 1028 |
|
1023 | 1029 |
template <typename Graph> |
1024 | 1030 |
int countBiEdgeConnectedComponents(const Graph& graph); |
1025 | 1031 |
|
1026 |
/// \ingroup |
|
1032 |
/// \ingroup graph_properties |
|
1027 | 1033 |
/// |
1028 | 1034 |
/// \brief Checks that the graph is bi-edge-connected. |
1029 | 1035 |
/// |
1030 | 1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
1031 | 1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
1032 | 1038 |
/// edge-disjoint paths. |
1033 | 1039 |
/// |
1034 | 1040 |
/// \param graph The undirected graph. |
1035 | 1041 |
/// \return The number of components. |
1036 | 1042 |
template <typename Graph> |
1037 | 1043 |
bool biEdgeConnected(const Graph& graph) { |
1038 | 1044 |
return countBiEdgeConnectedComponents(graph) <= 1; |
1039 | 1045 |
} |
1040 | 1046 |
|
1041 |
/// \ingroup |
|
1047 |
/// \ingroup graph_properties |
|
1042 | 1048 |
/// |
1043 | 1049 |
/// \brief Count the bi-edge-connected components. |
1044 | 1050 |
/// |
1045 | 1051 |
/// This function count the bi-edge-connected components in an undirected |
1046 | 1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
1047 | 1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
1048 | 1054 |
/// connected with at least two edge-disjoint paths. |
1049 | 1055 |
/// |
1050 | 1056 |
/// \param graph The undirected graph. |
1051 | 1057 |
/// \return The number of components. |
1052 | 1058 |
template <typename Graph> |
1053 | 1059 |
int countBiEdgeConnectedComponents(const Graph& graph) { |
1054 | 1060 |
checkConcept<concepts::Graph, Graph>(); |
1055 | 1061 |
typedef typename Graph::NodeIt NodeIt; |
1056 | 1062 |
|
1057 | 1063 |
using namespace _connectivity_bits; |
1058 | 1064 |
|
1059 | 1065 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
1060 | 1066 |
|
1061 | 1067 |
int compNum = 0; |
1062 | 1068 |
Visitor visitor(graph, compNum); |
1063 | 1069 |
|
1064 | 1070 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1065 | 1071 |
dfs.init(); |
1066 | 1072 |
|
1067 | 1073 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1068 | 1074 |
if (!dfs.reached(it)) { |
1069 | 1075 |
dfs.addSource(it); |
1070 | 1076 |
dfs.start(); |
1071 | 1077 |
} |
1072 | 1078 |
} |
1073 | 1079 |
return compNum; |
1074 | 1080 |
} |
1075 | 1081 |
|
1076 |
/// \ingroup |
|
1082 |
/// \ingroup graph_properties |
|
1077 | 1083 |
/// |
1078 | 1084 |
/// \brief Find the bi-edge-connected components. |
1079 | 1085 |
/// |
1080 | 1086 |
/// This function finds the bi-edge-connected components in an undirected |
1081 | 1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
1082 | 1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
1083 | 1089 |
/// connected at least two edge-disjoint paths. |
1084 | 1090 |
/// |
1091 |
/// \image html edge_biconnected_components.png |
|
1092 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
1093 |
/// |
|
1085 | 1094 |
/// \param graph The graph. |
1086 | 1095 |
/// \retval compMap A writable node map. The values will be set from 0 to |
1087 | 1096 |
/// the number of the biconnected components minus one. Each values |
1088 | 1097 |
/// of the map will be set exactly once, the values of a certain component |
1089 | 1098 |
/// will be set continuously. |
1090 | 1099 |
/// \return The number of components. |
1091 |
/// |
|
1092 | 1100 |
template <typename Graph, typename NodeMap> |
1093 | 1101 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
1094 | 1102 |
checkConcept<concepts::Graph, Graph>(); |
1095 | 1103 |
typedef typename Graph::NodeIt NodeIt; |
1096 | 1104 |
typedef typename Graph::Node Node; |
1097 | 1105 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
1098 | 1106 |
|
1099 | 1107 |
using namespace _connectivity_bits; |
1100 | 1108 |
|
1101 | 1109 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
1102 | 1110 |
|
1103 | 1111 |
int compNum = 0; |
1104 | 1112 |
