0
4
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup paths Path Structures |
230 | 230 |
@ingroup datas |
231 | 231 |
\brief %Path structures implemented in LEMON. |
232 | 232 |
|
233 | 233 |
This group contains the path structures implemented in LEMON. |
234 | 234 |
|
235 | 235 |
LEMON provides flexible data structures to work with paths. |
236 | 236 |
All of them have similar interfaces and they can be copied easily with |
237 | 237 |
assignment operators and copy constructors. This makes it easy and |
238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
239 | 239 |
any kind of path structure. |
240 | 240 |
|
241 | 241 |
\sa \ref concepts::Path "Path concept" |
242 | 242 |
*/ |
243 | 243 |
|
244 | 244 |
/** |
245 | 245 |
@defgroup heaps Heap Structures |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief %Heap structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains the heap structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
253 | 253 |
specified values called \e priorities in such a way that finding and |
254 | 254 |
removing the item with minimum priority are efficient. |
255 | 255 |
The basic operations are adding and erasing items, changing the priority |
256 | 256 |
of an item, etc. |
257 | 257 |
|
258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 | 266 |
@defgroup matrices Matrices |
267 | 267 |
@ingroup datas |
268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
269 | 269 |
|
270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
271 | 271 |
*/ |
272 | 272 |
|
273 | 273 |
/** |
274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
275 | 275 |
@ingroup datas |
276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 | 283 |
@defgroup geomdat Geometric Data Structures |
284 | 284 |
@ingroup auxdat |
285 | 285 |
\brief Geometric data structures implemented in LEMON. |
286 | 286 |
|
287 | 287 |
This group contains geometric data structures implemented in LEMON. |
288 | 288 |
|
289 | 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
290 | 290 |
vector with the usual operations. |
291 | 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
292 | 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
293 | 293 |
"dim2::Point"'s. |
294 | 294 |
*/ |
295 | 295 |
|
296 | 296 |
/** |
297 | 297 |
@defgroup matrices Matrices |
298 | 298 |
@ingroup auxdat |
299 | 299 |
\brief Two dimensional data storages implemented in LEMON. |
300 | 300 |
|
301 | 301 |
This group contains two dimensional data storages implemented in LEMON. |
302 | 302 |
*/ |
303 | 303 |
|
304 | 304 |
/** |
305 | 305 |
@defgroup algs Algorithms |
306 | 306 |
\brief This group contains the several algorithms |
307 | 307 |
implemented in LEMON. |
308 | 308 |
|
309 | 309 |
This group contains the several algorithms |
310 | 310 |
implemented in LEMON. |
311 | 311 |
*/ |
312 | 312 |
|
313 | 313 |
/** |
314 | 314 |
@defgroup search Graph Search |
315 | 315 |
@ingroup algs |
316 | 316 |
\brief Common graph search algorithms. |
317 | 317 |
|
318 | 318 |
This group contains the common graph search algorithms, namely |
319 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
320 | 320 |
\ref clrs01algorithms. |
321 | 321 |
*/ |
322 | 322 |
|
323 | 323 |
/** |
324 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
325 | 325 |
@ingroup algs |
326 | 326 |
\brief Algorithms for finding shortest paths. |
327 | 327 |
|
328 | 328 |
This group contains the algorithms for finding shortest paths in digraphs |
329 | 329 |
\ref clrs01algorithms. |
330 | 330 |
|
331 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
332 | 332 |
when all arc lengths are non-negative. |
333 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
334 | 334 |
from a source node when arc lenghts can be either positive or negative, |
335 | 335 |
but the digraph should not contain directed cycles with negative total |
336 | 336 |
length. |
337 | 337 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
338 | 338 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
339 | 339 |
lenghts can be either positive or negative, but the digraph should |
340 | 340 |
not contain directed cycles with negative total length. |
341 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
342 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
343 | 343 |
*/ |
344 | 344 |
|
345 | 345 |
/** |
346 | 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
347 | 347 |
@ingroup algs |
348 | 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
349 | 349 |
|
350 | 350 |
This group contains the algorithms for finding minimum cost spanning |
351 | 351 |
trees and arborescences \ref clrs01algorithms. |
352 | 352 |
*/ |
353 | 353 |
|
354 | 354 |
/** |
355 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
356 | 356 |
@ingroup algs |
357 | 357 |
\brief Algorithms for finding maximum flows. |
358 | 358 |
|
359 | 359 |
This group contains the algorithms for finding maximum flows and |
360 | 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
361 | 361 |
|
362 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
363 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
364 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
365 | 365 |
\f$s, t \in V\f$ source and target nodes. |
366 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
367 | 367 |
following optimization problem. |
368 | 368 |
|
369 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
370 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
371 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f] |
372 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
373 | 373 |
|
374 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
375 | 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
376 | 376 |
\ref edmondskarp72theoretical. |
377 | 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
378 | 378 |
\ref goldberg88newapproach. |
379 | 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
380 | 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
381 | 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
382 | 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
383 | 383 |
|
384 | 384 |
In most cases the \ref Preflow algorithm provides the |
385 | 385 |
fastest method for computing a maximum flow. All implementations |
386 | 386 |
also provide functions to query the minimum cut, which is the dual |
387 | 387 |
problem of maximum flow. |
388 | 388 |
|
389 | 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
390 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
391 | 391 |
but it is strongly related to maximum flow. |
392 | 392 |
For more information, see \ref Circulation. |
393 | 393 |
*/ |
394 | 394 |
|
395 | 395 |
/** |
396 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
397 | 397 |
@ingroup algs |
398 | 398 |
|
399 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
400 | 400 |
|
401 | 401 |
This group contains the algorithms for finding minimum cost flows and |
402 | 402 |
circulations \ref amo93networkflows. For more information about this |
403 | 403 |
problem and its dual solution, see \ref min_cost_flow |
404 | 404 |
"Minimum Cost Flow Problem". |
405 | 405 |
|
406 | 406 |
LEMON contains several algorithms for this problem. |
407 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
408 | 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
409 | 409 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
410 | 410 |
cost scaling \ref goldberg90approximation, \ref goldberg97efficient, |
411 | 411 |
\ref bunnagel98efficient. |
412 | 412 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
413 | 413 |
capacity scaling \ref edmondskarp72theoretical. |
414 | 414 |
- \ref CancelAndTighten The Cancel and Tighten algorithm |
415 | 415 |
\ref goldberg89cyclecanceling. |
416 | 416 |
- \ref CycleCanceling Cycle-Canceling algorithms |
417 | 417 |
\ref klein67primal, \ref goldberg89cyclecanceling. |
418 | 418 |
|
419 | 419 |
In general NetworkSimplex is the most efficient implementation, |
420 | 420 |
but in special cases other algorithms could be faster. |
421 | 421 |
For example, if the total supply and/or capacities are rather small, |
422 | 422 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
423 | 423 |
*/ |
424 | 424 |
|
425 | 425 |
/** |
426 | 426 |
@defgroup min_cut Minimum Cut Algorithms |
427 | 427 |
@ingroup algs |
428 | 428 |
|
429 | 429 |
\brief Algorithms for finding minimum cut in graphs. |
430 | 430 |
|
431 | 431 |
This group contains the algorithms for finding minimum cut in graphs. |
432 | 432 |
|
433 | 433 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
434 | 434 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
435 | 435 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
436 | 436 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
437 | 437 |
cut is the \f$X\f$ solution of the next optimization problem: |
438 | 438 |
|
439 | 439 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
440 | 440 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
441 | 441 |
|
442 | 442 |
LEMON contains several algorithms related to minimum cut problems: |
443 | 443 |
|
444 | 444 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
445 | 445 |
in directed graphs. |
446 | 446 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
447 | 447 |
calculating minimum cut in undirected graphs. |
448 | 448 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
449 | 449 |
all-pairs minimum cut in undirected graphs. |
450 | 450 |
|
451 | 451 |
If you want to find minimum cut just between two distinict nodes, |
452 | 452 |
see the \ref max_flow "maximum flow problem". |
453 | 453 |
*/ |
454 | 454 |
|
455 | 455 |
/** |
456 | 456 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
457 | 457 |
@ingroup algs |
458 | 458 |
\brief Algorithms for finding minimum mean cycles. |
459 | 459 |
|
460 |
This group contains the algorithms for finding minimum mean cycles |
|
460 |
This group contains the algorithms for finding minimum mean cycles |
|
461 |
\ref clrs01algorithms, \ref amo93networkflows. |
|
461 | 462 |
|
462 | 463 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
463 | 464 |
of minimum mean length (cost) in a digraph. |
464 | 465 |
The mean length of a cycle is the average length of its arcs, i.e. the |
465 | 466 |
ratio between the total length of the cycle and the number of arcs on it. |
466 | 467 |
|
467 | 468 |
This problem has an important connection to \e conservative \e length |
468 | 469 |
\e functions, too. A length function on the arcs of a digraph is called |
469 | 470 |
conservative if and only if there is no directed cycle of negative total |
470 | 471 |
length. For an arbitrary length function, the negative of the minimum |
471 | 472 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
