gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Add citations to the min mean cycle classes (#179, #184)
0 4 0
default
4 files changed with 13 insertions and 7 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
... ...
@@ -268,404 +268,407 @@
268 268
\brief Two dimensional data storages implemented in LEMON.
269 269

	
270 270
This group contains two dimensional data storages implemented in LEMON.
271 271
*/
272 272

	
273 273
/**
274 274
@defgroup auxdat Auxiliary Data Structures
275 275
@ingroup datas
276 276
\brief Auxiliary data structures implemented in LEMON.
277 277

	
278 278
This group contains some data structures implemented in LEMON in
279 279
order to make it easier to implement combinatorial algorithms.
280 280
*/
281 281

	
282 282
/**
283 283
@defgroup geomdat Geometric Data Structures
284 284
@ingroup auxdat
285 285
\brief Geometric data structures implemented in LEMON.
286 286

	
287 287
This group contains geometric data structures implemented in LEMON.
288 288

	
289 289
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
290 290
   vector with the usual operations.
291 291
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
292 292
   rectangular bounding box of a set of \ref lemon::dim2::Point
293 293
   "dim2::Point"'s.
294 294
*/
295 295

	
296 296
/**
297 297
@defgroup matrices Matrices
298 298
@ingroup auxdat
299 299
\brief Two dimensional data storages implemented in LEMON.
300 300

	
301 301
This group contains two dimensional data storages implemented in LEMON.
302 302
*/
303 303

	
304 304
/**
305 305
@defgroup algs Algorithms
306 306
\brief This group contains the several algorithms
307 307
implemented in LEMON.
308 308

	
309 309
This group contains the several algorithms
310 310
implemented in LEMON.
311 311
*/
312 312

	
313 313
/**
314 314
@defgroup search Graph Search
315 315
@ingroup algs
316 316
\brief Common graph search algorithms.
317 317

	
318 318
This group contains the common graph search algorithms, namely
319 319
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
320 320
\ref clrs01algorithms.
321 321
*/
322 322

	
323 323
/**
324 324
@defgroup shortest_path Shortest Path Algorithms
325 325
@ingroup algs
326 326
\brief Algorithms for finding shortest paths.
327 327

	
328 328
This group contains the algorithms for finding shortest paths in digraphs
329 329
\ref clrs01algorithms.
330 330

	
331 331
 - \ref Dijkstra algorithm for finding shortest paths from a source node
332 332
   when all arc lengths are non-negative.
333 333
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
334 334
   from a source node when arc lenghts can be either positive or negative,
335 335
   but the digraph should not contain directed cycles with negative total
336 336
   length.
337 337
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
338 338
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
339 339
   lenghts can be either positive or negative, but the digraph should
340 340
   not contain directed cycles with negative total length.
341 341
 - \ref Suurballe A successive shortest path algorithm for finding
342 342
   arc-disjoint paths between two nodes having minimum total length.
343 343
*/
344 344

	
345 345
/**
346 346
@defgroup spantree Minimum Spanning Tree Algorithms
347 347
@ingroup algs
348 348
\brief Algorithms for finding minimum cost spanning trees and arborescences.
349 349

	
350 350
This group contains the algorithms for finding minimum cost spanning
351 351
trees and arborescences \ref clrs01algorithms.
352 352
*/
353 353

	
354 354
/**
355 355
@defgroup max_flow Maximum Flow Algorithms
356 356
@ingroup algs
357 357
\brief Algorithms for finding maximum flows.
358 358

	
359 359
This group contains the algorithms for finding maximum flows and
360 360
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
361 361

	
362 362
The \e maximum \e flow \e problem is to find a flow of maximum value between
363 363
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
364 364
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
365 365
\f$s, t \in V\f$ source and target nodes.
366 366
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
367 367
following optimization problem.
368 368

	
369 369
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
370 370
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
371 371
    \quad \forall u\in V\setminus\{s,t\} \f]
372 372
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
373 373

	
374 374
LEMON contains several algorithms for solving maximum flow problems:
375 375
- \ref EdmondsKarp Edmonds-Karp algorithm
376 376
  \ref edmondskarp72theoretical.
377 377
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
378 378
  \ref goldberg88newapproach.
379 379
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
380 380
  \ref dinic70algorithm, \ref sleator83dynamic.
381 381
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
382 382
  \ref goldberg88newapproach, \ref sleator83dynamic.
383 383

	
384 384
In most cases the \ref Preflow algorithm provides the
385 385
fastest method for computing a maximum flow. All implementations
386 386
also provide functions to query the minimum cut, which is the dual
387 387
problem of maximum flow.
388 388

