1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/*! |
20 | 20 |
|
21 | 21 |
\page coding_style LEMON Coding Style |
22 | 22 |
|
23 | 23 |
\section naming_conv Naming Conventions |
24 | 24 |
|
25 | 25 |
In order to make development easier we have made some conventions |
26 | 26 |
according to coding style. These include names of types, classes, |
27 | 27 |
functions, variables, constants and exceptions. If these conventions |
28 | 28 |
are met in one's code then it is easier to read and maintain |
29 | 29 |
it. Please comply with these conventions if you want to contribute |
30 | 30 |
developing LEMON library. |
31 | 31 |
|
32 | 32 |
\note When the coding style requires the capitalization of an abbreviation, |
33 | 33 |
only the first letter should be upper case. |
34 | 34 |
|
35 | 35 |
\code |
36 | 36 |
XmlReader |
37 | 37 |
\endcode |
38 | 38 |
|
39 | 39 |
|
40 | 40 |
\warning In some cases we diverge from these rules. |
41 | 41 |
This is primary done because STL uses different naming convention and |
42 | 42 |
in certain cases |
43 | 43 |
it is beneficial to provide STL compatible interface. |
44 | 44 |
|
45 | 45 |
\subsection cs-files File Names |
46 | 46 |
|
47 | 47 |
The header file names should look like the following. |
48 | 48 |
|
49 | 49 |
\code |
50 | 50 |
header_file.h |
51 | 51 |
\endcode |
52 | 52 |
|
53 | 53 |
Note that all standard LEMON headers are located in the \c lemon subdirectory, |
54 | 54 |
so you should include them from C++ source like this: |
55 | 55 |
|
56 | 56 |
\code |
57 | 57 |
#include <lemon/header_file.h> |
58 | 58 |
\endcode |
59 | 59 |
|
60 | 60 |
The source code files use the same style and they have '.cc' extension. |
61 | 61 |
|
62 | 62 |
\code |
63 | 63 |
source_code.cc |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
\subsection cs-class Classes and other types |
67 | 67 |
|
68 | 68 |
The name of a class or any type should look like the following. |
69 | 69 |
|
70 | 70 |
\code |
71 | 71 |
AllWordsCapitalizedWithoutUnderscores |
72 | 72 |
\endcode |
73 | 73 |
|
74 | 74 |
\subsection cs-func Methods and other functions |
75 | 75 |
|
76 | 76 |
The name of a function should look like the following. |
77 | 77 |
|
78 | 78 |
\code |
79 | 79 |
firstWordLowerCaseRestCapitalizedWithoutUnderscores |
80 | 80 |
\endcode |
81 | 81 |
|
82 | 82 |
\subsection cs-funcs Constants, Macros |
83 | 83 |
|
84 | 84 |
The names of constants and macros should look like the following. |
85 | 85 |
|
86 | 86 |
\code |
87 | 87 |
ALL_UPPER_CASE_WITH_UNDERSCORES |
88 | 88 |
\endcode |
89 | 89 |
|
90 | 90 |
\subsection cs-loc-var Class and instance member variables, auto variables |
91 | 91 |
|
92 |
The names of class and instance member variables and auto variables |
|
92 |
The names of class and instance member variables and auto variables |
|
93 |
(=variables used locally in methods) should look like the following. |
|
93 | 94 |
|
94 | 95 |
\code |
95 | 96 |
all_lower_case_with_underscores |
96 | 97 |
\endcode |
97 | 98 |
|
98 | 99 |
\subsection pri-loc-var Private member variables |
99 | 100 |
|
100 | 101 |
Private member variables should start with underscore |
101 | 102 |
|
102 | 103 |
\code |
103 | 104 |
_start_with_underscores |
104 | 105 |
\endcode |
105 | 106 |
|
106 | 107 |
\subsection cs-excep Exceptions |
107 | 108 |
|
108 | 109 |
When writing exceptions please comply the following naming conventions. |
109 | 110 |
|
110 | 111 |
\code |
111 | 112 |
ClassNameEndsWithException |
112 | 113 |
\endcode |
113 | 114 |
|
114 | 115 |
or |
115 | 116 |
|
116 | 117 |
\code |
117 | 118 |
ClassNameEndsWithError |
118 | 119 |
\endcode |
119 | 120 |
|
120 | 121 |
\section header-template Template Header File |
121 | 122 |
|
122 | 123 |
Each LEMON header file should look like this: |
123 | 124 |
|
124 | 125 |
\include template.h |
125 | 126 |
|
126 | 127 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
@defgroup datas Data Structures |
21 | 21 |
This group describes the several data structures implemented in LEMON. |
22 | 22 |
*/ |
23 | 23 |
|
24 | 24 |
/** |
25 | 25 |
@defgroup graphs Graph Structures |
26 | 26 |
@ingroup datas |
27 | 27 |
\brief Graph structures implemented in LEMON. |
28 | 28 |
|
29 | 29 |
The implementation of combinatorial algorithms heavily relies on |
30 | 30 |
efficient graph implementations. LEMON offers data structures which are |
31 | 31 |
planned to be easily used in an experimental phase of implementation studies, |
32 | 32 |
and thereafter the program code can be made efficient by small modifications. |
33 | 33 |
|
34 | 34 |
The most efficient implementation of diverse applications require the |
35 | 35 |
usage of different physical graph implementations. These differences |
36 | 36 |
appear in the size of graph we require to handle, memory or time usage |
37 | 37 |
limitations or in the set of operations through which the graph can be |
38 | 38 |
accessed. LEMON provides several physical graph structures to meet |
39 | 39 |
the diverging requirements of the possible users. In order to save on |
40 | 40 |
running time or on memory usage, some structures may fail to provide |
41 | 41 |
some graph features like arc/edge or node deletion. |
42 | 42 |
|
43 | 43 |
Alteration of standard containers need a very limited number of |
44 | 44 |
operations, these together satisfy the everyday requirements. |
45 | 45 |
In the case of graph structures, different operations are needed which do |
46 | 46 |
not alter the physical graph, but gives another view. If some nodes or |
47 | 47 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
48 | 48 |
this is the case. It also may happen that in a flow implementation |
49 | 49 |
the residual graph can be accessed by another algorithm, or a node-set |
50 | 50 |
is to be shrunk for another algorithm. |
51 | 51 |
LEMON also provides a variety of graphs for these requirements called |
52 | 52 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
53 | 53 |
in conjunction with other graph representations. |
54 | 54 |
|
55 | 55 |
You are free to use the graph structure that fit your requirements |
56 | 56 |
the best, most graph algorithms and auxiliary data structures can be used |
57 | 57 |
with any graph structures. |
58 | 58 |
*/ |
59 | 59 |
|
60 | 60 |
/** |
61 | 61 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
62 | 62 |
@ingroup graphs |
63 | 63 |
\brief Graph types between real graphs and graph adaptors. |
64 | 64 |
|
65 | 65 |
This group describes some graph types between real graphs and graph adaptors. |
66 | 66 |
These classes wrap graphs to give new functionality as the adaptors do it. |
67 | 67 |
On the other hand they are not light-weight structures as the adaptors. |
68 | 68 |
*/ |
69 | 69 |
|
70 | 70 |
/** |
71 | 71 |
@defgroup maps Maps |
72 | 72 |
@ingroup datas |
73 | 73 |
\brief Map structures implemented in LEMON. |
74 | 74 |
|
75 | 75 |
This group describes the map structures implemented in LEMON. |
76 | 76 |
|
77 | 77 |
LEMON provides several special purpose maps that e.g. combine |
78 | 78 |
new maps from existing ones. |
79 | 79 |
*/ |
80 | 80 |
|
81 | 81 |
/** |
82 | 82 |
@defgroup graph_maps Graph Maps |
83 | 83 |
@ingroup maps |
84 | 84 |
\brief Special graph-related maps. |
85 | 85 |
|
86 | 86 |
This group describes maps that are specifically designed to assign |
87 | 87 |
values to the nodes and arcs of graphs. |
88 | 88 |
*/ |
89 | 89 |
|
90 | 90 |
|
91 | 91 |
/** |
92 | 92 |
\defgroup map_adaptors Map Adaptors |
93 | 93 |
\ingroup maps |
94 | 94 |
\brief Tools to create new maps from existing ones |
95 | 95 |
|
96 | 96 |
This group describes map adaptors that are used to create "implicit" |
97 | 97 |
maps from other maps. |
98 | 98 |
|
99 | 99 |
Most of them are \ref lemon::concepts::ReadMap "read-only maps". |
100 | 100 |
They can make arithmetic and logical operations between one or two maps |
101 | 101 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
102 | 102 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
103 | 103 |
|
104 | 104 |
The typical usage of this classes is passing implicit maps to |
105 | 105 |
algorithms. If a function type algorithm is called then the function |
106 | 106 |
type map adaptors can be used comfortable. For example let's see the |
107 | 107 |
usage of map adaptors with the \c digraphToEps() function. |
108 | 108 |
\code |
109 | 109 |
Color nodeColor(int deg) { |
110 | 110 |
if (deg >= 2) { |
111 | 111 |
return Color(0.5, 0.0, 0.5); |
112 | 112 |
} else if (deg == 1) { |
113 | 113 |
return Color(1.0, 0.5, 1.0); |
114 | 114 |
} else { |
115 | 115 |
return Color(0.0, 0.0, 0.0); |
116 | 116 |
} |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
Digraph::NodeMap<int> degree_map(graph); |
120 | 120 |
|
121 | 121 |
digraphToEps(graph, "graph.eps") |
122 | 122 |
.coords(coords).scaleToA4().undirected() |
123 | 123 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
124 | 124 |
.run(); |
125 | 125 |
\endcode |
126 | 126 |
The \c functorToMap() function makes an \c int to \c Color map from the |
127 | 127 |
\e nodeColor() function. The \c composeMap() compose the \e degree_map |
128 | 128 |
and the previously created map. The composed map is a proper function to |
129 | 129 |
get the color of each node. |
130 | 130 |
|
131 | 131 |
The usage with class type algorithms is little bit harder. In this |
132 | 132 |
case the function type map adaptors can not be used, because the |
133 | 133 |
function map adaptors give back temporary objects. |
134 | 134 |
\code |
135 | 135 |
Digraph graph; |
136 | 136 |
|
137 | 137 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
138 | 138 |
DoubleArcMap length(graph); |
139 | 139 |
DoubleArcMap speed(graph); |
140 | 140 |
|
141 | 141 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
142 | 142 |
TimeMap time(length, speed); |
143 | 143 |
|
144 | 144 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
145 | 145 |
dijkstra.run(source, target); |
146 | 146 |
\endcode |
147 | 147 |
We have a length map and a maximum speed map on the arcs of a digraph. |
148 | 148 |
The minimum time to pass the arc can be calculated as the division of |
149 | 149 |
the two maps which can be done implicitly with the \c DivMap template |
150 | 150 |
class. We use the implicit minimum time map as the length map of the |
151 | 151 |
\c Dijkstra algorithm. |
152 | 152 |
*/ |
153 | 153 |
|
154 | 154 |
/** |
155 | 155 |
@defgroup matrices Matrices |
156 | 156 |
@ingroup datas |
157 | 157 |
\brief Two dimensional data storages implemented in LEMON. |
158 | 158 |
|
159 | 159 |
This group describes two dimensional data storages implemented in LEMON. |
160 | 160 |
*/ |
161 | 161 |
|
162 | 162 |
/** |
163 | 163 |
@defgroup paths Path Structures |
164 | 164 |
@ingroup datas |
165 | 165 |
\brief Path structures implemented in LEMON. |
166 | 166 |
|
167 | 167 |
This group describes the path structures implemented in LEMON. |
168 | 168 |
|
169 | 169 |
LEMON provides flexible data structures to work with paths. |
170 | 170 |
All of them have similar interfaces and they can be copied easily with |
171 | 171 |
assignment operators and copy constructors. This makes it easy and |
172 | 172 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
173 | 173 |
any kind of path structure. |
174 | 174 |
|
175 | 175 |
\sa lemon::concepts::Path |
176 | 176 |
|
177 | 177 |
*/ |
178 | 178 |
|
179 | 179 |
/** |
180 | 180 |
@defgroup auxdat Auxiliary Data Structures |
181 | 181 |
@ingroup datas |
182 | 182 |
\brief Auxiliary data structures implemented in LEMON. |
183 | 183 |
|
184 | 184 |
This group describes some data structures implemented in LEMON in |
185 | 185 |
order to make it easier to implement combinatorial algorithms. |
186 | 186 |
*/ |
187 | 187 |
|
188 | 188 |
|
189 | 189 |
/** |
190 | 190 |
@defgroup algs Algorithms |
191 | 191 |
\brief This group describes the several algorithms |
192 | 192 |
implemented in LEMON. |
193 | 193 |
|
194 | 194 |
This group describes the several algorithms |
195 | 195 |
implemented in LEMON. |
196 | 196 |
*/ |
197 | 197 |
|
198 | 198 |
/** |
199 | 199 |
@defgroup search Graph Search |
200 | 200 |
@ingroup algs |
201 | 201 |
\brief Common graph search algorithms. |
202 | 202 |
|
203 | 203 |
This group describes the common graph search algorithms like |
204 | 204 |
Breadth-first search (Bfs) and Depth-first search (Dfs). |
205 | 205 |
*/ |
206 | 206 |
|
207 | 207 |
/** |
208 | 208 |
@defgroup shortest_path Shortest Path algorithms |
209 | 209 |
@ingroup algs |
210 | 210 |
\brief Algorithms for finding shortest paths. |
211 | 211 |
|
212 | 212 |
This group describes the algorithms for finding shortest paths in graphs. |
213 | 213 |
*/ |
214 | 214 |
|
215 | 215 |
/** |
216 | 216 |
@defgroup max_flow Maximum Flow algorithms |
217 | 217 |
@ingroup algs |
218 | 218 |
\brief Algorithms for finding maximum flows. |
219 | 219 |
|
220 | 220 |
This group describes the algorithms for finding maximum flows and |
221 | 221 |
feasible circulations. |
222 | 222 |
|
223 | 223 |
The maximum flow problem is to find a flow between a single source and |
224 | 224 |
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$ |
225 | 225 |
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity |
226 | 226 |
function and given \f$s, t \in V\f$ source and target node. The |
227 | 227 |
maximum flow is the \f$f_a\f$ solution of the next optimization problem: |
228 | 228 |
|
229 | 229 |
\f[ 0 \le f_a \le c_a \f] |
230 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} |
|
230 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} |
|
231 |
\qquad \forall u \in V \setminus \{s,t\}\f] |
|
231 | 232 |
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f] |
232 | 233 |
|
233 | 234 |
LEMON contains several algorithms for solving maximum flow problems: |
234 | 235 |
- \ref lemon::EdmondsKarp "Edmonds-Karp" |
235 | 236 |
- \ref lemon::Preflow "Goldberg's Preflow algorithm" |
236 | 237 |
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees" |
237 | 238 |
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees" |
238 | 239 |
|
239 | 240 |
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the |
240 | 241 |
fastest method to compute the maximum flow. All impelementations |
241 | 242 |
provides functions to query the minimum cut, which is the dual linear |
242 | 243 |
programming problem of the maximum flow. |
243 | 244 |
|
244 | 245 |
*/ |
245 | 246 |
|
246 | 247 |
/** |
247 | 248 |
@defgroup min_cost_flow Minimum Cost Flow algorithms |
248 | 249 |
@ingroup algs |
249 | 250 |
|
250 | 251 |
\brief Algorithms for finding minimum cost flows and circulations. |
251 | 252 |
|
252 | 253 |
This group describes the algorithms for finding minimum cost flows and |
253 | 254 |
circulations. |
254 | 255 |
*/ |
255 | 256 |
|
256 | 257 |
/** |
257 | 258 |
@defgroup min_cut Minimum Cut algorithms |
258 | 259 |
@ingroup algs |
259 | 260 |
|
260 | 261 |
\brief Algorithms for finding minimum cut in graphs. |
261 | 262 |
|
262 | 263 |
This group describes the algorithms for finding minimum cut in graphs. |
263 | 264 |
|
264 | 265 |
The minimum cut problem is to find a non-empty and non-complete |
265 | 266 |
\f$X\f$ subset of the vertices with minimum overall capacity on |
266 | 267 |
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an |
267 | 268 |
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
268 | 269 |
cut is the \f$X\f$ solution of the next optimization problem: |
269 | 270 |
|
270 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
|
271 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
|
272 |
\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f] |
|
271 | 273 |
|
272 | 274 |
LEMON contains several algorithms related to minimum cut problems: |
273 | 275 |
|
274 | 276 |
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut |
275 | 277 |
in directed graphs |
276 | 278 |
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to |
277 | 279 |
calculate minimum cut in undirected graphs |
278 | 280 |
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all |
279 | 281 |
pairs minimum cut in undirected graphs |
280 | 282 |
|
281 | 283 |
If you want to find minimum cut just between two distinict nodes, |
282 | 284 |
please see the \ref max_flow "Maximum Flow page". |
283 | 285 |
|
284 | 286 |
*/ |
285 | 287 |
|
286 | 288 |
/** |
287 | 289 |
@defgroup graph_prop Connectivity and other graph properties |
288 | 290 |
@ingroup algs |
289 | 291 |
\brief Algorithms for discovering the graph properties |
290 | 292 |
|
291 | 293 |
This group describes the algorithms for discovering the graph properties |
292 | 294 |
like connectivity, bipartiteness, euler property, simplicity etc. |
293 | 295 |
|
294 | 296 |
\image html edge_biconnected_components.png |
295 | 297 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
296 | 298 |
*/ |
297 | 299 |
|
298 | 300 |
/** |
299 | 301 |
@defgroup planar Planarity embedding and drawing |
300 | 302 |
@ingroup algs |
301 | 303 |
\brief Algorithms for planarity checking, embedding and drawing |
302 | 304 |
|
303 |
This group describes the algorithms for planarity checking, |
|
305 |
This group describes the algorithms for planarity checking, |
|
306 |
embedding and drawing. |
|
304 | 307 |
|
305 | 308 |
\image html planar.png |
306 | 309 |
\image latex planar.eps "Plane graph" width=\textwidth |
307 | 310 |
*/ |
308 | 311 |
|
309 | 312 |
/** |
310 | 313 |
@defgroup matching Matching algorithms |
311 | 314 |
@ingroup algs |
312 | 315 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
313 | 316 |
|
314 | 317 |
This group contains algorithm objects and functions to calculate |
315 | 318 |
matchings in graphs and bipartite graphs. The general matching problem is |
316 | 319 |
finding a subset of the arcs which does not shares common endpoints. |
317 | 320 |
|
318 | 321 |
There are several different algorithms for calculate matchings in |
319 | 322 |
graphs. The matching problems in bipartite graphs are generally |
320 | 323 |
easier than in general graphs. The goal of the matching optimization |
321 | 324 |
can be the finding maximum cardinality, maximum weight or minimum cost |
322 | 325 |
matching. The search can be constrained to find perfect or |
323 | 326 |
maximum cardinality matching. |
324 | 327 |
|
325 | 328 |
Lemon contains the next algorithms: |
326 | 329 |
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp |
327 | 330 |
augmenting path algorithm for calculate maximum cardinality matching in |
328 | 331 |
bipartite graphs |
329 | 332 |
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel |
330 | 333 |
algorithm for calculate maximum cardinality matching in bipartite graphs |
331 | 334 |
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" |
332 | 335 |
Successive shortest path algorithm for calculate maximum weighted matching |
333 | 336 |
and maximum weighted bipartite matching in bipartite graph |
334 | 337 |
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" |
335 | 338 |
Successive shortest path algorithm for calculate minimum cost maximum |
336 | 339 |
matching in bipartite graph |
337 | 340 |
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm |
338 | 341 |
for calculate maximum cardinality matching in general graph |
339 | 342 |
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom |
340 | 343 |
shrinking algorithm for calculate maximum weighted matching in general |
341 | 344 |
graph |
342 | 345 |
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching" |
343 | 346 |
Edmond's blossom shrinking algorithm for calculate maximum weighted |
344 | 347 |
perfect matching in general graph |
345 | 348 |
|
346 | 349 |
\image html bipartite_matching.png |
347 | 350 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
348 | 351 |
|
349 | 352 |
*/ |
350 | 353 |
|
351 | 354 |
/** |
352 | 355 |
@defgroup spantree Minimum Spanning Tree algorithms |
353 | 356 |
@ingroup algs |
354 | 357 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
355 | 358 |
|
356 | 359 |
This group describes the algorithms for finding a minimum cost spanning |
357 | 360 |
tree in a graph |
358 | 361 |
*/ |
359 | 362 |
|
360 | 363 |
|
361 | 364 |
/** |
362 | 365 |
@defgroup auxalg Auxiliary algorithms |
363 | 366 |
@ingroup algs |
364 | 367 |
\brief Auxiliary algorithms implemented in LEMON. |
365 | 368 |
|
366 | 369 |
This group describes some algorithms implemented in LEMON |
367 | 370 |
in order to make it easier to implement complex algorithms. |
368 | 371 |
*/ |
369 | 372 |
|
370 | 373 |
/** |
371 | 374 |
@defgroup approx Approximation algorithms |
372 | 375 |
\brief Approximation algorithms. |
373 | 376 |
|
374 | 377 |
This group describes the approximation and heuristic algorithms |
375 | 378 |
implemented in LEMON. |
376 | 379 |
*/ |
377 | 380 |
|
378 | 381 |
/** |
379 | 382 |
@defgroup gen_opt_group General Optimization Tools |
380 | 383 |
\brief This group describes some general optimization frameworks |
381 | 384 |
implemented in LEMON. |
382 | 385 |
|
383 | 386 |
This group describes some general optimization frameworks |
384 | 387 |
implemented in LEMON. |
385 | 388 |
|
386 | 389 |
*/ |
387 | 390 |
|
388 | 391 |
/** |
389 | 392 |
@defgroup lp_group Lp and Mip solvers |
390 | 393 |
@ingroup gen_opt_group |
391 | 394 |
\brief Lp and Mip solver interfaces for LEMON. |
392 | 395 |
|
393 | 396 |
This group describes Lp and Mip solver interfaces for LEMON. The |
394 | 397 |
various LP solvers could be used in the same manner with this |
395 | 398 |
interface. |
396 | 399 |
|
397 | 400 |
*/ |
398 | 401 |
|
399 | 402 |
/** |
400 | 403 |
@defgroup lp_utils Tools for Lp and Mip solvers |
401 | 404 |
@ingroup lp_group |
402 | 405 |
\brief Helper tools to the Lp and Mip solvers. |
403 | 406 |
|
404 | 407 |
This group adds some helper tools to general optimization framework |
405 | 408 |
implemented in LEMON. |
406 | 409 |
*/ |
407 | 410 |
|
408 | 411 |
/** |
409 | 412 |
@defgroup metah Metaheuristics |
410 | 413 |
@ingroup gen_opt_group |
411 | 414 |
\brief Metaheuristics for LEMON library. |
412 | 415 |
|
413 | 416 |
This group describes some metaheuristic optimization tools. |
414 | 417 |
*/ |
415 | 418 |
|
416 | 419 |
/** |
417 | 420 |
@defgroup utils Tools and Utilities |
418 | 421 |
\brief Tools and utilities for programming in LEMON |
419 | 422 |
|
420 | 423 |
Tools and utilities for programming in LEMON. |
421 | 424 |
*/ |
422 | 425 |
|
423 | 426 |
/** |
424 | 427 |
@defgroup gutils Basic Graph Utilities |
425 | 428 |
@ingroup utils |
426 | 429 |
\brief Simple basic graph utilities. |
427 | 430 |
|
428 | 431 |
This group describes some simple basic graph utilities. |
429 | 432 |
*/ |
430 | 433 |
|
431 | 434 |
/** |
432 | 435 |
@defgroup misc Miscellaneous Tools |
433 | 436 |
@ingroup utils |
434 | 437 |
\brief Tools for development, debugging and testing. |
435 | 438 |
|
436 | 439 |
This group describes several useful tools for development, |
437 | 440 |
debugging and testing. |
438 | 441 |
*/ |
439 | 442 |
|
440 | 443 |
/** |
441 | 444 |
@defgroup timecount Time measuring and Counting |
442 | 445 |
@ingroup misc |
443 | 446 |
\brief Simple tools for measuring the performance of algorithms. |
444 | 447 |
|
445 | 448 |
This group describes simple tools for measuring the performance |
446 | 449 |
of algorithms. |
447 | 450 |
*/ |
448 | 451 |
|
449 | 452 |
/** |
450 | 453 |
@defgroup graphbits Tools for Graph Implementation |
451 | 454 |
@ingroup utils |
452 | 455 |
\brief Tools to make it easier to create graphs. |
453 | 456 |
|
454 | 457 |
This group describes the tools that makes it easier to create graphs and |
455 | 458 |
the maps that dynamically update with the graph changes. |
456 | 459 |
*/ |
457 | 460 |
|
458 | 461 |
/** |
459 | 462 |
@defgroup exceptions Exceptions |
460 | 463 |
@ingroup utils |
461 | 464 |
\brief Exceptions defined in LEMON. |
462 | 465 |
|
463 | 466 |
This group describes the exceptions defined in LEMON. |
464 | 467 |
*/ |
465 | 468 |
|
466 | 469 |
/** |
467 | 470 |
@defgroup io_group Input-Output |
468 | 471 |
\brief Graph Input-Output methods |
469 | 472 |
|
470 | 473 |
This group describes the tools for importing and exporting graphs |
471 | 474 |
and graph related data. Now it supports the LEMON format, the |
472 | 475 |
\c DIMACS format and the encapsulated postscript (EPS) format. |
473 | 476 |
*/ |
474 | 477 |
|
475 | 478 |
/** |
476 | 479 |
@defgroup lemon_io Lemon Input-Output |
477 | 480 |
@ingroup io_group |
478 | 481 |
\brief Reading and writing \ref lgf-format "Lemon Graph Format". |
479 | 482 |
|
480 |
This group describes methods for reading and writing |
|
483 |
This group describes methods for reading and writing |
|
484 |
\ref lgf-format "Lemon Graph Format". |
|
481 | 485 |
*/ |
482 | 486 |
|
483 | 487 |
/** |
484 | 488 |
@defgroup eps_io Postscript exporting |
485 | 489 |
@ingroup io_group |
486 | 490 |
\brief General \c EPS drawer and graph exporter |
487 | 491 |
|
488 | 492 |
This group describes general \c EPS drawing methods and special |
489 | 493 |
graph exporting tools. |
490 | 494 |
*/ |
491 | 495 |
|
492 | 496 |
|
493 | 497 |
/** |
494 | 498 |
@defgroup concept Concepts |
495 | 499 |
\brief Skeleton classes and concept checking classes |
496 | 500 |
|
497 | 501 |
This group describes the data/algorithm skeletons and concept checking |
498 | 502 |
classes implemented in LEMON. |
499 | 503 |
|
500 | 504 |
The purpose of the classes in this group is fourfold. |
501 | 505 |
|
502 | 506 |
- These classes contain the documentations of the concepts. In order |
503 | 507 |
to avoid document multiplications, an implementation of a concept |
504 | 508 |
simply refers to the corresponding concept class. |
505 | 509 |
|
506 | 510 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
507 | 511 |
implementation of the concepts should provide, however completely |
508 | 512 |
without implementations and real data structures behind the |
509 | 513 |
interface. On the other hand they should provide nothing else. All |
510 | 514 |
the algorithms working on a data structure meeting a certain concept |
511 | 515 |
should compile with these classes. (Though it will not run properly, |
512 | 516 |
of course.) In this way it is easily to check if an algorithm |
513 | 517 |
doesn't use any extra feature of a certain implementation. |
514 | 518 |
|
515 | 519 |
- The concept descriptor classes also provide a <em>checker class</em> |
516 | 520 |
that makes it possible to check whether a certain implementation of a |
517 | 521 |
concept indeed provides all the required features. |
518 | 522 |
|
519 | 523 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
520 | 524 |
|
521 | 525 |
*/ |
522 | 526 |
|
523 | 527 |
|
524 | 528 |
/** |
525 | 529 |
@defgroup graph_concepts Graph Structure Concepts |
526 | 530 |
@ingroup concept |
527 | 531 |
\brief Skeleton and concept checking classes for graph structures |
528 | 532 |
|
529 | 533 |
This group describes the skeletons and concept checking classes of LEMON's |
530 | 534 |
graph structures and helper classes used to implement these. |
531 | 535 |
*/ |
532 | 536 |
|
533 | 537 |
/* --- Unused group |
534 | 538 |
@defgroup experimental Experimental Structures and Algorithms |
535 | 539 |
This group describes some Experimental structures and algorithms. |
536 | 540 |
The stuff here is subject to change. |
537 | 541 |
*/ |
538 | 542 |
|
539 | 543 |
/** |
540 | 544 |
\anchor demoprograms |
541 | 545 |
|
542 | 546 |
@defgroup demos Demo programs |
543 | 547 |
|
544 | 548 |
Some demo programs are listed here. Their full source codes can be found in |
545 | 549 |
the \c demo subdirectory of the source tree. |
546 | 550 |
|
547 | 551 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
548 | 552 |
build the library. |
549 | 553 |
*/ |
550 | 554 |
|
551 | 555 |
/** |
552 | 556 |
@defgroup tools Standalone utility applications |
553 | 557 |
|
554 | 558 |
Some utility applications are listed here. |
555 | 559 |
|
556 | 560 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
557 | 561 |
them, as well. |
558 | 562 |
*/ |
559 | 563 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/arg_parser.h> |
20 | 20 |
|
21 | 21 |
namespace lemon { |
22 | 22 |
|
23 | 23 |
void ArgParser::_showHelp(void *p) |
24 | 24 |
{ |
25 | 25 |
(static_cast<ArgParser*>(p))->showHelp(); |
26 | 26 |
exit(1); |
27 | 27 |
} |
28 | 28 |
|
29 | 29 |
ArgParser::ArgParser(int argc, const char **argv) :_argc(argc), _argv(argv), |
30 | 30 |
_command_name(argv[0]) { |
31 | 31 |
funcOption("-help","Print a short help message",_showHelp,this); |
32 | 32 |
synonym("help","-help"); |
33 | 33 |
synonym("h","-help"); |
34 | 34 |
|
35 | 35 |
} |
36 | 36 |
|
37 | 37 |
ArgParser::~ArgParser() |
38 | 38 |
{ |
39 | 39 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
40 | 40 |
if(i->second.self_delete) |
41 | 41 |
switch(i->second.type) { |
42 | 42 |
case BOOL: |
43 | 43 |
delete i->second.bool_p; |
44 | 44 |
break; |
45 | 45 |
case STRING: |
46 | 46 |
delete i->second.string_p; |
47 | 47 |
break; |
48 | 48 |
case DOUBLE: |
49 | 49 |
delete i->second.double_p; |
50 | 50 |
break; |
51 | 51 |
case INTEGER: |
52 | 52 |
delete i->second.int_p; |
53 | 53 |
break; |
54 | 54 |
case UNKNOWN: |
55 | 55 |
break; |
56 | 56 |
case FUNC: |
57 | 57 |
break; |
58 | 58 |
} |
59 | 59 |
} |
60 | 60 |
|
61 | 61 |
|
62 | 62 |
ArgParser &ArgParser::intOption(const std::string &name, |
63 | 63 |
const std::string &help, |
64 | 64 |
int value, bool obl) |
65 | 65 |
{ |
66 | 66 |
ParData p; |
67 | 67 |
p.int_p=new int(value); |
68 | 68 |
p.self_delete=true; |
69 | 69 |
p.help=help; |
70 | 70 |
p.type=INTEGER; |
71 | 71 |
p.mandatory=obl; |
72 | 72 |
_opts[name]=p; |
73 | 73 |
return *this; |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
ArgParser &ArgParser::doubleOption(const std::string &name, |
77 | 77 |
const std::string &help, |
78 | 78 |
double value, bool obl) |
79 | 79 |
{ |
80 | 80 |
ParData p; |
81 | 81 |
p.double_p=new double(value); |
82 | 82 |
p.self_delete=true; |
83 | 83 |
p.help=help; |
84 | 84 |
p.type=DOUBLE; |
85 | 85 |
p.mandatory=obl; |
86 | 86 |
_opts[name]=p; |
87 | 87 |
return *this; |
88 | 88 |
} |
89 | 89 |
|
90 | 90 |
ArgParser &ArgParser::boolOption(const std::string &name, |
91 | 91 |
const std::string &help, |
92 | 92 |
bool value, bool obl) |
93 | 93 |
{ |
94 | 94 |
ParData p; |
95 | 95 |
p.bool_p=new bool(value); |
96 | 96 |
p.self_delete=true; |
97 | 97 |
p.help=help; |
98 | 98 |
p.type=BOOL; |
99 | 99 |
p.mandatory=obl; |
100 | 100 |
_opts[name]=p; |
101 | 101 |
return *this; |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
ArgParser &ArgParser::stringOption(const std::string &name, |
105 | 105 |
const std::string &help, |
106 | 106 |
std::string value, bool obl) |
107 | 107 |
{ |
108 | 108 |
ParData p; |
109 | 109 |
p.string_p=new std::string(value); |
110 | 110 |
p.self_delete=true; |
111 | 111 |
p.help=help; |
112 | 112 |
p.type=STRING; |
113 | 113 |
p.mandatory=obl; |
114 | 114 |
_opts[name]=p; |
115 | 115 |
return *this; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
ArgParser &ArgParser::refOption(const std::string &name, |
119 | 119 |
const std::string &help, |
120 | 120 |
int &ref, bool obl) |
121 | 121 |
{ |
122 | 122 |
ParData p; |
123 | 123 |
p.int_p=&ref; |
124 | 124 |
p.self_delete=false; |
125 | 125 |
p.help=help; |
126 | 126 |
p.type=INTEGER; |
127 | 127 |
p.mandatory=obl; |
128 | 128 |
_opts[name]=p; |
129 | 129 |
return *this; |
130 | 130 |
} |
131 | 131 |
|
132 | 132 |
ArgParser &ArgParser::refOption(const std::string &name, |
133 | 133 |
const std::string &help, |
134 | 134 |
double &ref, bool obl) |
135 | 135 |
{ |
136 | 136 |
ParData p; |
137 | 137 |
p.double_p=&ref; |
138 | 138 |
p.self_delete=false; |
139 | 139 |
p.help=help; |
140 | 140 |
p.type=DOUBLE; |
141 | 141 |
p.mandatory=obl; |
142 | 142 |
_opts[name]=p; |
143 | 143 |
return *this; |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
ArgParser &ArgParser::refOption(const std::string &name, |
147 | 147 |
const std::string &help, |
148 | 148 |
bool &ref, bool obl) |
149 | 149 |
{ |
150 | 150 |
ParData p; |
151 | 151 |
p.bool_p=&ref; |
152 | 152 |
p.self_delete=false; |
153 | 153 |
p.help=help; |
154 | 154 |
p.type=BOOL; |
155 | 155 |
p.mandatory=obl; |
156 | 156 |
_opts[name]=p; |
157 | 157 |
|
158 | 158 |
ref = false; |
159 | 159 |
|
160 | 160 |
return *this; |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
ArgParser &ArgParser::refOption(const std::string &name, |
164 | 164 |
const std::string &help, |
165 | 165 |
std::string &ref, bool obl) |
166 | 166 |
{ |
167 | 167 |
ParData p; |
168 | 168 |
p.string_p=&ref; |
169 | 169 |
p.self_delete=false; |
170 | 170 |
p.help=help; |
171 | 171 |
p.type=STRING; |
172 | 172 |
p.mandatory=obl; |
173 | 173 |
_opts[name]=p; |
174 | 174 |
return *this; |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
ArgParser &ArgParser::funcOption(const std::string &name, |
178 | 178 |
const std::string &help, |
179 | 179 |
void (*func)(void *),void *data) |
180 | 180 |
{ |
181 | 181 |
ParData p; |
182 | 182 |
p.func_p.p=func; |
183 | 183 |
p.func_p.data=data; |
184 | 184 |
p.self_delete=false; |
185 | 185 |
p.help=help; |
186 | 186 |
p.type=FUNC; |
187 | 187 |
p.mandatory=false; |
188 | 188 |
_opts[name]=p; |
189 | 189 |
return *this; |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
ArgParser &ArgParser::optionGroup(const std::string &group, |
193 | 193 |
const std::string &opt) |
194 | 194 |
{ |
195 | 195 |
Opts::iterator i = _opts.find(opt); |
196 | 196 |
LEMON_ASSERT(i!=_opts.end(), "Unknown option: '"+opt+"'"); |
197 | 197 |
LEMON_ASSERT(!(i->second.ingroup), |
198 | 198 |
"Option already in option group: '"+opt+"'"); |
199 | 199 |
GroupData &g=_groups[group]; |
200 | 200 |
g.opts.push_back(opt); |
201 | 201 |
i->second.ingroup=true; |
202 | 202 |
return *this; |
203 | 203 |
} |
204 | 204 |
|
205 | 205 |
ArgParser &ArgParser::onlyOneGroup(const std::string &group) |
206 | 206 |
{ |
207 | 207 |
GroupData &g=_groups[group]; |
208 | 208 |
g.only_one=true; |
209 | 209 |
return *this; |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
ArgParser &ArgParser::synonym(const std::string &syn, |
213 | 213 |
const std::string &opt) |
214 | 214 |
{ |
215 | 215 |
Opts::iterator o = _opts.find(opt); |
216 | 216 |
Opts::iterator s = _opts.find(syn); |
217 | 217 |
LEMON_ASSERT(o!=_opts.end(), "Unknown option: '"+opt+"'"); |
218 | 218 |
LEMON_ASSERT(s==_opts.end(), "Option already used: '"+syn+"'"); |
219 | 219 |
ParData p; |
220 | 220 |
p.help=opt; |
221 | 221 |
p.mandatory=false; |
222 | 222 |
p.syn=true; |
223 | 223 |
_opts[syn]=p; |
224 | 224 |
o->second.has_syn=true; |
225 | 225 |
return *this; |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
ArgParser &ArgParser::mandatoryGroup(const std::string &group) |
229 | 229 |
{ |
230 | 230 |
GroupData &g=_groups[group]; |
231 | 231 |
g.mandatory=true; |
232 | 232 |
return *this; |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
ArgParser &ArgParser::other(const std::string &name, |
236 | 236 |
const std::string &help) |
237 | 237 |
{ |
238 | 238 |
_others_help.push_back(OtherArg(name,help)); |
239 | 239 |
return *this; |
240 | 240 |
} |
241 | 241 |
|
242 | 242 |
void ArgParser::show(std::ostream &os,Opts::iterator i) |
243 | 243 |
{ |
244 | 244 |
os << "-" << i->first; |
245 | 245 |
if(i->second.has_syn) |
246 | 246 |
for(Opts::iterator j=_opts.begin();j!=_opts.end();++j) |
247 | 247 |
if(j->second.syn&&j->second.help==i->first) |
248 | 248 |
os << "|-" << j->first; |
249 | 249 |
switch(i->second.type) { |
250 | 250 |
case STRING: |
251 | 251 |
os << " str"; |
252 | 252 |
break; |
253 | 253 |
case INTEGER: |
254 | 254 |