472 | 473 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
473 | 474 |
function. |
474 | 475 |
|
475 | 476 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
476 |
- \ref Karp "Karp"'s original algorithm |
|
477 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
|
478 |
\ref dasdan98minmeancycle. |
|
477 | 479 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
478 |
version of Karp's algorithm. |
|
479 |
- \ref Howard "Howard"'s policy iteration algorithm. |
|
480 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
|
481 |
- \ref Howard "Howard"'s policy iteration algorithm |
|
482 |
\ref dasdan98minmeancycle. |
|
480 | 483 |
|
481 | 484 |
In practice, the Howard algorithm proved to be by far the most efficient |
482 | 485 |
one, though the best known theoretical bound on its running time is |
483 | 486 |
exponential. |
484 | 487 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
485 | 488 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
486 | 489 |
applied early termination scheme. |
487 | 490 |
*/ |
488 | 491 |
|
489 | 492 |
/** |
490 | 493 |
@defgroup matching Matching Algorithms |
491 | 494 |
@ingroup algs |
492 | 495 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
493 | 496 |
|
494 | 497 |
This group contains the algorithms for calculating |
495 | 498 |
matchings in graphs and bipartite graphs. The general matching problem is |
496 | 499 |
finding a subset of the edges for which each node has at most one incident |
497 | 500 |
edge. |
498 | 501 |
|
499 | 502 |
There are several different algorithms for calculate matchings in |
500 | 503 |
graphs. The matching problems in bipartite graphs are generally |
501 | 504 |
easier than in general graphs. The goal of the matching optimization |
502 | 505 |
can be finding maximum cardinality, maximum weight or minimum cost |
503 | 506 |
matching. The search can be constrained to find perfect or |
504 | 507 |
maximum cardinality matching. |
505 | 508 |
|
506 | 509 |
The matching algorithms implemented in LEMON: |
507 | 510 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
508 | 511 |
for calculating maximum cardinality matching in bipartite graphs. |
509 | 512 |
- \ref PrBipartiteMatching Push-relabel algorithm |
510 | 513 |
for calculating maximum cardinality matching in bipartite graphs. |
511 | 514 |
- \ref MaxWeightedBipartiteMatching |
512 | 515 |
Successive shortest path algorithm for calculating maximum weighted |
513 | 516 |
matching and maximum weighted bipartite matching in bipartite graphs. |
514 | 517 |
- \ref MinCostMaxBipartiteMatching |
515 | 518 |
Successive shortest path algorithm for calculating minimum cost maximum |
516 | 519 |
matching in bipartite graphs. |
517 | 520 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
518 | 521 |
maximum cardinality matching in general graphs. |
519 | 522 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
520 | 523 |
maximum weighted matching in general graphs. |
521 | 524 |
- \ref MaxWeightedPerfectMatching |
522 | 525 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
523 | 526 |
perfect matching in general graphs. |
524 | 527 |
|
525 | 528 |
\image html bipartite_matching.png |
526 | 529 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
527 | 530 |
*/ |
528 | 531 |
|
529 | 532 |
/** |
530 | 533 |
@defgroup graph_properties Connectivity and Other Graph Properties |
531 | 534 |
@ingroup algs |
532 | 535 |
\brief Algorithms for discovering the graph properties |
533 | 536 |
|
534 | 537 |
This group contains the algorithms for discovering the graph properties |
535 | 538 |
like connectivity, bipartiteness, euler property, simplicity etc. |
536 | 539 |
|
537 | 540 |
\image html connected_components.png |
538 | 541 |
\image latex connected_components.eps "Connected components" width=\textwidth |
539 | 542 |
*/ |
540 | 543 |
|
541 | 544 |
/** |
542 | 545 |
@defgroup planar Planarity Embedding and Drawing |
543 | 546 |
@ingroup algs |
544 | 547 |
\brief Algorithms for planarity checking, embedding and drawing |
545 | 548 |
|
546 | 549 |
This group contains the algorithms for planarity checking, |
547 | 550 |
embedding and drawing. |
548 | 551 |
|
549 | 552 |
\image html planar.png |
550 | 553 |
\image latex planar.eps "Plane graph" width=\textwidth |
551 | 554 |
*/ |
552 | 555 |
|
553 | 556 |
/** |
554 | 557 |
@defgroup approx Approximation Algorithms |
555 | 558 |
@ingroup algs |
556 | 559 |
\brief Approximation algorithms. |
557 | 560 |
|
558 | 561 |
This group contains the approximation and heuristic algorithms |
559 | 562 |
implemented in LEMON. |
560 | 563 |
*/ |
561 | 564 |
|
562 | 565 |
/** |
563 | 566 |
@defgroup auxalg Auxiliary Algorithms |
564 | 567 |
@ingroup algs |
565 | 568 |
\brief Auxiliary algorithms implemented in LEMON. |
566 | 569 |
|
567 | 570 |
This group contains some algorithms implemented in LEMON |
568 | 571 |
in order to make it easier to implement complex algorithms. |
569 | 572 |
*/ |
570 | 573 |
|
571 | 574 |
/** |
572 | 575 |
@defgroup gen_opt_group General Optimization Tools |
573 | 576 |
\brief This group contains some general optimization frameworks |
574 | 577 |
implemented in LEMON. |
575 | 578 |
|
576 | 579 |
This group contains some general optimization frameworks |
577 | 580 |
implemented in LEMON. |
578 | 581 |
*/ |
579 | 582 |
|
580 | 583 |
/** |
581 | 584 |
@defgroup lp_group LP and MIP Solvers |
582 | 585 |
@ingroup gen_opt_group |
583 | 586 |
\brief LP and MIP solver interfaces for LEMON. |
584 | 587 |
|
585 | 588 |
This group contains LP and MIP solver interfaces for LEMON. |
586 | 589 |
Various LP solvers could be used in the same manner with this |
587 | 590 |
high-level interface. |
588 | 591 |
|
589 | 592 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
590 | 593 |
\ref cplex, \ref soplex. |
591 | 594 |
*/ |
592 | 595 |
|
593 | 596 |
/** |
594 | 597 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
595 | 598 |
@ingroup lp_group |
596 | 599 |
\brief Helper tools to the Lp and Mip solvers. |
597 | 600 |
|
598 | 601 |
This group adds some helper tools to general optimization framework |
599 | 602 |
implemented in LEMON. |
600 | 603 |
*/ |
601 | 604 |
|
602 | 605 |
/** |
603 | 606 |
@defgroup metah Metaheuristics |
604 | 607 |
@ingroup gen_opt_group |
605 | 608 |
\brief Metaheuristics for LEMON library. |
606 | 609 |
|
607 | 610 |
This group contains some metaheuristic optimization tools. |
608 | 611 |
*/ |
609 | 612 |
|
610 | 613 |
/** |
611 | 614 |
@defgroup utils Tools and Utilities |
612 | 615 |
\brief Tools and utilities for programming in LEMON |
613 | 616 |
|
614 | 617 |
Tools and utilities for programming in LEMON. |
615 | 618 |
*/ |
616 | 619 |
|
617 | 620 |
/** |
618 | 621 |
@defgroup gutils Basic Graph Utilities |
619 | 622 |
@ingroup utils |
620 | 623 |
\brief Simple basic graph utilities. |
621 | 624 |
|
622 | 625 |
This group contains some simple basic graph utilities. |
623 | 626 |
*/ |
624 | 627 |
|
625 | 628 |
/** |
626 | 629 |
@defgroup misc Miscellaneous Tools |
627 | 630 |
@ingroup utils |
628 | 631 |
\brief Tools for development, debugging and testing. |
629 | 632 |
|
630 | 633 |
This group contains several useful tools for development, |
631 | 634 |
debugging and testing. |
632 | 635 |
*/ |
633 | 636 |
|
634 | 637 |
/** |
635 | 638 |
@defgroup timecount Time Measuring and Counting |
636 | 639 |
@ingroup misc |
637 | 640 |
\brief Simple tools for measuring the performance of algorithms. |
638 | 641 |
|
639 | 642 |
This group contains simple tools for measuring the performance |
640 | 643 |
of algorithms. |
641 | 644 |
*/ |
642 | 645 |
|
643 | 646 |
/** |
644 | 647 |
@defgroup exceptions Exceptions |
645 | 648 |
@ingroup utils |
646 | 649 |
\brief Exceptions defined in LEMON. |
647 | 650 |
|
648 | 651 |
This group contains the exceptions defined in LEMON. |
649 | 652 |
*/ |
650 | 653 |
|
651 | 654 |
/** |
652 | 655 |
@defgroup io_group Input-Output |
653 | 656 |
\brief Graph Input-Output methods |
654 | 657 |
|
655 | 658 |
This group contains the tools for importing and exporting graphs |
656 | 659 |
and graph related data. Now it supports the \ref lgf-format |
657 | 660 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
658 | 661 |
postscript (EPS) format. |
659 | 662 |
*/ |
660 | 663 |
|
661 | 664 |
/** |
662 | 665 |
@defgroup lemon_io LEMON Graph Format |
663 | 666 |
@ingroup io_group |
664 | 667 |
\brief Reading and writing LEMON Graph Format. |
665 | 668 |
|
666 | 669 |
This group contains methods for reading and writing |
667 | 670 |
\ref lgf-format "LEMON Graph Format". |
668 | 671 |
*/ |
669 | 672 |
|
670 | 673 |
/** |
671 | 674 |
@defgroup eps_io Postscript Exporting |
672 | 675 |
@ingroup io_group |
673 | 676 |
\brief General \c EPS drawer and graph exporter |
674 | 677 |
|
675 | 678 |
This group contains general \c EPS drawing methods and special |
676 | 679 |
graph exporting tools. |
677 | 680 |
*/ |
678 | 681 |
|
679 | 682 |
/** |
680 | 683 |
@defgroup dimacs_group DIMACS Format |
681 | 684 |
@ingroup io_group |
682 | 685 |
\brief Read and write files in DIMACS format |
683 | 686 |
|
684 | 687 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
685 | 688 |
*/ |
686 | 689 |
|
687 | 690 |
/** |
688 | 691 |
@defgroup nauty_group NAUTY Format |
689 | 692 |
@ingroup io_group |
690 | 693 |
\brief Read \e Nauty format |
691 | 694 |
|
692 | 695 |
Tool to read graphs from \e Nauty format data. |
693 | 696 |
*/ |
694 | 697 |
|
695 | 698 |
/** |
696 | 699 |
@defgroup concept Concepts |
697 | 700 |
\brief Skeleton classes and concept checking classes |
698 | 701 |
|
699 | 702 |
This group contains the data/algorithm skeletons and concept checking |
700 | 703 |
classes implemented in LEMON. |
701 | 704 |
|
702 | 705 |
The purpose of the classes in this group is fourfold. |
703 | 706 |
|
704 | 707 |
- These classes contain the documentations of the %concepts. In order |
705 | 708 |
to avoid document multiplications, an implementation of a concept |
706 | 709 |
simply refers to the corresponding concept class. |
707 | 710 |
|
708 | 711 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
709 | 712 |
implementation of the %concepts should provide, however completely |
710 | 713 |
without implementations and real data structures behind the |
711 | 714 |
interface. On the other hand they should provide nothing else. All |
712 | 715 |
the algorithms working on a data structure meeting a certain concept |
713 | 716 |
should compile with these classes. (Though it will not run properly, |
714 | 717 |
of course.) In this way it is easily to check if an algorithm |
715 | 718 |
doesn't use any extra feature of a certain implementation. |
716 | 719 |
|
717 | 720 |
- The concept descriptor classes also provide a <em>checker class</em> |
718 | 721 |