Visitor visitor(graph, compMap, compNum); |
1105 | 1113 |
|
1106 | 1114 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1107 | 1115 |
dfs.init(); |
1108 | 1116 |
|
1109 | 1117 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1110 | 1118 |
if (!dfs.reached(it)) { |
1111 | 1119 |
dfs.addSource(it); |
1112 | 1120 |
dfs.start(); |
1113 | 1121 |
} |
1114 | 1122 |
} |
1115 | 1123 |
return compNum; |
1116 | 1124 |
} |
1117 | 1125 |
|
1118 |
/// \ingroup |
|
1126 |
/// \ingroup graph_properties |
|
1119 | 1127 |
/// |
1120 | 1128 |
/// \brief Find the bi-edge-connected cut edges. |
1121 | 1129 |
/// |
1122 | 1130 |
/// This function finds the bi-edge-connected components in an undirected |
1123 | 1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
1124 | 1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
1125 | 1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
1126 | 1134 |
/// components are separted by edges which are the cut edges of the |
1127 | 1135 |
/// components. |
1128 | 1136 |
/// |
1129 | 1137 |
/// \param graph The graph. |
1130 | 1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
1131 | 1139 |
/// edge is a cut edge. |
1132 | 1140 |
/// \return The number of cut edges. |
1133 | 1141 |
template <typename Graph, typename EdgeMap> |
1134 | 1142 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
1135 | 1143 |
checkConcept<concepts::Graph, Graph>(); |
1136 | 1144 |
typedef typename Graph::NodeIt NodeIt; |
1137 | 1145 |
typedef typename Graph::Edge Edge; |
1138 | 1146 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
1139 | 1147 |
|
1140 | 1148 |
using namespace _connectivity_bits; |
1141 | 1149 |
|
1142 | 1150 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
1143 | 1151 |
|
1144 | 1152 |
int cutNum = 0; |
1145 | 1153 |
Visitor visitor(graph, cutMap, cutNum); |
1146 | 1154 |
|
1147 | 1155 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1148 | 1156 |
dfs.init(); |
1149 | 1157 |
|
1150 | 1158 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1151 | 1159 |
if (!dfs.reached(it)) { |
1152 | 1160 |
dfs.addSource(it); |
1153 | 1161 |
dfs.start(); |
1154 | 1162 |
} |
1155 | 1163 |
} |
1156 | 1164 |
return cutNum; |
1157 | 1165 |
} |
1158 | 1166 |
|
1159 | 1167 |
|
1160 | 1168 |
namespace _connectivity_bits { |
1161 | 1169 |
|
1162 | 1170 |
template <typename Digraph, typename IntNodeMap> |
1163 | 1171 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
1164 | 1172 |
public: |
1165 | 1173 |
typedef typename Digraph::Node Node; |
1166 | 1174 |
typedef typename Digraph::Arc edge; |
1167 | 1175 |
|
1168 | 1176 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
1169 | 1177 |
: _order(order), _num(num) {} |
1170 | 1178 |
|
1171 | 1179 |
void leave(const Node& node) { |
1172 | 1180 |
_order.set(node, --_num); |
1173 | 1181 |
} |
1174 | 1182 |
|
1175 | 1183 |
private: |
1176 | 1184 |
IntNodeMap& _order; |
1177 | 1185 |
int _num; |
1178 | 1186 |
}; |
1179 | 1187 |
|
1180 | 1188 |
} |
1181 | 1189 |
|
1182 |
/// \ingroup |
|
1190 |
/// \ingroup graph_properties |
|
1183 | 1191 |
/// |
1184 | 1192 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1185 | 1193 |
/// |
1186 | 1194 |
/// Sort the nodes of a DAG into topolgical order. |
1187 | 1195 |
/// |
1188 | 1196 |
/// \param graph The graph. It must be directed and acyclic. |
1189 | 1197 |
/// \retval order A writable node map. The values will be set from 0 to |
1190 | 1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
1191 | 1199 |
/// will be set exactly once, the values will be set descending order. |
1192 | 1200 |
/// |
1193 | 1201 |
/// \see checkedTopologicalSort |
1194 | 1202 |
/// \see dag |
1195 | 1203 |
template <typename Digraph, typename NodeMap> |
1196 | 1204 |
void topologicalSort(const Digraph& graph, NodeMap& order) { |
1197 | 1205 |
using namespace _connectivity_bits; |
1198 | 1206 |
|
1199 | 1207 |