	
389 389
\ref Circulation is a preflow push-relabel algorithm implemented directly 
390 390
for finding feasible circulations, which is a somewhat different problem,
391 391
but it is strongly related to maximum flow.
392 392
For more information, see \ref Circulation.
393 393
*/
394 394

	
395 395
/**
396 396
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
397 397
@ingroup algs
398 398

	
399 399
\brief Algorithms for finding minimum cost flows and circulations.
400 400

	
401 401
This group contains the algorithms for finding minimum cost flows and
402 402
circulations \ref amo93networkflows. For more information about this
403 403
problem and its dual solution, see \ref min_cost_flow
404 404
"Minimum Cost Flow Problem".
405 405

	
406 406
LEMON contains several algorithms for this problem.
407 407
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
408 408
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
409 409
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
410 410
   cost scaling \ref goldberg90approximation, \ref goldberg97efficient,
411 411
   \ref bunnagel98efficient.
412 412
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
413 413
   capacity scaling \ref edmondskarp72theoretical.
414 414
 - \ref CancelAndTighten The Cancel and Tighten algorithm
415 415
   \ref goldberg89cyclecanceling.
416 416
 - \ref CycleCanceling Cycle-Canceling algorithms
417 417
   \ref klein67primal, \ref goldberg89cyclecanceling.
418 418

	
419 419
In general NetworkSimplex is the most efficient implementation,
420 420
but in special cases other algorithms could be faster.
421 421
For example, if the total supply and/or capacities are rather small,
422 422
CapacityScaling is usually the fastest algorithm (without effective scaling).
423 423
*/
424 424

	
425 425
/**
426 426
@defgroup min_cut Minimum Cut Algorithms
427 427
@ingroup algs
428 428

	
429 429
\brief Algorithms for finding minimum cut in graphs.
430 430

	
431 431
This group contains the algorithms for finding minimum cut in graphs.
432 432

	
433 433
The \e minimum \e cut \e problem is to find a non-empty and non-complete
434 434
\f$X\f$ subset of the nodes with minimum overall capacity on
435 435
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
436 436
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
437 437
cut is the \f$X\f$ solution of the next optimization problem:
438 438

	
439 439
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
440 440
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
441 441

	
442 442
LEMON contains several algorithms related to minimum cut problems:
443 443

	
444 444
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
445 445
  in directed graphs.
446 446
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
447 447
  calculating minimum cut in undirected graphs.
448 448
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
449 449
  all-pairs minimum cut in undirected graphs.
450 450

	
451 451
If you want to find minimum cut just between two distinict nodes,
452 452
see the \ref max_flow "maximum flow problem".
453 453
*/
454 454

	
455 455
/**
456 456
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
457 457
@ingroup algs
458 458
\brief Algorithms for finding minimum mean cycles.
459 459

	
460
This group contains the algorithms for finding minimum mean cycles.
460
This group contains the algorithms for finding minimum mean cycles
461
\ref clrs01algorithms, \ref amo93networkflows.
461 462

	
462 463
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
463 464
of minimum mean length (cost) in a digraph.
464 465
The mean length of a cycle is the average length of its arcs, i.e. the
465 466
ratio between the total length of the cycle and the number of arcs on it.
466 467

	
467 468
This problem has an important connection to \e conservative \e length
468 469
\e functions, too. A length function on the arcs of a digraph is called
469 470
conservative if and only if there is no directed cycle of negative total
470 471
length. For an arbitrary length function, the negative of the minimum
471 472
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
472 473
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
473 474
function.
474 475

	
475 476
LEMON contains three algorithms for solving the minimum mean cycle problem:
476
- \ref Karp "Karp"'s original algorithm.
477
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
478
  \ref dasdan98minmeancycle.
477 479
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
478
  version of Karp's algorithm.
479
- \ref Howard "Howard"'s policy iteration algorithm.
480
  version of Karp's algorithm \ref dasdan98minmeancycle.
481
- \ref Howard "Howard"'s policy iteration algorithm
482
  \ref dasdan98minmeancycle.
480 483

	
481 484
In practice, the Howard algorithm proved to be by far the most efficient
482 485
one, though the best known theoretical bound on its running time is
483 486
exponential.
484 487
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
485 488
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
486 489
applied early termination scheme.
487 490
*/
488 491

	
489 492
/**
490 493
@defgroup matching Matching Algorithms
491 494
@ingroup algs
492 495
\brief Algorithms for finding matchings in graphs and bipartite graphs.
493 496

	
494 497
This group contains the algorithms for calculating
495 498
matchings in graphs and bipartite graphs. The general matching problem is
496 499
finding a subset of the edges for which each node has at most one incident
497 500
edge.
498 501