os << " int"; |
255 | 255 |
break; |
256 | 256 |
case DOUBLE: |
257 | 257 |
os << " num"; |
258 | 258 |
break; |
259 | 259 |
default: |
260 | 260 |
break; |
261 | 261 |
} |
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
void ArgParser::show(std::ostream &os,Groups::iterator i) |
265 | 265 |
{ |
266 | 266 |
GroupData::Opts::iterator o=i->second.opts.begin(); |
267 | 267 |
while(o!=i->second.opts.end()) { |
268 | 268 |
show(os,_opts.find(*o)); |
269 | 269 |
++o; |
270 | 270 |
if(o!=i->second.opts.end()) os<<'|'; |
271 | 271 |
} |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
void ArgParser::showHelp(Opts::iterator i) |
275 | 275 |
{ |
276 | 276 |
if(i->second.help.size()==0||i->second.syn) return; |
277 | 277 |
std::cerr << " "; |
278 | 278 |
show(std::cerr,i); |
279 | 279 |
std::cerr << std::endl; |
280 | 280 |
std::cerr << " " << i->second.help << std::endl; |
281 | 281 |
} |
282 | 282 |
void ArgParser::showHelp(std::vector<ArgParser::OtherArg>::iterator i) |
283 | 283 |
{ |
284 | 284 |
if(i->help.size()==0) return; |
285 | 285 |
std::cerr << " " << i->name << std::endl |
286 | 286 |
<< " " << i->help << std::endl; |
287 | 287 |
} |
288 | 288 |
|
289 | 289 |
void ArgParser::shortHelp() |
290 | 290 |
{ |
291 | 291 |
const unsigned int LINE_LEN=77; |
292 | 292 |
const std::string indent(" "); |
293 | 293 |
std::cerr << "Usage:\n " << _command_name; |
294 | 294 |
int pos=_command_name.size()+2; |
295 | 295 |
for(Groups::iterator g=_groups.begin();g!=_groups.end();++g) { |
296 | 296 |
std::ostringstream cstr; |
297 | 297 |
cstr << ' '; |
298 | 298 |
if(!g->second.mandatory) cstr << '['; |
299 | 299 |
show(cstr,g); |
300 | 300 |
if(!g->second.mandatory) cstr << ']'; |
301 | 301 |
if(pos+cstr.str().size()>LINE_LEN) { |
302 | 302 |
std::cerr << std::endl << indent; |
303 | 303 |
pos=indent.size(); |
304 | 304 |
} |
305 | 305 |
std::cerr << cstr.str(); |
306 | 306 |
pos+=cstr.str().size(); |
307 | 307 |
} |
308 | 308 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
309 | 309 |
if(!i->second.ingroup&&!i->second.syn) { |
310 | 310 |
std::ostringstream cstr; |
311 | 311 |
cstr << ' '; |
312 | 312 |
if(!i->second.mandatory) cstr << '['; |
313 | 313 |
show(cstr,i); |
314 | 314 |
if(!i->second.mandatory) cstr << ']'; |
315 | 315 |
if(pos+cstr.str().size()>LINE_LEN) { |
316 | 316 |
std::cerr << std::endl << indent; |
317 | 317 |
pos=indent.size(); |
318 | 318 |
} |
319 | 319 |
std::cerr << cstr.str(); |
320 | 320 |
pos+=cstr.str().size(); |
321 | 321 |
} |
322 | 322 |
for(std::vector<OtherArg>::iterator i=_others_help.begin(); |
323 | 323 |
i!=_others_help.end();++i) |
324 | 324 |
{ |
325 | 325 |
std::ostringstream cstr; |
326 | 326 |
cstr << ' ' << i->name; |
327 | 327 |
|
328 | 328 |
if(pos+cstr.str().size()>LINE_LEN) { |
329 | 329 |
std::cerr << std::endl << indent; |
330 | 330 |
pos=indent.size(); |
331 | 331 |
} |
332 | 332 |
std::cerr << cstr.str(); |
333 | 333 |
pos+=cstr.str().size(); |
334 | 334 |
} |
335 | 335 |
std::cerr << std::endl; |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
void ArgParser::showHelp() |
339 | 339 |
{ |
340 | 340 |
shortHelp(); |
341 | 341 |
std::cerr << "Where:\n"; |
342 | 342 |
for(std::vector<OtherArg>::iterator i=_others_help.begin(); |
343 | 343 |
i!=_others_help.end();++i) showHelp(i); |
344 | 344 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) showHelp(i); |
345 | 345 |
exit(1); |
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
|
349 | 349 |
void ArgParser::unknownOpt(std::string arg) |
350 | 350 |
{ |
351 | 351 |
std::cerr << "\nUnknown option: " << arg << "\n"; |
352 | 352 |
std::cerr << "\nType '" << _command_name << |
353 | 353 |
" --help' to obtain a short summary on the usage.\n\n"; |
354 | 354 |
exit(1); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
void ArgParser::requiresValue(std::string arg, OptType t) |
358 | 358 |
{ |
359 | 359 |
std::cerr << "Argument '" << arg << "' requires a"; |
360 | 360 |
switch(t) { |
361 | 361 |
case STRING: |
362 | 362 |
std::cerr << " string"; |
363 | 363 |
break; |
364 | 364 |
case INTEGER: |
365 | 365 |
std::cerr << "n integer"; |
366 | 366 |
break; |
367 | 367 |
case DOUBLE: |
368 | 368 |
std::cerr << " floating point"; |
369 | 369 |
break; |
370 | 370 |
default: |
371 | 371 |
break; |
372 | 372 |
} |
373 | 373 |
std::cerr << " value\n\n"; |
374 | 374 |
showHelp(); |
375 | 375 |
} |
376 | 376 |
|
377 | 377 |
|
378 | 378 |
void ArgParser::checkMandatories() |
379 | 379 |
{ |
380 | 380 |
bool ok=true; |
381 | 381 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
382 | 382 |
if(i->second.mandatory&&!i->second.set) |
383 | 383 |
{ |
384 | 384 |
if(ok) |
385 | 385 |
std::cerr << _command_name |
386 | 386 |
<< ": The following mandatory arguments are missing.\n"; |
387 | 387 |
ok=false; |
388 | 388 |
showHelp(i); |
389 | 389 |
} |
390 | 390 |
for(Groups::iterator i=_groups.begin();i!=_groups.end();++i) |
391 | 391 |
if(i->second.mandatory||i->second.only_one) |
392 | 392 |
{ |
393 | 393 |
int set=0; |
394 | 394 |
for(GroupData::Opts::iterator o=i->second.opts.begin(); |
395 | 395 |
o!=i->second.opts.end();++o) |
396 | 396 |
if(_opts.find(*o)->second.set) ++set; |
397 | 397 |
if(i->second.mandatory&&!set) { |
398 |
std::cerr << _command_name |
|
399 |
<< ": At least one of the following arguments is mandatory.\n"; |
|
398 |
std::cerr << _command_name << |
|
399 |
": At least one of the following arguments is mandatory.\n"; |
|
400 | 400 |
ok=false; |
401 | 401 |
for(GroupData::Opts::iterator o=i->second.opts.begin(); |
402 | 402 |
o!=i->second.opts.end();++o) |
403 | 403 |
showHelp(_opts.find(*o)); |
404 | 404 |
} |
405 | 405 |
if(i->second.only_one&&set>1) { |
406 |
std::cerr << _command_name |
|
407 |
<< ": At most one of the following arguments can be given.\n"; |
|
406 |
std::cerr << _command_name << |
|
407 |
": At most one of the following arguments can be given.\n"; |
|
408 | 408 |
ok=false; |
409 | 409 |
for(GroupData::Opts::iterator o=i->second.opts.begin(); |
410 | 410 |
o!=i->second.opts.end();++o) |
411 | 411 |
showHelp(_opts.find(*o)); |
412 | 412 |
} |
413 | 413 |
} |
414 | 414 |
if(!ok) { |
415 | 415 |
std::cerr << "\nType '" << _command_name << |
416 | 416 |
" --help' to obtain a short summary on the usage.\n\n"; |
417 | 417 |
exit(1); |
418 | 418 |
} |
419 | 419 |
} |
420 | 420 |
|
421 | 421 |
ArgParser &ArgParser::parse() |
422 | 422 |
{ |
423 | 423 |
for(int ar=1; ar<_argc; ++ar) { |
424 | 424 |
std::string arg(_argv[ar]); |
425 | 425 |
if (arg[0] != '-' || arg.size() == 1) { |
426 | 426 |
_file_args.push_back(arg); |
427 | 427 |
} |
428 | 428 |
else { |
429 | 429 |
Opts::iterator i = _opts.find(arg.substr(1)); |
430 | 430 |
if(i==_opts.end()) unknownOpt(arg); |
431 | 431 |
else { |
432 | 432 |
if(i->second.syn) i=_opts.find(i->second.help); |
433 | 433 |
ParData &p(i->second); |
434 | 434 |
if (p.type==BOOL) *p.bool_p=true; |
435 | 435 |
else if (p.type==FUNC) p.func_p.p(p.func_p.data); |
436 | 436 |
else if(++ar==_argc) requiresValue(arg, p.type); |
437 | 437 |
else { |
438 | 438 |
std::string val(_argv[ar]); |
439 | 439 |
std::istringstream vals(val); |
440 | 440 |
switch(p.type) { |
441 | 441 |
case STRING: |
442 | 442 |
*p.string_p=val; |
443 | 443 |
break; |
444 | 444 |
case INTEGER: |
445 | 445 |
vals >> *p.int_p; |
446 | 446 |
break; |
447 | 447 |
case DOUBLE: |
448 | 448 |
vals >> *p.double_p; |
449 | 449 |
break; |
450 | 450 |
default: |
451 | 451 |
break; |
452 | 452 |
} |
453 | 453 |
if(p.type!=STRING&&(!vals||!vals.eof())) |
454 | 454 |
requiresValue(arg, p.type); |
455 | 455 |
} |
456 | 456 |
p.set = true; |
457 | 457 |
} |
458 | 458 |
} |
459 | 459 |
} |
460 | 460 |
checkMandatories(); |
461 | 461 |
|
462 | 462 |
return *this; |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ASSERT_H |
20 | 20 |
#define LEMON_ASSERT_H |
21 | 21 |
|
22 | 22 |
/// \ingroup exceptions |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Extended assertion handling |
25 | 25 |
|
26 | 26 |
#include <lemon/error.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
inline void assert_fail_log(const char *file, int line, const char *function, |
31 | 31 |
const char *message, const char *assertion) |
32 | 32 |
{ |
33 | 33 |
std::cerr << file << ":" << line << ": "; |
34 | 34 |
if (function) |
35 | 35 |
std::cerr << function << ": "; |
36 | 36 |
std::cerr << message; |
37 | 37 |
if (assertion) |
38 | 38 |
std::cerr << " (assertion '" << assertion << "' failed)"; |
39 | 39 |
std::cerr << std::endl; |
40 | 40 |
} |
41 | 41 |
|
42 | 42 |
inline void assert_fail_abort(const char *file, int line, |
43 | 43 |
const char *function, const char* message, |
44 | 44 |
const char *assertion) |
45 | 45 |
{ |
46 | 46 |
assert_fail_log(file, line, function, message, assertion); |
47 | 47 |
std::abort(); |
48 | 48 |
} |
49 | 49 |
|
50 | 50 |
namespace _assert_bits { |
51 | 51 |
|
52 | 52 |
|
53 | 53 |
inline const char* cstringify(const std::string& str) { |
54 | 54 |
return str.c_str(); |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
inline const char* cstringify(const char* str) { |
58 | 58 |
return str; |
59 | 59 |
} |
60 | 60 |
} |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
#endif // LEMON_ASSERT_H |
64 | 64 |
|
65 | 65 |
#undef LEMON_ASSERT |
66 | 66 |
#undef LEMON_FIXME |
67 | 67 |
#undef LEMON_DEBUG |
68 | 68 |
|
69 | 69 |
#if (defined(LEMON_ASSERT_LOG) ? 1 : 0) + \ |
70 | 70 |
(defined(LEMON_ASSERT_ABORT) ? 1 : 0) + \ |
71 | 71 |
(defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) > 1 |
72 | 72 |
#error "LEMON assertion system is not set properly" |
73 | 73 |
#endif |
74 | 74 |
|
75 | 75 |
#if ((defined(LEMON_ASSERT_LOG) ? 1 : 0) + \ |
76 | 76 |
(defined(LEMON_ASSERT_ABORT) ? 1 : 0) + \ |
77 | 77 |
(defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) == 1 || \ |
78 | 78 |
defined(LEMON_ENABLE_ASSERTS)) && \ |
79 | 79 |
(defined(LEMON_DISABLE_ASSERTS) || \ |
80 | 80 |
defined(NDEBUG)) |
81 | 81 |
#error "LEMON assertion system is not set properly" |
82 | 82 |
#endif |
83 | 83 |
|
84 | 84 |
|
85 | 85 |
#if defined LEMON_ASSERT_LOG |
86 | 86 |
# undef LEMON_ASSERT_HANDLER |
87 | 87 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_log |
88 | 88 |
#elif defined LEMON_ASSERT_ABORT |
89 | 89 |
# undef LEMON_ASSERT_HANDLER |
90 | 90 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort |
91 | 91 |
#elif defined LEMON_ASSERT_CUSTOM |
92 | 92 |
# undef LEMON_ASSERT_HANDLER |
93 | 93 |
# ifndef LEMON_CUSTOM_ASSERT_HANDLER |
94 | 94 |
# error "LEMON_CUSTOM_ASSERT_HANDLER is not set" |
95 | 95 |
# endif |
96 | 96 |
# define LEMON_ASSERT_HANDLER LEMON_CUSTOM_ASSERT_HANDLER |
97 | 97 |
#elif defined LEMON_DISABLE_ASSERTS |
98 | 98 |
# undef LEMON_ASSERT_HANDLER |
99 | 99 |
#elif defined NDEBUG |
100 | 100 |
# undef LEMON_ASSERT_HANDLER |
101 | 101 |
#else |
102 | 102 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort |
103 | 103 |
#endif |
104 | 104 |
|
105 | 105 |
#ifndef LEMON_FUNCTION_NAME |
106 | 106 |
# if defined __GNUC__ |
107 | 107 |
# define LEMON_FUNCTION_NAME (__PRETTY_FUNCTION__) |
108 | 108 |
# elif defined _MSC_VER |
109 | 109 |
# define LEMON_FUNCTION_NAME (__FUNCSIG__) |
110 | 110 |
# else |
111 | 111 |
# define LEMON_FUNCTION_NAME (__func__) |
112 | 112 |
# endif |
113 | 113 |
#endif |
114 | 114 |
|
115 | 115 |
#ifdef DOXYGEN |
116 | 116 |
|
117 | 117 |
/// \ingroup exceptions |
118 | 118 |
/// |
119 | 119 |
/// \brief Macro for assertion with customizable message |
120 | 120 |
/// |
121 | 121 |
/// Macro for assertion with customizable message. \param exp An |
122 | 122 |
/// expression that must be convertible to \c bool. If it is \c |
123 | 123 |
/// false, then an assertion is raised. The concrete behaviour depends |
124 | 124 |
/// on the settings of the assertion system. \param msg A <tt>const |
125 | 125 |
/// char*</tt> parameter, which can be used to provide information |
126 | 126 |
/// about the circumstances of the failed assertion. |
127 | 127 |
/// |
128 | 128 |
/// The assertions are enabled in the default behaviour. |
129 | 129 |
/// You can disable them with the following code: |
130 | 130 |
/// \code |
131 | 131 |
/// #define LEMON_DISABLE_ASSERTS |
132 | 132 |
/// \endcode |
133 | 133 |
/// or with compilation parameters: |
134 | 134 |
/// \code |
135 | 135 |
/// g++ -DLEMON_DISABLE_ASSERTS |
136 | 136 |
/// make CXXFLAGS='-DLEMON_DISABLE_ASSERTS' |
137 | 137 |
/// \endcode |
138 | 138 |
/// The checking is also disabled when the standard macro \c NDEBUG is defined. |
139 | 139 |
/// |
140 | 140 |
/// The LEMON assertion system has a wide range of customization |
141 | 141 |
/// properties. As a default behaviour the failed assertion prints a |
142 | 142 |
/// short log message to the standard error and aborts the execution. |
143 | 143 |
/// |
144 | 144 |
/// The following modes can be used in the assertion system: |
145 | 145 |
/// |
146 | 146 |
/// - \c LEMON_ASSERT_LOG The failed assertion prints a short log |
147 | 147 |
/// message to the standard error and continues the execution. |
148 | 148 |
/// - \c LEMON_ASSERT_ABORT This mode is similar to the \c |
149 | 149 |
/// LEMON_ASSERT_LOG, but it aborts the program. It is the default |
150 | 150 |
/// behaviour. |
151 | 151 |
/// - \c LEMON_ASSERT_CUSTOM The user can define own assertion handler |
152 | 152 |
/// function. |
153 | 153 |
/// \code |
154 |
/// void custom_assert_handler(const char* file, int line, const char* function, |
|
155 |
/// const char* message, const char* assertion); |
|
154 |
/// void custom_assert_handler(const char* file, int line, |
|
155 |
/// const char* function, const char* message, |
|
156 |
/// const char* assertion); |
|
156 | 157 |
/// \endcode |
157 | 158 |
/// The name of the function should be defined as the \c |
158 | 159 |
/// LEMON_CUSTOM_ASSERT_HANDLER macro name. |
159 | 160 |
/// \code |
160 | 161 |
/// #define LEMON_CUSTOM_ASSERT_HANDLER custom_assert_handler |
161 | 162 |
/// \endcode |
162 | 163 |
/// Whenever an assertion is occured, the custom assertion |
163 | 164 |
/// handler is called with appropiate parameters. |
164 | 165 |
/// |
165 | 166 |
/// The assertion mode can also be changed within one compilation unit. |
166 | 167 |
/// If the macros are redefined with other settings and the |
167 | 168 |
/// \ref lemon/assert.h "assert.h" file is reincluded, then the |
168 | 169 |
/// behaviour is changed appropiately to the new settings. |
169 | 170 |
# define LEMON_ASSERT(exp, msg) \ |
170 | 171 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
171 | 172 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
172 | 173 |
LEMON_FUNCTION_NAME, \ |
173 | 174 |
::lemon::_assert_bits::cstringify(msg), #exp), 0))) |
174 | 175 |
|
175 | 176 |
/// \ingroup exceptions |
176 | 177 |
/// |
177 | 178 |
/// \brief Macro for mark not yet implemented features. |
178 | 179 |
/// |
179 | 180 |
/// Macro for mark not yet implemented features and outstanding bugs. |
180 | 181 |
/// It is close to be the shortcut of the following code: |
181 | 182 |
/// \code |
182 | 183 |
/// LEMON_ASSERT(false, msg); |
183 | 184 |
/// \endcode |
184 | 185 |
/// |
185 | 186 |
/// \see LEMON_ASSERT |
186 | 187 |
# define LEMON_FIXME(msg) \ |
187 | 188 |
(LEMON_ASSERT_HANDLER(__FILE__, __LINE__, LEMON_FUNCTION_NAME, \ |
188 |
::lemon::_assert_bits::cstringify(msg), |
|
189 |
::lemon::_assert_bits::cstringify(msg), \ |
|
189 | 190 |
static_cast<const char*>(0))) |
190 | 191 |
|
191 | 192 |
/// \ingroup exceptions |
192 | 193 |
/// |
193 | 194 |
/// \brief Macro for internal assertions |
194 | 195 |
/// |
195 | 196 |
/// Macro for internal assertions, it is used in the library to check |
196 | 197 |
/// the consistency of results of algorithms, several pre- and |
197 | 198 |
/// postconditions and invariants. The checking is disabled by |
198 | 199 |
/// default, but it can be turned on with the macro \c |
199 | 200 |
/// LEMON_ENABLE_DEBUG. |
200 | 201 |
/// \code |
201 | 202 |
/// #define LEMON_ENABLE_DEBUG |
202 | 203 |
/// \endcode |
203 | 204 |
/// or with compilation parameters: |
204 | 205 |
/// \code |
205 | 206 |
/// g++ -DLEMON_ENABLE_DEBUG |
206 | 207 |
/// make CXXFLAGS='-DLEMON_ENABLE_DEBUG' |
207 | 208 |
/// \endcode |
208 | 209 |
/// |
209 | 210 |
/// This macro works like the \c LEMON_ASSERT macro, therefore the |
210 | 211 |
/// current behaviour depends on the settings of \c LEMON_ASSERT |
211 | 212 |
/// macro. |
212 | 213 |
/// |
213 | 214 |
/// \see LEMON_ASSERT |
214 | 215 |
# define LEMON_DEBUG(exp, msg) \ |
215 | 216 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
216 | 217 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
217 | 218 |
LEMON_FUNCTION_NAME, \ |
218 | 219 |
::lemon::_assert_bits::cstringify(msg), #exp), 0))) |
219 | 220 |
|
220 | 221 |
#else |
221 | 222 |
|
222 | 223 |
# ifndef LEMON_ASSERT_HANDLER |
223 | 224 |
# define LEMON_ASSERT(exp, msg) (static_cast<void>(0)) |
224 | 225 |
# define LEMON_FIXME(msg) (static_cast<void>(0)) |
225 | 226 |
# define LEMON_DEBUG(exp, msg) (static_cast<void>(0)) |
226 | 227 |
# else |
227 | 228 |
# define LEMON_ASSERT(exp, msg) \ |
228 | 229 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
229 | 230 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
230 | 231 |
LEMON_FUNCTION_NAME, \ |
231 | 232 |
::lemon::_assert_bits::cstringify(msg), \ |
232 | 233 |
#exp), 0))) |
233 | 234 |
# define LEMON_FIXME(msg) \ |
234 | 235 |
(LEMON_ASSERT_HANDLER(__FILE__, __LINE__, LEMON_FUNCTION_NAME, \ |
235 | 236 |
::lemon::_assert_bits::cstringify(msg), \ |
236 | 237 |
static_cast<const char*>(0))) |
237 | 238 |
|
238 | 239 |
# if LEMON_ENABLE_DEBUG |
239 | 240 |
# define LEMON_DEBUG(exp, msg) |
240 | 241 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
241 | 242 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
242 | 243 |
LEMON_FUNCTION_NAME, \ |
243 |
::lemon::_assert_bits::cstringify(msg), |
|
244 |
::lemon::_assert_bits::cstringify(msg), \ |
|
244 | 245 |
#exp), 0))) |
245 | 246 |
# else |
246 | 247 |
# define LEMON_DEBUG(exp, msg) (static_cast<void>(0)) |
247 | 248 |
# endif |
248 | 249 |
# endif |
249 | 250 |
|
250 | 251 |
#endif |
251 | 252 |
|
252 | 253 |
#ifdef DOXYGEN |
253 | 254 |
|
254 | 255 |
|
255 | 256 |
#else |
256 | 257 |
|
257 | 258 |
|
258 | 259 |
#endif |
259 | 260 |
|
260 | 261 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Bfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/graph_utils.h> |
28 | 28 |
#include <lemon/bits/path_dump.h> |
29 | 29 |
#include <lemon/bits/invalid.h> |
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
|
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
|
39 | 39 |
///Default traits class of Bfs class. |
40 | 40 |
///\tparam GR Digraph type. |
41 | 41 |
template<class GR> |
42 | 42 |
struct BfsDefaultTraits |
43 | 43 |
{ |
44 | 44 |
///The digraph type the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
///\brief The type of the map that stores the last |
47 | 47 |
///arcs of the shortest paths. |
48 | 48 |
/// |
49 | 49 |
///The type of the map that stores the last |
50 | 50 |
///arcs of the shortest paths. |
51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
52 | 52 |
/// |
53 | 53 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
54 | 54 |
///Instantiates a PredMap. |
55 | 55 |
|
56 | 56 |
///This function instantiates a \ref PredMap. |
57 | 57 |
///\param G is the digraph, to which we would like to define the PredMap. |
58 | 58 |
///\todo The digraph alone may be insufficient to initialize |
59 | 59 |
static PredMap *createPredMap(const GR &G) |
60 | 60 |
{ |
61 | 61 |
return new PredMap(G); |
62 | 62 |
} |
63 | 63 |
///The type of the map that indicates which nodes are processed. |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
67 | 67 |
///\todo named parameter to set this type, function to read and write. |
68 | 68 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
69 | 69 |
///Instantiates a ProcessedMap. |
70 | 70 |
|
71 | 71 |
///This function instantiates a \ref ProcessedMap. |
72 | 72 |
///\param g is the digraph, to which |
73 | 73 |
///we would like to define the \ref ProcessedMap |
74 | 74 |
#ifdef DOXYGEN |
75 | 75 |
static ProcessedMap *createProcessedMap(const GR &g) |
76 | 76 |
#else |
77 | 77 |
static ProcessedMap *createProcessedMap(const GR &) |
78 | 78 |
#endif |
79 | 79 |
{ |
80 | 80 |
return new ProcessedMap(); |
81 | 81 |
} |
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
86 | 86 |
///\todo named parameter to set this type, function to read and write. |
87 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
88 | 88 |
///Instantiates a ReachedMap. |
89 | 89 |
|
90 | 90 |
///This function instantiates a \ref ReachedMap. |
91 | 91 |
///\param G is the digraph, to which |
92 | 92 |
///we would like to define the \ref ReachedMap. |
93 | 93 |
static ReachedMap *createReachedMap(const GR &G) |
94 | 94 |
{ |
95 | 95 |
return new ReachedMap(G); |
96 | 96 |
} |
97 | 97 |
///The type of the map that stores the dists of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the dists of the nodes. |
100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
/// |
102 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
103 | 103 |
///Instantiates a DistMap. |
104 | 104 |
|
105 | 105 |
///This function instantiates a \ref DistMap. |
106 |
///\param G is the digraph, to which we would like to define |
|
106 |
///\param G is the digraph, to which we would like to define |
|
107 |
///the \ref DistMap |
|
107 | 108 |
static DistMap *createDistMap(const GR &G) |
108 | 109 |
{ |
109 | 110 |
return new DistMap(G); |
110 | 111 |
} |
111 | 112 |
}; |
112 | 113 |
|
113 | 114 |
///%BFS algorithm class. |
114 | 115 |
|
115 | 116 |
///\ingroup search |
116 | 117 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 118 |
/// |
118 | 119 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
119 | 120 |
///\ref ListDigraph. The value of GR is not used directly by Bfs, it |
120 | 121 |
///is only passed to \ref BfsDefaultTraits. |
121 | 122 |
///\tparam TR Traits class to set various data types used by the algorithm. |
122 | 123 |
///The default traits class is |
123 | 124 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
124 | 125 |
///See \ref BfsDefaultTraits for the documentation of |
125 | 126 |
///a Bfs traits class. |
126 | 127 |
|
127 | 128 |
#ifdef DOXYGEN |
128 | 129 |
template <typename GR, |
129 | 130 |
typename TR> |
130 | 131 |
#else |
131 | 132 |
template <typename GR=ListDigraph, |
132 | 133 |
typename TR=BfsDefaultTraits<GR> > |
133 | 134 |
#endif |
134 | 135 |
class Bfs { |
135 | 136 |
public: |
136 | 137 |
/** |
137 | 138 |
* \brief \ref Exception for uninitialized parameters. |
138 | 139 |
* |
139 | 140 |
* This error represents problems in the initialization |
140 | 141 |
* of the parameters of the algorithms. |
141 | 142 |
*/ |
142 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter { |
143 | 144 |
public: |
144 | 145 |
virtual const char* what() const throw() { |
145 | 146 |
return "lemon::Bfs::UninitializedParameter"; |
146 | 147 |
} |
147 | 148 |
}; |
148 | 149 |
|
149 | 150 |
typedef TR Traits; |
150 | 151 |
///The type of the underlying digraph. |
151 | 152 |
typedef typename TR::Digraph Digraph; |
152 | 153 |
|
153 | 154 |
///\brief The type of the map that stores the last |
154 | 155 |
///arcs of the shortest paths. |
155 | 156 |
typedef typename TR::PredMap PredMap; |
156 | 157 |
///The type of the map indicating which nodes are reached. |
157 | 158 |
typedef typename TR::ReachedMap ReachedMap; |
158 | 159 |
///The type of the map indicating which nodes are processed. |
159 | 160 |
typedef typename TR::ProcessedMap ProcessedMap; |
160 | 161 |
///The type of the map that stores the dists of the nodes. |
161 | 162 |
typedef typename TR::DistMap DistMap; |
162 | 163 |
private: |
163 | 164 |
|
164 | 165 |
typedef typename Digraph::Node Node; |
165 | 166 |
typedef typename Digraph::NodeIt NodeIt; |
166 | 167 |
typedef typename Digraph::Arc Arc; |
167 | 168 |
typedef typename Digraph::OutArcIt OutArcIt; |
168 | 169 |
|
169 | 170 |
/// Pointer to the underlying digraph. |
170 | 171 |
const Digraph *G; |
171 | 172 |
///Pointer to the map of predecessors arcs. |
172 | 173 |
PredMap *_pred; |
173 | 174 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
174 | 175 |
bool local_pred; |
175 | 176 |
///Pointer to the map of distances. |
176 | 177 |
DistMap *_dist; |
177 | 178 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
178 | 179 |
bool local_dist; |
179 | 180 |
///Pointer to the map of reached status of the nodes. |
180 | 181 |
ReachedMap *_reached; |
181 | 182 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
182 | 183 |
bool local_reached; |
183 | 184 |
///Pointer to the map of processed status of the nodes. |
184 | 185 |
ProcessedMap *_processed; |
185 | 186 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
186 | 187 |
bool local_processed; |
187 | 188 |
|
188 | 189 |
std::vector<typename Digraph::Node> _queue; |
189 | 190 |
int _queue_head,_queue_tail,_queue_next_dist; |
190 | 191 |
int _curr_dist; |
191 | 192 |
|
192 | 193 |
///Creates the maps if necessary. |
193 | 194 |
|
194 | 195 |
///\todo Better memory allocation (instead of new). |
195 | 196 |
void create_maps() |
196 | 197 |
{ |
197 | 198 |
if(!_pred) { |
198 | 199 |
local_pred = true; |
199 | 200 |
_pred = Traits::createPredMap(*G); |
200 | 201 |
} |
201 | 202 |
if(!_dist) { |
202 | 203 |
local_dist = true; |
203 | 204 |
_dist = Traits::createDistMap(*G); |
204 | 205 |
} |
205 | 206 |
if(!_reached) { |
206 | 207 |
local_reached = true; |
207 | 208 |
_reached = Traits::createReachedMap(*G); |
208 | 209 |
} |
209 | 210 |
if(!_processed) { |
210 | 211 |
local_processed = true; |
211 | 212 |
_processed = Traits::createProcessedMap(*G); |
212 | 213 |
} |
213 | 214 |
} |
214 | 215 |
|
215 | 216 |
protected: |
216 | 217 |
|
217 | 218 |
Bfs() {} |
218 | 219 |
|
219 | 220 |
public: |
220 | 221 |
|
221 | 222 |
typedef Bfs Create; |
222 | 223 |
|
223 | 224 |
///\name Named template parameters |
224 | 225 |
|
225 | 226 |
///@{ |
226 | 227 |
|
227 | 228 |
template <class T> |
228 | 229 |
struct DefPredMapTraits : public Traits { |
229 | 230 |
typedef T PredMap; |
230 | 231 |
static PredMap *createPredMap(const Digraph &) |
231 | 232 |
{ |
232 | 233 |
throw UninitializedParameter(); |
233 | 234 |
} |
234 | 235 |
}; |
235 | 236 |
///\brief \ref named-templ-param "Named parameter" for setting |
236 | 237 |
///PredMap type |
237 | 238 |
/// |
238 | 239 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
239 | 240 |
/// |
240 | 241 |
template <class T> |
241 | 242 |
struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { |
242 | 243 |
typedef Bfs< Digraph, DefPredMapTraits<T> > Create; |
243 | 244 |
}; |
244 | 245 |
|
245 | 246 |
template <class T> |
246 | 247 |
struct DefDistMapTraits : public Traits { |
247 | 248 |
typedef T DistMap; |
248 | 249 |
static DistMap *createDistMap(const Digraph &) |
249 | 250 |
{ |
250 | 251 |
throw UninitializedParameter(); |
251 | 252 |
} |
252 | 253 |
}; |
253 | 254 |
///\brief \ref named-templ-param "Named parameter" for setting |
254 | 255 |
///DistMap type |
255 | 256 |
/// |
256 | 257 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
257 | 258 |
/// |
258 | 259 |
template <class T> |
259 | 260 |
struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { |
260 | 261 |
typedef Bfs< Digraph, DefDistMapTraits<T> > Create; |
261 | 262 |
}; |
262 | 263 |
|
263 | 264 |
template <class T> |
264 | 265 |
struct DefReachedMapTraits : public Traits { |
265 | 266 |
typedef T ReachedMap; |
266 | 267 |
static ReachedMap *createReachedMap(const Digraph &) |
267 | 268 |
{ |
268 | 269 |
throw UninitializedParameter(); |
269 | 270 |
} |
270 | 271 |
}; |
271 | 272 |
///\brief \ref named-templ-param "Named parameter" for setting |
272 | 273 |
///ReachedMap type |
273 | 274 |
/// |
274 | 275 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type |
275 | 276 |
/// |
276 | 277 |
template <class T> |
277 | 278 |
struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { |
278 | 279 |
typedef Bfs< Digraph, DefReachedMapTraits<T> > Create; |
279 | 280 |
}; |
280 | 281 |
|
281 | 282 |
template <class T> |
282 | 283 |
struct DefProcessedMapTraits : public Traits { |
283 | 284 |
typedef T ProcessedMap; |
284 | 285 |
static ProcessedMap *createProcessedMap(const Digraph &) |
285 | 286 |
{ |
286 | 287 |
throw UninitializedParameter(); |
287 | 288 |
} |
288 | 289 |
}; |
289 | 290 |
///\brief \ref named-templ-param "Named parameter" for setting |
290 | 291 |
///ProcessedMap type |
291 | 292 |
/// |
292 | 293 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
293 | 294 |
/// |
294 | 295 |
template <class T> |
295 | 296 |
struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > { |
296 | 297 |
typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create; |
297 | 298 |
}; |
298 | 299 |
|
299 | 300 |
struct DefDigraphProcessedMapTraits : public Traits { |
300 | 301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
301 | 302 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
302 | 303 |
{ |
303 | 304 |
return new ProcessedMap(G); |
304 | 305 |
} |
305 | 306 |
}; |
306 | 307 |
///\brief \ref named-templ-param "Named parameter" |
307 | 308 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
308 | 309 |
/// |
309 | 310 |
///\ref named-templ-param "Named parameter" |
310 | 311 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
311 | 312 |
///If you don't set it explicitly, it will be automatically allocated. |
312 | 313 |
template <class T> |
313 | 314 |
struct DefProcessedMapToBeDefaultMap : |
314 | 315 |
public Bfs< Digraph, DefDigraphProcessedMapTraits> { |
315 | 316 |
typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create; |
316 | 317 |
}; |
317 | 318 |
|
318 | 319 |
///@} |
319 | 320 |
|
320 | 321 |
public: |
321 | 322 |
|
322 | 323 |
///Constructor. |
323 | 324 |
|
324 | 325 |
///\param _G the digraph the algorithm will run on. |
325 | 326 |
/// |
326 | 327 |
Bfs(const Digraph& _G) : |
327 | 328 |
G(&_G), |
328 | 329 |
_pred(NULL), local_pred(false), |
329 | 330 |
_dist(NULL), local_dist(false), |
330 | 331 |
_reached(NULL), local_reached(false), |
331 | 332 |
_processed(NULL), local_processed(false) |
332 | 333 |
{ } |
333 | 334 |
|
334 | 335 |
///Destructor. |
335 | 336 |
~Bfs() |
336 | 337 |
{ |
337 | 338 |
if(local_pred) delete _pred; |
338 | 339 |
if(local_dist) delete _dist; |
339 | 340 |
if(local_reached) delete _reached; |
340 | 341 |
if(local_processed) delete _processed; |
341 | 342 |
} |
342 | 343 |
|
343 | 344 |
///Sets the map storing the predecessor arcs. |
344 | 345 |
|
345 | 346 |
///Sets the map storing the predecessor arcs. |
346 | 347 |
///If you don't use this function before calling \ref run(), |
347 | 348 |
///it will allocate one. The destructor deallocates this |
348 | 349 |
///automatically allocated map, of course. |
349 | 350 |
///\return <tt> (*this) </tt> |
350 | 351 |
Bfs &predMap(PredMap &m) |
351 | 352 |
{ |
352 | 353 |
if(local_pred) { |
353 | 354 |
delete _pred; |
354 | 355 |
local_pred=false; |
355 | 356 |
} |
356 | 357 |
_pred = &m; |
357 | 358 |
return *this; |
358 | 359 |
} |
359 | 360 |
|
360 | 361 |
///Sets the map indicating the reached nodes. |
361 | 362 |
|
362 | 363 |
///Sets the map indicating the reached nodes. |
363 | 364 |
///If you don't use this function before calling \ref run(), |
364 | 365 |
///it will allocate one. The destructor deallocates this |
365 | 366 |
///automatically allocated map, of course. |
366 | 367 |
///\return <tt> (*this) </tt> |
367 | 368 |
Bfs &reachedMap(ReachedMap &m) |
368 | 369 |
{ |
369 | 370 |
if(local_reached) { |
370 | 371 |
delete _reached; |
371 | 372 |
local_reached=false; |
372 | 373 |
} |
373 | 374 |
_reached = &m; |
374 | 375 |
return *this; |
375 | 376 |
} |
376 | 377 |
|
377 | 378 |
///Sets the map indicating the processed nodes. |
378 | 379 |
|
379 | 380 |
///Sets the map indicating the processed nodes. |
380 | 381 |
///If you don't use this function before calling \ref run(), |
381 | 382 |
///it will allocate one. The destructor deallocates this |
382 | 383 |
///automatically allocated map, of course. |
383 | 384 |
///\return <tt> (*this) </tt> |
384 | 385 |
Bfs &processedMap(ProcessedMap &m) |
385 | 386 |
{ |
386 | 387 |
if(local_processed) { |
387 | 388 |
delete _processed; |
388 | 389 |
local_processed=false; |
389 | 390 |
} |
390 | 391 |
_processed = &m; |
391 | 392 |
return *this; |
392 | 393 |
} |
393 | 394 |
|
394 | 395 |
///Sets the map storing the distances calculated by the algorithm. |
395 | 396 |
|
396 | 397 |
///Sets the map storing the distances calculated by the algorithm. |
397 | 398 |
///If you don't use this function before calling \ref run(), |
398 | 399 |
///it will allocate one. The destructor deallocates this |
399 | 400 |
///automatically allocated map, of course. |
400 | 401 |
///\return <tt> (*this) </tt> |
401 | 402 |
Bfs &distMap(DistMap &m) |
402 | 403 |
{ |
403 | 404 |
if(local_dist) { |
404 | 405 |
delete _dist; |
405 | 406 |
local_dist=false; |
406 | 407 |
} |
407 | 408 |
_dist = &m; |
408 | 409 |
return *this; |
409 | 410 |
} |
410 | 411 |
|
411 | 412 |
public: |
412 | 413 |
///\name Execution control |
413 | 414 |
///The simplest way to execute the algorithm is to use |
414 | 415 |
///one of the member functions called \c run(...). |
415 | 416 |
///\n |
416 | 417 |
///If you need more control on the execution, |
417 | 418 |
///first you must call \ref init(), then you can add several source nodes |
418 | 419 |
///with \ref addSource(). |
419 | 420 |
///Finally \ref start() will perform the actual path |
420 | 421 |
///computation. |
421 | 422 |
|
422 | 423 |
///@{ |
423 | 424 |
|
424 | 425 |
///\brief Initializes the internal data structures. |
425 | 426 |
/// |
426 | 427 |
///Initializes the internal data structures. |
427 | 428 |
/// |
428 | 429 |
void init() |
429 | 430 |
{ |
430 | 431 |
create_maps(); |
431 | 432 |
_queue.resize(countNodes(*G)); |
432 | 433 |
_queue_head=_queue_tail=0; |
433 | 434 |
_curr_dist=1; |
434 | 435 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
435 | 436 |
_pred->set(u,INVALID); |
436 | 437 |
_reached->set(u,false); |
437 | 438 |
_processed->set(u,false); |
438 | 439 |
} |
439 | 440 |
} |
440 | 441 |
|
441 | 442 |
///Adds a new source node. |
442 | 443 |
|
443 | 444 |
///Adds a new source node to the set of nodes to be processed. |
444 | 445 |
/// |
445 | 446 |
void addSource(Node s) |
446 | 447 |
{ |
447 | 448 |
if(!(*_reached)[s]) |
448 | 449 |
{ |
449 | 450 |
_reached->set(s,true); |
450 | 451 |
_pred->set(s,INVALID); |
451 | 452 |
_dist->set(s,0); |
452 | 453 |
_queue[_queue_head++]=s; |
453 | 454 |
_queue_next_dist=_queue_head; |
454 | 455 |
} |
455 | 456 |
} |
456 | 457 |
|
457 | 458 |
///Processes the next node. |
458 | 459 |
|
459 | 460 |
///Processes the next node. |
460 | 461 |
/// |
461 | 462 |
///\return The processed node. |
462 | 463 |
/// |
463 | 464 |
///\warning The queue must not be empty! |
464 | 465 |
Node processNextNode() |
465 | 466 |
{ |
466 | 467 |
if(_queue_tail==_queue_next_dist) { |
467 | 468 |
_curr_dist++; |
468 | 469 |
_queue_next_dist=_queue_head; |
469 | 470 |
} |
470 | 471 |
Node n=_queue[_queue_tail++]; |
471 | 472 |
_processed->set(n,true); |
472 | 473 |
Node m; |
473 | 474 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
474 | 475 |
if(!(*_reached)[m=G->target(e)]) { |
475 | 476 |
_queue[_queue_head++]=m; |
476 | 477 |
_reached->set(m,true); |
477 | 478 |
_pred->set(m,e); |
478 | 479 |
_dist->set(m,_curr_dist); |
479 | 480 |
} |
480 | 481 |
return n; |
481 | 482 |
} |
482 | 483 |
|
483 | 484 |
