1 | 1 |
LEMON code without an explicit copyright is covered by the following |
2 | 2 |
copyright/license. |
3 | 3 |
|
4 |
Copyright (C) 2003- |
|
4 |
Copyright (C) 2003-2009 Egervary Jeno Kombinatorikus Optimalizalasi |
|
5 | 5 |
Kutatocsoport (Egervary Combinatorial Optimization Research Group, |
6 | 6 |
EGRES). |
7 | 7 |
|
8 | 8 |
Permission is hereby granted, free of charge, to any person or organization |
9 | 9 |
obtaining a copy of the software and accompanying documentation covered by |
10 | 10 |
this license (the "Software") to use, reproduce, display, distribute, |
11 | 11 |
execute, and transmit the Software, and to prepare derivative works of the |
12 | 12 |
Software, and to permit third-parties to whom the Software is furnished to |
13 | 13 |
do so, all subject to the following: |
14 | 14 |
|
15 | 15 |
The copyright notices in the Software and this entire statement, including |
16 | 16 |
the above license grant, this restriction and the following disclaimer, |
17 | 17 |
must be included in all copies of the Software, in whole or in part, and |
18 | 18 |
all derivative works of the Software, unless such copies or derivative |
19 | 19 |
works are solely in the form of machine-executable object code generated by |
20 | 20 |
a source language processor. |
21 | 21 |
|
22 | 22 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
23 | 23 |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
24 | 24 |
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
25 | 25 |
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
26 | 26 |
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
27 | 27 |
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
28 | 28 |
DEALINGS IN THE SOFTWARE. |
29 | 29 |
|
30 | 30 |
=========================================================================== |
31 | 31 |
This license is a verbatim copy of the Boost Software License, Version 1.0. |
32 | 32 |
|
33 | 33 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup demos |
20 | 20 |
///\file |
21 | 21 |
///\brief Argument parser demo |
22 | 22 |
/// |
23 | 23 |
/// This example shows how the argument parser can be used. |
24 | 24 |
/// |
25 | 25 |
/// \include arg_parser_demo.cc |
26 | 26 |
|
27 | 27 |
#include <lemon/arg_parser.h> |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
int main(int argc, char **argv) |
31 | 31 |
{ |
32 | 32 |
// Initialize the argument parser |
33 | 33 |
ArgParser ap(argc, argv); |
34 | 34 |
int i; |
35 | 35 |
std::string s; |
36 | 36 |
double d = 1.0; |
37 | 37 |
bool b, nh; |
38 | 38 |
bool g1, g2, g3; |
39 | 39 |
|
40 | 40 |
// Add a mandatory integer option with storage reference |
41 | 41 |
ap.refOption("n", "An integer input.", i, true); |
42 | 42 |
// Add a double option with storage reference (the default value is 1.0) |
43 | 43 |
ap.refOption("val", "A double input.", d); |
44 | 44 |
// Add a double option without storage reference (the default value is 3.14) |
45 | 45 |
ap.doubleOption("val2", "A double input.", 3.14); |
46 | 46 |
// Set synonym for -val option |
47 | 47 |
ap.synonym("vals", "val"); |
48 | 48 |
// Add a string option |
49 | 49 |
ap.refOption("name", "A string input.", s); |
50 | 50 |
// Add bool options |
51 | 51 |
ap.refOption("f", "A switch.", b) |
52 | 52 |
.refOption("nohelp", "", nh) |
53 | 53 |
.refOption("gra", "Choice A", g1) |
54 | 54 |
.refOption("grb", "Choice B", g2) |
55 | 55 |
.refOption("grc", "Choice C", g3); |
56 | 56 |
// Bundle -gr* options into a group |
57 | 57 |
ap.optionGroup("gr", "gra") |
58 | 58 |
.optionGroup("gr", "grb") |
59 | 59 |
.optionGroup("gr", "grc"); |
60 | 60 |
// Set the group mandatory |
61 | 61 |
ap.mandatoryGroup("gr"); |
62 | 62 |
// Set the options of the group exclusive (only one option can be given) |
63 | 63 |
ap.onlyOneGroup("gr"); |
64 | 64 |
// Add non-parsed arguments (e.g. input files) |
65 | 65 |
ap.other("infile", "The input file.") |
66 | 66 |
.other("..."); |
67 | 67 |
|
68 | 68 |
// Perform the parsing process |
69 | 69 |
// (in case of any error it terminates the program) |
70 | 70 |
ap.parse(); |
71 | 71 |
|
72 | 72 |
// Check each option if it has been given and print its value |
73 | 73 |
std::cout << "Parameters of '" << ap.commandName() << "':\n"; |
74 | 74 |
|
75 | 75 |
std::cout << " Value of -n: " << i << std::endl; |
76 | 76 |
if(ap.given("val")) std::cout << " Value of -val: " << d << std::endl; |
77 | 77 |
if(ap.given("val2")) { |
78 | 78 |
d = ap["val2"]; |
79 | 79 |
std::cout << " Value of -val2: " << d << std::endl; |
80 | 80 |
} |
81 | 81 |
if(ap.given("name")) std::cout << " Value of -name: " << s << std::endl; |
82 | 82 |
if(ap.given("f")) std::cout << " -f is given\n"; |
83 | 83 |
if(ap.given("nohelp")) std::cout << " Value of -nohelp: " << nh << std::endl; |
84 | 84 |
if(ap.given("gra")) std::cout << " -gra is given\n"; |
85 | 85 |
if(ap.given("grb")) std::cout << " -grb is given\n"; |
86 | 86 |
if(ap.given("grc")) std::cout << " -grc is given\n"; |
87 | 87 |
|
88 | 88 |
switch(ap.files().size()) { |
89 | 89 |
case 0: |
90 | 90 |
std::cout << " No file argument was given.\n"; |
91 | 91 |
break; |
92 | 92 |
case 1: |
93 | 93 |
std::cout << " 1 file argument was given. It is:\n"; |
94 | 94 |
break; |
95 | 95 |
default: |
96 | 96 |
std::cout << " " |
97 | 97 |
<< ap.files().size() << " file arguments were given. They are:\n"; |
98 | 98 |
} |
99 | 99 |
for(unsigned int i=0;i<ap.files().size();++i) |
100 | 100 |
std::cout << " '" << ap.files()[i] << "'\n"; |
101 | 101 |
|
102 | 102 |
return 0; |
103 | 103 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup demos |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Demo of the graph drawing function \ref graphToEps() |
22 | 22 |
/// |
23 | 23 |
/// This demo program shows examples how to use the function \ref |
24 | 24 |
/// graphToEps(). It takes no input but simply creates seven |
25 | 25 |
/// <tt>.eps</tt> files demonstrating the capability of \ref |
26 | 26 |
/// graphToEps(), and showing how to draw directed graphs, |
27 | 27 |
/// how to handle parallel egdes, how to change the properties (like |
28 | 28 |
/// color, shape, size, title etc.) of nodes and arcs individually |
29 | 29 |
/// using appropriate graph maps. |
30 | 30 |
/// |
31 | 31 |
/// \include graph_to_eps_demo.cc |
32 | 32 |
|
33 | 33 |
#include<lemon/list_graph.h> |
34 | 34 |
#include<lemon/graph_to_eps.h> |
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
|
37 | 37 |
using namespace std; |
38 | 38 |
using namespace lemon; |
39 | 39 |
|
40 | 40 |
int main() |
41 | 41 |
{ |
42 | 42 |
Palette palette; |
43 | 43 |
Palette paletteW(true); |
44 | 44 |
|
45 | 45 |
// Create a small digraph |
46 | 46 |
ListDigraph g; |
47 | 47 |
typedef ListDigraph::Node Node; |
48 | 48 |
typedef ListDigraph::NodeIt NodeIt; |
49 | 49 |
typedef ListDigraph::Arc Arc; |
50 | 50 |
typedef dim2::Point<int> Point; |
51 | 51 |
|
52 | 52 |
Node n1=g.addNode(); |
53 | 53 |
Node n2=g.addNode(); |
54 | 54 |
Node n3=g.addNode(); |
55 | 55 |
Node n4=g.addNode(); |
56 | 56 |
Node n5=g.addNode(); |
57 | 57 |
|
58 | 58 |
ListDigraph::NodeMap<Point> coords(g); |
59 | 59 |
ListDigraph::NodeMap<double> sizes(g); |
60 | 60 |
ListDigraph::NodeMap<int> colors(g); |
61 | 61 |
ListDigraph::NodeMap<int> shapes(g); |
62 | 62 |
ListDigraph::ArcMap<int> acolors(g); |
63 | 63 |
ListDigraph::ArcMap<int> widths(g); |
64 | 64 |
|
65 | 65 |
coords[n1]=Point(50,50); sizes[n1]=1; colors[n1]=1; shapes[n1]=0; |
66 | 66 |
coords[n2]=Point(50,70); sizes[n2]=2; colors[n2]=2; shapes[n2]=2; |
67 | 67 |
coords[n3]=Point(70,70); sizes[n3]=1; colors[n3]=3; shapes[n3]=0; |
68 | 68 |
coords[n4]=Point(70,50); sizes[n4]=2; colors[n4]=4; shapes[n4]=1; |
69 | 69 |
coords[n5]=Point(85,60); sizes[n5]=3; colors[n5]=5; shapes[n5]=2; |
70 | 70 |
|
71 | 71 |
Arc a; |
72 | 72 |
|
73 | 73 |
a=g.addArc(n1,n2); acolors[a]=0; widths[a]=1; |
74 | 74 |
a=g.addArc(n2,n3); acolors[a]=0; widths[a]=1; |
75 | 75 |
a=g.addArc(n3,n5); acolors[a]=0; widths[a]=3; |
76 | 76 |
a=g.addArc(n5,n4); acolors[a]=0; widths[a]=1; |
77 | 77 |
a=g.addArc(n4,n1); acolors[a]=0; widths[a]=1; |
78 | 78 |
a=g.addArc(n2,n4); acolors[a]=1; widths[a]=2; |
79 | 79 |
a=g.addArc(n3,n4); acolors[a]=2; widths[a]=1; |
80 | 80 |
|
81 | 81 |
IdMap<ListDigraph,Node> id(g); |
82 | 82 |
|
83 | 83 |
// Create .eps files showing the digraph with different options |
84 | 84 |
cout << "Create 'graph_to_eps_demo_out_1_pure.eps'" << endl; |
85 | 85 |
graphToEps(g,"graph_to_eps_demo_out_1_pure.eps"). |
86 | 86 |
coords(coords). |
87 | 87 |
title("Sample .eps figure"). |
88 |
copyright("(C) 2003- |
|
88 |
copyright("(C) 2003-2009 LEMON Project"). |
|
89 | 89 |
run(); |
90 | 90 |
|
91 | 91 |
cout << "Create 'graph_to_eps_demo_out_2.eps'" << endl; |
92 | 92 |
graphToEps(g,"graph_to_eps_demo_out_2.eps"). |
93 | 93 |
coords(coords). |
94 | 94 |
title("Sample .eps figure"). |
95 |
copyright("(C) 2003- |
|
95 |
copyright("(C) 2003-2009 LEMON Project"). |
|
96 | 96 |
absoluteNodeSizes().absoluteArcWidths(). |
97 | 97 |
nodeScale(2).nodeSizes(sizes). |
98 | 98 |
nodeShapes(shapes). |
99 | 99 |
nodeColors(composeMap(palette,colors)). |
100 | 100 |
arcColors(composeMap(palette,acolors)). |
101 | 101 |
arcWidthScale(.4).arcWidths(widths). |
102 | 102 |
nodeTexts(id).nodeTextSize(3). |
103 | 103 |
run(); |
104 | 104 |
|
105 | 105 |
cout << "Create 'graph_to_eps_demo_out_3_arr.eps'" << endl; |
106 | 106 |
graphToEps(g,"graph_to_eps_demo_out_3_arr.eps"). |
107 | 107 |
title("Sample .eps figure (with arrowheads)"). |
108 |
copyright("(C) 2003- |
|
108 |
copyright("(C) 2003-2009 LEMON Project"). |
|
109 | 109 |
absoluteNodeSizes().absoluteArcWidths(). |
110 | 110 |
nodeColors(composeMap(palette,colors)). |
111 | 111 |
coords(coords). |
112 | 112 |
nodeScale(2).nodeSizes(sizes). |
113 | 113 |
nodeShapes(shapes). |
114 | 114 |
arcColors(composeMap(palette,acolors)). |
115 | 115 |
arcWidthScale(.4).arcWidths(widths). |
116 | 116 |
nodeTexts(id).nodeTextSize(3). |
117 | 117 |
drawArrows().arrowWidth(2).arrowLength(2). |
118 | 118 |
run(); |
119 | 119 |
|
120 | 120 |
// Add more arcs to the digraph |
121 | 121 |
a=g.addArc(n1,n4); acolors[a]=2; widths[a]=1; |
122 | 122 |
a=g.addArc(n4,n1); acolors[a]=1; widths[a]=2; |
123 | 123 |
|
124 | 124 |
a=g.addArc(n1,n2); acolors[a]=1; widths[a]=1; |
125 | 125 |
a=g.addArc(n1,n2); acolors[a]=2; widths[a]=1; |
126 | 126 |
a=g.addArc(n1,n2); acolors[a]=3; widths[a]=1; |
127 | 127 |
a=g.addArc(n1,n2); acolors[a]=4; widths[a]=1; |
128 | 128 |
a=g.addArc(n1,n2); acolors[a]=5; widths[a]=1; |
129 | 129 |
a=g.addArc(n1,n2); acolors[a]=6; widths[a]=1; |
130 | 130 |
a=g.addArc(n1,n2); acolors[a]=7; widths[a]=1; |
131 | 131 |
|
132 | 132 |
cout << "Create 'graph_to_eps_demo_out_4_par.eps'" << endl; |
133 | 133 |
graphToEps(g,"graph_to_eps_demo_out_4_par.eps"). |
134 | 134 |
title("Sample .eps figure (parallel arcs)"). |
135 |
copyright("(C) 2003- |
|
135 |
copyright("(C) 2003-2009 LEMON Project"). |
|
136 | 136 |
absoluteNodeSizes().absoluteArcWidths(). |
137 | 137 |
nodeShapes(shapes). |
138 | 138 |
coords(coords). |
139 | 139 |
nodeScale(2).nodeSizes(sizes). |
140 | 140 |
nodeColors(composeMap(palette,colors)). |
141 | 141 |
arcColors(composeMap(palette,acolors)). |
142 | 142 |
arcWidthScale(.4).arcWidths(widths). |
143 | 143 |
nodeTexts(id).nodeTextSize(3). |
144 | 144 |
enableParallel().parArcDist(1.5). |
145 | 145 |
run(); |
146 | 146 |
|
147 | 147 |
cout << "Create 'graph_to_eps_demo_out_5_par_arr.eps'" << endl; |
148 | 148 |
graphToEps(g,"graph_to_eps_demo_out_5_par_arr.eps"). |
149 | 149 |
title("Sample .eps figure (parallel arcs and arrowheads)"). |
150 |
copyright("(C) 2003- |
|
150 |
copyright("(C) 2003-2009 LEMON Project"). |
|
151 | 151 |
absoluteNodeSizes().absoluteArcWidths(). |
152 | 152 |
nodeScale(2).nodeSizes(sizes). |
153 | 153 |
coords(coords). |
154 | 154 |
nodeShapes(shapes). |
155 | 155 |
nodeColors(composeMap(palette,colors)). |
156 | 156 |
arcColors(composeMap(palette,acolors)). |
157 | 157 |
arcWidthScale(.3).arcWidths(widths). |
158 | 158 |
nodeTexts(id).nodeTextSize(3). |
159 | 159 |
enableParallel().parArcDist(1). |
160 | 160 |
drawArrows().arrowWidth(1).arrowLength(1). |
161 | 161 |
run(); |
162 | 162 |
|
163 | 163 |
cout << "Create 'graph_to_eps_demo_out_6_par_arr_a4.eps'" << endl; |
164 | 164 |
graphToEps(g,"graph_to_eps_demo_out_6_par_arr_a4.eps"). |
165 | 165 |
title("Sample .eps figure (fits to A4)"). |
166 |
copyright("(C) 2003- |
|
166 |
copyright("(C) 2003-2009 LEMON Project"). |
|
167 | 167 |
scaleToA4(). |
168 | 168 |
absoluteNodeSizes().absoluteArcWidths(). |
169 | 169 |
nodeScale(2).nodeSizes(sizes). |
170 | 170 |
coords(coords). |
171 | 171 |
nodeShapes(shapes). |
172 | 172 |
nodeColors(composeMap(palette,colors)). |
173 | 173 |
arcColors(composeMap(palette,acolors)). |
174 | 174 |
arcWidthScale(.3).arcWidths(widths). |
175 | 175 |
nodeTexts(id).nodeTextSize(3). |
176 | 176 |
enableParallel().parArcDist(1). |
177 | 177 |
drawArrows().arrowWidth(1).arrowLength(1). |
178 | 178 |
run(); |
179 | 179 |
|
180 | 180 |
// Create an .eps file showing the colors of a default Palette |
181 | 181 |
ListDigraph h; |
182 | 182 |
ListDigraph::NodeMap<int> hcolors(h); |
183 | 183 |
ListDigraph::NodeMap<Point> hcoords(h); |
184 | 184 |
|
185 | 185 |
int cols=int(sqrt(double(palette.size()))); |
186 | 186 |
for(int i=0;i<int(paletteW.size());i++) { |
187 | 187 |
Node n=h.addNode(); |
188 | 188 |
hcoords[n]=Point(1+i%cols,1+i/cols); |
189 | 189 |
hcolors[n]=i; |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
cout << "Create 'graph_to_eps_demo_out_7_colors.eps'" << endl; |
193 | 193 |
graphToEps(h,"graph_to_eps_demo_out_7_colors.eps"). |
194 | 194 |
scale(60). |
195 | 195 |
title("Sample .eps figure (Palette demo)"). |
196 |
copyright("(C) 2003- |
|
196 |
copyright("(C) 2003-2009 LEMON Project"). |
|
197 | 197 |
coords(hcoords). |
198 | 198 |
absoluteNodeSizes().absoluteArcWidths(). |
199 | 199 |
nodeScale(.45). |
200 | 200 |
distantColorNodeTexts(). |
201 | 201 |
nodeTexts(hcolors).nodeTextSize(.6). |
202 | 202 |
nodeColors(composeMap(paletteW,hcolors)). |
203 | 203 |
run(); |
204 | 204 |
|
205 | 205 |
return 0; |
206 | 206 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup demos |
20 | 20 |
///\file |
21 | 21 |
///\brief Demonstrating graph input and output |
22 | 22 |
/// |
23 | 23 |
/// This program gives an example of how to read and write a digraph |
24 | 24 |
/// and additional maps from/to a stream or a file using the |
25 | 25 |
/// \ref lgf-format "LGF" format. |
26 | 26 |
/// |
27 | 27 |
/// The \c "digraph.lgf" file: |
28 | 28 |
/// \include digraph.lgf |
29 | 29 |
/// |
30 | 30 |
/// And the program which reads it and prints the digraph to the |
31 | 31 |
/// standard output: |
32 | 32 |
/// \include lgf_demo.cc |
33 | 33 |
|
34 | 34 |
#include <iostream> |
35 | 35 |
#include <lemon/smart_graph.h> |
36 | 36 |
#include <lemon/lgf_reader.h> |
37 | 37 |
#include <lemon/lgf_writer.h> |
38 | 38 |
|
39 | 39 |
using namespace lemon; |
40 | 40 |
|
41 | 41 |
int main() { |
42 | 42 |
SmartDigraph g; |
43 | 43 |
SmartDigraph::ArcMap<int> cap(g); |
44 | 44 |
SmartDigraph::Node s, t; |
45 | 45 |
|
46 | 46 |
try { |
47 | 47 |
digraphReader(g, "digraph.lgf"). // read the directed graph into g |
48 | 48 |
arcMap("capacity", cap). // read the 'capacity' arc map into cap |
49 | 49 |
node("source", s). // read 'source' node to s |
50 | 50 |
node("target", t). // read 'target' node to t |
51 | 51 |
run(); |
52 | 52 |
} catch (Exception& error) { // check if there was any error |
53 | 53 |
std::cerr << "Error: " << error.what() << std::endl; |
54 | 54 |
return -1; |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
std::cout << "A digraph is read from 'digraph.lgf'." << std::endl; |
58 | 58 |
std::cout << "Number of nodes: " << countNodes(g) << std::endl; |
59 | 59 |
std::cout << "Number of arcs: " << countArcs(g) << std::endl; |
60 | 60 |
|
61 | 61 |
std::cout << "We can write it to the standard output:" << std::endl; |
62 | 62 |
|
63 | 63 |
digraphWriter(g). // write g to the standard output |
64 | 64 |
arcMap("capacity", cap). // write cap into 'capacity' |
65 | 65 |
node("source", s). // write s to 'source' |
66 | 66 |
node("target", t). // write t to 'target' |
67 | 67 |
run(); |
68 | 68 |
|
69 | 69 |
return 0; |
70 | 70 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/*! |
20 | 20 |
|
21 | 21 |
\page coding_style LEMON Coding Style |
22 | 22 |
|
23 | 23 |
\section naming_conv Naming Conventions |
24 | 24 |
|
25 | 25 |
In order to make development easier we have made some conventions |
26 | 26 |
according to coding style. These include names of types, classes, |
27 | 27 |
functions, variables, constants and exceptions. If these conventions |
28 | 28 |
are met in one's code then it is easier to read and maintain |
29 | 29 |
it. Please comply with these conventions if you want to contribute |
30 | 30 |
developing LEMON library. |
31 | 31 |
|
32 | 32 |
\note When the coding style requires the capitalization of an abbreviation, |
33 | 33 |
only the first letter should be upper case. |
34 | 34 |
|
35 | 35 |
\code |
36 | 36 |
XmlReader |
37 | 37 |
\endcode |
38 | 38 |
|
39 | 39 |
|
40 | 40 |
\warning In some cases we diverge from these rules. |
41 | 41 |
This is primary done because STL uses different naming convention and |
42 | 42 |
in certain cases |
43 | 43 |
it is beneficial to provide STL compatible interface. |
44 | 44 |
|
45 | 45 |
\subsection cs-files File Names |
46 | 46 |
|
47 | 47 |
The header file names should look like the following. |
48 | 48 |
|
49 | 49 |
\code |
50 | 50 |
header_file.h |
51 | 51 |
\endcode |
52 | 52 |
|
53 | 53 |
Note that all standard LEMON headers are located in the \c lemon subdirectory, |
54 | 54 |
so you should include them from C++ source like this: |
55 | 55 |
|
56 | 56 |
\code |
57 | 57 |
#include <lemon/header_file.h> |
58 | 58 |
\endcode |
59 | 59 |
|
60 | 60 |
The source code files use the same style and they have '.cc' extension. |
61 | 61 |
|
62 | 62 |
\code |
63 | 63 |
source_code.cc |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
\subsection cs-class Classes and other types |
67 | 67 |
|
68 | 68 |
The name of a class or any type should look like the following. |
69 | 69 |
|
70 | 70 |
\code |
71 | 71 |
AllWordsCapitalizedWithoutUnderscores |
72 | 72 |
\endcode |
73 | 73 |
|
74 | 74 |
\subsection cs-func Methods and other functions |
75 | 75 |
|
76 | 76 |
The name of a function should look like the following. |
77 | 77 |
|
78 | 78 |
\code |
79 | 79 |
firstWordLowerCaseRestCapitalizedWithoutUnderscores |
80 | 80 |
\endcode |
81 | 81 |
|
82 | 82 |
\subsection cs-funcs Constants, Macros |
83 | 83 |
|
84 | 84 |
The names of constants and macros should look like the following. |
85 | 85 |
|
86 | 86 |
\code |
87 | 87 |
ALL_UPPER_CASE_WITH_UNDERSCORES |
88 | 88 |
\endcode |
89 | 89 |
|
90 | 90 |
\subsection cs-loc-var Class and instance member variables, auto variables |
91 | 91 |
|
92 | 92 |
The names of class and instance member variables and auto variables |
93 | 93 |
(=variables used locally in methods) should look like the following. |
94 | 94 |
|
95 | 95 |
\code |
96 | 96 |
all_lower_case_with_underscores |
97 | 97 |
\endcode |
98 | 98 |
|
99 | 99 |
\subsection pri-loc-var Private member variables |
100 | 100 |
|
101 | 101 |
Private member variables should start with underscore |
102 | 102 |
|
103 | 103 |
\code |
104 | 104 |
_start_with_underscores |
105 | 105 |
\endcode |
106 | 106 |
|
107 | 107 |
\subsection cs-excep Exceptions |
108 | 108 |
|
109 | 109 |
When writing exceptions please comply the following naming conventions. |
110 | 110 |
|
111 | 111 |
\code |
112 | 112 |
ClassNameEndsWithException |
113 | 113 |
\endcode |
114 | 114 |
|
115 | 115 |
or |
116 | 116 |
|
117 | 117 |
\code |
118 | 118 |
ClassNameEndsWithError |
119 | 119 |
\endcode |
120 | 120 |
|
121 | 121 |
\section header-template Template Header File |
122 | 122 |
|
123 | 123 |
Each LEMON header file should look like this: |
124 | 124 |
|
125 | 125 |
\include template.h |
126 | 126 |
|
127 | 127 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\dir demo |
21 | 21 |
\brief A collection of demo applications. |
22 | 22 |
|
23 | 23 |
This directory contains several simple demo applications, mainly |
24 | 24 |
for educational purposes. |
25 | 25 |
*/ |
26 | 26 |
|
27 | 27 |
/** |
28 | 28 |
\dir doc |
29 | 29 |
\brief Auxiliary (and the whole generated) documentation. |
30 | 30 |
|
31 | 31 |
This directory contains some auxiliary pages and the whole generated |
32 | 32 |
documentation. |
33 | 33 |
*/ |
34 | 34 |
|
35 | 35 |
/** |
36 | 36 |
\dir test |
37 | 37 |
\brief Test programs. |
38 | 38 |
|
39 | 39 |
This directory contains several test programs that check the consistency |
40 | 40 |
of the code. |
41 | 41 |
*/ |
42 | 42 |
|
43 | 43 |
/** |
44 | 44 |
\dir tools |
45 | 45 |
\brief Some useful executables. |
46 | 46 |
|
47 | 47 |
This directory contains the sources of some useful complete executables. |
48 | 48 |
*/ |
49 | 49 |
|
50 | 50 |
/** |
51 | 51 |
\dir lemon |
52 | 52 |
\brief Base include directory of LEMON. |
53 | 53 |
|
54 | 54 |
This is the base directory of LEMON includes, so each include file must be |
55 | 55 |
prefixed with this, e.g. |
56 | 56 |
\code |
57 | 57 |
#include<lemon/list_graph.h> |
58 | 58 |
#include<lemon/dijkstra.h> |
59 | 59 |
\endcode |
60 | 60 |
*/ |
61 | 61 |
|
62 | 62 |
/** |
63 | 63 |
\dir concepts |
64 | 64 |
\brief Concept descriptors and checking classes. |
65 | 65 |
|
66 | 66 |
This directory contains the concept descriptors and concept checking tools. |
67 | 67 |
For more information see the \ref concept "Concepts" module. |
68 | 68 |
*/ |
69 | 69 |
|
70 | 70 |
/** |
71 | 71 |
\dir bits |
72 | 72 |
\brief Auxiliary tools for implementation. |
73 | 73 |
|
74 | 74 |
This directory contains some auxiliary classes for implementing graphs, |
75 | 75 |
maps and some other classes. |
76 | 76 |
As a user you typically don't have to deal with these files. |
77 | 77 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group describes the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief This group contains several adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
The main parts of LEMON are the different graph structures, generic |
70 | 70 |
graph algorithms, graph concepts which couple these, and graph |
71 | 71 |
adaptors. While the previous notions are more or less clear, the |
72 | 72 |
latter one needs further explanation. Graph adaptors are graph classes |
73 | 73 |
which serve for considering graph structures in different ways. |
74 | 74 |
|
75 | 75 |
A short example makes this much clearer. Suppose that we have an |
76 | 76 |
instance \c g of a directed graph type say ListDigraph and an algorithm |
77 | 77 |
\code |
78 | 78 |
template <typename Digraph> |
79 | 79 |
int algorithm(const Digraph&); |
80 | 80 |
\endcode |
81 | 81 |
is needed to run on the reverse oriented graph. It may be expensive |
82 | 82 |
(in time or in memory usage) to copy \c g with the reversed |
83 | 83 |
arcs. In this case, an adaptor class is used, which (according |
84 | 84 |
to LEMON digraph concepts) works as a digraph. The adaptor uses the |
85 | 85 |
original digraph structure and digraph operations when methods of the |
86 | 86 |
reversed oriented graph are called. This means that the adaptor have |
87 | 87 |
minor memory usage, and do not perform sophisticated algorithmic |
88 | 88 |
actions. The purpose of it is to give a tool for the cases when a |
89 | 89 |
graph have to be used in a specific alteration. If this alteration is |
90 | 90 |
obtained by a usual construction like filtering the arc-set or |
91 | 91 |
considering a new orientation, then an adaptor is worthwhile to use. |
92 | 92 |
To come back to the reverse oriented graph, in this situation |
93 | 93 |
\code |
94 | 94 |
template<typename Digraph> class ReverseDigraph; |
95 | 95 |
\endcode |
96 | 96 |
template class can be used. The code looks as follows |
97 | 97 |
\code |
98 | 98 |
ListDigraph g; |
99 | 99 |
ReverseDigraph<ListGraph> rg(g); |
100 | 100 |
int result = algorithm(rg); |
101 | 101 |
\endcode |
102 | 102 |
After running the algorithm, the original graph \c g is untouched. |
103 | 103 |
This techniques gives rise to an elegant code, and based on stable |
104 | 104 |
graph adaptors, complex algorithms can be implemented easily. |
105 | 105 |
|
106 | 106 |
In flow, circulation and bipartite matching problems, the residual |
107 | 107 |
graph is of particular importance. Combining an adaptor implementing |
108 | 108 |
this, shortest path algorithms and minimum mean cycle algorithms, |
109 | 109 |
a range of weighted and cardinality optimization algorithms can be |
110 | 110 |
obtained. For other examples, the interested user is referred to the |
111 | 111 |
detailed documentation of particular adaptors. |
112 | 112 |
|
113 | 113 |
The behavior of graph adaptors can be very different. Some of them keep |
114 | 114 |
capabilities of the original graph while in other cases this would be |
115 | 115 |
meaningless. This means that the concepts that they are models of depend |
116 | 116 |
on the graph adaptor, and the wrapped graph(s). |
117 | 117 |
If an arc of \c rg is deleted, this is carried out by deleting the |
118 | 118 |
corresponding arc of \c g, thus the adaptor modifies the original graph. |
119 | 119 |
|
120 | 120 |
But for a residual graph, this operation has no sense. |
121 | 121 |
Let us stand one more example here to simplify your work. |
122 | 122 |
RevGraphAdaptor has constructor |
123 | 123 |
\code |
124 | 124 |
ReverseDigraph(Digraph& digraph); |
125 | 125 |
\endcode |
126 | 126 |
This means that in a situation, when a <tt>const ListDigraph&</tt> |
127 | 127 |
reference to a graph is given, then it have to be instantiated with |
128 | 128 |
<tt>Digraph=const ListDigraph</tt>. |
129 | 129 |
\code |
130 | 130 |
int algorithm1(const ListDigraph& g) { |
131 | 131 |
RevGraphAdaptor<const ListDigraph> rg(g); |
132 | 132 |
return algorithm2(rg); |
133 | 133 |
} |
134 | 134 |
\endcode |
135 | 135 |
*/ |
136 | 136 |
|
137 | 137 |
/** |
138 | 138 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
139 | 139 |
@ingroup graphs |
140 | 140 |
\brief Graph types between real graphs and graph adaptors. |
141 | 141 |
|
142 | 142 |
This group describes some graph types between real graphs and graph adaptors. |
143 | 143 |
These classes wrap graphs to give new functionality as the adaptors do it. |
144 | 144 |
On the other hand they are not light-weight structures as the adaptors. |
145 | 145 |
*/ |
146 | 146 |
|
147 | 147 |
/** |
148 | 148 |
@defgroup maps Maps |
149 | 149 |
@ingroup datas |
150 | 150 |
\brief Map structures implemented in LEMON. |
151 | 151 |
|
152 | 152 |
This group describes the map structures implemented in LEMON. |
153 | 153 |
|
154 | 154 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
155 | 155 |
new maps from existing ones. |
156 | 156 |
|
157 | 157 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
158 | 158 |
*/ |
159 | 159 |
|
160 | 160 |
/** |
161 | 161 |
@defgroup graph_maps Graph Maps |
162 | 162 |
@ingroup maps |
163 | 163 |
\brief Special graph-related maps. |
164 | 164 |
|
165 | 165 |
This group describes maps that are specifically designed to assign |
166 | 166 |
values to the nodes and arcs/edges of graphs. |
167 | 167 |
|
168 | 168 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
169 | 169 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
170 | 170 |
*/ |
171 | 171 |
|
172 | 172 |
/** |
173 | 173 |
\defgroup map_adaptors Map Adaptors |
174 | 174 |
\ingroup maps |
175 | 175 |
\brief Tools to create new maps from existing ones |
176 | 176 |
|
177 | 177 |
This group describes map adaptors that are used to create "implicit" |
178 | 178 |
maps from other maps. |
179 | 179 |
|
180 | 180 |
Most of them are \ref concepts::ReadMap "read-only maps". |
181 | 181 |
They can make arithmetic and logical operations between one or two maps |
182 | 182 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
183 | 183 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
184 | 184 |
|
185 | 185 |
The typical usage of this classes is passing implicit maps to |
186 | 186 |
algorithms. If a function type algorithm is called then the function |
187 | 187 |
type map adaptors can be used comfortable. For example let's see the |
188 | 188 |
usage of map adaptors with the \c graphToEps() function. |
189 | 189 |
\code |
190 | 190 |
Color nodeColor(int deg) { |
191 | 191 |
if (deg >= 2) { |
192 | 192 |
return Color(0.5, 0.0, 0.5); |
193 | 193 |
} else if (deg == 1) { |
194 | 194 |
return Color(1.0, 0.5, 1.0); |
195 | 195 |
} else { |
196 | 196 |
return Color(0.0, 0.0, 0.0); |
197 | 197 |
} |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
Digraph::NodeMap<int> degree_map(graph); |
201 | 201 |
|
202 | 202 |
graphToEps(graph, "graph.eps") |
203 | 203 |
.coords(coords).scaleToA4().undirected() |
204 | 204 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
205 | 205 |
.run(); |
206 | 206 |
\endcode |
207 | 207 |
The \c functorToMap() function makes an \c int to \c Color map from the |