	
499 502
There are several different algorithms for calculate matchings in
500 503
graphs.  The matching problems in bipartite graphs are generally
501 504
easier than in general graphs. The goal of the matching optimization
502 505
can be finding maximum cardinality, maximum weight or minimum cost
503 506
matching. The search can be constrained to find perfect or
504 507
maximum cardinality matching.
505 508

	
506 509
The matching algorithms implemented in LEMON:
507 510
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
508 511
  for calculating maximum cardinality matching in bipartite graphs.
509 512
- \ref PrBipartiteMatching Push-relabel algorithm
510 513
  for calculating maximum cardinality matching in bipartite graphs.
511 514
- \ref MaxWeightedBipartiteMatching
512 515
  Successive shortest path algorithm for calculating maximum weighted
513 516
  matching and maximum weighted bipartite matching in bipartite graphs.
514 517
- \ref MinCostMaxBipartiteMatching
515 518
  Successive shortest path algorithm for calculating minimum cost maximum
516 519
  matching in bipartite graphs.
517 520
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
518 521
  maximum cardinality matching in general graphs.
519 522
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
520 523
  maximum weighted matching in general graphs.
521 524
- \ref MaxWeightedPerfectMatching
522 525
  Edmond's blossom shrinking algorithm for calculating maximum weighted
523 526
  perfect matching in general graphs.
524 527

	
525 528
\image html bipartite_matching.png
526 529
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
527 530
*/
528 531

	
529 532
/**
530 533
@defgroup graph_properties Connectivity and Other Graph Properties
531 534
@ingroup algs
532 535
\brief Algorithms for discovering the graph properties
533 536

	
534 537
This group contains the algorithms for discovering the graph properties
535 538
like connectivity, bipartiteness, euler property, simplicity etc.
536 539

	
537 540
\image html connected_components.png
538 541
\image latex connected_components.eps "Connected components" width=\textwidth
539 542
*/
540 543

	
541 544
/**
542 545
@defgroup planar Planarity Embedding and Drawing
543 546
@ingroup algs
544 547
\brief Algorithms for planarity checking, embedding and drawing
545 548

	
546 549
This group contains the algorithms for planarity checking,
547 550
embedding and drawing.
548 551

	
549 552
\image html planar.png
550 553
\image latex planar.eps "Plane graph" width=\textwidth
551 554
*/
552 555

	
553 556
/**
554 557
@defgroup approx Approximation Algorithms
555 558
@ingroup algs
556 559
\brief Approximation algorithms.
557 560

	
558 561
This group contains the approximation and heuristic algorithms
559 562
implemented in LEMON.
560 563
*/
561 564

	
562 565
/**
563 566
@defgroup auxalg Auxiliary Algorithms
564 567
@ingroup algs
565 568
\brief Auxiliary algorithms implemented in LEMON.
566 569

	
567 570
This group contains some algorithms implemented in LEMON
568 571
in order to make it easier to implement complex algorithms.
569 572
*/
570 573

	
571 574
/**
572 575
@defgroup gen_opt_group General Optimization Tools
573 576
\brief This group contains some general optimization frameworks
574 577
implemented in LEMON.
575 578

	
576 579
This group contains some general optimization frameworks
577 580
implemented in LEMON.
578 581
*/
579 582

	
580 583
/**
581 584
@defgroup lp_group LP and MIP Solvers
582 585
@ingroup gen_opt_group
583 586
\brief LP and MIP solver interfaces for LEMON.
584 587

	
585 588
This group contains LP and MIP solver interfaces for LEMON.
586 589
Various LP solvers could be used in the same manner with this
587 590
high-level interface.
588 591

	
589 592
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
590 593
\ref cplex, \ref soplex.
591 594
*/
592 595

	
593 596
/**
594 597
@defgroup lp_utils Tools for Lp and Mip Solvers
595 598
@ingroup lp_group
596 599
\brief Helper tools to the Lp and Mip solvers.
597 600

	
598 601
This group adds some helper tools to general optimization framework
599 602
implemented in LEMON.
600 603
*/
601 604

	
602 605
/**
603 606
@defgroup metah Metaheuristics
604 607
@ingroup gen_opt_group
605 608
\brief Metaheuristics for LEMON library.
606 609

	
607 610
This group contains some metaheuristic optimization tools.
608 611
*/
609 612

	
610 613
/**
611 614
@defgroup utils Tools and Utilities
612 615
\brief Tools and utilities for programming in LEMON
613 616

	
614 617
Tools and utilities for programming in LEMON.
615 618
*/
616 619

	
617 620
/**
618 621
@defgroup gutils Basic Graph Utilities
619 622
@ingroup utils
620 623
\brief Simple basic graph utilities.
621 624