///Processes the next node. |
484 | 485 |
|
485 | 486 |
///Processes the next node. And checks that the given target node |
486 | 487 |
///is reached. If the target node is reachable from the processed |
487 | 488 |
///node then the reached parameter will be set true. The reached |
488 | 489 |
///parameter should be initially false. |
489 | 490 |
/// |
490 | 491 |
///\param target The target node. |
491 | 492 |
///\retval reach Indicates that the target node is reached. |
492 | 493 |
///\return The processed node. |
493 | 494 |
/// |
494 | 495 |
///\warning The queue must not be empty! |
495 | 496 |
Node processNextNode(Node target, bool& reach) |
496 | 497 |
{ |
497 | 498 |
if(_queue_tail==_queue_next_dist) { |
498 | 499 |
_curr_dist++; |
499 | 500 |
_queue_next_dist=_queue_head; |
500 | 501 |
} |
501 | 502 |
Node n=_queue[_queue_tail++]; |
502 | 503 |
_processed->set(n,true); |
503 | 504 |
Node m; |
504 | 505 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
505 | 506 |
if(!(*_reached)[m=G->target(e)]) { |
506 | 507 |
_queue[_queue_head++]=m; |
507 | 508 |
_reached->set(m,true); |
508 | 509 |
_pred->set(m,e); |
509 | 510 |
_dist->set(m,_curr_dist); |
510 | 511 |
reach = reach || (target == m); |
511 | 512 |
} |
512 | 513 |
return n; |
513 | 514 |
} |
514 | 515 |
|
515 | 516 |
///Processes the next node. |
516 | 517 |
|
517 | 518 |
///Processes the next node. And checks that at least one of |
518 | 519 |
///reached node has true value in the \c nm node map. If one node |
519 | 520 |
///with true value is reachable from the processed node then the |
520 | 521 |
///rnode parameter will be set to the first of such nodes. |
521 | 522 |
/// |
522 | 523 |
///\param nm The node map of possible targets. |
523 | 524 |
///\retval rnode The reached target node. |
524 | 525 |
///\return The processed node. |
525 | 526 |
/// |
526 | 527 |
///\warning The queue must not be empty! |
527 | 528 |
template<class NM> |
528 | 529 |
Node processNextNode(const NM& nm, Node& rnode) |
529 | 530 |
{ |
530 | 531 |
if(_queue_tail==_queue_next_dist) { |
531 | 532 |
_curr_dist++; |
532 | 533 |
_queue_next_dist=_queue_head; |
533 | 534 |
} |
534 | 535 |
Node n=_queue[_queue_tail++]; |
535 | 536 |
_processed->set(n,true); |
536 | 537 |
Node m; |
537 | 538 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
538 | 539 |
if(!(*_reached)[m=G->target(e)]) { |
539 | 540 |
_queue[_queue_head++]=m; |
540 | 541 |
_reached->set(m,true); |
541 | 542 |
_pred->set(m,e); |
542 | 543 |
_dist->set(m,_curr_dist); |
543 | 544 |
if (nm[m] && rnode == INVALID) rnode = m; |
544 | 545 |
} |
545 | 546 |
return n; |
546 | 547 |
} |
547 | 548 |
|
548 | 549 |
///Next node to be processed. |
549 | 550 |
|
550 | 551 |
///Next node to be processed. |
551 | 552 |
/// |
552 | 553 |
///\return The next node to be processed or INVALID if the queue is |
553 | 554 |
/// empty. |
554 | 555 |
Node nextNode() |
555 | 556 |
{ |
556 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
557 | 558 |
} |
558 | 559 |
|
559 | 560 |
///\brief Returns \c false if there are nodes |
560 | 561 |
///to be processed in the queue |
561 | 562 |
/// |
562 | 563 |
///Returns \c false if there are nodes |
563 | 564 |
///to be processed in the queue |
564 | 565 |
bool emptyQueue() { return _queue_tail==_queue_head; } |
565 | 566 |
///Returns the number of the nodes to be processed. |
566 | 567 |
|
567 | 568 |
///Returns the number of the nodes to be processed in the queue. |
568 | 569 |
int queueSize() { return _queue_head-_queue_tail; } |
569 | 570 |
|
570 | 571 |
///Executes the algorithm. |
571 | 572 |
|
572 | 573 |
///Executes the algorithm. |
573 | 574 |
/// |
574 | 575 |
///\pre init() must be called and at least one node should be added |
575 | 576 |
///with addSource() before using this function. |
576 | 577 |
/// |
577 | 578 |
///This method runs the %BFS algorithm from the root node(s) |
578 | 579 |
///in order to |
579 | 580 |
///compute the |
580 | 581 |
///shortest path to each node. The algorithm computes |
581 | 582 |
///- The shortest path tree. |
582 | 583 |
///- The distance of each node from the root(s). |
583 | 584 |
void start() |
584 | 585 |
{ |
585 | 586 |
while ( !emptyQueue() ) processNextNode(); |
586 | 587 |
} |
587 | 588 |
|
588 | 589 |
///Executes the algorithm until \c dest is reached. |
589 | 590 |
|
590 | 591 |
///Executes the algorithm until \c dest is reached. |
591 | 592 |
/// |
592 | 593 |
///\pre init() must be called and at least one node should be added |
593 | 594 |
///with addSource() before using this function. |
594 | 595 |
/// |
595 | 596 |
///This method runs the %BFS algorithm from the root node(s) |
596 | 597 |
///in order to compute the shortest path to \c dest. |
597 | 598 |
///The algorithm computes |
598 | 599 |
///- The shortest path to \c dest. |
599 | 600 |
///- The distance of \c dest from the root(s). |
600 | 601 |
void start(Node dest) |
601 | 602 |
{ |
602 | 603 |
bool reach = false; |
603 | 604 |
while ( !emptyQueue() && !reach ) processNextNode(dest, reach); |
604 | 605 |
} |
605 | 606 |
|
606 | 607 |
///Executes the algorithm until a condition is met. |
607 | 608 |
|
608 | 609 |
///Executes the algorithm until a condition is met. |
609 | 610 |
/// |
610 | 611 |
///\pre init() must be called and at least one node should be added |
611 | 612 |
///with addSource() before using this function. |
612 | 613 |
/// |
613 | 614 |
///\param nm must be a bool (or convertible) node map. The |
614 | 615 |
///algorithm will stop when it reaches a node \c v with |
615 | 616 |
/// <tt>nm[v]</tt> true. |
616 | 617 |
/// |
617 | 618 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
618 | 619 |
///\c INVALID if no such node was found. |
619 | 620 |
template<class NM> |
620 | 621 |
Node start(const NM &nm) |
621 | 622 |
{ |
622 | 623 |
Node rnode = INVALID; |
623 | 624 |
while ( !emptyQueue() && rnode == INVALID ) { |
624 | 625 |
processNextNode(nm, rnode); |
625 | 626 |
} |
626 | 627 |
return rnode; |
627 | 628 |
} |
628 | 629 |
|
629 | 630 |
///Runs %BFS algorithm from node \c s. |
630 | 631 |
|
631 | 632 |
///This method runs the %BFS algorithm from a root node \c s |
632 | 633 |
///in order to |
633 | 634 |
///compute the |
634 | 635 |
///shortest path to each node. The algorithm computes |
635 | 636 |
///- The shortest path tree. |
636 | 637 |
///- The distance of each node from the root. |
637 | 638 |
/// |
638 | 639 |
///\note b.run(s) is just a shortcut of the following code. |
639 | 640 |
///\code |
640 | 641 |
/// b.init(); |
641 | 642 |
/// b.addSource(s); |
642 | 643 |
/// b.start(); |
643 | 644 |
///\endcode |
644 | 645 |
void run(Node s) { |
645 | 646 |
init(); |
646 | 647 |
addSource(s); |
647 | 648 |
start(); |
648 | 649 |
} |
649 | 650 |
|
650 | 651 |
///Finds the shortest path between \c s and \c t. |
651 | 652 |
|
652 | 653 |
///Finds the shortest path between \c s and \c t. |
653 | 654 |
/// |
654 | 655 |
///\return The length of the shortest s---t path if there exists one, |
655 | 656 |
///0 otherwise. |
656 | 657 |
///\note Apart from the return value, b.run(s) is |
657 | 658 |
///just a shortcut of the following code. |
658 | 659 |
///\code |
659 | 660 |
/// b.init(); |
660 | 661 |
/// b.addSource(s); |
661 | 662 |
/// b.start(t); |
662 | 663 |
///\endcode |
663 | 664 |
int run(Node s,Node t) { |
664 | 665 |
init(); |
665 | 666 |
addSource(s); |
666 | 667 |
start(t); |
667 | 668 |
return reached(t) ? _curr_dist : 0; |
668 | 669 |
} |
669 | 670 |
|
670 | 671 |
///@} |
671 | 672 |
|
672 | 673 |
///\name Query Functions |
673 | 674 |
///The result of the %BFS algorithm can be obtained using these |
674 | 675 |
///functions.\n |
675 | 676 |
///Before the use of these functions, |
676 | 677 |
///either run() or start() must be calleb. |
677 | 678 |
|
678 | 679 |
///@{ |
679 | 680 |
|
680 | 681 |
typedef PredMapPath<Digraph, PredMap> Path; |
681 | 682 |
|
682 | 683 |
///Gives back the shortest path. |
683 | 684 |
|
684 | 685 |
///Gives back the shortest path. |
685 | 686 |
///\pre The \c t should be reachable from the source. |
686 | 687 |
Path path(Node t) |
687 | 688 |
{ |
688 | 689 |
return Path(*G, *_pred, t); |
689 | 690 |
} |
690 | 691 |
|
691 | 692 |
///The distance of a node from the root(s). |
692 | 693 |
|
693 | 694 |
///Returns the distance of a node from the root(s). |
694 | 695 |
///\pre \ref run() must be called before using this function. |
695 | 696 |
///\warning If node \c v in unreachable from the root(s) the return value |
696 | 697 |
///of this function is undefined. |
697 | 698 |
int dist(Node v) const { return (*_dist)[v]; } |
698 | 699 |
|
699 | 700 |
///Returns the 'previous arc' of the shortest path tree. |
700 | 701 |
|
701 | 702 |
///For a node \c v it returns the 'previous arc' |
702 | 703 |
///of the shortest path tree, |
703 | 704 |
///i.e. it returns the last arc of a shortest path from the root(s) to \c |
704 | 705 |
///v. It is \ref INVALID |
705 | 706 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
706 | 707 |
///shortest path tree used here is equal to the shortest path tree used in |
707 | 708 |
///\ref predNode(). |
708 | 709 |
///\pre Either \ref run() or \ref start() must be called before using |
709 | 710 |
///this function. |
710 | 711 |
Arc predArc(Node v) const { return (*_pred)[v];} |
711 | 712 |
|
712 | 713 |
///Returns the 'previous node' of the shortest path tree. |
713 | 714 |
|
714 | 715 |
///For a node \c v it returns the 'previous node' |
715 | 716 |
///of the shortest path tree, |
716 | 717 |
///i.e. it returns the last but one node from a shortest path from the |
717 | 718 |
///root(a) to \c /v. |
718 | 719 |
///It is INVALID if \c v is unreachable from the root(s) or |
719 | 720 |
///if \c v itself a root. |
720 | 721 |
///The shortest path tree used here is equal to the shortest path |
721 | 722 |
///tree used in \ref predArc(). |
722 | 723 |
///\pre Either \ref run() or \ref start() must be called before |
723 | 724 |
///using this function. |
724 | 725 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
725 | 726 |
G->source((*_pred)[v]); } |
726 | 727 |
|
727 | 728 |
///Returns a reference to the NodeMap of distances. |
728 | 729 |
|
729 | 730 |
///Returns a reference to the NodeMap of distances. |
730 | 731 |
///\pre Either \ref run() or \ref init() must |
731 | 732 |
///be called before using this function. |
732 | 733 |
const DistMap &distMap() const { return *_dist;} |
733 | 734 |
|
734 | 735 |
///Returns a reference to the shortest path tree map. |
735 | 736 |
|
736 | 737 |
///Returns a reference to the NodeMap of the arcs of the |
737 | 738 |
///shortest path tree. |
738 | 739 |
///\pre Either \ref run() or \ref init() |
739 | 740 |
///must be called before using this function. |
740 | 741 |
const PredMap &predMap() const { return *_pred;} |
741 | 742 |
|
742 | 743 |
///Checks if a node is reachable from the root. |
743 | 744 |
|
744 | 745 |
///Returns \c true if \c v is reachable from the root. |
745 | 746 |
///\warning The source nodes are indicated as unreached. |
746 | 747 |
///\pre Either \ref run() or \ref start() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
/// |
749 | 750 |
bool reached(Node v) { return (*_reached)[v]; } |
750 | 751 |
|
751 | 752 |
///@} |
752 | 753 |
}; |
753 | 754 |
|
754 | 755 |
///Default traits class of Bfs function. |
755 | 756 |
|
756 | 757 |
///Default traits class of Bfs function. |
757 | 758 |
///\tparam GR Digraph type. |
758 | 759 |
template<class GR> |
759 | 760 |
struct BfsWizardDefaultTraits |
760 | 761 |
{ |
761 | 762 |
///The digraph type the algorithm runs on. |
762 | 763 |
typedef GR Digraph; |
763 | 764 |
///\brief The type of the map that stores the last |
764 | 765 |
///arcs of the shortest paths. |
765 | 766 |
/// |
766 | 767 |
///The type of the map that stores the last |
767 | 768 |
///arcs of the shortest paths. |
768 | 769 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
769 | 770 |
/// |
770 | 771 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
771 | 772 |
///Instantiates a PredMap. |
772 | 773 |
|
773 | 774 |
///This function instantiates a \ref PredMap. |
774 | 775 |
///\param g is the digraph, to which we would like to define the PredMap. |
775 | 776 |
///\todo The digraph alone may be insufficient to initialize |
776 | 777 |
#ifdef DOXYGEN |
777 | 778 |
static PredMap *createPredMap(const GR &g) |
778 | 779 |
#else |
779 | 780 |
static PredMap *createPredMap(const GR &) |
780 | 781 |
#endif |
781 | 782 |
{ |
782 | 783 |
return new PredMap(); |
783 | 784 |
} |
784 | 785 |
|
785 | 786 |
///The type of the map that indicates which nodes are processed. |
786 | 787 |
|
787 | 788 |
///The type of the map that indicates which nodes are processed. |
788 | 789 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
789 | 790 |
///\todo named parameter to set this type, function to read and write. |
790 | 791 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
791 | 792 |
///Instantiates a ProcessedMap. |
792 | 793 |
|
793 | 794 |
///This function instantiates a \ref ProcessedMap. |
794 | 795 |
///\param g is the digraph, to which |
795 | 796 |
///we would like to define the \ref ProcessedMap |
796 | 797 |
#ifdef DOXYGEN |
797 | 798 |
static ProcessedMap *createProcessedMap(const GR &g) |
798 | 799 |
#else |
799 | 800 |
static ProcessedMap *createProcessedMap(const GR &) |
800 | 801 |
#endif |
801 | 802 |
{ |
802 | 803 |
return new ProcessedMap(); |
803 | 804 |
} |
804 | 805 |
///The type of the map that indicates which nodes are reached. |
805 | 806 |
|
806 | 807 |
///The type of the map that indicates which nodes are reached. |
807 | 808 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
808 | 809 |
///\todo named parameter to set this type, function to read and write. |
809 | 810 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
810 | 811 |
///Instantiates a ReachedMap. |
811 | 812 |
|
812 | 813 |
///This function instantiates a \ref ReachedMap. |
813 | 814 |
///\param G is the digraph, to which |
814 | 815 |
///we would like to define the \ref ReachedMap. |
815 | 816 |
static ReachedMap *createReachedMap(const GR &G) |
816 | 817 |
{ |
817 | 818 |
return new ReachedMap(G); |
818 | 819 |
} |
819 | 820 |
///The type of the map that stores the dists of the nodes. |
820 | 821 |
|
821 | 822 |
///The type of the map that stores the dists of the nodes. |
822 | 823 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
823 | 824 |
/// |
824 | 825 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
825 | 826 |
///Instantiates a DistMap. |
826 | 827 |
|
827 | 828 |
///This function instantiates a \ref DistMap. |
828 |
///\param g is the digraph, to which we would like to define |
|
829 |
///\param g is the digraph, to which we would like to define |
|
830 |
///the \ref DistMap |
|
829 | 831 |
#ifdef DOXYGEN |
830 | 832 |
static DistMap *createDistMap(const GR &g) |
831 | 833 |
#else |
832 | 834 |
static DistMap *createDistMap(const GR &) |
833 | 835 |
#endif |
834 | 836 |
{ |
835 | 837 |
return new DistMap(); |
836 | 838 |
} |
837 | 839 |
}; |
838 | 840 |
|
839 | 841 |
/// Default traits used by \ref BfsWizard |
840 | 842 |
|
841 | 843 |
/// To make it easier to use Bfs algorithm |
842 | 844 |
///we have created a wizard class. |
843 | 845 |
/// This \ref BfsWizard class needs default traits, |
844 | 846 |
///as well as the \ref Bfs class. |
845 | 847 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
846 | 848 |
/// \ref BfsWizard class. |
847 | 849 |
template<class GR> |
848 | 850 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
849 | 851 |
{ |
850 | 852 |
|
851 | 853 |
typedef BfsWizardDefaultTraits<GR> Base; |
852 | 854 |
protected: |
853 | 855 |
/// Type of the nodes in the digraph. |
854 | 856 |
typedef typename Base::Digraph::Node Node; |
855 | 857 |
|
856 | 858 |
/// Pointer to the underlying digraph. |
857 | 859 |
void *_g; |
858 | 860 |
///Pointer to the map of reached nodes. |
859 | 861 |
void *_reached; |
860 | 862 |
///Pointer to the map of processed nodes. |
861 | 863 |
void *_processed; |
862 | 864 |
///Pointer to the map of predecessors arcs. |
863 | 865 |
void *_pred; |
864 | 866 |
///Pointer to the map of distances. |
865 | 867 |
void *_dist; |
866 | 868 |
///Pointer to the source node. |
867 | 869 |
Node _source; |
868 | 870 |
|
869 | 871 |
public: |
870 | 872 |
/// Constructor. |
871 | 873 |
|
872 | 874 |
/// This constructor does not require parameters, therefore it initiates |
873 | 875 |
/// all of the attributes to default values (0, INVALID). |
874 | 876 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 877 |
_dist(0), _source(INVALID) {} |
876 | 878 |
|
877 | 879 |
/// Constructor. |
878 | 880 |
|
879 | 881 |
/// This constructor requires some parameters, |
880 | 882 |
/// listed in the parameters list. |
881 | 883 |
/// Others are initiated to 0. |
882 | 884 |
/// \param g is the initial value of \ref _g |
883 | 885 |
/// \param s is the initial value of \ref _source |
884 | 886 |
BfsWizardBase(const GR &g, Node s=INVALID) : |
885 | 887 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
886 | 888 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
887 | 889 |
|
888 | 890 |
}; |
889 | 891 |
|
890 | 892 |
/// A class to make the usage of Bfs algorithm easier |
891 | 893 |
|
892 | 894 |
/// This class is created to make it easier to use Bfs algorithm. |
893 | 895 |
/// It uses the functions and features of the plain \ref Bfs, |
894 | 896 |
/// but it is much simpler to use it. |
895 | 897 |
/// |
896 | 898 |
/// Simplicity means that the way to change the types defined |
897 | 899 |
/// in the traits class is based on functions that returns the new class |
898 | 900 |
/// and not on templatable built-in classes. |
899 | 901 |
/// When using the plain \ref Bfs |
900 | 902 |
/// the new class with the modified type comes from |
901 | 903 |
/// the original class by using the :: |
902 | 904 |
/// operator. In the case of \ref BfsWizard only |
903 | 905 |
/// a function have to be called and it will |
904 | 906 |
/// return the needed class. |
905 | 907 |
/// |
906 | 908 |
/// It does not have own \ref run method. When its \ref run method is called |
907 | 909 |
/// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run |
908 | 910 |
/// method of it. |
909 | 911 |
template<class TR> |
910 | 912 |
class BfsWizard : public TR |
911 | 913 |
{ |
912 | 914 |
typedef TR Base; |
913 | 915 |
|
914 | 916 |
///The type of the underlying digraph. |
915 | 917 |
typedef typename TR::Digraph Digraph; |
916 | 918 |
//\e |
917 | 919 |
typedef typename Digraph::Node Node; |
918 | 920 |
//\e |
919 | 921 |
typedef typename Digraph::NodeIt NodeIt; |
920 | 922 |
//\e |
921 | 923 |
typedef typename Digraph::Arc Arc; |
922 | 924 |
//\e |
923 | 925 |
typedef typename Digraph::OutArcIt OutArcIt; |
924 | 926 |
|
925 | 927 |
///\brief The type of the map that stores |
926 | 928 |
///the reached nodes |
927 | 929 |
typedef typename TR::ReachedMap ReachedMap; |
928 | 930 |
///\brief The type of the map that stores |
929 | 931 |
///the processed nodes |
930 | 932 |
typedef typename TR::ProcessedMap ProcessedMap; |
931 | 933 |
///\brief The type of the map that stores the last |
932 | 934 |
///arcs of the shortest paths. |
933 | 935 |
typedef typename TR::PredMap PredMap; |
934 | 936 |
///The type of the map that stores the dists of the nodes. |
935 | 937 |
typedef typename TR::DistMap DistMap; |
936 | 938 |
|
937 | 939 |
public: |
938 | 940 |
/// Constructor. |
939 | 941 |
BfsWizard() : TR() {} |
940 | 942 |
|
941 | 943 |
/// Constructor that requires parameters. |
942 | 944 |
|
943 | 945 |
/// Constructor that requires parameters. |
944 | 946 |
/// These parameters will be the default values for the traits class. |
945 | 947 |
BfsWizard(const Digraph &g, Node s=INVALID) : |
946 | 948 |
TR(g,s) {} |
947 | 949 |
|
948 | 950 |
///Copy constructor |
949 | 951 |
BfsWizard(const TR &b) : TR(b) {} |
950 | 952 |
|
951 | 953 |
~BfsWizard() {} |
952 | 954 |
|
953 | 955 |
///Runs Bfs algorithm from a given node. |
954 | 956 |
|
955 | 957 |
///Runs Bfs algorithm from a given node. |
956 | 958 |
///The node can be given by the \ref source function. |
957 | 959 |
void run() |
958 | 960 |
{ |
959 | 961 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
960 | 962 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
961 | 963 |
if(Base::_reached) |
962 | 964 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
963 | 965 |
if(Base::_processed) |
964 | 966 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
965 | 967 |
if(Base::_pred) |
966 | 968 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
967 | 969 |
if(Base::_dist) |
968 | 970 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
969 | 971 |
alg.run(Base::_source); |
970 | 972 |
} |
971 | 973 |
|
972 | 974 |
///Runs Bfs algorithm from the given node. |
973 | 975 |
|
974 | 976 |
///Runs Bfs algorithm from the given node. |
975 | 977 |
///\param s is the given source. |
976 | 978 |
void run(Node s) |
977 | 979 |
{ |
978 | 980 |
Base::_source=s; |
979 | 981 |
run(); |
980 | 982 |
} |
981 | 983 |
|
982 | 984 |
template<class T> |
983 | 985 |
struct DefPredMapBase : public Base { |
984 | 986 |
typedef T PredMap; |
985 | 987 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
986 | 988 |
DefPredMapBase(const TR &b) : TR(b) {} |
987 | 989 |
}; |
988 | 990 |
|
989 | 991 |
///\brief \ref named-templ-param "Named parameter" |
990 | 992 |
///function for setting PredMap |
991 | 993 |
/// |
992 | 994 |
/// \ref named-templ-param "Named parameter" |
993 | 995 |
///function for setting PredMap |
994 | 996 |
/// |
995 | 997 |
template<class T> |
996 | 998 |
BfsWizard<DefPredMapBase<T> > predMap(const T &t) |
997 | 999 |
{ |
998 | 1000 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
999 | 1001 |
return BfsWizard<DefPredMapBase<T> >(*this); |
1000 | 1002 |
} |
1001 | 1003 |
|
1002 | 1004 |
|
1003 | 1005 |
template<class T> |
1004 | 1006 |
struct DefReachedMapBase : public Base { |
1005 | 1007 |
typedef T ReachedMap; |
1006 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1007 | 1009 |
DefReachedMapBase(const TR &b) : TR(b) {} |
1008 | 1010 |
}; |
1009 | 1011 |
|
1010 | 1012 |
///\brief \ref named-templ-param "Named parameter" |
1011 | 1013 |
///function for setting ReachedMap |
1012 | 1014 |
/// |
1013 | 1015 |
/// \ref named-templ-param "Named parameter" |
1014 | 1016 |
///function for setting ReachedMap |
1015 | 1017 |
/// |
1016 | 1018 |
template<class T> |
1017 | 1019 |
BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
1018 | 1020 |
{ |
1019 | 1021 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1020 | 1022 |
return BfsWizard<DefReachedMapBase<T> >(*this); |
1021 | 1023 |
} |
1022 | 1024 |
|
1023 | 1025 |
|
1024 | 1026 |
template<class T> |
1025 | 1027 |
struct DefProcessedMapBase : public Base { |
1026 | 1028 |
typedef T ProcessedMap; |
1027 | 1029 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1028 | 1030 |
DefProcessedMapBase(const TR &b) : TR(b) {} |
1029 | 1031 |
}; |
1030 | 1032 |
|
1031 | 1033 |
///\brief \ref named-templ-param "Named parameter" |
1032 | 1034 |
///function for setting ProcessedMap |
1033 | 1035 |
/// |
1034 | 1036 |
/// \ref named-templ-param "Named parameter" |
1035 | 1037 |
///function for setting ProcessedMap |
1036 | 1038 |
/// |
1037 | 1039 |
template<class T> |
1038 | 1040 |
BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
1039 | 1041 |
{ |
1040 | 1042 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1041 | 1043 |
return BfsWizard<DefProcessedMapBase<T> >(*this); |
1042 | 1044 |
} |
1043 | 1045 |
|
1044 | 1046 |
|
1045 | 1047 |
template<class T> |
1046 | 1048 |
struct DefDistMapBase : public Base { |
1047 | 1049 |
typedef T DistMap; |
1048 | 1050 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1049 | 1051 |
DefDistMapBase(const TR &b) : TR(b) {} |
1050 | 1052 |
}; |
1051 | 1053 |
|
1052 | 1054 |
///\brief \ref named-templ-param "Named parameter" |
1053 | 1055 |
///function for setting DistMap type |
1054 | 1056 |
/// |
1055 | 1057 |
/// \ref named-templ-param "Named parameter" |
1056 | 1058 |
///function for setting DistMap type |
1057 | 1059 |
/// |
1058 | 1060 |
template<class T> |
1059 | 1061 |
BfsWizard<DefDistMapBase<T> > distMap(const T &t) |
1060 | 1062 |
{ |
1061 | 1063 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1062 | 1064 |
return BfsWizard<DefDistMapBase<T> >(*this); |
1063 | 1065 |
} |
1064 | 1066 |
|
1065 | 1067 |
/// Sets the source node, from which the Bfs algorithm runs. |
1066 | 1068 |
|
1067 | 1069 |
/// Sets the source node, from which the Bfs algorithm runs. |
1068 | 1070 |
/// \param s is the source node. |
1069 | 1071 |
BfsWizard<TR> &source(Node s) |
1070 | 1072 |
{ |
1071 | 1073 |
Base::_source=s; |
1072 | 1074 |
return *this; |
1073 | 1075 |
} |
1074 | 1076 |
|
1075 | 1077 |
}; |
1076 | 1078 |
|
1077 | 1079 |
///Function type interface for Bfs algorithm. |
1078 | 1080 |
|
1079 | 1081 |
/// \ingroup search |
1080 | 1082 |
///Function type interface for Bfs algorithm. |
1081 | 1083 |
/// |
1082 | 1084 |
///This function also has several |
1083 | 1085 |
///\ref named-templ-func-param "named parameters", |
1084 | 1086 |
///they are declared as the members of class \ref BfsWizard. |
1085 | 1087 |
///The following |
1086 | 1088 |
///example shows how to use these parameters. |
1087 | 1089 |
///\code |
1088 | 1090 |
/// bfs(g,source).predMap(preds).run(); |
1089 | 1091 |
///\endcode |
1090 | 1092 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1091 | 1093 |
///to the end of the parameter list. |
1092 | 1094 |
///\sa BfsWizard |
1093 | 1095 |
///\sa Bfs |
1094 | 1096 |
template<class GR> |
1095 | 1097 |
BfsWizard<BfsWizardBase<GR> > |
1096 | 1098 |
bfs(const GR &g,typename GR::Node s=INVALID) |
1097 | 1099 |
{ |
1098 | 1100 |
return BfsWizard<BfsWizardBase<GR> >(g,s); |
1099 | 1101 |
} |
1100 | 1102 |
|
1101 | 1103 |
#ifdef DOXYGEN |
1102 | 1104 |
/// \brief Visitor class for bfs. |
1103 | 1105 |
/// |
1104 | 1106 |
/// This class defines the interface of the BfsVisit events, and |
1105 | 1107 |
/// it could be the base of a real Visitor class. |
1106 | 1108 |
template <typename _Digraph> |
1107 | 1109 |
struct BfsVisitor { |
1108 | 1110 |
typedef _Digraph Digraph; |
1109 | 1111 |
typedef typename Digraph::Arc Arc; |
1110 | 1112 |
typedef typename Digraph::Node Node; |
1111 | 1113 |
/// \brief Called when the arc reach a node. |
1112 | 1114 |
/// |
1113 | 1115 |
/// It is called when the bfs find an arc which target is not |
1114 | 1116 |
/// reached yet. |
1115 | 1117 |
void discover(const Arc& arc) {} |
1116 | 1118 |
/// \brief Called when the node reached first time. |
1117 | 1119 |
/// |
1118 | 1120 |
/// It is Called when the node reached first time. |
1119 | 1121 |
void reach(const Node& node) {} |
1120 | 1122 |
/// \brief Called when the arc examined but target of the arc |
1121 | 1123 |
/// already discovered. |
1122 | 1124 |
/// |
1123 | 1125 |
/// It called when the arc examined but the target of the arc |
1124 | 1126 |
/// already discovered. |
1125 | 1127 |
void examine(const Arc& arc) {} |
1126 | 1128 |
/// \brief Called for the source node of the bfs. |
1127 | 1129 |
/// |
1128 | 1130 |
/// It is called for the source node of the bfs. |
1129 | 1131 |
void start(const Node& node) {} |
1130 | 1132 |
/// \brief Called when the node processed. |
1131 | 1133 |
/// |
1132 | 1134 |
/// It is Called when the node processed. |
1133 | 1135 |
void process(const Node& node) {} |
1134 | 1136 |
}; |
1135 | 1137 |
#else |
1136 | 1138 |
template <typename _Digraph> |
1137 | 1139 |
struct BfsVisitor { |
1138 | 1140 |
typedef _Digraph Digraph; |
1139 | 1141 |
typedef typename Digraph::Arc Arc; |
1140 | 1142 |
typedef typename Digraph::Node Node; |
1141 | 1143 |
void discover(const Arc&) {} |
1142 | 1144 |
void reach(const Node&) {} |
1143 | 1145 |
void examine(const Arc&) {} |
1144 | 1146 |
void start(const Node&) {} |
1145 | 1147 |
void process(const Node&) {} |
1146 | 1148 |
|
1147 | 1149 |
template <typename _Visitor> |
1148 | 1150 |
struct Constraints { |
1149 | 1151 |
void constraints() { |
1150 | 1152 |
Arc arc; |
1151 | 1153 |
Node node; |
1152 | 1154 |
visitor.discover(arc); |
1153 | 1155 |
visitor.reach(node); |
1154 | 1156 |
visitor.examine(arc); |
1155 | 1157 |
visitor.start(node); |
1156 | 1158 |
visitor.process(node); |
1157 | 1159 |
} |
1158 | 1160 |
_Visitor& visitor; |
1159 | 1161 |
}; |
1160 | 1162 |
}; |
1161 | 1163 |
#endif |
1162 | 1164 |
|
1163 | 1165 |
/// \brief Default traits class of BfsVisit class. |
1164 | 1166 |
/// |
1165 | 1167 |
/// Default traits class of BfsVisit class. |
1166 | 1168 |
/// \tparam _Digraph Digraph type. |
1167 | 1169 |
template<class _Digraph> |
1168 | 1170 |
struct BfsVisitDefaultTraits { |
1169 | 1171 |
|
1170 | 1172 |
/// \brief The digraph type the algorithm runs on. |
1171 | 1173 |
typedef _Digraph Digraph; |
1172 | 1174 |
|
1173 | 1175 |
/// \brief The type of the map that indicates which nodes are reached. |
1174 | 1176 |
/// |
1175 | 1177 |
/// The type of the map that indicates which nodes are reached. |
1176 | 1178 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1177 | 1179 |
/// \todo named parameter to set this type, function to read and write. |
1178 | 1180 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1179 | 1181 |
|
1180 | 1182 |
/// \brief Instantiates a ReachedMap. |
1181 | 1183 |
/// |
1182 | 1184 |
/// This function instantiates a \ref ReachedMap. |
1183 | 1185 |
/// \param digraph is the digraph, to which |
1184 | 1186 |
/// we would like to define the \ref ReachedMap. |
1185 | 1187 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1186 | 1188 |
return new ReachedMap(digraph); |
1187 | 1189 |
} |
1188 | 1190 |
|
1189 | 1191 |
}; |
1190 | 1192 |
|
1191 | 1193 |
/// \ingroup search |
1192 | 1194 |
/// |
1193 | 1195 |
/// \brief %BFS Visit algorithm class. |
1194 | 1196 |
/// |
1195 | 1197 |
/// This class provides an efficient implementation of the %BFS algorithm |
1196 | 1198 |
/// with visitor interface. |
1197 | 1199 |
/// |
1198 | 1200 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1199 | 1201 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1200 | 1202 |
/// on every bfs event the \c Visitor class member functions. |
1201 | 1203 |
/// |
1202 |
/// \tparam _Digraph The digraph type the algorithm runs on. |
|
1204 |
/// \tparam _Digraph The digraph type the algorithm runs on. |
|
1205 |
/// The default value is |
|
1203 | 1206 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it |
1204 | 1207 |
/// is only passed to \ref BfsDefaultTraits. |
1205 | 1208 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
1206 | 1209 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which |
1207 | 1210 |
/// does not observe the Bfs events. If you want to observe the bfs |
1208 | 1211 |
/// events you should implement your own Visitor class. |
1209 | 1212 |
/// \tparam _Traits Traits class to set various data types used by the |
1210 | 1213 |
/// algorithm. The default traits class is |
1211 | 1214 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1212 | 1215 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1213 | 1216 |
/// a Bfs visit traits class. |
1214 | 1217 |
#ifdef DOXYGEN |
1215 | 1218 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1216 | 1219 |
#else |
1217 | 1220 |
template <typename _Digraph = ListDigraph, |
1218 | 1221 |
typename _Visitor = BfsVisitor<_Digraph>, |
1219 | 1222 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
1220 | 1223 |
#endif |
1221 | 1224 |
class BfsVisit { |
1222 | 1225 |
public: |
1223 | 1226 |
|
1224 | 1227 |
/// \brief \ref Exception for uninitialized parameters. |
1225 | 1228 |
/// |
1226 | 1229 |
/// This error represents problems in the initialization |
1227 | 1230 |
/// of the parameters of the algorithms. |
1228 | 1231 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1229 | 1232 |
public: |
1230 | 1233 |
virtual const char* what() const throw() |
1231 | 1234 |
{ |
1232 | 1235 |
return "lemon::BfsVisit::UninitializedParameter"; |
1233 | 1236 |
} |
1234 | 1237 |
}; |
1235 | 1238 |
|
1236 | 1239 |
typedef _Traits Traits; |
1237 | 1240 |
|
1238 | 1241 |
typedef typename Traits::Digraph Digraph; |
1239 | 1242 |
|
1240 | 1243 |
typedef _Visitor Visitor; |
1241 | 1244 |
|
1242 | 1245 |
///The type of the map indicating which nodes are reached. |
1243 | 1246 |
typedef typename Traits::ReachedMap ReachedMap; |
1244 | 1247 |
|
1245 | 1248 |
private: |
1246 | 1249 |
|
1247 | 1250 |
typedef typename Digraph::Node Node; |
1248 | 1251 |
typedef typename Digraph::NodeIt NodeIt; |
1249 | 1252 |
typedef typename Digraph::Arc Arc; |
1250 | 1253 |
typedef typename Digraph::OutArcIt OutArcIt; |
1251 | 1254 |
|
1252 | 1255 |
/// Pointer to the underlying digraph. |
1253 | 1256 |
const Digraph *_digraph; |
1254 | 1257 |
/// Pointer to the visitor object. |
1255 | 1258 |
Visitor *_visitor; |
1256 | 1259 |
///Pointer to the map of reached status of the nodes. |
1257 | 1260 |
ReachedMap *_reached; |
1258 | 1261 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
1259 | 1262 |
bool local_reached; |
1260 | 1263 |
|
1261 | 1264 |
std::vector<typename Digraph::Node> _list; |
1262 | 1265 |
int _list_front, _list_back; |
1263 | 1266 |
|
1264 | 1267 |
/// \brief Creates the maps if necessary. |
1265 | 1268 |
/// |
1266 | 1269 |
/// Creates the maps if necessary. |
1267 | 1270 |
void create_maps() { |
1268 | 1271 |
if(!_reached) { |
1269 | 1272 |
local_reached = true; |
1270 | 1273 |
_reached = Traits::createReachedMap(*_digraph); |
1271 | 1274 |
} |
1272 | 1275 |
} |
1273 | 1276 |
|
1274 | 1277 |
protected: |
1275 | 1278 |
|
1276 | 1279 |
BfsVisit() {} |
1277 | 1280 |
|
1278 | 1281 |
public: |
1279 | 1282 |
|
1280 | 1283 |
typedef BfsVisit Create; |
1281 | 1284 |
|
1282 | 1285 |
/// \name Named template parameters |
1283 | 1286 |
|
1284 | 1287 |
///@{ |
1285 | 1288 |
template <class T> |
1286 | 1289 |
struct DefReachedMapTraits : public Traits { |
1287 | 1290 |
typedef T ReachedMap; |
1288 | 1291 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1289 | 1292 |
throw UninitializedParameter(); |
1290 | 1293 |
} |
1291 | 1294 |
}; |
1292 | 1295 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1293 | 1296 |
/// ReachedMap type |
1294 | 1297 |
/// |
1295 | 1298 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type |
1296 | 1299 |
template <class T> |
1297 | 1300 |
struct DefReachedMap : public BfsVisit< Digraph, Visitor, |
1298 | 1301 |
DefReachedMapTraits<T> > { |
1299 | 1302 |
typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
1300 | 1303 |
}; |
1301 | 1304 |
///@} |
1302 | 1305 |
|
1303 | 1306 |
public: |
1304 | 1307 |
|
1305 | 1308 |
/// \brief Constructor. |
1306 | 1309 |
/// |
1307 | 1310 |
/// Constructor. |
1308 | 1311 |
/// |
1309 | 1312 |
/// \param digraph the digraph the algorithm will run on. |
1310 | 1313 |
/// \param visitor The visitor of the algorithm. |
1311 | 1314 |
/// |
1312 | 1315 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1313 | 1316 |
: _digraph(&digraph), _visitor(&visitor), |
1314 | 1317 |
_reached(0), local_reached(false) {} |
1315 | 1318 |
|
1316 | 1319 |
/// \brief Destructor. |
1317 | 1320 |
/// |
1318 | 1321 |
/// Destructor. |
1319 | 1322 |
~BfsVisit() { |
1320 | 1323 |
if(local_reached) delete _reached; |
1321 | 1324 |
} |
1322 | 1325 |
|
1323 | 1326 |
/// \brief Sets the map indicating if a node is reached. |
1324 | 1327 |
/// |
1325 | 1328 |
/// Sets the map indicating if a node is reached. |
1326 | 1329 |
/// If you don't use this function before calling \ref run(), |
1327 | 1330 |