208 | 208 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
209 | 209 |
and the previously created map. The composed map is a proper function to |
210 | 210 |
get the color of each node. |
211 | 211 |
|
212 | 212 |
The usage with class type algorithms is little bit harder. In this |
213 | 213 |
case the function type map adaptors can not be used, because the |
214 | 214 |
function map adaptors give back temporary objects. |
215 | 215 |
\code |
216 | 216 |
Digraph graph; |
217 | 217 |
|
218 | 218 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
219 | 219 |
DoubleArcMap length(graph); |
220 | 220 |
DoubleArcMap speed(graph); |
221 | 221 |
|
222 | 222 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
223 | 223 |
TimeMap time(length, speed); |
224 | 224 |
|
225 | 225 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
226 | 226 |
dijkstra.run(source, target); |
227 | 227 |
\endcode |
228 | 228 |
We have a length map and a maximum speed map on the arcs of a digraph. |
229 | 229 |
The minimum time to pass the arc can be calculated as the division of |
230 | 230 |
the two maps which can be done implicitly with the \c DivMap template |
231 | 231 |
class. We use the implicit minimum time map as the length map of the |
232 | 232 |
\c Dijkstra algorithm. |
233 | 233 |
*/ |
234 | 234 |
|
235 | 235 |
/** |
236 | 236 |
@defgroup matrices Matrices |
237 | 237 |
@ingroup datas |
238 | 238 |
\brief Two dimensional data storages implemented in LEMON. |
239 | 239 |
|
240 | 240 |
This group describes two dimensional data storages implemented in LEMON. |
241 | 241 |
*/ |
242 | 242 |
|
243 | 243 |
/** |
244 | 244 |
@defgroup paths Path Structures |
245 | 245 |
@ingroup datas |
246 | 246 |
\brief %Path structures implemented in LEMON. |
247 | 247 |
|
248 | 248 |
This group describes the path structures implemented in LEMON. |
249 | 249 |
|
250 | 250 |
LEMON provides flexible data structures to work with paths. |
251 | 251 |
All of them have similar interfaces and they can be copied easily with |
252 | 252 |
assignment operators and copy constructors. This makes it easy and |
253 | 253 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
254 | 254 |
any kind of path structure. |
255 | 255 |
|
256 | 256 |
\sa lemon::concepts::Path |
257 | 257 |
*/ |
258 | 258 |
|
259 | 259 |
/** |
260 | 260 |
@defgroup auxdat Auxiliary Data Structures |
261 | 261 |
@ingroup datas |
262 | 262 |
\brief Auxiliary data structures implemented in LEMON. |
263 | 263 |
|
264 | 264 |
This group describes some data structures implemented in LEMON in |
265 | 265 |
order to make it easier to implement combinatorial algorithms. |
266 | 266 |
*/ |
267 | 267 |
|
268 | 268 |
/** |
269 | 269 |
@defgroup algs Algorithms |
270 | 270 |
\brief This group describes the several algorithms |
271 | 271 |
implemented in LEMON. |
272 | 272 |
|
273 | 273 |
This group describes the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
*/ |
276 | 276 |
|
277 | 277 |
/** |
278 | 278 |
@defgroup search Graph Search |
279 | 279 |
@ingroup algs |
280 | 280 |
\brief Common graph search algorithms. |
281 | 281 |
|
282 | 282 |
This group describes the common graph search algorithms, namely |
283 | 283 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
284 | 284 |
*/ |
285 | 285 |
|
286 | 286 |
/** |
287 | 287 |
@defgroup shortest_path Shortest Path Algorithms |
288 | 288 |
@ingroup algs |
289 | 289 |
\brief Algorithms for finding shortest paths. |
290 | 290 |
|
291 | 291 |
This group describes the algorithms for finding shortest paths in digraphs. |
292 | 292 |
|
293 | 293 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
294 | 294 |
when all arc lengths are non-negative. |
295 | 295 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
296 | 296 |
from a source node when arc lenghts can be either positive or negative, |
297 | 297 |
but the digraph should not contain directed cycles with negative total |
298 | 298 |
length. |
299 | 299 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
300 | 300 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
301 | 301 |
lenghts can be either positive or negative, but the digraph should |
302 | 302 |
not contain directed cycles with negative total length. |
303 | 303 |
- \ref Suurballe A successive shortest path algorithm for finding |
304 | 304 |
arc-disjoint paths between two nodes having minimum total length. |
305 | 305 |
*/ |
306 | 306 |
|
307 | 307 |
/** |
308 | 308 |
@defgroup max_flow Maximum Flow Algorithms |
309 | 309 |
@ingroup algs |
310 | 310 |
\brief Algorithms for finding maximum flows. |
311 | 311 |
|
312 | 312 |
This group describes the algorithms for finding maximum flows and |
313 | 313 |
feasible circulations. |
314 | 314 |
|
315 | 315 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
316 | 316 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
317 | 317 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
318 | 318 |
\f$s, t \in V\f$ source and target nodes. |
319 | 319 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
320 | 320 |
following optimization problem. |
321 | 321 |
|
322 | 322 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
323 | 323 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
324 | 324 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
325 | 325 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
326 | 326 |
|
327 | 327 |
LEMON contains several algorithms for solving maximum flow problems: |
328 | 328 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
329 | 329 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
330 | 330 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
331 | 331 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
332 | 332 |
|
333 | 333 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
334 | 334 |
fastest method for computing a maximum flow. All implementations |
335 | 335 |
provides functions to also query the minimum cut, which is the dual |
336 | 336 |
problem of the maximum flow. |
337 | 337 |
*/ |
338 | 338 |
|
339 | 339 |
/** |
340 | 340 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
341 | 341 |
@ingroup algs |
342 | 342 |
|
343 | 343 |
\brief Algorithms for finding minimum cost flows and circulations. |
344 | 344 |
|
345 | 345 |
This group describes the algorithms for finding minimum cost flows and |
346 | 346 |
circulations. |
347 | 347 |
|
348 | 348 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
349 | 349 |
minimum total cost from a set of supply nodes to a set of demand nodes |
350 | 350 |
in a network with capacity constraints and arc costs. |
351 | 351 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
352 | 352 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
353 | 353 |
upper bounds for the flow values on the arcs, |
354 | 354 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
355 | 355 |
on the arcs, and |
356 | 356 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
357 | 357 |
of the nodes. |
358 | 358 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
359 | 359 |
the following optimization problem. |
360 | 360 |
|
361 | 361 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
362 | 362 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
363 | 363 |
supply(v) \qquad \forall v\in V \f] |
364 | 364 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
365 | 365 |
|
366 | 366 |
LEMON contains several algorithms for solving minimum cost flow problems: |
367 | 367 |
- \ref CycleCanceling Cycle-canceling algorithms. |
368 | 368 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
369 | 369 |
capacity scaling. |
370 | 370 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
371 | 371 |
cost scaling. |
372 | 372 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
373 | 373 |
pivot strategies. |
374 | 374 |
*/ |
375 | 375 |
|
376 | 376 |
/** |
377 | 377 |
@defgroup min_cut Minimum Cut Algorithms |
378 | 378 |
@ingroup algs |
379 | 379 |
|
380 | 380 |
\brief Algorithms for finding minimum cut in graphs. |
381 | 381 |
|
382 | 382 |
This group describes the algorithms for finding minimum cut in graphs. |
383 | 383 |
|
384 | 384 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
385 | 385 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
386 | 386 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
387 | 387 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
388 | 388 |
cut is the \f$X\f$ solution of the next optimization problem: |
389 | 389 |
|
390 | 390 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
391 | 391 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
392 | 392 |
|
393 | 393 |
LEMON contains several algorithms related to minimum cut problems: |
394 | 394 |
|
395 | 395 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
396 | 396 |
in directed graphs. |
397 | 397 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
398 | 398 |
calculating minimum cut in undirected graphs. |
399 | 399 |
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
400 | 400 |
all-pairs minimum cut in undirected graphs. |
401 | 401 |
|
402 | 402 |
If you want to find minimum cut just between two distinict nodes, |
403 | 403 |
see the \ref max_flow "maximum flow problem". |
404 | 404 |
*/ |
405 | 405 |
|
406 | 406 |
/** |
407 | 407 |
@defgroup graph_prop Connectivity and Other Graph Properties |
408 | 408 |
@ingroup algs |
409 | 409 |
\brief Algorithms for discovering the graph properties |
410 | 410 |
|
411 | 411 |
This group describes the algorithms for discovering the graph properties |
412 | 412 |
like connectivity, bipartiteness, euler property, simplicity etc. |
413 | 413 |
|
414 | 414 |
\image html edge_biconnected_components.png |
415 | 415 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
416 | 416 |
*/ |
417 | 417 |
|
418 | 418 |
/** |
419 | 419 |
@defgroup planar Planarity Embedding and Drawing |
420 | 420 |
@ingroup algs |
421 | 421 |
\brief Algorithms for planarity checking, embedding and drawing |
422 | 422 |
|
423 | 423 |
This group describes the algorithms for planarity checking, |
424 | 424 |
embedding and drawing. |
425 | 425 |
|
426 | 426 |
\image html planar.png |
427 | 427 |
\image latex planar.eps "Plane graph" width=\textwidth |
428 | 428 |
*/ |
429 | 429 |
|
430 | 430 |
/** |
431 | 431 |
@defgroup matching Matching Algorithms |
432 | 432 |
@ingroup algs |
433 | 433 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
434 | 434 |
|
435 | 435 |
This group contains algorithm objects and functions to calculate |
436 | 436 |
matchings in graphs and bipartite graphs. The general matching problem is |
437 | 437 |
finding a subset of the arcs which does not shares common endpoints. |
438 | 438 |
|
439 | 439 |
There are several different algorithms for calculate matchings in |
440 | 440 |
graphs. The matching problems in bipartite graphs are generally |
441 | 441 |
easier than in general graphs. The goal of the matching optimization |
442 | 442 |
can be finding maximum cardinality, maximum weight or minimum cost |
443 | 443 |
matching. The search can be constrained to find perfect or |
444 | 444 |
maximum cardinality matching. |
445 | 445 |
|
446 | 446 |
The matching algorithms implemented in LEMON: |
447 | 447 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
448 | 448 |
for calculating maximum cardinality matching in bipartite graphs. |
449 | 449 |
- \ref PrBipartiteMatching Push-relabel algorithm |
450 | 450 |
for calculating maximum cardinality matching in bipartite graphs. |
451 | 451 |
- \ref MaxWeightedBipartiteMatching |
452 | 452 |
Successive shortest path algorithm for calculating maximum weighted |
453 | 453 |
matching and maximum weighted bipartite matching in bipartite graphs. |
454 | 454 |
- \ref MinCostMaxBipartiteMatching |
455 | 455 |
Successive shortest path algorithm for calculating minimum cost maximum |
456 | 456 |
matching in bipartite graphs. |
457 | 457 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
458 | 458 |
maximum cardinality matching in general graphs. |
459 | 459 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
460 | 460 |
maximum weighted matching in general graphs. |
461 | 461 |
- \ref MaxWeightedPerfectMatching |
462 | 462 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
463 | 463 |
perfect matching in general graphs. |
464 | 464 |
|
465 | 465 |
\image html bipartite_matching.png |
466 | 466 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
467 | 467 |
*/ |
468 | 468 |
|
469 | 469 |
/** |
470 | 470 |
@defgroup spantree Minimum Spanning Tree Algorithms |
471 | 471 |
@ingroup algs |
472 | 472 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
473 | 473 |
|
474 | 474 |
This group describes the algorithms for finding a minimum cost spanning |
475 | 475 |
tree in a graph. |
476 | 476 |
*/ |
477 | 477 |
|
478 | 478 |
/** |
479 | 479 |
@defgroup auxalg Auxiliary Algorithms |
480 | 480 |
@ingroup algs |
481 | 481 |
\brief Auxiliary algorithms implemented in LEMON. |
482 | 482 |
|
483 | 483 |
This group describes some algorithms implemented in LEMON |
484 | 484 |
in order to make it easier to implement complex algorithms. |
485 | 485 |
*/ |
486 | 486 |
|
487 | 487 |
/** |
488 | 488 |
@defgroup approx Approximation Algorithms |
489 | 489 |
@ingroup algs |
490 | 490 |
\brief Approximation algorithms. |
491 | 491 |
|
492 | 492 |
This group describes the approximation and heuristic algorithms |
493 | 493 |
implemented in LEMON. |
494 | 494 |
*/ |
495 | 495 |
|
496 | 496 |
/** |
497 | 497 |
@defgroup gen_opt_group General Optimization Tools |
498 | 498 |
\brief This group describes some general optimization frameworks |
499 | 499 |
implemented in LEMON. |
500 | 500 |
|
501 | 501 |
This group describes some general optimization frameworks |
502 | 502 |
implemented in LEMON. |
503 | 503 |
*/ |
504 | 504 |
|
505 | 505 |
/** |
506 | 506 |
@defgroup lp_group Lp and Mip Solvers |
507 | 507 |
@ingroup gen_opt_group |
508 | 508 |
\brief Lp and Mip solver interfaces for LEMON. |
509 | 509 |
|
510 | 510 |
This group describes Lp and Mip solver interfaces for LEMON. The |
511 | 511 |
various LP solvers could be used in the same manner with this |
512 | 512 |
interface. |
513 | 513 |
*/ |
514 | 514 |
|
515 | 515 |
/** |
516 | 516 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
517 | 517 |
@ingroup lp_group |
518 | 518 |
\brief Helper tools to the Lp and Mip solvers. |
519 | 519 |
|
520 | 520 |
This group adds some helper tools to general optimization framework |
521 | 521 |
implemented in LEMON. |
522 | 522 |
*/ |
523 | 523 |
|
524 | 524 |
/** |
525 | 525 |
@defgroup metah Metaheuristics |
526 | 526 |
@ingroup gen_opt_group |
527 | 527 |
\brief Metaheuristics for LEMON library. |
528 | 528 |
|
529 | 529 |
This group describes some metaheuristic optimization tools. |
530 | 530 |
*/ |
531 | 531 |
|
532 | 532 |
/** |
533 | 533 |
@defgroup utils Tools and Utilities |
534 | 534 |
\brief Tools and utilities for programming in LEMON |
535 | 535 |
|
536 | 536 |
Tools and utilities for programming in LEMON. |
537 | 537 |
*/ |
538 | 538 |
|
539 | 539 |
/** |
540 | 540 |
@defgroup gutils Basic Graph Utilities |
541 | 541 |
@ingroup utils |
542 | 542 |
\brief Simple basic graph utilities. |
543 | 543 |
|
544 | 544 |
This group describes some simple basic graph utilities. |
545 | 545 |
*/ |
546 | 546 |
|
547 | 547 |
/** |
548 | 548 |
@defgroup misc Miscellaneous Tools |
549 | 549 |
@ingroup utils |
550 | 550 |
\brief Tools for development, debugging and testing. |
551 | 551 |
|
552 | 552 |
This group describes several useful tools for development, |
553 | 553 |
debugging and testing. |
554 | 554 |
*/ |
555 | 555 |
|
556 | 556 |
/** |
557 | 557 |
@defgroup timecount Time Measuring and Counting |
558 | 558 |
@ingroup misc |
559 | 559 |
\brief Simple tools for measuring the performance of algorithms. |
560 | 560 |
|
561 | 561 |
This group describes simple tools for measuring the performance |
562 | 562 |
of algorithms. |
563 | 563 |
*/ |
564 | 564 |
|
565 | 565 |
/** |
566 | 566 |
@defgroup exceptions Exceptions |
567 | 567 |
@ingroup utils |
568 | 568 |
\brief Exceptions defined in LEMON. |
569 | 569 |
|
570 | 570 |
This group describes the exceptions defined in LEMON. |
571 | 571 |
*/ |
572 | 572 |
|
573 | 573 |
/** |
574 | 574 |
@defgroup io_group Input-Output |
575 | 575 |
\brief Graph Input-Output methods |
576 | 576 |
|
577 | 577 |
This group describes the tools for importing and exporting graphs |
578 | 578 |
and graph related data. Now it supports the \ref lgf-format |
579 | 579 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
580 | 580 |
postscript (EPS) format. |
581 | 581 |
*/ |
582 | 582 |
|
583 | 583 |
/** |
584 | 584 |
@defgroup lemon_io LEMON Graph Format |
585 | 585 |
@ingroup io_group |
586 | 586 |
\brief Reading and writing LEMON Graph Format. |
587 | 587 |
|
588 | 588 |
This group describes methods for reading and writing |
589 | 589 |
\ref lgf-format "LEMON Graph Format". |
590 | 590 |
*/ |
591 | 591 |
|
592 | 592 |
/** |
593 | 593 |
@defgroup eps_io Postscript Exporting |
594 | 594 |
@ingroup io_group |
595 | 595 |
\brief General \c EPS drawer and graph exporter |
596 | 596 |
|
597 | 597 |
This group describes general \c EPS drawing methods and special |
598 | 598 |
graph exporting tools. |
599 | 599 |
*/ |
600 | 600 |
|
601 | 601 |
/** |
602 | 602 |
@defgroup dimacs_group DIMACS format |
603 | 603 |
@ingroup io_group |
604 | 604 |
\brief Read and write files in DIMACS format |
605 | 605 |
|
606 | 606 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
607 | 607 |
*/ |
608 | 608 |
|
609 | 609 |
/** |
610 | 610 |
@defgroup nauty_group NAUTY Format |
611 | 611 |
@ingroup io_group |
612 | 612 |
\brief Read \e Nauty format |
613 | 613 |
|
614 | 614 |
Tool to read graphs from \e Nauty format data. |
615 | 615 |
*/ |
616 | 616 |
|
617 | 617 |
/** |
618 | 618 |
@defgroup concept Concepts |
619 | 619 |
\brief Skeleton classes and concept checking classes |
620 | 620 |
|
621 | 621 |
This group describes the data/algorithm skeletons and concept checking |
622 | 622 |
classes implemented in LEMON. |
623 | 623 |
|
624 | 624 |
The purpose of the classes in this group is fourfold. |
625 | 625 |
|
626 | 626 |
- These classes contain the documentations of the %concepts. In order |
627 | 627 |
to avoid document multiplications, an implementation of a concept |
628 | 628 |
simply refers to the corresponding concept class. |
629 | 629 |
|
630 | 630 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
631 | 631 |
implementation of the %concepts should provide, however completely |
632 | 632 |
without implementations and real data structures behind the |
633 | 633 |
interface. On the other hand they should provide nothing else. All |
634 | 634 |
the algorithms working on a data structure meeting a certain concept |
635 | 635 |
should compile with these classes. (Though it will not run properly, |
636 | 636 |
of course.) In this way it is easily to check if an algorithm |
637 | 637 |
doesn't use any extra feature of a certain implementation. |
638 | 638 |
|
639 | 639 |
- The concept descriptor classes also provide a <em>checker class</em> |
640 | 640 |
that makes it possible to check whether a certain implementation of a |
641 | 641 |
concept indeed provides all the required features. |
642 | 642 |
|
643 | 643 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
644 | 644 |
*/ |
645 | 645 |
|
646 | 646 |
/** |
647 | 647 |
@defgroup graph_concepts Graph Structure Concepts |
648 | 648 |
@ingroup concept |
649 | 649 |
\brief Skeleton and concept checking classes for graph structures |
650 | 650 |
|
651 | 651 |
This group describes the skeletons and concept checking classes of LEMON's |
652 | 652 |
graph structures and helper classes used to implement these. |
653 | 653 |
*/ |
654 | 654 |
|
655 | 655 |
/** |
656 | 656 |
@defgroup map_concepts Map Concepts |
657 | 657 |
@ingroup concept |
658 | 658 |
\brief Skeleton and concept checking classes for maps |
659 | 659 |
|
660 | 660 |
This group describes the skeletons and concept checking classes of maps. |
661 | 661 |
*/ |
662 | 662 |
|
663 | 663 |
/** |
664 | 664 |
\anchor demoprograms |
665 | 665 |
|
666 | 666 |
@defgroup demos Demo Programs |
667 | 667 |
|
668 | 668 |
Some demo programs are listed here. Their full source codes can be found in |
669 | 669 |
the \c demo subdirectory of the source tree. |
670 | 670 |
|
671 | 671 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
672 | 672 |
build the library. |
673 | 673 |
*/ |
674 | 674 |
|
675 | 675 |
/** |
676 | 676 |
@defgroup tools Standalone Utility Applications |
677 | 677 |
|
678 | 678 |
Some utility applications are listed here. |
679 | 679 |
|
680 | 680 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
681 | 681 |
them, as well. |
682 | 682 |
*/ |
683 | 683 |
|
684 | 684 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
|
23 | 23 |
|
24 | 24 |
\page lgf-format LEMON Graph Format (LGF) |
25 | 25 |
|
26 | 26 |
The \e LGF is a <em>column oriented</em> |
27 | 27 |
file format for storing graphs and associated data like |
28 | 28 |
node and edge maps. |
29 | 29 |
|
30 | 30 |
Each line with \c '#' first non-whitespace |
31 | 31 |
character is considered as a comment line. |
32 | 32 |
|
33 | 33 |
Otherwise the file consists of sections starting with |
34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
36 | 36 |
\@arcs and \c \@edges |
37 | 37 |
and \@attributes. Each header line may also have an optional |
38 | 38 |
\e name, which can be use to distinguish the sections of the same |
39 | 39 |
type. |
40 | 40 |
|
41 | 41 |
The standard sections are column oriented, each line consists of |
42 | 42 |
<em>token</em>s separated by whitespaces. A token can be \e plain or |
43 | 43 |
\e quoted. A plain token is just a sequence of non-whitespace characters, |
44 | 44 |
while a quoted token is a |
45 | 45 |
character sequence surrounded by double quotes, and it can also |
46 | 46 |
contain whitespaces and escape sequences. |
47 | 47 |
|
48 | 48 |
The \c \@nodes section describes a set of nodes and associated |
49 | 49 |
maps. The first is a header line, its columns are the names of the |
50 | 50 |
maps appearing in the following lines. |
51 | 51 |
One of the maps must be called \c |
52 | 52 |
"label", which plays special role in the file. |
53 | 53 |
The following |
54 | 54 |
non-empty lines until the next section describes nodes of the |
55 | 55 |
graph. Each line contains the values of the node maps |
56 | 56 |
associated to the current node. |
57 | 57 |
|
58 | 58 |
\code |
59 | 59 |
@nodes |
60 | 60 |
label coordinates size title |
61 | 61 |
1 (10,20) 10 "First node" |
62 | 62 |
2 (80,80) 8 "Second node" |
63 | 63 |
3 (40,10) 10 "Third node" |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
The \c \@arcs section is very similar to the \c \@nodes section, |
67 | 67 |
it again starts with a header line describing the names of the maps, |
68 | 68 |
but the \c "label" map is not obligatory here. The following lines |
69 | 69 |
describe the arcs. The first two tokens of each line are |
70 | 70 |
the source and the target node of the arc, respectively, then come the map |
71 | 71 |
values. The source and target tokens must be node labels. |
72 | 72 |
|
73 | 73 |
\code |
74 | 74 |
@arcs |
75 | 75 |
capacity |
76 | 76 |
1 2 16 |
77 | 77 |
1 3 12 |
78 | 78 |
2 3 18 |
79 | 79 |
\endcode |
80 | 80 |
|
81 | 81 |
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can |
82 | 82 |
also store the edge set of an undirected graph. In such case there is |
83 | 83 |
a conventional method for store arc maps in the file, if two columns |
84 | 84 |
has the same caption with \c '+' and \c '-' prefix, then these columns |
85 | 85 |
can be regarded as the values of an arc map. |
86 | 86 |
|
87 | 87 |
The \c \@attributes section contains key-value pairs, each line |
88 | 88 |
consists of two tokens, an attribute name, and then an attribute |
89 | 89 |
value. The value of the attribute could be also a label value of a |
90 | 90 |
node or an edge, or even an edge label prefixed with \c '+' or \c '-', |
91 | 91 |
which regards to the forward or backward directed arc of the |
92 | 92 |
corresponding edge. |
93 | 93 |
|
94 | 94 |
\code |
95 | 95 |
@attributes |
96 | 96 |
source 1 |
97 | 97 |
target 3 |
98 | 98 |
caption "LEMON test digraph" |
99 | 99 |
\endcode |
100 | 100 |
|
101 | 101 |
The \e LGF can contain extra sections, but there is no restriction on |
102 | 102 |
the format of such sections. |
103 | 103 |
|
104 | 104 |
*/ |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
// LocalWords: whitespace whitespaces |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
|
21 | 21 |
\page license License Terms |
22 | 22 |
|
23 | 23 |
\verbinclude LICENSE |
24 | 24 |
|
25 | 25 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 | 24 |
\subsection whatis What is LEMON |
25 | 25 |
|
26 | 26 |
LEMON stands for |
27 | 27 |
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels |
28 | 28 |
and <b>O</b>ptimization in <b>N</b>etworks. |
29 | 29 |
It is a C++ template |
30 | 30 |
library aimed at combinatorial optimization tasks which |
31 | 31 |
often involve in working |
32 | 32 |
with graphs. |
33 | 33 |
|
34 | 34 |
<b> |
35 | 35 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
36 | 36 |
project. |
37 | 37 |
You are free to use it in your commercial or |
38 | 38 |
non-commercial applications under very permissive |
39 | 39 |
\ref license "license terms". |
40 | 40 |
</b> |
41 | 41 |
|
42 | 42 |
\subsection howtoread How to read the documentation |
43 | 43 |
|
44 | 44 |
If you want to get a quick start and see the most important features then |
45 | 45 |
take a look at our \ref quicktour |
46 | 46 |
"Quick Tour to LEMON" which will guide you along. |
47 | 47 |
|
48 | 48 |
If you already feel like using our library, see the page that tells you |
49 | 49 |
\ref getstart "How to start using LEMON". |
50 | 50 |
|
51 | 51 |
If you |
52 | 52 |
want to see how LEMON works, see |
53 | 53 |
some \ref demoprograms "demo programs". |
54 | 54 |
|
55 | 55 |
If you know what you are looking for then try to find it under the |
56 | 56 |
<a class="el" href="modules.html">Modules</a> |
57 | 57 |
section. |
58 | 58 |
|
59 | 59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
60 | 60 |
\ref migration "Migration Guide" for the backward incompatibilities. |
61 | 61 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
\page migration Migration from the 0.x Series |
23 | 23 |
|
24 | 24 |
This guide gives an in depth description on what has changed compared |
25 | 25 |
to the 0.x release series. |
26 | 26 |
|
27 | 27 |
Many of these changes adjusted automatically by the |
28 | 28 |
<tt>lemon-0.x-to-1.x.sh</tt> tool. Those requiring manual |
29 | 29 |
update are typeset <b>boldface</b>. |
30 | 30 |
|
31 | 31 |
\section migration-graph Graph Related Name Changes |
32 | 32 |
|
33 | 33 |
- \ref concepts::Digraph "Directed graphs" are called \c Digraph and |
34 | 34 |
they have <tt>Arc</tt>s (instead of <tt>Edge</tt>s), while |
35 | 35 |
\ref concepts::Graph "undirected graphs" are called \c Graph |
36 | 36 |
(instead of \c UGraph) and they have <tt>Edge</tt>s (instead of |
37 | 37 |
<tt>UEdge</tt>s). These changes reflected thoroughly everywhere in |
38 | 38 |
the library. Namely, |
39 | 39 |
- \c Graph -> \c Digraph |
40 | 40 |
- \c %ListGraph -> \c ListDigraph, \c %SmartGraph -> \c SmartDigraph etc. |
41 | 41 |
- \c UGraph -> \c Graph |
42 | 42 |
- \c ListUGraph -> \c ListGraph, \c SmartUGraph -> \c SmartGraph etc. |
43 | 43 |
- \c Edge -> \c Arc, \c UEdge -> \c Edge |
44 | 44 |
- \c EdgeMap -> \c ArcMap, \c UEdgeMap -> \c EdgeMap |
45 | 45 |
- \c EdgeIt -> \c ArcIt, \c UEdgeIt -> \c EdgeIt |
46 | 46 |
- Class names and function names containing the words \c graph, |
47 | 47 |
\c ugraph, \e edge or \e arc should also be updated. |
48 | 48 |
- <b>The two endpoints of an (\e undirected) \c Edge can be obtained by the |
49 | 49 |
<tt>u()</tt> and <tt>v()</tt> member function of the graph |
50 | 50 |
(instead of <tt>source()</tt> and <tt>target()</tt>). This change |
51 | 51 |
must be done by hand.</b> |
52 | 52 |
\n Of course, you can still use <tt>source()</tt> and <tt>target()</tt> |
53 | 53 |
for <tt>Arc</tt>s (directed edges). |
54 | 54 |
|
55 | 55 |
\warning |
56 | 56 |
<b>The <tt>lemon-0.x-to-1.x.sh</tt> script replaces the words \c graph, |
57 | 57 |
\c ugraph, \c edge and \c uedge in your own identifiers and in |
58 | 58 |
strings, comments etc. as well as in all LEMON specific identifiers. |
59 | 59 |
So use the script carefully and make a backup copy of your source files |
60 | 60 |
before applying the script to them.</b> |
61 | 61 |
|
62 | 62 |
\section migration-lgf LGF tools |
63 | 63 |
- The \ref lgf-format "LGF file format" has changed, |
64 | 64 |
<tt>\@nodeset</tt> has changed to <tt>\@nodes</tt>, |
65 | 65 |
<tt>\@edgeset</tt> and <tt>\@uedgeset</tt> to <tt>\@arcs</tt> or |
66 | 66 |
<tt>\@edges</tt>, which become completely equivalents. The |
67 | 67 |
<tt>\@nodes</tt>, <tt>\@edges</tt> and <tt>\@uedges</tt> sections are |
68 | 68 |
removed from the format, the content of them should be |