	
622 625
This group contains some simple basic graph utilities.
623 626
*/
624 627

	
625 628
/**
626 629
@defgroup misc Miscellaneous Tools
627 630
@ingroup utils
628 631
\brief Tools for development, debugging and testing.
629 632

	
630 633
This group contains several useful tools for development,
631 634
debugging and testing.
632 635
*/
633 636

	
634 637
/**
635 638
@defgroup timecount Time Measuring and Counting
636 639
@ingroup misc
637 640
\brief Simple tools for measuring the performance of algorithms.
638 641

	
639 642
This group contains simple tools for measuring the performance
640 643
of algorithms.
641 644
*/
642 645

	
643 646
/**
644 647
@defgroup exceptions Exceptions
645 648
@ingroup utils
646 649
\brief Exceptions defined in LEMON.
647 650

	
648 651
This group contains the exceptions defined in LEMON.
649 652
*/
650 653

	
651 654
/**
652 655
@defgroup io_group Input-Output
653 656
\brief Graph Input-Output methods
654 657

	
655 658
This group contains the tools for importing and exporting graphs
656 659
and graph related data. Now it supports the \ref lgf-format
657 660
"LEMON Graph Format", the \c DIMACS format and the encapsulated
658 661
postscript (EPS) format.
659 662
*/
660 663

	
661 664
/**
662 665
@defgroup lemon_io LEMON Graph Format
663 666
@ingroup io_group
664 667
\brief Reading and writing LEMON Graph Format.
665 668

	
666 669
This group contains methods for reading and writing
667 670
\ref lgf-format "LEMON Graph Format".
668 671
*/
669 672

	
670 673
/**
671 674
@defgroup eps_io Postscript Exporting
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_HARTMANN_ORLIN_H
20 20
#define LEMON_HARTMANN_ORLIN_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of HartmannOrlin algorithm.
37 37
  ///
38 38
  /// Default traits class of HartmannOrlin algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HartmannOrlinDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 97
  /// a minimum mean cycle.
98 98
  ///
99 99
  /// This class implements the Hartmann-Orlin algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph.
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
102 103
  /// it applies an efficient early termination scheme.
103 104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
104 105
  ///
105 106
  /// \tparam GR The type of the digraph the algorithm runs on.
106 107
  /// \tparam LEN The type of the length map. The default
107 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108 109
#ifdef DOXYGEN
109 110
  template <typename GR, typename LEN, typename TR>
110 111
#else
111 112
  template < typename GR,
112 113
             typename LEN = typename GR::template ArcMap<int>,
113 114
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
114 115
#endif
115 116
  class HartmannOrlin
116 117
  {
117 118
  public:
118 119

	
119 120
    /// The type of the digraph
120 121
    typedef typename TR::Digraph Digraph;
121 122
    /// The type of the length map
122 123
    typedef typename TR::LengthMap LengthMap;
123 124
    /// The type of the arc lengths
124 125
    typedef typename TR::Value Value;
125 126

	
126 127
    /// \brief The large value type
127 128
    ///
128 129
    /// The large value type used for internal computations.
129 130
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
130 131
    /// it is \c long \c long if the \c Value type is integer,
131 132
    /// otherwise it is \c double.
132 133
    typedef typename TR::LargeValue LargeValue;
133 134

	
134 135
    /// The tolerance type
135 136
    typedef typename TR::Tolerance Tolerance;
136 137

	
137 138
    /// \brief The path type of the found cycles
138 139
    ///
139 140
    /// The path type of the found cycles.
140 141
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
141 142
    /// it is \ref lemon::Path "Path<Digraph>".
142 143
    typedef typename TR::Path Path;
143 144

	
144 145
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
145 146
    typedef TR Traits;
146 147

	
147 148
  private:
148 149

	
149 150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
150 151

	
151 152
    // Data sturcture for path data
152 153
    struct PathData
153 154
    {
154 155
      LargeValue dist;
155 156
      Arc pred;
156 157
      PathData(LargeValue d, Arc p = INVALID) :
157 158
        dist(d), pred(p) {}
158 159
    };
159 160

	
160 161
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
161 162
      PathDataNodeMap;
162 163

	
163 164
  private:
164 165

	
165 166
    // The digraph the algorithm runs on
166 167
    const Digraph &_gr;
167 168
    // The length of the arcs
168 169
    const LengthMap &_length;
169 170

	
170 171
    // Data for storing the strongly connected components
171 172
    int _comp_num;
172 173
    typename Digraph::template NodeMap<int> _comp;
173 174
    std::vector<std::vector<Node> > _comp_nodes;
174 175
    std::vector<Node>* _nodes;
175 176
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
176 177