/// it will allocate one. The destuctor deallocates this |
1328 | 1331 |
/// automatically allocated map, of course. |
1329 | 1332 |
/// \return <tt> (*this) </tt> |
1330 | 1333 |
BfsVisit &reachedMap(ReachedMap &m) { |
1331 | 1334 |
if(local_reached) { |
1332 | 1335 |
delete _reached; |
1333 | 1336 |
local_reached = false; |
1334 | 1337 |
} |
1335 | 1338 |
_reached = &m; |
1336 | 1339 |
return *this; |
1337 | 1340 |
} |
1338 | 1341 |
|
1339 | 1342 |
public: |
1340 | 1343 |
/// \name Execution control |
1341 | 1344 |
/// The simplest way to execute the algorithm is to use |
1342 | 1345 |
/// one of the member functions called \c run(...). |
1343 | 1346 |
/// \n |
1344 | 1347 |
/// If you need more control on the execution, |
1345 | 1348 |
/// first you must call \ref init(), then you can adda source node |
1346 | 1349 |
/// with \ref addSource(). |
1347 | 1350 |
/// Finally \ref start() will perform the actual path |
1348 | 1351 |
/// computation. |
1349 | 1352 |
|
1350 | 1353 |
/// @{ |
1351 | 1354 |
/// \brief Initializes the internal data structures. |
1352 | 1355 |
/// |
1353 | 1356 |
/// Initializes the internal data structures. |
1354 | 1357 |
/// |
1355 | 1358 |
void init() { |
1356 | 1359 |
create_maps(); |
1357 | 1360 |
_list.resize(countNodes(*_digraph)); |
1358 | 1361 |
_list_front = _list_back = -1; |
1359 | 1362 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1360 | 1363 |
_reached->set(u, false); |
1361 | 1364 |
} |
1362 | 1365 |
} |
1363 | 1366 |
|
1364 | 1367 |
/// \brief Adds a new source node. |
1365 | 1368 |
/// |
1366 | 1369 |
/// Adds a new source node to the set of nodes to be processed. |
1367 | 1370 |
void addSource(Node s) { |
1368 | 1371 |
if(!(*_reached)[s]) { |
1369 | 1372 |
_reached->set(s,true); |
1370 | 1373 |
_visitor->start(s); |
1371 | 1374 |
_visitor->reach(s); |
1372 | 1375 |
_list[++_list_back] = s; |
1373 | 1376 |
} |
1374 | 1377 |
} |
1375 | 1378 |
|
1376 | 1379 |
/// \brief Processes the next node. |
1377 | 1380 |
/// |
1378 | 1381 |
/// Processes the next node. |
1379 | 1382 |
/// |
1380 | 1383 |
/// \return The processed node. |
1381 | 1384 |
/// |
1382 | 1385 |
/// \pre The queue must not be empty! |
1383 | 1386 |
Node processNextNode() { |
1384 | 1387 |
Node n = _list[++_list_front]; |
1385 | 1388 |
_visitor->process(n); |
1386 | 1389 |
Arc e; |
1387 | 1390 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1388 | 1391 |
Node m = _digraph->target(e); |
1389 | 1392 |
if (!(*_reached)[m]) { |
1390 | 1393 |
_visitor->discover(e); |
1391 | 1394 |
_visitor->reach(m); |
1392 | 1395 |
_reached->set(m, true); |
1393 | 1396 |
_list[++_list_back] = m; |
1394 | 1397 |
} else { |
1395 | 1398 |
_visitor->examine(e); |
1396 | 1399 |
} |
1397 | 1400 |
} |
1398 | 1401 |
return n; |
1399 | 1402 |
} |
1400 | 1403 |
|
1401 | 1404 |
/// \brief Processes the next node. |
1402 | 1405 |
/// |
1403 | 1406 |
/// Processes the next node. And checks that the given target node |
1404 | 1407 |
/// is reached. If the target node is reachable from the processed |
1405 | 1408 |
/// node then the reached parameter will be set true. The reached |
1406 | 1409 |
/// parameter should be initially false. |
1407 | 1410 |
/// |
1408 | 1411 |
/// \param target The target node. |
1409 | 1412 |
/// \retval reach Indicates that the target node is reached. |
1410 | 1413 |
/// \return The processed node. |
1411 | 1414 |
/// |
1412 | 1415 |
/// \warning The queue must not be empty! |
1413 | 1416 |
Node processNextNode(Node target, bool& reach) { |
1414 | 1417 |
Node n = _list[++_list_front]; |
1415 | 1418 |
_visitor->process(n); |
1416 | 1419 |
Arc e; |
1417 | 1420 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1418 | 1421 |
Node m = _digraph->target(e); |
1419 | 1422 |
if (!(*_reached)[m]) { |
1420 | 1423 |
_visitor->discover(e); |
1421 | 1424 |
_visitor->reach(m); |
1422 | 1425 |
_reached->set(m, true); |
1423 | 1426 |
_list[++_list_back] = m; |
1424 | 1427 |
reach = reach || (target == m); |
1425 | 1428 |
} else { |
1426 | 1429 |
_visitor->examine(e); |
1427 | 1430 |
} |
1428 | 1431 |
} |
1429 | 1432 |
return n; |
1430 | 1433 |
} |
1431 | 1434 |
|
1432 | 1435 |
/// \brief Processes the next node. |
1433 | 1436 |
/// |
1434 | 1437 |
/// Processes the next node. And checks that at least one of |
1435 | 1438 |
/// reached node has true value in the \c nm node map. If one node |
1436 | 1439 |
/// with true value is reachable from the processed node then the |
1437 | 1440 |
/// rnode parameter will be set to the first of such nodes. |
1438 | 1441 |
/// |
1439 | 1442 |
/// \param nm The node map of possible targets. |
1440 | 1443 |
/// \retval rnode The reached target node. |
1441 | 1444 |
/// \return The processed node. |
1442 | 1445 |
/// |
1443 | 1446 |
/// \warning The queue must not be empty! |
1444 | 1447 |
template <typename NM> |
1445 | 1448 |
Node processNextNode(const NM& nm, Node& rnode) { |
1446 | 1449 |
Node n = _list[++_list_front]; |
1447 | 1450 |
_visitor->process(n); |
1448 | 1451 |
Arc e; |
1449 | 1452 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1450 | 1453 |
Node m = _digraph->target(e); |
1451 | 1454 |
if (!(*_reached)[m]) { |
1452 | 1455 |
_visitor->discover(e); |
1453 | 1456 |
_visitor->reach(m); |
1454 | 1457 |
_reached->set(m, true); |
1455 | 1458 |
_list[++_list_back] = m; |
1456 | 1459 |
if (nm[m] && rnode == INVALID) rnode = m; |
1457 | 1460 |
} else { |
1458 | 1461 |
_visitor->examine(e); |
1459 | 1462 |
} |
1460 | 1463 |
} |
1461 | 1464 |
return n; |
1462 | 1465 |
} |
1463 | 1466 |
|
1464 | 1467 |
/// \brief Next node to be processed. |
1465 | 1468 |
/// |
1466 | 1469 |
/// Next node to be processed. |
1467 | 1470 |
/// |
1468 | 1471 |
/// \return The next node to be processed or INVALID if the stack is |
1469 | 1472 |
/// empty. |
1470 | 1473 |
Node nextNode() { |
1471 | 1474 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1472 | 1475 |
} |
1473 | 1476 |
|
1474 | 1477 |
/// \brief Returns \c false if there are nodes |
1475 | 1478 |
/// to be processed in the queue |
1476 | 1479 |
/// |
1477 | 1480 |
/// Returns \c false if there are nodes |
1478 | 1481 |
/// to be processed in the queue |
1479 | 1482 |
bool emptyQueue() { return _list_front == _list_back; } |
1480 | 1483 |
|
1481 | 1484 |
/// \brief Returns the number of the nodes to be processed. |
1482 | 1485 |
/// |
1483 | 1486 |
/// Returns the number of the nodes to be processed in the queue. |
1484 | 1487 |
int queueSize() { return _list_back - _list_front; } |
1485 | 1488 |
|
1486 | 1489 |
/// \brief Executes the algorithm. |
1487 | 1490 |
/// |
1488 | 1491 |
/// Executes the algorithm. |
1489 | 1492 |
/// |
1490 | 1493 |
/// \pre init() must be called and at least one node should be added |
1491 | 1494 |
/// with addSource() before using this function. |
1492 | 1495 |
void start() { |
1493 | 1496 |
while ( !emptyQueue() ) processNextNode(); |
1494 | 1497 |
} |
1495 | 1498 |
|
1496 | 1499 |
/// \brief Executes the algorithm until \c dest is reached. |
1497 | 1500 |
/// |
1498 | 1501 |
/// Executes the algorithm until \c dest is reached. |
1499 | 1502 |
/// |
1500 | 1503 |
/// \pre init() must be called and at least one node should be added |
1501 | 1504 |
/// with addSource() before using this function. |
1502 | 1505 |
void start(Node dest) { |
1503 | 1506 |
bool reach = false; |
1504 | 1507 |
while ( !emptyQueue() && !reach ) processNextNode(dest, reach); |
1505 | 1508 |
} |
1506 | 1509 |
|
1507 | 1510 |
/// \brief Executes the algorithm until a condition is met. |
1508 | 1511 |
/// |
1509 | 1512 |
/// Executes the algorithm until a condition is met. |
1510 | 1513 |
/// |
1511 | 1514 |
/// \pre init() must be called and at least one node should be added |
1512 | 1515 |
/// with addSource() before using this function. |
1513 | 1516 |
/// |
1514 | 1517 |
///\param nm must be a bool (or convertible) node map. The |
1515 | 1518 |
///algorithm will stop when it reaches a node \c v with |
1516 | 1519 |
/// <tt>nm[v]</tt> true. |
1517 | 1520 |
/// |
1518 | 1521 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
1519 | 1522 |
///\c INVALID if no such node was found. |
1520 | 1523 |
template <typename NM> |
1521 | 1524 |
Node start(const NM &nm) { |
1522 | 1525 |
Node rnode = INVALID; |
1523 | 1526 |
while ( !emptyQueue() && rnode == INVALID ) { |
1524 | 1527 |
processNextNode(nm, rnode); |
1525 | 1528 |
} |
1526 | 1529 |
return rnode; |
1527 | 1530 |
} |
1528 | 1531 |
|
1529 | 1532 |
/// \brief Runs %BFSVisit algorithm from node \c s. |
1530 | 1533 |
/// |
1531 | 1534 |
/// This method runs the %BFS algorithm from a root node \c s. |
1532 | 1535 |
/// \note b.run(s) is just a shortcut of the following code. |
1533 | 1536 |
///\code |
1534 | 1537 |
/// b.init(); |
1535 | 1538 |
/// b.addSource(s); |
1536 | 1539 |
/// b.start(); |
1537 | 1540 |
///\endcode |
1538 | 1541 |
void run(Node s) { |
1539 | 1542 |
init(); |
1540 | 1543 |
addSource(s); |
1541 | 1544 |
start(); |
1542 | 1545 |
} |
1543 | 1546 |
|
1544 | 1547 |
/// \brief Runs %BFSVisit algorithm to visit all nodes in the digraph. |
1545 | 1548 |
/// |
1546 | 1549 |
/// This method runs the %BFS algorithm in order to |
1547 | 1550 |
/// compute the %BFS path to each node. The algorithm computes |
1548 | 1551 |
/// - The %BFS tree. |
1549 | 1552 |
/// - The distance of each node from the root in the %BFS tree. |
1550 | 1553 |
/// |
1551 | 1554 |
///\note b.run() is just a shortcut of the following code. |
1552 | 1555 |
///\code |
1553 | 1556 |
/// b.init(); |
1554 | 1557 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
1555 | 1558 |
/// if (!b.reached(it)) { |
1556 | 1559 |
/// b.addSource(it); |
1557 | 1560 |
/// b.start(); |
1558 | 1561 |
/// } |
1559 | 1562 |
/// } |
1560 | 1563 |
///\endcode |
1561 | 1564 |
void run() { |
1562 | 1565 |
init(); |
1563 | 1566 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1564 | 1567 |
if (!reached(it)) { |
1565 | 1568 |
addSource(it); |
1566 | 1569 |
start(); |
1567 | 1570 |
} |
1568 | 1571 |
} |
1569 | 1572 |
} |
1570 | 1573 |
///@} |
1571 | 1574 |
|
1572 | 1575 |
/// \name Query Functions |
1573 | 1576 |
/// The result of the %BFS algorithm can be obtained using these |
1574 | 1577 |
/// functions.\n |
1575 | 1578 |
/// Before the use of these functions, |
1576 | 1579 |
/// either run() or start() must be called. |
1577 | 1580 |
///@{ |
1578 | 1581 |
|
1579 | 1582 |
/// \brief Checks if a node is reachable from the root. |
1580 | 1583 |
/// |
1581 | 1584 |
/// Returns \c true if \c v is reachable from the root(s). |
1582 | 1585 |
/// \warning The source nodes are inditated as unreachable. |
1583 | 1586 |
/// \pre Either \ref run() or \ref start() |
1584 | 1587 |
/// must be called before using this function. |
1585 | 1588 |
/// |
1586 | 1589 |
bool reached(Node v) { return (*_reached)[v]; } |
1587 | 1590 |
///@} |
1588 | 1591 |
}; |
1589 | 1592 |
|
1590 | 1593 |
} //END OF NAMESPACE LEMON |
1591 | 1594 |
|
1592 | 1595 |
#endif |
1593 | 1596 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPT_MAPS_H |
20 | 20 |
#define LEMON_CONCEPT_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <lemon/bits/utility.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
///\ingroup concept |
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
|
38 | 38 |
/// Readable map concept. |
39 | 39 |
/// |
40 | 40 |
template<typename K, typename T> |
41 | 41 |
class ReadMap |
42 | 42 |
{ |
43 | 43 |
public: |
44 | 44 |
/// The key type of the map. |
45 | 45 |
typedef K Key; |
46 |
/// The value type of the map. |
|
46 |
/// \brief The value type of the map. |
|
47 |
/// (The type of objects associated with the keys). |
|
47 | 48 |
typedef T Value; |
48 | 49 |
|
49 | 50 |
/// Returns the value associated with the given key. |
50 | 51 |
Value operator[](const Key &) const { |
51 | 52 |
return *static_cast<Value *>(0); |
52 | 53 |
} |
53 | 54 |
|
54 | 55 |
template<typename _ReadMap> |
55 | 56 |
struct Constraints { |
56 | 57 |
void constraints() { |
57 | 58 |
Value val = m[key]; |
58 | 59 |
val = m[key]; |
59 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
60 | 61 |
own_val = m[own_key]; |
61 | 62 |
|
62 | 63 |
ignore_unused_variable_warning(key); |
63 | 64 |
ignore_unused_variable_warning(val); |
64 | 65 |
ignore_unused_variable_warning(own_key); |
65 | 66 |
ignore_unused_variable_warning(own_val); |
66 | 67 |
} |
67 | 68 |
const Key& key; |
68 | 69 |
const typename _ReadMap::Key& own_key; |
69 | 70 |
const _ReadMap& m; |
70 | 71 |
}; |
71 | 72 |
|
72 | 73 |
}; |
73 | 74 |
|
74 | 75 |
|
75 | 76 |
/// Writable map concept |
76 | 77 |
|
77 | 78 |
/// Writable map concept. |
78 | 79 |
/// |
79 | 80 |
template<typename K, typename T> |
80 | 81 |
class WriteMap |
81 | 82 |
{ |
82 | 83 |
public: |
83 | 84 |
/// The key type of the map. |
84 | 85 |
typedef K Key; |
85 |
/// The value type of the map. |
|
86 |
/// \brief The value type of the map. |
|
87 |
/// (The type of objects associated with the keys). |
|
86 | 88 |
typedef T Value; |
87 | 89 |
|
88 | 90 |
/// Sets the value associated with the given key. |
89 | 91 |
void set(const Key &, const Value &) {} |
90 | 92 |
|
91 | 93 |
/// Default constructor. |
92 | 94 |
WriteMap() {} |
93 | 95 |
|
94 | 96 |
template <typename _WriteMap> |
95 | 97 |
struct Constraints { |
96 | 98 |
void constraints() { |
97 | 99 |
m.set(key, val); |
98 | 100 |
m.set(own_key, own_val); |
99 | 101 |
|
100 | 102 |
ignore_unused_variable_warning(key); |
101 | 103 |
ignore_unused_variable_warning(val); |
102 | 104 |
ignore_unused_variable_warning(own_key); |
103 | 105 |
ignore_unused_variable_warning(own_val); |
104 | 106 |
} |
105 | 107 |
const Key& key; |
106 | 108 |
const Value& val; |
107 | 109 |
const typename _WriteMap::Key& own_key; |
108 | 110 |
const typename _WriteMap::Value& own_val; |
109 | 111 |
_WriteMap& m; |
110 | 112 |
}; |
111 | 113 |
}; |
112 | 114 |
|
113 | 115 |
/// Read/writable map concept |
114 | 116 |
|
115 | 117 |
/// Read/writable map concept. |
116 | 118 |
/// |
117 | 119 |
template<typename K, typename T> |
118 | 120 |
class ReadWriteMap : public ReadMap<K,T>, |
119 | 121 |
public WriteMap<K,T> |
120 | 122 |
{ |
121 | 123 |
public: |
122 | 124 |
/// The key type of the map. |
123 | 125 |
typedef K Key; |
124 |
/// The value type of the map. |
|
126 |
/// \brief The value type of the map. |
|
127 |
/// (The type of objects associated with the keys). |
|
125 | 128 |
typedef T Value; |
126 | 129 |
|
127 | 130 |
/// Returns the value associated with the given key. |
128 | 131 |
Value operator[](const Key &) const { |
129 | 132 |
return *static_cast<Value *>(0); |
130 | 133 |
} |
131 | 134 |
|
132 | 135 |
/// Sets the value associated with the given key. |
133 | 136 |
void set(const Key &, const Value &) {} |
134 | 137 |
|
135 | 138 |
template<typename _ReadWriteMap> |
136 | 139 |
struct Constraints { |
137 | 140 |
void constraints() { |
138 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
139 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
140 | 143 |
} |
141 | 144 |
}; |
142 | 145 |
}; |
143 | 146 |
|
144 | 147 |
|
145 | 148 |
/// Dereferable map concept |
146 | 149 |
|
147 | 150 |
/// Dereferable map concept. |
148 | 151 |
/// |
149 | 152 |
template<typename K, typename T, typename R, typename CR> |
150 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
151 | 154 |
{ |
152 | 155 |
public: |
153 | 156 |
/// Tag for reference maps. |
154 | 157 |
typedef True ReferenceMapTag; |
155 | 158 |
/// The key type of the map. |
156 | 159 |
typedef K Key; |
157 |
/// The value type of the map. |
|
160 |
/// \brief The value type of the map. |
|
161 |
/// (The type of objects associated with the keys). |
|
158 | 162 |
typedef T Value; |
159 | 163 |
/// The reference type of the map. |
160 | 164 |
typedef R Reference; |
161 | 165 |
/// The const reference type of the map. |
162 | 166 |
typedef CR ConstReference; |
163 | 167 |
|
164 | 168 |
public: |
165 | 169 |
|
166 | 170 |
/// Returns a reference to the value associated with the given key. |
167 | 171 |
Reference operator[](const Key &) { |
168 | 172 |
return *static_cast<Value *>(0); |
169 | 173 |
} |
170 | 174 |
|
171 | 175 |
/// Returns a const reference to the value associated with the given key. |
172 | 176 |
ConstReference operator[](const Key &) const { |
173 | 177 |
return *static_cast<Value *>(0); |
174 | 178 |
} |
175 | 179 |
|
176 | 180 |
/// Sets the value associated with the given key. |
177 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
178 | 182 |
|
179 | 183 |
template<typename _ReferenceMap> |
180 | 184 |
struct Constraints { |
181 | 185 |
void constraints() { |
182 | 186 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
183 | 187 |
ref = m[key]; |
184 | 188 |
m[key] = val; |
185 | 189 |
m[key] = ref; |
186 | 190 |
m[key] = cref; |
187 | 191 |
own_ref = m[own_key]; |
188 | 192 |
m[own_key] = own_val; |
189 | 193 |
m[own_key] = own_ref; |
190 | 194 |
m[own_key] = own_cref; |
191 | 195 |
m[key] = m[own_key]; |
192 | 196 |
m[own_key] = m[key]; |
193 | 197 |
} |
194 | 198 |
const Key& key; |
195 | 199 |
Value& val; |
196 | 200 |
Reference ref; |
197 | 201 |
ConstReference cref; |
198 | 202 |
const typename _ReferenceMap::Key& own_key; |
199 | 203 |
typename _ReferenceMap::Value& own_val; |
200 | 204 |
typename _ReferenceMap::Reference own_ref; |
201 | 205 |
typename _ReferenceMap::ConstReference own_cref; |
202 | 206 |
_ReferenceMap& m; |
203 | 207 |
}; |
204 | 208 |
}; |
205 | 209 |
|
206 | 210 |
// @} |
207 | 211 |
|
208 | 212 |
} //namespace concepts |
209 | 213 |
|
210 | 214 |
} //namespace lemon |
211 | 215 |
|
212 | 216 |
#endif // LEMON_CONCEPT_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Dfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/graph_utils.h> |
28 | 28 |
#include <lemon/bits/path_dump.h> |
29 | 29 |
#include <lemon/bits/invalid.h> |
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/concept_check.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
|
38 | 38 |
///Default traits class of Dfs class. |
39 | 39 |
|
40 | 40 |
///Default traits class of Dfs class. |
41 | 41 |
///\tparam GR Digraph type. |
42 | 42 |
template<class GR> |
43 | 43 |
struct DfsDefaultTraits |
44 | 44 |
{ |
45 | 45 |
///The digraph type the algorithm runs on. |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
///\brief The type of the map that stores the last |
48 | 48 |
///arcs of the %DFS paths. |
49 | 49 |
/// |
50 | 50 |
///The type of the map that stores the last |
51 | 51 |
///arcs of the %DFS paths. |
52 | 52 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
53 | 53 |
/// |
54 | 54 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
55 | 55 |
///Instantiates a PredMap. |
56 | 56 |
|
57 | 57 |
///This function instantiates a \ref PredMap. |
58 | 58 |
///\param G is the digraph, to which we would like to define the PredMap. |
59 | 59 |
///\todo The digraph alone may be insufficient to initialize |
60 | 60 |
static PredMap *createPredMap(const GR &G) |
61 | 61 |
{ |
62 | 62 |
return new PredMap(G); |
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
|
67 | 67 |
///The type of the map that indicates which nodes are processed. |
68 | 68 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
69 | 69 |
///\todo named parameter to set this type, function to read and write. |
70 | 70 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
71 | 71 |
///Instantiates a ProcessedMap. |
72 | 72 |
|
73 | 73 |
///This function instantiates a \ref ProcessedMap. |
74 | 74 |
///\param g is the digraph, to which |
75 | 75 |
///we would like to define the \ref ProcessedMap |
76 | 76 |
#ifdef DOXYGEN |
77 | 77 |
static ProcessedMap *createProcessedMap(const GR &g) |
78 | 78 |
#else |
79 | 79 |
static ProcessedMap *createProcessedMap(const GR &) |
80 | 80 |
#endif |
81 | 81 |
{ |
82 | 82 |
return new ProcessedMap(); |
83 | 83 |
} |
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
|
86 | 86 |
///The type of the map that indicates which nodes are reached. |
87 | 87 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
88 | 88 |
///\todo named parameter to set this type, function to read and write. |
89 | 89 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
90 | 90 |
///Instantiates a ReachedMap. |
91 | 91 |
|
92 | 92 |
///This function instantiates a \ref ReachedMap. |
93 | 93 |
///\param G is the digraph, to which |
94 | 94 |
///we would like to define the \ref ReachedMap. |
95 | 95 |
static ReachedMap *createReachedMap(const GR &G) |
96 | 96 |
{ |
97 | 97 |
return new ReachedMap(G); |
98 | 98 |
} |
99 | 99 |
///The type of the map that stores the dists of the nodes. |
100 | 100 |
|
101 | 101 |
///The type of the map that stores the dists of the nodes. |
102 | 102 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
103 | 103 |
/// |
104 | 104 |
typedef typename Digraph::template NodeMap<int> DistMap; |
105 | 105 |
///Instantiates a DistMap. |
106 | 106 |
|
107 | 107 |
///This function instantiates a \ref DistMap. |
108 |
///\param G is the digraph, to which we would like to define |
|
108 |
///\param G is the digraph, to which we would like to define |
|
109 |
///the \ref DistMap |
|
109 | 110 |
static DistMap *createDistMap(const GR &G) |
110 | 111 |
{ |
111 | 112 |
return new DistMap(G); |
112 | 113 |
} |
113 | 114 |
}; |
114 | 115 |
|
115 | 116 |
///%DFS algorithm class. |
116 | 117 |
|
117 | 118 |
///\ingroup search |
118 | 119 |
///This class provides an efficient implementation of the %DFS algorithm. |
119 | 120 |
/// |
120 | 121 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
121 | 122 |
///\ref ListDigraph. The value of GR is not used directly by Dfs, it |
122 | 123 |
///is only passed to \ref DfsDefaultTraits. |
123 | 124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
124 | 125 |
///The default traits class is |
125 | 126 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
126 | 127 |
///See \ref DfsDefaultTraits for the documentation of |
127 | 128 |
///a Dfs traits class. |
128 | 129 |
#ifdef DOXYGEN |
129 | 130 |
template <typename GR, |
130 | 131 |
typename TR> |
131 | 132 |
#else |
132 | 133 |
template <typename GR=ListDigraph, |
133 | 134 |
typename TR=DfsDefaultTraits<GR> > |
134 | 135 |
#endif |
135 | 136 |
class Dfs { |
136 | 137 |
public: |
137 | 138 |
/** |
138 | 139 |
* \brief \ref Exception for uninitialized parameters. |
139 | 140 |
* |
140 | 141 |
* This error represents problems in the initialization |
141 | 142 |
* of the parameters of the algorithms. |
142 | 143 |
*/ |
143 | 144 |
class UninitializedParameter : public lemon::UninitializedParameter { |
144 | 145 |
public: |
145 | 146 |
virtual const char* what() const throw() { |
146 | 147 |
return "lemon::Dfs::UninitializedParameter"; |
147 | 148 |
} |
148 | 149 |
}; |
149 | 150 |
|
150 | 151 |
typedef TR Traits; |
151 | 152 |
///The type of the underlying digraph. |
152 | 153 |
typedef typename TR::Digraph Digraph; |
153 | 154 |
///\e |
154 | 155 |
typedef typename Digraph::Node Node; |
155 | 156 |
///\e |
156 | 157 |
typedef typename Digraph::NodeIt NodeIt; |
157 | 158 |
///\e |
158 | 159 |
typedef typename Digraph::Arc Arc; |
159 | 160 |
///\e |
160 | 161 |
typedef typename Digraph::OutArcIt OutArcIt; |
161 | 162 |
|
162 | 163 |
///\brief The type of the map that stores the last |
163 | 164 |
///arcs of the %DFS paths. |
164 | 165 |
typedef typename TR::PredMap PredMap; |
165 | 166 |
///The type of the map indicating which nodes are reached. |
166 | 167 |
typedef typename TR::ReachedMap ReachedMap; |
167 | 168 |
///The type of the map indicating which nodes are processed. |
168 | 169 |
typedef typename TR::ProcessedMap ProcessedMap; |
169 | 170 |
///The type of the map that stores the dists of the nodes. |
170 | 171 |
typedef typename TR::DistMap DistMap; |
171 | 172 |
private: |
172 | 173 |
/// Pointer to the underlying digraph. |
173 | 174 |
const Digraph *G; |
174 | 175 |
///Pointer to the map of predecessors arcs. |
175 | 176 |
PredMap *_pred; |
176 | 177 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
177 | 178 |
bool local_pred; |
178 | 179 |
///Pointer to the map of distances. |
179 | 180 |
DistMap *_dist; |
180 | 181 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
181 | 182 |
bool local_dist; |
182 | 183 |
///Pointer to the map of reached status of the nodes. |
183 | 184 |
ReachedMap *_reached; |
184 | 185 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
185 | 186 |
bool local_reached; |
186 | 187 |
///Pointer to the map of processed status of the nodes. |
187 | 188 |
ProcessedMap *_processed; |
188 | 189 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
189 | 190 |
bool local_processed; |
190 | 191 |
|
191 | 192 |
std::vector<typename Digraph::OutArcIt> _stack; |
192 | 193 |
int _stack_head; |
193 | 194 |
|
194 | 195 |
///Creates the maps if necessary. |
195 | 196 |
|
196 | 197 |
///\todo Better memory allocation (instead of new). |
197 | 198 |
void create_maps() |
198 | 199 |
{ |
199 | 200 |
if(!_pred) { |
200 | 201 |
local_pred = true; |
201 | 202 |
_pred = Traits::createPredMap(*G); |
202 | 203 |
} |
203 | 204 |
if(!_dist) { |
204 | 205 |
local_dist = true; |
205 | 206 |
_dist = Traits::createDistMap(*G); |
206 | 207 |
} |
207 | 208 |
if(!_reached) { |
208 | 209 |
local_reached = true; |
209 | 210 |
_reached = Traits::createReachedMap(*G); |
210 | 211 |
} |
211 | 212 |
if(!_processed) { |
212 | 213 |
local_processed = true; |
213 | 214 |
_processed = Traits::createProcessedMap(*G); |
214 | 215 |
} |
215 | 216 |
} |
216 | 217 |
|
217 | 218 |
protected: |
218 | 219 |
|
219 | 220 |
Dfs() {} |
220 | 221 |
|
221 | 222 |
public: |
222 | 223 |
|
223 | 224 |
typedef Dfs Create; |
224 | 225 |
|
225 | 226 |
///\name Named template parameters |
226 | 227 |
|
227 | 228 |
///@{ |
228 | 229 |
|
229 | 230 |
template <class T> |
230 | 231 |
struct DefPredMapTraits : public Traits { |
231 | 232 |
typedef T PredMap; |
232 | 233 |
static PredMap *createPredMap(const Digraph &G) |
233 | 234 |
{ |
234 | 235 |
throw UninitializedParameter(); |
235 | 236 |
} |
236 | 237 |
}; |
237 | 238 |
///\brief \ref named-templ-param "Named parameter" for setting |
238 | 239 |
///PredMap type |
239 | 240 |
/// |
240 | 241 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
241 | 242 |
/// |
242 | 243 |
template <class T> |
243 | 244 |
struct DefPredMap : public Dfs<Digraph, DefPredMapTraits<T> > { |
244 | 245 |
typedef Dfs<Digraph, DefPredMapTraits<T> > Create; |
245 | 246 |
}; |
246 | 247 |
|
247 | 248 |
|
248 | 249 |
template <class T> |
249 | 250 |
struct DefDistMapTraits : public Traits { |
250 | 251 |
typedef T DistMap; |
251 | 252 |
static DistMap *createDistMap(const Digraph &) |
252 | 253 |
{ |
253 | 254 |
throw UninitializedParameter(); |
254 | 255 |
} |
255 | 256 |
}; |
256 | 257 |
///\brief \ref named-templ-param "Named parameter" for setting |
257 | 258 |
///DistMap type |
258 | 259 |
/// |
259 | 260 |
///\ref named-templ-param "Named parameter" for setting DistMap |
260 | 261 |
///type |
261 | 262 |
template <class T> |
262 | 263 |
struct DefDistMap { |
263 | 264 |
typedef Dfs<Digraph, DefDistMapTraits<T> > Create; |
264 | 265 |
}; |
265 | 266 |
|
266 | 267 |
template <class T> |
267 | 268 |
struct DefReachedMapTraits : public Traits { |
268 | 269 |
typedef T ReachedMap; |
269 | 270 |
static ReachedMap *createReachedMap(const Digraph &) |
270 | 271 |
{ |
271 | 272 |
throw UninitializedParameter(); |
272 | 273 |
} |
273 | 274 |
}; |
274 | 275 |
///\brief \ref named-templ-param "Named parameter" for setting |
275 | 276 |
///ReachedMap type |
276 | 277 |
/// |
277 | 278 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type |
278 | 279 |
/// |
279 | 280 |
template <class T> |
280 | 281 |
struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits<T> > { |
281 | 282 |
typedef Dfs< Digraph, DefReachedMapTraits<T> > Create; |
282 | 283 |
}; |
283 | 284 |
|
284 | 285 |
template <class T> |
285 | 286 |
struct DefProcessedMapTraits : public Traits { |
286 | 287 |
typedef T ProcessedMap; |
287 | 288 |
static ProcessedMap *createProcessedMap(const Digraph &) |
288 | 289 |
{ |
289 | 290 |
throw UninitializedParameter(); |
290 | 291 |
} |
291 | 292 |
}; |
292 | 293 |
///\brief \ref named-templ-param "Named parameter" for setting |
293 | 294 |
///ProcessedMap type |
294 | 295 |
/// |
295 | 296 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
296 | 297 |
/// |
297 | 298 |
template <class T> |
298 | 299 |
struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits<T> > { |
299 | 300 |
typedef Dfs< Digraph, DefProcessedMapTraits<T> > Create; |
300 | 301 |
}; |
301 | 302 |
|
302 | 303 |
struct DefDigraphProcessedMapTraits : public Traits { |
303 | 304 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
304 | 305 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
305 | 306 |
{ |
306 | 307 |
return new ProcessedMap(G); |
307 | 308 |
} |
308 | 309 |
}; |
309 | 310 |
///\brief \ref named-templ-param "Named parameter" |
310 | 311 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
311 | 312 |
/// |
312 | 313 |
///\ref named-templ-param "Named parameter" |
313 | 314 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
314 | 315 |
///If you don't set it explicitely, it will be automatically allocated. |
315 | 316 |
template <class T> |
316 | 317 |
class DefProcessedMapToBeDefaultMap : |
317 | 318 |
public Dfs< Digraph, DefDigraphProcessedMapTraits> { |
318 | 319 |
typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create; |
319 | 320 |
}; |
320 | 321 |
|
321 | 322 |
///@} |
322 | 323 |
|
323 | 324 |
public: |
324 | 325 |
|
325 | 326 |
///Constructor. |
326 | 327 |
|
327 | 328 |
///\param _G the digraph the algorithm will run on. |
328 | 329 |
/// |
329 | 330 |
Dfs(const Digraph& _G) : |
330 | 331 |
G(&_G), |
331 | 332 |
_pred(NULL), local_pred(false), |
332 | 333 |
_dist(NULL), local_dist(false), |
333 | 334 |
_reached(NULL), local_reached(false), |
334 | 335 |
_processed(NULL), local_processed(false) |
335 | 336 |
{ } |
336 | 337 |
|
337 | 338 |
///Destructor. |
338 | 339 |
~Dfs() |
339 | 340 |
{ |
340 | 341 |
if(local_pred) delete _pred; |
341 | 342 |
if(local_dist) delete _dist; |
342 | 343 |
if(local_reached) delete _reached; |
343 | 344 |
if(local_processed) delete _processed; |
344 | 345 |
} |
345 | 346 |
|
346 | 347 |
///Sets the map storing the predecessor arcs. |
347 | 348 |
|
348 | 349 |
///Sets the map storing the predecessor arcs. |
349 | 350 |
///If you don't use this function before calling \ref run(), |
350 | 351 |
///it will allocate one. The destuctor deallocates this |
351 | 352 |
///automatically allocated map, of course. |
352 | 353 |
///\return <tt> (*this) </tt> |
353 | 354 |
Dfs &predMap(PredMap &m) |
354 | 355 |
{ |
355 | 356 |
if(local_pred) { |
356 | 357 |
delete _pred; |
357 | 358 |
local_pred=false; |
358 | 359 |
} |
359 | 360 |
_pred = &m; |
360 | 361 |
return *this; |
361 | 362 |
} |
362 | 363 |
|
363 | 364 |
///Sets the map storing the distances calculated by the algorithm. |
364 | 365 |
|
365 | 366 |
///Sets the map storing the distances calculated by the algorithm. |
366 | 367 |
///If you don't use this function before calling \ref run(), |
367 | 368 |
///it will allocate one. The destuctor deallocates this |
368 | 369 |
///automatically allocated map, of course. |
369 | 370 |
///\return <tt> (*this) </tt> |
370 | 371 |
Dfs &distMap(DistMap &m) |
371 | 372 |
{ |
372 | 373 |
if(local_dist) { |
373 | 374 |
delete _dist; |
374 | 375 |
local_dist=false; |
375 | 376 |
} |
376 | 377 |
_dist = &m; |
377 | 378 |
return *this; |
378 | 379 |
} |
379 | 380 |
|
380 | 381 |
///Sets the map indicating if a node is reached. |
381 | 382 |
|
382 | 383 |
///Sets the map indicating if a node is reached. |
383 | 384 |
///If you don't use this function before calling \ref run(), |
384 | 385 |
///it will allocate one. The destuctor deallocates this |
385 | 386 |
///automatically allocated map, of course. |
386 | 387 |
///\return <tt> (*this) </tt> |
387 | 388 |
Dfs &reachedMap(ReachedMap &m) |
388 | 389 |
{ |
389 | 390 |
if(local_reached) { |
390 | 391 |
delete _reached; |
391 | 392 |
local_reached=false; |
392 | 393 |
} |
393 | 394 |
_reached = &m; |
394 | 395 |
return *this; |
395 | 396 |
} |
396 | 397 |
|
397 | 398 |
///Sets the map indicating if a node is processed. |
398 | 399 |
|
399 | 400 |
///Sets the map indicating if a node is processed. |
400 | 401 |
///If you don't use this function before calling \ref run(), |
401 | 402 |
///it will allocate one. The destuctor deallocates this |
402 | 403 |
///automatically allocated map, of course. |
403 | 404 |
///\return <tt> (*this) </tt> |
404 | 405 |
Dfs &processedMap(ProcessedMap &m) |
405 | 406 |
{ |
406 | 407 |
if(local_processed) { |
407 | 408 |
delete _processed; |
408 | 409 |
local_processed=false; |
409 | 410 |
} |
410 | 411 |
_processed = &m; |
411 | 412 |
return *this; |
412 | 413 |
} |
413 | 414 |
|
414 | 415 |
public: |
415 | 416 |
///\name Execution control |
416 | 417 |
///The simplest way to execute the algorithm is to use |
417 | 418 |
///one of the member functions called \c run(...). |
418 | 419 |
///\n |
419 | 420 |
///If you need more control on the execution, |
420 | 421 |
///first you must call \ref init(), then you can add a source node |
421 | 422 |
///with \ref addSource(). |
422 | 423 |
///Finally \ref start() will perform the actual path |
423 | 424 |
///computation. |
424 | 425 |
|
425 | 426 |
///@{ |
426 | 427 |
|
427 | 428 |
///Initializes the internal data structures. |
428 | 429 |
|
429 | 430 |
///Initializes the internal data structures. |
430 | 431 |
/// |
431 | 432 |
void init() |
432 | 433 |
{ |
433 | 434 |
create_maps(); |
434 | 435 |
_stack.resize(countNodes(*G)); |
435 | 436 |
_stack_head=-1; |
436 | 437 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
437 | 438 |
_pred->set(u,INVALID); |
438 | 439 |
// _predNode->set(u,INVALID); |
439 | 440 |
_reached->set(u,false); |
440 | 441 |
_processed->set(u,false); |
441 | 442 |
} |
442 | 443 |
} |
443 | 444 |
|
444 | 445 |
///Adds a new source node. |
445 | 446 |
|
446 | 447 |
///Adds a new source node to the set of nodes to be processed. |
447 | 448 |
/// |
448 | 449 |
///\warning dists are wrong (or at least strange) |
449 | 450 |
///in case of multiple sources. |
450 | 451 |
void addSource(Node s) |
451 | 452 |
{ |
452 | 453 |
if(!(*_reached)[s]) |
453 | 454 |
{ |
454 | 455 |
_reached->set(s,true); |
455 | 456 |
_pred->set(s,INVALID); |
456 | 457 |
OutArcIt e(*G,s); |
457 | 458 |
if(e!=INVALID) { |
458 | 459 |
_stack[++_stack_head]=e; |
459 | 460 |
_dist->set(s,_stack_head); |
460 | 461 |
} |
461 | 462 |
else { |
462 | 463 |
_processed->set(s,true); |
463 | 464 |
_dist->set(s,0); |
464 | 465 |
} |
465 | 466 |
} |
466 | 467 |
} |
467 | 468 |
|
468 | 469 |
///Processes the next arc. |
469 | 470 |
|
470 | 471 |
///Processes the next arc. |
471 | 472 |
/// |
472 | 473 |
///\return The processed arc. |
473 | 474 |
/// |
474 | 475 |
///\pre The stack must not be empty! |
475 | 476 |
Arc processNextArc() |
476 | 477 |
{ |
477 | 478 |
Node m; |
478 | 479 |
Arc e=_stack[_stack_head]; |
479 | 480 |
if(!(*_reached)[m=G->target(e)]) { |
480 | 481 |
_pred->set(m,e); |
481 | 482 |
_reached->set(m,true); |
482 | 483 |
++_stack_head; |
483 | 484 |
_stack[_stack_head] = OutArcIt(*G, m); |
484 | 485 |
_dist->set(m,_stack_head); |
485 | 486 |
} |
486 | 487 |
else { |
487 | 488 |
m=G->source(e); |
488 | 489 |
++_stack[_stack_head]; |
489 | 490 |
} |
490 | 491 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
491 | 492 |
_processed->set(m,true); |
492 | 493 |
--_stack_head; |
493 | 494 |
if(_stack_head>=0) { |
494 | 495 |
m=G->source(_stack[_stack_head]); |
495 | 496 |