checkConcept<concepts::Digraph, Digraph>(); |
1200 | 1208 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
1201 | 1209 |
|
1202 | 1210 |
typedef typename Digraph::Node Node; |
1203 | 1211 |
typedef typename Digraph::NodeIt NodeIt; |
1204 | 1212 |
typedef typename Digraph::Arc Arc; |
1205 | 1213 |
|
1206 | 1214 |
TopologicalSortVisitor<Digraph, NodeMap> |
1207 | 1215 |
visitor(order, countNodes(graph)); |
1208 | 1216 |
|
1209 | 1217 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1210 | 1218 |
dfs(graph, visitor); |
1211 | 1219 |
|
1212 | 1220 |
dfs.init(); |
1213 | 1221 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1214 | 1222 |
if (!dfs.reached(it)) { |
1215 | 1223 |
dfs.addSource(it); |
1216 | 1224 |
dfs.start(); |
1217 | 1225 |
} |
1218 | 1226 |
} |
1219 | 1227 |
} |
1220 | 1228 |
|
1221 |
/// \ingroup |
|
1229 |
/// \ingroup graph_properties |
|
1222 | 1230 |
/// |
1223 | 1231 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1224 | 1232 |
/// |
1225 | 1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
1226 | 1234 |
/// that the given graph is DAG. |
1227 | 1235 |
/// |
1228 | 1236 |
/// \param digraph The graph. It must be directed and acyclic. |
1229 | 1237 |
/// \retval order A readable - writable node map. The values will be set |
1230 | 1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
1231 | 1239 |
/// of the map will be set exactly once, the values will be set descending |
1232 | 1240 |
/// order. |
1233 | 1241 |
/// \return \c false when the graph is not DAG. |
1234 | 1242 |
/// |
1235 | 1243 |
/// \see topologicalSort |
1236 | 1244 |
/// \see dag |
1237 | 1245 |
template <typename Digraph, typename NodeMap> |
1238 | 1246 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
1239 | 1247 |
using namespace _connectivity_bits; |
1240 | 1248 |
|
1241 | 1249 |
checkConcept<concepts::Digraph, Digraph>(); |
1242 | 1250 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
1243 | 1251 |
NodeMap>(); |
1244 | 1252 |
|
1245 | 1253 |
typedef typename Digraph::Node Node; |
1246 | 1254 |
typedef typename Digraph::NodeIt NodeIt; |
1247 | 1255 |
typedef typename Digraph::Arc Arc; |
1248 | 1256 |
|
1249 | 1257 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1250 | 1258 |
order.set(it, -1); |
1251 | 1259 |
} |
1252 | 1260 |
|
1253 | 1261 |
TopologicalSortVisitor<Digraph, NodeMap> |
1254 | 1262 |
visitor(order, countNodes(digraph)); |
1255 | 1263 |
|
1256 | 1264 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1257 | 1265 |
dfs(digraph, visitor); |
1258 | 1266 |
|
1259 | 1267 |
dfs.init(); |
1260 | 1268 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1261 | 1269 |
if (!dfs.reached(it)) { |
1262 | 1270 |
dfs.addSource(it); |
1263 | 1271 |
while (!dfs.emptyQueue()) { |
1264 | 1272 |
Arc arc = dfs.nextArc(); |
1265 | 1273 |
Node target = digraph.target(arc); |
1266 | 1274 |
if (dfs.reached(target) && order[target] == -1) { |
1267 | 1275 |
return false; |
1268 | 1276 |
} |
1269 | 1277 |
dfs.processNextArc(); |
1270 | 1278 |
} |
1271 | 1279 |
} |
1272 | 1280 |
} |
1273 | 1281 |
return true; |
1274 | 1282 |
} |
1275 | 1283 |
|
1276 |
/// \ingroup |
|
1284 |
/// \ingroup graph_properties |
|
1277 | 1285 |
/// |
1278 | 1286 |
/// \brief Check that the given directed graph is a DAG. |
1279 | 1287 |
/// |
1280 | 1288 |
/// Check that the given directed graph is a DAG. The DAG is |
1281 | 1289 |
/// an Directed Acyclic Digraph. |
1282 | 1290 |
/// \return \c false when the graph is not DAG. |
1283 | 1291 |
/// \see acyclic |
1284 | 1292 |
template <typename Digraph> |
1285 | 1293 |
bool dag(const Digraph& digraph) { |
1286 | 1294 |
|
1287 | 1295 |
checkConcept<concepts::Digraph, Digraph>(); |
1288 | 1296 |
|
1289 | 1297 |
typedef typename Digraph::Node Node; |
1290 | 1298 |
typedef typename Digraph::NodeIt NodeIt; |
1291 | 1299 |
typedef typename Digraph::Arc Arc; |
1292 | 1300 |
|