	
177 178
    // Data for the found cycles
178 179
    bool _curr_found, _best_found;
179 180
    LargeValue _curr_length, _best_length;
180 181
    int _curr_size, _best_size;
181 182
    Node _curr_node, _best_node;
182 183
    int _curr_level, _best_level;
183 184

	
184 185
    Path *_cycle_path;
185 186
    bool _local_path;
186 187

	
187 188
    // Node map for storing path data
188 189
    PathDataNodeMap _data;
189 190
    // The processed nodes in the last round
190 191
    std::vector<Node> _process;
191 192

	
192 193
    Tolerance _tolerance;
193 194

	
194 195
    // Infinite constant
195 196
    const LargeValue INF;
196 197

	
197 198
  public:
198 199

	
199 200
    /// \name Named Template Parameters
200 201
    /// @{
201 202

	
202 203
    template <typename T>
203 204
    struct SetLargeValueTraits : public Traits {
204 205
      typedef T LargeValue;
205 206
      typedef lemon::Tolerance<T> Tolerance;
206 207
    };
207 208

	
208 209
    /// \brief \ref named-templ-param "Named parameter" for setting
209 210
    /// \c LargeValue type.
210 211
    ///
211 212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
212 213
    /// type. It is used for internal computations in the algorithm.
213 214
    template <typename T>
214 215
    struct SetLargeValue
215 216
      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
216 217
      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
217 218
    };
218 219

	
219 220
    template <typename T>
220 221
    struct SetPathTraits : public Traits {
221 222
      typedef T Path;
222 223
    };
223 224

	
224 225
    /// \brief \ref named-templ-param "Named parameter" for setting
225 226
    /// \c %Path type.
226 227
    ///
227 228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
228 229
    /// type of the found cycles.
229 230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
230 231
    /// and it must have an \c addFront() function.
231 232
    template <typename T>
232 233
    struct SetPath
233 234
      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
234 235
      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
235 236
    };
236 237

	
237 238
    /// @}
238 239

	
239 240
  public:
240 241

	
241 242
    /// \brief Constructor.
242 243
    ///
243 244
    /// The constructor of the class.
244 245
    ///
245 246
    /// \param digraph The digraph the algorithm runs on.
246 247
    /// \param length The lengths (costs) of the arcs.
247 248
    HartmannOrlin( const Digraph &digraph,
248 249
                   const LengthMap &length ) :
249 250
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
250 251
      _best_found(false), _best_length(0), _best_size(1),
251 252
      _cycle_path(NULL), _local_path(false), _data(digraph),
252 253
      INF(std::numeric_limits<LargeValue>::has_infinity ?
253 254
          std::numeric_limits<LargeValue>::infinity() :
254 255
          std::numeric_limits<LargeValue>::max())
255 256
    {}
256 257

	
257 258
    /// Destructor.
258 259
    ~HartmannOrlin() {
259 260
      if (_local_path) delete _cycle_path;
260 261
    }
261 262

	
262 263
    /// \brief Set the path structure for storing the found cycle.
263 264
    ///
264 265
    /// This function sets an external path structure for storing the
265 266
    /// found cycle.
266 267
    ///
267 268
    /// If you don't call this function before calling \ref run() or
268 269
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
269 270
    /// structure. The destuctor deallocates this automatically
270 271
    /// allocated object, of course.
271 272
    ///
272 273
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
273 274
    /// "addFront()" function of the given path structure.
274 275
    ///
275 276
    /// \return <tt>(*this)</tt>
276 277
    HartmannOrlin& cycle(Path &path) {
277 278
      if (_local_path) {
278 279
        delete _cycle_path;
279 280
        _local_path = false;
280 281
      }
281 282
      _cycle_path = &path;
282 283
      return *this;
283 284
    }
284 285

	
285 286
    /// \brief Set the tolerance used by the algorithm.
286 287
    ///
287 288
    /// This function sets the tolerance object used by the algorithm.
288 289
    ///
289 290
    /// \return <tt>(*this)</tt>
290 291
    HartmannOrlin& tolerance(const Tolerance& tolerance) {
291 292
      _tolerance = tolerance;
292 293
      return *this;
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_HOWARD_H
20 20
#define LEMON_HOWARD_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Howard's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of Howard class.
37 37
  ///
38 38
  /// Default traits class of Howard class.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HowardDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HowardDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Howard's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Howard's policy iteration algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph.
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// This class provides the most efficient algorithm for the
102 103
  /// minimum mean cycle problem, though the best known theoretical
103 104
  /// bound on its running time is exponential.
104 105
  ///
105 106
  /// \tparam GR The type of the digraph the algorithm runs on.
106 107
  /// \tparam LEN The type of the length map. The default
107 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108 109
#ifdef DOXYGEN
109 110
  template <typename GR, typename LEN, typename TR>
110 111
#else
111 112
  template < typename GR,
112 113
             typename LEN = typename GR::template ArcMap<int>,
113 114
             typename TR = HowardDefaultTraits<GR, LEN> >
114 115
#endif
115 116
  class Howard
116 117
  {
117 118
  public:
118 119
  