that makes it possible to check whether a certain implementation of a |
719 | 722 |
concept indeed provides all the required features. |
720 | 723 |
|
721 | 724 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
722 | 725 |
*/ |
723 | 726 |
|
724 | 727 |
/** |
725 | 728 |
@defgroup graph_concepts Graph Structure Concepts |
726 | 729 |
@ingroup concept |
727 | 730 |
\brief Skeleton and concept checking classes for graph structures |
728 | 731 |
|
729 | 732 |
This group contains the skeletons and concept checking classes of |
730 | 733 |
graph structures. |
731 | 734 |
*/ |
732 | 735 |
|
733 | 736 |
/** |
734 | 737 |
@defgroup map_concepts Map Concepts |
735 | 738 |
@ingroup concept |
736 | 739 |
\brief Skeleton and concept checking classes for maps |
737 | 740 |
|
738 | 741 |
This group contains the skeletons and concept checking classes of maps. |
739 | 742 |
*/ |
740 | 743 |
|
741 | 744 |
/** |
742 | 745 |
@defgroup tools Standalone Utility Applications |
743 | 746 |
|
744 | 747 |
Some utility applications are listed here. |
745 | 748 |
|
746 | 749 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
747 | 750 |
them, as well. |
748 | 751 |
*/ |
749 | 752 |
|
750 | 753 |
/** |
751 | 754 |
\anchor demoprograms |
752 | 755 |
|
753 | 756 |
@defgroup demos Demo Programs |
754 | 757 |
|
755 | 758 |
Some demo programs are listed here. Their full source codes can be found in |
756 | 759 |
the \c demo subdirectory of the source tree. |
757 | 760 |
|
758 | 761 |
In order to compile them, use the <tt>make demo</tt> or the |
759 | 762 |
<tt>make check</tt> commands. |
760 | 763 |
*/ |
761 | 764 |
|
762 | 765 |
} |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
20 | 20 |
#define LEMON_HARTMANN_ORLIN_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of HartmannOrlin algorithm. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam LEN The type of the length map. |
41 | 41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename LEN> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename LEN, |
46 | 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct HartmannOrlinDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the length map |
53 | 53 |
typedef LEN LengthMap; |
54 | 54 |
/// The type of the arc lengths |
55 | 55 |
typedef typename LengthMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The large value type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large value type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Value type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Value must be convertible to \c LargeValue. |
63 | 63 |
typedef double LargeValue; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addBack() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer value types |
77 | 77 |
template <typename GR, typename LEN> |
78 | 78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef LEN LengthMap; |
82 | 82 |
typedef typename LengthMap::Value Value; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeValue; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeValue; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
97 | 97 |
/// a minimum mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
101 | 102 |
/// It is an improved version of \ref Karp "Karp"'s original algorithm, |
102 | 103 |
/// it applies an efficient early termination scheme. |
103 | 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
104 | 105 |
/// |
105 | 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
106 | 107 |
/// \tparam LEN The type of the length map. The default |
107 | 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
108 | 109 |
#ifdef DOXYGEN |
109 | 110 |
template <typename GR, typename LEN, typename TR> |
110 | 111 |
#else |
111 | 112 |
template < typename GR, |
112 | 113 |
typename LEN = typename GR::template ArcMap<int>, |
113 | 114 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
114 | 115 |
#endif |
115 | 116 |
class HartmannOrlin |
116 | 117 |
{ |
117 | 118 |
public: |
118 | 119 |
|
119 | 120 |
/// The type of the digraph |
120 | 121 |
typedef typename TR::Digraph Digraph; |
121 | 122 |
/// The type of the length map |
122 | 123 |
typedef typename TR::LengthMap LengthMap; |
123 | 124 |
/// The type of the arc lengths |
124 | 125 |
typedef typename TR::Value Value; |
125 | 126 |
|
126 | 127 |
/// \brief The large value type |
127 | 128 |
/// |
128 | 129 |
/// The large value type used for internal computations. |
129 | 130 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
130 | 131 |
/// it is \c long \c long if the \c Value type is integer, |
131 | 132 |
/// otherwise it is \c double. |
132 | 133 |
typedef typename TR::LargeValue LargeValue; |
133 | 134 |
|
134 | 135 |
/// The tolerance type |
135 | 136 |
typedef typename TR::Tolerance Tolerance; |
136 | 137 |
|
137 | 138 |
/// \brief The path type of the found cycles |
138 | 139 |
/// |
139 | 140 |
/// The path type of the found cycles. |
140 | 141 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
141 | 142 |
/// it is \ref lemon::Path "Path<Digraph>". |
142 | 143 |
typedef typename TR::Path Path; |
143 | 144 |
|
144 | 145 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
145 | 146 |
typedef TR Traits; |
146 | 147 |
|
147 | 148 |
private: |
148 | 149 |
|
149 | 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
150 | 151 |
|
151 | 152 |
// Data sturcture for path data |
152 | 153 |
struct PathData |
153 | 154 |
{ |
154 | 155 |
LargeValue dist; |
155 | 156 |
Arc pred; |
156 | 157 |
PathData(LargeValue d, Arc p = INVALID) : |
157 | 158 |
dist(d), pred(p) {} |
158 | 159 |
}; |
159 | 160 |
|
160 | 161 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
161 | 162 |
PathDataNodeMap; |
162 | 163 |
|
163 | 164 |
private: |
164 | 165 |
|
165 | 166 |
// The digraph the algorithm runs on |
166 | 167 |
const Digraph &_gr; |
167 | 168 |
// The length of the arcs |
168 | 169 |
const LengthMap &_length; |
169 | 170 |
|
170 | 171 |
// Data for storing the strongly connected components |
171 | 172 |
int _comp_num; |
172 | 173 |
typename Digraph::template NodeMap<int> _comp; |
173 | 174 |
std::vector<std::vector<Node> > _comp_nodes; |
174 | 175 |
std::vector<Node>* _nodes; |
175 | 176 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
176 | 177 |
|
177 | 178 |
// Data for the found cycles |
178 | 179 |
bool _curr_found, _best_found; |
179 | 180 |
LargeValue _curr_length, _best_length; |
180 | 181 |
int _curr_size, _best_size; |
181 | 182 |
Node _curr_node, _best_node; |
182 | 183 |
int _curr_level, _best_level; |
183 | 184 |
|
184 | 185 |
Path *_cycle_path; |
185 | 186 |
bool _local_path; |
186 | 187 |
|
187 | 188 |
// Node map for storing path data |
188 | 189 |
PathDataNodeMap _data; |
189 | 190 |
// The processed nodes in the last round |
190 | 191 |
std::vector<Node> _process; |
191 | 192 |
|
192 | 193 |
Tolerance _tolerance; |
193 | 194 |
|
194 | 195 |
// Infinite constant |
195 | 196 |
const LargeValue INF; |
196 | 197 |
|
197 | 198 |
public: |
198 | 199 |
|
199 | 200 |
/// \name Named Template Parameters |
200 | 201 |
/// @{ |
201 | 202 |
|
202 | 203 |
template <typename T> |
203 | 204 |
struct SetLargeValueTraits : public Traits { |
204 | 205 |
typedef T LargeValue; |
205 | 206 |
typedef lemon::Tolerance<T> Tolerance; |
206 | 207 |
}; |
207 | 208 |
|
208 | 209 |
/// \brief \ref named-templ-param "Named parameter" for setting |
209 | 210 |
/// \c LargeValue type. |
210 | 211 |
/// |
211 | 212 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
212 | 213 |
/// type. It is used for internal computations in the algorithm. |
213 | 214 |
template <typename T> |
214 | 215 |
struct SetLargeValue |
215 | 216 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > { |
216 | 217 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
217 | 218 |
}; |
218 | 219 |
|
219 | 220 |
template <typename T> |
220 | 221 |
struct SetPathTraits : public Traits { |
221 | 222 |
typedef T Path; |
222 | 223 |
}; |
223 | 224 |
|
224 | 225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
225 | 226 |
/// \c %Path type. |
226 | 227 |
/// |
227 | 228 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
228 | 229 |
/// type of the found cycles. |
229 | 230 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
230 | 231 |
/// and it must have an \c addFront() function. |
231 | 232 |
template <typename T> |
232 | 233 |
struct SetPath |
233 | 234 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > { |
234 | 235 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
235 | 236 |
}; |
236 | 237 |
|
237 | 238 |
/// @} |
238 | 239 |
|
239 | 240 |
public: |
240 | 241 |
|
241 | 242 |
/// \brief Constructor. |
242 | 243 |
/// |
243 | 244 |
/// The constructor of the class. |
244 | 245 |
/// |
245 | 246 |
/// \param digraph The digraph the algorithm runs on. |
246 | 247 |
/// \param length The lengths (costs) of the arcs. |
247 | 248 |
HartmannOrlin( const Digraph &digraph, |
248 | 249 |
const LengthMap &length ) : |
249 | 250 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
250 | 251 |
_best_found(false), _best_length(0), _best_size(1), |
251 | 252 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
252 | 253 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
253 | 254 |
std::numeric_limits<LargeValue>::infinity() : |
254 | 255 |
std::numeric_limits<LargeValue>::max()) |
255 | 256 |
{} |
256 | 257 |
|
257 | 258 |
/// Destructor. |
258 | 259 |
~HartmannOrlin() { |
259 | 260 |
if (_local_path) delete _cycle_path; |
260 | 261 |
} |
261 | 262 |
|
262 | 263 |
/// \brief Set the path structure for storing the found cycle. |
263 | 264 |
/// |
264 | 265 |
/// This function sets an external path structure for storing the |
265 | 266 |
/// found cycle. |
266 | 267 |
/// |
267 | 268 |
/// If you don't call this function before calling \ref run() or |
268 | 269 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
269 | 270 |
/// structure. The destuctor deallocates this automatically |
270 | 271 |
/// allocated object, of course. |
271 | 272 |
/// |
272 | 273 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
273 | 274 |
/// "addFront()" function of the given path structure. |
274 | 275 |
/// |
275 | 276 |
/// \return <tt>(*this)</tt> |
276 | 277 |
HartmannOrlin& cycle(Path &path) { |
277 | 278 |
if (_local_path) { |
278 | 279 |
delete _cycle_path; |
279 | 280 |
_local_path = false; |
280 | 281 |
} |
281 | 282 |
_cycle_path = &path; |
282 | 283 |
return *this; |
283 | 284 |
} |
284 | 285 |
|
285 | 286 |
/// \brief Set the tolerance used by the algorithm. |
286 | 287 |
/// |
287 | 288 |
/// This function sets the tolerance object used by the algorithm. |
288 | 289 |
/// |
289 | 290 |
/// \return <tt>(*this)</tt> |
290 | 291 |
HartmannOrlin& tolerance(const Tolerance& tolerance) { |
291 | 292 |
_tolerance = tolerance; |
292 | 293 |