69 | 69 |
the part of <tt>\@attributes</tt> section. The data fields in |
70 | 70 |
the sections must follow a strict format, they must be either character |
71 | 71 |
sequences without whitespaces or quoted strings. |
72 | 72 |
- The <tt>LemonReader</tt> and <tt>LemonWriter</tt> core interfaces |
73 | 73 |
are no longer available. |
74 | 74 |
- The implementation of the general section readers and writers has changed |
75 | 75 |
they are simple functors now. Beside the old |
76 | 76 |
stream based section handling, currently line oriented section |
77 | 77 |
reading and writing are also supported. In the |
78 | 78 |
section readers the lines must be counted manually. The sections |
79 | 79 |
should be read and written with the SectionWriter and SectionReader |
80 | 80 |
classes. |
81 | 81 |
- Instead of the item readers and writers, item converters should be |
82 | 82 |
used. The converters are functors, which map the type to |
83 | 83 |
std::string or std::string to the type. The converters for standard |
84 | 84 |
containers hasn't yet been implemented in the new LEMON. The converters |
85 | 85 |
can return strings in any format, because if it is necessary, the LGF |
86 | 86 |
writer and reader will quote and unquote the given value. |
87 | 87 |
- The DigraphReader and DigraphWriter can used similarly to the |
88 | 88 |
0.x series, however the <tt>read</tt> or <tt>write</tt> prefix of |
89 | 89 |
the member functions are removed. |
90 | 90 |
- The new LEMON supports the function like interface, the \c |
91 | 91 |
digraphReader and \c digraphWriter functions are more convenient than |
92 | 92 |
using the classes directly. |
93 | 93 |
|
94 | 94 |
\section migration-search BFS, DFS and Dijkstra |
95 | 95 |
- <b>Using the function interface of BFS, DFS and %Dijkstra both source and |
96 | 96 |
target nodes can be given as parameters of the <tt>run()</tt> function |
97 | 97 |
(instead of \c bfs(), \c dfs() or \c dijkstra() itself).</b> |
98 | 98 |
- \ref named-templ-param "Named class template parameters" of \c Bfs, |
99 | 99 |
\c Dfs, \c Dijkstra, \c BfsVisit, \c DfsVisit are renamed to start |
100 | 100 |
with "Set" instead of "Def". Namely, |
101 | 101 |
- \c DefPredMap -> \c SetPredMap |
102 | 102 |
- \c DefDistMap -> \c SetDistMap |
103 | 103 |
- \c DefReachedMap -> \c SetReachedMap |
104 | 104 |
- \c DefProcessedMap -> \c SetProcessedMap |
105 | 105 |
- \c DefHeap -> \c SetHeap |
106 | 106 |
- \c DefStandardHeap -> \c SetStandardHeap |
107 | 107 |
- \c DefOperationTraits -> \c SetOperationTraits |
108 | 108 |
- \c DefProcessedMapToBeDefaultMap -> \c SetStandardProcessedMap |
109 | 109 |
|
110 | 110 |
\section migration-error Exceptions and Debug tools |
111 | 111 |
|
112 | 112 |
<b>The class hierarchy of exceptions has largely been simplified. Now, |
113 | 113 |
only the i/o related tools may throw exceptions. All other exceptions |
114 | 114 |
have been replaced with either the \c LEMON_ASSERT or the \c LEMON_DEBUG |
115 | 115 |
macros.</b> |
116 | 116 |
|
117 | 117 |
<b>On the other hand, the parameter order of constructors of the |
118 | 118 |
exceptions has been changed. See \ref IoError and \ref FormatError for |
119 | 119 |
more details.</b> |
120 | 120 |
|
121 | 121 |
\section migration-other Others |
122 | 122 |
- <b>The contents of <tt>graph_utils.h</tt> are moved to <tt>core.h</tt> |
123 | 123 |
and <tt>maps.h</tt>. <tt>core.h</tt> is included by all graph types, |
124 | 124 |
therefore it usually do not have to be included directly.</b> |
125 | 125 |
- <b><tt>path_utils.h</tt> is merged to \c path.h.</b> |
126 | 126 |
- <b>The semantic of the assignment operations and copy constructors of maps |
127 | 127 |
are still under discussion. So, you must copy them by hand (i.e. copy |
128 | 128 |
each entry one-by-one)</b> |
129 | 129 |
- <b>The parameters of the graph copying tools (i.e. \c GraphCopy, |
130 | 130 |
\c DigraphCopy) have to be given in the from-to order.</b> |
131 | 131 |
- \c copyDigraph() and \c copyGraph() are renamed to \c digraphCopy() |
132 | 132 |
and \c graphCopy(), respectively. |
133 | 133 |
- <b>The interface of \ref DynArcLookUp has changed. It is now the same as |
134 | 134 |
of \ref ArcLookUp and \ref AllArcLookUp</b> |
135 | 135 |
- Some map types should also been renamed. Namely, |
136 | 136 |
- \c IntegerMap -> \c RangeMap |
137 | 137 |
- \c StdMap -> \c SparseMap |
138 | 138 |
- \c FunctorMap -> \c FunctorToMap |
139 | 139 |
- \c MapFunctor -> \c MapToFunctor |
140 | 140 |
- \c ForkWriteMap -> \c ForkMap |
141 | 141 |
- \c StoreBoolMap -> \c LoggerBoolMap |
142 | 142 |
- \c dim2::BoundingBox -> \c dim2::Box |
143 | 143 |
|
144 | 144 |
*/ |
145 | 145 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/*! |
20 | 20 |
|
21 | 21 |
\page named-param Named Parameters |
22 | 22 |
|
23 | 23 |
\section named-func-param Named Function Parameters |
24 | 24 |
|
25 | 25 |
Several modern languages provide a convenient way to refer the |
26 | 26 |
function parameters by name also when you call the function. It is |
27 | 27 |
especially comfortable in case of a function having tons of parameters |
28 | 28 |
with natural default values. Sadly, C++ lack this amenity. |
29 | 29 |
|
30 | 30 |
However, with a crafty trick and with some little |
31 | 31 |
inconvenience, it is possible to emulate is. |
32 | 32 |
The example below shows how to do it. |
33 | 33 |
|
34 | 34 |
\code |
35 | 35 |
class namedFn |
36 | 36 |
{ |
37 | 37 |
int _id; |
38 | 38 |
double _val; |
39 | 39 |
int _dim; |
40 | 40 |
|
41 | 41 |
public: |
42 | 42 |
namedFn() : _id(0), _val(1), _dim(2) {} |
43 | 43 |
namedFn& id(int p) { _id = p ; return *this; } |
44 | 44 |
namedFn& val(double p) { _val = p ; return *this; } |
45 | 45 |
namedFn& dim(int p) { _dim = p ; return *this; } |
46 | 46 |
|
47 | 47 |
run() { |
48 | 48 |
std::cout << "Here comes the function itself\n" << |
49 | 49 |
<< "With parameters " |
50 | 50 |
<< _id << ", " << _val << ", " << _dim << std::endl; |
51 | 51 |
} |
52 | 52 |
}; |
53 | 53 |
\endcode |
54 | 54 |
|
55 | 55 |
Then you can use it like this. |
56 | 56 |
|
57 | 57 |
\code |
58 | 58 |
namedFn().id(3).val(2).run(); |
59 | 59 |
\endcode |
60 | 60 |
|
61 | 61 |
The trick is obvious, each "named parameter" changes one component of |
62 | 62 |
the underlying class, then gives back a reference to it. Finally, |
63 | 63 |
<tt>run()</tt> executes the algorithm itself. |
64 | 64 |
|
65 | 65 |
\note Although it is a class, namedFn is used pretty much like as it were |
66 | 66 |
a function. That it why we called it namedFn instead of \c NamedFn. |
67 | 67 |
|
68 | 68 |
\note In fact, the final <tt>.run()</tt> could be made unnecessary, |
69 | 69 |
because the algorithm could also be implemented in the destructor of |
70 | 70 |
\c namedFn instead. This however would make it impossible to implement |
71 | 71 |
functions with return values, and would also cause serious problems when |
72 | 72 |
implementing \ref named-templ-func-param "named template parameters". |
73 | 73 |
<b>Therefore, by convention, <tt>.run()</tt> must be used |
74 | 74 |
explicitly to execute a function having named parameters |
75 | 75 |
everywhere in LEMON.</b> |
76 | 76 |
|
77 | 77 |
\section named-templ-func-param Named Function Template Parameters |
78 | 78 |
|
79 | 79 |
A named parameter can also be a template function. The usage is |
80 | 80 |
exactly the same, but the implementation behind is a kind of black |
81 | 81 |
magic and they are the dirtiest part of the LEMON code. |
82 | 82 |
|
83 | 83 |
You will probably never need to know how it works, but if you really |
84 | 84 |
committed, have a look at \ref lemon/graph_to_eps.h for an example. |
85 | 85 |
|
86 | 86 |
\section traits-classes Traits Classes |
87 | 87 |
|
88 | 88 |
A similar game can also be played when defining classes. In this case |
89 | 89 |
the type of the class attributes can be changed. Initially we have to |
90 | 90 |
define a special class called <em>Traits Class</em> defining the |
91 | 91 |
default type of the attributes. Then the types of these attributes can |
92 | 92 |
be changed in the same way as described in the next section. |
93 | 93 |
|
94 | 94 |
See \ref lemon::DijkstraDefaultTraits for an |
95 | 95 |
example how a traits class implementation looks like. |
96 | 96 |
|
97 | 97 |
\section named-templ-param Named Class Template Parameters |
98 | 98 |
|
99 | 99 |
If we would like to change the type of an attribute in a class that |
100 | 100 |
was instantiated by using a traits class as a template parameter, and |
101 | 101 |
the class contains named parameters, we do not have to instantiate again |
102 | 102 |
the class with new traits class, but instead adaptor classes can |
103 | 103 |
be used as shown in the following example. |
104 | 104 |
|
105 | 105 |
\code |
106 | 106 |
Dijkstra<>::SetPredMap<NullMap<Node,Arc> >::Create |
107 | 107 |
\endcode |
108 | 108 |
|
109 | 109 |
It can also be used in conjunction with other named template |
110 | 110 |
parameters in arbitrary order. |
111 | 111 |
|
112 | 112 |
\code |
113 | 113 |
Dijkstra<>::SetDistMap<MyMap>::SetPredMap<NullMap<Node,Arc> >::Create |
114 | 114 |
\endcode |
115 | 115 |
|
116 | 116 |
The result will be an instantiated Dijkstra class, in which the |
117 | 117 |
DistMap and the PredMap is modified. |
118 | 118 |
|
119 | 119 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// The namespace of LEMON |
20 | 20 |
|
21 | 21 |
/// The namespace of LEMON |
22 | 22 |
/// |
23 | 23 |
namespace lemon { |
24 | 24 |
|
25 | 25 |
/// The namespace of LEMON concepts and concept checking classes |
26 | 26 |
|
27 | 27 |
/// The namespace of LEMON concepts and concept checking classes |
28 | 28 |
/// |
29 | 29 |
namespace concepts {} |
30 | 30 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TEMPLATE_H |
20 | 20 |
#define LEMON_TEMPLATE_H |
21 | 21 |
|
22 | 22 |
#endif // LEMON_TEMPLATE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Several graph adaptors |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 | 33 |
#include <lemon/tolerance.h> |
34 | 34 |
|
35 | 35 |
#include <algorithm> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
template<typename _Digraph> |
40 | 40 |
class DigraphAdaptorBase { |
41 | 41 |
public: |
42 | 42 |
typedef _Digraph Digraph; |
43 | 43 |
typedef DigraphAdaptorBase Adaptor; |
44 | 44 |
typedef Digraph ParentDigraph; |
45 | 45 |
|
46 | 46 |
protected: |
47 | 47 |
Digraph* _digraph; |
48 | 48 |
DigraphAdaptorBase() : _digraph(0) { } |
49 | 49 |
void setDigraph(Digraph& digraph) { _digraph = &digraph; } |
50 | 50 |
|
51 | 51 |
public: |
52 | 52 |
DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { } |
53 | 53 |
|
54 | 54 |
typedef typename Digraph::Node Node; |
55 | 55 |
typedef typename Digraph::Arc Arc; |
56 | 56 |
|
57 | 57 |
void first(Node& i) const { _digraph->first(i); } |
58 | 58 |
void first(Arc& i) const { _digraph->first(i); } |
59 | 59 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
60 | 60 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
61 | 61 |
|
62 | 62 |
void next(Node& i) const { _digraph->next(i); } |
63 | 63 |
void next(Arc& i) const { _digraph->next(i); } |
64 | 64 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
65 | 65 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
66 | 66 |
|
67 | 67 |
Node source(const Arc& a) const { return _digraph->source(a); } |
68 | 68 |
Node target(const Arc& a) const { return _digraph->target(a); } |
69 | 69 |
|
70 | 70 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
71 | 71 |
int nodeNum() const { return _digraph->nodeNum(); } |
72 | 72 |
|
73 | 73 |
typedef EdgeNumTagIndicator<Digraph> EdgeNumTag; |
74 | 74 |
int arcNum() const { return _digraph->arcNum(); } |
75 | 75 |
|
76 | 76 |
typedef FindEdgeTagIndicator<Digraph> FindEdgeTag; |
77 | 77 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { |
78 | 78 |
return _digraph->findArc(u, v, prev); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
Node addNode() { return _digraph->addNode(); } |
82 | 82 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
83 | 83 |
|
84 | 84 |
void erase(const Node& n) const { _digraph->erase(n); } |
85 | 85 |
void erase(const Arc& a) const { _digraph->erase(a); } |
86 | 86 |
|
87 | 87 |
void clear() const { _digraph->clear(); } |
88 | 88 |
|
89 | 89 |
int id(const Node& n) const { return _digraph->id(n); } |
90 | 90 |
int id(const Arc& a) const { return _digraph->id(a); } |
91 | 91 |
|
92 | 92 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
93 | 93 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
94 | 94 |
|
95 | 95 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
96 | 96 |
int maxArcId() const { return _digraph->maxArcId(); } |
97 | 97 |
|
98 | 98 |
typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier; |
99 | 99 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
100 | 100 |
|
101 | 101 |
typedef typename ItemSetTraits<Digraph, Arc>::ItemNotifier ArcNotifier; |
102 | 102 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
103 | 103 |
|
104 | 104 |
template <typename _Value> |
105 | 105 |
class NodeMap : public Digraph::template NodeMap<_Value> { |
106 | 106 |
public: |
107 | 107 |
|
108 | 108 |
typedef typename Digraph::template NodeMap<_Value> Parent; |
109 | 109 |
|
110 | 110 |
explicit NodeMap(const Adaptor& adaptor) |
111 | 111 |
: Parent(*adaptor._digraph) {} |
112 | 112 |
|
113 | 113 |
NodeMap(const Adaptor& adaptor, const _Value& value) |
114 | 114 |
: Parent(*adaptor._digraph, value) { } |
115 | 115 |
|
116 | 116 |
private: |
117 | 117 |
NodeMap& operator=(const NodeMap& cmap) { |
118 | 118 |
return operator=<NodeMap>(cmap); |
119 | 119 |
} |
120 | 120 |
|
121 | 121 |
template <typename CMap> |
122 | 122 |
NodeMap& operator=(const CMap& cmap) { |
123 | 123 |
Parent::operator=(cmap); |
124 | 124 |
return *this; |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
template <typename _Value> |
130 | 130 |
class ArcMap : public Digraph::template ArcMap<_Value> { |
131 | 131 |
public: |
132 | 132 |
|
133 | 133 |
typedef typename Digraph::template ArcMap<_Value> Parent; |
134 | 134 |
|
135 | 135 |
explicit ArcMap(const Adaptor& adaptor) |
136 | 136 |
: Parent(*adaptor._digraph) {} |
137 | 137 |
|
138 | 138 |
ArcMap(const Adaptor& adaptor, const _Value& value) |
139 | 139 |
: Parent(*adaptor._digraph, value) {} |
140 | 140 |
|
141 | 141 |
private: |
142 | 142 |
ArcMap& operator=(const ArcMap& cmap) { |
143 | 143 |
return operator=<ArcMap>(cmap); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
template <typename CMap> |
147 | 147 |
ArcMap& operator=(const CMap& cmap) { |
148 | 148 |
Parent::operator=(cmap); |
149 | 149 |
return *this; |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
}; |
153 | 153 |
|
154 | 154 |
}; |
155 | 155 |
|
156 | 156 |
template<typename _Graph> |
157 | 157 |
class GraphAdaptorBase { |
158 | 158 |
public: |
159 | 159 |
typedef _Graph Graph; |
160 | 160 |
typedef Graph ParentGraph; |
161 | 161 |
|
162 | 162 |
protected: |
163 | 163 |
Graph* _graph; |
164 | 164 |
|
165 | 165 |
GraphAdaptorBase() : _graph(0) {} |
166 | 166 |
|
167 | 167 |
void setGraph(Graph& graph) { _graph = &graph; } |
168 | 168 |
|
169 | 169 |
public: |
170 | 170 |
GraphAdaptorBase(Graph& graph) : _graph(&graph) {} |
171 | 171 |
|
172 | 172 |
typedef typename Graph::Node Node; |
173 | 173 |
typedef typename Graph::Arc Arc; |
174 | 174 |
typedef typename Graph::Edge Edge; |
175 | 175 |
|
176 | 176 |
void first(Node& i) const { _graph->first(i); } |
177 | 177 |
void first(Arc& i) const { _graph->first(i); } |
178 | 178 |
void first(Edge& i) const { _graph->first(i); } |
179 | 179 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
180 | 180 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
181 | 181 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
182 | 182 |
_graph->firstInc(i, d, n); |
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
void next(Node& i) const { _graph->next(i); } |
186 | 186 |
void next(Arc& i) const { _graph->next(i); } |
187 | 187 |
void next(Edge& i) const { _graph->next(i); } |
188 | 188 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
189 | 189 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
190 | 190 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
191 | 191 |
|
192 | 192 |
Node u(const Edge& e) const { return _graph->u(e); } |
193 | 193 |
Node v(const Edge& e) const { return _graph->v(e); } |
194 | 194 |
|
195 | 195 |
Node source(const Arc& a) const { return _graph->source(a); } |
196 | 196 |
Node target(const Arc& a) const { return _graph->target(a); } |
197 | 197 |
|
198 | 198 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
199 | 199 |
int nodeNum() const { return _graph->nodeNum(); } |
200 | 200 |
|
201 | 201 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
202 | 202 |
int arcNum() const { return _graph->arcNum(); } |
203 | 203 |
int edgeNum() const { return _graph->edgeNum(); } |
204 | 204 |
|
205 | 205 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
206 | 206 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { |
207 | 207 |
return _graph->findArc(u, v, prev); |
208 | 208 |
} |
209 | 209 |
Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) { |
210 | 210 |
return _graph->findEdge(u, v, prev); |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
Node addNode() { return _graph->addNode(); } |
214 | 214 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } |
215 | 215 |
|
216 | 216 |
void erase(const Node& i) { _graph->erase(i); } |
217 | 217 |
void erase(const Edge& i) { _graph->erase(i); } |
218 | 218 |
|
219 | 219 |
void clear() { _graph->clear(); } |
220 | 220 |
|
221 | 221 |
bool direction(const Arc& a) const { return _graph->direction(a); } |
222 | 222 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } |
223 | 223 |
|
224 | 224 |
int id(const Node& v) const { return _graph->id(v); } |
225 | 225 |
int id(const Arc& a) const { return _graph->id(a); } |
226 | 226 |
int id(const Edge& e) const { return _graph->id(e); } |
227 | 227 |
|
228 | 228 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
229 | 229 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } |
230 | 230 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } |
231 | 231 |
|
232 | 232 |
int maxNodeId() const { return _graph->maxNodeId(); } |
233 | 233 |
int maxArcId() const { return _graph->maxArcId(); } |
234 | 234 |
int maxEdgeId() const { return _graph->maxEdgeId(); } |
235 | 235 |
|
236 | 236 |
typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier; |
237 | 237 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
238 | 238 |
|
239 | 239 |
typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier; |
240 | 240 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
241 | 241 |
|
242 | 242 |
typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier; |
243 | 243 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } |
244 | 244 |
|
245 | 245 |
template <typename _Value> |
246 | 246 |
class NodeMap : public Graph::template NodeMap<_Value> { |
247 | 247 |
public: |
248 | 248 |
typedef typename Graph::template NodeMap<_Value> Parent; |
249 | 249 |
explicit NodeMap(const GraphAdaptorBase<Graph>& adapter) |
250 | 250 |
: Parent(*adapter._graph) {} |
251 | 251 |
NodeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value) |
252 | 252 |
: Parent(*adapter._graph, value) {} |
253 | 253 |
|
254 | 254 |
private: |
255 | 255 |
NodeMap& operator=(const NodeMap& cmap) { |
256 | 256 |
return operator=<NodeMap>(cmap); |
257 | 257 |
} |
258 | 258 |
|
259 | 259 |
template <typename CMap> |
260 | 260 |
NodeMap& operator=(const CMap& cmap) { |
261 | 261 |
Parent::operator=(cmap); |
262 | 262 |
return *this; |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
}; |
266 | 266 |
|
267 | 267 |
template <typename _Value> |
268 | 268 |
class ArcMap : public Graph::template ArcMap<_Value> { |
269 | 269 |
public: |
270 | 270 |
typedef typename Graph::template ArcMap<_Value> Parent; |
271 | 271 |
explicit ArcMap(const GraphAdaptorBase<Graph>& adapter) |
272 | 272 |
: Parent(*adapter._graph) {} |
273 | 273 |
ArcMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value) |
274 | 274 |
: Parent(*adapter._graph, value) {} |
275 | 275 |
|
276 | 276 |
private: |
277 | 277 |
ArcMap& operator=(const ArcMap& cmap) { |
278 | 278 |
return operator=<ArcMap>(cmap); |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
template <typename CMap> |
282 | 282 |
ArcMap& operator=(const CMap& cmap) { |
283 | 283 |
Parent::operator=(cmap); |
284 | 284 |
return *this; |
285 | 285 |
} |
286 | 286 |
}; |
287 | 287 |
|
288 | 288 |
template <typename _Value> |
289 | 289 |
class EdgeMap : public Graph::template EdgeMap<_Value> { |
290 | 290 |
public: |
291 | 291 |
typedef typename Graph::template EdgeMap<_Value> Parent; |
292 | 292 |
explicit EdgeMap(const GraphAdaptorBase<Graph>& adapter) |
293 | 293 |
: Parent(*adapter._graph) {} |
294 | 294 |
EdgeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value) |
295 | 295 |
: Parent(*adapter._graph, value) {} |
296 | 296 |
|
297 | 297 |
private: |
298 | 298 |
EdgeMap& operator=(const EdgeMap& cmap) { |
299 | 299 |
return operator=<EdgeMap>(cmap); |
300 | 300 |
} |
301 | 301 |
|
302 | 302 |
template <typename CMap> |
303 | 303 |
EdgeMap& operator=(const CMap& cmap) { |
304 | 304 |
Parent::operator=(cmap); |
305 | 305 |
return *this; |
306 | 306 |
} |
307 | 307 |
}; |
308 | 308 |
|
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
template <typename _Digraph> |
312 | 312 |
class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> { |
313 | 313 |
public: |
314 | 314 |
typedef _Digraph Digraph; |
315 | 315 |
typedef DigraphAdaptorBase<_Digraph> Parent; |
316 | 316 |
protected: |
317 | 317 |
ReverseDigraphBase() : Parent() { } |
318 | 318 |
public: |
319 | 319 |
typedef typename Parent::Node Node; |
320 | 320 |
typedef typename Parent::Arc Arc; |
321 | 321 |
|
322 | 322 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } |
323 | 323 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } |
324 | 324 |
|
325 | 325 |
void nextIn(Arc& a) const { Parent::nextOut(a); } |
326 | 326 |
void nextOut(Arc& a) const { Parent::nextIn(a); } |
327 | 327 |
|
328 | 328 |
Node source(const Arc& a) const { return Parent::target(a); } |
329 | 329 |
Node target(const Arc& a) const { return Parent::source(a); } |
330 | 330 |
|
331 | 331 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } |
332 | 332 |
|
333 | 333 |
typedef FindEdgeTagIndicator<Digraph> FindEdgeTag; |
334 | 334 |
Arc findArc(const Node& u, const Node& v, |
335 | 335 |
const Arc& prev = INVALID) { |
336 | 336 |
return Parent::findArc(v, u, prev); |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
}; |
340 | 340 |
|
341 | 341 |
/// \ingroup graph_adaptors |
342 | 342 |
/// |
343 | 343 |
/// \brief A digraph adaptor which reverses the orientation of the arcs. |
344 | 344 |
/// |
345 | 345 |
/// ReverseDigraph reverses the arcs in the adapted digraph. The |
346 | 346 |
/// SubDigraph is conform to the \ref concepts::Digraph |
347 | 347 |
/// "Digraph concept". |
348 | 348 |
/// |
349 | 349 |
/// \tparam _Digraph It must be conform to the \ref concepts::Digraph |
350 | 350 |
/// "Digraph concept". The type can be specified to be const. |
351 | 351 |
template<typename _Digraph> |
352 | 352 |
class ReverseDigraph : |
353 | 353 |
public DigraphAdaptorExtender<ReverseDigraphBase<_Digraph> > { |
354 | 354 |
public: |
355 | 355 |
typedef _Digraph Digraph; |
356 | 356 |
typedef DigraphAdaptorExtender< |
357 | 357 |
ReverseDigraphBase<_Digraph> > Parent; |
358 | 358 |
protected: |
359 | 359 |
ReverseDigraph() { } |
360 | 360 |
public: |
361 | 361 |
|
362 | 362 |
/// \brief Constructor |
363 | 363 |
/// |
364 | 364 |
/// Creates a reverse digraph adaptor for the given digraph |
365 | 365 |
explicit ReverseDigraph(Digraph& digraph) { |
366 | 366 |
Parent::setDigraph(digraph); |
367 | 367 |
} |
368 | 368 |
}; |
369 | 369 |
|
370 | 370 |
/// \brief Just gives back a reverse digraph adaptor |
371 | 371 |
/// |
372 | 372 |
/// Just gives back a reverse digraph adaptor |
373 | 373 |
template<typename Digraph> |
374 | 374 |
ReverseDigraph<const Digraph> reverseDigraph(const Digraph& digraph) { |
375 | 375 |
return ReverseDigraph<const Digraph>(digraph); |
376 | 376 |
} |
377 | 377 |
|
378 | 378 |
template <typename _Digraph, typename _NodeFilterMap, |
379 | 379 |
typename _ArcFilterMap, bool _checked = true> |
380 | 380 |
class SubDigraphBase : public DigraphAdaptorBase<_Digraph> { |
381 | 381 |
public: |
382 | 382 |
typedef _Digraph Digraph; |
383 | 383 |
typedef _NodeFilterMap NodeFilterMap; |
384 | 384 |
typedef _ArcFilterMap ArcFilterMap; |
385 | 385 |
|
386 | 386 |
typedef SubDigraphBase Adaptor; |
387 | 387 |
typedef DigraphAdaptorBase<_Digraph> Parent; |
388 | 388 |
protected: |
389 | 389 |
NodeFilterMap* _node_filter; |
390 | 390 |
ArcFilterMap* _arc_filter; |
391 | 391 |
SubDigraphBase() |
392 | 392 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
393 | 393 |
|
394 | 394 |
void setNodeFilterMap(NodeFilterMap& node_filter) { |
395 | 395 |
_node_filter = &node_filter; |
396 | 396 |
} |
397 | 397 |
void setArcFilterMap(ArcFilterMap& arc_filter) { |
398 | 398 |
_arc_filter = &arc_filter; |
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
typedef typename Parent::Node Node; |
404 | 404 |
typedef typename Parent::Arc Arc; |
405 | 405 |
|
406 | 406 |
void first(Node& i) const { |
407 | 407 |
Parent::first(i); |
408 | 408 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
void first(Arc& i) const { |
412 | 412 |
Parent::first(i); |
413 | 413 |
while (i != INVALID && (!(*_arc_filter)[i] |
414 | 414 |
|| !(*_node_filter)[Parent::source(i)] |
415 | 415 |
|| !(*_node_filter)[Parent::target(i)])) |
416 | 416 |
Parent::next(i); |
417 | 417 |
} |
418 | 418 |
|
419 | 419 |
void firstIn(Arc& i, const Node& n) const { |
420 | 420 |
Parent::firstIn(i, n); |
421 | 421 |
while (i != INVALID && (!(*_arc_filter)[i] |
422 | 422 |
|| !(*_node_filter)[Parent::source(i)])) |
423 | 423 |
Parent::nextIn(i); |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
void firstOut(Arc& i, const Node& n) const { |
427 | 427 |
Parent::firstOut(i, n); |
428 | 428 |
while (i != INVALID && (!(*_arc_filter)[i] |
429 | 429 |
|| !(*_node_filter)[Parent::target(i)])) |
430 | 430 |
Parent::nextOut(i); |
431 | 431 |
} |
432 | 432 |
|
433 | 433 |
void next(Node& i) const { |
434 | 434 |
Parent::next(i); |
435 | 435 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
void next(Arc& i) const { |
439 | 439 |
Parent::next(i); |
440 | 440 |
while (i != INVALID && (!(*_arc_filter)[i] |
441 | 441 |
|| !(*_node_filter)[Parent::source(i)] |
442 | 442 |
|| !(*_node_filter)[Parent::target(i)])) |
443 | 443 |
Parent::next(i); |
444 | 444 |
} |
445 | 445 |
|
446 | 446 |
void nextIn(Arc& i) const { |
447 | 447 |
Parent::nextIn(i); |
448 | 448 |
while (i != INVALID && (!(*_arc_filter)[i] |
449 | 449 |
|| !(*_node_filter)[Parent::source(i)])) |
450 | 450 |
Parent::nextIn(i); |
451 | 451 |
} |
452 | 452 |
|
453 | 453 |
void nextOut(Arc& i) const { |
454 | 454 |
Parent::nextOut(i); |
455 | 455 |
while (i != INVALID && (!(*_arc_filter)[i] |
456 | 456 |
|| !(*_node_filter)[Parent::target(i)])) |
457 | 457 |
Parent::nextOut(i); |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
void hide(const Node& n) const { _node_filter->set(n, false); } |
461 | 461 |
void hide(const Arc& a) const { _arc_filter->set(a, false); } |
462 | 462 |
|
463 | 463 |
void unHide(const Node& n) const { _node_filter->set(n, true); } |
464 | 464 |
void unHide(const Arc& a) const { _arc_filter->set(a, true); } |
465 | 465 |
|
466 | 466 |
bool hidden(const Node& n) const { return !(*_node_filter)[n]; } |
467 | 467 |
bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; } |
468 | 468 |
|
469 | 469 |
typedef False NodeNumTag; |
470 | 470 |
typedef False EdgeNumTag; |
471 | 471 |
|
472 | 472 |
typedef FindEdgeTagIndicator<Digraph> FindEdgeTag; |
473 | 473 |
Arc findArc(const Node& source, const Node& target, |
474 | 474 |
const Arc& prev = INVALID) { |
475 | 475 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
476 | 476 |
return INVALID; |
477 | 477 |
} |
478 | 478 |
Arc arc = Parent::findArc(source, target, prev); |
479 | 479 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
480 | 480 |
arc = Parent::findArc(source, target, arc); |
481 | 481 |
} |
482 | 482 |
return arc; |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
template <typename _Value> |
486 | 486 |
class NodeMap : public SubMapExtender<Adaptor, |
487 | 487 |
typename Parent::template NodeMap<_Value> > { |
488 | 488 |
public: |
489 | 489 |
typedef _Value Value; |
490 | 490 |
typedef SubMapExtender<Adaptor, typename Parent:: |
491 | 491 |
template NodeMap<Value> > MapParent; |
492 | 492 |
|
493 | 493 |
NodeMap(const Adaptor& adaptor) |
494 | 494 |
: MapParent(adaptor) {} |
495 | 495 |
NodeMap(const Adaptor& adaptor, const Value& value) |
496 | 496 |
: MapParent(adaptor, value) {} |
497 | 497 |
|
498 | 498 |
private: |
499 | 499 |
NodeMap& operator=(const NodeMap& cmap) { |
500 | 500 |
return operator=<NodeMap>(cmap); |