119 120
    /// The type of the digraph
120 121
    typedef typename TR::Digraph Digraph;
121 122
    /// The type of the length map
122 123
    typedef typename TR::LengthMap LengthMap;
123 124
    /// The type of the arc lengths
124 125
    typedef typename TR::Value Value;
125 126

	
126 127
    /// \brief The large value type
127 128
    ///
128 129
    /// The large value type used for internal computations.
129 130
    /// Using the \ref HowardDefaultTraits "default traits class",
130 131
    /// it is \c long \c long if the \c Value type is integer,
131 132
    /// otherwise it is \c double.
132 133
    typedef typename TR::LargeValue LargeValue;
133 134

	
134 135
    /// The tolerance type
135 136
    typedef typename TR::Tolerance Tolerance;
136 137

	
137 138
    /// \brief The path type of the found cycles
138 139
    ///
139 140
    /// The path type of the found cycles.
140 141
    /// Using the \ref HowardDefaultTraits "default traits class",
141 142
    /// it is \ref lemon::Path "Path<Digraph>".
142 143
    typedef typename TR::Path Path;
143 144

	
144 145
    /// The \ref HowardDefaultTraits "traits class" of the algorithm
145 146
    typedef TR Traits;
146 147

	
147 148
  private:
148 149

	
149 150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
150 151
  
151 152
    // The digraph the algorithm runs on
152 153
    const Digraph &_gr;
153 154
    // The length of the arcs
154 155
    const LengthMap &_length;
155 156

	
156 157
    // Data for the found cycles
157 158
    bool _curr_found, _best_found;
158 159
    LargeValue _curr_length, _best_length;
159 160
    int _curr_size, _best_size;
160 161
    Node _curr_node, _best_node;
161 162

	
162 163
    Path *_cycle_path;
163 164
    bool _local_path;
164 165

	
165 166
    // Internal data used by the algorithm
166 167
    typename Digraph::template NodeMap<Arc> _policy;
167 168
    typename Digraph::template NodeMap<bool> _reached;
168 169
    typename Digraph::template NodeMap<int> _level;
169 170
    typename Digraph::template NodeMap<LargeValue> _dist;
170 171

	
171 172
    // Data for storing the strongly connected components
172 173
    int _comp_num;
173 174
    typename Digraph::template NodeMap<int> _comp;
174 175
    std::vector<std::vector<Node> > _comp_nodes;
175 176
    std::vector<Node>* _nodes;
176 177
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
177 178
    
178 179
    // Queue used for BFS search
179 180
    std::vector<Node> _queue;
180 181
    int _qfront, _qback;
181 182

	
182 183
    Tolerance _tolerance;
183 184
  
184 185
    // Infinite constant
185 186
    const LargeValue INF;
186 187

	
187 188
  public:
188 189
  
189 190
    /// \name Named Template Parameters
190 191
    /// @{
191 192

	
192 193
    template <typename T>
193 194
    struct SetLargeValueTraits : public Traits {
194 195
      typedef T LargeValue;
195 196
      typedef lemon::Tolerance<T> Tolerance;
196 197
    };
197 198

	
198 199
    /// \brief \ref named-templ-param "Named parameter" for setting
199 200
    /// \c LargeValue type.
200 201
    ///
201 202
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
202 203
    /// type. It is used for internal computations in the algorithm.
203 204
    template <typename T>
204 205
    struct SetLargeValue
205 206
      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
206 207
      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
207 208
    };
208 209

	
209 210
    template <typename T>
210 211
    struct SetPathTraits : public Traits {
211 212
      typedef T Path;
212 213
    };
213 214

	
214 215
    /// \brief \ref named-templ-param "Named parameter" for setting
215 216
    /// \c %Path type.
216 217
    ///
217 218
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
218 219
    /// type of the found cycles.
219 220
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
220 221
    /// and it must have an \c addBack() function.
221 222
    template <typename T>
222 223
    struct SetPath
223 224
      : public Howard<GR, LEN, SetPathTraits<T> > {
224 225
      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
225 226
    };
226 227
    