return *this; |
293 | 294 |
} |
294 | 295 |
|
295 | 296 |
/// \brief Return a const reference to the tolerance. |
296 | 297 |
/// |
297 | 298 |
/// This function returns a const reference to the tolerance object |
298 | 299 |
/// used by the algorithm. |
299 | 300 |
const Tolerance& tolerance() const { |
300 | 301 |
return _tolerance; |
301 | 302 |
} |
302 | 303 |
|
303 | 304 |
/// \name Execution control |
304 | 305 |
/// The simplest way to execute the algorithm is to call the \ref run() |
305 | 306 |
/// function.\n |
306 | 307 |
/// If you only need the minimum mean length, you may call |
307 | 308 |
/// \ref findMinMean(). |
308 | 309 |
|
309 | 310 |
/// @{ |
310 | 311 |
|
311 | 312 |
/// \brief Run the algorithm. |
312 | 313 |
/// |
313 | 314 |
/// This function runs the algorithm. |
314 | 315 |
/// It can be called more than once (e.g. if the underlying digraph |
315 | 316 |
/// and/or the arc lengths have been modified). |
316 | 317 |
/// |
317 | 318 |
/// \return \c true if a directed cycle exists in the digraph. |
318 | 319 |
/// |
319 | 320 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
320 | 321 |
/// \code |
321 | 322 |
/// return mmc.findMinMean() && mmc.findCycle(); |
322 | 323 |
/// \endcode |
323 | 324 |
bool run() { |
324 | 325 |
return findMinMean() && findCycle(); |
325 | 326 |
} |
326 | 327 |
|
327 | 328 |
/// \brief Find the minimum cycle mean. |
328 | 329 |
/// |
329 | 330 |
/// This function finds the minimum mean length of the directed |
330 | 331 |
/// cycles in the digraph. |
331 | 332 |
/// |
332 | 333 |
/// \return \c true if a directed cycle exists in the digraph. |
333 | 334 |
bool findMinMean() { |
334 | 335 |
// Initialization and find strongly connected components |
335 | 336 |
init(); |
336 | 337 |
findComponents(); |
337 | 338 |
|
338 | 339 |
// Find the minimum cycle mean in the components |
339 | 340 |
for (int comp = 0; comp < _comp_num; ++comp) { |
340 | 341 |
if (!initComponent(comp)) continue; |
341 | 342 |
processRounds(); |
342 | 343 |
|
343 | 344 |
// Update the best cycle (global minimum mean cycle) |
344 | 345 |
if ( _curr_found && (!_best_found || |
345 | 346 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
346 | 347 |
_best_found = true; |
347 | 348 |
_best_length = _curr_length; |
348 | 349 |
_best_size = _curr_size; |
349 | 350 |
_best_node = _curr_node; |
350 | 351 |
_best_level = _curr_level; |
351 | 352 |
} |
352 | 353 |
} |
353 | 354 |
return _best_found; |
354 | 355 |
} |
355 | 356 |
|
356 | 357 |
/// \brief Find a minimum mean directed cycle. |
357 | 358 |
/// |
358 | 359 |
/// This function finds a directed cycle of minimum mean length |
359 | 360 |
/// in the digraph using the data computed by findMinMean(). |
360 | 361 |
/// |
361 | 362 |
/// \return \c true if a directed cycle exists in the digraph. |
362 | 363 |
/// |
363 | 364 |
/// \pre \ref findMinMean() must be called before using this function. |
364 | 365 |
bool findCycle() { |
365 | 366 |
if (!_best_found) return false; |
366 | 367 |
IntNodeMap reached(_gr, -1); |
367 | 368 |
int r = _best_level + 1; |
368 | 369 |
Node u = _best_node; |
369 | 370 |
while (reached[u] < 0) { |
370 | 371 |
reached[u] = --r; |
371 | 372 |
u = _gr.source(_data[u][r].pred); |
372 | 373 |
} |
373 | 374 |
r = reached[u]; |
374 | 375 |
Arc e = _data[u][r].pred; |
375 | 376 |
_cycle_path->addFront(e); |
376 | 377 |
_best_length = _length[e]; |
377 | 378 |
_best_size = 1; |
378 | 379 |
Node v; |
379 | 380 |
while ((v = _gr.source(e)) != u) { |
380 | 381 |
e = _data[v][--r].pred; |
381 | 382 |
_cycle_path->addFront(e); |
382 | 383 |
_best_length += _length[e]; |
383 | 384 |
++_best_size; |
384 | 385 |
} |
385 | 386 |
return true; |
386 | 387 |
} |
387 | 388 |
|
388 | 389 |
/// @} |
389 | 390 |
|
390 | 391 |
/// \name Query Functions |
391 | 392 |
/// The results of the algorithm can be obtained using these |
392 | 393 |
/// functions.\n |
393 | 394 |
/// The algorithm should be executed before using them. |
394 | 395 |
|
395 | 396 |
/// @{ |
396 | 397 |
|
397 | 398 |
/// \brief Return the total length of the found cycle. |
398 | 399 |
/// |
399 | 400 |
/// This function returns the total length of the found cycle. |
400 | 401 |
/// |
401 | 402 |
/// \pre \ref run() or \ref findMinMean() must be called before |
402 | 403 |
/// using this function. |
403 | 404 |
LargeValue cycleLength() const { |
404 | 405 |
return _best_length; |
405 | 406 |
} |
406 | 407 |
|
407 | 408 |
/// \brief Return the number of arcs on the found cycle. |
408 | 409 |
/// |
409 | 410 |
/// This function returns the number of arcs on the found cycle. |
410 | 411 |
/// |
411 | 412 |
/// \pre \ref run() or \ref findMinMean() must be called before |
412 | 413 |
/// using this function. |
413 | 414 |
int cycleArcNum() const { |
414 | 415 |
return _best_size; |
415 | 416 |
} |
416 | 417 |
|
417 | 418 |
/// \brief Return the mean length of the found cycle. |
418 | 419 |
/// |
419 | 420 |
/// This function returns the mean length of the found cycle. |
420 | 421 |
/// |
421 | 422 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
422 | 423 |
/// following code. |
423 | 424 |
/// \code |
424 | 425 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
425 | 426 |
/// \endcode |
426 | 427 |
/// |
427 | 428 |
/// \pre \ref run() or \ref findMinMean() must be called before |
428 | 429 |
/// using this function. |
429 | 430 |
double cycleMean() const { |
430 | 431 |
return static_cast<double>(_best_length) / _best_size; |
431 | 432 |
} |
432 | 433 |
|
433 | 434 |
/// \brief Return the found cycle. |
434 | 435 |
/// |
435 | 436 |
/// This function returns a const reference to the path structure |
436 | 437 |
/// storing the found cycle. |
437 | 438 |
/// |
438 | 439 |
/// \pre \ref run() or \ref findCycle() must be called before using |
439 | 440 |
/// this function. |
440 | 441 |
const Path& cycle() const { |
441 | 442 |
return *_cycle_path; |
442 | 443 |
} |
443 | 444 |
|
444 | 445 |
///@} |
445 | 446 |
|
446 | 447 |
private: |
447 | 448 |
|
448 | 449 |
// Initialization |
449 | 450 |
void init() { |
450 | 451 |
if (!_cycle_path) { |
451 | 452 |
_local_path = true; |
452 | 453 |
_cycle_path = new Path; |
453 | 454 |
} |
454 | 455 |
_cycle_path->clear(); |
455 | 456 |
_best_found = false; |
456 | 457 |
_best_length = 0; |
457 | 458 |
_best_size = 1; |
458 | 459 |
_cycle_path->clear(); |
459 | 460 |
for (NodeIt u(_gr); u != INVALID; ++u) |
460 | 461 |
_data[u].clear(); |
461 | 462 |
} |
462 | 463 |
|
463 | 464 |
// Find strongly connected components and initialize _comp_nodes |
464 | 465 |
// and _out_arcs |
465 | 466 |
void findComponents() { |
466 | 467 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
467 | 468 |
_comp_nodes.resize(_comp_num); |
468 | 469 |
if (_comp_num == 1) { |
469 | 470 |
_comp_nodes[0].clear(); |
470 | 471 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
471 | 472 |
_comp_nodes[0].push_back(n); |
472 | 473 |
_out_arcs[n].clear(); |
473 | 474 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
474 | 475 |
_out_arcs[n].push_back(a); |
475 | 476 |
} |
476 | 477 |
} |
477 | 478 |
} else { |
478 | 479 |
for (int i = 0; i < _comp_num; ++i) |
479 | 480 |
_comp_nodes[i].clear(); |
480 | 481 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
481 | 482 |
int k = _comp[n]; |
482 | 483 |
_comp_nodes[k].push_back(n); |
483 | 484 |
_out_arcs[n].clear(); |
484 | 485 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
485 | 486 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
486 | 487 |
} |
487 | 488 |
} |
488 | 489 |
} |
489 | 490 |
} |
490 | 491 |
|
491 | 492 |
// Initialize path data for the current component |
492 | 493 |
bool initComponent(int comp) { |
493 | 494 |
_nodes = &(_comp_nodes[comp]); |
494 | 495 |
int n = _nodes->size(); |
495 | 496 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
496 | 497 |
return false; |
497 | 498 |
} |
498 | 499 |
for (int i = 0; i < n; ++i) { |
499 | 500 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
500 | 501 |
} |
501 | 502 |
return true; |
502 | 503 |
} |
503 | 504 |
|
504 | 505 |
// Process all rounds of computing path data for the current component. |
505 | 506 |
// _data[v][k] is the length of a shortest directed walk from the root |
506 | 507 |
// node to node v containing exactly k arcs. |
507 | 508 |
void processRounds() { |
508 | 509 |
Node start = (*_nodes)[0]; |
509 | 510 |
_data[start][0] = PathData(0); |
510 | 511 |
_process.clear(); |
511 | 512 |
_process.push_back(start); |
512 | 513 |
|
513 | 514 |
int k, n = _nodes->size(); |
514 | 515 |
int next_check = 4; |
515 | 516 |
bool terminate = false; |
516 | 517 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { |
517 | 518 |
processNextBuildRound(k); |
518 | 519 |
if (k == next_check || k == n) { |
519 | 520 |
terminate = checkTermination(k); |
520 | 521 |
next_check = next_check * 3 / 2; |
521 | 522 |
} |
522 | 523 |
} |
523 | 524 |
for ( ; k <= n && !terminate; ++k) { |
524 | 525 |
processNextFullRound(k); |
525 | 526 |
if (k == next_check || k == n) { |
526 | 527 |
terminate = checkTermination(k); |
527 | 528 |
next_check = next_check * 3 / 2; |
528 | 529 |
} |
529 | 530 |
} |
530 | 531 |
} |
531 | 532 |
|
532 | 533 |
// Process one round and rebuild _process |
533 | 534 |
void processNextBuildRound(int k) { |
534 | 535 |
std::vector<Node> next; |
535 | 536 |
Node u, v; |
536 | 537 |
Arc e; |
537 | 538 |
LargeValue d; |
538 | 539 |
for (int i = 0; i < int(_process.size()); ++i) { |
539 | 540 |
u = _process[i]; |
540 | 541 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
541 | 542 |
e = _out_arcs[u][j]; |
542 | 543 |
v = _gr.target(e); |
543 | 544 |
d = _data[u][k-1].dist + _length[e]; |
544 | 545 |
if (_tolerance.less(d, _data[v][k].dist)) { |
545 | 546 |
if (_data[v][k].dist == INF) next.push_back(v); |
546 | 547 |
_data[v][k] = PathData(d, e); |
547 | 548 |
} |
548 | 549 |
} |
549 | 550 |
} |
550 | 551 |
_process.swap(next); |
551 | 552 |
} |
552 | 553 |
|
553 | 554 |
// Process one round using _nodes instead of _process |
554 | 555 |
void processNextFullRound(int k) { |
555 | 556 |
Node u, v; |
556 | 557 |
Arc e; |
557 | 558 |
LargeValue d; |
558 | 559 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
559 | 560 |
u = (*_nodes)[i]; |
560 | 561 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
561 | 562 |
e = _out_arcs[u][j]; |
562 | 563 |
v = _gr.target(e); |
563 | 564 |
d = _data[u][k-1].dist + _length[e]; |
564 | 565 |
if (_tolerance.less(d, _data[v][k].dist)) { |
565 | 566 |
_data[v][k] = PathData(d, e); |
566 | 567 |
} |
567 | 568 |
} |
568 | 569 |
} |
569 | 570 |
} |
570 | 571 |
|
571 | 572 |
// Check early termination |
572 | 573 |
bool checkTermination(int k) { |
573 | 574 |
typedef std::pair<int, int> Pair; |