++_stack[_stack_head]; |
496 | 497 |
} |
497 | 498 |
} |
498 | 499 |
return e; |
499 | 500 |
} |
500 | 501 |
///Next arc to be processed. |
501 | 502 |
|
502 | 503 |
///Next arc to be processed. |
503 | 504 |
/// |
504 | 505 |
///\return The next arc to be processed or INVALID if the stack is |
505 | 506 |
/// empty. |
506 | 507 |
OutArcIt nextArc() |
507 | 508 |
{ |
508 | 509 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
509 | 510 |
} |
510 | 511 |
|
511 | 512 |
///\brief Returns \c false if there are nodes |
512 | 513 |
///to be processed in the queue |
513 | 514 |
/// |
514 | 515 |
///Returns \c false if there are nodes |
515 | 516 |
///to be processed in the queue |
516 | 517 |
bool emptyQueue() { return _stack_head<0; } |
517 | 518 |
///Returns the number of the nodes to be processed. |
518 | 519 |
|
519 | 520 |
///Returns the number of the nodes to be processed in the queue. |
520 | 521 |
int queueSize() { return _stack_head+1; } |
521 | 522 |
|
522 | 523 |
///Executes the algorithm. |
523 | 524 |
|
524 | 525 |
///Executes the algorithm. |
525 | 526 |
/// |
526 | 527 |
///\pre init() must be called and at least one node should be added |
527 | 528 |
///with addSource() before using this function. |
528 | 529 |
/// |
529 | 530 |
///This method runs the %DFS algorithm from the root node(s) |
530 | 531 |
///in order to |
531 | 532 |
///compute the |
532 | 533 |
///%DFS path to each node. The algorithm computes |
533 | 534 |
///- The %DFS tree. |
534 | 535 |
///- The distance of each node from the root(s) in the %DFS tree. |
535 | 536 |
/// |
536 | 537 |
void start() |
537 | 538 |
{ |
538 | 539 |
while ( !emptyQueue() ) processNextArc(); |
539 | 540 |
} |
540 | 541 |
|
541 | 542 |
///Executes the algorithm until \c dest is reached. |
542 | 543 |
|
543 | 544 |
///Executes the algorithm until \c dest is reached. |
544 | 545 |
/// |
545 | 546 |
///\pre init() must be called and at least one node should be added |
546 | 547 |
///with addSource() before using this function. |
547 | 548 |
/// |
548 | 549 |
///This method runs the %DFS algorithm from the root node(s) |
549 | 550 |
///in order to |
550 | 551 |
///compute the |
551 | 552 |
///%DFS path to \c dest. The algorithm computes |
552 | 553 |
///- The %DFS path to \c dest. |
553 | 554 |
///- The distance of \c dest from the root(s) in the %DFS tree. |
554 | 555 |
/// |
555 | 556 |
void start(Node dest) |
556 | 557 |
{ |
557 | 558 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) |
558 | 559 |
processNextArc(); |
559 | 560 |
} |
560 | 561 |
|
561 | 562 |
///Executes the algorithm until a condition is met. |
562 | 563 |
|
563 | 564 |
///Executes the algorithm until a condition is met. |
564 | 565 |
/// |
565 | 566 |
///\pre init() must be called and at least one node should be added |
566 | 567 |
///with addSource() before using this function. |
567 | 568 |
/// |
568 | 569 |
///\param em must be a bool (or convertible) arc map. The algorithm |
569 | 570 |
///will stop when it reaches an arc \c e with <tt>em[e]</tt> true. |
570 | 571 |
/// |
571 | 572 |
///\return The reached arc \c e with <tt>em[e]</tt> true or |
572 | 573 |
///\c INVALID if no such arc was found. |
573 | 574 |
/// |
574 | 575 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, |
575 | 576 |
///not a node map. |
576 | 577 |
template<class EM> |
577 | 578 |
Arc start(const EM &em) |
578 | 579 |
{ |
579 | 580 |
while ( !emptyQueue() && !em[_stack[_stack_head]] ) |
580 | 581 |
processNextArc(); |
581 | 582 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
582 | 583 |
} |
583 | 584 |
|
584 | 585 |
///Runs %DFS algorithm to visit all nodes in the digraph. |
585 | 586 |
|
586 | 587 |
///This method runs the %DFS algorithm in order to |
587 | 588 |
///compute the |
588 | 589 |
///%DFS path to each node. The algorithm computes |
589 | 590 |
///- The %DFS tree. |
590 | 591 |
///- The distance of each node from the root in the %DFS tree. |
591 | 592 |
/// |
592 | 593 |
///\note d.run() is just a shortcut of the following code. |
593 | 594 |
///\code |
594 | 595 |
/// d.init(); |
595 | 596 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
596 | 597 |
/// if (!d.reached(it)) { |
597 | 598 |
/// d.addSource(it); |
598 | 599 |
/// d.start(); |
599 | 600 |
/// } |
600 | 601 |
/// } |
601 | 602 |
///\endcode |
602 | 603 |
void run() { |
603 | 604 |
init(); |
604 | 605 |
for (NodeIt it(*G); it != INVALID; ++it) { |
605 | 606 |
if (!reached(it)) { |
606 | 607 |
addSource(it); |
607 | 608 |
start(); |
608 | 609 |
} |
609 | 610 |
} |
610 | 611 |
} |
611 | 612 |
|
612 | 613 |
///Runs %DFS algorithm from node \c s. |
613 | 614 |
|
614 | 615 |
///This method runs the %DFS algorithm from a root node \c s |
615 | 616 |
///in order to |
616 | 617 |
///compute the |
617 | 618 |
///%DFS path to each node. The algorithm computes |
618 | 619 |
///- The %DFS tree. |
619 | 620 |
///- The distance of each node from the root in the %DFS tree. |
620 | 621 |
/// |
621 | 622 |
///\note d.run(s) is just a shortcut of the following code. |
622 | 623 |
///\code |
623 | 624 |
/// d.init(); |
624 | 625 |
/// d.addSource(s); |
625 | 626 |
/// d.start(); |
626 | 627 |
///\endcode |
627 | 628 |
void run(Node s) { |
628 | 629 |
init(); |
629 | 630 |
addSource(s); |
630 | 631 |
start(); |
631 | 632 |
} |
632 | 633 |
|
633 | 634 |
///Finds the %DFS path between \c s and \c t. |
634 | 635 |
|
635 | 636 |
///Finds the %DFS path between \c s and \c t. |
636 | 637 |
/// |
637 | 638 |
///\return The length of the %DFS s---t path if there exists one, |
638 | 639 |
///0 otherwise. |
639 | 640 |
///\note Apart from the return value, d.run(s,t) is |
640 | 641 |
///just a shortcut of the following code. |
641 | 642 |
///\code |
642 | 643 |
/// d.init(); |
643 | 644 |
/// d.addSource(s); |
644 | 645 |
/// d.start(t); |
645 | 646 |
///\endcode |
646 | 647 |
int run(Node s,Node t) { |
647 | 648 |
init(); |
648 | 649 |
addSource(s); |
649 | 650 |
start(t); |
650 | 651 |
return reached(t)?_stack_head+1:0; |
651 | 652 |
} |
652 | 653 |
|
653 | 654 |
///@} |
654 | 655 |
|
655 | 656 |
///\name Query Functions |
656 | 657 |
///The result of the %DFS algorithm can be obtained using these |
657 | 658 |
///functions.\n |
658 | 659 |
///Before the use of these functions, |
659 | 660 |
///either run() or start() must be called. |
660 | 661 |
|
661 | 662 |
///@{ |
662 | 663 |
|
663 | 664 |
typedef PredMapPath<Digraph, PredMap> Path; |
664 | 665 |
|
665 | 666 |
///Gives back the shortest path. |
666 | 667 |
|
667 | 668 |
///Gives back the shortest path. |
668 | 669 |
///\pre The \c t should be reachable from the source. |
669 | 670 |
Path path(Node t) |
670 | 671 |
{ |
671 | 672 |
return Path(*G, *_pred, t); |
672 | 673 |
} |
673 | 674 |
|
674 | 675 |
///The distance of a node from the root(s). |
675 | 676 |
|
676 | 677 |
///Returns the distance of a node from the root(s). |
677 | 678 |
///\pre \ref run() must be called before using this function. |
678 | 679 |
///\warning If node \c v is unreachable from the root(s) then the return |
679 | 680 |
///value of this funcion is undefined. |
680 | 681 |
int dist(Node v) const { return (*_dist)[v]; } |
681 | 682 |
|
682 | 683 |
///Returns the 'previous arc' of the %DFS tree. |
683 | 684 |
|
684 | 685 |
///For a node \c v it returns the 'previous arc' |
685 | 686 |
///of the %DFS path, |
686 | 687 |
///i.e. it returns the last arc of a %DFS path from the root(s) to \c |
687 | 688 |
///v. It is \ref INVALID |
688 | 689 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
689 | 690 |
///%DFS tree used here is equal to the %DFS tree used in |
690 | 691 |
///\ref predNode(). |
691 | 692 |
///\pre Either \ref run() or \ref start() must be called before using |
692 | 693 |
///this function. |
693 | 694 |
Arc predArc(Node v) const { return (*_pred)[v];} |
694 | 695 |
|
695 | 696 |
///Returns the 'previous node' of the %DFS tree. |
696 | 697 |
|
697 | 698 |
///For a node \c v it returns the 'previous node' |
698 | 699 |
///of the %DFS tree, |
699 | 700 |
///i.e. it returns the last but one node from a %DFS path from the |
700 | 701 |
///root(s) to \c v. |
701 | 702 |
///It is INVALID if \c v is unreachable from the root(s) or |
702 | 703 |
///if \c v itself a root. |
703 | 704 |
///The %DFS tree used here is equal to the %DFS |
704 | 705 |
///tree used in \ref predArc(). |
705 | 706 |
///\pre Either \ref run() or \ref start() must be called before |
706 | 707 |
///using this function. |
707 | 708 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
708 | 709 |
G->source((*_pred)[v]); } |
709 | 710 |
|
710 | 711 |
///Returns a reference to the NodeMap of distances. |
711 | 712 |
|
712 | 713 |
///Returns a reference to the NodeMap of distances. |
713 | 714 |
///\pre Either \ref run() or \ref init() must |
714 | 715 |
///be called before using this function. |
715 | 716 |
const DistMap &distMap() const { return *_dist;} |
716 | 717 |
|
717 | 718 |
///Returns a reference to the %DFS arc-tree map. |
718 | 719 |
|
719 | 720 |
///Returns a reference to the NodeMap of the arcs of the |
720 | 721 |
///%DFS tree. |
721 | 722 |
///\pre Either \ref run() or \ref init() |
722 | 723 |
///must be called before using this function. |
723 | 724 |
const PredMap &predMap() const { return *_pred;} |
724 | 725 |
|
725 | 726 |
///Checks if a node is reachable from the root. |
726 | 727 |
|
727 | 728 |
///Returns \c true if \c v is reachable from the root(s). |
728 | 729 |
///\warning The source nodes are inditated as unreachable. |
729 | 730 |
///\pre Either \ref run() or \ref start() |
730 | 731 |
///must be called before using this function. |
731 | 732 |
/// |
732 | 733 |
bool reached(Node v) { return (*_reached)[v]; } |
733 | 734 |
|
734 | 735 |
///@} |
735 | 736 |
}; |
736 | 737 |
|
737 | 738 |
///Default traits class of Dfs function. |
738 | 739 |
|
739 | 740 |
///Default traits class of Dfs function. |
740 | 741 |
///\tparam GR Digraph type. |
741 | 742 |
template<class GR> |
742 | 743 |
struct DfsWizardDefaultTraits |
743 | 744 |
{ |
744 | 745 |
///The digraph type the algorithm runs on. |
745 | 746 |
typedef GR Digraph; |
746 | 747 |
///\brief The type of the map that stores the last |
747 | 748 |
///arcs of the %DFS paths. |
748 | 749 |
/// |
749 | 750 |
///The type of the map that stores the last |
750 | 751 |
///arcs of the %DFS paths. |
751 | 752 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
752 | 753 |
/// |
753 | 754 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
754 | 755 |
///Instantiates a PredMap. |
755 | 756 |
|
756 | 757 |
///This function instantiates a \ref PredMap. |
757 | 758 |
///\param g is the digraph, to which we would like to define the PredMap. |
758 | 759 |
///\todo The digraph alone may be insufficient to initialize |
759 | 760 |
#ifdef DOXYGEN |
760 | 761 |
static PredMap *createPredMap(const GR &g) |
761 | 762 |
#else |
762 | 763 |
static PredMap *createPredMap(const GR &) |
763 | 764 |
#endif |
764 | 765 |
{ |
765 | 766 |
return new PredMap(); |
766 | 767 |
} |
767 | 768 |
|
768 | 769 |
///The type of the map that indicates which nodes are processed. |
769 | 770 |
|
770 | 771 |
///The type of the map that indicates which nodes are processed. |
771 | 772 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
772 | 773 |
///\todo named parameter to set this type, function to read and write. |
773 | 774 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
774 | 775 |
///Instantiates a ProcessedMap. |
775 | 776 |
|
776 | 777 |
///This function instantiates a \ref ProcessedMap. |
777 | 778 |
///\param g is the digraph, to which |
778 | 779 |
///we would like to define the \ref ProcessedMap |
779 | 780 |
#ifdef DOXYGEN |
780 | 781 |
static ProcessedMap *createProcessedMap(const GR &g) |
781 | 782 |
#else |
782 | 783 |
static ProcessedMap *createProcessedMap(const GR &) |
783 | 784 |
#endif |
784 | 785 |
{ |
785 | 786 |
return new ProcessedMap(); |
786 | 787 |
} |
787 | 788 |
///The type of the map that indicates which nodes are reached. |
788 | 789 |
|
789 | 790 |
///The type of the map that indicates which nodes are reached. |
790 | 791 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
791 | 792 |
///\todo named parameter to set this type, function to read and write. |
792 | 793 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
793 | 794 |
///Instantiates a ReachedMap. |
794 | 795 |
|
795 | 796 |
///This function instantiates a \ref ReachedMap. |
796 | 797 |
///\param G is the digraph, to which |
797 | 798 |
///we would like to define the \ref ReachedMap. |
798 | 799 |
static ReachedMap *createReachedMap(const GR &G) |
799 | 800 |
{ |
800 | 801 |
return new ReachedMap(G); |
801 | 802 |
} |
802 | 803 |
///The type of the map that stores the dists of the nodes. |
803 | 804 |
|
804 | 805 |
///The type of the map that stores the dists of the nodes. |
805 | 806 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
806 | 807 |
/// |
807 | 808 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
808 | 809 |
///Instantiates a DistMap. |
809 | 810 |
|
810 | 811 |
///This function instantiates a \ref DistMap. |
811 |
///\param g is the digraph, to which we would like to define |
|
812 |
///\param g is the digraph, to which we would like to define |
|
813 |
///the \ref DistMap |
|
812 | 814 |
#ifdef DOXYGEN |
813 | 815 |
static DistMap *createDistMap(const GR &g) |
814 | 816 |
#else |
815 | 817 |
static DistMap *createDistMap(const GR &) |
816 | 818 |
#endif |
817 | 819 |
{ |
818 | 820 |
return new DistMap(); |
819 | 821 |
} |
820 | 822 |
}; |
821 | 823 |
|
822 | 824 |
/// Default traits used by \ref DfsWizard |
823 | 825 |
|
824 | 826 |
/// To make it easier to use Dfs algorithm |
825 | 827 |
///we have created a wizard class. |
826 | 828 |
/// This \ref DfsWizard class needs default traits, |
827 | 829 |
///as well as the \ref Dfs class. |
828 | 830 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
829 | 831 |
/// \ref DfsWizard class. |
830 | 832 |
template<class GR> |
831 | 833 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
832 | 834 |
{ |
833 | 835 |
|
834 | 836 |
typedef DfsWizardDefaultTraits<GR> Base; |
835 | 837 |
protected: |
836 | 838 |
/// Type of the nodes in the digraph. |
837 | 839 |
typedef typename Base::Digraph::Node Node; |
838 | 840 |
|
839 | 841 |
/// Pointer to the underlying digraph. |
840 | 842 |
void *_g; |
841 | 843 |
///Pointer to the map of reached nodes. |
842 | 844 |
void *_reached; |
843 | 845 |
///Pointer to the map of processed nodes. |
844 | 846 |
void *_processed; |
845 | 847 |
///Pointer to the map of predecessors arcs. |
846 | 848 |
void *_pred; |
847 | 849 |
///Pointer to the map of distances. |
848 | 850 |
void *_dist; |
849 | 851 |
///Pointer to the source node. |
850 | 852 |
Node _source; |
851 | 853 |
|
852 | 854 |
public: |
853 | 855 |
/// Constructor. |
854 | 856 |
|
855 | 857 |
/// This constructor does not require parameters, therefore it initiates |
856 | 858 |
/// all of the attributes to default values (0, INVALID). |
857 | 859 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
858 | 860 |
_dist(0), _source(INVALID) {} |
859 | 861 |
|
860 | 862 |
/// Constructor. |
861 | 863 |
|
862 | 864 |
/// This constructor requires some parameters, |
863 | 865 |
/// listed in the parameters list. |
864 | 866 |
/// Others are initiated to 0. |
865 | 867 |
/// \param g is the initial value of \ref _g |
866 | 868 |
/// \param s is the initial value of \ref _source |
867 | 869 |
DfsWizardBase(const GR &g, Node s=INVALID) : |
868 | 870 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
869 | 871 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
870 | 872 |
|
871 | 873 |
}; |
872 | 874 |
|
873 | 875 |
/// A class to make the usage of the Dfs algorithm easier |
874 | 876 |
|
875 | 877 |
/// This class is created to make it easier to use the Dfs algorithm. |
876 | 878 |
/// It uses the functions and features of the plain \ref Dfs, |
877 | 879 |
/// but it is much simpler to use it. |
878 | 880 |
/// |
879 | 881 |
/// Simplicity means that the way to change the types defined |
880 | 882 |
/// in the traits class is based on functions that returns the new class |
881 | 883 |
/// and not on templatable built-in classes. |
882 | 884 |
/// When using the plain \ref Dfs |
883 | 885 |
/// the new class with the modified type comes from |
884 | 886 |
/// the original class by using the :: |
885 | 887 |
/// operator. In the case of \ref DfsWizard only |
886 | 888 |
/// a function have to be called and it will |
887 | 889 |
/// return the needed class. |
888 | 890 |
/// |
889 | 891 |
/// It does not have own \ref run method. When its \ref run method is called |
890 | 892 |
/// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run |
891 | 893 |
/// method of it. |
892 | 894 |
template<class TR> |
893 | 895 |
class DfsWizard : public TR |
894 | 896 |
{ |
895 | 897 |
typedef TR Base; |
896 | 898 |
|
897 | 899 |
///The type of the underlying digraph. |
898 | 900 |
typedef typename TR::Digraph Digraph; |
899 | 901 |
//\e |
900 | 902 |
typedef typename Digraph::Node Node; |
901 | 903 |
//\e |
902 | 904 |
typedef typename Digraph::NodeIt NodeIt; |
903 | 905 |
//\e |
904 | 906 |
typedef typename Digraph::Arc Arc; |
905 | 907 |
//\e |
906 | 908 |
typedef typename Digraph::OutArcIt OutArcIt; |
907 | 909 |
|
908 | 910 |
///\brief The type of the map that stores |
909 | 911 |
///the reached nodes |
910 | 912 |
typedef typename TR::ReachedMap ReachedMap; |
911 | 913 |
///\brief The type of the map that stores |
912 | 914 |
///the processed nodes |
913 | 915 |
typedef typename TR::ProcessedMap ProcessedMap; |
914 | 916 |
///\brief The type of the map that stores the last |
915 | 917 |
///arcs of the %DFS paths. |
916 | 918 |
typedef typename TR::PredMap PredMap; |
917 | 919 |
///The type of the map that stores the distances of the nodes. |
918 | 920 |
typedef typename TR::DistMap DistMap; |
919 | 921 |
|
920 | 922 |
public: |
921 | 923 |
/// Constructor. |
922 | 924 |
DfsWizard() : TR() {} |
923 | 925 |
|
924 | 926 |
/// Constructor that requires parameters. |
925 | 927 |
|
926 | 928 |
/// Constructor that requires parameters. |
927 | 929 |
/// These parameters will be the default values for the traits class. |
928 | 930 |
DfsWizard(const Digraph &g, Node s=INVALID) : |
929 | 931 |
TR(g,s) {} |
930 | 932 |
|
931 | 933 |
///Copy constructor |
932 | 934 |
DfsWizard(const TR &b) : TR(b) {} |
933 | 935 |
|
934 | 936 |
~DfsWizard() {} |
935 | 937 |
|
936 | 938 |
///Runs Dfs algorithm from a given node. |
937 | 939 |
|
938 | 940 |
///Runs Dfs algorithm from a given node. |
939 | 941 |
///The node can be given by the \ref source function. |
940 | 942 |
void run() |
941 | 943 |
{ |
942 | 944 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
943 | 945 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
944 | 946 |
if(Base::_reached) |
945 | 947 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
946 | 948 |
if(Base::_processed) |
947 | 949 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
948 | 950 |
if(Base::_pred) |
949 | 951 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
950 | 952 |
if(Base::_dist) |
951 | 953 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
952 | 954 |
alg.run(Base::_source); |
953 | 955 |
} |
954 | 956 |
|
955 | 957 |
///Runs Dfs algorithm from the given node. |
956 | 958 |
|
957 | 959 |
///Runs Dfs algorithm from the given node. |
958 | 960 |
///\param s is the given source. |
959 | 961 |
void run(Node s) |
960 | 962 |
{ |
961 | 963 |
Base::_source=s; |
962 | 964 |
run(); |
963 | 965 |
} |
964 | 966 |
|
965 | 967 |
template<class T> |
966 | 968 |
struct DefPredMapBase : public Base { |
967 | 969 |
typedef T PredMap; |
968 | 970 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
969 | 971 |
DefPredMapBase(const TR &b) : TR(b) {} |
970 | 972 |
}; |
971 | 973 |
|
972 | 974 |
///\brief \ref named-templ-param "Named parameter" |
973 | 975 |
///function for setting PredMap type |
974 | 976 |
/// |
975 | 977 |
/// \ref named-templ-param "Named parameter" |
976 | 978 |
///function for setting PredMap type |
977 | 979 |
/// |
978 | 980 |
template<class T> |
979 | 981 |
DfsWizard<DefPredMapBase<T> > predMap(const T &t) |
980 | 982 |
{ |
981 | 983 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
982 | 984 |
return DfsWizard<DefPredMapBase<T> >(*this); |
983 | 985 |
} |
984 | 986 |
|
985 | 987 |
|
986 | 988 |
template<class T> |
987 | 989 |
struct DefReachedMapBase : public Base { |
988 | 990 |
typedef T ReachedMap; |
989 | 991 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
990 | 992 |
DefReachedMapBase(const TR &b) : TR(b) {} |
991 | 993 |
}; |
992 | 994 |
|
993 | 995 |
///\brief \ref named-templ-param "Named parameter" |
994 | 996 |
///function for setting ReachedMap |
995 | 997 |
/// |
996 | 998 |
/// \ref named-templ-param "Named parameter" |
997 | 999 |
///function for setting ReachedMap |
998 | 1000 |
/// |
999 | 1001 |
template<class T> |
1000 | 1002 |
DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
1001 | 1003 |
{ |
1002 | 1004 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1003 | 1005 |
return DfsWizard<DefReachedMapBase<T> >(*this); |
1004 | 1006 |
} |
1005 | 1007 |
|
1006 | 1008 |
|
1007 | 1009 |
template<class T> |
1008 | 1010 |
struct DefProcessedMapBase : public Base { |
1009 | 1011 |
typedef T ProcessedMap; |
1010 | 1012 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1011 | 1013 |
DefProcessedMapBase(const TR &b) : TR(b) {} |
1012 | 1014 |
}; |
1013 | 1015 |
|
1014 | 1016 |
///\brief \ref named-templ-param "Named parameter" |
1015 | 1017 |
///function for setting ProcessedMap |
1016 | 1018 |
/// |
1017 | 1019 |
/// \ref named-templ-param "Named parameter" |
1018 | 1020 |
///function for setting ProcessedMap |
1019 | 1021 |
/// |
1020 | 1022 |
template<class T> |
1021 | 1023 |
DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
1022 | 1024 |
{ |
1023 | 1025 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1024 | 1026 |
return DfsWizard<DefProcessedMapBase<T> >(*this); |
1025 | 1027 |
} |
1026 | 1028 |
|
1027 | 1029 |
template<class T> |
1028 | 1030 |
struct DefDistMapBase : public Base { |
1029 | 1031 |
typedef T DistMap; |
1030 | 1032 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1031 | 1033 |
DefDistMapBase(const TR &b) : TR(b) {} |
1032 | 1034 |
}; |
1033 | 1035 |
|
1034 | 1036 |
///\brief \ref named-templ-param "Named parameter" |
1035 | 1037 |
///function for setting DistMap type |
1036 | 1038 |
/// |
1037 | 1039 |
/// \ref named-templ-param "Named parameter" |
1038 | 1040 |
///function for setting DistMap type |
1039 | 1041 |
/// |
1040 | 1042 |
template<class T> |
1041 | 1043 |
DfsWizard<DefDistMapBase<T> > distMap(const T &t) |
1042 | 1044 |
{ |
1043 | 1045 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1044 | 1046 |
return DfsWizard<DefDistMapBase<T> >(*this); |
1045 | 1047 |
} |
1046 | 1048 |
|
1047 | 1049 |
/// Sets the source node, from which the Dfs algorithm runs. |
1048 | 1050 |
|
1049 | 1051 |
/// Sets the source node, from which the Dfs algorithm runs. |
1050 | 1052 |
/// \param s is the source node. |
1051 | 1053 |
DfsWizard<TR> &source(Node s) |
1052 | 1054 |
{ |
1053 | 1055 |
Base::_source=s; |
1054 | 1056 |
return *this; |
1055 | 1057 |
} |
1056 | 1058 |
|
1057 | 1059 |
}; |
1058 | 1060 |
|
1059 | 1061 |
///Function type interface for Dfs algorithm. |
1060 | 1062 |
|
1061 | 1063 |
///\ingroup search |
1062 | 1064 |
///Function type interface for Dfs algorithm. |
1063 | 1065 |
/// |
1064 | 1066 |
///This function also has several |
1065 | 1067 |
///\ref named-templ-func-param "named parameters", |
1066 | 1068 |
///they are declared as the members of class \ref DfsWizard. |
1067 | 1069 |
///The following |
1068 | 1070 |
///example shows how to use these parameters. |
1069 | 1071 |
///\code |
1070 | 1072 |
/// dfs(g,source).predMap(preds).run(); |
1071 | 1073 |
///\endcode |
1072 | 1074 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1073 | 1075 |
///to the end of the parameter list. |
1074 | 1076 |
///\sa DfsWizard |
1075 | 1077 |
///\sa Dfs |
1076 | 1078 |
template<class GR> |
1077 | 1079 |
DfsWizard<DfsWizardBase<GR> > |
1078 | 1080 |
dfs(const GR &g,typename GR::Node s=INVALID) |
1079 | 1081 |
{ |
1080 | 1082 |
return DfsWizard<DfsWizardBase<GR> >(g,s); |
1081 | 1083 |
} |
1082 | 1084 |
|
1083 | 1085 |
#ifdef DOXYGEN |
1084 | 1086 |
/// \brief Visitor class for dfs. |
1085 | 1087 |
/// |
1086 | 1088 |
/// It gives a simple interface for a functional interface for dfs |
1087 | 1089 |
/// traversal. The traversal on a linear data structure. |
1088 | 1090 |
template <typename _Digraph> |
1089 | 1091 |
struct DfsVisitor { |
1090 | 1092 |
typedef _Digraph Digraph; |
1091 | 1093 |
typedef typename Digraph::Arc Arc; |
1092 | 1094 |
typedef typename Digraph::Node Node; |
1093 | 1095 |
/// \brief Called when the arc reach a node. |
1094 | 1096 |
/// |
1095 | 1097 |
/// It is called when the dfs find an arc which target is not |
1096 | 1098 |
/// reached yet. |
1097 | 1099 |
void discover(const Arc& arc) {} |
1098 | 1100 |
/// \brief Called when the node reached first time. |
1099 | 1101 |
/// |
1100 | 1102 |
/// It is Called when the node reached first time. |
1101 | 1103 |
void reach(const Node& node) {} |
1102 | 1104 |
/// \brief Called when we step back on an arc. |
1103 | 1105 |
/// |
1104 | 1106 |
/// It is called when the dfs should step back on the arc. |
1105 | 1107 |
void backtrack(const Arc& arc) {} |
1106 | 1108 |
/// \brief Called when we step back from the node. |
1107 | 1109 |
/// |
1108 | 1110 |
/// It is called when we step back from the node. |
1109 | 1111 |
void leave(const Node& node) {} |
1110 | 1112 |
/// \brief Called when the arc examined but target of the arc |
1111 | 1113 |
/// already discovered. |
1112 | 1114 |
/// |
1113 | 1115 |
/// It called when the arc examined but the target of the arc |
1114 | 1116 |
/// already discovered. |
1115 | 1117 |
void examine(const Arc& arc) {} |
1116 | 1118 |
/// \brief Called for the source node of the dfs. |
1117 | 1119 |
/// |
1118 | 1120 |
/// It is called for the source node of the dfs. |
1119 | 1121 |
void start(const Node& node) {} |
1120 | 1122 |
/// \brief Called when we leave the source node of the dfs. |
1121 | 1123 |
/// |
1122 | 1124 |
/// It is called when we leave the source node of the dfs. |
1123 | 1125 |
void stop(const Node& node) {} |
1124 | 1126 |
|
1125 | 1127 |
}; |
1126 | 1128 |
#else |
1127 | 1129 |
template <typename _Digraph> |
1128 | 1130 |
struct DfsVisitor { |
1129 | 1131 |
typedef _Digraph Digraph; |
1130 | 1132 |
typedef typename Digraph::Arc Arc; |
1131 | 1133 |
typedef typename Digraph::Node Node; |
1132 | 1134 |
void discover(const Arc&) {} |
1133 | 1135 |
void reach(const Node&) {} |
1134 | 1136 |
void backtrack(const Arc&) {} |
1135 | 1137 |
void leave(const Node&) {} |
1136 | 1138 |
void examine(const Arc&) {} |
1137 | 1139 |
void start(const Node&) {} |
1138 | 1140 |
void stop(const Node&) {} |
1139 | 1141 |
|
1140 | 1142 |
template <typename _Visitor> |
1141 | 1143 |
struct Constraints { |
1142 | 1144 |
void constraints() { |
1143 | 1145 |
Arc arc; |
1144 | 1146 |
Node node; |
1145 | 1147 |
visitor.discover(arc); |
1146 | 1148 |
visitor.reach(node); |
1147 | 1149 |
visitor.backtrack(arc); |
1148 | 1150 |
visitor.leave(node); |
1149 | 1151 |
visitor.examine(arc); |
1150 | 1152 |
visitor.start(node); |
1151 | 1153 |
visitor.stop(arc); |
1152 | 1154 |
} |
1153 | 1155 |
_Visitor& visitor; |
1154 | 1156 |
}; |
1155 | 1157 |
}; |
1156 | 1158 |
#endif |
1157 | 1159 |
|
1158 | 1160 |
/// \brief Default traits class of DfsVisit class. |
1159 | 1161 |
/// |
1160 | 1162 |
/// Default traits class of DfsVisit class. |
1161 | 1163 |
/// \tparam _Digraph Digraph type. |
1162 | 1164 |
template<class _Digraph> |
1163 | 1165 |
struct DfsVisitDefaultTraits { |
1164 | 1166 |
|
1165 | 1167 |
/// \brief The digraph type the algorithm runs on. |
1166 | 1168 |
typedef _Digraph Digraph; |
1167 | 1169 |
|
1168 | 1170 |
/// \brief The type of the map that indicates which nodes are reached. |
1169 | 1171 |
/// |
1170 | 1172 |
/// The type of the map that indicates which nodes are reached. |
1171 | 1173 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1172 | 1174 |
/// \todo named parameter to set this type, function to read and write. |
1173 | 1175 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1174 | 1176 |
|
1175 | 1177 |
/// \brief Instantiates a ReachedMap. |
1176 | 1178 |
/// |
1177 | 1179 |
/// This function instantiates a \ref ReachedMap. |
1178 | 1180 |
/// \param digraph is the digraph, to which |
1179 | 1181 |
/// we would like to define the \ref ReachedMap. |
1180 | 1182 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1181 | 1183 |
return new ReachedMap(digraph); |
1182 | 1184 |
} |
1183 | 1185 |
|
1184 | 1186 |
}; |
1185 | 1187 |
|
1186 | 1188 |
/// %DFS Visit algorithm class. |
1187 | 1189 |
|
1188 | 1190 |
/// \ingroup search |
1189 | 1191 |
/// This class provides an efficient implementation of the %DFS algorithm |
1190 | 1192 |
/// with visitor interface. |
1191 | 1193 |
/// |
1192 | 1194 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1193 | 1195 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1194 | 1196 |
/// on every dfs event the \c Visitor class member functions. |
1195 | 1197 |
/// |
1196 |
/// \tparam _Digraph The digraph type the algorithm runs on. |
|
1198 |
/// \tparam _Digraph The digraph type the algorithm runs on. |
|
1199 |
/// The default value is |
|
1197 | 1200 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it |
1198 | 1201 |
/// is only passed to \ref DfsDefaultTraits. |
1199 | 1202 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
1200 | 1203 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which |
1201 | 1204 |
/// does not observe the Dfs events. If you want to observe the dfs |
1202 | 1205 |
/// events you should implement your own Visitor class. |
1203 | 1206 |
/// \tparam _Traits Traits class to set various data types used by the |
1204 | 1207 |
/// algorithm. The default traits class is |
1205 | 1208 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1206 | 1209 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1207 | 1210 |
/// a Dfs visit traits class. |
1208 | 1211 |
/// |
1209 | 1212 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
1210 | 1213 |
#ifdef DOXYGEN |
1211 | 1214 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1212 | 1215 |
#else |
1213 | 1216 |
template <typename _Digraph = ListDigraph, |
1214 | 1217 |
typename _Visitor = DfsVisitor<_Digraph>, |
1215 | 1218 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
1216 | 1219 |
#endif |
1217 | 1220 |
class DfsVisit { |
1218 | 1221 |
public: |
1219 | 1222 |
|
1220 | 1223 |
/// \brief \ref Exception for uninitialized parameters. |
1221 | 1224 |
/// |
1222 | 1225 |
/// This error represents problems in the initialization |
1223 | 1226 |
/// of the parameters of the algorithms. |
1224 | 1227 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1225 | 1228 |
public: |
1226 | 1229 |
virtual const char* what() const throw() |
1227 | 1230 |
{ |
1228 | 1231 |
return "lemon::DfsVisit::UninitializedParameter"; |
1229 | 1232 |
} |
1230 | 1233 |
}; |
1231 | 1234 |
|
1232 | 1235 |
typedef _Traits Traits; |
1233 | 1236 |
|
1234 | 1237 |
typedef typename Traits::Digraph Digraph; |
1235 | 1238 |
|
1236 | 1239 |
typedef _Visitor Visitor; |
1237 | 1240 |
|
1238 | 1241 |
///The type of the map indicating which nodes are reached. |
1239 | 1242 |
typedef typename Traits::ReachedMap ReachedMap; |
1240 | 1243 |
|
1241 | 1244 |
private: |
1242 | 1245 |
|
1243 | 1246 |
typedef typename Digraph::Node Node; |
1244 | 1247 |
typedef typename Digraph::NodeIt NodeIt; |
1245 | 1248 |
typedef typename Digraph::Arc Arc; |
1246 | 1249 |
typedef typename Digraph::OutArcIt OutArcIt; |
1247 | 1250 |
|
1248 | 1251 |
/// Pointer to the underlying digraph. |
1249 | 1252 |
const Digraph *_digraph; |
1250 | 1253 |
/// Pointer to the visitor object. |
1251 | 1254 |
Visitor *_visitor; |
1252 | 1255 |
///Pointer to the map of reached status of the nodes. |
1253 | 1256 |
ReachedMap *_reached; |
1254 | 1257 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
1255 | 1258 |
bool local_reached; |
1256 | 1259 |
|
1257 | 1260 |
std::vector<typename Digraph::Arc> _stack; |
1258 | 1261 |
int _stack_head; |
1259 | 1262 |
|
1260 | 1263 |
/// \brief Creates the maps if necessary. |
1261 | 1264 |
/// |
1262 | 1265 |
/// Creates the maps if necessary. |
1263 | 1266 |
void create_maps() { |
1264 | 1267 |
if(!_reached) { |
1265 | 1268 |
local_reached = true; |
1266 | 1269 |
_reached = Traits::createReachedMap(*_digraph); |
1267 | 1270 |
} |
1268 | 1271 |
} |
1269 | 1272 |
|
1270 | 1273 |
protected: |
1271 | 1274 |
|
1272 | 1275 |
DfsVisit() {} |
1273 | 1276 |
|
1274 | 1277 |
public: |
1275 | 1278 |
|
1276 | 1279 |
typedef DfsVisit Create; |
1277 | 1280 |
|
1278 | 1281 |
/// \name Named template parameters |
1279 | 1282 |
|
1280 | 1283 |
///@{ |
1281 | 1284 |
template <class T> |
1282 | 1285 |
struct DefReachedMapTraits : public Traits { |
1283 | 1286 |
typedef T ReachedMap; |
1284 | 1287 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1285 | 1288 |
throw UninitializedParameter(); |
1286 | 1289 |
} |
1287 | 1290 |
}; |
1288 | 1291 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1289 | 1292 |
/// ReachedMap type |
1290 | 1293 |
/// |
1291 | 1294 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type |
1292 | 1295 |
template <class T> |
1293 | 1296 |
struct DefReachedMap : public DfsVisit< Digraph, Visitor, |
1294 | 1297 |
DefReachedMapTraits<T> > { |
1295 | 1298 |
typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
1296 | 1299 |
}; |
1297 | 1300 |
///@} |
1298 | 1301 |
|
1299 | 1302 |
public: |
1300 | 1303 |
|
1301 | 1304 |
/// \brief Constructor. |
1302 | 1305 |
/// |
1303 | 1306 |
/// Constructor. |
1304 | 1307 |
/// |
1305 | 1308 |
/// \param digraph the digraph the algorithm will run on. |
1306 | 1309 |
/// \param visitor The visitor of the algorithm. |
1307 | 1310 |
/// |
1308 | 1311 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1309 | 1312 |
: _digraph(&digraph), _visitor(&visitor), |
1310 | 1313 |
_reached(0), local_reached(false) {} |
1311 | 1314 |
|
1312 | 1315 |
/// \brief Destructor. |
1313 | 1316 |
/// |
1314 | 1317 |
/// Destructor. |
1315 | 1318 |
~DfsVisit() { |
1316 | 1319 |
if(local_reached) delete _reached; |
1317 | 1320 |
} |
1318 | 1321 |
|
1319 | 1322 |
/// \brief Sets the map indicating if a node is reached. |
1320 | 1323 |
/// |
1321 | 1324 |
/// Sets the map indicating if a node is reached. |
1322 | 1325 |
/// If you don't use this function before calling \ref run(), |
1323 | 1326 |
/// it will allocate one. The destuctor deallocates this |
1324 | 1327 |
/// automatically allocated map, of course. |
1325 | 1328 |
/// \return <tt> (*this) </tt> |
1326 | 1329 |
DfsVisit &reachedMap(ReachedMap &m) { |
1327 | 1330 |
if(local_reached) { |
1328 | 1331 |
delete _reached; |
1329 | 1332 |
local_reached=false; |
1330 | 1333 |
} |
1331 | 1334 |
_reached = &m; |
1332 | 1335 |
return *this; |
1333 | 1336 |
} |
1334 | 1337 |
|
1335 | 1338 |
public: |
1336 | 1339 |
/// \name Execution control |
1337 | 1340 |
/// The simplest way to execute the algorithm is to use |
1338 | 1341 |
/// one of the member functions called \c run(...). |
1339 | 1342 |
/// \n |
1340 | 1343 |
/// If you need more control on the execution, |
1341 | 1344 |
/// first you must call \ref init(), then you can adda source node |
1342 | 1345 |
/// with \ref addSource(). |
1343 | 1346 |
