gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Add citations to the min mean cycle classes (#179, #184)
0 4 0
default
4 files changed with 13 insertions and 7 deletions:
↑ Collapse diff ↑
Show white space 128 line context
... ...
@@ -396,148 +396,151 @@
396 396
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
397 397
@ingroup algs
398 398

	
399 399
\brief Algorithms for finding minimum cost flows and circulations.
400 400

	
401 401
This group contains the algorithms for finding minimum cost flows and
402 402
circulations \ref amo93networkflows. For more information about this
403 403
problem and its dual solution, see \ref min_cost_flow
404 404
"Minimum Cost Flow Problem".
405 405

	
406 406
LEMON contains several algorithms for this problem.
407 407
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
408 408
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
409 409
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
410 410
   cost scaling \ref goldberg90approximation, \ref goldberg97efficient,
411 411
   \ref bunnagel98efficient.
412 412
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
413 413
   capacity scaling \ref edmondskarp72theoretical.
414 414
 - \ref CancelAndTighten The Cancel and Tighten algorithm
415 415
   \ref goldberg89cyclecanceling.
416 416
 - \ref CycleCanceling Cycle-Canceling algorithms
417 417
   \ref klein67primal, \ref goldberg89cyclecanceling.
418 418

	
419 419
In general NetworkSimplex is the most efficient implementation,
420 420
but in special cases other algorithms could be faster.
421 421
For example, if the total supply and/or capacities are rather small,
422 422
CapacityScaling is usually the fastest algorithm (without effective scaling).
423 423
*/
424 424

	
425 425
/**
426 426
@defgroup min_cut Minimum Cut Algorithms
427 427
@ingroup algs
428 428

	
429 429
\brief Algorithms for finding minimum cut in graphs.
430 430

	
431 431
This group contains the algorithms for finding minimum cut in graphs.
432 432

	
433 433
The \e minimum \e cut \e problem is to find a non-empty and non-complete
434 434
\f$X\f$ subset of the nodes with minimum overall capacity on
435 435
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
436 436
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
437 437
cut is the \f$X\f$ solution of the next optimization problem:
438 438

	
439 439
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
440 440
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
441 441

	
442 442
LEMON contains several algorithms related to minimum cut problems:
443 443

	
444 444
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
445 445
  in directed graphs.
446 446
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
447 447
  calculating minimum cut in undirected graphs.
448 448
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
449 449
  all-pairs minimum cut in undirected graphs.
450 450

	
451 451
If you want to find minimum cut just between two distinict nodes,
452 452
see the \ref max_flow "maximum flow problem".
453 453
*/
454 454

	
455 455
/**
456 456
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
457 457
@ingroup algs
458 458
\brief Algorithms for finding minimum mean cycles.
459 459

	
460
This group contains the algorithms for finding minimum mean cycles.
460
This group contains the algorithms for finding minimum mean cycles
461
\ref clrs01algorithms, \ref amo93networkflows.
461 462

	
462 463
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
463 464
of minimum mean length (cost) in a digraph.
464 465
The mean length of a cycle is the average length of its arcs, i.e. the
465 466
ratio between the total length of the cycle and the number of arcs on it.
466 467

	
467 468
This problem has an important connection to \e conservative \e length
468 469
\e functions, too. A length function on the arcs of a digraph is called
469 470
conservative if and only if there is no directed cycle of negative total
470 471
length. For an arbitrary length function, the negative of the minimum
471 472
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
472 473
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
473 474
function.
474 475

	
475 476
LEMON contains three algorithms for solving the minimum mean cycle problem:
476
- \ref Karp "Karp"'s original algorithm.
477
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
478
  \ref dasdan98minmeancycle.
477 479
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
478
  version of Karp's algorithm.
479
- \ref Howard "Howard"'s policy iteration algorithm.
480
  version of Karp's algorithm \ref dasdan98minmeancycle.
481
- \ref Howard "Howard"'s policy iteration algorithm
482
  \ref dasdan98minmeancycle.
480 483

	
481 484
In practice, the Howard algorithm proved to be by far the most efficient
482 485
one, though the best known theoretical bound on its running time is
483 486
exponential.
484 487
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
485 488
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
486 489
applied early termination scheme.
487 490
*/
488 491

	
489 492
/**
490 493
@defgroup matching Matching Algorithms
491 494
@ingroup algs
492 495
\brief Algorithms for finding matchings in graphs and bipartite graphs.
493 496

	
494 497
This group contains the algorithms for calculating
495 498
matchings in graphs and bipartite graphs. The general matching problem is
496 499
finding a subset of the edges for which each node has at most one incident
497 500
edge.
498 501

	
499 502
There are several different algorithms for calculate matchings in
500 503
graphs.  The matching problems in bipartite graphs are generally
501 504
easier than in general graphs. The goal of the matching optimization
502 505
can be finding maximum cardinality, maximum weight or minimum cost
503 506
matching. The search can be constrained to find perfect or
504 507
maximum cardinality matching.
505 508