574 | 575 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
575 | 576 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
576 | 577 |
int n = _nodes->size(); |
577 | 578 |
LargeValue length; |
578 | 579 |
int size; |
579 | 580 |
Node u; |
580 | 581 |
|
581 | 582 |
// Search for cycles that are already found |
582 | 583 |
_curr_found = false; |
583 | 584 |
for (int i = 0; i < n; ++i) { |
584 | 585 |
u = (*_nodes)[i]; |
585 | 586 |
if (_data[u][k].dist == INF) continue; |
586 | 587 |
for (int j = k; j >= 0; --j) { |
587 | 588 |
if (level[u].first == i && level[u].second > 0) { |
588 | 589 |
// A cycle is found |
589 | 590 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
590 | 591 |
size = level[u].second - j; |
591 | 592 |
if (!_curr_found || length * _curr_size < _curr_length * size) { |
592 | 593 |
_curr_length = length; |
593 | 594 |
_curr_size = size; |
594 | 595 |
_curr_node = u; |
595 | 596 |
_curr_level = level[u].second; |
596 | 597 |
_curr_found = true; |
597 | 598 |
} |
598 | 599 |
} |
599 | 600 |
level[u] = Pair(i, j); |
600 | 601 |
u = _gr.source(_data[u][j].pred); |
601 | 602 |
} |
602 | 603 |
} |
603 | 604 |
|
604 | 605 |
// If at least one cycle is found, check the optimality condition |
605 | 606 |
LargeValue d; |
606 | 607 |
if (_curr_found && k < n) { |
607 | 608 |
// Find node potentials |
608 | 609 |
for (int i = 0; i < n; ++i) { |
609 | 610 |
u = (*_nodes)[i]; |
610 | 611 |
pi[u] = INF; |
611 | 612 |
for (int j = 0; j <= k; ++j) { |
612 | 613 |
if (_data[u][j].dist < INF) { |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HOWARD_H |
20 | 20 |
#define LEMON_HOWARD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Howard's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of Howard class. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of Howard class. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam LEN The type of the length map. |
41 | 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename LEN> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename LEN, |
46 | 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct HowardDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the length map |
53 | 53 |
typedef LEN LengthMap; |
54 | 54 |
/// The type of the arc lengths |
55 | 55 |
typedef typename LengthMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The large value type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large value type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Value type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Value must be convertible to \c LargeValue. |
63 | 63 |
typedef double LargeValue; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addBack() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer value types |
77 | 77 |
template <typename GR, typename LEN> |
78 | 78 |
struct HowardDefaultTraits<GR, LEN, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef LEN LengthMap; |
82 | 82 |
typedef typename LengthMap::Value Value; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeValue; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeValue; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of Howard's algorithm for finding a minimum |
97 | 97 |
/// mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements Howard's policy iteration algorithm for finding |
100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
101 | 102 |
/// This class provides the most efficient algorithm for the |
102 | 103 |
/// minimum mean cycle problem, though the best known theoretical |
103 | 104 |
/// bound on its running time is exponential. |
104 | 105 |
/// |
105 | 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
106 | 107 |
/// \tparam LEN The type of the length map. The default |
107 | 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
108 | 109 |
#ifdef DOXYGEN |
109 | 110 |
template <typename GR, typename LEN, typename TR> |
110 | 111 |
#else |
111 | 112 |
template < typename GR, |
112 | 113 |
typename LEN = typename GR::template ArcMap<int>, |
113 | 114 |
typename TR = HowardDefaultTraits<GR, LEN> > |
114 | 115 |
#endif |
115 | 116 |
class Howard |
116 | 117 |
{ |
117 | 118 |
public: |
118 | 119 |
|
119 | 120 |
/// The type of the digraph |
120 | 121 |
typedef typename TR::Digraph Digraph; |
121 | 122 |
/// The type of the length map |
122 | 123 |
typedef typename TR::LengthMap LengthMap; |
123 | 124 |
/// The type of the arc lengths |
124 | 125 |
typedef typename TR::Value Value; |
125 | 126 |
|
126 | 127 |
/// \brief The large value type |
127 | 128 |
/// |
128 | 129 |
/// The large value type used for internal computations. |
129 | 130 |
/// Using the \ref HowardDefaultTraits "default traits class", |
130 | 131 |
/// it is \c long \c long if the \c Value type is integer, |
131 | 132 |
/// otherwise it is \c double. |
132 | 133 |
typedef typename TR::LargeValue LargeValue; |
133 | 134 |
|
134 | 135 |
/// The tolerance type |
135 | 136 |
typedef typename TR::Tolerance Tolerance; |
136 | 137 |
|
137 | 138 |
/// \brief The path type of the found cycles |
138 | 139 |
/// |
139 | 140 |
/// The path type of the found cycles. |
140 | 141 |
/// Using the \ref HowardDefaultTraits "default traits class", |
141 | 142 |
/// it is \ref lemon::Path "Path<Digraph>". |
142 | 143 |
typedef typename TR::Path Path; |
143 | 144 |
|
144 | 145 |
/// The \ref HowardDefaultTraits "traits class" of the algorithm |
145 | 146 |
typedef TR Traits; |
146 | 147 |
|
147 | 148 |
private: |
148 | 149 |
|
149 | 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
150 | 151 |
|
151 | 152 |
// The digraph the algorithm runs on |
152 | 153 |
const Digraph &_gr; |
153 | 154 |
// The length of the arcs |
154 | 155 |
const LengthMap &_length; |
155 | 156 |
|
156 | 157 |
// Data for the found cycles |
157 | 158 |
bool _curr_found, _best_found; |
158 | 159 |
LargeValue _curr_length, _best_length; |
159 | 160 |
int _curr_size, _best_size; |
160 | 161 |
Node _curr_node, _best_node; |
161 | 162 |
|
162 | 163 |
Path *_cycle_path; |
163 | 164 |
bool _local_path; |
164 | 165 |
|
165 | 166 |
// Internal data used by the algorithm |
166 | 167 |
typename Digraph::template NodeMap<Arc> _policy; |
167 | 168 |
typename Digraph::template NodeMap<bool> _reached; |
168 | 169 |
typename Digraph::template NodeMap<int> _level; |
169 | 170 |
typename Digraph::template NodeMap<LargeValue> _dist; |
170 | 171 |
|
171 | 172 |
// Data for storing the strongly connected components |
172 | 173 |
int _comp_num; |
173 | 174 |
typename Digraph::template NodeMap<int> _comp; |
174 | 175 |
std::vector<std::vector<Node> > _comp_nodes; |
175 | 176 |
std::vector<Node>* _nodes; |
176 | 177 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
177 | 178 |
|
178 | 179 |
// Queue used for BFS search |
179 | 180 |
std::vector<Node> _queue; |
180 | 181 |
int _qfront, _qback; |
181 | 182 |
|
182 | 183 |
Tolerance _tolerance; |
183 | 184 |
|
184 | 185 |
// Infinite constant |
185 | 186 |
const LargeValue INF; |
186 | 187 |
|
187 | 188 |
public: |
188 | 189 |
|
189 | 190 |
/// \name Named Template Parameters |
190 | 191 |
/// @{ |
191 | 192 |
|
192 | 193 |
template <typename T> |
193 | 194 |
struct SetLargeValueTraits : public Traits { |
194 | 195 |
typedef T LargeValue; |
195 | 196 |
typedef lemon::Tolerance<T> Tolerance; |
196 | 197 |
}; |
197 | 198 |
|
198 | 199 |
/// \brief \ref named-templ-param "Named parameter" for setting |
199 | 200 |
/// \c LargeValue type. |
200 | 201 |
/// |
201 | 202 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
202 | 203 |
/// type. It is used for internal computations in the algorithm. |
203 | 204 |
template <typename T> |
204 | 205 |
struct SetLargeValue |
205 | 206 |
: public Howard<GR, LEN, SetLargeValueTraits<T> > { |
206 | 207 |
typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create; |
207 | 208 |
}; |
208 | 209 |
|
209 | 210 |
template <typename T> |
210 | 211 |
struct SetPathTraits : public Traits { |
211 | 212 |
typedef T Path; |
212 | 213 |
}; |
213 | 214 |
|
214 | 215 |
/// \brief \ref named-templ-param "Named parameter" for setting |
215 | 216 |
/// \c %Path type. |
216 | 217 |
/// |
217 | 218 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
218 | 219 |
/// type of the found cycles. |
219 | 220 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
220 | 221 |
/// and it must have an \c addBack() function. |
221 | 222 |
template <typename T> |
222 | 223 |
struct SetPath |
223 | 224 |
: public Howard<GR, LEN, SetPathTraits<T> > { |
224 | 225 |
typedef Howard<GR, LEN, SetPathTraits<T> > Create; |
225 | 226 |
}; |
226 | 227 |
|
227 | 228 |
/// @} |
228 | 229 |
|
229 | 230 |
public: |
230 | 231 |
|
231 | 232 |
/// \brief Constructor. |
232 | 233 |
/// |
233 | 234 |
/// The constructor of the class. |
234 | 235 |
/// |
235 | 236 |
/// \param digraph The digraph the algorithm runs on. |
236 | 237 |
/// \param length The lengths (costs) of the arcs. |
237 | 238 |
Howard( const Digraph &digraph, |
238 | 239 |
const LengthMap &length ) : |
239 | 240 |
_gr(digraph), _length(length), _best_found(false), |
240 | 241 |
_best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
241 | 242 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
242 | 243 |
_comp(digraph), _in_arcs(digraph), |
243 | 244 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
244 | 245 |
std::numeric_limits<LargeValue>::infinity() : |
245 | 246 |
std::numeric_limits<LargeValue>::max()) |
246 | 247 |
{} |
247 | 248 |
|
248 | 249 |
/// Destructor. |
249 | 250 |
~Howard() { |
250 | 251 |
if (_local_path) delete _cycle_path; |
251 | 252 |
} |
252 | 253 |
|
253 | 254 |
/// \brief Set the path structure for storing the found cycle. |
254 | 255 |
/// |
255 | 256 |
/// This function sets an external path structure for storing the |
256 | 257 |
/// found cycle. |
257 | 258 |
/// |
258 | 259 |
/// If you don't call this function before calling \ref run() or |
259 | 260 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
260 | 261 |
/// structure. The destuctor deallocates this automatically |
261 | 262 |
/// allocated object, of course. |
262 | 263 |
/// |
263 | 264 |
/// \note The algorithm calls only the \ref lemon::Path::addBack() |
264 | 265 |
/// "addBack()" function of the given path structure. |
265 | 266 |
/// |
266 | 267 |
/// \return <tt>(*this)</tt> |
267 | 268 |
Howard& cycle(Path &path) { |
268 | 269 |
if (_local_path) { |
269 | 270 |
delete _cycle_path; |
270 | 271 |
_local_path = false; |
271 | 272 |
} |
272 | 273 |
_cycle_path = &path; |
273 | 274 |
return *this; |
274 | 275 |
} |
275 | 276 |
|
276 | 277 |
/// \brief Set the tolerance used by the algorithm. |
277 | 278 |
/// |
278 | 279 |
/// This function sets the tolerance object used by the algorithm. |
279 | 280 |
/// |
280 | 281 |
/// \return <tt>(*this)</tt> |
281 | 282 |