/// Finally \ref start() will perform the actual path |
1344 | 1347 |
/// computation. |
1345 | 1348 |
|
1346 | 1349 |
/// @{ |
1347 | 1350 |
/// \brief Initializes the internal data structures. |
1348 | 1351 |
/// |
1349 | 1352 |
/// Initializes the internal data structures. |
1350 | 1353 |
/// |
1351 | 1354 |
void init() { |
1352 | 1355 |
create_maps(); |
1353 | 1356 |
_stack.resize(countNodes(*_digraph)); |
1354 | 1357 |
_stack_head = -1; |
1355 | 1358 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1356 | 1359 |
_reached->set(u, false); |
1357 | 1360 |
} |
1358 | 1361 |
} |
1359 | 1362 |
|
1360 | 1363 |
/// \brief Adds a new source node. |
1361 | 1364 |
/// |
1362 | 1365 |
/// Adds a new source node to the set of nodes to be processed. |
1363 | 1366 |
void addSource(Node s) { |
1364 | 1367 |
if(!(*_reached)[s]) { |
1365 | 1368 |
_reached->set(s,true); |
1366 | 1369 |
_visitor->start(s); |
1367 | 1370 |
_visitor->reach(s); |
1368 | 1371 |
Arc e; |
1369 | 1372 |
_digraph->firstOut(e, s); |
1370 | 1373 |
if (e != INVALID) { |
1371 | 1374 |
_stack[++_stack_head] = e; |
1372 | 1375 |
} else { |
1373 | 1376 |
_visitor->leave(s); |
1374 | 1377 |
} |
1375 | 1378 |
} |
1376 | 1379 |
} |
1377 | 1380 |
|
1378 | 1381 |
/// \brief Processes the next arc. |
1379 | 1382 |
/// |
1380 | 1383 |
/// Processes the next arc. |
1381 | 1384 |
/// |
1382 | 1385 |
/// \return The processed arc. |
1383 | 1386 |
/// |
1384 | 1387 |
/// \pre The stack must not be empty! |
1385 | 1388 |
Arc processNextArc() { |
1386 | 1389 |
Arc e = _stack[_stack_head]; |
1387 | 1390 |
Node m = _digraph->target(e); |
1388 | 1391 |
if(!(*_reached)[m]) { |
1389 | 1392 |
_visitor->discover(e); |
1390 | 1393 |
_visitor->reach(m); |
1391 | 1394 |
_reached->set(m, true); |
1392 | 1395 |
_digraph->firstOut(_stack[++_stack_head], m); |
1393 | 1396 |
} else { |
1394 | 1397 |
_visitor->examine(e); |
1395 | 1398 |
m = _digraph->source(e); |
1396 | 1399 |
_digraph->nextOut(_stack[_stack_head]); |
1397 | 1400 |
} |
1398 | 1401 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1399 | 1402 |
_visitor->leave(m); |
1400 | 1403 |
--_stack_head; |
1401 | 1404 |
if (_stack_head >= 0) { |
1402 | 1405 |
_visitor->backtrack(_stack[_stack_head]); |
1403 | 1406 |
m = _digraph->source(_stack[_stack_head]); |
1404 | 1407 |
_digraph->nextOut(_stack[_stack_head]); |
1405 | 1408 |
} else { |
1406 | 1409 |
_visitor->stop(m); |
1407 | 1410 |
} |
1408 | 1411 |
} |
1409 | 1412 |
return e; |
1410 | 1413 |
} |
1411 | 1414 |
|
1412 | 1415 |
/// \brief Next arc to be processed. |
1413 | 1416 |
/// |
1414 | 1417 |
/// Next arc to be processed. |
1415 | 1418 |
/// |
1416 | 1419 |
/// \return The next arc to be processed or INVALID if the stack is |
1417 | 1420 |
/// empty. |
1418 | 1421 |
Arc nextArc() { |
1419 | 1422 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1420 | 1423 |
} |
1421 | 1424 |
|
1422 | 1425 |
/// \brief Returns \c false if there are nodes |
1423 | 1426 |
/// to be processed in the queue |
1424 | 1427 |
/// |
1425 | 1428 |
/// Returns \c false if there are nodes |
1426 | 1429 |
/// to be processed in the queue |
1427 | 1430 |
bool emptyQueue() { return _stack_head < 0; } |
1428 | 1431 |
|
1429 | 1432 |
/// \brief Returns the number of the nodes to be processed. |
1430 | 1433 |
/// |
1431 | 1434 |
/// Returns the number of the nodes to be processed in the queue. |
1432 | 1435 |
int queueSize() { return _stack_head + 1; } |
1433 | 1436 |
|
1434 | 1437 |
/// \brief Executes the algorithm. |
1435 | 1438 |
/// |
1436 | 1439 |
/// Executes the algorithm. |
1437 | 1440 |
/// |
1438 | 1441 |
/// \pre init() must be called and at least one node should be added |
1439 | 1442 |
/// with addSource() before using this function. |
1440 | 1443 |
void start() { |
1441 | 1444 |
while ( !emptyQueue() ) processNextArc(); |
1442 | 1445 |
} |
1443 | 1446 |
|
1444 | 1447 |
/// \brief Executes the algorithm until \c dest is reached. |
1445 | 1448 |
/// |
1446 | 1449 |
/// Executes the algorithm until \c dest is reached. |
1447 | 1450 |
/// |
1448 | 1451 |
/// \pre init() must be called and at least one node should be added |
1449 | 1452 |
/// with addSource() before using this function. |
1450 | 1453 |
void start(Node dest) { |
1451 | 1454 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) |
1452 | 1455 |
processNextArc(); |
1453 | 1456 |
} |
1454 | 1457 |
|
1455 | 1458 |
/// \brief Executes the algorithm until a condition is met. |
1456 | 1459 |
/// |
1457 | 1460 |
/// Executes the algorithm until a condition is met. |
1458 | 1461 |
/// |
1459 | 1462 |
/// \pre init() must be called and at least one node should be added |
1460 | 1463 |
/// with addSource() before using this function. |
1461 | 1464 |
/// |
1462 | 1465 |
/// \param em must be a bool (or convertible) arc map. The algorithm |
1463 | 1466 |
/// will stop when it reaches an arc \c e with <tt>em[e]</tt> true. |
1464 | 1467 |
/// |
1465 | 1468 |
///\return The reached arc \c e with <tt>em[e]</tt> true or |
1466 | 1469 |
///\c INVALID if no such arc was found. |
1467 | 1470 |
/// |
1468 | 1471 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, |
1469 | 1472 |
/// not a node map. |
1470 | 1473 |
template <typename EM> |
1471 | 1474 |
Arc start(const EM &em) { |
1472 | 1475 |
while ( !emptyQueue() && !em[_stack[_stack_head]] ) |
1473 | 1476 |
processNextArc(); |
1474 | 1477 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1475 | 1478 |
} |
1476 | 1479 |
|
1477 | 1480 |
/// \brief Runs %DFSVisit algorithm from node \c s. |
1478 | 1481 |
/// |
1479 | 1482 |
/// This method runs the %DFS algorithm from a root node \c s. |
1480 | 1483 |
/// \note d.run(s) is just a shortcut of the following code. |
1481 | 1484 |
///\code |
1482 | 1485 |
/// d.init(); |
1483 | 1486 |
/// d.addSource(s); |
1484 | 1487 |
/// d.start(); |
1485 | 1488 |
///\endcode |
1486 | 1489 |
void run(Node s) { |
1487 | 1490 |
init(); |
1488 | 1491 |
addSource(s); |
1489 | 1492 |
start(); |
1490 | 1493 |
} |
1491 | 1494 |
|
1492 | 1495 |
/// \brief Runs %DFSVisit algorithm to visit all nodes in the digraph. |
1493 | 1496 |
|
1494 | 1497 |
/// This method runs the %DFS algorithm in order to |
1495 | 1498 |
/// compute the %DFS path to each node. The algorithm computes |
1496 | 1499 |
/// - The %DFS tree. |
1497 | 1500 |
/// - The distance of each node from the root in the %DFS tree. |
1498 | 1501 |
/// |
1499 | 1502 |
///\note d.run() is just a shortcut of the following code. |
1500 | 1503 |
///\code |
1501 | 1504 |
/// d.init(); |
1502 | 1505 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
1503 | 1506 |
/// if (!d.reached(it)) { |
1504 | 1507 |
/// d.addSource(it); |
1505 | 1508 |
/// d.start(); |
1506 | 1509 |
/// } |
1507 | 1510 |
/// } |
1508 | 1511 |
///\endcode |
1509 | 1512 |
void run() { |
1510 | 1513 |
init(); |
1511 | 1514 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1512 | 1515 |
if (!reached(it)) { |
1513 | 1516 |
addSource(it); |
1514 | 1517 |
start(); |
1515 | 1518 |
} |
1516 | 1519 |
} |
1517 | 1520 |
} |
1518 | 1521 |
///@} |
1519 | 1522 |
|
1520 | 1523 |
/// \name Query Functions |
1521 | 1524 |
/// The result of the %DFS algorithm can be obtained using these |
1522 | 1525 |
/// functions.\n |
1523 | 1526 |
/// Before the use of these functions, |
1524 | 1527 |
/// either run() or start() must be called. |
1525 | 1528 |
///@{ |
1526 | 1529 |
/// \brief Checks if a node is reachable from the root. |
1527 | 1530 |
/// |
1528 | 1531 |
/// Returns \c true if \c v is reachable from the root(s). |
1529 | 1532 |
/// \warning The source nodes are inditated as unreachable. |
1530 | 1533 |
/// \pre Either \ref run() or \ref start() |
1531 | 1534 |
/// must be called before using this function. |
1532 | 1535 |
/// |
1533 | 1536 |
bool reached(Node v) { return (*_reached)[v]; } |
1534 | 1537 |
///@} |
1535 | 1538 |
}; |
1536 | 1539 |
|
1537 | 1540 |
|
1538 | 1541 |
} //END OF NAMESPACE LEMON |
1539 | 1542 |
|
1540 | 1543 |
#endif |
1541 | 1544 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/bits/invalid.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default OperationTraits for the Dijkstra algorithm class. |
37 | 37 |
/// |
38 | 38 |
/// It defines all computational operations and constants which are |
39 | 39 |
/// used in the Dijkstra algorithm. |
40 | 40 |
template <typename Value> |
41 | 41 |
struct DijkstraDefaultOperationTraits { |
42 | 42 |
/// \brief Gives back the zero value of the type. |
43 | 43 |
static Value zero() { |
44 | 44 |
return static_cast<Value>(0); |
45 | 45 |
} |
46 | 46 |
/// \brief Gives back the sum of the given two elements. |
47 | 47 |
static Value plus(const Value& left, const Value& right) { |
48 | 48 |
return left + right; |
49 | 49 |
} |
50 | 50 |
/// \brief Gives back true only if the first value less than the second. |
51 | 51 |
static bool less(const Value& left, const Value& right) { |
52 | 52 |
return left < right; |
53 | 53 |
} |
54 | 54 |
}; |
55 | 55 |
|
56 | 56 |
/// \brief Widest path OperationTraits for the Dijkstra algorithm class. |
57 | 57 |
/// |
58 | 58 |
/// It defines all computational operations and constants which are |
59 | 59 |
/// used in the Dijkstra algorithm for widest path computation. |
60 | 60 |
template <typename Value> |
61 | 61 |
struct DijkstraWidestPathOperationTraits { |
62 | 62 |
/// \brief Gives back the maximum value of the type. |
63 | 63 |
static Value zero() { |
64 | 64 |
return std::numeric_limits<Value>::max(); |
65 | 65 |
} |
66 | 66 |
/// \brief Gives back the minimum of the given two elements. |
67 | 67 |
static Value plus(const Value& left, const Value& right) { |
68 | 68 |
return std::min(left, right); |
69 | 69 |
} |
70 | 70 |
/// \brief Gives back true only if the first value less than the second. |
71 | 71 |
static bool less(const Value& left, const Value& right) { |
72 | 72 |
return left < right; |
73 | 73 |
} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
///Default traits class of Dijkstra class. |
77 | 77 |
|
78 | 78 |
///Default traits class of Dijkstra class. |
79 | 79 |
///\tparam GR Digraph type. |
80 | 80 |
///\tparam LM Type of length map. |
81 | 81 |
template<class GR, class LM> |
82 | 82 |
struct DijkstraDefaultTraits |
83 | 83 |
{ |
84 | 84 |
///The digraph type the algorithm runs on. |
85 | 85 |
typedef GR Digraph; |
86 | 86 |
///The type of the map that stores the arc lengths. |
87 | 87 |
|
88 | 88 |
///The type of the map that stores the arc lengths. |
89 | 89 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
90 | 90 |
typedef LM LengthMap; |
91 | 91 |
//The type of the length of the arcs. |
92 | 92 |
typedef typename LM::Value Value; |
93 | 93 |
/// Operation traits for Dijkstra algorithm. |
94 | 94 |
|
95 | 95 |
/// It defines the used operation by the algorithm. |
96 | 96 |
/// \see DijkstraDefaultOperationTraits |
97 | 97 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
98 | 98 |
/// The cross reference type used by heap. |
99 | 99 |
|
100 | 100 |
|
101 | 101 |
/// The cross reference type used by heap. |
102 | 102 |
/// Usually it is \c Digraph::NodeMap<int>. |
103 | 103 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
104 | 104 |
///Instantiates a HeapCrossRef. |
105 | 105 |
|
106 | 106 |
///This function instantiates a \c HeapCrossRef. |
107 | 107 |
/// \param G is the digraph, to which we would like to define the |
108 | 108 |
/// HeapCrossRef. |
109 | 109 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
110 | 110 |
{ |
111 | 111 |
return new HeapCrossRef(G); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///The heap type used by Dijkstra algorithm. |
115 | 115 |
|
116 | 116 |
///The heap type used by Dijkstra algorithm. |
117 | 117 |
/// |
118 | 118 |
///\sa BinHeap |
119 | 119 |
///\sa Dijkstra |
120 | 120 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
121 | 121 |
|
122 | 122 |
static Heap *createHeap(HeapCrossRef& R) |
123 | 123 |
{ |
124 | 124 |
return new Heap(R); |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
///\brief The type of the map that stores the last |
128 | 128 |
///arcs of the shortest paths. |
129 | 129 |
/// |
130 | 130 |
///The type of the map that stores the last |
131 | 131 |
///arcs of the shortest paths. |
132 | 132 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
133 | 133 |
/// |
134 | 134 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
135 | 135 |
///Instantiates a PredMap. |
136 | 136 |
|
137 | 137 |
///This function instantiates a \c PredMap. |
138 | 138 |
///\param G is the digraph, to which we would like to define the PredMap. |
139 | 139 |
///\todo The digraph alone may be insufficient for the initialization |
140 | 140 |
static PredMap *createPredMap(const GR &G) |
141 | 141 |
{ |
142 | 142 |
return new PredMap(G); |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
///The type of the map that stores whether a nodes is processed. |
146 | 146 |
|
147 | 147 |
///The type of the map that stores whether a nodes is processed. |
148 | 148 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
149 | 149 |
///By default it is a NullMap. |
150 | 150 |
///\todo If it is set to a real map, |
151 | 151 |
///Dijkstra::processed() should read this. |
152 | 152 |
///\todo named parameter to set this type, function to read and write. |
153 | 153 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
154 | 154 |
///Instantiates a ProcessedMap. |
155 | 155 |
|
156 | 156 |
///This function instantiates a \c ProcessedMap. |
157 | 157 |
///\param g is the digraph, to which |
158 | 158 |
///we would like to define the \c ProcessedMap |
159 | 159 |
#ifdef DOXYGEN |
160 | 160 |
static ProcessedMap *createProcessedMap(const GR &g) |
161 | 161 |
#else |
162 | 162 |
static ProcessedMap *createProcessedMap(const GR &) |
163 | 163 |
#endif |
164 | 164 |
{ |
165 | 165 |
return new ProcessedMap(); |
166 | 166 |
} |
167 | 167 |
///The type of the map that stores the dists of the nodes. |
168 | 168 |
|
169 | 169 |
///The type of the map that stores the dists of the nodes. |
170 | 170 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
171 | 171 |
/// |
172 | 172 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
173 | 173 |
///Instantiates a DistMap. |
174 | 174 |
|
175 | 175 |
///This function instantiates a \ref DistMap. |
176 |
///\param G is the digraph, to which we would like to define |
|
176 |
///\param G is the digraph, to which we would like to define |
|
177 |
///the \ref DistMap |
|
177 | 178 |
static DistMap *createDistMap(const GR &G) |
178 | 179 |
{ |
179 | 180 |
return new DistMap(G); |
180 | 181 |
} |
181 | 182 |
}; |
182 | 183 |
|
183 | 184 |
///%Dijkstra algorithm class. |
184 | 185 |
|
185 | 186 |
/// \ingroup shortest_path |
186 | 187 |
///This class provides an efficient implementation of %Dijkstra algorithm. |
187 | 188 |
///The arc lengths are passed to the algorithm using a |
188 | 189 |
///\ref concepts::ReadMap "ReadMap", |
189 | 190 |
///so it is easy to change it to any kind of length. |
190 | 191 |
/// |
191 | 192 |
///The type of the length is determined by the |
192 | 193 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
193 | 194 |
/// |
194 | 195 |
///It is also possible to change the underlying priority heap. |
195 | 196 |
/// |
196 | 197 |
///\tparam GR The digraph type the algorithm runs on. The default value |
197 | 198 |
///is \ref ListDigraph. The value of GR is not used directly by |
198 | 199 |
///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. |
199 | 200 |
///\tparam LM This read-only ArcMap determines the lengths of the |
200 | 201 |
///arcs. It is read once for each arc, so the map may involve in |
201 | 202 |
///relatively time consuming process to compute the arc length if |
202 | 203 |
///it is necessary. The default map type is \ref |
203 | 204 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value |
204 | 205 |
///of LM is not used directly by Dijkstra, it is only passed to \ref |
205 | 206 |
///DijkstraDefaultTraits. |
206 | 207 |
///\tparam TR Traits class to set |
207 | 208 |
///various data types used by the algorithm. The default traits |
208 | 209 |
///class is \ref DijkstraDefaultTraits |
209 | 210 |
///"DijkstraDefaultTraits<GR,LM>". See \ref |
210 | 211 |
///DijkstraDefaultTraits for the documentation of a Dijkstra traits |
211 | 212 |
///class. |
212 | 213 |
|
213 | 214 |
#ifdef DOXYGEN |
214 | 215 |
template <typename GR, typename LM, typename TR> |
215 | 216 |
#else |
216 | 217 |
template <typename GR=ListDigraph, |
217 | 218 |
typename LM=typename GR::template ArcMap<int>, |
218 | 219 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
219 | 220 |
#endif |
220 | 221 |
class Dijkstra { |
221 | 222 |
public: |
222 | 223 |
/** |
223 | 224 |
* \brief \ref Exception for uninitialized parameters. |
224 | 225 |
* |
225 | 226 |
* This error represents problems in the initialization |
226 | 227 |
* of the parameters of the algorithms. |
227 | 228 |
*/ |
228 | 229 |
class UninitializedParameter : public lemon::UninitializedParameter { |
229 | 230 |
public: |
230 | 231 |
virtual const char* what() const throw() { |
231 | 232 |
return "lemon::Dijkstra::UninitializedParameter"; |
232 | 233 |
} |
233 | 234 |
}; |
234 | 235 |
|
235 | 236 |
typedef TR Traits; |
236 | 237 |
///The type of the underlying digraph. |
237 | 238 |
typedef typename TR::Digraph Digraph; |
238 | 239 |
///\e |
239 | 240 |
typedef typename Digraph::Node Node; |
240 | 241 |
///\e |
241 | 242 |
typedef typename Digraph::NodeIt NodeIt; |
242 | 243 |
///\e |
243 | 244 |
typedef typename Digraph::Arc Arc; |
244 | 245 |
///\e |
245 | 246 |
typedef typename Digraph::OutArcIt OutArcIt; |
246 | 247 |
|
247 | 248 |
///The type of the length of the arcs. |
248 | 249 |
typedef typename TR::LengthMap::Value Value; |
249 | 250 |
///The type of the map that stores the arc lengths. |
250 | 251 |
typedef typename TR::LengthMap LengthMap; |
251 | 252 |
///\brief The type of the map that stores the last |
252 | 253 |
///arcs of the shortest paths. |
253 | 254 |
typedef typename TR::PredMap PredMap; |
254 | 255 |
///The type of the map indicating if a node is processed. |
255 | 256 |
typedef typename TR::ProcessedMap ProcessedMap; |
256 | 257 |
///The type of the map that stores the dists of the nodes. |
257 | 258 |
typedef typename TR::DistMap DistMap; |
258 | 259 |
///The cross reference type used for the current heap. |
259 | 260 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
260 | 261 |
///The heap type used by the dijkstra algorithm. |
261 | 262 |
typedef typename TR::Heap Heap; |
262 | 263 |
///The operation traits. |
263 | 264 |
typedef typename TR::OperationTraits OperationTraits; |
264 | 265 |
private: |
265 | 266 |
/// Pointer to the underlying digraph. |
266 | 267 |
const Digraph *G; |
267 | 268 |
/// Pointer to the length map |
268 | 269 |
const LengthMap *length; |
269 | 270 |
///Pointer to the map of predecessors arcs. |
270 | 271 |
PredMap *_pred; |
271 | 272 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
272 | 273 |
bool local_pred; |
273 | 274 |
///Pointer to the map of distances. |
274 | 275 |
DistMap *_dist; |
275 | 276 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
276 | 277 |
bool local_dist; |
277 | 278 |
///Pointer to the map of processed status of the nodes. |
278 | 279 |
ProcessedMap *_processed; |
279 | 280 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
280 | 281 |
bool local_processed; |
281 | 282 |
///Pointer to the heap cross references. |
282 | 283 |
HeapCrossRef *_heap_cross_ref; |
283 | 284 |
///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
284 | 285 |
bool local_heap_cross_ref; |
285 | 286 |
///Pointer to the heap. |
286 | 287 |
Heap *_heap; |
287 | 288 |
///Indicates if \ref _heap is locally allocated (\c true) or not. |
288 | 289 |
bool local_heap; |
289 | 290 |
|
290 | 291 |
///Creates the maps if necessary. |
291 | 292 |
|
292 | 293 |
///\todo Better memory allocation (instead of new). |
293 | 294 |
void create_maps() |
294 | 295 |
{ |
295 | 296 |
if(!_pred) { |
296 | 297 |
local_pred = true; |
297 | 298 |
_pred = Traits::createPredMap(*G); |
298 | 299 |
} |
299 | 300 |
if(!_dist) { |
300 | 301 |
local_dist = true; |
301 | 302 |
_dist = Traits::createDistMap(*G); |
302 | 303 |
} |
303 | 304 |
if(!_processed) { |
304 | 305 |
local_processed = true; |
305 | 306 |
_processed = Traits::createProcessedMap(*G); |
306 | 307 |
} |
307 | 308 |
if (!_heap_cross_ref) { |
308 | 309 |
local_heap_cross_ref = true; |
309 | 310 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
310 | 311 |
} |
311 | 312 |
if (!_heap) { |
312 | 313 |
local_heap = true; |
313 | 314 |
_heap = Traits::createHeap(*_heap_cross_ref); |
314 | 315 |
} |
315 | 316 |
} |
316 | 317 |
|
317 | 318 |
public : |
318 | 319 |
|
319 | 320 |
typedef Dijkstra Create; |
320 | 321 |
|
321 | 322 |
///\name Named template parameters |
322 | 323 |
|
323 | 324 |
///@{ |
324 | 325 |
|
325 | 326 |
template <class T> |
326 | 327 |
struct DefPredMapTraits : public Traits { |
327 | 328 |
typedef T PredMap; |
328 | 329 |
static PredMap *createPredMap(const Digraph &) |
329 | 330 |
{ |
330 | 331 |
throw UninitializedParameter(); |
331 | 332 |
} |
332 | 333 |
}; |
333 | 334 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
334 | 335 |
|
335 | 336 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
336 | 337 |
/// |
337 | 338 |
template <class T> |
338 | 339 |
struct DefPredMap |
339 |
: public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > { |
|
340 |
typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
|
340 |
: public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > { |
|
341 |
typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
|
341 | 342 |
}; |
342 | 343 |
|
343 | 344 |
template <class T> |
344 | 345 |
struct DefDistMapTraits : public Traits { |
345 | 346 |
typedef T DistMap; |
346 | 347 |
static DistMap *createDistMap(const Digraph &) |
347 | 348 |
{ |
348 | 349 |
throw UninitializedParameter(); |
349 | 350 |
} |
350 | 351 |
}; |
351 | 352 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
352 | 353 |
|
353 | 354 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
354 | 355 |
/// |
355 | 356 |
template <class T> |
356 | 357 |
struct DefDistMap |
357 | 358 |
: public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > { |
358 | 359 |
typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
359 | 360 |
}; |
360 | 361 |
|
361 | 362 |
template <class T> |
362 | 363 |
struct DefProcessedMapTraits : public Traits { |
363 | 364 |
typedef T ProcessedMap; |
364 | 365 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
365 | 366 |
{ |
366 | 367 |
throw UninitializedParameter(); |
367 | 368 |
} |
368 | 369 |
}; |
369 | 370 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
370 | 371 |
|
371 | 372 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
372 | 373 |
/// |
373 | 374 |
template <class T> |
374 | 375 |
struct DefProcessedMap |
375 |
: public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > { |
|
376 |
typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create; |
|
376 |
: public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > { |
|
377 |
typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create; |
|
377 | 378 |
}; |
378 | 379 |
|
379 | 380 |
struct DefDigraphProcessedMapTraits : public Traits { |
380 | 381 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
381 | 382 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
382 | 383 |
{ |
383 | 384 |
return new ProcessedMap(G); |
384 | 385 |
} |
385 | 386 |
}; |
386 | 387 |
///\brief \ref named-templ-param "Named parameter" |
387 | 388 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
388 | 389 |
/// |
389 | 390 |
///\ref named-templ-param "Named parameter" |
390 | 391 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
391 | 392 |
///If you don't set it explicitely, it will be automatically allocated. |
392 | 393 |
template <class T> |
393 | 394 |
struct DefProcessedMapToBeDefaultMap |
394 | 395 |
: public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> { |
395 |
typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> |
|
396 |
typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> |
|
397 |
Create; |
|
396 | 398 |
}; |
397 | 399 |
|
398 | 400 |
template <class H, class CR> |
399 | 401 |
struct DefHeapTraits : public Traits { |
400 | 402 |
typedef CR HeapCrossRef; |
401 | 403 |
typedef H Heap; |
402 | 404 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
403 | 405 |
throw UninitializedParameter(); |
404 | 406 |
} |
405 | 407 |
static Heap *createHeap(HeapCrossRef &) |
406 | 408 |
{ |
407 | 409 |
throw UninitializedParameter(); |
408 | 410 |
} |
409 | 411 |
}; |
410 | 412 |
///\brief \ref named-templ-param "Named parameter" for setting |
411 | 413 |
///heap and cross reference type |
412 | 414 |
/// |
413 | 415 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
414 | 416 |
///reference type |
415 | 417 |
/// |
416 | 418 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
417 | 419 |
struct DefHeap |
418 |
: public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > { |
|
419 |
typedef Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > Create; |
|
420 |
: public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > { |
|
421 |
typedef Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > Create; |
|
420 | 422 |
}; |
421 | 423 |
|
422 | 424 |
template <class H, class CR> |
423 | 425 |
struct DefStandardHeapTraits : public Traits { |
424 | 426 |
typedef CR HeapCrossRef; |
425 | 427 |
typedef H Heap; |
426 | 428 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
427 | 429 |
return new HeapCrossRef(G); |
428 | 430 |
} |
429 | 431 |
static Heap *createHeap(HeapCrossRef &R) |
430 | 432 |
{ |
431 | 433 |
return new Heap(R); |
432 | 434 |
} |
433 | 435 |
}; |
434 | 436 |
///\brief \ref named-templ-param "Named parameter" for setting |
435 | 437 |
///heap and cross reference type with automatic allocation |
436 | 438 |
/// |
437 | 439 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
438 | 440 |
///reference type. It can allocate the heap and the cross reference |
439 | 441 |
///object if the cross reference's constructor waits for the digraph as |
440 | 442 |
///parameter and the heap's constructor waits for the cross reference. |
441 | 443 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
442 | 444 |
struct DefStandardHeap |
443 |
: public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > { |
|
444 |
typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > |
|
445 |
: public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > { |
|
446 |
typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > |
|
445 | 447 |
Create; |
446 | 448 |
}; |
447 | 449 |
|
448 | 450 |
template <class T> |
449 | 451 |
struct DefOperationTraitsTraits : public Traits { |
450 | 452 |
typedef T OperationTraits; |
451 | 453 |
}; |
452 | 454 |
|
453 | 455 |
/// \brief \ref named-templ-param "Named parameter" for setting |
454 | 456 |
/// OperationTraits type |
455 | 457 |
/// |
456 | 458 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
457 | 459 |
/// type |
458 | 460 |
template <class T> |
459 | 461 |
struct DefOperationTraits |
460 | 462 |
: public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
461 | 463 |
typedef Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > |
462 | 464 |
Create; |
463 | 465 |
}; |
464 | 466 |
|
465 | 467 |
///@} |
466 | 468 |
|
467 | 469 |
|
468 | 470 |
protected: |
469 | 471 |
|
470 | 472 |
Dijkstra() {} |
471 | 473 |
|
472 | 474 |
public: |
473 | 475 |
|
474 | 476 |
///Constructor. |
475 | 477 |
|
476 | 478 |
///\param _G the digraph the algorithm will run on. |
477 | 479 |
///\param _length the length map used by the algorithm. |
478 | 480 |
Dijkstra(const Digraph& _G, const LengthMap& _length) : |
479 | 481 |
G(&_G), length(&_length), |
480 | 482 |
_pred(NULL), local_pred(false), |
481 | 483 |
_dist(NULL), local_dist(false), |
482 | 484 |
_processed(NULL), local_processed(false), |
483 | 485 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
484 | 486 |
_heap(NULL), local_heap(false) |
485 | 487 |
{ } |
486 | 488 |
|
487 | 489 |
///Destructor. |
488 | 490 |
~Dijkstra() |
489 | 491 |
{ |
490 | 492 |
if(local_pred) delete _pred; |
491 | 493 |
if(local_dist) delete _dist; |
492 | 494 |
if(local_processed) delete _processed; |
493 | 495 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
494 | 496 |
if(local_heap) delete _heap; |
495 | 497 |
} |
496 | 498 |
|
497 | 499 |
///Sets the length map. |
498 | 500 |
|
499 | 501 |
///Sets the length map. |
500 | 502 |
///\return <tt> (*this) </tt> |
501 | 503 |
Dijkstra &lengthMap(const LengthMap &m) |
502 | 504 |
{ |
503 | 505 |
length = &m; |
504 | 506 |
return *this; |
505 | 507 |
} |
506 | 508 |
|
507 | 509 |
///Sets the map storing the predecessor arcs. |
508 | 510 |
|
509 | 511 |
///Sets the map storing the predecessor arcs. |
510 | 512 |
///If you don't use this function before calling \ref run(), |
511 | 513 |
///it will allocate one. The destuctor deallocates this |
512 | 514 |
///automatically allocated map, of course. |
513 | 515 |
///\return <tt> (*this) </tt> |
514 | 516 |
Dijkstra &predMap(PredMap &m) |
515 | 517 |
{ |
516 | 518 |
if(local_pred) { |
517 | 519 |
delete _pred; |
518 | 520 |
local_pred=false; |
519 | 521 |
} |
520 | 522 |
_pred = &m; |
521 | 523 |
return *this; |
522 | 524 |
} |
523 | 525 |
|
524 | 526 |
///Sets the map storing the distances calculated by the algorithm. |
525 | 527 |
|
526 | 528 |
///Sets the map storing the distances calculated by the algorithm. |
527 | 529 |
///If you don't use this function before calling \ref run(), |
528 | 530 |
///it will allocate one. The destuctor deallocates this |
529 | 531 |
///automatically allocated map, of course. |
530 | 532 |
///\return <tt> (*this) </tt> |
531 | 533 |
Dijkstra &distMap(DistMap &m) |
532 | 534 |
{ |
533 | 535 |
if(local_dist) { |
534 | 536 |
delete _dist; |
535 | 537 |
local_dist=false; |
536 | 538 |
} |
537 | 539 |
_dist = &m; |
538 | 540 |
return *this; |
539 | 541 |
} |
540 | 542 |
|
541 | 543 |
///Sets the heap and the cross reference used by algorithm. |
542 | 544 |
|
543 | 545 |
///Sets the heap and the cross reference used by algorithm. |
544 | 546 |
///If you don't use this function before calling \ref run(), |
545 | 547 |
///it will allocate one. The destuctor deallocates this |
546 | 548 |
///automatically allocated heap and cross reference, of course. |
547 | 549 |
///\return <tt> (*this) </tt> |
548 | 550 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
549 | 551 |
{ |
550 | 552 |
if(local_heap_cross_ref) { |
551 | 553 |
delete _heap_cross_ref; |
552 | 554 |
local_heap_cross_ref=false; |
553 | 555 |
} |
554 | 556 |
_heap_cross_ref = &cr; |
555 | 557 |
if(local_heap) { |
556 | 558 |
delete _heap; |
557 | 559 |
local_heap=false; |
558 | 560 |
} |
559 | 561 |
_heap = &hp; |
560 | 562 |
return *this; |
561 | 563 |
} |
562 | 564 |
|
563 | 565 |
private: |
564 | 566 |
void finalizeNodeData(Node v,Value dst) |
565 | 567 |
{ |
566 | 568 |
_processed->set(v,true); |
567 | 569 |
_dist->set(v, dst); |
568 | 570 |
} |
569 | 571 |
|
570 | 572 |
public: |
571 | 573 |
|
572 | 574 |
typedef PredMapPath<Digraph, PredMap> Path; |
573 | 575 |
|
574 | 576 |
///\name Execution control |
575 | 577 |
///The simplest way to execute the algorithm is to use |
576 | 578 |
///one of the member functions called \c run(...). |
577 | 579 |
///\n |
578 | 580 |
///If you need more control on the execution, |
579 | 581 |
///first you must call \ref init(), then you can add several source nodes |
580 | 582 |
///with \ref addSource(). |
581 | 583 |
///Finally \ref start() will perform the actual path |
582 | 584 |
///computation. |
583 | 585 |
|
584 | 586 |
///@{ |
585 | 587 |
|
586 | 588 |
///Initializes the internal data structures. |
587 | 589 |
|
588 | 590 |
///Initializes the internal data structures. |
589 | 591 |
/// |
590 | 592 |
void init() |
591 | 593 |
{ |
592 | 594 |
create_maps(); |
593 | 595 |
_heap->clear(); |
594 | 596 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
595 | 597 |
_pred->set(u,INVALID); |
596 | 598 |
_processed->set(u,false); |
597 | 599 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
598 | 600 |
} |
599 | 601 |
} |
600 | 602 |
|
601 | 603 |
///Adds a new source node. |
602 | 604 |
|
603 | 605 |
///Adds a new source node to the priority heap. |
604 | 606 |
/// |
605 | 607 |
///The optional second parameter is the initial distance of the node. |
606 | 608 |
/// |
607 | 609 |
///It checks if the node has already been added to the heap and |
608 | 610 |
///it is pushed to the heap only if either it was not in the heap |
609 | 611 |
///or the shortest path found till then is shorter than \c dst. |
610 | 612 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
611 | 613 |
{ |
612 | 614 |
if(_heap->state(s) != Heap::IN_HEAP) { |
613 | 615 |
_heap->push(s,dst); |
614 | 616 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
615 | 617 |
_heap->set(s,dst); |
616 | 618 |
_pred->set(s,INVALID); |
617 | 619 |
} |
618 | 620 |
} |
619 | 621 |
|
620 | 622 |
///Processes the next node in the priority heap |
621 | 623 |
|
622 | 624 |
///Processes the next node in the priority heap. |
623 | 625 |
/// |
624 | 626 |
///\return The processed node. |
625 | 627 |
/// |
626 | 628 |
///\warning The priority heap must not be empty! |
627 | 629 |
Node processNextNode() |
628 | 630 |
{ |
629 | 631 |
Node v=_heap->top(); |
630 | 632 |
Value oldvalue=_heap->prio(); |
631 | 633 |
_heap->pop(); |
632 | 634 |
finalizeNodeData(v,oldvalue); |
633 | 635 |
|
634 | 636 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
635 | 637 |
Node w=G->target(e); |
636 | 638 |
switch(_heap->state(w)) { |
637 | 639 |
case Heap::PRE_HEAP: |
638 | 640 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
639 | 641 |
_pred->set(w,e); |
640 | 642 |
break; |
641 | 643 |
case Heap::IN_HEAP: |
642 | 644 |
{ |
643 | 645 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
644 | 646 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
645 | 647 |
_heap->decrease(w, newvalue); |
646 | 648 |
_pred->set(w,e); |
647 | 649 |
} |
648 | 650 |
} |
649 | 651 |
break; |
650 | 652 |
case Heap::POST_HEAP: |
651 | 653 |
break; |
652 | 654 |
} |
653 | 655 |
} |
654 | 656 |
return v; |
655 | 657 |
} |
656 | 658 |
|
657 | 659 |
///Next node to be processed. |
658 | 660 |
|
659 | 661 |
///Next node to be processed. |
660 | 662 |
/// |
661 | 663 |
///\return The next node to be processed or INVALID if the priority heap |
662 | 664 |
/// is empty. |
663 | 665 |
Node nextNode() |
664 | 666 |
{ |
665 | 667 |
return !_heap->empty()?_heap->top():INVALID; |
666 | 668 |
} |
667 | 669 |
|
668 | 670 |
///\brief Returns \c false if there are nodes |
669 | 671 |
///to be processed in the priority heap |
670 | 672 |
/// |
671 | 673 |
///Returns \c false if there are nodes |
672 | 674 |
///to be processed in the priority heap |
673 | 675 |
bool emptyQueue() { return _heap->empty(); } |
674 | 676 |
///Returns the number of the nodes to be processed in the priority heap |
675 | 677 |
|
676 | 678 |
///Returns the number of the nodes to be processed in the priority heap |
677 | 679 |
/// |
678 | 680 |
int queueSize() { return _heap->size(); } |
679 | 681 |
|
680 | 682 |
///Executes the algorithm. |
681 | 683 |
|
682 | 684 |
///Executes the algorithm. |
683 | 685 |
/// |
684 | 686 |
///\pre init() must be called and at least one node should be added |
685 | 687 |
///with addSource() before using this function. |
686 | 688 |
/// |
687 | 689 |
///This method runs the %Dijkstra algorithm from the root node(s) |
688 | 690 |
///in order to |