501 | 501 |
} |
502 | 502 |
|
503 | 503 |
template <typename CMap> |
504 | 504 |
NodeMap& operator=(const CMap& cmap) { |
505 | 505 |
MapParent::operator=(cmap); |
506 | 506 |
return *this; |
507 | 507 |
} |
508 | 508 |
}; |
509 | 509 |
|
510 | 510 |
template <typename _Value> |
511 | 511 |
class ArcMap : public SubMapExtender<Adaptor, |
512 | 512 |
typename Parent::template ArcMap<_Value> > { |
513 | 513 |
public: |
514 | 514 |
typedef _Value Value; |
515 | 515 |
typedef SubMapExtender<Adaptor, typename Parent:: |
516 | 516 |
template ArcMap<Value> > MapParent; |
517 | 517 |
|
518 | 518 |
ArcMap(const Adaptor& adaptor) |
519 | 519 |
: MapParent(adaptor) {} |
520 | 520 |
ArcMap(const Adaptor& adaptor, const Value& value) |
521 | 521 |
: MapParent(adaptor, value) {} |
522 | 522 |
|
523 | 523 |
private: |
524 | 524 |
ArcMap& operator=(const ArcMap& cmap) { |
525 | 525 |
return operator=<ArcMap>(cmap); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
template <typename CMap> |
529 | 529 |
ArcMap& operator=(const CMap& cmap) { |
530 | 530 |
MapParent::operator=(cmap); |
531 | 531 |
return *this; |
532 | 532 |
} |
533 | 533 |
}; |
534 | 534 |
|
535 | 535 |
}; |
536 | 536 |
|
537 | 537 |
template <typename _Digraph, typename _NodeFilterMap, typename _ArcFilterMap> |
538 | 538 |
class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false> |
539 | 539 |
: public DigraphAdaptorBase<_Digraph> { |
540 | 540 |
public: |
541 | 541 |
typedef _Digraph Digraph; |
542 | 542 |
typedef _NodeFilterMap NodeFilterMap; |
543 | 543 |
typedef _ArcFilterMap ArcFilterMap; |
544 | 544 |
|
545 | 545 |
typedef SubDigraphBase Adaptor; |
546 | 546 |
typedef DigraphAdaptorBase<Digraph> Parent; |
547 | 547 |
protected: |
548 | 548 |
NodeFilterMap* _node_filter; |
549 | 549 |
ArcFilterMap* _arc_filter; |
550 | 550 |
SubDigraphBase() |
551 | 551 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
552 | 552 |
|
553 | 553 |
void setNodeFilterMap(NodeFilterMap& node_filter) { |
554 | 554 |
_node_filter = &node_filter; |
555 | 555 |
} |
556 | 556 |
void setArcFilterMap(ArcFilterMap& arc_filter) { |
557 | 557 |
_arc_filter = &arc_filter; |
558 | 558 |
} |
559 | 559 |
|
560 | 560 |
public: |
561 | 561 |
|
562 | 562 |
typedef typename Parent::Node Node; |
563 | 563 |
typedef typename Parent::Arc Arc; |
564 | 564 |
|
565 | 565 |
void first(Node& i) const { |
566 | 566 |
Parent::first(i); |
567 | 567 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
void first(Arc& i) const { |
571 | 571 |
Parent::first(i); |
572 | 572 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
573 | 573 |
} |
574 | 574 |
|
575 | 575 |
void firstIn(Arc& i, const Node& n) const { |
576 | 576 |
Parent::firstIn(i, n); |
577 | 577 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
void firstOut(Arc& i, const Node& n) const { |
581 | 581 |
Parent::firstOut(i, n); |
582 | 582 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
void next(Node& i) const { |
586 | 586 |
Parent::next(i); |
587 | 587 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
588 | 588 |
} |
589 | 589 |
void next(Arc& i) const { |
590 | 590 |
Parent::next(i); |
591 | 591 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
592 | 592 |
} |
593 | 593 |
void nextIn(Arc& i) const { |
594 | 594 |
Parent::nextIn(i); |
595 | 595 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
void nextOut(Arc& i) const { |
599 | 599 |
Parent::nextOut(i); |
600 | 600 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
601 | 601 |
} |
602 | 602 |
|
603 | 603 |
void hide(const Node& n) const { _node_filter->set(n, false); } |
604 | 604 |
void hide(const Arc& e) const { _arc_filter->set(e, false); } |
605 | 605 |
|
606 | 606 |
void unHide(const Node& n) const { _node_filter->set(n, true); } |
607 | 607 |
void unHide(const Arc& e) const { _arc_filter->set(e, true); } |
608 | 608 |
|
609 | 609 |
bool hidden(const Node& n) const { return !(*_node_filter)[n]; } |
610 | 610 |
bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; } |
611 | 611 |
|
612 | 612 |
typedef False NodeNumTag; |
613 | 613 |
typedef False EdgeNumTag; |
614 | 614 |
|
615 | 615 |
typedef FindEdgeTagIndicator<Digraph> FindEdgeTag; |
616 | 616 |
Arc findArc(const Node& source, const Node& target, |
617 | 617 |
const Arc& prev = INVALID) { |
618 | 618 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
619 | 619 |
return INVALID; |
620 | 620 |
} |
621 | 621 |
Arc arc = Parent::findArc(source, target, prev); |
622 | 622 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
623 | 623 |
arc = Parent::findArc(source, target, arc); |
624 | 624 |
} |
625 | 625 |
return arc; |
626 | 626 |
} |
627 | 627 |
|
628 | 628 |
template <typename _Value> |
629 | 629 |
class NodeMap : public SubMapExtender<Adaptor, |
630 | 630 |
typename Parent::template NodeMap<_Value> > { |
631 | 631 |
public: |
632 | 632 |
typedef _Value Value; |
633 | 633 |
typedef SubMapExtender<Adaptor, typename Parent:: |
634 | 634 |
template NodeMap<Value> > MapParent; |
635 | 635 |
|
636 | 636 |
NodeMap(const Adaptor& adaptor) |
637 | 637 |
: MapParent(adaptor) {} |
638 | 638 |
NodeMap(const Adaptor& adaptor, const Value& value) |
639 | 639 |
: MapParent(adaptor, value) {} |
640 | 640 |
|
641 | 641 |
private: |
642 | 642 |
NodeMap& operator=(const NodeMap& cmap) { |
643 | 643 |
return operator=<NodeMap>(cmap); |
644 | 644 |
} |
645 | 645 |
|
646 | 646 |
template <typename CMap> |
647 | 647 |
NodeMap& operator=(const CMap& cmap) { |
648 | 648 |
MapParent::operator=(cmap); |
649 | 649 |
return *this; |
650 | 650 |
} |
651 | 651 |
}; |
652 | 652 |
|
653 | 653 |
template <typename _Value> |
654 | 654 |
class ArcMap : public SubMapExtender<Adaptor, |
655 | 655 |
typename Parent::template ArcMap<_Value> > { |
656 | 656 |
public: |
657 | 657 |
typedef _Value Value; |
658 | 658 |
typedef SubMapExtender<Adaptor, typename Parent:: |
659 | 659 |
template ArcMap<Value> > MapParent; |
660 | 660 |
|
661 | 661 |
ArcMap(const Adaptor& adaptor) |
662 | 662 |
: MapParent(adaptor) {} |
663 | 663 |
ArcMap(const Adaptor& adaptor, const Value& value) |
664 | 664 |
: MapParent(adaptor, value) {} |
665 | 665 |
|
666 | 666 |
private: |
667 | 667 |
ArcMap& operator=(const ArcMap& cmap) { |
668 | 668 |
return operator=<ArcMap>(cmap); |
669 | 669 |
} |
670 | 670 |
|
671 | 671 |
template <typename CMap> |
672 | 672 |
ArcMap& operator=(const CMap& cmap) { |
673 | 673 |
MapParent::operator=(cmap); |
674 | 674 |
return *this; |
675 | 675 |
} |
676 | 676 |
}; |
677 | 677 |
|
678 | 678 |
}; |
679 | 679 |
|
680 | 680 |
/// \ingroup graph_adaptors |
681 | 681 |
/// |
682 | 682 |
/// \brief An adaptor for hiding nodes and arcs in a digraph |
683 | 683 |
/// |
684 | 684 |
/// SubDigraph hides nodes and arcs in a digraph. A bool node map |
685 | 685 |
/// and a bool arc map must be specified, which define the filters |
686 | 686 |
/// for nodes and arcs. Just the nodes and arcs with true value are |
687 | 687 |
/// shown in the subdigraph. The SubDigraph is conform to the \ref |
688 | 688 |
/// concepts::Digraph "Digraph concept". If the \c _checked parameter |
689 | 689 |
/// is true, then the arcs incident to filtered nodes are also |
690 | 690 |
/// filtered out. |
691 | 691 |
/// |
692 | 692 |
/// \tparam _Digraph It must be conform to the \ref |
693 | 693 |
/// concepts::Digraph "Digraph concept". The type can be specified |
694 | 694 |
/// to const. |
695 | 695 |
/// \tparam _NodeFilterMap A bool valued node map of the the adapted digraph. |
696 | 696 |
/// \tparam _ArcFilterMap A bool valued arc map of the the adapted digraph. |
697 | 697 |
/// \tparam _checked If the parameter is false then the arc filtering |
698 | 698 |
/// is not checked with respect to node filter. Otherwise, each arc |
699 | 699 |
/// is automatically filtered, which is incident to a filtered node. |
700 | 700 |
/// |
701 | 701 |
/// \see FilterNodes |
702 | 702 |
/// \see FilterArcs |
703 | 703 |
template<typename _Digraph, |
704 | 704 |
typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>, |
705 | 705 |
typename _ArcFilterMap = typename _Digraph::template ArcMap<bool>, |
706 | 706 |
bool _checked = true> |
707 | 707 |
class SubDigraph |
708 | 708 |
: public DigraphAdaptorExtender< |
709 | 709 |
SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > { |
710 | 710 |
public: |
711 | 711 |
typedef _Digraph Digraph; |
712 | 712 |
typedef _NodeFilterMap NodeFilterMap; |
713 | 713 |
typedef _ArcFilterMap ArcFilterMap; |
714 | 714 |
|
715 | 715 |
typedef DigraphAdaptorExtender< |
716 | 716 |
SubDigraphBase<Digraph, NodeFilterMap, ArcFilterMap, _checked> > |
717 | 717 |
Parent; |
718 | 718 |
|
719 | 719 |
typedef typename Parent::Node Node; |
720 | 720 |
typedef typename Parent::Arc Arc; |
721 | 721 |
|
722 | 722 |
protected: |
723 | 723 |
SubDigraph() { } |
724 | 724 |
public: |
725 | 725 |
|
726 | 726 |
/// \brief Constructor |
727 | 727 |
/// |
728 | 728 |
/// Creates a subdigraph for the given digraph with |
729 | 729 |
/// given node and arc map filters. |
730 | 730 |
SubDigraph(Digraph& digraph, NodeFilterMap& node_filter, |
731 | 731 |
ArcFilterMap& arc_filter) { |
732 | 732 |
setDigraph(digraph); |
733 | 733 |
setNodeFilterMap(node_filter); |
734 | 734 |
setArcFilterMap(arc_filter); |
735 | 735 |
} |
736 | 736 |
|
737 | 737 |
/// \brief Hides the node of the graph |
738 | 738 |
/// |
739 | 739 |
/// This function hides \c n in the digraph, i.e. the iteration |
740 | 740 |
/// jumps over it. This is done by simply setting the value of \c n |
741 | 741 |
/// to be false in the corresponding node-map. |
742 | 742 |
void hide(const Node& n) const { Parent::hide(n); } |
743 | 743 |
|
744 | 744 |
/// \brief Hides the arc of the graph |
745 | 745 |
/// |
746 | 746 |
/// This function hides \c a in the digraph, i.e. the iteration |
747 | 747 |
/// jumps over it. This is done by simply setting the value of \c a |
748 | 748 |
/// to be false in the corresponding arc-map. |
749 | 749 |
void hide(const Arc& a) const { Parent::hide(a); } |
750 | 750 |
|
751 | 751 |
/// \brief Unhides the node of the graph |
752 | 752 |
/// |
753 | 753 |
/// The value of \c n is set to be true in the node-map which stores |
754 | 754 |
/// hide information. If \c n was hidden previuosly, then it is shown |
755 | 755 |
/// again |
756 | 756 |
void unHide(const Node& n) const { Parent::unHide(n); } |
757 | 757 |
|
758 | 758 |
/// \brief Unhides the arc of the graph |
759 | 759 |
/// |
760 | 760 |
/// The value of \c a is set to be true in the arc-map which stores |
761 | 761 |
/// hide information. If \c a was hidden previuosly, then it is shown |
762 | 762 |
/// again |
763 | 763 |
void unHide(const Arc& a) const { Parent::unHide(a); } |
764 | 764 |
|
765 | 765 |
/// \brief Returns true if \c n is hidden. |
766 | 766 |
/// |
767 | 767 |
/// Returns true if \c n is hidden. |
768 | 768 |
/// |
769 | 769 |
bool hidden(const Node& n) const { return Parent::hidden(n); } |
770 | 770 |
|
771 | 771 |
/// \brief Returns true if \c a is hidden. |
772 | 772 |
/// |
773 | 773 |
/// Returns true if \c a is hidden. |
774 | 774 |
/// |
775 | 775 |
bool hidden(const Arc& a) const { return Parent::hidden(a); } |
776 | 776 |
|
777 | 777 |
}; |
778 | 778 |
|
779 | 779 |
/// \brief Just gives back a subdigraph |
780 | 780 |
/// |
781 | 781 |
/// Just gives back a subdigraph |
782 | 782 |
template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap> |
783 | 783 |
SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap> |
784 | 784 |
subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) { |
785 | 785 |
return SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap> |
786 | 786 |
(digraph, nfm, afm); |
787 | 787 |
} |
788 | 788 |
|
789 | 789 |
template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap> |
790 | 790 |
SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap> |
791 | 791 |
subDigraph(const Digraph& digraph, |
792 | 792 |
const NodeFilterMap& nfm, ArcFilterMap& afm) { |
793 | 793 |
return SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap> |
794 | 794 |
(digraph, nfm, afm); |
795 | 795 |
} |
796 | 796 |
|
797 | 797 |
template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap> |
798 | 798 |
SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap> |
799 | 799 |
subDigraph(const Digraph& digraph, |
800 | 800 |
NodeFilterMap& nfm, const ArcFilterMap& afm) { |
801 | 801 |
return SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap> |
802 | 802 |
(digraph, nfm, afm); |
803 | 803 |
} |
804 | 804 |
|
805 | 805 |
template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap> |
806 | 806 |
SubDigraph<const Digraph, const NodeFilterMap, const ArcFilterMap> |
807 | 807 |
subDigraph(const Digraph& digraph, |
808 | 808 |
const NodeFilterMap& nfm, const ArcFilterMap& afm) { |
809 | 809 |
return SubDigraph<const Digraph, const NodeFilterMap, |
810 | 810 |
const ArcFilterMap>(digraph, nfm, afm); |
811 | 811 |
} |
812 | 812 |
|
813 | 813 |
|
814 | 814 |
template <typename _Graph, typename NodeFilterMap, |
815 | 815 |
typename EdgeFilterMap, bool _checked = true> |
816 | 816 |
class SubGraphBase : public GraphAdaptorBase<_Graph> { |
817 | 817 |
public: |
818 | 818 |
typedef _Graph Graph; |
819 | 819 |
typedef SubGraphBase Adaptor; |
820 | 820 |
typedef GraphAdaptorBase<_Graph> Parent; |
821 | 821 |
protected: |
822 | 822 |
|
823 | 823 |
NodeFilterMap* _node_filter_map; |
824 | 824 |
EdgeFilterMap* _edge_filter_map; |
825 | 825 |
|
826 | 826 |
SubGraphBase() |
827 | 827 |
: Parent(), _node_filter_map(0), _edge_filter_map(0) { } |
828 | 828 |
|
829 | 829 |
void setNodeFilterMap(NodeFilterMap& node_filter_map) { |
830 | 830 |
_node_filter_map=&node_filter_map; |
831 | 831 |
} |
832 | 832 |
void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { |
833 | 833 |
_edge_filter_map=&edge_filter_map; |
834 | 834 |
} |
835 | 835 |
|
836 | 836 |
public: |
837 | 837 |
|
838 | 838 |
typedef typename Parent::Node Node; |
839 | 839 |
typedef typename Parent::Arc Arc; |
840 | 840 |
typedef typename Parent::Edge Edge; |
841 | 841 |
|
842 | 842 |
void first(Node& i) const { |
843 | 843 |
Parent::first(i); |
844 | 844 |
while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
void first(Arc& i) const { |
848 | 848 |
Parent::first(i); |
849 | 849 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
850 | 850 |
|| !(*_node_filter_map)[Parent::source(i)] |
851 | 851 |
|| !(*_node_filter_map)[Parent::target(i)])) |
852 | 852 |
Parent::next(i); |
853 | 853 |
} |
854 | 854 |
|
855 | 855 |
void first(Edge& i) const { |
856 | 856 |
Parent::first(i); |
857 | 857 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
858 | 858 |
|| !(*_node_filter_map)[Parent::u(i)] |
859 | 859 |
|| !(*_node_filter_map)[Parent::v(i)])) |
860 | 860 |
Parent::next(i); |
861 | 861 |
} |
862 | 862 |
|
863 | 863 |
void firstIn(Arc& i, const Node& n) const { |
864 | 864 |
Parent::firstIn(i, n); |
865 | 865 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
866 | 866 |
|| !(*_node_filter_map)[Parent::source(i)])) |
867 | 867 |
Parent::nextIn(i); |
868 | 868 |
} |
869 | 869 |
|
870 | 870 |
void firstOut(Arc& i, const Node& n) const { |
871 | 871 |
Parent::firstOut(i, n); |
872 | 872 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
873 | 873 |
|| !(*_node_filter_map)[Parent::target(i)])) |
874 | 874 |
Parent::nextOut(i); |
875 | 875 |
} |
876 | 876 |
|
877 | 877 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
878 | 878 |
Parent::firstInc(i, d, n); |
879 | 879 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
880 | 880 |
|| !(*_node_filter_map)[Parent::u(i)] |
881 | 881 |
|| !(*_node_filter_map)[Parent::v(i)])) |
882 | 882 |
Parent::nextInc(i, d); |
883 | 883 |
} |
884 | 884 |
|
885 | 885 |
void next(Node& i) const { |
886 | 886 |
Parent::next(i); |
887 | 887 |
while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); |
888 | 888 |
} |
889 | 889 |
|
890 | 890 |
void next(Arc& i) const { |
891 | 891 |
Parent::next(i); |
892 | 892 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
893 | 893 |
|| !(*_node_filter_map)[Parent::source(i)] |
894 | 894 |
|| !(*_node_filter_map)[Parent::target(i)])) |
895 | 895 |
Parent::next(i); |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
void next(Edge& i) const { |
899 | 899 |
Parent::next(i); |
900 | 900 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
901 | 901 |
|| !(*_node_filter_map)[Parent::u(i)] |
902 | 902 |
|| !(*_node_filter_map)[Parent::v(i)])) |
903 | 903 |
Parent::next(i); |
904 | 904 |
} |
905 | 905 |
|
906 | 906 |
void nextIn(Arc& i) const { |
907 | 907 |
Parent::nextIn(i); |
908 | 908 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
909 | 909 |
|| !(*_node_filter_map)[Parent::source(i)])) |
910 | 910 |
Parent::nextIn(i); |
911 | 911 |
} |
912 | 912 |
|
913 | 913 |
void nextOut(Arc& i) const { |
914 | 914 |
Parent::nextOut(i); |
915 | 915 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
916 | 916 |
|| !(*_node_filter_map)[Parent::target(i)])) |
917 | 917 |
Parent::nextOut(i); |
918 | 918 |
} |
919 | 919 |
|
920 | 920 |
void nextInc(Edge& i, bool& d) const { |
921 | 921 |
Parent::nextInc(i, d); |
922 | 922 |
while (i!=INVALID && (!(*_edge_filter_map)[i] |
923 | 923 |
|| !(*_node_filter_map)[Parent::u(i)] |
924 | 924 |
|| !(*_node_filter_map)[Parent::v(i)])) |
925 | 925 |
Parent::nextInc(i, d); |
926 | 926 |
} |
927 | 927 |
|
928 | 928 |
void hide(const Node& n) const { _node_filter_map->set(n, false); } |
929 | 929 |
void hide(const Edge& e) const { _edge_filter_map->set(e, false); } |
930 | 930 |
|
931 | 931 |
void unHide(const Node& n) const { _node_filter_map->set(n, true); } |
932 | 932 |
void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } |
933 | 933 |
|
934 | 934 |
bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } |
935 | 935 |
bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } |
936 | 936 |
|
937 | 937 |
typedef False NodeNumTag; |
938 | 938 |
typedef False EdgeNumTag; |
939 | 939 |
|
940 | 940 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
941 | 941 |
Arc findArc(const Node& u, const Node& v, |
942 | 942 |
const Arc& prev = INVALID) { |
943 | 943 |
if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { |
944 | 944 |
return INVALID; |
945 | 945 |
} |
946 | 946 |
Arc arc = Parent::findArc(u, v, prev); |
947 | 947 |
while (arc != INVALID && !(*_edge_filter_map)[arc]) { |
948 | 948 |
arc = Parent::findArc(u, v, arc); |
949 | 949 |
} |
950 | 950 |
return arc; |
951 | 951 |
} |
952 | 952 |
Edge findEdge(const Node& u, const Node& v, |
953 | 953 |
const Edge& prev = INVALID) { |
954 | 954 |
if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { |
955 | 955 |
return INVALID; |
956 | 956 |
} |
957 | 957 |
Edge edge = Parent::findEdge(u, v, prev); |
958 | 958 |
while (edge != INVALID && !(*_edge_filter_map)[edge]) { |
959 | 959 |
edge = Parent::findEdge(u, v, edge); |
960 | 960 |
} |
961 | 961 |
return edge; |
962 | 962 |
} |
963 | 963 |
|
964 | 964 |
template <typename _Value> |
965 | 965 |
class NodeMap : public SubMapExtender<Adaptor, |
966 | 966 |
typename Parent::template NodeMap<_Value> > { |
967 | 967 |
public: |
968 | 968 |
typedef _Value Value; |
969 | 969 |
typedef SubMapExtender<Adaptor, typename Parent:: |
970 | 970 |
template NodeMap<Value> > MapParent; |
971 | 971 |
|
972 | 972 |
NodeMap(const Adaptor& adaptor) |
973 | 973 |
: MapParent(adaptor) {} |
974 | 974 |
NodeMap(const Adaptor& adaptor, const Value& value) |
975 | 975 |
: MapParent(adaptor, value) {} |
976 | 976 |
|
977 | 977 |
private: |
978 | 978 |
NodeMap& operator=(const NodeMap& cmap) { |
979 | 979 |
return operator=<NodeMap>(cmap); |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
template <typename CMap> |
983 | 983 |
NodeMap& operator=(const CMap& cmap) { |
984 | 984 |
MapParent::operator=(cmap); |
985 | 985 |
return *this; |
986 | 986 |
} |
987 | 987 |
}; |
988 | 988 |
|
989 | 989 |
template <typename _Value> |
990 | 990 |
class ArcMap : public SubMapExtender<Adaptor, |
991 | 991 |
typename Parent::template ArcMap<_Value> > { |
992 | 992 |
public: |
993 | 993 |
typedef _Value Value; |
994 | 994 |
typedef SubMapExtender<Adaptor, typename Parent:: |
995 | 995 |
template ArcMap<Value> > MapParent; |
996 | 996 |
|
997 | 997 |
ArcMap(const Adaptor& adaptor) |
998 | 998 |
: MapParent(adaptor) {} |
999 | 999 |
ArcMap(const Adaptor& adaptor, const Value& value) |
1000 | 1000 |
: MapParent(adaptor, value) {} |
1001 | 1001 |
|
1002 | 1002 |
private: |
1003 | 1003 |
ArcMap& operator=(const ArcMap& cmap) { |
1004 | 1004 |
return operator=<ArcMap>(cmap); |
1005 | 1005 |
} |
1006 | 1006 |
|
1007 | 1007 |
template <typename CMap> |
1008 | 1008 |
ArcMap& operator=(const CMap& cmap) { |
1009 | 1009 |
MapParent::operator=(cmap); |
1010 | 1010 |
return *this; |
1011 | 1011 |
} |
1012 | 1012 |
}; |
1013 | 1013 |
|
1014 | 1014 |
template <typename _Value> |
1015 | 1015 |
class EdgeMap : public SubMapExtender<Adaptor, |
1016 | 1016 |
typename Parent::template EdgeMap<_Value> > { |
1017 | 1017 |
public: |
1018 | 1018 |
typedef _Value Value; |
1019 | 1019 |
typedef SubMapExtender<Adaptor, typename Parent:: |
1020 | 1020 |
template EdgeMap<Value> > MapParent; |
1021 | 1021 |
|
1022 | 1022 |
EdgeMap(const Adaptor& adaptor) |
1023 | 1023 |
: MapParent(adaptor) {} |
1024 | 1024 |
|
1025 | 1025 |
EdgeMap(const Adaptor& adaptor, const Value& value) |
1026 | 1026 |
: MapParent(adaptor, value) {} |
1027 | 1027 |
|
1028 | 1028 |
private: |
1029 | 1029 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1030 | 1030 |
return operator=<EdgeMap>(cmap); |
1031 | 1031 |
} |
1032 | 1032 |
|
1033 | 1033 |
template <typename CMap> |
1034 | 1034 |
EdgeMap& operator=(const CMap& cmap) { |
1035 | 1035 |
MapParent::operator=(cmap); |
1036 | 1036 |
return *this; |
1037 | 1037 |
} |
1038 | 1038 |
}; |
1039 | 1039 |
|
1040 | 1040 |
}; |
1041 | 1041 |
|
1042 | 1042 |
template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap> |
1043 | 1043 |
class SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, false> |
1044 | 1044 |
: public GraphAdaptorBase<_Graph> { |
1045 | 1045 |
public: |
1046 | 1046 |
typedef _Graph Graph; |
1047 | 1047 |
typedef SubGraphBase Adaptor; |
1048 | 1048 |
typedef GraphAdaptorBase<_Graph> Parent; |
1049 | 1049 |
protected: |
1050 | 1050 |
NodeFilterMap* _node_filter_map; |
1051 | 1051 |
EdgeFilterMap* _edge_filter_map; |
1052 | 1052 |
SubGraphBase() : Parent(), |
1053 | 1053 |
_node_filter_map(0), _edge_filter_map(0) { } |
1054 | 1054 |
|
1055 | 1055 |
void setNodeFilterMap(NodeFilterMap& node_filter_map) { |
1056 | 1056 |
_node_filter_map=&node_filter_map; |
1057 | 1057 |
} |
1058 | 1058 |
void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { |
1059 | 1059 |
_edge_filter_map=&edge_filter_map; |
1060 | 1060 |
} |
1061 | 1061 |
|
1062 | 1062 |
public: |
1063 | 1063 |
|
1064 | 1064 |
typedef typename Parent::Node Node; |
1065 | 1065 |
typedef typename Parent::Arc Arc; |
1066 | 1066 |
typedef typename Parent::Edge Edge; |
1067 | 1067 |
|
1068 | 1068 |
void first(Node& i) const { |
1069 | 1069 |
Parent::first(i); |
1070 | 1070 |
while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); |
1071 | 1071 |
} |
1072 | 1072 |
|
1073 | 1073 |
void first(Arc& i) const { |
1074 | 1074 |
Parent::first(i); |
1075 | 1075 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); |
1076 | 1076 |
} |
1077 | 1077 |
|
1078 | 1078 |
void first(Edge& i) const { |
1079 | 1079 |
Parent::first(i); |
1080 | 1080 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); |
1081 | 1081 |
} |
1082 | 1082 |
|
1083 | 1083 |
void firstIn(Arc& i, const Node& n) const { |
1084 | 1084 |
Parent::firstIn(i, n); |
1085 | 1085 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); |
1086 | 1086 |
} |
1087 | 1087 |
|
1088 | 1088 |
void firstOut(Arc& i, const Node& n) const { |
1089 | 1089 |
Parent::firstOut(i, n); |
1090 | 1090 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); |
1091 | 1091 |
} |
1092 | 1092 |
|
1093 | 1093 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
1094 | 1094 |
Parent::firstInc(i, d, n); |
1095 | 1095 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); |
1096 | 1096 |
} |
1097 | 1097 |
|
1098 | 1098 |
void next(Node& i) const { |
1099 | 1099 |
Parent::next(i); |
1100 | 1100 |
while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); |
1101 | 1101 |
} |
1102 | 1102 |
void next(Arc& i) const { |
1103 | 1103 |
Parent::next(i); |
1104 | 1104 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); |
1105 | 1105 |
} |
1106 | 1106 |
void next(Edge& i) const { |
1107 | 1107 |
Parent::next(i); |
1108 | 1108 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); |
1109 | 1109 |
} |
1110 | 1110 |
void nextIn(Arc& i) const { |
1111 | 1111 |
Parent::nextIn(i); |
1112 | 1112 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); |
1113 | 1113 |
} |
1114 | 1114 |
|
1115 | 1115 |
void nextOut(Arc& i) const { |
1116 | 1116 |
Parent::nextOut(i); |
1117 | 1117 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); |
1118 | 1118 |
} |
1119 | 1119 |
void nextInc(Edge& i, bool& d) const { |
1120 | 1120 |
Parent::nextInc(i, d); |
1121 | 1121 |
while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); |
1122 | 1122 |
} |
1123 | 1123 |
|
1124 | 1124 |
void hide(const Node& n) const { _node_filter_map->set(n, false); } |
1125 | 1125 |
void hide(const Edge& e) const { _edge_filter_map->set(e, false); } |
1126 | 1126 |
|
1127 | 1127 |
void unHide(const Node& n) const { _node_filter_map->set(n, true); } |
1128 | 1128 |
void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } |
1129 | 1129 |
|
1130 | 1130 |
bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } |
1131 | 1131 |
bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } |
1132 | 1132 |
|
1133 | 1133 |
typedef False NodeNumTag; |
1134 | 1134 |
typedef False EdgeNumTag; |
1135 | 1135 |
|
1136 | 1136 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1137 | 1137 |
Arc findArc(const Node& u, const Node& v, |
1138 | 1138 |
const Arc& prev = INVALID) { |
1139 | 1139 |
Arc arc = Parent::findArc(u, v, prev); |
1140 | 1140 |
while (arc != INVALID && !(*_edge_filter_map)[arc]) { |
1141 | 1141 |
arc = Parent::findArc(u, v, arc); |
1142 | 1142 |
} |
1143 | 1143 |
return arc; |
1144 | 1144 |
} |
1145 | 1145 |
Edge findEdge(const Node& u, const Node& v, |
1146 | 1146 |
const Edge& prev = INVALID) { |
1147 | 1147 |
Edge edge = Parent::findEdge(u, v, prev); |
1148 | 1148 |
while (edge != INVALID && !(*_edge_filter_map)[edge]) { |
1149 | 1149 |
edge = Parent::findEdge(u, v, edge); |
1150 | 1150 |
} |
1151 | 1151 |
return edge; |
1152 | 1152 |
} |
1153 | 1153 |
|
1154 | 1154 |
template <typename _Value> |
1155 | 1155 |
class NodeMap : public SubMapExtender<Adaptor, |
1156 | 1156 |
typename Parent::template NodeMap<_Value> > { |
1157 | 1157 |
public: |
1158 | 1158 |
typedef _Value Value; |
1159 | 1159 |
typedef SubMapExtender<Adaptor, typename Parent:: |
1160 | 1160 |
template NodeMap<Value> > MapParent; |
1161 | 1161 |
|
1162 | 1162 |
NodeMap(const Adaptor& adaptor) |
1163 | 1163 |
: MapParent(adaptor) {} |
1164 | 1164 |
NodeMap(const Adaptor& adaptor, const Value& value) |
1165 | 1165 |
: MapParent(adaptor, value) {} |
1166 | 1166 |
|
1167 | 1167 |
private: |
1168 | 1168 |
NodeMap& operator=(const NodeMap& cmap) { |
1169 | 1169 |
return operator=<NodeMap>(cmap); |
1170 | 1170 |
} |
1171 | 1171 |
|
1172 | 1172 |
template <typename CMap> |
1173 | 1173 |
NodeMap& operator=(const CMap& cmap) { |
1174 | 1174 |
MapParent::operator=(cmap); |
1175 | 1175 |
return *this; |
1176 | 1176 |
} |
1177 | 1177 |
}; |
1178 | 1178 |
|
1179 | 1179 |
template <typename _Value> |
1180 | 1180 |
class ArcMap : public SubMapExtender<Adaptor, |
1181 | 1181 |
typename Parent::template ArcMap<_Value> > { |
1182 | 1182 |
public: |
1183 | 1183 |
typedef _Value Value; |
1184 | 1184 |
typedef SubMapExtender<Adaptor, typename Parent:: |
1185 | 1185 |
template ArcMap<Value> > MapParent; |
1186 | 1186 |
|
1187 | 1187 |
ArcMap(const Adaptor& adaptor) |
1188 | 1188 |
: MapParent(adaptor) {} |
1189 | 1189 |
ArcMap(const Adaptor& adaptor, const Value& value) |
1190 | 1190 |
: MapParent(adaptor, value) {} |
1191 | 1191 |
|
1192 | 1192 |
private: |
1193 | 1193 |
ArcMap& operator=(const ArcMap& cmap) { |
1194 | 1194 |
return operator=<ArcMap>(cmap); |
1195 | 1195 |
} |
1196 | 1196 |
|
1197 | 1197 |
template <typename CMap> |
1198 | 1198 |
ArcMap& operator=(const CMap& cmap) { |
1199 | 1199 |
MapParent::operator=(cmap); |
1200 | 1200 |
return *this; |
1201 | 1201 |
} |
1202 | 1202 |
}; |
1203 | 1203 |
|
1204 | 1204 |
template <typename _Value> |
1205 | 1205 |
class EdgeMap : public SubMapExtender<Adaptor, |
1206 | 1206 |
typename Parent::template EdgeMap<_Value> > { |
1207 | 1207 |
public: |
1208 | 1208 |
typedef _Value Value; |
1209 | 1209 |
typedef SubMapExtender<Adaptor, typename Parent:: |
1210 | 1210 |
template EdgeMap<Value> > MapParent; |
1211 | 1211 |
|
1212 | 1212 |
EdgeMap(const Adaptor& adaptor) |
1213 | 1213 |
: MapParent(adaptor) {} |
1214 | 1214 |
|
1215 | 1215 |
EdgeMap(const Adaptor& adaptor, const _Value& value) |
1216 | 1216 |
: MapParent(adaptor, value) {} |
1217 | 1217 |
|
1218 | 1218 |