1293 | 1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
1294 | 1302 |
|
1295 | 1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
1296 | 1304 |
Create dfs(digraph); |
1297 | 1305 |
|
1298 | 1306 |
ProcessedMap processed(digraph); |
1299 | 1307 |
dfs.processedMap(processed); |
1300 | 1308 |
|
1301 | 1309 |
dfs.init(); |
1302 | 1310 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1303 | 1311 |
if (!dfs.reached(it)) { |
1304 | 1312 |
dfs.addSource(it); |
1305 | 1313 |
while (!dfs.emptyQueue()) { |
1306 | 1314 |
Arc edge = dfs.nextArc(); |
1307 | 1315 |
Node target = digraph.target(edge); |
1308 | 1316 |
if (dfs.reached(target) && !processed[target]) { |
1309 | 1317 |
return false; |
1310 | 1318 |
} |
1311 | 1319 |
dfs.processNextArc(); |
1312 | 1320 |
} |
1313 | 1321 |
} |
1314 | 1322 |
} |
1315 | 1323 |
return true; |
1316 | 1324 |
} |
1317 | 1325 |
|
1318 |
/// \ingroup |
|
1326 |
/// \ingroup graph_properties |
|
1319 | 1327 |
/// |
1320 | 1328 |
/// \brief Check that the given undirected graph is acyclic. |
1321 | 1329 |
/// |
1322 | 1330 |
/// Check that the given undirected graph acyclic. |
1323 | 1331 |
/// \param graph The undirected graph. |
1324 | 1332 |
/// \return \c true when there is no circle in the graph. |
1325 | 1333 |
/// \see dag |
1326 | 1334 |
template <typename Graph> |
1327 | 1335 |
bool acyclic(const Graph& graph) { |
1328 | 1336 |
checkConcept<concepts::Graph, Graph>(); |
1329 | 1337 |
typedef typename Graph::Node Node; |
1330 | 1338 |
typedef typename Graph::NodeIt NodeIt; |
1331 | 1339 |
typedef typename Graph::Arc Arc; |
1332 | 1340 |
Dfs<Graph> dfs(graph); |
1333 | 1341 |
dfs.init(); |
1334 | 1342 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1335 | 1343 |
if (!dfs.reached(it)) { |
1336 | 1344 |
dfs.addSource(it); |
1337 | 1345 |
while (!dfs.emptyQueue()) { |
1338 | 1346 |
Arc edge = dfs.nextArc(); |
1339 | 1347 |
Node source = graph.source(edge); |
1340 | 1348 |
Node target = graph.target(edge); |
1341 | 1349 |
if (dfs.reached(target) && |
1342 | 1350 |
dfs.predArc(source) != graph.oppositeArc(edge)) { |
1343 | 1351 |
return false; |
1344 | 1352 |
} |
1345 | 1353 |
dfs.processNextArc(); |
1346 | 1354 |
} |
1347 | 1355 |
} |
1348 | 1356 |
} |
1349 | 1357 |
return true; |
1350 | 1358 |
} |
1351 | 1359 |
|
1352 |
/// \ingroup |
|
1360 |
/// \ingroup graph_properties |
|
1353 | 1361 |
/// |
1354 | 1362 |
/// \brief Check that the given undirected graph is tree. |
1355 | 1363 |
/// |
1356 | 1364 |
/// Check that the given undirected graph is tree. |
1357 | 1365 |
/// \param graph The undirected graph. |
1358 | 1366 |
/// \return \c true when the graph is acyclic and connected. |
1359 | 1367 |
template <typename Graph> |
1360 | 1368 |
bool tree(const Graph& graph) { |
1361 | 1369 |
checkConcept<concepts::Graph, Graph>(); |
1362 | 1370 |
typedef typename Graph::Node Node; |
1363 | 1371 |
typedef typename Graph::NodeIt NodeIt; |
1364 | 1372 |
typedef typename Graph::Arc Arc; |
1365 | 1373 |
Dfs<Graph> dfs(graph); |
1366 | 1374 |
dfs.init(); |
1367 | 1375 |
dfs.addSource(NodeIt(graph)); |
1368 | 1376 |
while (!dfs.emptyQueue()) { |
1369 | 1377 |
Arc edge = dfs.nextArc(); |
1370 | 1378 |
Node source = graph.source(edge); |
1371 | 1379 |
Node target = graph.target(edge); |
1372 | 1380 |
if (dfs.reached(target) && |
1373 | 1381 |
dfs.predArc(source) != graph.oppositeArc(edge)) { |
1374 | 1382 |
return false; |
1375 | 1383 |
} |
1376 | 1384 |
dfs.processNextArc(); |
1377 | 1385 |
} |
1378 | 1386 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1379 | 1387 |
if (!dfs.reached(it)) { |
1380 | 1388 |
return false; |
1381 | 1389 |
} |
1382 | 1390 |
} |
1383 | 1391 |
return true; |
1384 | 1392 |
} |
1385 | 1393 |
|
1386 | 1394 |
namespace _connectivity_bits { |
1387 | 1395 |
|
1388 | 1396 |
template <typename Digraph> |
1389 | 1397 |
class BipartiteVisitor : public BfsVisitor<Digraph> { |