227 228
    /// @}
228 229

	
229 230
  public:
230 231

	
231 232
    /// \brief Constructor.
232 233
    ///
233 234
    /// The constructor of the class.
234 235
    ///
235 236
    /// \param digraph The digraph the algorithm runs on.
236 237
    /// \param length The lengths (costs) of the arcs.
237 238
    Howard( const Digraph &digraph,
238 239
            const LengthMap &length ) :
239 240
      _gr(digraph), _length(length), _best_found(false),
240 241
      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
241 242
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
242 243
      _comp(digraph), _in_arcs(digraph),
243 244
      INF(std::numeric_limits<LargeValue>::has_infinity ?
244 245
          std::numeric_limits<LargeValue>::infinity() :
245 246
          std::numeric_limits<LargeValue>::max())
246 247
    {}
247 248

	
248 249
    /// Destructor.
249 250
    ~Howard() {
250 251
      if (_local_path) delete _cycle_path;
251 252
    }
252 253

	
253 254
    /// \brief Set the path structure for storing the found cycle.
254 255
    ///
255 256
    /// This function sets an external path structure for storing the
256 257
    /// found cycle.
257 258
    ///
258 259
    /// If you don't call this function before calling \ref run() or
259 260
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
260 261
    /// structure. The destuctor deallocates this automatically
261 262
    /// allocated object, of course.
262 263
    ///
263 264
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
264 265
    /// "addBack()" function of the given path structure.
265 266
    ///
266 267
    /// \return <tt>(*this)</tt>
267 268
    Howard& cycle(Path &path) {
268 269
      if (_local_path) {
269 270
        delete _cycle_path;
270 271
        _local_path = false;
271 272
      }
272 273
      _cycle_path = &path;
273 274
      return *this;
274 275
    }
275 276

	
276 277
    /// \brief Set the tolerance used by the algorithm.
277 278
    ///
278 279
    /// This function sets the tolerance object used by the algorithm.
279 280
    ///
280 281
    /// \return <tt>(*this)</tt>
281 282
    Howard& tolerance(const Tolerance& tolerance) {
282 283
      _tolerance = tolerance;
283 284
      return *this;
284 285
    }
285 286

	
286 287
    /// \brief Return a const reference to the tolerance.
287 288
    ///
288 289
    /// This function returns a const reference to the tolerance object
289 290
    /// used by the algorithm.
290 291
    const Tolerance& tolerance() const {
291 292
      return _tolerance;
292 293
    }
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_KARP_H
20 20
#define LEMON_KARP_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Karp's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of Karp algorithm.
37 37
  ///
38 38
  /// Default traits class of Karp algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct KarpDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct KarpDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Karp's algorithm for finding a directed
100
  /// cycle of minimum mean length (cost) in a digraph.
100
  /// cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
102 103
  ///
103 104
  /// \tparam GR The type of the digraph the algorithm runs on.
104 105
  /// \tparam LEN The type of the length map. The default
105 106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
106 107
#ifdef DOXYGEN
107 108
  template <typename GR, typename LEN, typename TR>
108 109
#else
109 110
  template < typename GR,
110 111
             typename LEN = typename GR::template ArcMap<int>,
111 112
             typename TR = KarpDefaultTraits<GR, LEN> >
112 113
#endif
113 114
  class Karp
114 115
  {
115 116
  public:
116 117

	
117 118
    /// The type of the digraph
118 119
    typedef typename TR::Digraph Digraph;
119 120
    /// The type of the length map
120 121
    typedef typename TR::LengthMap LengthMap;
121 122
    /// The type of the arc lengths
122 123
    typedef typename TR::Value Value;
123 124

	
124 125
    /// \brief The large value type
125 126
    ///
126 127
    /// The large value type used for internal computations.
127 128
    /// Using the \ref KarpDefaultTraits "default traits class",
128 129
    /// it is \c long \c long if the \c Value type is integer,
129 130
    /// otherwise it is \c double.
130 131
    typedef typename TR::LargeValue LargeValue;
131 132

	
132 133
    /// The tolerance type
133 134
    typedef typename TR::Tolerance Tolerance;
134 135

	
135 136
    /// \brief The path type of the found cycles
136 137
    ///
137 138
    /// The path type of the found cycles.
138 139
    /// Using the \ref KarpDefaultTraits "default traits class",
139 140
    /// it is \ref lemon::Path "Path<Digraph>".
140 141
    typedef typename TR::Path Path;
141 142

	
142 143
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
143 144
    typedef TR Traits;
144 145

	
145 146
  private:
146 147

	
147 148
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
148 149

	
149 150
    // Data sturcture for path data
150 151
    struct PathData
151 152
    {
152 153
      LargeValue dist;
153 154
      Arc pred;
154 155
      PathData(LargeValue d, Arc p = INVALID) :
155 156
        dist(d), pred(p) {}
156 157
    };
157 158