private: |
1219 | 1219 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1220 | 1220 |
return operator=<EdgeMap>(cmap); |
1221 | 1221 |
} |
1222 | 1222 |
|
1223 | 1223 |
template <typename CMap> |
1224 | 1224 |
EdgeMap& operator=(const CMap& cmap) { |
1225 | 1225 |
MapParent::operator=(cmap); |
1226 | 1226 |
return *this; |
1227 | 1227 |
} |
1228 | 1228 |
}; |
1229 | 1229 |
|
1230 | 1230 |
}; |
1231 | 1231 |
|
1232 | 1232 |
/// \ingroup graph_adaptors |
1233 | 1233 |
/// |
1234 | 1234 |
/// \brief A graph adaptor for hiding nodes and edges in an |
1235 | 1235 |
/// undirected graph. |
1236 | 1236 |
/// |
1237 | 1237 |
/// SubGraph hides nodes and edges in a graph. A bool node map and a |
1238 | 1238 |
/// bool edge map must be specified, which define the filters for |
1239 | 1239 |
/// nodes and edges. Just the nodes and edges with true value are |
1240 | 1240 |
/// shown in the subgraph. The SubGraph is conform to the \ref |
1241 | 1241 |
/// concepts::Graph "Graph concept". If the \c _checked parameter is |
1242 | 1242 |
/// true, then the edges incident to filtered nodes are also |
1243 | 1243 |
/// filtered out. |
1244 | 1244 |
/// |
1245 | 1245 |
/// \tparam _Graph It must be conform to the \ref |
1246 | 1246 |
/// concepts::Graph "Graph concept". The type can be specified |
1247 | 1247 |
/// to const. |
1248 | 1248 |
/// \tparam _NodeFilterMap A bool valued node map of the the adapted graph. |
1249 | 1249 |
/// \tparam _EdgeFilterMap A bool valued edge map of the the adapted graph. |
1250 | 1250 |
/// \tparam _checked If the parameter is false then the edge filtering |
1251 | 1251 |
/// is not checked with respect to node filter. Otherwise, each edge |
1252 | 1252 |
/// is automatically filtered, which is incident to a filtered node. |
1253 | 1253 |
/// |
1254 | 1254 |
/// \see FilterNodes |
1255 | 1255 |
/// \see FilterEdges |
1256 | 1256 |
template<typename _Graph, typename NodeFilterMap, |
1257 | 1257 |
typename EdgeFilterMap, bool _checked = true> |
1258 | 1258 |
class SubGraph |
1259 | 1259 |
: public GraphAdaptorExtender< |
1260 | 1260 |
SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, _checked> > { |
1261 | 1261 |
public: |
1262 | 1262 |
typedef _Graph Graph; |
1263 | 1263 |
typedef GraphAdaptorExtender< |
1264 | 1264 |
SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; |
1265 | 1265 |
|
1266 | 1266 |
typedef typename Parent::Node Node; |
1267 | 1267 |
typedef typename Parent::Edge Edge; |
1268 | 1268 |
|
1269 | 1269 |
protected: |
1270 | 1270 |
SubGraph() { } |
1271 | 1271 |
public: |
1272 | 1272 |
|
1273 | 1273 |
/// \brief Constructor |
1274 | 1274 |
/// |
1275 | 1275 |
/// Creates a subgraph for the given graph with given node and |
1276 | 1276 |
/// edge map filters. |
1277 | 1277 |
SubGraph(Graph& _graph, NodeFilterMap& node_filter_map, |
1278 | 1278 |
EdgeFilterMap& edge_filter_map) { |
1279 | 1279 |
setGraph(_graph); |
1280 | 1280 |
setNodeFilterMap(node_filter_map); |
1281 | 1281 |
setEdgeFilterMap(edge_filter_map); |
1282 | 1282 |
} |
1283 | 1283 |
|
1284 | 1284 |
/// \brief Hides the node of the graph |
1285 | 1285 |
/// |
1286 | 1286 |
/// This function hides \c n in the graph, i.e. the iteration |
1287 | 1287 |
/// jumps over it. This is done by simply setting the value of \c n |
1288 | 1288 |
/// to be false in the corresponding node-map. |
1289 | 1289 |
void hide(const Node& n) const { Parent::hide(n); } |
1290 | 1290 |
|
1291 | 1291 |
/// \brief Hides the edge of the graph |
1292 | 1292 |
/// |
1293 | 1293 |
/// This function hides \c e in the graph, i.e. the iteration |
1294 | 1294 |
/// jumps over it. This is done by simply setting the value of \c e |
1295 | 1295 |
/// to be false in the corresponding edge-map. |
1296 | 1296 |
void hide(const Edge& e) const { Parent::hide(e); } |
1297 | 1297 |
|
1298 | 1298 |
/// \brief Unhides the node of the graph |
1299 | 1299 |
/// |
1300 | 1300 |
/// The value of \c n is set to be true in the node-map which stores |
1301 | 1301 |
/// hide information. If \c n was hidden previuosly, then it is shown |
1302 | 1302 |
/// again |
1303 | 1303 |
void unHide(const Node& n) const { Parent::unHide(n); } |
1304 | 1304 |
|
1305 | 1305 |
/// \brief Unhides the edge of the graph |
1306 | 1306 |
/// |
1307 | 1307 |
/// The value of \c e is set to be true in the edge-map which stores |
1308 | 1308 |
/// hide information. If \c e was hidden previuosly, then it is shown |
1309 | 1309 |
/// again |
1310 | 1310 |
void unHide(const Edge& e) const { Parent::unHide(e); } |
1311 | 1311 |
|
1312 | 1312 |
/// \brief Returns true if \c n is hidden. |
1313 | 1313 |
/// |
1314 | 1314 |
/// Returns true if \c n is hidden. |
1315 | 1315 |
/// |
1316 | 1316 |
bool hidden(const Node& n) const { return Parent::hidden(n); } |
1317 | 1317 |
|
1318 | 1318 |
/// \brief Returns true if \c e is hidden. |
1319 | 1319 |
/// |
1320 | 1320 |
/// Returns true if \c e is hidden. |
1321 | 1321 |
/// |
1322 | 1322 |
bool hidden(const Edge& e) const { return Parent::hidden(e); } |
1323 | 1323 |
}; |
1324 | 1324 |
|
1325 | 1325 |
/// \brief Just gives back a subgraph |
1326 | 1326 |
/// |
1327 | 1327 |
/// Just gives back a subgraph |
1328 | 1328 |
template<typename Graph, typename NodeFilterMap, typename ArcFilterMap> |
1329 | 1329 |
SubGraph<const Graph, NodeFilterMap, ArcFilterMap> |
1330 | 1330 |
subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) { |
1331 | 1331 |
return SubGraph<const Graph, NodeFilterMap, ArcFilterMap>(graph, nfm, efm); |
1332 | 1332 |
} |
1333 | 1333 |
|
1334 | 1334 |
template<typename Graph, typename NodeFilterMap, typename ArcFilterMap> |
1335 | 1335 |
SubGraph<const Graph, const NodeFilterMap, ArcFilterMap> |
1336 | 1336 |
subGraph(const Graph& graph, |
1337 | 1337 |
const NodeFilterMap& nfm, ArcFilterMap& efm) { |
1338 | 1338 |
return SubGraph<const Graph, const NodeFilterMap, ArcFilterMap> |
1339 | 1339 |
(graph, nfm, efm); |
1340 | 1340 |
} |
1341 | 1341 |
|
1342 | 1342 |
template<typename Graph, typename NodeFilterMap, typename ArcFilterMap> |
1343 | 1343 |
SubGraph<const Graph, NodeFilterMap, const ArcFilterMap> |
1344 | 1344 |
subGraph(const Graph& graph, |
1345 | 1345 |
NodeFilterMap& nfm, const ArcFilterMap& efm) { |
1346 | 1346 |
return SubGraph<const Graph, NodeFilterMap, const ArcFilterMap> |
1347 | 1347 |
(graph, nfm, efm); |
1348 | 1348 |
} |
1349 | 1349 |
|
1350 | 1350 |
template<typename Graph, typename NodeFilterMap, typename ArcFilterMap> |
1351 | 1351 |
SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap> |
1352 | 1352 |
subGraph(const Graph& graph, |
1353 | 1353 |
const NodeFilterMap& nfm, const ArcFilterMap& efm) { |
1354 | 1354 |
return SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap> |
1355 | 1355 |
(graph, nfm, efm); |
1356 | 1356 |
} |
1357 | 1357 |
|
1358 | 1358 |
/// \ingroup graph_adaptors |
1359 | 1359 |
/// |
1360 | 1360 |
/// \brief An adaptor for hiding nodes from a digraph or a graph. |
1361 | 1361 |
/// |
1362 | 1362 |
/// FilterNodes adaptor hides nodes in a graph or a digraph. A bool |
1363 | 1363 |
/// node map must be specified, which defines the filters for |
1364 | 1364 |
/// nodes. Just the unfiltered nodes and the arcs or edges incident |
1365 | 1365 |
/// to unfiltered nodes are shown in the subdigraph or subgraph. The |
1366 | 1366 |
/// FilterNodes is conform to the \ref concepts::Digraph |
1367 | 1367 |
/// "Digraph concept" or \ref concepts::Graph "Graph concept" depending |
1368 | 1368 |
/// on the \c _Digraph template parameter. If the \c _checked |
1369 | 1369 |
/// parameter is true, then the arc or edges incident to filtered nodes |
1370 | 1370 |
/// are also filtered out. |
1371 | 1371 |
/// |
1372 | 1372 |
/// \tparam _Digraph It must be conform to the \ref |
1373 | 1373 |
/// concepts::Digraph "Digraph concept" or \ref concepts::Graph |
1374 | 1374 |
/// "Graph concept". The type can be specified to be const. |
1375 | 1375 |
/// \tparam _NodeFilterMap A bool valued node map of the the adapted graph. |
1376 | 1376 |
/// \tparam _checked If the parameter is false then the arc or edge |
1377 | 1377 |
/// filtering is not checked with respect to node filter. In this |
1378 | 1378 |
/// case just isolated nodes can be filtered out from the |
1379 | 1379 |
/// graph. |
1380 | 1380 |
#ifdef DOXYGEN |
1381 | 1381 |
template<typename _Digraph, |
1382 | 1382 |
typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>, |
1383 | 1383 |
bool _checked = true> |
1384 | 1384 |
#else |
1385 | 1385 |
template<typename _Digraph, |
1386 | 1386 |
typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>, |
1387 | 1387 |
bool _checked = true, |
1388 | 1388 |
typename Enable = void> |
1389 | 1389 |
#endif |
1390 | 1390 |
class FilterNodes |
1391 | 1391 |
: public SubDigraph<_Digraph, _NodeFilterMap, |
1392 | 1392 |
ConstMap<typename _Digraph::Arc, bool>, _checked> { |
1393 | 1393 |
public: |
1394 | 1394 |
|
1395 | 1395 |
typedef _Digraph Digraph; |
1396 | 1396 |
typedef _NodeFilterMap NodeFilterMap; |
1397 | 1397 |
|
1398 | 1398 |
typedef SubDigraph<Digraph, NodeFilterMap, |
1399 | 1399 |
ConstMap<typename Digraph::Arc, bool>, _checked> |
1400 | 1400 |
Parent; |
1401 | 1401 |
|
1402 | 1402 |
typedef typename Parent::Node Node; |
1403 | 1403 |
|
1404 | 1404 |
protected: |
1405 | 1405 |
ConstMap<typename Digraph::Arc, bool> const_true_map; |
1406 | 1406 |
|
1407 | 1407 |
FilterNodes() : const_true_map(true) { |
1408 | 1408 |
Parent::setArcFilterMap(const_true_map); |
1409 | 1409 |
} |
1410 | 1410 |
|
1411 | 1411 |
public: |
1412 | 1412 |
|
1413 | 1413 |
/// \brief Constructor |
1414 | 1414 |
/// |
1415 | 1415 |
/// Creates an adaptor for the given digraph or graph with |
1416 | 1416 |
/// given node filter map. |
1417 | 1417 |
FilterNodes(Digraph& _digraph, NodeFilterMap& node_filter) : |
1418 | 1418 |
Parent(), const_true_map(true) { |
1419 | 1419 |
Parent::setDigraph(_digraph); |
1420 | 1420 |
Parent::setNodeFilterMap(node_filter); |
1421 | 1421 |
Parent::setArcFilterMap(const_true_map); |
1422 | 1422 |
} |
1423 | 1423 |
|
1424 | 1424 |
/// \brief Hides the node of the graph |
1425 | 1425 |
/// |
1426 | 1426 |
/// This function hides \c n in the digraph or graph, i.e. the iteration |
1427 | 1427 |
/// jumps over it. This is done by simply setting the value of \c n |
1428 | 1428 |
/// to be false in the corresponding node map. |
1429 | 1429 |
void hide(const Node& n) const { Parent::hide(n); } |
1430 | 1430 |
|
1431 | 1431 |
/// \brief Unhides the node of the graph |
1432 | 1432 |
/// |
1433 | 1433 |
/// The value of \c n is set to be true in the node-map which stores |
1434 | 1434 |
/// hide information. If \c n was hidden previuosly, then it is shown |
1435 | 1435 |
/// again |
1436 | 1436 |
void unHide(const Node& n) const { Parent::unHide(n); } |
1437 | 1437 |
|
1438 | 1438 |
/// \brief Returns true if \c n is hidden. |
1439 | 1439 |
/// |
1440 | 1440 |
/// Returns true if \c n is hidden. |
1441 | 1441 |
/// |
1442 | 1442 |
bool hidden(const Node& n) const { return Parent::hidden(n); } |
1443 | 1443 |
|
1444 | 1444 |
}; |
1445 | 1445 |
|
1446 | 1446 |
template<typename _Graph, typename _NodeFilterMap, bool _checked> |
1447 | 1447 |
class FilterNodes<_Graph, _NodeFilterMap, _checked, |
1448 | 1448 |
typename enable_if<UndirectedTagIndicator<_Graph> >::type> |
1449 | 1449 |
: public SubGraph<_Graph, _NodeFilterMap, |
1450 | 1450 |
ConstMap<typename _Graph::Edge, bool>, _checked> { |
1451 | 1451 |
public: |
1452 | 1452 |
typedef _Graph Graph; |
1453 | 1453 |
typedef _NodeFilterMap NodeFilterMap; |
1454 | 1454 |
typedef SubGraph<Graph, NodeFilterMap, |
1455 | 1455 |
ConstMap<typename Graph::Edge, bool> > Parent; |
1456 | 1456 |
|
1457 | 1457 |
typedef typename Parent::Node Node; |
1458 | 1458 |
protected: |
1459 | 1459 |
ConstMap<typename Graph::Edge, bool> const_true_map; |
1460 | 1460 |
|
1461 | 1461 |
FilterNodes() : const_true_map(true) { |
1462 | 1462 |
Parent::setEdgeFilterMap(const_true_map); |
1463 | 1463 |
} |
1464 | 1464 |
|
1465 | 1465 |
public: |
1466 | 1466 |
|
1467 | 1467 |
FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) : |
1468 | 1468 |
Parent(), const_true_map(true) { |
1469 | 1469 |
Parent::setGraph(_graph); |
1470 | 1470 |
Parent::setNodeFilterMap(node_filter_map); |
1471 | 1471 |
Parent::setEdgeFilterMap(const_true_map); |
1472 | 1472 |
} |
1473 | 1473 |
|
1474 | 1474 |
void hide(const Node& n) const { Parent::hide(n); } |
1475 | 1475 |
void unHide(const Node& n) const { Parent::unHide(n); } |
1476 | 1476 |
bool hidden(const Node& n) const { return Parent::hidden(n); } |
1477 | 1477 |
|
1478 | 1478 |
}; |
1479 | 1479 |
|
1480 | 1480 |
|
1481 | 1481 |
/// \brief Just gives back a FilterNodes adaptor |
1482 | 1482 |
/// |
1483 | 1483 |
/// Just gives back a FilterNodes adaptor |
1484 | 1484 |
template<typename Digraph, typename NodeFilterMap> |
1485 | 1485 |
FilterNodes<const Digraph, NodeFilterMap> |
1486 | 1486 |
filterNodes(const Digraph& digraph, NodeFilterMap& nfm) { |
1487 | 1487 |
return FilterNodes<const Digraph, NodeFilterMap>(digraph, nfm); |
1488 | 1488 |
} |
1489 | 1489 |
|
1490 | 1490 |
template<typename Digraph, typename NodeFilterMap> |
1491 | 1491 |
FilterNodes<const Digraph, const NodeFilterMap> |
1492 | 1492 |
filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) { |
1493 | 1493 |
return FilterNodes<const Digraph, const NodeFilterMap>(digraph, nfm); |
1494 | 1494 |
} |
1495 | 1495 |
|
1496 | 1496 |
/// \ingroup graph_adaptors |
1497 | 1497 |
/// |
1498 | 1498 |
/// \brief An adaptor for hiding arcs from a digraph. |
1499 | 1499 |
/// |
1500 | 1500 |
/// FilterArcs adaptor hides arcs in a digraph. A bool arc map must |
1501 | 1501 |
/// be specified, which defines the filters for arcs. Just the |
1502 | 1502 |
/// unfiltered arcs are shown in the subdigraph. The FilterArcs is |
1503 | 1503 |
/// conform to the \ref concepts::Digraph "Digraph concept". |
1504 | 1504 |
/// |
1505 | 1505 |
/// \tparam _Digraph It must be conform to the \ref concepts::Digraph |
1506 | 1506 |
/// "Digraph concept". The type can be specified to be const. |
1507 | 1507 |
/// \tparam _ArcFilterMap A bool valued arc map of the the adapted |
1508 | 1508 |
/// graph. |
1509 | 1509 |
template<typename _Digraph, typename _ArcFilterMap> |
1510 | 1510 |
class FilterArcs : |
1511 | 1511 |
public SubDigraph<_Digraph, ConstMap<typename _Digraph::Node, bool>, |
1512 | 1512 |
_ArcFilterMap, false> { |
1513 | 1513 |
public: |
1514 | 1514 |
typedef _Digraph Digraph; |
1515 | 1515 |
typedef _ArcFilterMap ArcFilterMap; |
1516 | 1516 |
|
1517 | 1517 |
typedef SubDigraph<Digraph, ConstMap<typename Digraph::Node, bool>, |
1518 | 1518 |
ArcFilterMap, false> Parent; |
1519 | 1519 |
|
1520 | 1520 |
typedef typename Parent::Arc Arc; |
1521 | 1521 |
|
1522 | 1522 |
protected: |
1523 | 1523 |
ConstMap<typename Digraph::Node, bool> const_true_map; |
1524 | 1524 |
|
1525 | 1525 |
FilterArcs() : const_true_map(true) { |
1526 | 1526 |
Parent::setNodeFilterMap(const_true_map); |
1527 | 1527 |
} |
1528 | 1528 |
|
1529 | 1529 |
public: |
1530 | 1530 |
|
1531 | 1531 |
/// \brief Constructor |
1532 | 1532 |
/// |
1533 | 1533 |
/// Creates a FilterArcs adaptor for the given graph with |
1534 | 1534 |
/// given arc map filter. |
1535 | 1535 |
FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter) |
1536 | 1536 |
: Parent(), const_true_map(true) { |
1537 | 1537 |
Parent::setDigraph(digraph); |
1538 | 1538 |
Parent::setNodeFilterMap(const_true_map); |
1539 | 1539 |
Parent::setArcFilterMap(arc_filter); |
1540 | 1540 |
} |
1541 | 1541 |
|
1542 | 1542 |
/// \brief Hides the arc of the graph |
1543 | 1543 |
/// |
1544 | 1544 |
/// This function hides \c a in the graph, i.e. the iteration |
1545 | 1545 |
/// jumps over it. This is done by simply setting the value of \c a |
1546 | 1546 |
/// to be false in the corresponding arc map. |
1547 | 1547 |
void hide(const Arc& a) const { Parent::hide(a); } |
1548 | 1548 |
|
1549 | 1549 |
/// \brief Unhides the arc of the graph |
1550 | 1550 |
/// |
1551 | 1551 |
/// The value of \c a is set to be true in the arc-map which stores |
1552 | 1552 |
/// hide information. If \c a was hidden previuosly, then it is shown |
1553 | 1553 |
/// again |
1554 | 1554 |
void unHide(const Arc& a) const { Parent::unHide(a); } |
1555 | 1555 |
|
1556 | 1556 |
/// \brief Returns true if \c a is hidden. |
1557 | 1557 |
/// |
1558 | 1558 |
/// Returns true if \c a is hidden. |
1559 | 1559 |
/// |
1560 | 1560 |
bool hidden(const Arc& a) const { return Parent::hidden(a); } |
1561 | 1561 |
|
1562 | 1562 |
}; |
1563 | 1563 |
|
1564 | 1564 |
/// \brief Just gives back an FilterArcs adaptor |
1565 | 1565 |
/// |
1566 | 1566 |
/// Just gives back an FilterArcs adaptor |
1567 | 1567 |
template<typename Digraph, typename ArcFilterMap> |
1568 | 1568 |
FilterArcs<const Digraph, ArcFilterMap> |
1569 | 1569 |
filterArcs(const Digraph& digraph, ArcFilterMap& afm) { |
1570 | 1570 |
return FilterArcs<const Digraph, ArcFilterMap>(digraph, afm); |
1571 | 1571 |
} |
1572 | 1572 |
|
1573 | 1573 |
template<typename Digraph, typename ArcFilterMap> |
1574 | 1574 |
FilterArcs<const Digraph, const ArcFilterMap> |
1575 | 1575 |
filterArcs(const Digraph& digraph, const ArcFilterMap& afm) { |
1576 | 1576 |
return FilterArcs<const Digraph, const ArcFilterMap>(digraph, afm); |
1577 | 1577 |
} |
1578 | 1578 |
|
1579 | 1579 |
/// \ingroup graph_adaptors |
1580 | 1580 |
/// |
1581 | 1581 |
/// \brief An adaptor for hiding edges from a graph. |
1582 | 1582 |
/// |
1583 | 1583 |
/// FilterEdges adaptor hides edges in a digraph. A bool edge map must |
1584 | 1584 |
/// be specified, which defines the filters for edges. Just the |
1585 | 1585 |
/// unfiltered edges are shown in the subdigraph. The FilterEdges is |
1586 | 1586 |
/// conform to the \ref concepts::Graph "Graph concept". |
1587 | 1587 |
/// |
1588 | 1588 |
/// \tparam _Graph It must be conform to the \ref concepts::Graph |
1589 | 1589 |
/// "Graph concept". The type can be specified to be const. |
1590 | 1590 |
/// \tparam _EdgeFilterMap A bool valued edge map of the the adapted |
1591 | 1591 |
/// graph. |
1592 | 1592 |
template<typename _Graph, typename _EdgeFilterMap> |
1593 | 1593 |
class FilterEdges : |
1594 | 1594 |
public SubGraph<_Graph, ConstMap<typename _Graph::Node,bool>, |
1595 | 1595 |
_EdgeFilterMap, false> { |
1596 | 1596 |
public: |
1597 | 1597 |
typedef _Graph Graph; |
1598 | 1598 |
typedef _EdgeFilterMap EdgeFilterMap; |
1599 | 1599 |
typedef SubGraph<Graph, ConstMap<typename Graph::Node,bool>, |
1600 | 1600 |
EdgeFilterMap, false> Parent; |
1601 | 1601 |
typedef typename Parent::Edge Edge; |
1602 | 1602 |
protected: |
1603 | 1603 |
ConstMap<typename Graph::Node, bool> const_true_map; |
1604 | 1604 |
|
1605 | 1605 |
FilterEdges() : const_true_map(true) { |
1606 | 1606 |
Parent::setNodeFilterMap(const_true_map); |
1607 | 1607 |
} |
1608 | 1608 |
|
1609 | 1609 |
public: |
1610 | 1610 |
|
1611 | 1611 |
/// \brief Constructor |
1612 | 1612 |
/// |
1613 | 1613 |
/// Creates a FilterEdges adaptor for the given graph with |
1614 | 1614 |
/// given edge map filters. |
1615 | 1615 |
FilterEdges(Graph& _graph, EdgeFilterMap& edge_filter_map) : |
1616 | 1616 |
Parent(), const_true_map(true) { |
1617 | 1617 |
Parent::setGraph(_graph); |
1618 | 1618 |
Parent::setNodeFilterMap(const_true_map); |
1619 | 1619 |
Parent::setEdgeFilterMap(edge_filter_map); |
1620 | 1620 |
} |
1621 | 1621 |
|
1622 | 1622 |
/// \brief Hides the edge of the graph |
1623 | 1623 |
/// |
1624 | 1624 |
/// This function hides \c e in the graph, i.e. the iteration |
1625 | 1625 |
/// jumps over it. This is done by simply setting the value of \c e |
1626 | 1626 |
/// to be false in the corresponding edge-map. |
1627 | 1627 |
void hide(const Edge& e) const { Parent::hide(e); } |
1628 | 1628 |
|
1629 | 1629 |
/// \brief Unhides the edge of the graph |
1630 | 1630 |
/// |
1631 | 1631 |
/// The value of \c e is set to be true in the edge-map which stores |
1632 | 1632 |
/// hide information. If \c e was hidden previuosly, then it is shown |
1633 | 1633 |
/// again |
1634 | 1634 |
void unHide(const Edge& e) const { Parent::unHide(e); } |
1635 | 1635 |
|
1636 | 1636 |
/// \brief Returns true if \c e is hidden. |
1637 | 1637 |
/// |
1638 | 1638 |
/// Returns true if \c e is hidden. |
1639 | 1639 |
/// |
1640 | 1640 |
bool hidden(const Edge& e) const { return Parent::hidden(e); } |
1641 | 1641 |
|
1642 | 1642 |
}; |
1643 | 1643 |
|
1644 | 1644 |
/// \brief Just gives back a FilterEdges adaptor |
1645 | 1645 |
/// |
1646 | 1646 |
/// Just gives back a FilterEdges adaptor |
1647 | 1647 |
template<typename Graph, typename EdgeFilterMap> |
1648 | 1648 |
FilterEdges<const Graph, EdgeFilterMap> |
1649 | 1649 |
filterEdges(const Graph& graph, EdgeFilterMap& efm) { |
1650 | 1650 |
return FilterEdges<const Graph, EdgeFilterMap>(graph, efm); |
1651 | 1651 |
} |
1652 | 1652 |
|
1653 | 1653 |
template<typename Graph, typename EdgeFilterMap> |
1654 | 1654 |
FilterEdges<const Graph, const EdgeFilterMap> |
1655 | 1655 |
filterEdges(const Graph& graph, const EdgeFilterMap& efm) { |
1656 | 1656 |
return FilterEdges<const Graph, const EdgeFilterMap>(graph, efm); |
1657 | 1657 |
} |
1658 | 1658 |
|
1659 | 1659 |
template <typename _Digraph> |
1660 | 1660 |
class UndirectorBase { |
1661 | 1661 |
public: |
1662 | 1662 |
typedef _Digraph Digraph; |
1663 | 1663 |
typedef UndirectorBase Adaptor; |
1664 | 1664 |
|
1665 | 1665 |
typedef True UndirectedTag; |
1666 | 1666 |
|
1667 | 1667 |
typedef typename Digraph::Arc Edge; |
1668 | 1668 |
typedef typename Digraph::Node Node; |
1669 | 1669 |
|
1670 | 1670 |
class Arc : public Edge { |
1671 | 1671 |
friend class UndirectorBase; |
1672 | 1672 |
protected: |
1673 | 1673 |
bool _forward; |
1674 | 1674 |
|
1675 | 1675 |
Arc(const Edge& edge, bool forward) : |
1676 | 1676 |
Edge(edge), _forward(forward) {} |
1677 | 1677 |
|
1678 | 1678 |
public: |
1679 | 1679 |
Arc() {} |
1680 | 1680 |
|
1681 | 1681 |
Arc(Invalid) : Edge(INVALID), _forward(true) {} |
1682 | 1682 |
|
1683 | 1683 |
bool operator==(const Arc &other) const { |
1684 | 1684 |
return _forward == other._forward && |
1685 | 1685 |
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other); |
1686 | 1686 |
} |
1687 | 1687 |
bool operator!=(const Arc &other) const { |
1688 | 1688 |
return _forward != other._forward || |
1689 | 1689 |
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other); |
1690 | 1690 |
} |
1691 | 1691 |
bool operator<(const Arc &other) const { |
1692 | 1692 |
return _forward < other._forward || |
1693 | 1693 |
(_forward == other._forward && |
1694 | 1694 |
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other)); |
1695 | 1695 |
} |
1696 | 1696 |
}; |
1697 | 1697 |
|
1698 | 1698 |
|
1699 | 1699 |
|
1700 | 1700 |
void first(Node& n) const { |
1701 | 1701 |
_digraph->first(n); |
1702 | 1702 |
} |
1703 | 1703 |
|
1704 | 1704 |
void next(Node& n) const { |
1705 | 1705 |
_digraph->next(n); |
1706 | 1706 |
} |
1707 | 1707 |
|
1708 | 1708 |
void first(Arc& a) const { |
1709 | 1709 |
_digraph->first(a); |
1710 | 1710 |
a._forward = true; |
1711 | 1711 |
} |
1712 | 1712 |
|
1713 | 1713 |
void next(Arc& a) const { |
1714 | 1714 |
if (a._forward) { |
1715 | 1715 |
a._forward = false; |
1716 | 1716 |
} else { |
1717 | 1717 |
_digraph->next(a); |
1718 | 1718 |
a._forward = true; |
1719 | 1719 |
} |
1720 | 1720 |
} |
1721 | 1721 |
|
1722 | 1722 |
void first(Edge& e) const { |
1723 | 1723 |
_digraph->first(e); |
1724 | 1724 |
} |
1725 | 1725 |
|
1726 | 1726 |
void next(Edge& e) const { |
1727 | 1727 |
_digraph->next(e); |
1728 | 1728 |
} |
1729 | 1729 |
|
1730 | 1730 |
void firstOut(Arc& a, const Node& n) const { |
1731 | 1731 |
_digraph->firstIn(a, n); |
1732 | 1732 |
if( static_cast<const Edge&>(a) != INVALID ) { |
1733 | 1733 |
a._forward = false; |
1734 | 1734 |
} else { |
1735 | 1735 |
_digraph->firstOut(a, n); |
1736 | 1736 |
a._forward = true; |
1737 | 1737 |
} |
1738 | 1738 |
} |
1739 | 1739 |
void nextOut(Arc &a) const { |
1740 | 1740 |
if (!a._forward) { |
1741 | 1741 |
Node n = _digraph->target(a); |
1742 | 1742 |
_digraph->nextIn(a); |
1743 | 1743 |
if (static_cast<const Edge&>(a) == INVALID ) { |
1744 | 1744 |
_digraph->firstOut(a, n); |
1745 | 1745 |
a._forward = true; |
1746 | 1746 |
} |
1747 | 1747 |
} |
1748 | 1748 |
else { |
1749 | 1749 |
_digraph->nextOut(a); |
1750 | 1750 |
} |
1751 | 1751 |
} |
1752 | 1752 |
|
1753 | 1753 |
void firstIn(Arc &a, const Node &n) const { |
1754 | 1754 |
_digraph->firstOut(a, n); |
1755 | 1755 |
if (static_cast<const Edge&>(a) != INVALID ) { |
1756 | 1756 |
a._forward = false; |
1757 | 1757 |
} else { |
1758 | 1758 |
_digraph->firstIn(a, n); |
1759 | 1759 |
a._forward = true; |
1760 | 1760 |
} |
1761 | 1761 |
} |
1762 | 1762 |
void nextIn(Arc &a) const { |
1763 | 1763 |
if (!a._forward) { |
1764 | 1764 |
Node n = _digraph->source(a); |
1765 | 1765 |
_digraph->nextOut(a); |
1766 | 1766 |
if( static_cast<const Edge&>(a) == INVALID ) { |
1767 | 1767 |
_digraph->firstIn(a, n); |
1768 | 1768 |
a._forward = true; |
1769 | 1769 |
} |
1770 | 1770 |
} |
1771 | 1771 |
else { |
1772 | 1772 |
_digraph->nextIn(a); |
1773 | 1773 |
} |
1774 | 1774 |
} |
1775 | 1775 |
|
1776 | 1776 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
1777 | 1777 |
d = true; |
1778 | 1778 |
_digraph->firstOut(e, n); |
1779 | 1779 |
if (e != INVALID) return; |
1780 | 1780 |
d = false; |
1781 | 1781 |
_digraph->firstIn(e, n); |
1782 | 1782 |
} |
1783 | 1783 |
|
1784 | 1784 |
void nextInc(Edge &e, bool &d) const { |
1785 | 1785 |
if (d) { |
1786 | 1786 |
Node s = _digraph->source(e); |
1787 | 1787 |
_digraph->nextOut(e); |
1788 | 1788 |
if (e != INVALID) return; |
1789 | 1789 |
d = false; |
1790 | 1790 |
_digraph->firstIn(e, s); |
1791 | 1791 |
} else { |
1792 | 1792 |
_digraph->nextIn(e); |
1793 | 1793 |
} |
1794 | 1794 |
} |
1795 | 1795 |
|
1796 | 1796 |
Node u(const Edge& e) const { |
1797 | 1797 |
return _digraph->source(e); |
1798 | 1798 |
} |
1799 | 1799 |
|
1800 | 1800 |
Node v(const Edge& e) const { |
1801 | 1801 |
return _digraph->target(e); |
1802 | 1802 |
} |
1803 | 1803 |
|
1804 | 1804 |
Node source(const Arc &a) const { |
1805 | 1805 |
return a._forward ? _digraph->source(a) : _digraph->target(a); |
1806 | 1806 |
} |
1807 | 1807 |
|
1808 | 1808 |
Node target(const Arc &a) const { |
1809 | 1809 |
return a._forward ? _digraph->target(a) : _digraph->source(a); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
static Arc direct(const Edge &e, bool d) { |
1813 | 1813 |
return Arc(e, d); |
1814 | 1814 |
} |
1815 | 1815 |
Arc direct(const Edge &e, const Node& n) const { |
1816 | 1816 |
return Arc(e, _digraph->source(e) == n); |
1817 | 1817 |
} |
1818 | 1818 |
|
1819 | 1819 |
static bool direction(const Arc &a) { return a._forward; } |
1820 | 1820 |
|
1821 | 1821 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
1822 | 1822 |
Arc arcFromId(int ix) const { |
1823 | 1823 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
1824 | 1824 |
} |
1825 | 1825 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } |
1826 | 1826 |
|
1827 | 1827 |
int id(const Node &n) const { return _digraph->id(n); } |
1828 | 1828 |
int id(const Arc &a) const { |
1829 | 1829 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
1830 | 1830 |
} |
1831 | 1831 |
int id(const Edge &e) const { return _digraph->id(e); } |
1832 | 1832 |
|
1833 | 1833 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
1834 | 1834 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } |
1835 | 1835 |
int maxEdgeId() const { return _digraph->maxArcId(); } |
1836 | 1836 |
|
1837 | 1837 |
Node addNode() { return _digraph->addNode(); } |
1838 | 1838 |
Edge addEdge(const Node& u, const Node& v) { |
1839 | 1839 |
return _digraph->addArc(u, v); |
1840 | 1840 |
} |
1841 | 1841 |
|
1842 | 1842 |
void erase(const Node& i) { _digraph->erase(i); } |
1843 | 1843 |
void erase(const Edge& i) { _digraph->erase(i); } |
1844 | 1844 |
|
1845 | 1845 |
void clear() { _digraph->clear(); } |
1846 | 1846 |
|
1847 | 1847 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
1848 | 1848 |
int nodeNum() const { return 2 * _digraph->arcNum(); } |
1849 | 1849 |
typedef EdgeNumTagIndicator<Digraph> EdgeNumTag; |
1850 | 1850 |
int arcNum() const { return 2 * _digraph->arcNum(); } |
1851 | 1851 |
int edgeNum() const { return _digraph->arcNum(); } |
1852 | 1852 |
|
1853 | 1853 |
typedef FindEdgeTagIndicator<Digraph> FindEdgeTag; |
1854 | 1854 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
1855 | 1855 |
if (p == INVALID) { |
1856 | 1856 |
Edge arc = _digraph->findArc(s, t); |
1857 | 1857 |
if (arc != INVALID) return direct(arc, true); |
1858 | 1858 |
arc = _digraph->findArc(t, s); |
1859 | 1859 |
if (arc != INVALID) return direct(arc, false); |
1860 | 1860 |
} else if (direction(p)) { |
1861 | 1861 |
Edge arc = _digraph->findArc(s, t, p); |
1862 | 1862 |
if (arc != INVALID) return direct(arc, true); |
1863 | 1863 |
arc = _digraph->findArc(t, s); |
1864 | 1864 |
if (arc != INVALID) return direct(arc, false); |
1865 | 1865 |
} else { |
1866 | 1866 |
Edge arc = _digraph->findArc(t, s, p); |
1867 | 1867 |
if (arc != INVALID) return direct(arc, false); |