1390 | 1398 |
public: |
1391 | 1399 |
typedef typename Digraph::Arc Arc; |
1392 | 1400 |
typedef typename Digraph::Node Node; |
1393 | 1401 |
|
1394 | 1402 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
1395 | 1403 |
: _graph(graph), _part(graph), _bipartite(bipartite) {} |
1396 | 1404 |
|
1397 | 1405 |
void start(const Node& node) { |
1398 | 1406 |
_part[node] = true; |
1399 | 1407 |
} |
1400 | 1408 |
void discover(const Arc& edge) { |
1401 | 1409 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
1402 | 1410 |
} |
1403 | 1411 |
void examine(const Arc& edge) { |
1404 | 1412 |
_bipartite = _bipartite && |
1405 | 1413 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
1406 | 1414 |
} |
1407 | 1415 |
|
1408 | 1416 |
private: |
1409 | 1417 |
|
1410 | 1418 |
const Digraph& _graph; |
1411 | 1419 |
typename Digraph::template NodeMap<bool> _part; |
1412 | 1420 |
bool& _bipartite; |
1413 | 1421 |
}; |
1414 | 1422 |
|
1415 | 1423 |
template <typename Digraph, typename PartMap> |
1416 | 1424 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
1417 | 1425 |
public: |
1418 | 1426 |
typedef typename Digraph::Arc Arc; |
1419 | 1427 |
typedef typename Digraph::Node Node; |
1420 | 1428 |
|
1421 | 1429 |
BipartitePartitionsVisitor(const Digraph& graph, |
1422 | 1430 |
PartMap& part, bool& bipartite) |
1423 | 1431 |
: _graph(graph), _part(part), _bipartite(bipartite) {} |
1424 | 1432 |
|
1425 | 1433 |
void start(const Node& node) { |
1426 | 1434 |
_part.set(node, true); |
1427 | 1435 |
} |
1428 | 1436 |
void discover(const Arc& edge) { |
1429 | 1437 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
1430 | 1438 |
} |
1431 | 1439 |
void examine(const Arc& edge) { |
1432 | 1440 |
_bipartite = _bipartite && |
1433 | 1441 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
1434 | 1442 |
} |
1435 | 1443 |
|
1436 | 1444 |
private: |
1437 | 1445 |
|
1438 | 1446 |
const Digraph& _graph; |
1439 | 1447 |
PartMap& _part; |
1440 | 1448 |
bool& _bipartite; |
1441 | 1449 |
}; |
1442 | 1450 |
} |
1443 | 1451 |
|
1444 |
/// \ingroup |
|
1452 |
/// \ingroup graph_properties |
|
1445 | 1453 |
/// |
1446 | 1454 |
/// \brief Check if the given undirected graph is bipartite or not |
1447 | 1455 |
/// |
1448 | 1456 |
/// The function checks if the given undirected \c graph graph is bipartite |
1449 | 1457 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
1450 | 1458 |
/// \param graph The undirected graph. |
1451 | 1459 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
1452 | 1460 |
/// \sa bipartitePartitions |
1453 | 1461 |
template<typename Graph> |
1454 | 1462 |
inline bool bipartite(const Graph &graph){ |
1455 | 1463 |
using namespace _connectivity_bits; |
1456 | 1464 |
|
1457 | 1465 |
checkConcept<concepts::Graph, Graph>(); |
1458 | 1466 |
|
1459 | 1467 |
typedef typename Graph::NodeIt NodeIt; |
1460 | 1468 |
typedef typename Graph::ArcIt ArcIt; |
1461 | 1469 |
|
1462 | 1470 |
bool bipartite = true; |
1463 | 1471 |
|
1464 | 1472 |
BipartiteVisitor<Graph> |
1465 | 1473 |
visitor(graph, bipartite); |
1466 | 1474 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
1467 | 1475 |
bfs(graph, visitor); |
1468 | 1476 |
bfs.init(); |
1469 | 1477 |
for(NodeIt it(graph); it != INVALID; ++it) { |
1470 | 1478 |
if(!bfs.reached(it)){ |
1471 | 1479 |
bfs.addSource(it); |
1472 | 1480 |
while (!bfs.emptyQueue()) { |
1473 | 1481 |
bfs.processNextNode(); |
1474 | 1482 |
if (!bipartite) return false; |
1475 | 1483 |
} |
1476 | 1484 |
} |
1477 | 1485 |
} |
1478 | 1486 |
return true; |
1479 | 1487 |
} |
1480 | 1488 |
|
1481 |
/// \ingroup |
|
1489 |
/// \ingroup graph_properties |
|
1482 | 1490 |
/// |
1483 | 1491 |
/// \brief Check if the given undirected graph is bipartite or not |
1484 | 1492 |
/// |
1485 | 1493 |
/// The function checks if the given undirected graph is bipartite |