Howard& tolerance(const Tolerance& tolerance) { |
282 | 283 |
_tolerance = tolerance; |
283 | 284 |
return *this; |
284 | 285 |
} |
285 | 286 |
|
286 | 287 |
/// \brief Return a const reference to the tolerance. |
287 | 288 |
/// |
288 | 289 |
/// This function returns a const reference to the tolerance object |
289 | 290 |
/// used by the algorithm. |
290 | 291 |
const Tolerance& tolerance() const { |
291 | 292 |
return _tolerance; |
292 | 293 |
} |
293 | 294 |
|
294 | 295 |
/// \name Execution control |
295 | 296 |
/// The simplest way to execute the algorithm is to call the \ref run() |
296 | 297 |
/// function.\n |
297 | 298 |
/// If you only need the minimum mean length, you may call |
298 | 299 |
/// \ref findMinMean(). |
299 | 300 |
|
300 | 301 |
/// @{ |
301 | 302 |
|
302 | 303 |
/// \brief Run the algorithm. |
303 | 304 |
/// |
304 | 305 |
/// This function runs the algorithm. |
305 | 306 |
/// It can be called more than once (e.g. if the underlying digraph |
306 | 307 |
/// and/or the arc lengths have been modified). |
307 | 308 |
/// |
308 | 309 |
/// \return \c true if a directed cycle exists in the digraph. |
309 | 310 |
/// |
310 | 311 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
311 | 312 |
/// \code |
312 | 313 |
/// return mmc.findMinMean() && mmc.findCycle(); |
313 | 314 |
/// \endcode |
314 | 315 |
bool run() { |
315 | 316 |
return findMinMean() && findCycle(); |
316 | 317 |
} |
317 | 318 |
|
318 | 319 |
/// \brief Find the minimum cycle mean. |
319 | 320 |
/// |
320 | 321 |
/// This function finds the minimum mean length of the directed |
321 | 322 |
/// cycles in the digraph. |
322 | 323 |
/// |
323 | 324 |
/// \return \c true if a directed cycle exists in the digraph. |
324 | 325 |
bool findMinMean() { |
325 | 326 |
// Initialize and find strongly connected components |
326 | 327 |
init(); |
327 | 328 |
findComponents(); |
328 | 329 |
|
329 | 330 |
// Find the minimum cycle mean in the components |
330 | 331 |
for (int comp = 0; comp < _comp_num; ++comp) { |
331 | 332 |
// Find the minimum mean cycle in the current component |
332 | 333 |
if (!buildPolicyGraph(comp)) continue; |
333 | 334 |
while (true) { |
334 | 335 |
findPolicyCycle(); |
335 | 336 |
if (!computeNodeDistances()) break; |
336 | 337 |
} |
337 | 338 |
// Update the best cycle (global minimum mean cycle) |
338 | 339 |
if ( _curr_found && (!_best_found || |
339 | 340 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
340 | 341 |
_best_found = true; |
341 | 342 |
_best_length = _curr_length; |
342 | 343 |
_best_size = _curr_size; |
343 | 344 |
_best_node = _curr_node; |
344 | 345 |
} |
345 | 346 |
} |
346 | 347 |
return _best_found; |
347 | 348 |
} |
348 | 349 |
|
349 | 350 |
/// \brief Find a minimum mean directed cycle. |
350 | 351 |
/// |
351 | 352 |
/// This function finds a directed cycle of minimum mean length |
352 | 353 |
/// in the digraph using the data computed by findMinMean(). |
353 | 354 |
/// |
354 | 355 |
/// \return \c true if a directed cycle exists in the digraph. |
355 | 356 |
/// |
356 | 357 |
/// \pre \ref findMinMean() must be called before using this function. |
357 | 358 |
bool findCycle() { |
358 | 359 |
if (!_best_found) return false; |
359 | 360 |
_cycle_path->addBack(_policy[_best_node]); |
360 | 361 |
for ( Node v = _best_node; |
361 | 362 |
(v = _gr.target(_policy[v])) != _best_node; ) { |
362 | 363 |
_cycle_path->addBack(_policy[v]); |
363 | 364 |
} |
364 | 365 |
return true; |
365 | 366 |
} |
366 | 367 |
|
367 | 368 |
/// @} |
368 | 369 |
|
369 | 370 |
/// \name Query Functions |
370 | 371 |
/// The results of the algorithm can be obtained using these |
371 | 372 |
/// functions.\n |
372 | 373 |
/// The algorithm should be executed before using them. |
373 | 374 |
|
374 | 375 |
/// @{ |
375 | 376 |
|
376 | 377 |
/// \brief Return the total length of the found cycle. |
377 | 378 |
/// |
378 | 379 |
/// This function returns the total length of the found cycle. |
379 | 380 |
/// |
380 | 381 |
/// \pre \ref run() or \ref findMinMean() must be called before |
381 | 382 |
/// using this function. |
382 | 383 |
LargeValue cycleLength() const { |
383 | 384 |
return _best_length; |
384 | 385 |
} |
385 | 386 |
|
386 | 387 |
/// \brief Return the number of arcs on the found cycle. |
387 | 388 |
/// |
388 | 389 |
/// This function returns the number of arcs on the found cycle. |
389 | 390 |
/// |
390 | 391 |
/// \pre \ref run() or \ref findMinMean() must be called before |
391 | 392 |
/// using this function. |
392 | 393 |
int cycleArcNum() const { |
393 | 394 |
return _best_size; |
394 | 395 |
} |
395 | 396 |
|
396 | 397 |
/// \brief Return the mean length of the found cycle. |
397 | 398 |
/// |
398 | 399 |
/// This function returns the mean length of the found cycle. |
399 | 400 |
/// |
400 | 401 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
401 | 402 |
/// following code. |
402 | 403 |
/// \code |
403 | 404 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
404 | 405 |
/// \endcode |
405 | 406 |
/// |
406 | 407 |
/// \pre \ref run() or \ref findMinMean() must be called before |
407 | 408 |
/// using this function. |
408 | 409 |
double cycleMean() const { |
409 | 410 |
return static_cast<double>(_best_length) / _best_size; |
410 | 411 |
} |
411 | 412 |
|
412 | 413 |
/// \brief Return the found cycle. |
413 | 414 |
/// |
414 | 415 |
/// This function returns a const reference to the path structure |
415 | 416 |
/// storing the found cycle. |
416 | 417 |
/// |
417 | 418 |
/// \pre \ref run() or \ref findCycle() must be called before using |
418 | 419 |
/// this function. |
419 | 420 |
const Path& cycle() const { |
420 | 421 |
return *_cycle_path; |
421 | 422 |
} |
422 | 423 |
|
423 | 424 |
///@} |
424 | 425 |
|
425 | 426 |
private: |
426 | 427 |
|
427 | 428 |
// Initialize |
428 | 429 |
void init() { |
429 | 430 |
if (!_cycle_path) { |
430 | 431 |
_local_path = true; |
431 | 432 |
_cycle_path = new Path; |
432 | 433 |
} |
433 | 434 |
_queue.resize(countNodes(_gr)); |
434 | 435 |
_best_found = false; |
435 | 436 |
_best_length = 0; |
436 | 437 |
_best_size = 1; |
437 | 438 |
_cycle_path->clear(); |
438 | 439 |
} |
439 | 440 |
|
440 | 441 |
// Find strongly connected components and initialize _comp_nodes |
441 | 442 |
// and _in_arcs |
442 | 443 |
void findComponents() { |
443 | 444 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
444 | 445 |
_comp_nodes.resize(_comp_num); |
445 | 446 |
if (_comp_num == 1) { |
446 | 447 |
_comp_nodes[0].clear(); |
447 | 448 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
448 | 449 |
_comp_nodes[0].push_back(n); |
449 | 450 |
_in_arcs[n].clear(); |
450 | 451 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
451 | 452 |
_in_arcs[n].push_back(a); |
452 | 453 |
} |
453 | 454 |
} |
454 | 455 |
} else { |
455 | 456 |
for (int i = 0; i < _comp_num; ++i) |
456 | 457 |
_comp_nodes[i].clear(); |
457 | 458 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
458 | 459 |
int k = _comp[n]; |
459 | 460 |
_comp_nodes[k].push_back(n); |
460 | 461 |
_in_arcs[n].clear(); |
461 | 462 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
462 | 463 |
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); |
463 | 464 |
} |
464 | 465 |
} |
465 | 466 |
} |
466 | 467 |
} |
467 | 468 |
|
468 | 469 |
// Build the policy graph in the given strongly connected component |
469 | 470 |
// (the out-degree of every node is 1) |
470 | 471 |
bool buildPolicyGraph(int comp) { |
471 | 472 |
_nodes = &(_comp_nodes[comp]); |
472 | 473 |
if (_nodes->size() < 1 || |
473 | 474 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { |
474 | 475 |
return false; |
475 | 476 |
} |
476 | 477 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
477 | 478 |
_dist[(*_nodes)[i]] = INF; |
478 | 479 |
} |
479 | 480 |
Node u, v; |
480 | 481 |
Arc e; |
481 | 482 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
482 | 483 |
v = (*_nodes)[i]; |
483 | 484 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
484 | 485 |
e = _in_arcs[v][j]; |
485 | 486 |
u = _gr.source(e); |
486 | 487 |
if (_length[e] < _dist[u]) { |
487 | 488 |
_dist[u] = _length[e]; |
488 | 489 |
_policy[u] = e; |
489 | 490 |
} |
490 | 491 |
} |
491 | 492 |
} |
492 | 493 |
return true; |
493 | 494 |
} |
494 | 495 |
|
495 | 496 |
// Find the minimum mean cycle in the policy graph |
496 | 497 |
void findPolicyCycle() { |
497 | 498 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
498 | 499 |
_level[(*_nodes)[i]] = -1; |
499 | 500 |
} |
500 | 501 |
LargeValue clength; |
501 | 502 |
int csize; |
502 | 503 |
Node u, v; |
503 | 504 |
_curr_found = false; |
504 | 505 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
505 | 506 |
u = (*_nodes)[i]; |
506 | 507 |
if (_level[u] >= 0) continue; |
507 | 508 |
for (; _level[u] < 0; u = _gr.target(_policy[u])) { |
508 | 509 |
_level[u] = i; |
509 | 510 |
} |
510 | 511 |
if (_level[u] == i) { |
511 | 512 |
// A cycle is found |
512 | 513 |
clength = _length[_policy[u]]; |
513 | 514 |
csize = 1; |
514 | 515 |
for (v = u; (v = _gr.target(_policy[v])) != u; ) { |
515 | 516 |
clength += _length[_policy[v]]; |
516 | 517 |
++csize; |
517 | 518 |
} |
518 | 519 |
if ( !_curr_found || |
519 | 520 |
(clength * _curr_size < _curr_length * csize) ) { |
520 | 521 |
_curr_found = true; |
521 | 522 |
_curr_length = clength; |
522 | 523 |
_curr_size = csize; |
523 | 524 |
_curr_node = u; |
524 | 525 |
} |
525 | 526 |
} |
526 | 527 |
} |
527 | 528 |
} |
528 | 529 |
|
529 | 530 |
// Contract the policy graph and compute node distances |
530 | 531 |
bool computeNodeDistances() { |
531 | 532 |
// Find the component of the main cycle and compute node distances |
532 | 533 |
// using reverse BFS |
533 | 534 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
534 | 535 |
_reached[(*_nodes)[i]] = false; |
535 | 536 |
} |
536 | 537 |
_qfront = _qback = 0; |
537 | 538 |
_queue[0] = _curr_node; |
538 | 539 |
_reached[_curr_node] = true; |
539 | 540 |
_dist[_curr_node] = 0; |
540 | 541 |
Node u, v; |
541 | 542 |
Arc e; |
542 | 543 |
while (_qfront <= _qback) { |
543 | 544 |
v = _queue[_qfront++]; |
544 | 545 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
545 | 546 |
e = _in_arcs[v][j]; |
546 | 547 |
u = _gr.source(e); |
547 | 548 |
if (_policy[u] == e && !_reached[u]) { |
548 | 549 |
_reached[u] = true; |
549 | 550 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
550 | 551 |
_queue[++_qback] = u; |
551 | 552 |
} |
552 | 553 |
} |
553 | 554 |
} |
554 | 555 |
|
555 | 556 |
// Connect all other nodes to this component and compute node |
556 | 557 |
// distances using reverse BFS |
557 | 558 |
_qfront = 0; |
558 | 559 |
while (_qback < int(_nodes->size())-1) { |
559 | 560 |
v = _queue[_qfront++]; |
560 | 561 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