1868 | 1868 |
} |
1869 | 1869 |
return INVALID; |
1870 | 1870 |
} |
1871 | 1871 |
|
1872 | 1872 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
1873 | 1873 |
if (s != t) { |
1874 | 1874 |
if (p == INVALID) { |
1875 | 1875 |
Edge arc = _digraph->findArc(s, t); |
1876 | 1876 |
if (arc != INVALID) return arc; |
1877 | 1877 |
arc = _digraph->findArc(t, s); |
1878 | 1878 |
if (arc != INVALID) return arc; |
1879 | 1879 |
} else if (_digraph->s(p) == s) { |
1880 | 1880 |
Edge arc = _digraph->findArc(s, t, p); |
1881 | 1881 |
if (arc != INVALID) return arc; |
1882 | 1882 |
arc = _digraph->findArc(t, s); |
1883 | 1883 |
if (arc != INVALID) return arc; |
1884 | 1884 |
} else { |
1885 | 1885 |
Edge arc = _digraph->findArc(t, s, p); |
1886 | 1886 |
if (arc != INVALID) return arc; |
1887 | 1887 |
} |
1888 | 1888 |
} else { |
1889 | 1889 |
return _digraph->findArc(s, t, p); |
1890 | 1890 |
} |
1891 | 1891 |
return INVALID; |
1892 | 1892 |
} |
1893 | 1893 |
|
1894 | 1894 |
private: |
1895 | 1895 |
|
1896 | 1896 |
template <typename _Value> |
1897 | 1897 |
class ArcMapBase { |
1898 | 1898 |
private: |
1899 | 1899 |
|
1900 | 1900 |
typedef typename Digraph::template ArcMap<_Value> MapImpl; |
1901 | 1901 |
|
1902 | 1902 |
public: |
1903 | 1903 |
|
1904 | 1904 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
1905 | 1905 |
|
1906 | 1906 |
typedef _Value Value; |
1907 | 1907 |
typedef Arc Key; |
1908 | 1908 |
|
1909 | 1909 |
ArcMapBase(const Adaptor& adaptor) : |
1910 | 1910 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
1911 | 1911 |
|
1912 | 1912 |
ArcMapBase(const Adaptor& adaptor, const Value& v) |
1913 | 1913 |
: _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {} |
1914 | 1914 |
|
1915 | 1915 |
void set(const Arc& a, const Value& v) { |
1916 | 1916 |
if (direction(a)) { |
1917 | 1917 |
_forward.set(a, v); |
1918 | 1918 |
} else { |
1919 | 1919 |
_backward.set(a, v); |
1920 | 1920 |
} |
1921 | 1921 |
} |
1922 | 1922 |
|
1923 | 1923 |
typename MapTraits<MapImpl>::ConstReturnValue |
1924 | 1924 |
operator[](const Arc& a) const { |
1925 | 1925 |
if (direction(a)) { |
1926 | 1926 |
return _forward[a]; |
1927 | 1927 |
} else { |
1928 | 1928 |
return _backward[a]; |
1929 | 1929 |
} |
1930 | 1930 |
} |
1931 | 1931 |
|
1932 | 1932 |
typename MapTraits<MapImpl>::ReturnValue |
1933 | 1933 |
operator[](const Arc& a) { |
1934 | 1934 |
if (direction(a)) { |
1935 | 1935 |
return _forward[a]; |
1936 | 1936 |
} else { |
1937 | 1937 |
return _backward[a]; |
1938 | 1938 |
} |
1939 | 1939 |
} |
1940 | 1940 |
|
1941 | 1941 |
protected: |
1942 | 1942 |
|
1943 | 1943 |
MapImpl _forward, _backward; |
1944 | 1944 |
|
1945 | 1945 |
}; |
1946 | 1946 |
|
1947 | 1947 |
public: |
1948 | 1948 |
|
1949 | 1949 |
template <typename _Value> |
1950 | 1950 |
class NodeMap : public Digraph::template NodeMap<_Value> { |
1951 | 1951 |
public: |
1952 | 1952 |
|
1953 | 1953 |
typedef _Value Value; |
1954 | 1954 |
typedef typename Digraph::template NodeMap<Value> Parent; |
1955 | 1955 |
|
1956 | 1956 |
explicit NodeMap(const Adaptor& adaptor) |
1957 | 1957 |
: Parent(*adaptor._digraph) {} |
1958 | 1958 |
|
1959 | 1959 |
NodeMap(const Adaptor& adaptor, const _Value& value) |
1960 | 1960 |
: Parent(*adaptor._digraph, value) { } |
1961 | 1961 |
|
1962 | 1962 |
private: |
1963 | 1963 |
NodeMap& operator=(const NodeMap& cmap) { |
1964 | 1964 |
return operator=<NodeMap>(cmap); |
1965 | 1965 |
} |
1966 | 1966 |
|
1967 | 1967 |
template <typename CMap> |
1968 | 1968 |
NodeMap& operator=(const CMap& cmap) { |
1969 | 1969 |
Parent::operator=(cmap); |
1970 | 1970 |
return *this; |
1971 | 1971 |
} |
1972 | 1972 |
|
1973 | 1973 |
}; |
1974 | 1974 |
|
1975 | 1975 |
template <typename _Value> |
1976 | 1976 |
class ArcMap |
1977 | 1977 |
: public SubMapExtender<Adaptor, ArcMapBase<_Value> > |
1978 | 1978 |
{ |
1979 | 1979 |
public: |
1980 | 1980 |
typedef _Value Value; |
1981 | 1981 |
typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent; |
1982 | 1982 |
|
1983 | 1983 |
ArcMap(const Adaptor& adaptor) |
1984 | 1984 |
: Parent(adaptor) {} |
1985 | 1985 |
|
1986 | 1986 |
ArcMap(const Adaptor& adaptor, const Value& value) |
1987 | 1987 |
: Parent(adaptor, value) {} |
1988 | 1988 |
|
1989 | 1989 |
private: |
1990 | 1990 |
ArcMap& operator=(const ArcMap& cmap) { |
1991 | 1991 |
return operator=<ArcMap>(cmap); |
1992 | 1992 |
} |
1993 | 1993 |
|
1994 | 1994 |
template <typename CMap> |
1995 | 1995 |
ArcMap& operator=(const CMap& cmap) { |
1996 | 1996 |
Parent::operator=(cmap); |
1997 | 1997 |
return *this; |
1998 | 1998 |
} |
1999 | 1999 |
}; |
2000 | 2000 |
|
2001 | 2001 |
template <typename _Value> |
2002 | 2002 |
class EdgeMap : public Digraph::template ArcMap<_Value> { |
2003 | 2003 |
public: |
2004 | 2004 |
|
2005 | 2005 |
typedef _Value Value; |
2006 | 2006 |
typedef typename Digraph::template ArcMap<Value> Parent; |
2007 | 2007 |
|
2008 | 2008 |
explicit EdgeMap(const Adaptor& adaptor) |
2009 | 2009 |
: Parent(*adaptor._digraph) {} |
2010 | 2010 |
|
2011 | 2011 |
EdgeMap(const Adaptor& adaptor, const Value& value) |
2012 | 2012 |
: Parent(*adaptor._digraph, value) {} |
2013 | 2013 |
|
2014 | 2014 |
private: |
2015 | 2015 |
EdgeMap& operator=(const EdgeMap& cmap) { |
2016 | 2016 |
return operator=<EdgeMap>(cmap); |
2017 | 2017 |
} |
2018 | 2018 |
|
2019 | 2019 |
template <typename CMap> |
2020 | 2020 |
EdgeMap& operator=(const CMap& cmap) { |
2021 | 2021 |
Parent::operator=(cmap); |
2022 | 2022 |
return *this; |
2023 | 2023 |
} |
2024 | 2024 |
|
2025 | 2025 |
}; |
2026 | 2026 |
|
2027 | 2027 |
typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier; |
2028 | 2028 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2029 | 2029 |
|
2030 | 2030 |
protected: |
2031 | 2031 |
|
2032 | 2032 |
UndirectorBase() : _digraph(0) {} |
2033 | 2033 |
|
2034 | 2034 |
Digraph* _digraph; |
2035 | 2035 |
|
2036 | 2036 |
void setDigraph(Digraph& digraph) { |
2037 | 2037 |
_digraph = &digraph; |
2038 | 2038 |
} |
2039 | 2039 |
|
2040 | 2040 |
}; |
2041 | 2041 |
|
2042 | 2042 |
/// \ingroup graph_adaptors |
2043 | 2043 |
/// |
2044 | 2044 |
/// \brief Undirect the graph |
2045 | 2045 |
/// |
2046 | 2046 |
/// This adaptor makes an undirected graph from a directed |
2047 | 2047 |
/// graph. All arcs of the underlying digraph will be showed in the |
2048 | 2048 |
/// adaptor as an edge. The Orienter adaptor is conform to the \ref |
2049 | 2049 |
/// concepts::Graph "Graph concept". |
2050 | 2050 |
/// |
2051 | 2051 |
/// \tparam _Digraph It must be conform to the \ref |
2052 | 2052 |
/// concepts::Digraph "Digraph concept". The type can be specified |
2053 | 2053 |
/// to const. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/arg_parser.h> |
20 | 20 |
|
21 | 21 |
namespace lemon { |
22 | 22 |
|
23 | 23 |
void ArgParser::_showHelp(void *p) |
24 | 24 |
{ |
25 | 25 |
(static_cast<ArgParser*>(p))->showHelp(); |
26 | 26 |
exit(1); |
27 | 27 |
} |
28 | 28 |
|
29 | 29 |
ArgParser::ArgParser(int argc, const char * const *argv) |
30 | 30 |
:_argc(argc), _argv(argv), _command_name(argv[0]) { |
31 | 31 |
funcOption("-help","Print a short help message",_showHelp,this); |
32 | 32 |
synonym("help","-help"); |
33 | 33 |
synonym("h","-help"); |
34 | 34 |
} |
35 | 35 |
|
36 | 36 |
ArgParser::~ArgParser() |
37 | 37 |
{ |
38 | 38 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
39 | 39 |
if(i->second.self_delete) |
40 | 40 |
switch(i->second.type) { |
41 | 41 |
case BOOL: |
42 | 42 |
delete i->second.bool_p; |
43 | 43 |
break; |
44 | 44 |
case STRING: |
45 | 45 |
delete i->second.string_p; |
46 | 46 |
break; |
47 | 47 |
case DOUBLE: |
48 | 48 |
delete i->second.double_p; |
49 | 49 |
break; |
50 | 50 |
case INTEGER: |
51 | 51 |
delete i->second.int_p; |
52 | 52 |
break; |
53 | 53 |
case UNKNOWN: |
54 | 54 |
break; |
55 | 55 |
case FUNC: |
56 | 56 |
break; |
57 | 57 |
} |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
|
61 | 61 |
ArgParser &ArgParser::intOption(const std::string &name, |
62 | 62 |
const std::string &help, |
63 | 63 |
int value, bool obl) |
64 | 64 |
{ |
65 | 65 |
ParData p; |
66 | 66 |
p.int_p=new int(value); |
67 | 67 |
p.self_delete=true; |
68 | 68 |
p.help=help; |
69 | 69 |
p.type=INTEGER; |
70 | 70 |
p.mandatory=obl; |
71 | 71 |
_opts[name]=p; |
72 | 72 |
return *this; |
73 | 73 |
} |
74 | 74 |
|
75 | 75 |
ArgParser &ArgParser::doubleOption(const std::string &name, |
76 | 76 |
const std::string &help, |
77 | 77 |
double value, bool obl) |
78 | 78 |
{ |
79 | 79 |
ParData p; |
80 | 80 |
p.double_p=new double(value); |
81 | 81 |
p.self_delete=true; |
82 | 82 |
p.help=help; |
83 | 83 |
p.type=DOUBLE; |
84 | 84 |
p.mandatory=obl; |
85 | 85 |
_opts[name]=p; |
86 | 86 |
return *this; |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
ArgParser &ArgParser::boolOption(const std::string &name, |
90 | 90 |
const std::string &help, |
91 | 91 |
bool value, bool obl) |
92 | 92 |
{ |
93 | 93 |
ParData p; |
94 | 94 |
p.bool_p=new bool(value); |
95 | 95 |
p.self_delete=true; |
96 | 96 |
p.help=help; |
97 | 97 |
p.type=BOOL; |
98 | 98 |
p.mandatory=obl; |
99 | 99 |
_opts[name]=p; |
100 | 100 |
return *this; |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
ArgParser &ArgParser::stringOption(const std::string &name, |
104 | 104 |
const std::string &help, |
105 | 105 |
std::string value, bool obl) |
106 | 106 |
{ |
107 | 107 |
ParData p; |
108 | 108 |
p.string_p=new std::string(value); |
109 | 109 |
p.self_delete=true; |
110 | 110 |
p.help=help; |
111 | 111 |
p.type=STRING; |
112 | 112 |
p.mandatory=obl; |
113 | 113 |
_opts[name]=p; |
114 | 114 |
return *this; |
115 | 115 |
} |
116 | 116 |
|
117 | 117 |
ArgParser &ArgParser::refOption(const std::string &name, |
118 | 118 |
const std::string &help, |
119 | 119 |
int &ref, bool obl) |
120 | 120 |
{ |
121 | 121 |
ParData p; |
122 | 122 |
p.int_p=&ref; |
123 | 123 |
p.self_delete=false; |
124 | 124 |
p.help=help; |
125 | 125 |
p.type=INTEGER; |
126 | 126 |
p.mandatory=obl; |
127 | 127 |
_opts[name]=p; |
128 | 128 |
return *this; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
ArgParser &ArgParser::refOption(const std::string &name, |
132 | 132 |
const std::string &help, |
133 | 133 |
double &ref, bool obl) |
134 | 134 |
{ |
135 | 135 |
ParData p; |
136 | 136 |
p.double_p=&ref; |
137 | 137 |
p.self_delete=false; |
138 | 138 |
p.help=help; |
139 | 139 |
p.type=DOUBLE; |
140 | 140 |
p.mandatory=obl; |
141 | 141 |
_opts[name]=p; |
142 | 142 |
return *this; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
ArgParser &ArgParser::refOption(const std::string &name, |
146 | 146 |
const std::string &help, |
147 | 147 |
bool &ref, bool obl) |
148 | 148 |
{ |
149 | 149 |
ParData p; |
150 | 150 |
p.bool_p=&ref; |
151 | 151 |
p.self_delete=false; |
152 | 152 |
p.help=help; |
153 | 153 |
p.type=BOOL; |
154 | 154 |
p.mandatory=obl; |
155 | 155 |
_opts[name]=p; |
156 | 156 |
|
157 | 157 |
ref = false; |
158 | 158 |
|
159 | 159 |
return *this; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
ArgParser &ArgParser::refOption(const std::string &name, |
163 | 163 |
const std::string &help, |
164 | 164 |
std::string &ref, bool obl) |
165 | 165 |
{ |
166 | 166 |
ParData p; |
167 | 167 |
p.string_p=&ref; |
168 | 168 |
p.self_delete=false; |
169 | 169 |
p.help=help; |
170 | 170 |
p.type=STRING; |
171 | 171 |
p.mandatory=obl; |
172 | 172 |
_opts[name]=p; |
173 | 173 |
return *this; |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
ArgParser &ArgParser::funcOption(const std::string &name, |
177 | 177 |
const std::string &help, |
178 | 178 |
void (*func)(void *),void *data) |
179 | 179 |
{ |
180 | 180 |
ParData p; |
181 | 181 |
p.func_p.p=func; |
182 | 182 |
p.func_p.data=data; |
183 | 183 |
p.self_delete=false; |
184 | 184 |
p.help=help; |
185 | 185 |
p.type=FUNC; |
186 | 186 |
p.mandatory=false; |
187 | 187 |
_opts[name]=p; |
188 | 188 |
return *this; |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
ArgParser &ArgParser::optionGroup(const std::string &group, |
192 | 192 |
const std::string &opt) |
193 | 193 |
{ |
194 | 194 |
Opts::iterator i = _opts.find(opt); |
195 | 195 |
LEMON_ASSERT(i!=_opts.end(), "Unknown option: '"+opt+"'"); |
196 | 196 |
LEMON_ASSERT(!(i->second.ingroup), |
197 | 197 |
"Option already in option group: '"+opt+"'"); |
198 | 198 |
GroupData &g=_groups[group]; |
199 | 199 |
g.opts.push_back(opt); |
200 | 200 |
i->second.ingroup=true; |
201 | 201 |
return *this; |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
ArgParser &ArgParser::onlyOneGroup(const std::string &group) |
205 | 205 |
{ |
206 | 206 |
GroupData &g=_groups[group]; |
207 | 207 |
g.only_one=true; |
208 | 208 |
return *this; |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
ArgParser &ArgParser::synonym(const std::string &syn, |
212 | 212 |
const std::string &opt) |
213 | 213 |
{ |
214 | 214 |
Opts::iterator o = _opts.find(opt); |
215 | 215 |
Opts::iterator s = _opts.find(syn); |
216 | 216 |
LEMON_ASSERT(o!=_opts.end(), "Unknown option: '"+opt+"'"); |
217 | 217 |
LEMON_ASSERT(s==_opts.end(), "Option already used: '"+syn+"'"); |
218 | 218 |
ParData p; |
219 | 219 |
p.help=opt; |
220 | 220 |
p.mandatory=false; |
221 | 221 |
p.syn=true; |
222 | 222 |
_opts[syn]=p; |
223 | 223 |
o->second.has_syn=true; |
224 | 224 |
return *this; |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
ArgParser &ArgParser::mandatoryGroup(const std::string &group) |
228 | 228 |
{ |
229 | 229 |
GroupData &g=_groups[group]; |
230 | 230 |
g.mandatory=true; |
231 | 231 |
return *this; |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
ArgParser &ArgParser::other(const std::string &name, |
235 | 235 |
const std::string &help) |
236 | 236 |
{ |
237 | 237 |
_others_help.push_back(OtherArg(name,help)); |
238 | 238 |
return *this; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
void ArgParser::show(std::ostream &os,Opts::const_iterator i) const |
242 | 242 |
{ |
243 | 243 |
os << "-" << i->first; |
244 | 244 |
if(i->second.has_syn) |
245 | 245 |
for(Opts::const_iterator j=_opts.begin();j!=_opts.end();++j) |
246 | 246 |
if(j->second.syn&&j->second.help==i->first) |
247 | 247 |
os << "|-" << j->first; |
248 | 248 |
switch(i->second.type) { |
249 | 249 |
case STRING: |
250 | 250 |
os << " str"; |
251 | 251 |
break; |
252 | 252 |
case INTEGER: |
253 | 253 |
os << " int"; |
254 | 254 |
break; |
255 | 255 |
case DOUBLE: |
256 | 256 |
os << " num"; |
257 | 257 |
break; |
258 | 258 |
default: |
259 | 259 |
break; |
260 | 260 |
} |
261 | 261 |
} |
262 | 262 |
|
263 | 263 |
void ArgParser::show(std::ostream &os,Groups::const_iterator i) const |
264 | 264 |
{ |
265 | 265 |
GroupData::Opts::const_iterator o=i->second.opts.begin(); |
266 | 266 |
while(o!=i->second.opts.end()) { |
267 | 267 |
show(os,_opts.find(*o)); |
268 | 268 |
++o; |
269 | 269 |
if(o!=i->second.opts.end()) os<<'|'; |
270 | 270 |
} |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
void ArgParser::showHelp(Opts::const_iterator i) const |
274 | 274 |
{ |
275 | 275 |
if(i->second.help.size()==0||i->second.syn) return; |
276 | 276 |
std::cerr << " "; |
277 | 277 |
show(std::cerr,i); |
278 | 278 |
std::cerr << std::endl; |
279 | 279 |
std::cerr << " " << i->second.help << std::endl; |
280 | 280 |
} |
281 | 281 |
void ArgParser::showHelp(std::vector<ArgParser::OtherArg>::const_iterator i) |
282 | 282 |
const |
283 | 283 |
{ |
284 | 284 |
if(i->help.size()==0) return; |
285 | 285 |
std::cerr << " " << i->name << std::endl |
286 | 286 |
<< " " << i->help << std::endl; |
287 | 287 |
} |
288 | 288 |
|
289 | 289 |
void ArgParser::shortHelp() const |
290 | 290 |
{ |
291 | 291 |
const unsigned int LINE_LEN=77; |
292 | 292 |
const std::string indent(" "); |
293 | 293 |
std::cerr << "Usage:\n " << _command_name; |
294 | 294 |
int pos=_command_name.size()+2; |
295 | 295 |
for(Groups::const_iterator g=_groups.begin();g!=_groups.end();++g) { |
296 | 296 |
std::ostringstream cstr; |
297 | 297 |
cstr << ' '; |
298 | 298 |
if(!g->second.mandatory) cstr << '['; |
299 | 299 |
show(cstr,g); |
300 | 300 |
if(!g->second.mandatory) cstr << ']'; |
301 | 301 |
if(pos+cstr.str().size()>LINE_LEN) { |
302 | 302 |
std::cerr << std::endl << indent; |
303 | 303 |
pos=indent.size(); |
304 | 304 |
} |
305 | 305 |
std::cerr << cstr.str(); |
306 | 306 |
pos+=cstr.str().size(); |
307 | 307 |
} |
308 | 308 |
for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) |
309 | 309 |
if(!i->second.ingroup&&!i->second.syn) { |
310 | 310 |
std::ostringstream cstr; |
311 | 311 |
cstr << ' '; |
312 | 312 |
if(!i->second.mandatory) cstr << '['; |
313 | 313 |
show(cstr,i); |
314 | 314 |
if(!i->second.mandatory) cstr << ']'; |
315 | 315 |
if(pos+cstr.str().size()>LINE_LEN) { |
316 | 316 |
std::cerr << std::endl << indent; |
317 | 317 |
pos=indent.size(); |
318 | 318 |
} |
319 | 319 |
std::cerr << cstr.str(); |
320 | 320 |
pos+=cstr.str().size(); |
321 | 321 |
} |
322 | 322 |
for(std::vector<OtherArg>::const_iterator i=_others_help.begin(); |
323 | 323 |
i!=_others_help.end();++i) |
324 | 324 |
{ |
325 | 325 |
std::ostringstream cstr; |
326 | 326 |
cstr << ' ' << i->name; |
327 | 327 |
|
328 | 328 |
if(pos+cstr.str().size()>LINE_LEN) { |
329 | 329 |
std::cerr << std::endl << indent; |
330 | 330 |
pos=indent.size(); |
331 | 331 |
} |
332 | 332 |
std::cerr << cstr.str(); |
333 | 333 |
pos+=cstr.str().size(); |
334 | 334 |
} |
335 | 335 |
std::cerr << std::endl; |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
void ArgParser::showHelp() const |
339 | 339 |
{ |
340 | 340 |
shortHelp(); |
341 | 341 |
std::cerr << "Where:\n"; |
342 | 342 |
for(std::vector<OtherArg>::const_iterator i=_others_help.begin(); |
343 | 343 |
i!=_others_help.end();++i) showHelp(i); |
344 | 344 |
for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) showHelp(i); |
345 | 345 |
exit(1); |
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
|
349 | 349 |
void ArgParser::unknownOpt(std::string arg) const |
350 | 350 |
{ |
351 | 351 |
std::cerr << "\nUnknown option: " << arg << "\n"; |
352 | 352 |
std::cerr << "\nType '" << _command_name << |
353 | 353 |
" --help' to obtain a short summary on the usage.\n\n"; |
354 | 354 |
exit(1); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
void ArgParser::requiresValue(std::string arg, OptType t) const |
358 | 358 |
{ |
359 | 359 |
std::cerr << "Argument '" << arg << "' requires a"; |
360 | 360 |
switch(t) { |
361 | 361 |
case STRING: |
362 | 362 |
std::cerr << " string"; |
363 | 363 |
break; |
364 | 364 |
case INTEGER: |
365 | 365 |
std::cerr << "n integer"; |
366 | 366 |
break; |
367 | 367 |
case DOUBLE: |
368 | 368 |
std::cerr << " floating point"; |
369 | 369 |
break; |
370 | 370 |
default: |
371 | 371 |
break; |
372 | 372 |
} |
373 | 373 |
std::cerr << " value\n\n"; |
374 | 374 |
showHelp(); |
375 | 375 |
} |
376 | 376 |
|
377 | 377 |
|
378 | 378 |
void ArgParser::checkMandatories() const |
379 | 379 |
{ |
380 | 380 |
bool ok=true; |
381 | 381 |
for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) |
382 | 382 |
if(i->second.mandatory&&!i->second.set) |
383 | 383 |
{ |
384 | 384 |
if(ok) |
385 | 385 |
std::cerr << _command_name |
386 | 386 |
<< ": The following mandatory arguments are missing.\n"; |
387 | 387 |
ok=false; |
388 | 388 |
showHelp(i); |
389 | 389 |
} |
390 | 390 |
for(Groups::const_iterator i=_groups.begin();i!=_groups.end();++i) |
391 | 391 |
if(i->second.mandatory||i->second.only_one) |
392 | 392 |
{ |
393 | 393 |
int set=0; |
394 | 394 |
for(GroupData::Opts::const_iterator o=i->second.opts.begin(); |
395 | 395 |
o!=i->second.opts.end();++o) |
396 | 396 |
if(_opts.find(*o)->second.set) ++set; |
397 | 397 |
if(i->second.mandatory&&!set) { |
398 | 398 |
std::cerr << _command_name << |
399 | 399 |
": At least one of the following arguments is mandatory.\n"; |
400 | 400 |
ok=false; |
401 | 401 |
for(GroupData::Opts::const_iterator o=i->second.opts.begin(); |
402 | 402 |
o!=i->second.opts.end();++o) |
403 | 403 |
showHelp(_opts.find(*o)); |
404 | 404 |
} |
405 | 405 |
if(i->second.only_one&&set>1) { |
406 | 406 |
std::cerr << _command_name << |
407 | 407 |
": At most one of the following arguments can be given.\n"; |
408 | 408 |
ok=false; |
409 | 409 |
for(GroupData::Opts::const_iterator o=i->second.opts.begin(); |
410 | 410 |
o!=i->second.opts.end();++o) |
411 | 411 |
showHelp(_opts.find(*o)); |
412 | 412 |
} |
413 | 413 |
} |
414 | 414 |
if(!ok) { |
415 | 415 |
std::cerr << "\nType '" << _command_name << |
416 | 416 |
" --help' to obtain a short summary on the usage.\n\n"; |
417 | 417 |
exit(1); |
418 | 418 |
} |
419 | 419 |
} |
420 | 420 |
|
421 | 421 |
ArgParser &ArgParser::parse() |
422 | 422 |
{ |
423 | 423 |
for(int ar=1; ar<_argc; ++ar) { |
424 | 424 |
std::string arg(_argv[ar]); |
425 | 425 |
if (arg[0] != '-' || arg.size() == 1) { |
426 | 426 |
_file_args.push_back(arg); |
427 | 427 |
} |
428 | 428 |
else { |
429 | 429 |
Opts::iterator i = _opts.find(arg.substr(1)); |
430 | 430 |
if(i==_opts.end()) unknownOpt(arg); |
431 | 431 |
else { |
432 | 432 |
if(i->second.syn) i=_opts.find(i->second.help); |
433 | 433 |
ParData &p(i->second); |
434 | 434 |
if (p.type==BOOL) *p.bool_p=true; |
435 | 435 |
else if (p.type==FUNC) p.func_p.p(p.func_p.data); |
436 | 436 |
else if(++ar==_argc) requiresValue(arg, p.type); |
437 | 437 |
else { |
438 | 438 |
std::string val(_argv[ar]); |
439 | 439 |
std::istringstream vals(val); |
440 | 440 |
switch(p.type) { |
441 | 441 |
case STRING: |
442 | 442 |
*p.string_p=val; |
443 | 443 |
break; |
444 | 444 |
case INTEGER: |
445 | 445 |
vals >> *p.int_p; |
446 | 446 |
break; |
447 | 447 |
case DOUBLE: |
448 | 448 |
vals >> *p.double_p; |
449 | 449 |
break; |
450 | 450 |
default: |
451 | 451 |
break; |
452 | 452 |
} |
453 | 453 |
if(p.type!=STRING&&(!vals||!vals.eof())) |
454 | 454 |
requiresValue(arg, p.type); |
455 | 455 |
} |
456 | 456 |
p.set = true; |
457 | 457 |
} |
458 | 458 |
} |
459 | 459 |
} |
460 | 460 |
checkMandatories(); |
461 | 461 |
|
462 | 462 |
return *this; |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
20 | 20 |
#define LEMON_ARG_PARSER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <map> |
24 | 24 |
#include <list> |
25 | 25 |
#include <string> |
26 | 26 |
#include <iostream> |
27 | 27 |
#include <sstream> |
28 | 28 |
#include <algorithm> |
29 | 29 |
#include <lemon/assert.h> |
30 | 30 |
|
31 | 31 |
///\ingroup misc |
32 | 32 |
///\file |
33 | 33 |
///\brief A tool to parse command line arguments. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Command line arguments parser |
38 | 38 |
|
39 | 39 |
///\ingroup misc |
40 | 40 |
///Command line arguments parser. |
41 | 41 |
/// |
42 | 42 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
43 | 43 |
class ArgParser { |
44 | 44 |
|
45 | 45 |
static void _showHelp(void *p); |
46 | 46 |
protected: |
47 | 47 |
|
48 | 48 |
int _argc; |
49 | 49 |
const char * const *_argv; |
50 | 50 |
|
51 | 51 |
enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 }; |
52 | 52 |
|
53 | 53 |
class ParData { |
54 | 54 |
public: |
55 | 55 |
union { |
56 | 56 |
bool *bool_p; |
57 | 57 |
int *int_p; |
58 | 58 |
double *double_p; |
59 | 59 |
std::string *string_p; |
60 | 60 |
struct { |
61 | 61 |
void (*p)(void *); |
62 | 62 |
void *data; |
63 | 63 |
} func_p; |
64 | 64 |
|
65 | 65 |
}; |
66 | 66 |
std::string help; |
67 | 67 |
bool mandatory; |
68 | 68 |
OptType type; |
69 | 69 |
bool set; |
70 | 70 |
bool ingroup; |
71 | 71 |
bool has_syn; |
72 | 72 |
bool syn; |
73 | 73 |
bool self_delete; |
74 | 74 |
ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false), |
75 | 75 |
has_syn(false), syn(false), self_delete(false) {} |
76 | 76 |
}; |
77 | 77 |
|
78 | 78 |
typedef std::map<std::string,ParData> Opts; |
79 | 79 |
Opts _opts; |
80 | 80 |
|
81 | 81 |
class GroupData |
82 | 82 |
{ |
83 | 83 |
public: |
84 | 84 |
typedef std::list<std::string> Opts; |
85 | 85 |
Opts opts; |
86 | 86 |
bool only_one; |
87 | 87 |
bool mandatory; |
88 | 88 |
GroupData() :only_one(false), mandatory(false) {} |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
typedef std::map<std::string,GroupData> Groups; |
92 | 92 |
Groups _groups; |
93 | 93 |
|
94 | 94 |
struct OtherArg |
95 | 95 |
{ |
96 | 96 |
std::string name; |
97 | 97 |
std::string help; |
98 | 98 |
OtherArg(std::string n, std::string h) :name(n), help(h) {} |
99 | 99 |
|
100 | 100 |
}; |
101 | 101 |
|
102 | 102 |
std::vector<OtherArg> _others_help; |
103 | 103 |
std::vector<std::string> _file_args; |
104 | 104 |
std::string _command_name; |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
private: |
108 | 108 |
//Bind a function to an option. |
109 | 109 |
|
110 | 110 |
//\param name The name of the option. The leading '-' must be omitted. |
111 | 111 |
//\param help A help string. |
112 | 112 |
//\retval func The function to be called when the option is given. It |
113 | 113 |
// must be of type "void f(void *)" |
114 | 114 |
//\param data Data to be passed to \c func |
115 | 115 |
ArgParser &funcOption(const std::string &name, |
116 | 116 |
const std::string &help, |
117 | 117 |
void (*func)(void *),void *data); |
118 | 118 |
|
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
///Constructor |
122 | 122 |
ArgParser(int argc, const char * const *argv); |
123 | 123 |
|
124 | 124 |
~ArgParser(); |
125 | 125 |
|
126 | 126 |
///\name Options |
127 | 127 |
/// |
128 | 128 |
|
129 | 129 |
///@{ |
130 | 130 |
|
131 | 131 |
///Add a new integer type option |
132 | 132 |
|
133 | 133 |
///Add a new integer type option. |
134 | 134 |
///\param name The name of the option. The leading '-' must be omitted. |
135 | 135 |
///\param help A help string. |
136 | 136 |
///\param value A default value for the option. |
137 | 137 |
///\param obl Indicate if the option is mandatory. |
138 | 138 |
ArgParser &intOption(const std::string &name, |
139 | 139 |
const std::string &help, |
140 | 140 |
int value=0, bool obl=false); |
141 | 141 |
|
142 | 142 |
///Add a new floating point type option |
143 | 143 |
|
144 | 144 |
///Add a new floating point type option. |
145 | 145 |
///\param name The name of the option. The leading '-' must be omitted. |
146 | 146 |
///\param help A help string. |
147 | 147 |
///\param value A default value for the option. |
148 | 148 |
///\param obl Indicate if the option is mandatory. |
149 | 149 |
ArgParser &doubleOption(const std::string &name, |
150 | 150 |
const std::string &help, |
151 | 151 |
double value=0, bool obl=false); |
152 | 152 |
|
153 | 153 |
///Add a new bool type option |
154 | 154 |
|
155 | 155 |
///Add a new bool type option. |
156 | 156 |
///\param name The name of the option. The leading '-' must be omitted. |
157 | 157 |
///\param help A help string. |
158 | 158 |
///\param value A default value for the option. |
159 | 159 |
///\param obl Indicate if the option is mandatory. |
160 | 160 |
///\note A mandatory bool obtion is of very little use. |
161 | 161 |
ArgParser &boolOption(const std::string &name, |
162 | 162 |
const std::string &help, |
163 | 163 |
bool value=false, bool obl=false); |
164 | 164 |
|
165 | 165 |
///Add a new string type option |
166 | 166 |
|
167 | 167 |
///Add a new string type option. |
168 | 168 |
///\param name The name of the option. The leading '-' must be omitted. |
169 | 169 |
///\param help A help string. |
170 | 170 |
///\param value A default value for the option. |
171 | 171 |
///\param obl Indicate if the option is mandatory. |
172 | 172 |
ArgParser &stringOption(const std::string &name, |
173 | 173 |
const std::string &help, |
174 | 174 |
std::string value="", bool obl=false); |
175 | 175 |
|
176 | 176 |
///Give help string for non-parsed arguments. |
177 | 177 |
|
178 | 178 |
///With this function you can give help string for non-parsed arguments. |
179 | 179 |
///The parameter \c name will be printed in the short usage line, while |
180 | 180 |
///\c help gives a more detailed description. |
181 | 181 |
ArgParser &other(const std::string &name, |
182 | 182 |
const std::string &help=""); |
183 | 183 |
|
184 | 184 |
///@} |
185 | 185 |
|
186 | 186 |
///\name Options with External Storage |
187 | 187 |
///Using this functions, the value of the option will be directly written |
188 | 188 |
///into a variable once the option appears in the command line. |
189 | 189 |
|
190 | 190 |
///@{ |
191 | 191 |
|
192 | 192 |
///Add a new integer type option with a storage reference |
193 | 193 |
|
194 | 194 |
///Add a new integer type option with a storage reference. |
195 | 195 |
///\param name The name of the option. The leading '-' must be omitted. |
196 | 196 |
///\param help A help string. |
197 | 197 |
///\param obl Indicate if the option is mandatory. |
198 | 198 |
///\retval ref The value of the argument will be written to this variable. |
199 | 199 |
ArgParser &refOption(const std::string &name, |
200 | 200 |
const std::string &help, |
201 | 201 |
int &ref, bool obl=false); |
202 | 202 |
|
203 | 203 |
///Add a new floating type option with a storage reference |
204 | 204 |
|
205 | 205 |
///Add a new floating type option with a storage reference. |
206 | 206 |
///\param name The name of the option. The leading '-' must be omitted. |
207 | 207 |