1486 | 1494 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
1487 | 1495 |
/// During the execution, the \c partMap will be set as the two |
1488 | 1496 |
/// partitions of the graph. |
1497 |
/// |
|
1498 |
/// \image html bipartite_partitions.png |
|
1499 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
|
1500 |
/// |
|
1489 | 1501 |
/// \param graph The undirected graph. |
1490 | 1502 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
1491 | 1503 |
/// two partitions of the graph. |
1492 | 1504 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
1493 | 1505 |
template<typename Graph, typename NodeMap> |
1494 | 1506 |
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
1495 | 1507 |
using namespace _connectivity_bits; |
1496 | 1508 |
|
1497 | 1509 |
checkConcept<concepts::Graph, Graph>(); |
1498 | 1510 |
|
1499 | 1511 |
typedef typename Graph::Node Node; |
1500 | 1512 |
typedef typename Graph::NodeIt NodeIt; |
1501 | 1513 |
typedef typename Graph::ArcIt ArcIt; |
1502 | 1514 |
|
1503 | 1515 |
bool bipartite = true; |
1504 | 1516 |
|
1505 | 1517 |
BipartitePartitionsVisitor<Graph, NodeMap> |
1506 | 1518 |
visitor(graph, partMap, bipartite); |
1507 | 1519 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
1508 | 1520 |
bfs(graph, visitor); |
1509 | 1521 |
bfs.init(); |
1510 | 1522 |
for(NodeIt it(graph); it != INVALID; ++it) { |
1511 | 1523 |
if(!bfs.reached(it)){ |
1512 | 1524 |
bfs.addSource(it); |
1513 | 1525 |
while (!bfs.emptyQueue()) { |
1514 | 1526 |
bfs.processNextNode(); |
1515 | 1527 |
if (!bipartite) return false; |
1516 | 1528 |
} |
1517 | 1529 |
} |
1518 | 1530 |
} |
1519 | 1531 |
return true; |
1520 | 1532 |
} |
1521 | 1533 |
|
1522 | 1534 |
/// \brief Returns true when there are not loop edges in the graph. |
1523 | 1535 |
/// |
1524 | 1536 |
/// Returns true when there are not loop edges in the graph. |
1525 | 1537 |
template <typename Digraph> |
1526 | 1538 |
bool loopFree(const Digraph& digraph) { |
1527 | 1539 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
1528 | 1540 |
if (digraph.source(it) == digraph.target(it)) return false; |
1529 | 1541 |
} |
1530 | 1542 |
return true; |
1531 | 1543 |
} |
1532 | 1544 |
|
1533 | 1545 |
/// \brief Returns true when there are not parallel edges in the graph. |
1534 | 1546 |
/// |
1535 | 1547 |
/// Returns true when there are not parallel edges in the graph. |
1536 | 1548 |
template <typename Digraph> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EULER_H |
20 | 20 |
#define LEMON_EULER_H |
21 | 21 |
|
22 | 22 |
#include<lemon/core.h> |
23 | 23 |
#include<lemon/adaptors.h> |
24 | 24 |
#include<lemon/connectivity.h> |
25 | 25 |
#include <list> |
26 | 26 |
|
27 |
/// \ingroup |
|
27 |
/// \ingroup graph_properties |
|
28 | 28 |
/// \file |
29 | 29 |
/// \brief Euler tour |
30 | 30 |
/// |
31 | 31 |
///This file provides an Euler tour iterator and ways to check |
32 | 32 |
///if a digraph is euler. |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Euler iterator for digraphs. |
38 | 38 |
|
39 |
/// \ingroup |
|
39 |
/// \ingroup graph_properties |
|
40 | 40 |
///This iterator converts to the \c Arc type of the digraph and using |
41 | 41 |
///operator ++, it provides an Euler tour of a \e directed |
42 | 42 |
///graph (if there exists). |
43 | 43 |
/// |
44 | 44 |
///For example |
45 | 45 |
///if the given digraph is Euler (i.e it has only one nontrivial component |
46 | 46 |
///and the in-degree is equal to the out-degree for all nodes), |
47 | 47 |
///the following code will put the arcs of \c g |
48 | 48 |
///to the vector \c et according to an |
49 | 49 |
///Euler tour of \c g. |
50 | 50 |
///\code |
51 | 51 |
/// std::vector<ListDigraph::Arc> et; |
52 | 52 |
/// for(DiEulerIt<ListDigraph> e(g),e!=INVALID;++e) |
53 | 53 |
/// et.push_back(e); |
54 | 54 |
///\endcode |
55 | 55 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
56 | 56 |
