gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Add citations to the min mean cycle classes (#179, #184)
0 4 0
default
4 files changed with 13 insertions and 7 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -436,68 +436,71 @@
436 436
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
437 437
cut is the \f$X\f$ solution of the next optimization problem:
438 438

	
439 439
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
440 440
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
441 441

	
442 442
LEMON contains several algorithms related to minimum cut problems:
443 443

	
444 444
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
445 445
  in directed graphs.
446 446
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
447 447
  calculating minimum cut in undirected graphs.
448 448
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
449 449
  all-pairs minimum cut in undirected graphs.
450 450

	
451 451
If you want to find minimum cut just between two distinict nodes,
452 452
see the \ref max_flow "maximum flow problem".
453 453
*/
454 454

	
455 455
/**
456 456
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
457 457
@ingroup algs
458 458
\brief Algorithms for finding minimum mean cycles.
459 459

	
460
This group contains the algorithms for finding minimum mean cycles.
460
This group contains the algorithms for finding minimum mean cycles
461
\ref clrs01algorithms, \ref amo93networkflows.
461 462

	
462 463
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
463 464
of minimum mean length (cost) in a digraph.
464 465
The mean length of a cycle is the average length of its arcs, i.e. the
465 466
ratio between the total length of the cycle and the number of arcs on it.
466 467

	
467 468
This problem has an important connection to \e conservative \e length
468 469
\e functions, too. A length function on the arcs of a digraph is called
469 470
conservative if and only if there is no directed cycle of negative total
470 471
length. For an arbitrary length function, the negative of the minimum
471 472
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
472 473
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
473 474
function.
474 475

	
475 476
LEMON contains three algorithms for solving the minimum mean cycle problem:
476
- \ref Karp "Karp"'s original algorithm.
477
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
478
  \ref dasdan98minmeancycle.
477 479
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
478
  version of Karp's algorithm.
479
- \ref Howard "Howard"'s policy iteration algorithm.
480
  version of Karp's algorithm \ref dasdan98minmeancycle.
481
- \ref Howard "Howard"'s policy iteration algorithm
482
  \ref dasdan98minmeancycle.
480 483

	
481 484
In practice, the Howard algorithm proved to be by far the most efficient
482 485
one, though the best known theoretical bound on its running time is
483 486
exponential.
484 487
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
485 488
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
486 489
applied early termination scheme.
487 490
*/
488 491

	
489 492
/**
490 493
@defgroup matching Matching Algorithms
491 494
@ingroup algs
492 495
\brief Algorithms for finding matchings in graphs and bipartite graphs.
493 496

	
494 497
This group contains the algorithms for calculating
495 498
matchings in graphs and bipartite graphs. The general matching problem is
496 499
finding a subset of the edges for which each node has at most one incident
497 500
edge.
498 501

	
499 502
There are several different algorithms for calculate matchings in
500 503
graphs.  The matching problems in bipartite graphs are generally
501 504
easier than in general graphs. The goal of the matching optimization
502 505
can be finding maximum cardinality, maximum weight or minimum cost
503 506
matching. The search can be constrained to find perfect or
Ignore white space 6 line context
... ...
@@ -76,49 +76,50 @@
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 97
  /// a minimum mean cycle.
98 98
  ///
99 99
  /// This class implements the Hartmann-Orlin algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph.
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
102 103
  /// it applies an efficient early termination scheme.
103 104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
104 105
  ///
105 106
  /// \tparam GR The type of the digraph the algorithm runs on.
106 107
  /// \tparam LEN The type of the length map. The default
107 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108 109
#ifdef DOXYGEN
109 110
  template <typename GR, typename LEN, typename TR>
110 111
#else
111 112
  template < typename GR,
112 113
             typename LEN = typename GR::template ArcMap<int>,
113 114
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
114 115
#endif
115 116
  class HartmannOrlin
116 117
  {
117 118
  public:
118 119

	
119 120
    /// The type of the digraph
120 121
    typedef typename TR::Digraph Digraph;
121 122
    /// The type of the length map
122 123
    typedef typename TR::LengthMap LengthMap;
123 124
    /// The type of the arc lengths
124 125
    typedef typename TR::Value Value;
Ignore white space 6 line context
... ...
@@ -76,49 +76,50 @@
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HowardDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Howard's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Howard's policy iteration algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph.
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// This class provides the most efficient algorithm for the
102 103
  /// minimum mean cycle problem, though the best known theoretical
103 104
  /// bound on its running time is exponential.
104 105
  ///
105 106
  /// \tparam GR The type of the digraph the algorithm runs on.
106 107
  /// \tparam LEN The type of the length map. The default
107 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108 109
#ifdef DOXYGEN
109 110
  template <typename GR, typename LEN, typename TR>
110 111
#else
111 112
  template < typename GR,
112 113
             typename LEN = typename GR::template ArcMap<int>,
113 114
             typename TR = HowardDefaultTraits<GR, LEN> >
114 115
#endif
115 116
  class Howard
116 117
  {
117 118
  public:
118 119
  
119 120
    /// The type of the digraph
120 121
    typedef typename TR::Digraph Digraph;
121 122
    /// The type of the length map
122 123
    typedef typename TR::LengthMap LengthMap;
123 124
    /// The type of the arc lengths
124 125
    typedef typename TR::Value Value;
Ignore white space 48 line context
... ...
@@ -76,49 +76,50 @@
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct KarpDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Karp's algorithm for finding a directed
100
  /// cycle of minimum mean length (cost) in a digraph.
100
  /// cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
102 103
  ///
103 104
  /// \tparam GR The type of the digraph the algorithm runs on.
104 105
  /// \tparam LEN The type of the length map. The default
105 106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
106 107
#ifdef DOXYGEN
107 108
  template <typename GR, typename LEN, typename TR>
108 109
#else
109 110
  template < typename GR,
110 111
             typename LEN = typename GR::template ArcMap<int>,
111 112
             typename TR = KarpDefaultTraits<GR, LEN> >
112 113
#endif
113 114
  class Karp
114 115
  {
115 116
  public:
116 117

	
117 118
    /// The type of the digraph
118 119
    typedef typename TR::Digraph Digraph;
119 120
    /// The type of the length map
120 121
    typedef typename TR::LengthMap LengthMap;
121 122
    /// The type of the arc lengths
122 123
    typedef typename TR::Value Value;
123 124

	
124 125
    /// \brief The large value type
0 comments (0 inline)