///\param help A help string. |
208 | 208 |
///\param obl Indicate if the option is mandatory. |
209 | 209 |
///\retval ref The value of the argument will be written to this variable. |
210 | 210 |
ArgParser &refOption(const std::string &name, |
211 | 211 |
const std::string &help, |
212 | 212 |
double &ref, bool obl=false); |
213 | 213 |
|
214 | 214 |
///Add a new bool type option with a storage reference |
215 | 215 |
|
216 | 216 |
///Add a new bool type option with a storage reference. |
217 | 217 |
///\param name The name of the option. The leading '-' must be omitted. |
218 | 218 |
///\param help A help string. |
219 | 219 |
///\param obl Indicate if the option is mandatory. |
220 | 220 |
///\retval ref The value of the argument will be written to this variable. |
221 | 221 |
///\note A mandatory bool obtion is of very little use. |
222 | 222 |
ArgParser &refOption(const std::string &name, |
223 | 223 |
const std::string &help, |
224 | 224 |
bool &ref, bool obl=false); |
225 | 225 |
|
226 | 226 |
///Add a new string type option with a storage reference |
227 | 227 |
|
228 | 228 |
///Add a new string type option with a storage reference. |
229 | 229 |
///\param name The name of the option. The leading '-' must be omitted. |
230 | 230 |
///\param help A help string. |
231 | 231 |
///\param obl Indicate if the option is mandatory. |
232 | 232 |
///\retval ref The value of the argument will be written to this variable. |
233 | 233 |
ArgParser &refOption(const std::string &name, |
234 | 234 |
const std::string &help, |
235 | 235 |
std::string &ref, bool obl=false); |
236 | 236 |
|
237 | 237 |
///@} |
238 | 238 |
|
239 | 239 |
///\name Option Groups and Synonyms |
240 | 240 |
/// |
241 | 241 |
|
242 | 242 |
///@{ |
243 | 243 |
|
244 | 244 |
///Bundle some options into a group |
245 | 245 |
|
246 | 246 |
/// You can group some option by calling this function repeatedly for each |
247 | 247 |
/// option to be grouped with the same groupname. |
248 | 248 |
///\param group The group name. |
249 | 249 |
///\param opt The option name. |
250 | 250 |
ArgParser &optionGroup(const std::string &group, |
251 | 251 |
const std::string &opt); |
252 | 252 |
|
253 | 253 |
///Make the members of a group exclusive |
254 | 254 |
|
255 | 255 |
///If you call this function for a group, than at most one of them can be |
256 | 256 |
///given at the same time. |
257 | 257 |
ArgParser &onlyOneGroup(const std::string &group); |
258 | 258 |
|
259 | 259 |
///Make a group mandatory |
260 | 260 |
|
261 | 261 |
///Using this function, at least one of the members of \c group |
262 | 262 |
///must be given. |
263 | 263 |
ArgParser &mandatoryGroup(const std::string &group); |
264 | 264 |
|
265 | 265 |
///Create synonym to an option |
266 | 266 |
|
267 | 267 |
///With this function you can create a synonym \c syn of the |
268 | 268 |
///option \c opt. |
269 | 269 |
ArgParser &synonym(const std::string &syn, |
270 | 270 |
const std::string &opt); |
271 | 271 |
|
272 | 272 |
///@} |
273 | 273 |
|
274 | 274 |
private: |
275 | 275 |
void show(std::ostream &os,Opts::const_iterator i) const; |
276 | 276 |
void show(std::ostream &os,Groups::const_iterator i) const; |
277 | 277 |
void showHelp(Opts::const_iterator i) const; |
278 | 278 |
void showHelp(std::vector<OtherArg>::const_iterator i) const; |
279 | 279 |
|
280 | 280 |
void unknownOpt(std::string arg) const; |
281 | 281 |
|
282 | 282 |
void requiresValue(std::string arg, OptType t) const; |
283 | 283 |
void checkMandatories() const; |
284 | 284 |
|
285 | 285 |
void shortHelp() const; |
286 | 286 |
void showHelp() const; |
287 | 287 |
public: |
288 | 288 |
|
289 | 289 |
///Start the parsing process |
290 | 290 |
ArgParser &parse(); |
291 | 291 |
|
292 | 292 |
/// Synonym for parse() |
293 | 293 |
ArgParser &run() |
294 | 294 |
{ |
295 | 295 |
return parse(); |
296 | 296 |
} |
297 | 297 |
|
298 | 298 |
///Give back the command name (the 0th argument) |
299 | 299 |
const std::string &commandName() const { return _command_name; } |
300 | 300 |
|
301 | 301 |
///Check if an opion has been given to the command. |
302 | 302 |
bool given(std::string op) const |
303 | 303 |
{ |
304 | 304 |
Opts::const_iterator i = _opts.find(op); |
305 | 305 |
return i!=_opts.end()?i->second.set:false; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
|
309 | 309 |
///Magic type for operator[] |
310 | 310 |
|
311 | 311 |
///This is the type of the return value of ArgParser::operator[](). |
312 | 312 |
///It automatically converts to \c int, \c double, \c bool or |
313 | 313 |
///\c std::string if the type of the option matches, which is checked |
314 | 314 |
///with an \ref LEMON_ASSERT "assertion" (i.e. it performs runtime |
315 | 315 |
///type checking). |
316 | 316 |
class RefType |
317 | 317 |
{ |
318 | 318 |
const ArgParser &_parser; |
319 | 319 |
std::string _name; |
320 | 320 |
public: |
321 | 321 |
///\e |
322 | 322 |
RefType(const ArgParser &p,const std::string &n) :_parser(p),_name(n) {} |
323 | 323 |
///\e |
324 | 324 |
operator bool() |
325 | 325 |
{ |
326 | 326 |
Opts::const_iterator i = _parser._opts.find(_name); |
327 | 327 |
LEMON_ASSERT(i!=_parser._opts.end(), |
328 | 328 |
std::string()+"Unkown option: '"+_name+"'"); |
329 | 329 |
LEMON_ASSERT(i->second.type==ArgParser::BOOL, |
330 | 330 |
std::string()+"'"+_name+"' is a bool option"); |
331 | 331 |
return *(i->second.bool_p); |
332 | 332 |
} |
333 | 333 |
///\e |
334 | 334 |
operator std::string() |
335 | 335 |
{ |
336 | 336 |
Opts::const_iterator i = _parser._opts.find(_name); |
337 | 337 |
LEMON_ASSERT(i!=_parser._opts.end(), |
338 | 338 |
std::string()+"Unkown option: '"+_name+"'"); |
339 | 339 |
LEMON_ASSERT(i->second.type==ArgParser::STRING, |
340 | 340 |
std::string()+"'"+_name+"' is a string option"); |
341 | 341 |
return *(i->second.string_p); |
342 | 342 |
} |
343 | 343 |
///\e |
344 | 344 |
operator double() |
345 | 345 |
{ |
346 | 346 |
Opts::const_iterator i = _parser._opts.find(_name); |
347 | 347 |
LEMON_ASSERT(i!=_parser._opts.end(), |
348 | 348 |
std::string()+"Unkown option: '"+_name+"'"); |
349 | 349 |
LEMON_ASSERT(i->second.type==ArgParser::DOUBLE || |
350 | 350 |
i->second.type==ArgParser::INTEGER, |
351 | 351 |
std::string()+"'"+_name+"' is a floating point option"); |
352 | 352 |
return i->second.type==ArgParser::DOUBLE ? |
353 | 353 |
*(i->second.double_p) : *(i->second.int_p); |
354 | 354 |
} |
355 | 355 |
///\e |
356 | 356 |
operator int() |
357 | 357 |
{ |
358 | 358 |
Opts::const_iterator i = _parser._opts.find(_name); |
359 | 359 |
LEMON_ASSERT(i!=_parser._opts.end(), |
360 | 360 |
std::string()+"Unkown option: '"+_name+"'"); |
361 | 361 |
LEMON_ASSERT(i->second.type==ArgParser::INTEGER, |
362 | 362 |
std::string()+"'"+_name+"' is an integer option"); |
363 | 363 |
return *(i->second.int_p); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
}; |
367 | 367 |
|
368 | 368 |
///Give back the value of an option |
369 | 369 |
|
370 | 370 |
///Give back the value of an option. |
371 | 371 |
///\sa RefType |
372 | 372 |
RefType operator[](const std::string &n) const |
373 | 373 |
{ |
374 | 374 |
return RefType(*this, n); |
375 | 375 |
} |
376 | 376 |
|
377 | 377 |
///Give back the non-option type arguments. |
378 | 378 |
|
379 | 379 |
///Give back a reference to a vector consisting of the program arguments |
380 | 380 |
///not starting with a '-' character. |
381 | 381 |
const std::vector<std::string> &files() const { return _file_args; } |
382 | 382 |
|
383 | 383 |
}; |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
#endif // LEMON_ARG_PARSER_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ASSERT_H |
20 | 20 |
#define LEMON_ASSERT_H |
21 | 21 |
|
22 | 22 |
/// \ingroup exceptions |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Extended assertion handling |
25 | 25 |
|
26 | 26 |
#include <lemon/error.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
inline void assert_fail_abort(const char *file, int line, |
31 | 31 |
const char *function, const char* message, |
32 | 32 |
const char *assertion) |
33 | 33 |
{ |
34 | 34 |
std::cerr << file << ":" << line << ": "; |
35 | 35 |
if (function) |
36 | 36 |
std::cerr << function << ": "; |
37 | 37 |
std::cerr << message; |
38 | 38 |
if (assertion) |
39 | 39 |
std::cerr << " (assertion '" << assertion << "' failed)"; |
40 | 40 |
std::cerr << std::endl; |
41 | 41 |
std::abort(); |
42 | 42 |
} |
43 | 43 |
|
44 | 44 |
namespace _assert_bits { |
45 | 45 |
|
46 | 46 |
|
47 | 47 |
inline const char* cstringify(const std::string& str) { |
48 | 48 |
return str.c_str(); |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
inline const char* cstringify(const char* str) { |
52 | 52 |
return str; |
53 | 53 |
} |
54 | 54 |
} |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
#endif // LEMON_ASSERT_H |
58 | 58 |
|
59 | 59 |
#undef LEMON_ASSERT |
60 | 60 |
#undef LEMON_DEBUG |
61 | 61 |
|
62 | 62 |
#if (defined(LEMON_ASSERT_ABORT) ? 1 : 0) + \ |
63 | 63 |
(defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) > 1 |
64 | 64 |
#error "LEMON assertion system is not set properly" |
65 | 65 |
#endif |
66 | 66 |
|
67 | 67 |
#if ((defined(LEMON_ASSERT_ABORT) ? 1 : 0) + \ |
68 | 68 |
(defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) == 1 || \ |
69 | 69 |
defined(LEMON_ENABLE_ASSERTS)) && \ |
70 | 70 |
(defined(LEMON_DISABLE_ASSERTS) || \ |
71 | 71 |
defined(NDEBUG)) |
72 | 72 |
#error "LEMON assertion system is not set properly" |
73 | 73 |
#endif |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
#if defined LEMON_ASSERT_ABORT |
77 | 77 |
# undef LEMON_ASSERT_HANDLER |
78 | 78 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort |
79 | 79 |
#elif defined LEMON_ASSERT_CUSTOM |
80 | 80 |
# undef LEMON_ASSERT_HANDLER |
81 | 81 |
# ifndef LEMON_CUSTOM_ASSERT_HANDLER |
82 | 82 |
# error "LEMON_CUSTOM_ASSERT_HANDLER is not set" |
83 | 83 |
# endif |
84 | 84 |
# define LEMON_ASSERT_HANDLER LEMON_CUSTOM_ASSERT_HANDLER |
85 | 85 |
#elif defined LEMON_DISABLE_ASSERTS |
86 | 86 |
# undef LEMON_ASSERT_HANDLER |
87 | 87 |
#elif defined NDEBUG |
88 | 88 |
# undef LEMON_ASSERT_HANDLER |
89 | 89 |
#else |
90 | 90 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort |
91 | 91 |
#endif |
92 | 92 |
|
93 | 93 |
#ifndef LEMON_FUNCTION_NAME |
94 | 94 |
# if defined __GNUC__ |
95 | 95 |
# define LEMON_FUNCTION_NAME (__PRETTY_FUNCTION__) |
96 | 96 |
# elif defined _MSC_VER |
97 | 97 |
# define LEMON_FUNCTION_NAME (__FUNCSIG__) |
98 | 98 |
# elif __STDC_VERSION__ >= 199901L |
99 | 99 |
# define LEMON_FUNCTION_NAME (__func__) |
100 | 100 |
# else |
101 | 101 |
# define LEMON_FUNCTION_NAME ("<unknown>") |
102 | 102 |
# endif |
103 | 103 |
#endif |
104 | 104 |
|
105 | 105 |
#ifdef DOXYGEN |
106 | 106 |
|
107 | 107 |
/// \ingroup exceptions |
108 | 108 |
/// |
109 | 109 |
/// \brief Macro for assertion with customizable message |
110 | 110 |
/// |
111 | 111 |
/// Macro for assertion with customizable message. |
112 | 112 |
/// \param exp An expression that must be convertible to \c bool. If it is \c |
113 | 113 |
/// false, then an assertion is raised. The concrete behaviour depends on the |
114 | 114 |
/// settings of the assertion system. |
115 | 115 |
/// \param msg A <tt>const char*</tt> parameter, which can be used to provide |
116 | 116 |
/// information about the circumstances of the failed assertion. |
117 | 117 |
/// |
118 | 118 |
/// The assertions are enabled in the default behaviour. |
119 | 119 |
/// You can disable them with the following code: |
120 | 120 |
/// \code |
121 | 121 |
/// #define LEMON_DISABLE_ASSERTS |
122 | 122 |
/// \endcode |
123 | 123 |
/// or with compilation parameters: |
124 | 124 |
/// \code |
125 | 125 |
/// g++ -DLEMON_DISABLE_ASSERTS |
126 | 126 |
/// make CXXFLAGS='-DLEMON_DISABLE_ASSERTS' |
127 | 127 |
/// \endcode |
128 | 128 |
/// The checking is also disabled when the standard macro \c NDEBUG is defined. |
129 | 129 |
/// |
130 | 130 |
/// As a default behaviour the failed assertion prints a short log message to |
131 | 131 |
/// the standard error and aborts the execution. |
132 | 132 |
/// |
133 | 133 |
/// However, the following modes can be used in the assertion system: |
134 | 134 |
/// - \c LEMON_ASSERT_ABORT The failed assertion prints a short log message to |
135 | 135 |
/// the standard error and aborts the program. It is the default behaviour. |
136 | 136 |
/// - \c LEMON_ASSERT_CUSTOM The user can define own assertion handler |
137 | 137 |
/// function. |
138 | 138 |
/// \code |
139 | 139 |
/// void custom_assert_handler(const char* file, int line, |
140 | 140 |
/// const char* function, const char* message, |
141 | 141 |
/// const char* assertion); |
142 | 142 |
/// \endcode |
143 | 143 |
/// The name of the function should be defined as the \c |
144 | 144 |
/// LEMON_CUSTOM_ASSERT_HANDLER macro name. |
145 | 145 |
/// \code |
146 | 146 |
/// #define LEMON_CUSTOM_ASSERT_HANDLER custom_assert_handler |
147 | 147 |
/// \endcode |
148 | 148 |
/// Whenever an assertion is occured, the custom assertion |
149 | 149 |
/// handler is called with appropiate parameters. |
150 | 150 |
/// |
151 | 151 |
/// The assertion mode can also be changed within one compilation unit. |
152 | 152 |
/// If the macros are redefined with other settings and the |
153 | 153 |
/// \ref lemon/assert.h "assert.h" file is reincluded, then the |
154 | 154 |
/// behaviour is changed appropiately to the new settings. |
155 | 155 |
# define LEMON_ASSERT(exp, msg) \ |
156 | 156 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
157 | 157 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
158 | 158 |
LEMON_FUNCTION_NAME, \ |
159 | 159 |
::lemon::_assert_bits::cstringify(msg), #exp), 0))) |
160 | 160 |
|
161 | 161 |
/// \ingroup exceptions |
162 | 162 |
/// |
163 | 163 |
/// \brief Macro for internal assertions |
164 | 164 |
/// |
165 | 165 |
/// Macro for internal assertions, it is used in the library to check |
166 | 166 |
/// the consistency of results of algorithms, several pre- and |
167 | 167 |
/// postconditions and invariants. The checking is disabled by |
168 | 168 |
/// default, but it can be turned on with the macro \c |
169 | 169 |
/// LEMON_ENABLE_DEBUG. |
170 | 170 |
/// \code |
171 | 171 |
/// #define LEMON_ENABLE_DEBUG |
172 | 172 |
/// \endcode |
173 | 173 |
/// or with compilation parameters: |
174 | 174 |
/// \code |
175 | 175 |
/// g++ -DLEMON_ENABLE_DEBUG |
176 | 176 |
/// make CXXFLAGS='-DLEMON_ENABLE_DEBUG' |
177 | 177 |
/// \endcode |
178 | 178 |
/// |
179 | 179 |
/// This macro works like the \c LEMON_ASSERT macro, therefore the |
180 | 180 |
/// current behaviour depends on the settings of \c LEMON_ASSERT |
181 | 181 |
/// macro. |
182 | 182 |
/// |
183 | 183 |
/// \see LEMON_ASSERT |
184 | 184 |
# define LEMON_DEBUG(exp, msg) \ |
185 | 185 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
186 | 186 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
187 | 187 |
LEMON_FUNCTION_NAME, \ |
188 | 188 |
::lemon::_assert_bits::cstringify(msg), #exp), 0))) |
189 | 189 |
|
190 | 190 |
#else |
191 | 191 |
|
192 | 192 |
# ifndef LEMON_ASSERT_HANDLER |
193 | 193 |
# define LEMON_ASSERT(exp, msg) (static_cast<void>(0)) |
194 | 194 |
# define LEMON_DEBUG(exp, msg) (static_cast<void>(0)) |
195 | 195 |
# else |
196 | 196 |
# define LEMON_ASSERT(exp, msg) \ |
197 | 197 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
198 | 198 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
199 | 199 |
LEMON_FUNCTION_NAME, \ |
200 | 200 |
::lemon::_assert_bits::cstringify(msg), \ |
201 | 201 |
#exp), 0))) |
202 | 202 |
# if LEMON_ENABLE_DEBUG |
203 | 203 |
# define LEMON_DEBUG(exp, msg) \ |
204 | 204 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
205 | 205 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
206 | 206 |
LEMON_FUNCTION_NAME, \ |
207 | 207 |
::lemon::_assert_bits::cstringify(msg), \ |
208 | 208 |
#exp), 0))) |
209 | 209 |
# else |
210 | 210 |
# define LEMON_DEBUG(exp, msg) (static_cast<void>(0)) |
211 | 211 |
# endif |
212 | 212 |
# endif |
213 | 213 |
|
214 | 214 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/tolerance.h> |
23 | 23 |
#include<lemon/core.h> |
24 | 24 |
namespace lemon { |
25 | 25 |
|
26 | 26 |
float Tolerance<float>::def_epsilon = 1e-4; |
27 | 27 |
double Tolerance<double>::def_epsilon = 1e-10; |
28 | 28 |
long double Tolerance<long double>::def_epsilon = 1e-14; |
29 | 29 |
|
30 | 30 |
#ifndef LEMON_ONLY_TEMPLATES |
31 | 31 |
const Invalid INVALID = Invalid(); |
32 | 32 |
#endif |
33 | 33 |
|
34 | 34 |
} //namespace lemon |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 67 |
///Instantiates a ProcessedMap. |
68 | 68 |
|
69 | 69 |
///This function instantiates a ProcessedMap. |
70 | 70 |
///\param g is the digraph, to which |
71 | 71 |
///we would like to define the ProcessedMap |
72 | 72 |
#ifdef DOXYGEN |
73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 74 |
#else |
75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 76 |
#endif |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 | 83 |
///The type of the map that indicates which nodes are reached. |
84 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
85 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 86 |
///Instantiates a ReachedMap. |
87 | 87 |
|
88 | 88 |
///This function instantiates a ReachedMap. |
89 | 89 |
///\param g is the digraph, to which |
90 | 90 |
///we would like to define the ReachedMap. |
91 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 92 |
{ |
93 | 93 |
return new ReachedMap(g); |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
///The type of the map that stores the distances of the nodes. |
97 | 97 |
|
98 | 98 |
///The type of the map that stores the distances of the nodes. |
99 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
100 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 101 |
///Instantiates a DistMap. |
102 | 102 |
|
103 | 103 |
///This function instantiates a DistMap. |
104 | 104 |
///\param g is the digraph, to which we would like to define the |
105 | 105 |
///DistMap. |
106 | 106 |
static DistMap *createDistMap(const Digraph &g) |
107 | 107 |
{ |
108 | 108 |
return new DistMap(g); |
109 | 109 |
} |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
///%BFS algorithm class. |
113 | 113 |
|
114 | 114 |
///\ingroup search |
115 | 115 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 116 |
/// |
117 | 117 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 119 |
///used easier. |
120 | 120 |
/// |
121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 122 |
///The default type is \ref ListDigraph. |
123 | 123 |
#ifdef DOXYGEN |
124 | 124 |
template <typename GR, |
125 | 125 |
typename TR> |
126 | 126 |
#else |
127 | 127 |
template <typename GR=ListDigraph, |
128 | 128 |
typename TR=BfsDefaultTraits<GR> > |
129 | 129 |
#endif |
130 | 130 |
class Bfs { |
131 | 131 |
public: |
132 | 132 |
|
133 | 133 |
///The type of the digraph the algorithm runs on. |
134 | 134 |
typedef typename TR::Digraph Digraph; |
135 | 135 |
|
136 | 136 |
///\brief The type of the map that stores the predecessor arcs of the |
137 | 137 |
///shortest paths. |
138 | 138 |
typedef typename TR::PredMap PredMap; |
139 | 139 |
///The type of the map that stores the distances of the nodes. |
140 | 140 |
typedef typename TR::DistMap DistMap; |
141 | 141 |
///The type of the map that indicates which nodes are reached. |
142 | 142 |
typedef typename TR::ReachedMap ReachedMap; |
143 | 143 |
///The type of the map that indicates which nodes are processed. |
144 | 144 |
typedef typename TR::ProcessedMap ProcessedMap; |
145 | 145 |
///The type of the paths. |
146 | 146 |
typedef PredMapPath<Digraph, PredMap> Path; |
147 | 147 |
|
148 | 148 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
149 | 149 |
typedef TR Traits; |
150 | 150 |
|
151 | 151 |
private: |
152 | 152 |
|
153 | 153 |
typedef typename Digraph::Node Node; |
154 | 154 |
typedef typename Digraph::NodeIt NodeIt; |
155 | 155 |
typedef typename Digraph::Arc Arc; |
156 | 156 |
typedef typename Digraph::OutArcIt OutArcIt; |
157 | 157 |
|
158 | 158 |
//Pointer to the underlying digraph. |
159 | 159 |
const Digraph *G; |
160 | 160 |
//Pointer to the map of predecessor arcs. |
161 | 161 |
PredMap *_pred; |
162 | 162 |
//Indicates if _pred is locally allocated (true) or not. |
163 | 163 |
bool local_pred; |
164 | 164 |
//Pointer to the map of distances. |
165 | 165 |
DistMap *_dist; |
166 | 166 |
//Indicates if _dist is locally allocated (true) or not. |
167 | 167 |
bool local_dist; |
168 | 168 |
//Pointer to the map of reached status of the nodes. |
169 | 169 |
ReachedMap *_reached; |
170 | 170 |
//Indicates if _reached is locally allocated (true) or not. |
171 | 171 |
bool local_reached; |
172 | 172 |
//Pointer to the map of processed status of the nodes. |
173 | 173 |
ProcessedMap *_processed; |
174 | 174 |
//Indicates if _processed is locally allocated (true) or not. |
175 | 175 |
bool local_processed; |
176 | 176 |
|
177 | 177 |
std::vector<typename Digraph::Node> _queue; |
178 | 178 |
int _queue_head,_queue_tail,_queue_next_dist; |
179 | 179 |
int _curr_dist; |
180 | 180 |
|
181 | 181 |
//Creates the maps if necessary. |
182 | 182 |
void create_maps() |
183 | 183 |
{ |
184 | 184 |
if(!_pred) { |
185 | 185 |
local_pred = true; |
186 | 186 |
_pred = Traits::createPredMap(*G); |
187 | 187 |
} |
188 | 188 |
if(!_dist) { |
189 | 189 |
local_dist = true; |
190 | 190 |
_dist = Traits::createDistMap(*G); |
191 | 191 |
} |
192 | 192 |
if(!_reached) { |
193 | 193 |
local_reached = true; |
194 | 194 |
_reached = Traits::createReachedMap(*G); |
195 | 195 |
} |
196 | 196 |
if(!_processed) { |
197 | 197 |
local_processed = true; |
198 | 198 |
_processed = Traits::createProcessedMap(*G); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
protected: |
203 | 203 |
|
204 | 204 |
Bfs() {} |
205 | 205 |
|
206 | 206 |
public: |
207 | 207 |
|
208 | 208 |
typedef Bfs Create; |
209 | 209 |
|
210 | 210 |
///\name Named Template Parameters |
211 | 211 |
|
212 | 212 |
///@{ |
213 | 213 |
|
214 | 214 |
template <class T> |
215 | 215 |
struct SetPredMapTraits : public Traits { |
216 | 216 |
typedef T PredMap; |
217 | 217 |
static PredMap *createPredMap(const Digraph &) |
218 | 218 |
{ |
219 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
220 | 220 |
return 0; // ignore warnings |
221 | 221 |
} |
222 | 222 |
}; |
223 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 224 |
///PredMap type. |
225 | 225 |
/// |
226 | 226 |
///\ref named-templ-param "Named parameter" for setting |
227 | 227 |
///PredMap type. |
228 | 228 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
229 | 229 |
template <class T> |
230 | 230 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
231 | 231 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
232 | 232 |
}; |
233 | 233 |
|
234 | 234 |
template <class T> |
235 | 235 |
struct SetDistMapTraits : public Traits { |
236 | 236 |
typedef T DistMap; |
237 | 237 |
static DistMap *createDistMap(const Digraph &) |
238 | 238 |
{ |
239 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
240 | 240 |
return 0; // ignore warnings |
241 | 241 |
} |
242 | 242 |
}; |
243 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 244 |
///DistMap type. |
245 | 245 |
/// |
246 | 246 |
///\ref named-templ-param "Named parameter" for setting |
247 | 247 |
///DistMap type. |
248 | 248 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
249 | 249 |
template <class T> |
250 | 250 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
251 | 251 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
252 | 252 |
}; |
253 | 253 |
|
254 | 254 |
template <class T> |
255 | 255 |
struct SetReachedMapTraits : public Traits { |
256 | 256 |
typedef T ReachedMap; |
257 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
258 | 258 |
{ |
259 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
260 | 260 |
return 0; // ignore warnings |
261 | 261 |
} |
262 | 262 |
}; |
263 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 264 |
///ReachedMap type. |
265 | 265 |
/// |
266 | 266 |
///\ref named-templ-param "Named parameter" for setting |
267 | 267 |
///ReachedMap type. |
268 | 268 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
269 | 269 |
template <class T> |
270 | 270 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
271 | 271 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 272 |
}; |
273 | 273 |
|
274 | 274 |
template <class T> |
275 | 275 |
struct SetProcessedMapTraits : public Traits { |
276 | 276 |
typedef T ProcessedMap; |
277 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
278 | 278 |
{ |
279 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
280 | 280 |
return 0; // ignore warnings |
281 | 281 |
} |
282 | 282 |
}; |
283 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 284 |
///ProcessedMap type. |
285 | 285 |
/// |
286 | 286 |
///\ref named-templ-param "Named parameter" for setting |
287 | 287 |
///ProcessedMap type. |
288 | 288 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
289 | 289 |
template <class T> |
290 | 290 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 291 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 292 |
}; |
293 | 293 |
|
294 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
295 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
296 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
297 | 297 |
{ |
298 | 298 |
return new ProcessedMap(g); |
299 | 299 |
return 0; // ignore warnings |
300 | 300 |
} |
301 | 301 |
}; |
302 | 302 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 303 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
304 | 304 |
/// |
305 | 305 |
///\ref named-templ-param "Named parameter" for setting |
306 | 306 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
307 | 307 |
///If you don't set it explicitly, it will be automatically allocated. |
308 | 308 |
struct SetStandardProcessedMap : |
309 | 309 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
310 | 310 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
311 | 311 |
}; |
312 | 312 |
|
313 | 313 |
///@} |
314 | 314 |
|
315 | 315 |
public: |
316 | 316 |
|
317 | 317 |
///Constructor. |
318 | 318 |
|
319 | 319 |
///Constructor. |
320 | 320 |
///\param g The digraph the algorithm runs on. |
321 | 321 |
Bfs(const Digraph &g) : |
322 | 322 |
G(&g), |
323 | 323 |
_pred(NULL), local_pred(false), |
324 | 324 |
_dist(NULL), local_dist(false), |
325 | 325 |
_reached(NULL), local_reached(false), |
326 | 326 |
_processed(NULL), local_processed(false) |
327 | 327 |
{ } |
328 | 328 |
|
329 | 329 |
///Destructor. |
330 | 330 |
~Bfs() |
331 | 331 |
{ |
332 | 332 |
if(local_pred) delete _pred; |
333 | 333 |
if(local_dist) delete _dist; |
334 | 334 |
if(local_reached) delete _reached; |
335 | 335 |
if(local_processed) delete _processed; |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
///Sets the map that stores the predecessor arcs. |
339 | 339 |
|
340 | 340 |
///Sets the map that stores the predecessor arcs. |
341 | 341 |
///If you don't use this function before calling \ref run(Node) "run()" |
342 | 342 |
///or \ref init(), an instance will be allocated automatically. |
343 | 343 |
///The destructor deallocates this automatically allocated map, |
344 | 344 |
///of course. |
345 | 345 |
///\return <tt> (*this) </tt> |
346 | 346 |
Bfs &predMap(PredMap &m) |
347 | 347 |
{ |
348 | 348 |
if(local_pred) { |
349 | 349 |
delete _pred; |
350 | 350 |
local_pred=false; |
351 | 351 |
} |
352 | 352 |
_pred = &m; |
353 | 353 |
return *this; |
354 | 354 |
} |
355 | 355 |
|
356 | 356 |
///Sets the map that indicates which nodes are reached. |
357 | 357 |
|
358 | 358 |
///Sets the map that indicates which nodes are reached. |
359 | 359 |
///If you don't use this function before calling \ref run(Node) "run()" |
360 | 360 |
///or \ref init(), an instance will be allocated automatically. |
361 | 361 |
///The destructor deallocates this automatically allocated map, |
362 | 362 |
///of course. |
363 | 363 |
///\return <tt> (*this) </tt> |
364 | 364 |
Bfs &reachedMap(ReachedMap &m) |
365 | 365 |
{ |
366 | 366 |
if(local_reached) { |
367 | 367 |
delete _reached; |
368 | 368 |
local_reached=false; |
369 | 369 |
} |
370 | 370 |
_reached = &m; |
371 | 371 |
return *this; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 | 375 |
|
376 | 376 |
///Sets the map that indicates which nodes are processed. |
377 | 377 |
///If you don't use this function before calling \ref run(Node) "run()" |
378 | 378 |
///or \ref init(), an instance will be allocated automatically. |
379 | 379 |
///The destructor deallocates this automatically allocated map, |
380 | 380 |
///of course. |
381 | 381 |
///\return <tt> (*this) </tt> |
382 | 382 |
Bfs &processedMap(ProcessedMap &m) |
383 | 383 |
{ |
384 | 384 |
if(local_processed) { |
385 | 385 |
delete _processed; |
386 | 386 |
local_processed=false; |
387 | 387 |
} |
388 | 388 |
_processed = &m; |
389 | 389 |
return *this; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes. |
393 | 393 |
|
394 | 394 |
///Sets the map that stores the distances of the nodes calculated by |