	
506 509
The matching algorithms implemented in LEMON:
507 510
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
508 511
  for calculating maximum cardinality matching in bipartite graphs.
509 512
- \ref PrBipartiteMatching Push-relabel algorithm
510 513
  for calculating maximum cardinality matching in bipartite graphs.
511 514
- \ref MaxWeightedBipartiteMatching
512 515
  Successive shortest path algorithm for calculating maximum weighted
513 516
  matching and maximum weighted bipartite matching in bipartite graphs.
514 517
- \ref MinCostMaxBipartiteMatching
515 518
  Successive shortest path algorithm for calculating minimum cost maximum
516 519
  matching in bipartite graphs.
517 520
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
518 521
  maximum cardinality matching in general graphs.
519 522
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
520 523
  maximum weighted matching in general graphs.
521 524
- \ref MaxWeightedPerfectMatching
522 525
  Edmond's blossom shrinking algorithm for calculating maximum weighted
523 526
  perfect matching in general graphs.
524 527

	
525 528
\image html bipartite_matching.png
526 529
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
527 530
*/
528 531

	
529 532
/**
530 533
@defgroup graph_properties Connectivity and Other Graph Properties
531 534
@ingroup algs
532 535
\brief Algorithms for discovering the graph properties
533 536

	
534 537
This group contains the algorithms for discovering the graph properties
535 538
like connectivity, bipartiteness, euler property, simplicity etc.
536 539

	
537 540
\image html connected_components.png
538 541
\image latex connected_components.eps "Connected components" width=\textwidth
539 542
*/
540 543

	
541 544
/**
542 545
@defgroup planar Planarity Embedding and Drawing
543 546
@ingroup algs
Show white space 128 line context
... ...
@@ -36,129 +36,130 @@
36 36
  /// \brief Default traits class of HartmannOrlin algorithm.
37 37
  ///
38 38
  /// Default traits class of HartmannOrlin algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HartmannOrlinDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 97
  /// a minimum mean cycle.
98 98
  ///
99 99
  /// This class implements the Hartmann-Orlin algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph.
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
102 103
  /// it applies an efficient early termination scheme.
103 104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
104 105
  ///
105 106
  /// \tparam GR The type of the digraph the algorithm runs on.
106 107
  /// \tparam LEN The type of the length map. The default
107 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108 109
#ifdef DOXYGEN
109 110
  template <typename GR, typename LEN, typename TR>
110 111
#else
111 112
  template < typename GR,
112 113
             typename LEN = typename GR::template ArcMap<int>,
113 114
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
114 115
#endif
115 116
  class HartmannOrlin
116 117
  {
117 118
  public:
118 119

	
119 120
    /// The type of the digraph
120 121
    typedef typename TR::Digraph Digraph;
121 122
    /// The type of the length map
122 123
    typedef typename TR::LengthMap LengthMap;
123 124
    /// The type of the arc lengths
124 125
    typedef typename TR::Value Value;
125 126

	
126 127
    /// \brief The large value type
127 128
    ///
128 129
    /// The large value type used for internal computations.
129 130
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
130 131
    /// it is \c long \c long if the \c Value type is integer,
131 132
    /// otherwise it is \c double.
132 133
    typedef typename TR::LargeValue LargeValue;
133 134

	
134 135
    /// The tolerance type
135 136
    typedef typename TR::Tolerance Tolerance;
136 137

	
137 138
    /// \brief The path type of the found cycles
138 139
    ///
139 140
    /// The path type of the found cycles.
140 141
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
141 142
    /// it is \ref lemon::Path "Path<Digraph>".
142 143
    typedef typename TR::Path Path;
143 144

	
144 145
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
145 146
    typedef TR Traits;
146 147

	
147 148
  private:
148 149

	
149 150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
150 151

	
151 152
    // Data sturcture for path data
152 153
    struct PathData
153 154
    {
154 155
      LargeValue dist;
155 156
      Arc pred;
156 157
      PathData(LargeValue d, Arc p = INVALID) :
157 158
        dist(d), pred(p) {}
158 159
    };
159 160

	
160 161
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
161 162
      PathDataNodeMap;
162 163

	
163 164
  private:
164 165

	
Show white space 128 line context
... ...
@@ -36,129 +36,130 @@
36 36
  /// \brief Default traits class of Howard class.
37 37
  ///
38 38
  /// Default traits class of Howard class.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HowardDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HowardDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Howard's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Howard's policy iteration algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph.
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// This class provides the most efficient algorithm for the
102 103
  /// minimum mean cycle problem, though the best known theoretical
103 104
  /// bound on its running time is exponential.
104 105
  ///
105 106
  /// \tparam GR The type of the digraph the algorithm runs on.
106 107
  /// \tparam LEN The type of the length map. The default
107 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
108 109
#ifdef DOXYGEN
109 110
  template <typename GR, typename LEN, typename TR>
110 111
#else
111 112
  template < typename GR,
112 113
             typename LEN = typename GR::template ArcMap<int>,
113 114
             typename TR = HowardDefaultTraits<GR, LEN> >
114 115
#endif
115 116
  class Howard
116 117
  {
117 118
  public:
118 119
  