///\sa EulerIt |
57 | 57 |
template<typename GR> |
58 | 58 |
class DiEulerIt |
59 | 59 |
{ |
60 | 60 |
typedef typename GR::Node Node; |
61 | 61 |
typedef typename GR::NodeIt NodeIt; |
62 | 62 |
typedef typename GR::Arc Arc; |
63 | 63 |
typedef typename GR::ArcIt ArcIt; |
64 | 64 |
typedef typename GR::OutArcIt OutArcIt; |
65 | 65 |
typedef typename GR::InArcIt InArcIt; |
66 | 66 |
|
67 | 67 |
const GR &g; |
68 | 68 |
typename GR::template NodeMap<OutArcIt> nedge; |
69 | 69 |
std::list<Arc> euler; |
70 | 70 |
|
71 | 71 |
public: |
72 | 72 |
|
73 | 73 |
///Constructor |
74 | 74 |
|
75 | 75 |
///\param gr A digraph. |
76 | 76 |
///\param start The starting point of the tour. If it is not given |
77 | 77 |
/// the tour will start from the first node. |
78 | 78 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
79 | 79 |
: g(gr), nedge(g) |
80 | 80 |
{ |
81 | 81 |
if(start==INVALID) start=NodeIt(g); |
82 | 82 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
83 | 83 |
while(nedge[start]!=INVALID) { |
84 | 84 |
euler.push_back(nedge[start]); |
85 | 85 |
Node next=g.target(nedge[start]); |
86 | 86 |
++nedge[start]; |
87 | 87 |
start=next; |
88 | 88 |
} |
89 | 89 |
} |
90 | 90 |
|
91 | 91 |
///Arc Conversion |
92 | 92 |
operator Arc() { return euler.empty()?INVALID:euler.front(); } |
93 | 93 |
bool operator==(Invalid) { return euler.empty(); } |
94 | 94 |
bool operator!=(Invalid) { return !euler.empty(); } |
95 | 95 |
|
96 | 96 |
///Next arc of the tour |
97 | 97 |
DiEulerIt &operator++() { |
98 | 98 |
Node s=g.target(euler.front()); |
99 | 99 |
euler.pop_front(); |
100 | 100 |
//This produces a warning.Strange. |
101 | 101 |
//std::list<Arc>::iterator next=euler.begin(); |
102 | 102 |
typename std::list<Arc>::iterator next=euler.begin(); |
103 | 103 |
while(nedge[s]!=INVALID) { |
104 | 104 |
euler.insert(next,nedge[s]); |
105 | 105 |
Node n=g.target(nedge[s]); |
106 | 106 |
++nedge[s]; |
107 | 107 |
s=n; |
108 | 108 |
} |
109 | 109 |
return *this; |
110 | 110 |
} |
111 | 111 |
///Postfix incrementation |
112 | 112 |
|
113 | 113 |
///\warning This incrementation |
114 | 114 |
///returns an \c Arc, not an \ref DiEulerIt, as one may |
115 | 115 |
///expect. |
116 | 116 |
Arc operator++(int) |
117 | 117 |
{ |
118 | 118 |
Arc e=*this; |
119 | 119 |
++(*this); |
120 | 120 |
return e; |
121 | 121 |
} |
122 | 122 |
}; |
123 | 123 |
|
124 | 124 |
///Euler iterator for graphs. |
125 | 125 |
|
126 |
/// \ingroup |
|
126 |
/// \ingroup graph_properties |
|
127 | 127 |
///This iterator converts to the \c Arc (or \c Edge) |
128 | 128 |
///type of the digraph and using |
129 | 129 |
///operator ++, it provides an Euler tour of an undirected |
130 | 130 |
///digraph (if there exists). |
131 | 131 |
/// |
132 | 132 |
///For example |
133 | 133 |
///if the given digraph if Euler (i.e it has only one nontrivial component |
134 | 134 |
///and the degree of each node is even), |
135 | 135 |
///the following code will print the arc IDs according to an |
136 | 136 |
///Euler tour of \c g. |
137 | 137 |
///\code |
138 | 138 |
/// for(EulerIt<ListGraph> e(g),e!=INVALID;++e) { |
139 | 139 |
/// std::cout << g.id(Edge(e)) << std::eol; |
140 | 140 |
/// } |
141 | 141 |
///\endcode |
142 | 142 |
///Although the iterator provides an Euler tour of an graph, |
143 | 143 |
///it still returns Arcs in order to indicate the direction of the tour. |
144 | 144 |
///(But Arc will convert to Edges, of course). |
145 | 145 |
/// |
146 | 146 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
147 | 147 |
///\sa EulerIt |
148 | 148 |
template<typename GR> |
149 | 149 |
class EulerIt |
150 | 150 |
{ |
151 | 151 |
typedef typename GR::Node Node; |
152 | 152 |
typedef typename GR::NodeIt NodeIt; |
153 | 153 |
typedef typename GR::Arc Arc; |
154 | 154 |
typedef typename GR::Edge Edge; |
155 | 155 |
typedef typename GR::ArcIt ArcIt; |
156 | 156 |