	
158 159
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
159 160
      PathDataNodeMap;
160 161

	
161 162
  private:
162 163

	
163 164
    // The digraph the algorithm runs on
164 165
    const Digraph &_gr;
165 166
    // The length of the arcs
166 167
    const LengthMap &_length;
167 168

	
168 169
    // Data for storing the strongly connected components
169 170
    int _comp_num;
170 171
    typename Digraph::template NodeMap<int> _comp;
171 172
    std::vector<std::vector<Node> > _comp_nodes;
172 173
    std::vector<Node>* _nodes;
173 174
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
174 175

	
175 176
    // Data for the found cycle
176 177
    LargeValue _cycle_length;
177 178
    int _cycle_size;
178 179
    Node _cycle_node;
179 180

	
180 181
    Path *_cycle_path;
181 182
    bool _local_path;
182 183

	
183 184
    // Node map for storing path data
184 185
    PathDataNodeMap _data;
185 186
    // The processed nodes in the last round
186 187
    std::vector<Node> _process;
187 188

	
188 189
    Tolerance _tolerance;
189 190
    
190 191
    // Infinite constant
191 192
    const LargeValue INF;
192 193

	
193 194
  public:
194 195

	
195 196
    /// \name Named Template Parameters
196 197
    /// @{
197 198

	
198 199
    template <typename T>
199 200
    struct SetLargeValueTraits : public Traits {
200 201
      typedef T LargeValue;
201 202
      typedef lemon::Tolerance<T> Tolerance;
202 203
    };
203 204

	
204 205
    /// \brief \ref named-templ-param "Named parameter" for setting
205 206
    /// \c LargeValue type.
206 207
    ///
207 208
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
208 209
    /// type. It is used for internal computations in the algorithm.
209 210
    template <typename T>
210 211
    struct SetLargeValue
211 212
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
212 213
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
213 214
    };
214 215

	
215 216
    template <typename T>
216 217
    struct SetPathTraits : public Traits {
217 218
      typedef T Path;
218 219
    };
219 220

	
220 221
    /// \brief \ref named-templ-param "Named parameter" for setting
221 222
    /// \c %Path type.
222 223
    ///
223 224
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
224 225
    /// type of the found cycles.
225 226
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
226 227
    /// and it must have an \c addFront() function.
227 228
    template <typename T>
228 229
    struct SetPath
229 230
      : public Karp<GR, LEN, SetPathTraits<T> > {
230 231
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
231 232
    };
232 233

	
233 234
    /// @}
234 235

	
235 236
  public:
236 237

	
237 238
    /// \brief Constructor.
238 239
    ///
239 240
    /// The constructor of the class.
240 241
    ///
241 242
    /// \param digraph The digraph the algorithm runs on.
242 243
    /// \param length The lengths (costs) of the arcs.
243 244
    Karp( const Digraph &digraph,
244 245
          const LengthMap &length ) :
245 246
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
246 247
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
247 248
      _cycle_path(NULL), _local_path(false), _data(digraph),
248 249
      INF(std::numeric_limits<LargeValue>::has_infinity ?
249 250
          std::numeric_limits<LargeValue>::infinity() :
250 251
          std::numeric_limits<LargeValue>::max())
251 252
    {}
252 253

	
253 254
    /// Destructor.
254 255
    ~Karp() {
255 256
      if (_local_path) delete _cycle_path;
256 257
    }
257 258

	
258 259
    /// \brief Set the path structure for storing the found cycle.
259 260
    ///
260 261
    /// This function sets an external path structure for storing the
261 262
    /// found cycle.
262 263
    ///
263 264
    /// If you don't call this function before calling \ref run() or
264 265
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
265 266
    /// structure. The destuctor deallocates this automatically
266 267
    /// allocated object, of course.
267 268
    ///
268 269
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
269 270
    /// "addFront()" function of the given path structure.
270 271
    ///
271 272
    /// \return <tt>(*this)</tt>
272 273
    Karp& cycle(Path &path) {
273 274
      if (_local_path) {
274 275
        delete _cycle_path;
275 276
        _local_path = false;
276 277
      }
277 278
      _cycle_path = &path;
278 279
      return *this;
279 280
    }
280 281

	
281 282
    /// \brief Set the tolerance used by the algorithm.
282 283
    ///
283 284
    /// This function sets the tolerance object used by the algorithm.
284 285
    ///
285 286
    /// \return <tt>(*this)</tt>
286 287
    Karp& tolerance(const Tolerance& tolerance) {
287 288
      _tolerance = tolerance;
288 289
      return *this;
289 290
    }
290 291

	
291 292
    /// \brief Return a const reference to the tolerance.
292 293
    ///
0 comments (0 inline)