119 120
    /// The type of the digraph
120 121
    typedef typename TR::Digraph Digraph;
121 122
    /// The type of the length map
122 123
    typedef typename TR::LengthMap LengthMap;
123 124
    /// The type of the arc lengths
124 125
    typedef typename TR::Value Value;
125 126

	
126 127
    /// \brief The large value type
127 128
    ///
128 129
    /// The large value type used for internal computations.
129 130
    /// Using the \ref HowardDefaultTraits "default traits class",
130 131
    /// it is \c long \c long if the \c Value type is integer,
131 132
    /// otherwise it is \c double.
132 133
    typedef typename TR::LargeValue LargeValue;
133 134

	
134 135
    /// The tolerance type
135 136
    typedef typename TR::Tolerance Tolerance;
136 137

	
137 138
    /// \brief The path type of the found cycles
138 139
    ///
139 140
    /// The path type of the found cycles.
140 141
    /// Using the \ref HowardDefaultTraits "default traits class",
141 142
    /// it is \ref lemon::Path "Path<Digraph>".
142 143
    typedef typename TR::Path Path;
143 144

	
144 145
    /// The \ref HowardDefaultTraits "traits class" of the algorithm
145 146
    typedef TR Traits;
146 147

	
147 148
  private:
148 149

	
149 150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
150 151
  
151 152
    // The digraph the algorithm runs on
152 153
    const Digraph &_gr;
153 154
    // The length of the arcs
154 155
    const LengthMap &_length;
155 156

	
156 157
    // Data for the found cycles
157 158
    bool _curr_found, _best_found;
158 159
    LargeValue _curr_length, _best_length;
159 160
    int _curr_size, _best_size;
160 161
    Node _curr_node, _best_node;
161 162

	
162 163
    Path *_cycle_path;
163 164
    bool _local_path;
164 165

	
Show white space 128 line context
... ...
@@ -36,129 +36,130 @@
36 36
  /// \brief Default traits class of Karp algorithm.
37 37
  ///
38 38
  /// Default traits class of Karp algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct KarpDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct KarpDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Karp's algorithm for finding a directed
100
  /// cycle of minimum mean length (cost) in a digraph.
100
  /// cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
101 102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
102 103
  ///
103 104
  /// \tparam GR The type of the digraph the algorithm runs on.
104 105
  /// \tparam LEN The type of the length map. The default
105 106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
106 107
#ifdef DOXYGEN
107 108
  template <typename GR, typename LEN, typename TR>
108 109
#else
109 110
  template < typename GR,
110 111
             typename LEN = typename GR::template ArcMap<int>,
111 112
             typename TR = KarpDefaultTraits<GR, LEN> >
112 113
#endif
113 114
  class Karp
114 115
  {
115 116
  public:
116 117

	
117 118
    /// The type of the digraph
118 119
    typedef typename TR::Digraph Digraph;
119 120
    /// The type of the length map
120 121
    typedef typename TR::LengthMap LengthMap;
121 122
    /// The type of the arc lengths
122 123
    typedef typename TR::Value Value;
123 124

	
124 125
    /// \brief The large value type
125 126
    ///
126 127
    /// The large value type used for internal computations.
127 128
    /// Using the \ref KarpDefaultTraits "default traits class",
128 129
    /// it is \c long \c long if the \c Value type is integer,
129 130
    /// otherwise it is \c double.
130 131
    typedef typename TR::LargeValue LargeValue;
131 132

	
132 133
    /// The tolerance type
133 134
    typedef typename TR::Tolerance Tolerance;
134 135

	
135 136
    /// \brief The path type of the found cycles
136 137
    ///
137 138
    /// The path type of the found cycles.
138 139
    /// Using the \ref KarpDefaultTraits "default traits class",
139 140
    /// it is \ref lemon::Path "Path<Digraph>".
140 141
    typedef typename TR::Path Path;
141 142

	
142 143
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
143 144
    typedef TR Traits;
144 145

	
145 146
  private:
146 147

	
147 148
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
148 149

	
149 150
    // Data sturcture for path data
150 151
    struct PathData
151 152
    {
152 153
      LargeValue dist;
153 154
      Arc pred;
154 155
      PathData(LargeValue d, Arc p = INVALID) :
155 156
        dist(d), pred(p) {}
156 157
    };
157 158

	
158 159
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
159 160
      PathDataNodeMap;
160 161

	
161 162
  private:
162 163

	
163 164
    // The digraph the algorithm runs on
164 165
    const Digraph &_gr;
0 comments (0 inline)