561 | 562 |
e = _in_arcs[v][j]; |
562 | 563 |
u = _gr.source(e); |
563 | 564 |
if (!_reached[u]) { |
564 | 565 |
_reached[u] = true; |
565 | 566 |
_policy[u] = e; |
566 | 567 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
567 | 568 |
_queue[++_qback] = u; |
568 | 569 |
} |
569 | 570 |
} |
570 | 571 |
} |
571 | 572 |
|
572 | 573 |
// Improve node distances |
573 | 574 |
bool improved = false; |
574 | 575 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
575 | 576 |
v = (*_nodes)[i]; |
576 | 577 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
577 | 578 |
e = _in_arcs[v][j]; |
578 | 579 |
u = _gr.source(e); |
579 | 580 |
LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; |
580 | 581 |
if (_tolerance.less(delta, _dist[u])) { |
581 | 582 |
_dist[u] = delta; |
582 | 583 |
_policy[u] = e; |
583 | 584 |
improved = true; |
584 | 585 |
} |
585 | 586 |
} |
586 | 587 |
} |
587 | 588 |
return improved; |
588 | 589 |
} |
589 | 590 |
|
590 | 591 |
}; //class Howard |
591 | 592 |
|
592 | 593 |
///@} |
593 | 594 |
|
594 | 595 |
} //namespace lemon |
595 | 596 |
|
596 | 597 |
#endif //LEMON_HOWARD_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KARP_H |
20 | 20 |
#define LEMON_KARP_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Karp's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of Karp algorithm. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of Karp algorithm. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam LEN The type of the length map. |
41 | 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename LEN> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename LEN, |
46 | 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct KarpDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the length map |
53 | 53 |
typedef LEN LengthMap; |
54 | 54 |
/// The type of the arc lengths |
55 | 55 |
typedef typename LengthMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The large value type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large value type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Value type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Value must be convertible to \c LargeValue. |
63 | 63 |
typedef double LargeValue; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addBack() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer value types |
77 | 77 |
template <typename GR, typename LEN> |
78 | 78 |
struct KarpDefaultTraits<GR, LEN, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef LEN LengthMap; |
82 | 82 |
typedef typename LengthMap::Value Value; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeValue; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeValue; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of Karp's algorithm for finding a minimum |
97 | 97 |
/// mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements Karp's algorithm for finding a directed |
100 |
/// cycle of minimum mean length (cost) in a digraph |
|
100 |
/// cycle of minimum mean length (cost) in a digraph |
|
101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
101 | 102 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
102 | 103 |
/// |
103 | 104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
104 | 105 |
/// \tparam LEN The type of the length map. The default |
105 | 106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
106 | 107 |
#ifdef DOXYGEN |
107 | 108 |
template <typename GR, typename LEN, typename TR> |
108 | 109 |
#else |
109 | 110 |
template < typename GR, |
110 | 111 |
typename LEN = typename GR::template ArcMap<int>, |
111 | 112 |
typename TR = KarpDefaultTraits<GR, LEN> > |
112 | 113 |
#endif |
113 | 114 |
class Karp |
114 | 115 |
{ |
115 | 116 |
public: |
116 | 117 |
|
117 | 118 |
/// The type of the digraph |
118 | 119 |
typedef typename TR::Digraph Digraph; |
119 | 120 |
/// The type of the length map |
120 | 121 |
typedef typename TR::LengthMap LengthMap; |
121 | 122 |
/// The type of the arc lengths |
122 | 123 |
typedef typename TR::Value Value; |
123 | 124 |
|
124 | 125 |
/// \brief The large value type |
125 | 126 |
/// |
126 | 127 |
/// The large value type used for internal computations. |
127 | 128 |
/// Using the \ref KarpDefaultTraits "default traits class", |
128 | 129 |
/// it is \c long \c long if the \c Value type is integer, |
129 | 130 |
/// otherwise it is \c double. |
130 | 131 |
typedef typename TR::LargeValue LargeValue; |
131 | 132 |
|
132 | 133 |
/// The tolerance type |
133 | 134 |
typedef typename TR::Tolerance Tolerance; |
134 | 135 |
|
135 | 136 |
/// \brief The path type of the found cycles |
136 | 137 |
/// |
137 | 138 |
/// The path type of the found cycles. |
138 | 139 |
/// Using the \ref KarpDefaultTraits "default traits class", |
139 | 140 |
/// it is \ref lemon::Path "Path<Digraph>". |
140 | 141 |
typedef typename TR::Path Path; |
141 | 142 |
|
142 | 143 |
/// The \ref KarpDefaultTraits "traits class" of the algorithm |
143 | 144 |
typedef TR Traits; |
144 | 145 |
|
145 | 146 |
private: |
146 | 147 |
|
147 | 148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
148 | 149 |
|
149 | 150 |
// Data sturcture for path data |
150 | 151 |
struct PathData |
151 | 152 |
{ |
152 | 153 |
LargeValue dist; |
153 | 154 |
Arc pred; |
154 | 155 |
PathData(LargeValue d, Arc p = INVALID) : |
155 | 156 |
dist(d), pred(p) {} |
156 | 157 |
}; |
157 | 158 |
|
158 | 159 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
159 | 160 |
PathDataNodeMap; |
160 | 161 |
|
161 | 162 |
private: |
162 | 163 |
|
163 | 164 |
// The digraph the algorithm runs on |
164 | 165 |
const Digraph &_gr; |
165 | 166 |
// The length of the arcs |
166 | 167 |
const LengthMap &_length; |
167 | 168 |
|
168 | 169 |
// Data for storing the strongly connected components |
169 | 170 |
int _comp_num; |
170 | 171 |
typename Digraph::template NodeMap<int> _comp; |
171 | 172 |
std::vector<std::vector<Node> > _comp_nodes; |
172 | 173 |
std::vector<Node>* _nodes; |
173 | 174 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
174 | 175 |
|
175 | 176 |
// Data for the found cycle |
176 | 177 |
LargeValue _cycle_length; |
177 | 178 |
int _cycle_size; |
178 | 179 |
Node _cycle_node; |
179 | 180 |
|
180 | 181 |
Path *_cycle_path; |
181 | 182 |
bool _local_path; |
182 | 183 |
|
183 | 184 |
// Node map for storing path data |
184 | 185 |
PathDataNodeMap _data; |
185 | 186 |
// The processed nodes in the last round |
186 | 187 |
std::vector<Node> _process; |
187 | 188 |
|
188 | 189 |
Tolerance _tolerance; |
189 | 190 |
|
190 | 191 |
// Infinite constant |
191 | 192 |
const LargeValue INF; |
192 | 193 |
|
193 | 194 |
public: |
194 | 195 |
|
195 | 196 |
/// \name Named Template Parameters |
196 | 197 |
/// @{ |
197 | 198 |
|
198 | 199 |
template <typename T> |
199 | 200 |
struct SetLargeValueTraits : public Traits { |
200 | 201 |
typedef T LargeValue; |
201 | 202 |
typedef lemon::Tolerance<T> Tolerance; |
202 | 203 |
}; |
203 | 204 |
|
204 | 205 |
/// \brief \ref named-templ-param "Named parameter" for setting |
205 | 206 |
/// \c LargeValue type. |
206 | 207 |
/// |
207 | 208 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
208 | 209 |
/// type. It is used for internal computations in the algorithm. |
209 | 210 |
template <typename T> |
210 | 211 |
struct SetLargeValue |
211 | 212 |
: public Karp<GR, LEN, SetLargeValueTraits<T> > { |
212 | 213 |
typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create; |
213 | 214 |
}; |
214 | 215 |
|
215 | 216 |
template <typename T> |
216 | 217 |
struct SetPathTraits : public Traits { |
217 | 218 |
typedef T Path; |
218 | 219 |
}; |
219 | 220 |
|
220 | 221 |
/// \brief \ref named-templ-param "Named parameter" for setting |
221 | 222 |
/// \c %Path type. |
222 | 223 |
/// |
223 | 224 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
224 | 225 |
/// type of the found cycles. |
225 | 226 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
226 | 227 |
/// and it must have an \c addFront() function. |
227 | 228 |
template <typename T> |
228 | 229 |
struct SetPath |
229 | 230 |
: public Karp<GR, LEN, SetPathTraits<T> > { |
230 | 231 |
typedef Karp<GR, LEN, SetPathTraits<T> > Create; |
231 | 232 |
}; |
232 | 233 |
|
233 | 234 |
/// @} |
234 | 235 |
|
235 | 236 |
public: |
236 | 237 |
|
237 | 238 |
/// \brief Constructor. |
238 | 239 |
/// |
239 | 240 |
/// The constructor of the class. |
240 | 241 |
/// |
241 | 242 |
/// \param digraph The digraph the algorithm runs on. |
242 | 243 |
/// \param length The lengths (costs) of the arcs. |
243 | 244 |
Karp( const Digraph &digraph, |
244 | 245 |
const LengthMap &length ) : |
245 | 246 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
246 | 247 |
_cycle_length(0), _cycle_size(1), _cycle_node(INVALID), |
247 | 248 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
248 | 249 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
249 | 250 |
std::numeric_limits<LargeValue>::infinity() : |
250 | 251 |
std::numeric_limits<LargeValue>::max()) |
251 | 252 |
{} |
252 | 253 |
|
253 | 254 |
/// Destructor. |
254 | 255 |
~Karp() { |
255 | 256 |
if (_local_path) delete _cycle_path; |
256 | 257 |
} |
257 | 258 |
|
258 | 259 |
/// \brief Set the path structure for storing the found cycle. |
259 | 260 |
/// |
260 | 261 |
/// This function sets an external path structure for storing the |
261 | 262 |
/// found cycle. |
262 | 263 |
/// |
263 | 264 |
/// If you don't call this function before calling \ref run() or |
264 | 265 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
265 | 266 |
/// structure. The destuctor deallocates this automatically |
266 | 267 |
/// allocated object, of course. |
267 | 268 |
/// |
268 | 269 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
269 | 270 |
/// "addFront()" function of the given path structure. |
270 | 271 |
/// |
271 | 272 |
/// \return <tt>(*this)</tt> |
272 | 273 |
Karp& cycle(Path &path) { |
273 | 274 |
if (_local_path) { |
274 | 275 |
delete _cycle_path; |
275 | 276 |
_local_path = false; |
276 | 277 |
} |
277 | 278 |
_cycle_path = &path; |
278 | 279 |
return *this; |
279 | 280 |
} |
280 | 281 |
|
281 | 282 |
/// \brief Set the tolerance used by the algorithm. |
282 | 283 |
/// |
283 | 284 |
/// This function sets the tolerance object used by the algorithm. |
284 | 285 |
/// |
285 | 286 |
/// \return <tt>(*this)</tt> |
286 | 287 |
Karp& tolerance(const Tolerance& tolerance) { |
287 | 288 |
_tolerance = tolerance; |
288 | 289 |
return *this; |
289 | 290 |
} |
290 | 291 |
|
291 | 292 |
/// \brief Return a const reference to the tolerance. |
292 | 293 |
/// |
293 | 294 |
/// This function returns a const reference to the tolerance object |
294 | 295 |
/// used by the algorithm. |
295 | 296 |
const Tolerance& tolerance() const { |
296 | 297 |
return _tolerance; |