689 | 691 |
///compute the |
690 | 692 |
///shortest path to each node. The algorithm computes |
691 | 693 |
///- The shortest path tree. |
692 | 694 |
///- The distance of each node from the root(s). |
693 | 695 |
/// |
694 | 696 |
void start() |
695 | 697 |
{ |
696 | 698 |
while ( !_heap->empty() ) processNextNode(); |
697 | 699 |
} |
698 | 700 |
|
699 | 701 |
///Executes the algorithm until \c dest is reached. |
700 | 702 |
|
701 | 703 |
///Executes the algorithm until \c dest is reached. |
702 | 704 |
/// |
703 | 705 |
///\pre init() must be called and at least one node should be added |
704 | 706 |
///with addSource() before using this function. |
705 | 707 |
/// |
706 | 708 |
///This method runs the %Dijkstra algorithm from the root node(s) |
707 | 709 |
///in order to |
708 | 710 |
///compute the |
709 | 711 |
///shortest path to \c dest. The algorithm computes |
710 | 712 |
///- The shortest path to \c dest. |
711 | 713 |
///- The distance of \c dest from the root(s). |
712 | 714 |
/// |
713 | 715 |
void start(Node dest) |
714 | 716 |
{ |
715 | 717 |
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
716 | 718 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
717 | 719 |
} |
718 | 720 |
|
719 | 721 |
///Executes the algorithm until a condition is met. |
720 | 722 |
|
721 | 723 |
///Executes the algorithm until a condition is met. |
722 | 724 |
/// |
723 | 725 |
///\pre init() must be called and at least one node should be added |
724 | 726 |
///with addSource() before using this function. |
725 | 727 |
/// |
726 | 728 |
///\param nm must be a bool (or convertible) node map. The algorithm |
727 | 729 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
728 | 730 |
/// |
729 | 731 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
730 | 732 |
///\c INVALID if no such node was found. |
731 | 733 |
template<class NodeBoolMap> |
732 | 734 |
Node start(const NodeBoolMap &nm) |
733 | 735 |
{ |
734 | 736 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
735 | 737 |
if ( _heap->empty() ) return INVALID; |
736 | 738 |
finalizeNodeData(_heap->top(),_heap->prio()); |
737 | 739 |
return _heap->top(); |
738 | 740 |
} |
739 | 741 |
|
740 | 742 |
///Runs %Dijkstra algorithm from node \c s. |
741 | 743 |
|
742 | 744 |
///This method runs the %Dijkstra algorithm from a root node \c s |
743 | 745 |
///in order to |
744 | 746 |
///compute the |
745 | 747 |
///shortest path to each node. The algorithm computes |
746 | 748 |
///- The shortest path tree. |
747 | 749 |
///- The distance of each node from the root. |
748 | 750 |
/// |
749 | 751 |
///\note d.run(s) is just a shortcut of the following code. |
750 | 752 |
///\code |
751 | 753 |
/// d.init(); |
752 | 754 |
/// d.addSource(s); |
753 | 755 |
/// d.start(); |
754 | 756 |
///\endcode |
755 | 757 |
void run(Node s) { |
756 | 758 |
init(); |
757 | 759 |
addSource(s); |
758 | 760 |
start(); |
759 | 761 |
} |
760 | 762 |
|
761 | 763 |
///Finds the shortest path between \c s and \c t. |
762 | 764 |
|
763 | 765 |
///Finds the shortest path between \c s and \c t. |
764 | 766 |
/// |
765 | 767 |
///\return The length of the shortest s---t path if there exists one, |
766 | 768 |
///0 otherwise. |
767 | 769 |
///\note Apart from the return value, d.run(s) is |
768 | 770 |
///just a shortcut of the following code. |
769 | 771 |
///\code |
770 | 772 |
/// d.init(); |
771 | 773 |
/// d.addSource(s); |
772 | 774 |
/// d.start(t); |
773 | 775 |
///\endcode |
774 | 776 |
Value run(Node s,Node t) { |
775 | 777 |
init(); |
776 | 778 |
addSource(s); |
777 | 779 |
start(t); |
778 | 780 |
return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t]; |
779 | 781 |
} |
780 | 782 |
|
781 | 783 |
///@} |
782 | 784 |
|
783 | 785 |
///\name Query Functions |
784 | 786 |
///The result of the %Dijkstra algorithm can be obtained using these |
785 | 787 |
///functions.\n |
786 | 788 |
///Before the use of these functions, |
787 | 789 |
///either run() or start() must be called. |
788 | 790 |
|
789 | 791 |
///@{ |
790 | 792 |
|
791 | 793 |
///Gives back the shortest path. |
792 | 794 |
|
793 | 795 |
///Gives back the shortest path. |
794 | 796 |
///\pre The \c t should be reachable from the source. |
795 | 797 |
Path path(Node t) |
796 | 798 |
{ |
797 | 799 |
return Path(*G, *_pred, t); |
798 | 800 |
} |
799 | 801 |
|
800 | 802 |
///The distance of a node from the root. |
801 | 803 |
|
802 | 804 |
///Returns the distance of a node from the root. |
803 | 805 |
///\pre \ref run() must be called before using this function. |
804 | 806 |
///\warning If node \c v in unreachable from the root the return value |
805 | 807 |
///of this funcion is undefined. |
806 | 808 |
Value dist(Node v) const { return (*_dist)[v]; } |
807 | 809 |
|
808 | 810 |
///The current distance of a node from the root. |
809 | 811 |
|
810 | 812 |
///Returns the current distance of a node from the root. |
811 | 813 |
///It may be decreased in the following processes. |
812 | 814 |
///\pre \c node should be reached but not processed |
813 | 815 |
Value currentDist(Node v) const { return (*_heap)[v]; } |
814 | 816 |
|
815 | 817 |
///Returns the 'previous arc' of the shortest path tree. |
816 | 818 |
|
817 | 819 |
///For a node \c v it returns the 'previous arc' of the shortest path tree, |
818 | 820 |
///i.e. it returns the last arc of a shortest path from the root to \c |
819 | 821 |
///v. It is \ref INVALID |
820 | 822 |
///if \c v is unreachable from the root or if \c v=s. The |
821 | 823 |
///shortest path tree used here is equal to the shortest path tree used in |
822 | 824 |
///\ref predNode(). \pre \ref run() must be called before using |
823 | 825 |
///this function. |
824 | 826 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
825 | 827 |
|
826 | 828 |
///Returns the 'previous node' of the shortest path tree. |
827 | 829 |
|
828 | 830 |
///For a node \c v it returns the 'previous node' of the shortest path tree, |
829 | 831 |
///i.e. it returns the last but one node from a shortest path from the |
830 | 832 |
///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
831 | 833 |
///\c v=s. The shortest path tree used here is equal to the shortest path |
832 | 834 |
///tree used in \ref predArc(). \pre \ref run() must be called before |
833 | 835 |
///using this function. |
834 | 836 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
835 | 837 |
G->source((*_pred)[v]); } |
836 | 838 |
|
837 | 839 |
///Returns a reference to the NodeMap of distances. |
838 | 840 |
|
839 | 841 |
///Returns a reference to the NodeMap of distances. \pre \ref run() must |
840 | 842 |
///be called before using this function. |
841 | 843 |
const DistMap &distMap() const { return *_dist;} |
842 | 844 |
|
843 | 845 |
///Returns a reference to the shortest path tree map. |
844 | 846 |
|
845 | 847 |
///Returns a reference to the NodeMap of the arcs of the |
846 | 848 |
///shortest path tree. |
847 | 849 |
///\pre \ref run() must be called before using this function. |
848 | 850 |
const PredMap &predMap() const { return *_pred;} |
849 | 851 |
|
850 | 852 |
///Checks if a node is reachable from the root. |
851 | 853 |
|
852 | 854 |
///Returns \c true if \c v is reachable from the root. |
853 | 855 |
///\warning The source nodes are inditated as unreached. |
854 | 856 |
///\pre \ref run() must be called before using this function. |
855 | 857 |
/// |
856 | 858 |
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } |
857 | 859 |
|
858 | 860 |
///Checks if a node is processed. |
859 | 861 |
|
860 | 862 |
///Returns \c true if \c v is processed, i.e. the shortest |
861 | 863 |
///path to \c v has already found. |
862 | 864 |
///\pre \ref run() must be called before using this function. |
863 | 865 |
/// |
864 | 866 |
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } |
865 | 867 |
|
866 | 868 |
///@} |
867 | 869 |
}; |
868 | 870 |
|
869 | 871 |
|
870 | 872 |
|
871 | 873 |
|
872 | 874 |
|
873 | 875 |
///Default traits class of Dijkstra function. |
874 | 876 |
|
875 | 877 |
///Default traits class of Dijkstra function. |
876 | 878 |
///\tparam GR Digraph type. |
877 | 879 |
///\tparam LM Type of length map. |
878 | 880 |
template<class GR, class LM> |
879 | 881 |
struct DijkstraWizardDefaultTraits |
880 | 882 |
{ |
881 | 883 |
///The digraph type the algorithm runs on. |
882 | 884 |
typedef GR Digraph; |
883 | 885 |
///The type of the map that stores the arc lengths. |
884 | 886 |
|
885 | 887 |
///The type of the map that stores the arc lengths. |
886 | 888 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
887 | 889 |
typedef LM LengthMap; |
888 | 890 |
//The type of the length of the arcs. |
889 | 891 |
typedef typename LM::Value Value; |
890 | 892 |
/// Operation traits for Dijkstra algorithm. |
891 | 893 |
|
892 | 894 |
/// It defines the used operation by the algorithm. |
893 | 895 |
/// \see DijkstraDefaultOperationTraits |
894 | 896 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
895 | 897 |
///The heap type used by Dijkstra algorithm. |
896 | 898 |
|
897 | 899 |
/// The cross reference type used by heap. |
898 | 900 |
|
899 | 901 |
/// The cross reference type used by heap. |
900 | 902 |
/// Usually it is \c Digraph::NodeMap<int>. |
901 | 903 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
902 | 904 |
///Instantiates a HeapCrossRef. |
903 | 905 |
|
904 | 906 |
///This function instantiates a \ref HeapCrossRef. |
905 | 907 |
/// \param G is the digraph, to which we would like to define the |
906 | 908 |
/// HeapCrossRef. |
907 | 909 |
/// \todo The digraph alone may be insufficient for the initialization |
908 | 910 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
909 | 911 |
{ |
910 | 912 |
return new HeapCrossRef(G); |
911 | 913 |
} |
912 | 914 |
|
913 | 915 |
///The heap type used by Dijkstra algorithm. |
914 | 916 |
|
915 | 917 |
///The heap type used by Dijkstra algorithm. |
916 | 918 |
/// |
917 | 919 |
///\sa BinHeap |
918 | 920 |
///\sa Dijkstra |
919 | 921 |
typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>, |
920 | 922 |
std::less<Value> > Heap; |
921 | 923 |
|
922 | 924 |
static Heap *createHeap(HeapCrossRef& R) |
923 | 925 |
{ |
924 | 926 |
return new Heap(R); |
925 | 927 |
} |
926 | 928 |
|
927 | 929 |
///\brief The type of the map that stores the last |
928 | 930 |
///arcs of the shortest paths. |
929 | 931 |
/// |
930 | 932 |
///The type of the map that stores the last |
931 | 933 |
///arcs of the shortest paths. |
932 | 934 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
933 | 935 |
/// |
934 | 936 |
typedef NullMap <typename GR::Node,typename GR::Arc> PredMap; |
935 | 937 |
///Instantiates a PredMap. |
936 | 938 |
|
937 | 939 |
///This function instantiates a \ref PredMap. |
938 | 940 |
///\param g is the digraph, to which we would like to define the PredMap. |
939 | 941 |
///\todo The digraph alone may be insufficient for the initialization |
940 | 942 |
#ifdef DOXYGEN |
941 | 943 |
static PredMap *createPredMap(const GR &g) |
942 | 944 |
#else |
943 | 945 |
static PredMap *createPredMap(const GR &) |
944 | 946 |
#endif |
945 | 947 |
{ |
946 | 948 |
return new PredMap(); |
947 | 949 |
} |
948 | 950 |
///The type of the map that stores whether a nodes is processed. |
949 | 951 |
|
950 | 952 |
///The type of the map that stores whether a nodes is processed. |
951 | 953 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
952 | 954 |
///By default it is a NullMap. |
953 | 955 |
///\todo If it is set to a real map, |
954 | 956 |
///Dijkstra::processed() should read this. |
955 | 957 |
///\todo named parameter to set this type, function to read and write. |
956 | 958 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
957 | 959 |
///Instantiates a ProcessedMap. |
958 | 960 |
|
959 | 961 |
///This function instantiates a \ref ProcessedMap. |
960 | 962 |
///\param g is the digraph, to which |
961 | 963 |
///we would like to define the \ref ProcessedMap |
962 | 964 |
#ifdef DOXYGEN |
963 | 965 |
static ProcessedMap *createProcessedMap(const GR &g) |
964 | 966 |
#else |
965 | 967 |
static ProcessedMap *createProcessedMap(const GR &) |
966 | 968 |
#endif |
967 | 969 |
{ |
968 | 970 |
return new ProcessedMap(); |
969 | 971 |
} |
970 | 972 |
///The type of the map that stores the dists of the nodes. |
971 | 973 |
|
972 | 974 |
///The type of the map that stores the dists of the nodes. |
973 | 975 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
974 | 976 |
/// |
975 | 977 |
typedef NullMap<typename Digraph::Node,typename LM::Value> DistMap; |
976 | 978 |
///Instantiates a DistMap. |
977 | 979 |
|
978 | 980 |
///This function instantiates a \ref DistMap. |
979 |
///\param g is the digraph, to which we would like to define |
|
981 |
///\param g is the digraph, to which we would like to define |
|
982 |
///the \ref DistMap |
|
980 | 983 |
#ifdef DOXYGEN |
981 | 984 |
static DistMap *createDistMap(const GR &g) |
982 | 985 |
#else |
983 | 986 |
static DistMap *createDistMap(const GR &) |
984 | 987 |
#endif |
985 | 988 |
{ |
986 | 989 |
return new DistMap(); |
987 | 990 |
} |
988 | 991 |
}; |
989 | 992 |
|
990 | 993 |
/// Default traits used by \ref DijkstraWizard |
991 | 994 |
|
992 | 995 |
/// To make it easier to use Dijkstra algorithm |
993 | 996 |
///we have created a wizard class. |
994 | 997 |
/// This \ref DijkstraWizard class needs default traits, |
995 | 998 |
///as well as the \ref Dijkstra class. |
996 | 999 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
997 | 1000 |
/// \ref DijkstraWizard class. |
998 | 1001 |
/// \todo More named parameters are required... |
999 | 1002 |
template<class GR,class LM> |
1000 | 1003 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1001 | 1004 |
{ |
1002 | 1005 |
|
1003 | 1006 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1004 | 1007 |
protected: |
1005 | 1008 |
/// Type of the nodes in the digraph. |
1006 | 1009 |
typedef typename Base::Digraph::Node Node; |
1007 | 1010 |
|
1008 | 1011 |
/// Pointer to the underlying digraph. |
1009 | 1012 |
void *_g; |
1010 | 1013 |
/// Pointer to the length map |
1011 | 1014 |
void *_length; |
1012 | 1015 |
///Pointer to the map of predecessors arcs. |
1013 | 1016 |
void *_pred; |
1014 | 1017 |
///Pointer to the map of distances. |
1015 | 1018 |
void *_dist; |
1016 | 1019 |
///Pointer to the source node. |
1017 | 1020 |
Node _source; |
1018 | 1021 |
|
1019 | 1022 |
public: |
1020 | 1023 |
/// Constructor. |
1021 | 1024 |
|
1022 | 1025 |
/// This constructor does not require parameters, therefore it initiates |
1023 | 1026 |
/// all of the attributes to default values (0, INVALID). |
1024 | 1027 |
DijkstraWizardBase() : _g(0), _length(0), _pred(0), |
1025 | 1028 |
_dist(0), _source(INVALID) {} |
1026 | 1029 |
|
1027 | 1030 |
/// Constructor. |
1028 | 1031 |
|
1029 | 1032 |
/// This constructor requires some parameters, |
1030 | 1033 |
/// listed in the parameters list. |
1031 | 1034 |
/// Others are initiated to 0. |
1032 | 1035 |
/// \param g is the initial value of \ref _g |
1033 | 1036 |
/// \param l is the initial value of \ref _length |
1034 | 1037 |
/// \param s is the initial value of \ref _source |
1035 | 1038 |
DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) : |
1036 | 1039 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1037 | 1040 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1038 | 1041 |
_pred(0), _dist(0), _source(s) {} |
1039 | 1042 |
|
1040 | 1043 |
}; |
1041 | 1044 |
|
1042 | 1045 |
/// A class to make the usage of Dijkstra algorithm easier |
1043 | 1046 |
|
1044 | 1047 |
/// This class is created to make it easier to use Dijkstra algorithm. |
1045 | 1048 |
/// It uses the functions and features of the plain \ref Dijkstra, |
1046 | 1049 |
/// but it is much simpler to use it. |
1047 | 1050 |
/// |
1048 | 1051 |
/// Simplicity means that the way to change the types defined |
1049 | 1052 |
/// in the traits class is based on functions that returns the new class |
1050 | 1053 |
/// and not on templatable built-in classes. |
1051 | 1054 |
/// When using the plain \ref Dijkstra |
1052 | 1055 |
/// the new class with the modified type comes from |
1053 | 1056 |
/// the original class by using the :: |
1054 | 1057 |
/// operator. In the case of \ref DijkstraWizard only |
1055 | 1058 |
/// a function have to be called and it will |
1056 | 1059 |
/// return the needed class. |
1057 | 1060 |
/// |
1058 | 1061 |
/// It does not have own \ref run method. When its \ref run method is called |
1059 | 1062 |
/// it initiates a plain \ref Dijkstra class, and calls the \ref |
1060 | 1063 |
/// Dijkstra::run method of it. |
1061 | 1064 |
template<class TR> |
1062 | 1065 |
class DijkstraWizard : public TR |
1063 | 1066 |
{ |
1064 | 1067 |
typedef TR Base; |
1065 | 1068 |
|
1066 | 1069 |
///The type of the underlying digraph. |
1067 | 1070 |
typedef typename TR::Digraph Digraph; |
1068 | 1071 |
//\e |
1069 | 1072 |
typedef typename Digraph::Node Node; |
1070 | 1073 |
//\e |
1071 | 1074 |
typedef typename Digraph::NodeIt NodeIt; |
1072 | 1075 |
//\e |
1073 | 1076 |
typedef typename Digraph::Arc Arc; |
1074 | 1077 |
//\e |
1075 | 1078 |
typedef typename Digraph::OutArcIt OutArcIt; |
1076 | 1079 |
|
1077 | 1080 |
///The type of the map that stores the arc lengths. |
1078 | 1081 |
typedef typename TR::LengthMap LengthMap; |
1079 | 1082 |
///The type of the length of the arcs. |
1080 | 1083 |
typedef typename LengthMap::Value Value; |
1081 | 1084 |
///\brief The type of the map that stores the last |
1082 | 1085 |
///arcs of the shortest paths. |
1083 | 1086 |
typedef typename TR::PredMap PredMap; |
1084 | 1087 |
///The type of the map that stores the dists of the nodes. |
1085 | 1088 |
typedef typename TR::DistMap DistMap; |
1086 | 1089 |
///The heap type used by the dijkstra algorithm. |
1087 | 1090 |
typedef typename TR::Heap Heap; |
1088 | 1091 |
public: |
1089 | 1092 |
/// Constructor. |
1090 | 1093 |
DijkstraWizard() : TR() {} |
1091 | 1094 |
|
1092 | 1095 |
/// Constructor that requires parameters. |
1093 | 1096 |
|
1094 | 1097 |
/// Constructor that requires parameters. |
1095 | 1098 |
/// These parameters will be the default values for the traits class. |
1096 | 1099 |
DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) : |
1097 | 1100 |
TR(g,l,s) {} |
1098 | 1101 |
|
1099 | 1102 |
///Copy constructor |
1100 | 1103 |
DijkstraWizard(const TR &b) : TR(b) {} |
1101 | 1104 |
|
1102 | 1105 |
~DijkstraWizard() {} |
1103 | 1106 |
|
1104 | 1107 |
///Runs Dijkstra algorithm from a given node. |
1105 | 1108 |
|
1106 | 1109 |
///Runs Dijkstra algorithm from a given node. |
1107 | 1110 |
///The node can be given by the \ref source function. |
1108 | 1111 |
void run() |
1109 | 1112 |
{ |
1110 | 1113 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
1111 | 1114 |
Dijkstra<Digraph,LengthMap,TR> |
1112 | 1115 |
dij(*reinterpret_cast<const Digraph*>(Base::_g), |
1113 | 1116 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1114 | 1117 |
if(Base::_pred) dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1115 | 1118 |
if(Base::_dist) dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1116 | 1119 |
dij.run(Base::_source); |
1117 | 1120 |
} |
1118 | 1121 |
|
1119 | 1122 |
///Runs Dijkstra algorithm from the given node. |
1120 | 1123 |
|
1121 | 1124 |
///Runs Dijkstra algorithm from the given node. |
1122 | 1125 |
///\param s is the given source. |
1123 | 1126 |
void run(Node s) |
1124 | 1127 |
{ |
1125 | 1128 |
Base::_source=s; |
1126 | 1129 |
run(); |
1127 | 1130 |
} |
1128 | 1131 |
|
1129 | 1132 |
template<class T> |
1130 | 1133 |
struct DefPredMapBase : public Base { |
1131 | 1134 |
typedef T PredMap; |
1132 | 1135 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1133 | 1136 |
DefPredMapBase(const TR &b) : TR(b) {} |
1134 | 1137 |
}; |
1135 | 1138 |
|
1136 | 1139 |
///\brief \ref named-templ-param "Named parameter" |
1137 | 1140 |
///function for setting PredMap type |
1138 | 1141 |
/// |
1139 | 1142 |
/// \ref named-templ-param "Named parameter" |
1140 | 1143 |
///function for setting PredMap type |
1141 | 1144 |
/// |
1142 | 1145 |
template<class T> |
1143 | 1146 |
DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) |
1144 | 1147 |
{ |
1145 | 1148 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1146 | 1149 |
return DijkstraWizard<DefPredMapBase<T> >(*this); |
1147 | 1150 |
} |
1148 | 1151 |
|
1149 | 1152 |
template<class T> |
1150 | 1153 |
struct DefDistMapBase : public Base { |
1151 | 1154 |
typedef T DistMap; |
1152 | 1155 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1153 | 1156 |
DefDistMapBase(const TR &b) : TR(b) {} |
1154 | 1157 |
}; |
1155 | 1158 |
|
1156 | 1159 |
///\brief \ref named-templ-param "Named parameter" |
1157 | 1160 |
///function for setting DistMap type |
1158 | 1161 |
/// |
1159 | 1162 |
/// \ref named-templ-param "Named parameter" |
1160 | 1163 |
///function for setting DistMap type |
1161 | 1164 |
/// |
1162 | 1165 |
template<class T> |
1163 | 1166 |
DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) |
1164 | 1167 |
{ |
1165 | 1168 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1166 | 1169 |
return DijkstraWizard<DefDistMapBase<T> >(*this); |
1167 | 1170 |
} |
1168 | 1171 |
|
1169 | 1172 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
1170 | 1173 |
|
1171 | 1174 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
1172 | 1175 |
/// \param s is the source node. |
1173 | 1176 |
DijkstraWizard<TR> &source(Node s) |
1174 | 1177 |
{ |
1175 | 1178 |
Base::_source=s; |
1176 | 1179 |
return *this; |
1177 | 1180 |
} |
1178 | 1181 |
|
1179 | 1182 |
}; |
1180 | 1183 |
|
1181 | 1184 |
///Function type interface for Dijkstra algorithm. |
1182 | 1185 |
|
1183 | 1186 |
/// \ingroup shortest_path |
1184 | 1187 |
///Function type interface for Dijkstra algorithm. |
1185 | 1188 |
/// |
1186 | 1189 |
///This function also has several |
1187 | 1190 |
///\ref named-templ-func-param "named parameters", |
1188 | 1191 |
///they are declared as the members of class \ref DijkstraWizard. |
1189 | 1192 |
///The following |
1190 | 1193 |
///example shows how to use these parameters. |
1191 | 1194 |
///\code |
1192 | 1195 |
/// dijkstra(g,length,source).predMap(preds).run(); |
1193 | 1196 |
///\endcode |
1194 | 1197 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
1195 | 1198 |
///to the end of the parameter list. |
1196 | 1199 |
///\sa DijkstraWizard |
1197 | 1200 |
///\sa Dijkstra |
1198 | 1201 |
template<class GR, class LM> |
1199 | 1202 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1200 | 1203 |
dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID) |
1201 | 1204 |
{ |
1202 | 1205 |
return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s); |
1203 | 1206 |
} |
1204 | 1207 |
|
1205 | 1208 |
} //END OF NAMESPACE LEMON |
1206 | 1209 |
|
1207 | 1210 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#define WIN32_LEAN_AND_MEAN |
33 | 33 |
#define NOMINMAX |
34 | 34 |
#include<windows.h> |
35 | 35 |
#endif |
36 | 36 |
|
37 | 37 |
#include<lemon/math.h> |
38 | 38 |
#include<lemon/bits/invalid.h> |
39 | 39 |
#include<lemon/dim2.h> |
40 | 40 |
#include<lemon/maps.h> |
41 | 41 |
#include<lemon/color.h> |
42 | 42 |
#include<lemon/bits/bezier.h> |
43 | 43 |
|
44 | 44 |
|
45 | 45 |
///\ingroup eps_io |
46 | 46 |
///\file |
47 | 47 |
///\brief A well configurable tool for visualizing graphs |
48 | 48 |
|
49 | 49 |
namespace lemon { |
50 | 50 |
|
51 | 51 |
namespace _graph_to_eps_bits { |
52 | 52 |
template<class MT> |
53 | 53 |
class _NegY { |
54 | 54 |
public: |
55 | 55 |
typedef typename MT::Key Key; |
56 | 56 |
typedef typename MT::Value Value; |
57 | 57 |
const MT ↦ |
58 | 58 |
int yscale; |
59 | 59 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
60 | 60 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
61 | 61 |
}; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
///Default traits class of \ref GraphToEps |
65 | 65 |
|
66 | 66 |
///Default traits class of \ref GraphToEps. |
67 | 67 |
/// |
68 | 68 |
///\c G is the type of the underlying graph. |
69 | 69 |
template<class G> |
70 | 70 |
struct DefaultGraphToEpsTraits |
71 | 71 |
{ |
72 | 72 |
typedef G Graph; |
73 | 73 |
typedef typename Graph::Node Node; |
74 | 74 |
typedef typename Graph::NodeIt NodeIt; |
75 | 75 |
typedef typename Graph::Arc Arc; |
76 | 76 |
typedef typename Graph::ArcIt ArcIt; |
77 | 77 |
typedef typename Graph::InArcIt InArcIt; |
78 | 78 |
typedef typename Graph::OutArcIt OutArcIt; |
79 | 79 |
|
80 | 80 |
|
81 | 81 |
const Graph &g; |
82 | 82 |
|
83 | 83 |
std::ostream& os; |
84 | 84 |
|
85 | 85 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
86 | 86 |
CoordsMapType _coords; |
87 | 87 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
88 | 88 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
89 | 89 |
|
90 | 90 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
91 | 91 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
92 | 92 |
|
93 | 93 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
94 | 94 |
|
95 | 95 |
double _arcWidthScale; |
96 | 96 |
|
97 | 97 |
double _nodeScale; |
98 | 98 |
double _xBorder, _yBorder; |
99 | 99 |
double _scale; |
100 | 100 |
double _nodeBorderQuotient; |
101 | 101 |
|
102 | 102 |
bool _drawArrows; |
103 | 103 |
double _arrowLength, _arrowWidth; |
104 | 104 |
|
105 | 105 |
bool _showNodes, _showArcs; |
106 | 106 |
|
107 | 107 |
bool _enableParallel; |
108 | 108 |
double _parArcDist; |
109 | 109 |
|
110 | 110 |
bool _showNodeText; |
111 | 111 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
112 | 112 |
double _nodeTextSize; |
113 | 113 |
|
114 | 114 |
bool _showNodePsText; |
115 | 115 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
116 | 116 |
char *_nodePsTextsPreamble; |
117 | 117 |
|
118 | 118 |
bool _undirected; |
119 | 119 |
|
120 | 120 |
bool _pleaseRemoveOsStream; |
121 | 121 |
|
122 | 122 |
bool _scaleToA4; |
123 | 123 |
|
124 | 124 |
std::string _title; |
125 | 125 |
std::string _copyright; |
126 | 126 |
|
127 | 127 |
enum NodeTextColorType |
128 | 128 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
129 | 129 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
130 | 130 |
|
131 | 131 |
bool _autoNodeScale; |
132 | 132 |
bool _autoArcWidthScale; |
133 | 133 |
|
134 | 134 |
bool _absoluteNodeSizes; |
135 | 135 |
bool _absoluteArcWidths; |
136 | 136 |
|
137 | 137 |
bool _negY; |
138 | 138 |
|
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param _g Reference to the graph to be printed. |
144 | 144 |
///\param _os Reference to the output stream. |
145 |
///\param _os Reference to the output stream. |
|
145 |
///\param _os Reference to the output stream. |
|
146 |
///By default it is <tt>std::cout</tt>. |
|
146 | 147 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
147 | 148 |
///will be explicitly deallocated by the destructor. |
148 | 149 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
149 | 150 |
bool _pros=false) : |
150 | 151 |
g(_g), os(_os), |
151 | 152 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
152 | 153 |
_nodeColors(WHITE), _arcColors(BLACK), |
153 | 154 |
_arcWidths(1.0), _arcWidthScale(0.003), |
154 | 155 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
155 | 156 |
_nodeBorderQuotient(.1), |
156 | 157 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
157 | 158 |
_showNodes(true), _showArcs(true), |
158 | 159 |
_enableParallel(false), _parArcDist(1), |
159 | 160 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
160 | 161 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
161 | 162 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
162 | 163 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
163 | 164 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
164 | 165 |
_autoNodeScale(false), |
165 | 166 |
_autoArcWidthScale(false), |
166 | 167 |
_absoluteNodeSizes(false), |
167 | 168 |
_absoluteArcWidths(false), |
168 | 169 |
_negY(false), |
169 | 170 |
_preScale(true) |
170 | 171 |
{} |
171 | 172 |
}; |
172 | 173 |
|
173 | 174 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
174 | 175 |
|
175 | 176 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
176 | 177 |
/// |
177 | 178 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
178 | 179 |
template<class T> class GraphToEps : public T |
179 | 180 |
{ |
180 | 181 |
// Can't believe it is required by the C++ standard |
181 | 182 |
using T::g; |
182 | 183 |
using T::os; |
183 | 184 |
|
184 | 185 |
using T::_coords; |
185 | 186 |
using T::_nodeSizes; |
186 | 187 |
using T::_nodeShapes; |
187 | 188 |
using T::_nodeColors; |
188 | 189 |
using T::_arcColors; |
189 | 190 |
using T::_arcWidths; |
190 | 191 |
|
191 | 192 |
using T::_arcWidthScale; |
192 | 193 |
using T::_nodeScale; |
193 | 194 |
using T::_xBorder; |
194 | 195 |
using T::_yBorder; |
195 | 196 |
using T::_scale; |
196 | 197 |
using T::_nodeBorderQuotient; |
197 | 198 |
|
198 | 199 |
using T::_drawArrows; |
199 | 200 |
using T::_arrowLength; |
200 | 201 |
using T::_arrowWidth; |
201 | 202 |
|
202 | 203 |
using T::_showNodes; |
203 | 204 |
using T::_showArcs; |
204 | 205 |
|
205 | 206 |
using T::_enableParallel; |
206 | 207 |
using T::_parArcDist; |
207 | 208 |
|
208 | 209 |
using T::_showNodeText; |
209 | 210 |
using T::_nodeTexts; |
210 | 211 |
using T::_nodeTextSize; |
211 | 212 |
|
212 | 213 |
using T::_showNodePsText; |
213 | 214 |
using T::_nodePsTexts; |
214 | 215 |
using T::_nodePsTextsPreamble; |
215 | 216 |
|
216 | 217 |
using T::_undirected; |
217 | 218 |
|
218 | 219 |
using T::_pleaseRemoveOsStream; |
219 | 220 |
|
220 | 221 |
using T::_scaleToA4; |
221 | 222 |
|
222 | 223 |
using T::_title; |
223 | 224 |
using T::_copyright; |
224 | 225 |
|
225 | 226 |
using T::NodeTextColorType; |
226 | 227 |
using T::CUST_COL; |
227 | 228 |
using T::DIST_COL; |
228 | 229 |
using T::DIST_BW; |
229 | 230 |
using T::_nodeTextColorType; |
230 | 231 |
using T::_nodeTextColors; |
231 | 232 |
|
232 | 233 |
using T::_autoNodeScale; |
233 | 234 |
using T::_autoArcWidthScale; |
234 | 235 |
|
235 | 236 |
using T::_absoluteNodeSizes; |
236 | 237 |
using T::_absoluteArcWidths; |
237 | 238 |
|
238 | 239 |
|
239 | 240 |
using T::_negY; |
240 | 241 |
using T::_preScale; |
241 | 242 |
|
242 | 243 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
243 | 244 |
|
244 | 245 |
typedef typename T::Graph Graph; |
245 | 246 |
typedef typename Graph::Node Node; |
246 | 247 |
typedef typename Graph::NodeIt NodeIt; |
247 | 248 |
typedef typename Graph::Arc Arc; |
248 | 249 |
typedef typename Graph::ArcIt ArcIt; |
249 | 250 |
typedef typename Graph::InArcIt InArcIt; |
250 | 251 |
typedef typename Graph::OutArcIt OutArcIt; |
251 | 252 |
|
252 | 253 |
static const int INTERPOL_PREC; |
253 | 254 |
static const double A4HEIGHT; |
254 | 255 |
static const double A4WIDTH; |
255 | 256 |
static const double A4BORDER; |
256 | 257 |
|
257 | 258 |
bool dontPrint; |
258 | 259 |
|
259 | 260 |
public: |
260 | 261 |
///Node shapes |
261 | 262 |
|
262 | 263 |
///Node shapes. |
263 | 264 |
/// |
264 | 265 |
enum NodeShapes { |
265 | 266 |
/// = 0 |
266 | 267 |
///\image html nodeshape_0.png |
267 | 268 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
268 | 269 |
CIRCLE=0, |
269 | 270 |
/// = 1 |
270 | 271 |
///\image html nodeshape_1.png |
271 | 272 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
272 | 273 |
/// |
273 | 274 |
SQUARE=1, |
274 | 275 |
/// = 2 |
275 | 276 |
///\image html nodeshape_2.png |
276 | 277 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
277 | 278 |
/// |
278 | 279 |
DIAMOND=2, |
279 | 280 |
/// = 3 |
280 | 281 |
///\image html nodeshape_3.png |
281 | 282 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
282 | 283 |
/// |
283 | 284 |
MALE=3, |
284 | 285 |
/// = 4 |
285 | 286 |
///\image html nodeshape_4.png |
286 | 287 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
287 | 288 |
/// |
288 | 289 |
FEMALE=4 |
289 | 290 |
}; |
290 | 291 |
|
291 | 292 |
private: |
292 | 293 |
class arcLess { |
293 | 294 |
const Graph &g; |
294 | 295 |
public: |
295 | 296 |
arcLess(const Graph &_g) : g(_g) {} |
296 | 297 |
bool operator()(Arc a,Arc b) const |
297 | 298 |
{ |
298 | 299 |
Node ai=std::min(g.source(a),g.target(a)); |
299 | 300 |
Node aa=std::max(g.source(a),g.target(a)); |
300 | 301 |
Node bi=std::min(g.source(b),g.target(b)); |
301 | 302 |
Node ba=std::max(g.source(b),g.target(b)); |
302 | 303 |
return ai<bi || |
303 | 304 |
(ai==bi && (aa < ba || |
304 | 305 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
305 | 306 |
} |
306 | 307 |
}; |
307 | 308 |
bool isParallel(Arc e,Arc f) const |
308 | 309 |
{ |
309 | 310 |
return (g.source(e)==g.source(f)&& |
310 | 311 |
g.target(e)==g.target(f)) || |
311 | 312 |
(g.source(e)==g.target(f)&& |
312 | 313 |
g.target(e)==g.source(f)); |
313 | 314 |
} |
314 | 315 |
template<class TT> |
315 | 316 |
static std::string psOut(const dim2::Point<TT> &p) |
316 | 317 |
{ |
317 | 318 |
std::ostringstream os; |
318 | 319 |
os << p.x << ' ' << p.y; |
319 | 320 |
return os.str(); |
320 | 321 |
} |
321 | 322 |
static std::string psOut(const Color &c) |
322 | 323 |
{ |
323 | 324 |
std::ostringstream os; |
324 | 325 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
325 | 326 |
return os.str(); |
326 | 327 |
} |
327 | 328 |
|
328 | 329 |
public: |
329 | 330 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
330 | 331 |
|
331 | 332 |
template<class X> struct CoordsTraits : public T { |
332 | 333 |
typedef X CoordsMapType; |
333 | 334 |
const X &_coords; |
334 | 335 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
335 | 336 |
}; |
336 | 337 |
///Sets the map of the node coordinates |
337 | 338 |
|
338 | 339 |
///Sets the map of the node coordinates. |
339 | 340 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
340 | 341 |
///\ref dim2::Point "dim2::Point<int>" values. |
341 | 342 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
342 | 343 |
dontPrint=true; |
343 | 344 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
344 | 345 |
} |
345 | 346 |
template<class X> struct NodeSizesTraits : public T { |
346 | 347 |
const X &_nodeSizes; |
347 | 348 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
348 | 349 |
}; |
349 | 350 |
///Sets the map of the node sizes |
350 | 351 |
|
351 | 352 |
///Sets the map of the node sizes. |
352 | 353 |
///\param x must be a node map with \c double (or convertible) values. |
353 | 354 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
354 | 355 |
{ |
355 | 356 |
dontPrint=true; |
356 | 357 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
357 | 358 |
} |
358 | 359 |
template<class X> struct NodeShapesTraits : public T { |
359 | 360 |
const X &_nodeShapes; |
360 | 361 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
361 | 362 |
}; |
362 | 363 |
///Sets the map of the node shapes |
363 | 364 |
|
364 | 365 |
///Sets the map of the node shapes. |
365 | 366 |
///The available shape values |
366 | 367 |
///can be found in \ref NodeShapes "enum NodeShapes". |
367 | 368 |
///\param x must be a node map with \c int (or convertible) values. |
368 | 369 |
///\sa NodeShapes |
369 | 370 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
370 | 371 |
{ |
371 | 372 |
dontPrint=true; |
372 | 373 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
373 | 374 |
} |
374 | 375 |
template<class X> struct NodeTextsTraits : public T { |
375 | 376 |
const X &_nodeTexts; |
376 | 377 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
377 | 378 |
}; |
378 | 379 |
///Sets the text printed on the nodes |
379 | 380 |
|
380 | 381 |
///Sets the text printed on the nodes. |
381 | 382 |
///\param x must be a node map with type that can be pushed to a standard |