typedef typename GR::OutArcIt OutArcIt; |
157 | 157 |
typedef typename GR::InArcIt InArcIt; |
158 | 158 |
|
159 | 159 |
const GR &g; |
160 | 160 |
typename GR::template NodeMap<OutArcIt> nedge; |
161 | 161 |
typename GR::template EdgeMap<bool> visited; |
162 | 162 |
std::list<Arc> euler; |
163 | 163 |
|
164 | 164 |
public: |
165 | 165 |
|
166 | 166 |
///Constructor |
167 | 167 |
|
168 | 168 |
///\param gr An graph. |
169 | 169 |
///\param start The starting point of the tour. If it is not given |
170 | 170 |
/// the tour will start from the first node. |
171 | 171 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
172 | 172 |
: g(gr), nedge(g), visited(g, false) |
173 | 173 |
{ |
174 | 174 |
if(start==INVALID) start=NodeIt(g); |
... | ... |
@@ -183,82 +183,82 @@ |
183 | 183 |
} |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
///Arc Conversion |
187 | 187 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
188 | 188 |
///Arc Conversion |
189 | 189 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
190 | 190 |
///\e |
191 | 191 |
bool operator==(Invalid) const { return euler.empty(); } |
192 | 192 |
///\e |
193 | 193 |
bool operator!=(Invalid) const { return !euler.empty(); } |
194 | 194 |
|
195 | 195 |
///Next arc of the tour |
196 | 196 |
EulerIt &operator++() { |
197 | 197 |
Node s=g.target(euler.front()); |
198 | 198 |
euler.pop_front(); |
199 | 199 |
typename std::list<Arc>::iterator next=euler.begin(); |
200 | 200 |
|
201 | 201 |
while(nedge[s]!=INVALID) { |
202 | 202 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
203 | 203 |
if(nedge[s]==INVALID) break; |
204 | 204 |
else { |
205 | 205 |
euler.insert(next,nedge[s]); |
206 | 206 |
visited[nedge[s]]=true; |
207 | 207 |
Node n=g.target(nedge[s]); |
208 | 208 |
++nedge[s]; |
209 | 209 |
s=n; |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
return *this; |
213 | 213 |
} |
214 | 214 |
|
215 | 215 |
///Postfix incrementation |
216 | 216 |
|
217 | 217 |
///\warning This incrementation |
218 | 218 |
///returns an \c Arc, not an \ref EulerIt, as one may |
219 | 219 |
///expect. |
220 | 220 |
Arc operator++(int) |
221 | 221 |
{ |
222 | 222 |
Arc e=*this; |
223 | 223 |
++(*this); |
224 | 224 |
return e; |
225 | 225 |
} |
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
|
229 | 229 |
///Checks if the graph is Eulerian |
230 | 230 |
|
231 |
/// \ingroup |
|
231 |
/// \ingroup graph_properties |
|
232 | 232 |
///Checks if the graph is Eulerian. It works for both directed and undirected |
233 | 233 |
///graphs. |
234 | 234 |
///\note By definition, a digraph is called \e Eulerian if |
235 | 235 |
///and only if it is connected and the number of its incoming and outgoing |
236 | 236 |
///arcs are the same for each node. |
237 | 237 |
///Similarly, an undirected graph is called \e Eulerian if |
238 | 238 |
///and only if it is connected and the number of incident arcs is even |
239 | 239 |
///for each node. <em>Therefore, there are digraphs which are not Eulerian, |
240 | 240 |
///but still have an Euler tour</em>. |
241 | 241 |
template<typename GR> |
242 | 242 |
#ifdef DOXYGEN |
243 | 243 |
bool |
244 | 244 |
#else |
245 | 245 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
246 | 246 |
eulerian(const GR &g) |
247 | 247 |
{ |
248 | 248 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
249 | 249 |
if(countIncEdges(g,n)%2) return false; |
250 | 250 |
return connected(g); |
251 | 251 |
} |
252 | 252 |
template<class GR> |
253 | 253 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
254 | 254 |
#endif |
255 | 255 |
eulerian(const GR &g) |
256 | 256 |
{ |
257 | 257 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
258 | 258 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
259 | 259 |
return connected(Undirector<const GR>(g)); |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
#endif |
0 comments (0 inline)