297 | 298 |
} |
298 | 299 |
|
299 | 300 |
/// \name Execution control |
300 | 301 |
/// The simplest way to execute the algorithm is to call the \ref run() |
301 | 302 |
/// function.\n |
302 | 303 |
/// If you only need the minimum mean length, you may call |
303 | 304 |
/// \ref findMinMean(). |
304 | 305 |
|
305 | 306 |
/// @{ |
306 | 307 |
|
307 | 308 |
/// \brief Run the algorithm. |
308 | 309 |
/// |
309 | 310 |
/// This function runs the algorithm. |
310 | 311 |
/// It can be called more than once (e.g. if the underlying digraph |
311 | 312 |
/// and/or the arc lengths have been modified). |
312 | 313 |
/// |
313 | 314 |
/// \return \c true if a directed cycle exists in the digraph. |
314 | 315 |
/// |
315 | 316 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
316 | 317 |
/// \code |
317 | 318 |
/// return mmc.findMinMean() && mmc.findCycle(); |
318 | 319 |
/// \endcode |
319 | 320 |
bool run() { |
320 | 321 |
return findMinMean() && findCycle(); |
321 | 322 |
} |
322 | 323 |
|
323 | 324 |
/// \brief Find the minimum cycle mean. |
324 | 325 |
/// |
325 | 326 |
/// This function finds the minimum mean length of the directed |
326 | 327 |
/// cycles in the digraph. |
327 | 328 |
/// |
328 | 329 |
/// \return \c true if a directed cycle exists in the digraph. |
329 | 330 |
bool findMinMean() { |
330 | 331 |
// Initialization and find strongly connected components |
331 | 332 |
init(); |
332 | 333 |
findComponents(); |
333 | 334 |
|
334 | 335 |
// Find the minimum cycle mean in the components |
335 | 336 |
for (int comp = 0; comp < _comp_num; ++comp) { |
336 | 337 |
if (!initComponent(comp)) continue; |
337 | 338 |
processRounds(); |
338 | 339 |
updateMinMean(); |
339 | 340 |
} |
340 | 341 |
return (_cycle_node != INVALID); |
341 | 342 |
} |
342 | 343 |
|
343 | 344 |
/// \brief Find a minimum mean directed cycle. |
344 | 345 |
/// |
345 | 346 |
/// This function finds a directed cycle of minimum mean length |
346 | 347 |
/// in the digraph using the data computed by findMinMean(). |
347 | 348 |
/// |
348 | 349 |
/// \return \c true if a directed cycle exists in the digraph. |
349 | 350 |
/// |
350 | 351 |
/// \pre \ref findMinMean() must be called before using this function. |
351 | 352 |
bool findCycle() { |
352 | 353 |
if (_cycle_node == INVALID) return false; |
353 | 354 |
IntNodeMap reached(_gr, -1); |
354 | 355 |
int r = _data[_cycle_node].size(); |
355 | 356 |
Node u = _cycle_node; |
356 | 357 |
while (reached[u] < 0) { |
357 | 358 |
reached[u] = --r; |
358 | 359 |
u = _gr.source(_data[u][r].pred); |
359 | 360 |
} |
360 | 361 |
r = reached[u]; |
361 | 362 |
Arc e = _data[u][r].pred; |
362 | 363 |
_cycle_path->addFront(e); |
363 | 364 |
_cycle_length = _length[e]; |
364 | 365 |
_cycle_size = 1; |
365 | 366 |
Node v; |
366 | 367 |
while ((v = _gr.source(e)) != u) { |
367 | 368 |
e = _data[v][--r].pred; |
368 | 369 |
_cycle_path->addFront(e); |
369 | 370 |
_cycle_length += _length[e]; |
370 | 371 |
++_cycle_size; |
371 | 372 |
} |
372 | 373 |
return true; |
373 | 374 |
} |
374 | 375 |
|
375 | 376 |
/// @} |
376 | 377 |
|
377 | 378 |
/// \name Query Functions |
378 | 379 |
/// The results of the algorithm can be obtained using these |
379 | 380 |
/// functions.\n |
380 | 381 |
/// The algorithm should be executed before using them. |
381 | 382 |
|
382 | 383 |
/// @{ |
383 | 384 |
|
384 | 385 |
/// \brief Return the total length of the found cycle. |
385 | 386 |
/// |
386 | 387 |
/// This function returns the total length of the found cycle. |
387 | 388 |
/// |
388 | 389 |
/// \pre \ref run() or \ref findMinMean() must be called before |
389 | 390 |
/// using this function. |
390 | 391 |
LargeValue cycleLength() const { |
391 | 392 |
return _cycle_length; |
392 | 393 |
} |
393 | 394 |
|
394 | 395 |
/// \brief Return the number of arcs on the found cycle. |
395 | 396 |
/// |
396 | 397 |
/// This function returns the number of arcs on the found cycle. |
397 | 398 |
/// |
398 | 399 |
/// \pre \ref run() or \ref findMinMean() must be called before |
399 | 400 |
/// using this function. |
400 | 401 |
int cycleArcNum() const { |
401 | 402 |
return _cycle_size; |
402 | 403 |
} |
403 | 404 |
|
404 | 405 |
/// \brief Return the mean length of the found cycle. |
405 | 406 |
/// |
406 | 407 |
/// This function returns the mean length of the found cycle. |
407 | 408 |
/// |
408 | 409 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
409 | 410 |
/// following code. |
410 | 411 |
/// \code |
411 | 412 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
412 | 413 |
/// \endcode |
413 | 414 |
/// |
414 | 415 |
/// \pre \ref run() or \ref findMinMean() must be called before |
415 | 416 |
/// using this function. |
416 | 417 |
double cycleMean() const { |
417 | 418 |
return static_cast<double>(_cycle_length) / _cycle_size; |
418 | 419 |
} |
419 | 420 |
|
420 | 421 |
/// \brief Return the found cycle. |
421 | 422 |
/// |
422 | 423 |
/// This function returns a const reference to the path structure |
423 | 424 |
/// storing the found cycle. |
424 | 425 |
/// |
425 | 426 |
/// \pre \ref run() or \ref findCycle() must be called before using |
426 | 427 |
/// this function. |
427 | 428 |
const Path& cycle() const { |
428 | 429 |
return *_cycle_path; |
429 | 430 |
} |
430 | 431 |
|
431 | 432 |
///@} |
432 | 433 |
|
433 | 434 |
private: |
434 | 435 |
|
435 | 436 |
// Initialization |
436 | 437 |
void init() { |
437 | 438 |
if (!_cycle_path) { |
438 | 439 |
_local_path = true; |
439 | 440 |
_cycle_path = new Path; |
440 | 441 |
} |
441 | 442 |
_cycle_path->clear(); |
442 | 443 |
_cycle_length = 0; |
443 | 444 |
_cycle_size = 1; |
444 | 445 |
_cycle_node = INVALID; |
445 | 446 |
for (NodeIt u(_gr); u != INVALID; ++u) |
446 | 447 |
_data[u].clear(); |
447 | 448 |
} |
448 | 449 |
|
449 | 450 |
// Find strongly connected components and initialize _comp_nodes |
450 | 451 |
// and _out_arcs |
451 | 452 |
void findComponents() { |
452 | 453 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
453 | 454 |
_comp_nodes.resize(_comp_num); |
454 | 455 |
if (_comp_num == 1) { |
455 | 456 |
_comp_nodes[0].clear(); |
456 | 457 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
457 | 458 |
_comp_nodes[0].push_back(n); |
458 | 459 |
_out_arcs[n].clear(); |
459 | 460 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
460 | 461 |
_out_arcs[n].push_back(a); |
461 | 462 |
} |
462 | 463 |
} |
463 | 464 |
} else { |
464 | 465 |
for (int i = 0; i < _comp_num; ++i) |
465 | 466 |
_comp_nodes[i].clear(); |
466 | 467 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
467 | 468 |
int k = _comp[n]; |
468 | 469 |
_comp_nodes[k].push_back(n); |
469 | 470 |
_out_arcs[n].clear(); |
470 | 471 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
471 | 472 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
472 | 473 |
} |
473 | 474 |
} |
474 | 475 |
} |
475 | 476 |
} |
476 | 477 |
|
477 | 478 |
// Initialize path data for the current component |
478 | 479 |
bool initComponent(int comp) { |
479 | 480 |
_nodes = &(_comp_nodes[comp]); |
480 | 481 |
int n = _nodes->size(); |
481 | 482 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
482 | 483 |
return false; |
483 | 484 |
} |
484 | 485 |
for (int i = 0; i < n; ++i) { |
485 | 486 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
486 | 487 |
} |
487 | 488 |
return true; |
488 | 489 |
} |
489 | 490 |
|
490 | 491 |
// Process all rounds of computing path data for the current component. |
491 | 492 |
// _data[v][k] is the length of a shortest directed walk from the root |
492 | 493 |
// node to node v containing exactly k arcs. |
493 | 494 |
void processRounds() { |
494 | 495 |
Node start = (*_nodes)[0]; |
495 | 496 |
_data[start][0] = PathData(0); |
496 | 497 |
_process.clear(); |
497 | 498 |
_process.push_back(start); |
498 | 499 |
|
499 | 500 |
int k, n = _nodes->size(); |
500 | 501 |
for (k = 1; k <= n && int(_process.size()) < n; ++k) { |
501 | 502 |
processNextBuildRound(k); |
502 | 503 |
} |
503 | 504 |
for ( ; k <= n; ++k) { |
504 | 505 |
processNextFullRound(k); |
505 | 506 |
} |
506 | 507 |
} |
507 | 508 |
|
508 | 509 |
// Process one round and rebuild _process |
509 | 510 |
void processNextBuildRound(int k) { |
510 | 511 |
std::vector<Node> next; |
511 | 512 |
Node u, v; |
512 | 513 |
Arc e; |
513 | 514 |
LargeValue d; |
514 | 515 |
for (int i = 0; i < int(_process.size()); ++i) { |
515 | 516 |
u = _process[i]; |
516 | 517 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
517 | 518 |
e = _out_arcs[u][j]; |
518 | 519 |
v = _gr.target(e); |
519 | 520 |
d = _data[u][k-1].dist + _length[e]; |
520 | 521 |
if (_tolerance.less(d, _data[v][k].dist)) { |
521 | 522 |
if (_data[v][k].dist == INF) next.push_back(v); |
522 | 523 |
_data[v][k] = PathData(d, e); |
523 | 524 |
} |
524 | 525 |
} |
525 | 526 |
} |
526 | 527 |
_process.swap(next); |
527 | 528 |
} |
528 | 529 |
|
529 | 530 |
// Process one round using _nodes instead of _process |
530 | 531 |
void processNextFullRound(int k) { |
531 | 532 |
Node u, v; |
532 | 533 |
Arc e; |
533 | 534 |
LargeValue d; |
534 | 535 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
535 | 536 |
u = (*_nodes)[i]; |
536 | 537 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
537 | 538 |
e = _out_arcs[u][j]; |
538 | 539 |
v = _gr.target(e); |
539 | 540 |
d = _data[u][k-1].dist + _length[e]; |
540 | 541 |
if (_tolerance.less(d, _data[v][k].dist)) { |
541 | 542 |
_data[v][k] = PathData(d, e); |
542 | 543 |
} |
543 | 544 |
} |
544 | 545 |
} |
545 | 546 |
} |
546 | 547 |
|
547 | 548 |
// Update the minimum cycle mean |
548 | 549 |
void updateMinMean() { |
549 | 550 |
int n = _nodes->size(); |
550 | 551 |
for (int i = 0; i < n; ++i) { |
551 | 552 |
Node u = (*_nodes)[i]; |
552 | 553 |
if (_data[u][n].dist == INF) continue; |
553 | 554 |
LargeValue length, max_length = 0; |
554 | 555 |
int size, max_size = 1; |
555 | 556 |
bool found_curr = false; |
556 | 557 |
for (int k = 0; k < n; ++k) { |
557 | 558 |
if (_data[u][k].dist == INF) continue; |
558 | 559 |
length = _data[u][n].dist - _data[u][k].dist; |
559 | 560 |
size = n - k; |
560 | 561 |
if (!found_curr || length * max_size > max_length * size) { |
561 | 562 |
found_curr = true; |
562 | 563 |
max_length = length; |
563 | 564 |
max_size = size; |
564 | 565 |
} |
565 | 566 |
} |
566 | 567 |
if ( found_curr && (_cycle_node == INVALID || |
567 | 568 |
max_length * _cycle_size < _cycle_length * max_size) ) { |
568 | 569 |
_cycle_length = max_length; |
569 | 570 |
_cycle_size = max_size; |
570 | 571 |
_cycle_node = u; |
571 | 572 |
} |
572 | 573 |
} |
573 | 574 |
} |
574 | 575 |
|
575 | 576 |
}; //class Karp |
576 | 577 |
|
577 | 578 |
///@} |
578 | 579 |
|
579 | 580 |
} //namespace lemon |
580 | 581 |
|
581 | 582 |
#endif //LEMON_KARP_H |
0 comments (0 inline)