382 | 383 |
///\c ostream. |
383 | 384 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
384 | 385 |
{ |
385 | 386 |
dontPrint=true; |
386 | 387 |
_showNodeText=true; |
387 | 388 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
388 | 389 |
} |
389 | 390 |
template<class X> struct NodePsTextsTraits : public T { |
390 | 391 |
const X &_nodePsTexts; |
391 | 392 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
392 | 393 |
}; |
393 | 394 |
///Inserts a PostScript block to the nodes |
394 | 395 |
|
395 | 396 |
///With this command it is possible to insert a verbatim PostScript |
396 | 397 |
///block to the nodes. |
397 | 398 |
///The PS current point will be moved to the center of the node before |
398 | 399 |
///the PostScript block inserted. |
399 | 400 |
/// |
400 | 401 |
///Before and after the block a newline character is inserted so you |
401 | 402 |
///don't have to bother with the separators. |
402 | 403 |
/// |
403 | 404 |
///\param x must be a node map with type that can be pushed to a standard |
404 | 405 |
///\c ostream. |
405 | 406 |
/// |
406 | 407 |
///\sa nodePsTextsPreamble() |
407 | 408 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
408 | 409 |
{ |
409 | 410 |
dontPrint=true; |
410 | 411 |
_showNodePsText=true; |
411 | 412 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
412 | 413 |
} |
413 | 414 |
template<class X> struct ArcWidthsTraits : public T { |
414 | 415 |
const X &_arcWidths; |
415 | 416 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
416 | 417 |
}; |
417 | 418 |
///Sets the map of the arc widths |
418 | 419 |
|
419 | 420 |
///Sets the map of the arc widths. |
420 | 421 |
///\param x must be an arc map with \c double (or convertible) values. |
421 | 422 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
422 | 423 |
{ |
423 | 424 |
dontPrint=true; |
424 | 425 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
425 | 426 |
} |
426 | 427 |
|
427 | 428 |
template<class X> struct NodeColorsTraits : public T { |
428 | 429 |
const X &_nodeColors; |
429 | 430 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
430 | 431 |
}; |
431 | 432 |
///Sets the map of the node colors |
432 | 433 |
|
433 | 434 |
///Sets the map of the node colors. |
434 | 435 |
///\param x must be a node map with \ref Color values. |
435 | 436 |
/// |
436 | 437 |
///\sa Palette |
437 | 438 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
438 | 439 |
nodeColors(const X &x) |
439 | 440 |
{ |
440 | 441 |
dontPrint=true; |
441 | 442 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
442 | 443 |
} |
443 | 444 |
template<class X> struct NodeTextColorsTraits : public T { |
444 | 445 |
const X &_nodeTextColors; |
445 | 446 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
446 | 447 |
}; |
447 | 448 |
///Sets the map of the node text colors |
448 | 449 |
|
449 | 450 |
///Sets the map of the node text colors. |
450 | 451 |
///\param x must be a node map with \ref Color values. |
451 | 452 |
/// |
452 | 453 |
///\sa Palette |
453 | 454 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
454 | 455 |
nodeTextColors(const X &x) |
455 | 456 |
{ |
456 | 457 |
dontPrint=true; |
457 | 458 |
_nodeTextColorType=CUST_COL; |
458 | 459 |
return GraphToEps<NodeTextColorsTraits<X> > |
459 | 460 |
(NodeTextColorsTraits<X>(*this,x)); |
460 | 461 |
} |
461 | 462 |
template<class X> struct ArcColorsTraits : public T { |
462 | 463 |
const X &_arcColors; |
463 | 464 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
464 | 465 |
}; |
465 | 466 |
///Sets the map of the arc colors |
466 | 467 |
|
467 | 468 |
///Sets the map of the arc colors. |
468 | 469 |
///\param x must be an arc map with \ref Color values. |
469 | 470 |
/// |
470 | 471 |
///\sa Palette |
471 | 472 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
472 | 473 |
arcColors(const X &x) |
473 | 474 |
{ |
474 | 475 |
dontPrint=true; |
475 | 476 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
476 | 477 |
} |
477 | 478 |
///Sets a global scale factor for node sizes |
478 | 479 |
|
479 | 480 |
///Sets a global scale factor for node sizes. |
480 | 481 |
/// |
481 | 482 |
/// If nodeSizes() is not given, this function simply sets the node |
482 | 483 |
/// sizes to \c d. If nodeSizes() is given, but |
483 | 484 |
/// autoNodeScale() is not, then the node size given by |
484 | 485 |
/// nodeSizes() will be multiplied by the value \c d. |
485 | 486 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
486 | 487 |
/// node sizes will be scaled in such a way that the greatest size will be |
487 | 488 |
/// equal to \c d. |
488 | 489 |
/// \sa nodeSizes() |
489 | 490 |
/// \sa autoNodeScale() |
490 | 491 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
491 | 492 |
///Turns on/off the automatic node size scaling. |
492 | 493 |
|
493 | 494 |
///Turns on/off the automatic node size scaling. |
494 | 495 |
/// |
495 | 496 |
///\sa nodeScale() |
496 | 497 |
/// |
497 | 498 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
498 | 499 |
_autoNodeScale=b;return *this; |
499 | 500 |
} |
500 | 501 |
|
501 | 502 |
///Turns on/off the absolutematic node size scaling. |
502 | 503 |
|
503 | 504 |
///Turns on/off the absolutematic node size scaling. |
504 | 505 |
/// |
505 | 506 |
///\sa nodeScale() |
506 | 507 |
/// |
507 | 508 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
508 | 509 |
_absoluteNodeSizes=b;return *this; |
509 | 510 |
} |
510 | 511 |
|
511 | 512 |
///Negates the Y coordinates. |
512 | 513 |
GraphToEps<T> &negateY(bool b=true) { |
513 | 514 |
_negY=b;return *this; |
514 | 515 |
} |
515 | 516 |
|
516 | 517 |
///Turn on/off pre-scaling |
517 | 518 |
|
518 | 519 |
///By default graphToEps() rescales the whole image in order to avoid |
519 | 520 |
///very big or very small bounding boxes. |
520 | 521 |
/// |
521 | 522 |
///This (p)rescaling can be turned off with this function. |
522 | 523 |
/// |
523 | 524 |
GraphToEps<T> &preScale(bool b=true) { |
524 | 525 |
_preScale=b;return *this; |
525 | 526 |
} |
526 | 527 |
|
527 | 528 |
///Sets a global scale factor for arc widths |
528 | 529 |
|
529 | 530 |
/// Sets a global scale factor for arc widths. |
530 | 531 |
/// |
531 | 532 |
/// If arcWidths() is not given, this function simply sets the arc |
532 | 533 |
/// widths to \c d. If arcWidths() is given, but |
533 | 534 |
/// autoArcWidthScale() is not, then the arc withs given by |
534 | 535 |
/// arcWidths() will be multiplied by the value \c d. |
535 | 536 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
536 | 537 |
/// arc withs will be scaled in such a way that the greatest width will be |
537 | 538 |
/// equal to \c d. |
538 | 539 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
539 | 540 |
///Turns on/off the automatic arc width scaling. |
540 | 541 |
|
541 | 542 |
///Turns on/off the automatic arc width scaling. |
542 | 543 |
/// |
543 | 544 |
///\sa arcWidthScale() |
544 | 545 |
/// |
545 | 546 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
546 | 547 |
_autoArcWidthScale=b;return *this; |
547 | 548 |
} |
548 | 549 |
///Turns on/off the absolutematic arc width scaling. |
549 | 550 |
|
550 | 551 |
///Turns on/off the absolutematic arc width scaling. |
551 | 552 |
/// |
552 | 553 |
///\sa arcWidthScale() |
553 | 554 |
/// |
554 | 555 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
555 | 556 |
_absoluteArcWidths=b;return *this; |
556 | 557 |
} |
557 | 558 |
///Sets a global scale factor for the whole picture |
558 | 559 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
559 | 560 |
///Sets the width of the border around the picture |
560 | 561 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
561 | 562 |
///Sets the width of the border around the picture |
562 | 563 |
GraphToEps<T> &border(double x, double y) { |
563 | 564 |
_xBorder=x;_yBorder=y;return *this; |
564 | 565 |
} |
565 | 566 |
///Sets whether to draw arrows |
566 | 567 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
567 | 568 |
///Sets the length of the arrowheads |
568 | 569 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
569 | 570 |
///Sets the width of the arrowheads |
570 | 571 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
571 | 572 |
|
572 | 573 |
///Scales the drawing to fit to A4 page |
573 | 574 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
574 | 575 |
|
575 | 576 |
///Enables parallel arcs |
576 | 577 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
577 | 578 |
|
578 | 579 |
///Sets the distance between parallel arcs |
579 | 580 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
580 | 581 |
|
581 | 582 |
///Hides the arcs |
582 | 583 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
583 | 584 |
///Hides the nodes |
584 | 585 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
585 | 586 |
|
586 | 587 |
///Sets the size of the node texts |
587 | 588 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
588 | 589 |
|
589 | 590 |
///Sets the color of the node texts to be different from the node color |
590 | 591 |
|
591 | 592 |
///Sets the color of the node texts to be as different from the node color |
592 | 593 |
///as it is possible. |
593 | 594 |
GraphToEps<T> &distantColorNodeTexts() |
594 | 595 |
{_nodeTextColorType=DIST_COL;return *this;} |
595 | 596 |
///Sets the color of the node texts to be black or white and always visible. |
596 | 597 |
|
597 | 598 |
///Sets the color of the node texts to be black or white according to |
598 | 599 |
///which is more different from the node color. |
599 | 600 |
GraphToEps<T> &distantBWNodeTexts() |
600 | 601 |
{_nodeTextColorType=DIST_BW;return *this;} |
601 | 602 |
|
602 | 603 |
///Gives a preamble block for node Postscript block. |
603 | 604 |
|
604 | 605 |
///Gives a preamble block for node Postscript block. |
605 | 606 |
/// |
606 | 607 |
///\sa nodePsTexts() |
607 | 608 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
608 | 609 |
_nodePsTextsPreamble=str ;return *this; |
609 | 610 |
} |
610 | 611 |
///Sets whether the graph is undirected |
611 | 612 |
|
612 | 613 |
///Sets whether the graph is undirected. |
613 | 614 |
/// |
614 | 615 |
///This setting is the default for undirected graphs. |
615 | 616 |
/// |
616 | 617 |
///\sa directed() |
617 | 618 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
618 | 619 |
|
619 | 620 |
///Sets whether the graph is directed |
620 | 621 |
|
621 | 622 |
///Sets whether the graph is directed. |
622 | 623 |
///Use it to show the edges as a pair of directed ones. |
623 | 624 |
/// |
624 | 625 |
///This setting is the default for digraphs. |
625 | 626 |
/// |
626 | 627 |
///\sa undirected() |
627 | 628 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
628 | 629 |
|
629 | 630 |
///Sets the title. |
630 | 631 |
|
631 | 632 |
///Sets the title of the generated image, |
632 | 633 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
633 | 634 |
///the EPS file. |
634 | 635 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
635 | 636 |
///Sets the copyright statement. |
636 | 637 |
|
637 | 638 |
///Sets the copyright statement of the generated image, |
638 | 639 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
639 | 640 |
///the EPS file. |
640 | 641 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
641 | 642 |
|
642 | 643 |
protected: |
643 | 644 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
644 | 645 |
{ |
645 | 646 |
switch(t) { |
646 | 647 |
case CIRCLE: |
647 | 648 |
case MALE: |
648 | 649 |
case FEMALE: |
649 | 650 |
return p.normSquare()<=r*r; |
650 | 651 |
case SQUARE: |
651 | 652 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
652 | 653 |
case DIAMOND: |
653 | 654 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
654 | 655 |
} |
655 | 656 |
return false; |
656 | 657 |
} |
657 | 658 |
|
658 | 659 |
public: |
659 | 660 |
~GraphToEps() { } |
660 | 661 |
|
661 | 662 |
///Draws the graph. |
662 | 663 |
|
663 | 664 |
///Like other functions using |
664 | 665 |
///\ref named-templ-func-param "named template parameters", |
665 | 666 |
///this function calls the algorithm itself, i.e. in this case |
666 | 667 |
///it draws the graph. |
667 | 668 |
void run() { |
668 | 669 |
//\todo better 'epsilon' would be nice here. |
669 | 670 |
const double EPSILON=1e-9; |
670 | 671 |
if(dontPrint) return; |
671 | 672 |
|
672 | 673 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
673 | 674 |
mycoords(_coords,_negY); |
674 | 675 |
|
675 | 676 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
676 | 677 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
677 | 678 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
678 | 679 |
os << "%%Creator: LEMON, graphToEps()\n"; |
679 | 680 |
|
680 | 681 |
{ |
681 | 682 |
#ifndef WIN32 |
682 | 683 |
timeval tv; |
683 | 684 |
gettimeofday(&tv, 0); |
684 | 685 |
|
685 | 686 |
char cbuf[26]; |
686 | 687 |
ctime_r(&tv.tv_sec,cbuf); |
687 | 688 |
os << "%%CreationDate: " << cbuf; |
688 | 689 |
#else |
689 | 690 |
SYSTEMTIME time; |
690 | 691 |
char buf1[11], buf2[9], buf3[5]; |
691 | 692 |
|
692 | 693 |
GetSystemTime(&time); |
693 | 694 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
694 | 695 |
"ddd MMM dd", buf1, 11) && |
695 | 696 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
696 | 697 |
"HH':'mm':'ss", buf2, 9) && |
697 | 698 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
698 | 699 |
"yyyy", buf3, 5)) { |
699 | 700 |
os << "%%CreationDate: " << buf1 << ' ' |
700 | 701 |
<< buf2 << ' ' << buf3 << std::endl; |
701 | 702 |
} |
702 | 703 |
#endif |
703 | 704 |
} |
704 | 705 |
|
705 | 706 |
if (_autoArcWidthScale) { |
706 | 707 |
double max_w=0; |
707 | 708 |
for(ArcIt e(g);e!=INVALID;++e) |
708 | 709 |
max_w=std::max(double(_arcWidths[e]),max_w); |
709 | 710 |
//\todo better 'epsilon' would be nice here. |
710 | 711 |
if(max_w>EPSILON) { |
711 | 712 |
_arcWidthScale/=max_w; |
712 | 713 |
} |
713 | 714 |
} |
714 | 715 |
|
715 | 716 |
if (_autoNodeScale) { |
716 | 717 |
double max_s=0; |
717 | 718 |
for(NodeIt n(g);n!=INVALID;++n) |
718 | 719 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
719 | 720 |
//\todo better 'epsilon' would be nice here. |
720 | 721 |
if(max_s>EPSILON) { |
721 | 722 |
_nodeScale/=max_s; |
722 | 723 |
} |
723 | 724 |
} |
724 | 725 |
|
725 | 726 |
double diag_len = 1; |
726 | 727 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
727 | 728 |
dim2::BoundingBox<double> bb; |
728 | 729 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
729 | 730 |
if (bb.empty()) { |
730 | 731 |
bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0)); |
731 | 732 |
} |
732 | 733 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
733 | 734 |
if(diag_len<EPSILON) diag_len = 1; |
734 | 735 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
735 | 736 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
736 | 737 |
} |
737 | 738 |
|
738 | 739 |
dim2::BoundingBox<double> bb; |
739 | 740 |
for(NodeIt n(g);n!=INVALID;++n) { |
740 | 741 |
double ns=_nodeSizes[n]*_nodeScale; |
741 | 742 |
dim2::Point<double> p(ns,ns); |
742 | 743 |
switch(_nodeShapes[n]) { |
743 | 744 |
case CIRCLE: |
744 | 745 |
case SQUARE: |
745 | 746 |
case DIAMOND: |
746 | 747 |
bb.add(p+mycoords[n]); |
747 | 748 |
bb.add(-p+mycoords[n]); |
748 | 749 |
break; |
749 | 750 |
case MALE: |
750 | 751 |
bb.add(-p+mycoords[n]); |
751 | 752 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
752 | 753 |
break; |
753 | 754 |
case FEMALE: |
754 | 755 |
bb.add(p+mycoords[n]); |
755 | 756 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
756 | 757 |
break; |
757 | 758 |
} |
758 | 759 |
} |
759 | 760 |
if (bb.empty()) { |
760 | 761 |
bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0)); |
761 | 762 |
} |
762 | 763 |
|
763 | 764 |
if(_scaleToA4) |
764 | 765 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
765 | 766 |
else { |
766 | 767 |
if(_preScale) { |
767 | 768 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
768 | 769 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
769 | 770 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
770 | 771 |
} |
771 | 772 |
|
772 | 773 |
os << "%%BoundingBox: " |
773 | 774 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
774 | 775 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
775 | 776 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
776 | 777 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
777 | 778 |
} |
778 | 779 |
|
779 | 780 |
os << "%%EndComments\n"; |
780 | 781 |
|
781 | 782 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
782 | 783 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
783 | 784 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
784 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke } |
|
785 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }" |
|
786 |
<< " bind def\n"; |
|
785 | 787 |
//x y r |
786 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } |
|
788 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" |
|
789 |
<< " bind def\n"; |
|
787 | 790 |
//x y r |
788 | 791 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
789 | 792 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
790 | 793 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
791 | 794 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
792 | 795 |
<< " closepath pop pop pop} bind def\n"; |
793 | 796 |
//x y r |
794 | 797 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
795 | 798 |
<< " 2 index 2 index 2 index add lineto\n" |
796 | 799 |
<< " 2 index 1 index sub 2 index lineto\n" |
797 | 800 |
<< " 2 index 2 index 2 index sub lineto\n" |
798 | 801 |
<< " closepath pop pop pop} bind def\n"; |
799 | 802 |
// x y r cr cg cb |
800 | 803 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
801 | 804 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
802 | 805 |
<< " } bind def\n"; |
803 | 806 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
804 | 807 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
805 | 808 |
<< " } bind def\n"; |
806 | 809 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
807 | 810 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
808 | 811 |
<< " } bind def\n"; |
809 | 812 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
810 | 813 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
811 | 814 |
<< " 1.5 mul mul setlinewidth\n" |
812 | 815 |
<< " newpath 5 index 5 index moveto " |
813 | 816 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
814 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto\n" |
|
815 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke\n" |
|
817 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
|
818 |
<< " moveto\n" |
|
819 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
|
820 |
<< "stroke\n" |
|
816 | 821 |
<< " 5 index 5 index 5 index c fill\n" |
817 | 822 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
818 | 823 |
<< " } bind def\n"; |
819 | 824 |
os << "/nmale {\n" |
820 | 825 |
<< " 0 0 0 setrgbcolor 3 index " |
821 | 826 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
822 | 827 |
<<" 1.5 mul mul setlinewidth\n" |
823 | 828 |
<< " newpath 5 index 5 index moveto\n" |
824 | 829 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
825 | 830 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
826 | 831 |
<< " 1 index 1 index lineto\n" |
827 | 832 |
<< " 1 index 1 index 7 index sub moveto\n" |
828 | 833 |
<< " 1 index 1 index lineto\n" |
829 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub |
|
834 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
|
835 |
<< " lineto\n" |
|
830 | 836 |
<< " stroke\n" |
831 | 837 |
<< " 5 index 5 index 5 index c fill\n" |
832 | 838 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
833 | 839 |
<< " } bind def\n"; |
834 | 840 |
|
835 | 841 |
|
836 | 842 |
os << "/arrl " << _arrowLength << " def\n"; |
837 | 843 |
os << "/arrw " << _arrowWidth << " def\n"; |
838 | 844 |
// l dx_norm dy_norm |
839 | 845 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n"; |
840 | 846 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
841 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx |
|
847 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx " |
|
848 |
<< "exch def\n" |
|
842 | 849 |
<< " /w exch def /len exch def\n" |
843 |
// |
|
850 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
|
844 | 851 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
845 | 852 |
<< " len w sub arrl sub dx dy lrl\n" |
846 | 853 |
<< " arrw dy dx neg lrl\n" |
847 | 854 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
848 | 855 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
849 | 856 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
850 | 857 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
851 | 858 |
<< " arrw dy dx neg lrl\n" |
852 | 859 |
<< " len w sub arrl sub neg dx dy lrl\n" |
853 | 860 |
<< " closepath fill } bind def\n"; |
854 | 861 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n" |
855 | 862 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
856 | 863 |
|
857 | 864 |
os << "\ngsave\n"; |
858 | 865 |
if(_scaleToA4) |
859 | 866 |
if(bb.height()>bb.width()) { |
860 | 867 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
861 | 868 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
862 | 869 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
863 | 870 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
864 | 871 |
<< " translate\n" |
865 | 872 |
<< sc << " dup scale\n" |
866 | 873 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
867 | 874 |
} |
868 | 875 |
else { |
869 | 876 |
//\todo Verify centering |
870 | 877 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
871 | 878 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
872 | 879 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
873 | 880 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
874 | 881 |
<< " translate\n" |
875 | 882 |
<< sc << " dup scale\n90 rotate\n" |
876 | 883 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
877 | 884 |
} |
878 | 885 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
879 | 886 |
|
880 | 887 |
if(_showArcs) { |
881 | 888 |
os << "%Arcs:\ngsave\n"; |
882 | 889 |
if(_enableParallel) { |
883 | 890 |
std::vector<Arc> el; |
884 | 891 |
for(ArcIt e(g);e!=INVALID;++e) |
885 | 892 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
886 | 893 |
&&g.source(e)!=g.target(e)) |
887 | 894 |
el.push_back(e); |
888 | 895 |
std::sort(el.begin(),el.end(),arcLess(g)); |
889 | 896 |
|
890 | 897 |
typename std::vector<Arc>::iterator j; |
891 | 898 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) { |
892 | 899 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
893 | 900 |
|
894 | 901 |
double sw=0; |
895 | 902 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
896 | 903 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
897 | 904 |
sw-=_parArcDist; |
898 | 905 |
sw/=-2.0; |
899 | 906 |
dim2::Point<double> |
900 | 907 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
901 | 908 |
double l=std::sqrt(dvec.normSquare()); |
902 | 909 |
//\todo better 'epsilon' would be nice here. |
903 | 910 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
904 | 911 |
dim2::Point<double> m; |
905 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
|
912 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
|
913 |
// mycoords[g.source(*i)])/2.0; |
|
906 | 914 |
|
907 | 915 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
908 | 916 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
909 | 917 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
910 | 918 |
|
911 | 919 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
912 | 920 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
913 | 921 |
|
914 | 922 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) { |
915 | 923 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
916 | 924 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
917 | 925 |
if(_drawArrows) { |
918 | 926 |
int node_shape; |
919 | 927 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
920 | 928 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
921 | 929 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
922 | 930 |
node_shape=_nodeShapes[g.target(*e)]; |
923 | 931 |
dim2::Bezier3 bez(s,mm,mm,t); |
924 | 932 |
double t1=0,t2=1; |
925 | 933 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
926 | 934 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
927 | 935 |
else t1=(t1+t2)/2; |
928 | 936 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
929 | 937 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
930 | 938 |
rn*=rn; |
931 | 939 |
t2=(t1+t2)/2;t1=0; |
932 | 940 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
933 | 941 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
934 | 942 |
else t2=(t1+t2)/2; |
935 | 943 |
dim2::Point<double> linend=bez((t1+t2)/2); |
936 | 944 |
bez=bez.before((t1+t2)/2); |
937 | 945 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
938 | 946 |
// node_shape=_nodeShapes[g.source(*e)]; |
939 | 947 |
// t1=0;t2=1; |
940 | 948 |
// for(int i=0;i<INTERPOL_PREC;++i) |
941 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
|
949 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
|
950 |
// t1=(t1+t2)/2; |
|
942 | 951 |
// else t2=(t1+t2)/2; |
943 | 952 |
// bez=bez.after((t1+t2)/2); |
944 | 953 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
945 | 954 |
<< _arcColors[*e].red() << ' ' |
946 | 955 |
<< _arcColors[*e].green() << ' ' |
947 | 956 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
948 | 957 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
949 | 958 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
950 | 959 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
951 | 960 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
952 | 961 |
dim2::Point<double> dd(rot90(linend-apoint)); |
953 | 962 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
954 | 963 |
std::sqrt(dd.normSquare()); |
955 | 964 |
os << "newpath " << psOut(apoint) << " moveto " |
956 | 965 |
<< psOut(linend+dd) << " lineto " |
957 | 966 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
958 | 967 |
} |
959 | 968 |
else { |
960 | 969 |
os << mycoords[g.source(*e)].x << ' ' |
961 | 970 |
<< mycoords[g.source(*e)].y << ' ' |
962 | 971 |
<< mm.x << ' ' << mm.y << ' ' |
963 | 972 |
<< mycoords[g.target(*e)].x << ' ' |
964 | 973 |
<< mycoords[g.target(*e)].y << ' ' |
965 | 974 |
<< _arcColors[*e].red() << ' ' |
966 | 975 |
<< _arcColors[*e].green() << ' ' |
967 | 976 |
<< _arcColors[*e].blue() << ' ' |
968 | 977 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
969 | 978 |
} |
970 | 979 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
971 | 980 |
} |
972 | 981 |
} |
973 | 982 |
} |
974 | 983 |
else for(ArcIt e(g);e!=INVALID;++e) |
975 | 984 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
976 | 985 |
&&g.source(e)!=g.target(e)) { |
977 | 986 |
if(_drawArrows) { |
978 | 987 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
979 | 988 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
980 | 989 |
int node_shape=_nodeShapes[g.target(e)]; |
981 | 990 |
double t1=0,t2=1; |
982 | 991 |
for(int i=0;i<INTERPOL_PREC;++i) |
983 | 992 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
984 | 993 |
else t2=(t1+t2)/2; |
985 | 994 |
double l=std::sqrt(d.normSquare()); |
986 | 995 |
d/=l; |
987 | 996 |
|
988 | 997 |
os << l*(1-(t1+t2)/2) << ' ' |
989 | 998 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
990 | 999 |
<< d.x << ' ' << d.y << ' ' |
991 | 1000 |
<< mycoords[g.source(e)].x << ' ' |
992 | 1001 |
<< mycoords[g.source(e)].y << ' ' |
993 | 1002 |
<< _arcColors[e].red() << ' ' |
994 | 1003 |
<< _arcColors[e].green() << ' ' |
995 | 1004 |
<< _arcColors[e].blue() << " arr\n"; |
996 | 1005 |
} |
997 | 1006 |
else os << mycoords[g.source(e)].x << ' ' |
998 | 1007 |
<< mycoords[g.source(e)].y << ' ' |
999 | 1008 |
<< mycoords[g.target(e)].x << ' ' |
1000 | 1009 |
<< mycoords[g.target(e)].y << ' ' |
1001 | 1010 |
<< _arcColors[e].red() << ' ' |
1002 | 1011 |
<< _arcColors[e].green() << ' ' |
1003 | 1012 |
<< _arcColors[e].blue() << ' ' |
1004 | 1013 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
1005 | 1014 |
} |
1006 | 1015 |
os << "grestore\n"; |
1007 | 1016 |
} |
1008 | 1017 |
if(_showNodes) { |
1009 | 1018 |
os << "%Nodes:\ngsave\n"; |
1010 | 1019 |
for(NodeIt n(g);n!=INVALID;++n) { |
1011 | 1020 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
1012 | 1021 |
<< _nodeSizes[n]*_nodeScale << ' ' |
1013 | 1022 |
<< _nodeColors[n].red() << ' ' |
1014 | 1023 |
<< _nodeColors[n].green() << ' ' |
1015 | 1024 |
<< _nodeColors[n].blue() << ' '; |
1016 | 1025 |
switch(_nodeShapes[n]) { |
1017 | 1026 |
case CIRCLE: |
1018 | 1027 |
os<< "nc";break; |
1019 | 1028 |
case SQUARE: |
1020 | 1029 |
os<< "nsq";break; |
1021 | 1030 |
case DIAMOND: |
1022 | 1031 |
os<< "ndi";break; |
1023 | 1032 |
case MALE: |
1024 | 1033 |
os<< "nmale";break; |
1025 | 1034 |
case FEMALE: |
1026 | 1035 |
os<< "nfemale";break; |
1027 | 1036 |
} |
1028 | 1037 |
os<<'\n'; |
1029 | 1038 |
} |
1030 | 1039 |
os << "grestore\n"; |
1031 | 1040 |
} |
1032 | 1041 |
if(_showNodeText) { |
1033 | 1042 |
os << "%Node texts:\ngsave\n"; |
1034 | 1043 |
os << "/fosi " << _nodeTextSize << " def\n"; |
1035 | 1044 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
1036 | 1045 |
for(NodeIt n(g);n!=INVALID;++n) { |
1037 | 1046 |
switch(_nodeTextColorType) { |
1038 | 1047 |
case DIST_COL: |
1039 | 1048 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
1040 | 1049 |
break; |
1041 | 1050 |
case DIST_BW: |
1042 | 1051 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
1043 | 1052 |
break; |
1044 | 1053 |
case CUST_COL: |
1045 | 1054 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
1046 | 1055 |
break; |
1047 | 1056 |
default: |
1048 | 1057 |
os << "0 0 0 setrgbcolor\n"; |
1049 | 1058 |
} |
1050 | 1059 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1051 | 1060 |
<< " (" << _nodeTexts[n] << ") cshow\n"; |
1052 | 1061 |
} |
1053 | 1062 |
os << "grestore\n"; |
1054 | 1063 |
} |
1055 | 1064 |
if(_showNodePsText) { |
1056 | 1065 |
os << "%Node PS blocks:\ngsave\n"; |
1057 | 1066 |
for(NodeIt n(g);n!=INVALID;++n) |
1058 | 1067 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1059 | 1068 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
1060 | 1069 |
os << "grestore\n"; |
1061 | 1070 |
} |
1062 | 1071 |
|
1063 | 1072 |
os << "grestore\nshowpage\n"; |
1064 | 1073 |
|
1065 | 1074 |
//CleanUp: |
1066 | 1075 |
if(_pleaseRemoveOsStream) {delete &os;} |
1067 | 1076 |
} |
1068 | 1077 |
|
1069 | 1078 |
///\name Aliases |
1070 | 1079 |
///These are just some aliases to other parameter setting functions. |
1071 | 1080 |
|
1072 | 1081 |
///@{ |
1073 | 1082 |
|
1074 | 1083 |
///An alias for arcWidths() |
1075 | 1084 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
1076 | 1085 |
{ |
1077 | 1086 |
return arcWidths(x); |
1078 | 1087 |
} |
1079 | 1088 |
|
1080 | 1089 |
///An alias for arcColors() |
1081 | 1090 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
1082 | 1091 |
edgeColors(const X &x) |
1083 | 1092 |
{ |
1084 | 1093 |
return arcColors(x); |
1085 | 1094 |
} |
1086 | 1095 |
|
1087 | 1096 |
///An alias for arcWidthScale() |
1088 | 1097 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);} |
1089 | 1098 |
|
1090 | 1099 |
///An alias for autoArcWidthScale() |
1091 | 1100 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
1092 | 1101 |
{ |
1093 | 1102 |
return autoArcWidthScale(b); |
1094 | 1103 |
} |
1095 | 1104 |
|
1096 | 1105 |
///An alias for absoluteArcWidths() |
1097 | 1106 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
1098 | 1107 |
{ |
1099 | 1108 |
return absoluteArcWidths(b); |
1100 | 1109 |
} |
1101 | 1110 |
|
1102 | 1111 |
///An alias for parArcDist() |
1103 | 1112 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1104 | 1113 |
|
1105 | 1114 |
///An alias for hideArcs() |
1106 | 1115 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1107 | 1116 |
|
1108 | 1117 |
///@} |
1109 | 1118 |
}; |
1110 | 1119 |
|
1111 | 1120 |
template<class T> |
1112 | 1121 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1113 | 1122 |
template<class T> |
1114 | 1123 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1115 | 1124 |
template<class T> |
1116 | 1125 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1117 | 1126 |
template<class T> |
1118 | 1127 |
const double GraphToEps<T>::A4BORDER = 15; |
1119 | 1128 |
|
1120 | 1129 |
|
1121 | 1130 |
///Generates an EPS file from a graph |
1122 | 1131 |
|
1123 | 1132 |
///\ingroup eps_io |
1124 | 1133 |
///Generates an EPS file from a graph. |
1125 | 1134 |
///\param g Reference to the graph to be printed. |
1126 | 1135 |
///\param os Reference to the output stream. |
1127 | 1136 |
///By default it is <tt>std::cout</tt>. |
1128 | 1137 |
/// |
1129 | 1138 |
///This function also has a lot of |
1130 | 1139 |
///\ref named-templ-func-param "named parameters", |
1131 | 1140 |
///they are declared as the members of class \ref GraphToEps. The following |
1132 | 1141 |
///example shows how to use these parameters. |
1133 | 1142 |
///\code |
1134 | 1143 |
/// graphToEps(g,os).scale(10).coords(coords) |
1135 | 1144 |
/// .nodeScale(2).nodeSizes(sizes) |
1136 | 1145 |
/// .arcWidthScale(.4).run(); |
1137 | 1146 |
///\endcode |
1138 | 1147 |
/// |
1139 | 1148 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
1140 | 1149 |
/// |
1141 | 1150 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1142 | 1151 |
///to the end of the parameter list. |
1143 | 1152 |
///\sa GraphToEps |
1144 | 1153 |
///\sa graphToEps(G &g, const char *file_name) |
1145 | 1154 |
template<class G> |
1146 | 1155 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1147 | 1156 |
graphToEps(G &g, std::ostream& os=std::cout) |
1148 | 1157 |
{ |
1149 | 1158 |
return |
1150 | 1159 |
GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os)); |
1151 | 1160 |
} |
1152 | 1161 |
|
1153 | 1162 |
///Generates an EPS file from a graph |
1154 | 1163 |
|
1155 | 1164 |
///\ingroup eps_io |
1156 | 1165 |
///This function does the same as |
1157 | 1166 |
///\ref graphToEps(G &g,std::ostream& os) |
1158 | 1167 |
///but it writes its output into the file \c file_name |
1159 | 1168 |
///instead of a stream. |
1160 | 1169 |
///\sa graphToEps(G &g, std::ostream& os) |
1161 | 1170 |
template<class G> |
1162 | 1171 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1163 | 1172 |
graphToEps(G &g,const char *file_name) |
1164 | 1173 |
{ |
1165 | 1174 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1166 | 1175 |
(DefaultGraphToEpsTraits<G>(g,*new std::ofstream(file_name),true)); |
1167 | 1176 |
} |
1168 | 1177 |
|
1169 | 1178 |
///Generates an EPS file from a graph |
1170 | 1179 |
|
1171 | 1180 |
///\ingroup eps_io |
1172 | 1181 |
///This function does the same as |
1173 | 1182 |
///\ref graphToEps(G &g,std::ostream& os) |
1174 | 1183 |
///but it writes its output into the file \c file_name |
1175 | 1184 |
///instead of a stream. |
1176 | 1185 |
///\sa graphToEps(G &g, std::ostream& os) |
1177 | 1186 |
template<class G> |
1178 | 1187 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1179 | 1188 |
graphToEps(G &g,const std::string& file_name) |
1180 | 1189 |
{ |
1181 | 1190 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1182 | 1191 |
(DefaultGraphToEpsTraits<G>(g,*new std::ofstream(file_name.c_str()),true)); |
1183 | 1192 |
} |
1184 | 1193 |
|
1185 | 1194 |
} //END OF NAMESPACE LEMON |
1186 | 1195 |
|
1187 | 1196 |
#endif // LEMON_GRAPH_TO_EPS_H |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)