395 | 395 |
///the algorithm. |
396 | 396 |
///If you don't use this function before calling \ref run(Node) "run()" |
397 | 397 |
///or \ref init(), an instance will be allocated automatically. |
398 | 398 |
///The destructor deallocates this automatically allocated map, |
399 | 399 |
///of course. |
400 | 400 |
///\return <tt> (*this) </tt> |
401 | 401 |
Bfs &distMap(DistMap &m) |
402 | 402 |
{ |
403 | 403 |
if(local_dist) { |
404 | 404 |
delete _dist; |
405 | 405 |
local_dist=false; |
406 | 406 |
} |
407 | 407 |
_dist = &m; |
408 | 408 |
return *this; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
public: |
412 | 412 |
|
413 | 413 |
///\name Execution Control |
414 | 414 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 415 |
///member functions called \ref run(Node) "run()".\n |
416 | 416 |
///If you need more control on the execution, first you have to call |
417 | 417 |
///\ref init(), then you can add several source nodes with |
418 | 418 |
///\ref addSource(). Finally the actual path computation can be |
419 | 419 |
///performed with one of the \ref start() functions. |
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
///\brief Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
///Initializes the internal data structures. |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_queue.resize(countNodes(*G)); |
430 | 430 |
_queue_head=_queue_tail=0; |
431 | 431 |
_curr_dist=1; |
432 | 432 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
433 | 433 |
_pred->set(u,INVALID); |
434 | 434 |
_reached->set(u,false); |
435 | 435 |
_processed->set(u,false); |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
///Adds a new source node. |
440 | 440 |
|
441 | 441 |
///Adds a new source node to the set of nodes to be processed. |
442 | 442 |
/// |
443 | 443 |
void addSource(Node s) |
444 | 444 |
{ |
445 | 445 |
if(!(*_reached)[s]) |
446 | 446 |
{ |
447 | 447 |
_reached->set(s,true); |
448 | 448 |
_pred->set(s,INVALID); |
449 | 449 |
_dist->set(s,0); |
450 | 450 |
_queue[_queue_head++]=s; |
451 | 451 |
_queue_next_dist=_queue_head; |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
///Processes the next node. |
456 | 456 |
|
457 | 457 |
///Processes the next node. |
458 | 458 |
/// |
459 | 459 |
///\return The processed node. |
460 | 460 |
/// |
461 | 461 |
///\pre The queue must not be empty. |
462 | 462 |
Node processNextNode() |
463 | 463 |
{ |
464 | 464 |
if(_queue_tail==_queue_next_dist) { |
465 | 465 |
_curr_dist++; |
466 | 466 |
_queue_next_dist=_queue_head; |
467 | 467 |
} |
468 | 468 |
Node n=_queue[_queue_tail++]; |
469 | 469 |
_processed->set(n,true); |
470 | 470 |
Node m; |
471 | 471 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
472 | 472 |
if(!(*_reached)[m=G->target(e)]) { |
473 | 473 |
_queue[_queue_head++]=m; |
474 | 474 |
_reached->set(m,true); |
475 | 475 |
_pred->set(m,e); |
476 | 476 |
_dist->set(m,_curr_dist); |
477 | 477 |
} |
478 | 478 |
return n; |
479 | 479 |
} |
480 | 480 |
|
481 | 481 |
///Processes the next node. |
482 | 482 |
|
483 | 483 |
///Processes the next node and checks if the given target node |
484 | 484 |
///is reached. If the target node is reachable from the processed |
485 | 485 |
///node, then the \c reach parameter will be set to \c true. |
486 | 486 |
/// |
487 | 487 |
///\param target The target node. |
488 | 488 |
///\retval reach Indicates if the target node is reached. |
489 | 489 |
///It should be initially \c false. |
490 | 490 |
/// |
491 | 491 |
///\return The processed node. |
492 | 492 |
/// |
493 | 493 |
///\pre The queue must not be empty. |
494 | 494 |
Node processNextNode(Node target, bool& reach) |
495 | 495 |
{ |
496 | 496 |
if(_queue_tail==_queue_next_dist) { |
497 | 497 |
_curr_dist++; |
498 | 498 |
_queue_next_dist=_queue_head; |
499 | 499 |
} |
500 | 500 |
Node n=_queue[_queue_tail++]; |
501 | 501 |
_processed->set(n,true); |
502 | 502 |
Node m; |
503 | 503 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
504 | 504 |
if(!(*_reached)[m=G->target(e)]) { |
505 | 505 |
_queue[_queue_head++]=m; |
506 | 506 |
_reached->set(m,true); |
507 | 507 |
_pred->set(m,e); |
508 | 508 |
_dist->set(m,_curr_dist); |
509 | 509 |
reach = reach || (target == m); |
510 | 510 |
} |
511 | 511 |
return n; |
512 | 512 |
} |
513 | 513 |
|
514 | 514 |
///Processes the next node. |
515 | 515 |
|
516 | 516 |
///Processes the next node and checks if at least one of reached |
517 | 517 |
///nodes has \c true value in the \c nm node map. If one node |
518 | 518 |
///with \c true value is reachable from the processed node, then the |
519 | 519 |
///\c rnode parameter will be set to the first of such nodes. |
520 | 520 |
/// |
521 | 521 |
///\param nm A \c bool (or convertible) node map that indicates the |
522 | 522 |
///possible targets. |
523 | 523 |
///\retval rnode The reached target node. |
524 | 524 |
///It should be initially \c INVALID. |
525 | 525 |
/// |
526 | 526 |
///\return The processed node. |
527 | 527 |
/// |
528 | 528 |
///\pre The queue must not be empty. |
529 | 529 |
template<class NM> |
530 | 530 |
Node processNextNode(const NM& nm, Node& rnode) |
531 | 531 |
{ |
532 | 532 |
if(_queue_tail==_queue_next_dist) { |
533 | 533 |
_curr_dist++; |
534 | 534 |
_queue_next_dist=_queue_head; |
535 | 535 |
} |
536 | 536 |
Node n=_queue[_queue_tail++]; |
537 | 537 |
_processed->set(n,true); |
538 | 538 |
Node m; |
539 | 539 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
540 | 540 |
if(!(*_reached)[m=G->target(e)]) { |
541 | 541 |
_queue[_queue_head++]=m; |
542 | 542 |
_reached->set(m,true); |
543 | 543 |
_pred->set(m,e); |
544 | 544 |
_dist->set(m,_curr_dist); |
545 | 545 |
if (nm[m] && rnode == INVALID) rnode = m; |
546 | 546 |
} |
547 | 547 |
return n; |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
///The next node to be processed. |
551 | 551 |
|
552 | 552 |
///Returns the next node to be processed or \c INVALID if the queue |
553 | 553 |
///is empty. |
554 | 554 |
Node nextNode() const |
555 | 555 |
{ |
556 | 556 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
557 | 557 |
} |
558 | 558 |
|
559 | 559 |
///Returns \c false if there are nodes to be processed. |
560 | 560 |
|
561 | 561 |
///Returns \c false if there are nodes to be processed |
562 | 562 |
///in the queue. |
563 | 563 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
564 | 564 |
|
565 | 565 |
///Returns the number of the nodes to be processed. |
566 | 566 |
|
567 | 567 |
///Returns the number of the nodes to be processed |
568 | 568 |
///in the queue. |
569 | 569 |
int queueSize() const { return _queue_head-_queue_tail; } |
570 | 570 |
|
571 | 571 |
///Executes the algorithm. |
572 | 572 |
|
573 | 573 |
///Executes the algorithm. |
574 | 574 |
/// |
575 | 575 |
///This method runs the %BFS algorithm from the root node(s) |
576 | 576 |
///in order to compute the shortest path to each node. |
577 | 577 |
/// |
578 | 578 |
///The algorithm computes |
579 | 579 |
///- the shortest path tree (forest), |
580 | 580 |
///- the distance of each node from the root(s). |
581 | 581 |
/// |
582 | 582 |
///\pre init() must be called and at least one root node should be |
583 | 583 |
///added with addSource() before using this function. |
584 | 584 |
/// |
585 | 585 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
586 | 586 |
///\code |
587 | 587 |
/// while ( !b.emptyQueue() ) { |
588 | 588 |
/// b.processNextNode(); |
589 | 589 |
/// } |
590 | 590 |
///\endcode |
591 | 591 |
void start() |
592 | 592 |
{ |
593 | 593 |
while ( !emptyQueue() ) processNextNode(); |
594 | 594 |
} |
595 | 595 |
|
596 | 596 |
///Executes the algorithm until the given target node is reached. |
597 | 597 |
|
598 | 598 |
///Executes the algorithm until the given target node is reached. |
599 | 599 |
/// |
600 | 600 |
///This method runs the %BFS algorithm from the root node(s) |
601 | 601 |
///in order to compute the shortest path to \c t. |
602 | 602 |
/// |
603 | 603 |
///The algorithm computes |
604 | 604 |
///- the shortest path to \c t, |
605 | 605 |
///- the distance of \c t from the root(s). |
606 | 606 |
/// |
607 | 607 |
///\pre init() must be called and at least one root node should be |
608 | 608 |
///added with addSource() before using this function. |
609 | 609 |
/// |
610 | 610 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
611 | 611 |
///\code |
612 | 612 |
/// bool reach = false; |
613 | 613 |
/// while ( !b.emptyQueue() && !reach ) { |
614 | 614 |
/// b.processNextNode(t, reach); |
615 | 615 |
/// } |
616 | 616 |
///\endcode |
617 | 617 |
void start(Node t) |
618 | 618 |
{ |
619 | 619 |
bool reach = false; |
620 | 620 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
621 | 621 |
} |
622 | 622 |
|
623 | 623 |
///Executes the algorithm until a condition is met. |
624 | 624 |
|
625 | 625 |
///Executes the algorithm until a condition is met. |
626 | 626 |
/// |
627 | 627 |
///This method runs the %BFS algorithm from the root node(s) in |
628 | 628 |
///order to compute the shortest path to a node \c v with |
629 | 629 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
630 | 630 |
/// |
631 | 631 |
///\param nm A \c bool (or convertible) node map. The algorithm |
632 | 632 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
633 | 633 |
/// |
634 | 634 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
635 | 635 |
///\c INVALID if no such node was found. |
636 | 636 |
/// |
637 | 637 |
///\pre init() must be called and at least one root node should be |
638 | 638 |
///added with addSource() before using this function. |
639 | 639 |
/// |
640 | 640 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
641 | 641 |
///\code |
642 | 642 |
/// Node rnode = INVALID; |
643 | 643 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
644 | 644 |
/// b.processNextNode(nm, rnode); |
645 | 645 |
/// } |
646 | 646 |
/// return rnode; |
647 | 647 |
///\endcode |
648 | 648 |
template<class NodeBoolMap> |
649 | 649 |
Node start(const NodeBoolMap &nm) |
650 | 650 |
{ |
651 | 651 |
Node rnode = INVALID; |
652 | 652 |
while ( !emptyQueue() && rnode == INVALID ) { |
653 | 653 |
processNextNode(nm, rnode); |
654 | 654 |
} |
655 | 655 |
return rnode; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
///Runs the algorithm from the given source node. |
659 | 659 |
|
660 | 660 |
///This method runs the %BFS algorithm from node \c s |
661 | 661 |
///in order to compute the shortest path to each node. |
662 | 662 |
/// |
663 | 663 |
///The algorithm computes |
664 | 664 |
///- the shortest path tree, |
665 | 665 |
///- the distance of each node from the root. |
666 | 666 |
/// |
667 | 667 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
668 | 668 |
///\code |
669 | 669 |
/// b.init(); |
670 | 670 |
/// b.addSource(s); |
671 | 671 |
/// b.start(); |
672 | 672 |
///\endcode |
673 | 673 |
void run(Node s) { |
674 | 674 |
init(); |
675 | 675 |
addSource(s); |
676 | 676 |
start(); |
677 | 677 |
} |
678 | 678 |
|
679 | 679 |
///Finds the shortest path between \c s and \c t. |
680 | 680 |
|
681 | 681 |
///This method runs the %BFS algorithm from node \c s |
682 | 682 |
///in order to compute the shortest path to node \c t |
683 | 683 |
///(it stops searching when \c t is processed). |
684 | 684 |
/// |
685 | 685 |
///\return \c true if \c t is reachable form \c s. |
686 | 686 |
/// |
687 | 687 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
688 | 688 |
///shortcut of the following code. |
689 | 689 |
///\code |
690 | 690 |
/// b.init(); |
691 | 691 |
/// b.addSource(s); |
692 | 692 |
/// b.start(t); |
693 | 693 |
///\endcode |
694 | 694 |
bool run(Node s,Node t) { |
695 | 695 |
init(); |
696 | 696 |
addSource(s); |
697 | 697 |
start(t); |
698 | 698 |
return reached(t); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
///Runs the algorithm to visit all nodes in the digraph. |
702 | 702 |
|
703 | 703 |
///This method runs the %BFS algorithm in order to |
704 | 704 |
///compute the shortest path to each node. |
705 | 705 |
/// |
706 | 706 |
///The algorithm computes |
707 | 707 |
///- the shortest path tree (forest), |
708 | 708 |
///- the distance of each node from the root(s). |
709 | 709 |
/// |
710 | 710 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
711 | 711 |
///\code |
712 | 712 |
/// b.init(); |
713 | 713 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
714 | 714 |
/// if (!b.reached(n)) { |
715 | 715 |
/// b.addSource(n); |
716 | 716 |
/// b.start(); |
717 | 717 |
/// } |
718 | 718 |
/// } |
719 | 719 |
///\endcode |
720 | 720 |
void run() { |
721 | 721 |
init(); |
722 | 722 |
for (NodeIt n(*G); n != INVALID; ++n) { |
723 | 723 |
if (!reached(n)) { |
724 | 724 |
addSource(n); |
725 | 725 |
start(); |
726 | 726 |
} |
727 | 727 |
} |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
///@} |
731 | 731 |
|
732 | 732 |
///\name Query Functions |
733 | 733 |
///The results of the BFS algorithm can be obtained using these |
734 | 734 |
///functions.\n |
735 | 735 |
///Either \ref run(Node) "run()" or \ref start() should be called |
736 | 736 |
///before using them. |
737 | 737 |
|
738 | 738 |
///@{ |
739 | 739 |
|
740 | 740 |
///The shortest path to a node. |
741 | 741 |
|
742 | 742 |
///Returns the shortest path to a node. |
743 | 743 |
/// |
744 | 744 |
///\warning \c t should be reached from the root(s). |
745 | 745 |
/// |
746 | 746 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 747 |
///must be called before using this function. |
748 | 748 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
749 | 749 |
|
750 | 750 |
///The distance of a node from the root(s). |
751 | 751 |
|
752 | 752 |
///Returns the distance of a node from the root(s). |
753 | 753 |
/// |
754 | 754 |
///\warning If node \c v is not reached from the root(s), then |
755 | 755 |
///the return value of this function is undefined. |
756 | 756 |
/// |
757 | 757 |
///\pre Either \ref run(Node) "run()" or \ref init() |
758 | 758 |
///must be called before using this function. |
759 | 759 |
int dist(Node v) const { return (*_dist)[v]; } |
760 | 760 |
|
761 | 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
762 | 762 |
|
763 | 763 |
///This function returns the 'previous arc' of the shortest path |
764 | 764 |
///tree for the node \c v, i.e. it returns the last arc of a |
765 | 765 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
766 | 766 |
///is not reached from the root(s) or if \c v is a root. |
767 | 767 |
/// |
768 | 768 |
///The shortest path tree used here is equal to the shortest path |
769 | 769 |
///tree used in \ref predNode(). |
770 | 770 |
/// |
771 | 771 |
///\pre Either \ref run(Node) "run()" or \ref init() |
772 | 772 |
///must be called before using this function. |
773 | 773 |
Arc predArc(Node v) const { return (*_pred)[v];} |
774 | 774 |
|
775 | 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
776 | 776 |
|
777 | 777 |
///This function returns the 'previous node' of the shortest path |
778 | 778 |
///tree for the node \c v, i.e. it returns the last but one node |
779 | 779 |
///from a shortest path from a root to \c v. It is \c INVALID |
780 | 780 |
///if \c v is not reached from the root(s) or if \c v is a root. |
781 | 781 |
/// |
782 | 782 |
///The shortest path tree used here is equal to the shortest path |
783 | 783 |
///tree used in \ref predArc(). |
784 | 784 |
/// |
785 | 785 |
///\pre Either \ref run(Node) "run()" or \ref init() |
786 | 786 |
///must be called before using this function. |
787 | 787 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
788 | 788 |
G->source((*_pred)[v]); } |
789 | 789 |
|
790 | 790 |
///\brief Returns a const reference to the node map that stores the |
791 | 791 |
/// distances of the nodes. |
792 | 792 |
/// |
793 | 793 |
///Returns a const reference to the node map that stores the distances |
794 | 794 |
///of the nodes calculated by the algorithm. |
795 | 795 |
/// |
796 | 796 |
///\pre Either \ref run(Node) "run()" or \ref init() |
797 | 797 |
///must be called before using this function. |
798 | 798 |
const DistMap &distMap() const { return *_dist;} |
799 | 799 |
|
800 | 800 |
///\brief Returns a const reference to the node map that stores the |
801 | 801 |
///predecessor arcs. |
802 | 802 |
/// |
803 | 803 |
///Returns a const reference to the node map that stores the predecessor |
804 | 804 |
///arcs, which form the shortest path tree. |
805 | 805 |
/// |
806 | 806 |
///\pre Either \ref run(Node) "run()" or \ref init() |
807 | 807 |
///must be called before using this function. |
808 | 808 |
const PredMap &predMap() const { return *_pred;} |
809 | 809 |
|
810 | 810 |
///Checks if a node is reached from the root(s). |
811 | 811 |
|
812 | 812 |
///Returns \c true if \c v is reached from the root(s). |
813 | 813 |
/// |
814 | 814 |
///\pre Either \ref run(Node) "run()" or \ref init() |
815 | 815 |
///must be called before using this function. |
816 | 816 |
bool reached(Node v) const { return (*_reached)[v]; } |
817 | 817 |
|
818 | 818 |
///@} |
819 | 819 |
}; |
820 | 820 |
|
821 | 821 |
///Default traits class of bfs() function. |
822 | 822 |
|
823 | 823 |
///Default traits class of bfs() function. |
824 | 824 |
///\tparam GR Digraph type. |
825 | 825 |
template<class GR> |
826 | 826 |
struct BfsWizardDefaultTraits |
827 | 827 |
{ |
828 | 828 |
///The type of the digraph the algorithm runs on. |
829 | 829 |
typedef GR Digraph; |
830 | 830 |
|
831 | 831 |
///\brief The type of the map that stores the predecessor |
832 | 832 |
///arcs of the shortest paths. |
833 | 833 |
/// |
834 | 834 |
///The type of the map that stores the predecessor |
835 | 835 |
///arcs of the shortest paths. |
836 | 836 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
837 | 837 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 | 838 |
///Instantiates a PredMap. |
839 | 839 |
|
840 | 840 |
///This function instantiates a PredMap. |
841 | 841 |
///\param g is the digraph, to which we would like to define the |
842 | 842 |
///PredMap. |
843 | 843 |
static PredMap *createPredMap(const Digraph &g) |
844 | 844 |
{ |
845 | 845 |
return new PredMap(g); |
846 | 846 |
} |
847 | 847 |
|
848 | 848 |
///The type of the map that indicates which nodes are processed. |
849 | 849 |
|
850 | 850 |
///The type of the map that indicates which nodes are processed. |
851 | 851 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
852 | 852 |
///By default it is a NullMap. |
853 | 853 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 | 854 |
///Instantiates a ProcessedMap. |
855 | 855 |
|
856 | 856 |
///This function instantiates a ProcessedMap. |
857 | 857 |
///\param g is the digraph, to which |
858 | 858 |
///we would like to define the ProcessedMap. |
859 | 859 |
#ifdef DOXYGEN |
860 | 860 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
861 | 861 |
#else |
862 | 862 |
static ProcessedMap *createProcessedMap(const Digraph &) |
863 | 863 |
#endif |
864 | 864 |
{ |
865 | 865 |
return new ProcessedMap(); |
866 | 866 |
} |
867 | 867 |
|
868 | 868 |
///The type of the map that indicates which nodes are reached. |
869 | 869 |
|
870 | 870 |
///The type of the map that indicates which nodes are reached. |
871 | 871 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
872 | 872 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 873 |
///Instantiates a ReachedMap. |
874 | 874 |
|
875 | 875 |
///This function instantiates a ReachedMap. |
876 | 876 |
///\param g is the digraph, to which |
877 | 877 |
///we would like to define the ReachedMap. |
878 | 878 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 879 |
{ |
880 | 880 |
return new ReachedMap(g); |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
///The type of the map that stores the distances of the nodes. |
884 | 884 |
|
885 | 885 |
///The type of the map that stores the distances of the nodes. |
886 | 886 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
887 | 887 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 888 |
///Instantiates a DistMap. |
889 | 889 |
|
890 | 890 |
///This function instantiates a DistMap. |
891 | 891 |
///\param g is the digraph, to which we would like to define |
892 | 892 |
///the DistMap |
893 | 893 |
static DistMap *createDistMap(const Digraph &g) |
894 | 894 |
{ |
895 | 895 |
return new DistMap(g); |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
///The type of the shortest paths. |
899 | 899 |
|
900 | 900 |
///The type of the shortest paths. |
901 | 901 |
///It must meet the \ref concepts::Path "Path" concept. |
902 | 902 |
typedef lemon::Path<Digraph> Path; |
903 | 903 |
}; |
904 | 904 |
|
905 | 905 |
/// Default traits class used by BfsWizard |
906 | 906 |
|
907 | 907 |
/// To make it easier to use Bfs algorithm |
908 | 908 |
/// we have created a wizard class. |
909 | 909 |
/// This \ref BfsWizard class needs default traits, |
910 | 910 |
/// as well as the \ref Bfs class. |
911 | 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
912 | 912 |
/// \ref BfsWizard class. |
913 | 913 |
template<class GR> |
914 | 914 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 915 |
{ |
916 | 916 |
|
917 | 917 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 918 |
protected: |
919 | 919 |
//The type of the nodes in the digraph. |
920 | 920 |
typedef typename Base::Digraph::Node Node; |
921 | 921 |
|
922 | 922 |
//Pointer to the digraph the algorithm runs on. |
923 | 923 |
void *_g; |
924 | 924 |
//Pointer to the map of reached nodes. |
925 | 925 |
void *_reached; |
926 | 926 |
//Pointer to the map of processed nodes. |
927 | 927 |
void *_processed; |
928 | 928 |
//Pointer to the map of predecessors arcs. |
929 | 929 |
void *_pred; |
930 | 930 |
//Pointer to the map of distances. |
931 | 931 |
void *_dist; |
932 | 932 |
//Pointer to the shortest path to the target node. |
933 | 933 |
void *_path; |
934 | 934 |
//Pointer to the distance of the target node. |
935 | 935 |
int *_di; |
936 | 936 |
|
937 | 937 |
public: |
938 | 938 |
/// Constructor. |
939 | 939 |
|
940 | 940 |
/// This constructor does not require parameters, therefore it initiates |
941 | 941 |
/// all of the attributes to \c 0. |
942 | 942 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 943 |
_dist(0), _path(0), _di(0) {} |
944 | 944 |
|
945 | 945 |
/// Constructor. |
946 | 946 |
|
947 | 947 |
/// This constructor requires one parameter, |
948 | 948 |
/// others are initiated to \c 0. |
949 | 949 |
/// \param g The digraph the algorithm runs on. |
950 | 950 |
BfsWizardBase(const GR &g) : |
951 | 951 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 952 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 953 |
|
954 | 954 |
}; |
955 | 955 |
|
956 | 956 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 957 |
|
958 | 958 |
/// This auxiliary class is created to implement the |
959 | 959 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 960 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 961 |
/// functions and features of the plain \ref Bfs. |
962 | 962 |
/// |
963 | 963 |
/// This class should only be used through the \ref bfs() function, |
964 | 964 |
/// which makes it easier to use the algorithm. |
965 | 965 |
template<class TR> |
966 | 966 |
class BfsWizard : public TR |
967 | 967 |
{ |
968 | 968 |
typedef TR Base; |
969 | 969 |
|
970 | 970 |
///The type of the digraph the algorithm runs on. |
971 | 971 |
typedef typename TR::Digraph Digraph; |
972 | 972 |
|
973 | 973 |
typedef typename Digraph::Node Node; |
974 | 974 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 975 |
typedef typename Digraph::Arc Arc; |
976 | 976 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 977 |
|
978 | 978 |
///\brief The type of the map that stores the predecessor |
979 | 979 |
///arcs of the shortest paths. |
980 | 980 |
typedef typename TR::PredMap PredMap; |
981 | 981 |
///\brief The type of the map that stores the distances of the nodes. |
982 | 982 |
typedef typename TR::DistMap DistMap; |
983 | 983 |
///\brief The type of the map that indicates which nodes are reached. |
984 | 984 |
typedef typename TR::ReachedMap ReachedMap; |
985 | 985 |
///\brief The type of the map that indicates which nodes are processed. |
986 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 | 987 |
///The type of the shortest paths |
988 | 988 |
typedef typename TR::Path Path; |
989 | 989 |
|
990 | 990 |
public: |
991 | 991 |
|
992 | 992 |
/// Constructor. |
993 | 993 |
BfsWizard() : TR() {} |
994 | 994 |
|
995 | 995 |
/// Constructor that requires parameters. |
996 | 996 |
|
997 | 997 |
/// Constructor that requires parameters. |
998 | 998 |
/// These parameters will be the default values for the traits class. |
999 | 999 |
/// \param g The digraph the algorithm runs on. |
1000 | 1000 |
BfsWizard(const Digraph &g) : |
1001 | 1001 |
TR(g) {} |
1002 | 1002 |
|
1003 | 1003 |
///Copy constructor |
1004 | 1004 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 1005 |
|
1006 | 1006 |
~BfsWizard() {} |
1007 | 1007 |
|
1008 | 1008 |
///Runs BFS algorithm from the given source node. |
1009 | 1009 |
|
1010 | 1010 |
///This method runs BFS algorithm from node \c s |
1011 | 1011 |
///in order to compute the shortest path to each node. |
1012 | 1012 |
void run(Node s) |
1013 | 1013 |
{ |
1014 | 1014 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1015 | 1015 |
if (Base::_pred) |
1016 | 1016 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1017 | 1017 |
if (Base::_dist) |
1018 | 1018 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1019 | 1019 |
if (Base::_reached) |
1020 | 1020 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1021 | 1021 |
if (Base::_processed) |
1022 | 1022 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1023 | 1023 |
if (s!=INVALID) |
1024 | 1024 |
alg.run(s); |
1025 | 1025 |
else |
1026 | 1026 |
alg.run(); |
1027 | 1027 |
} |
1028 | 1028 |
|
1029 | 1029 |
///Finds the shortest path between \c s and \c t. |
1030 | 1030 |
|
1031 | 1031 |
///This method runs BFS algorithm from node \c s |
1032 | 1032 |
///in order to compute the shortest path to node \c t |
1033 | 1033 |
///(it stops searching when \c t is processed). |
1034 | 1034 |
/// |
1035 | 1035 |
///\return \c true if \c t is reachable form \c s. |
1036 | 1036 |
bool run(Node s, Node t) |
1037 | 1037 |
{ |
1038 | 1038 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1039 | 1039 |
if (Base::_pred) |
1040 | 1040 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1041 | 1041 |
if (Base::_dist) |
1042 | 1042 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1043 | 1043 |
if (Base::_reached) |
1044 | 1044 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1045 | 1045 |
if (Base::_processed) |
1046 | 1046 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1047 |
alg.run(s,t); |
1048 | 1048 |
if (Base::_path) |
1049 | 1049 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1050 |
if (Base::_di) |
1051 | 1051 |
*Base::_di = alg.dist(t); |
1052 | 1052 |
return alg.reached(t); |
1053 | 1053 |
} |
1054 | 1054 |
|
1055 | 1055 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1056 |
|
1057 | 1057 |
///This method runs BFS algorithm in order to compute |
1058 | 1058 |
///the shortest path to each node. |
1059 | 1059 |
void run() |
1060 | 1060 |
{ |
1061 | 1061 |
run(INVALID); |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
template<class T> |
1065 | 1065 |
struct SetPredMapBase : public Base { |
1066 | 1066 |
typedef T PredMap; |
1067 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1069 |
}; |
1070 | 1070 |
///\brief \ref named-func-param "Named parameter" |
1071 | 1071 |
///for setting PredMap object. |
1072 | 1072 |
/// |
1073 | 1073 |
///\ref named-func-param "Named parameter" |
1074 | 1074 |
///for setting PredMap object. |
1075 | 1075 |
template<class T> |
1076 | 1076 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1077 |
{ |
1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1080 |
} |
1081 | 1081 |
|
1082 | 1082 |
template<class T> |
1083 | 1083 |
struct SetReachedMapBase : public Base { |
1084 | 1084 |
typedef T ReachedMap; |
1085 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1087 |
}; |
1088 | 1088 |
///\brief \ref named-func-param "Named parameter" |
1089 | 1089 |
///for setting ReachedMap object. |
1090 | 1090 |
/// |
1091 | 1091 |
/// \ref named-func-param "Named parameter" |
1092 | 1092 |
///for setting ReachedMap object. |
1093 | 1093 |
template<class T> |
1094 | 1094 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1095 |
{ |
1096 | 1096 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1097 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1098 |
} |
1099 | 1099 |
|
1100 | 1100 |
template<class T> |
1101 | 1101 |
struct SetDistMapBase : public Base { |
1102 | 1102 |
typedef T DistMap; |
1103 | 1103 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1104 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1105 |
}; |
1106 | 1106 |
///\brief \ref named-func-param "Named parameter" |
1107 | 1107 |
///for setting DistMap object. |
1108 | 1108 |
/// |
1109 | 1109 |
/// \ref named-func-param "Named parameter" |
1110 | 1110 |
///for setting DistMap object. |
1111 | 1111 |
template<class T> |
1112 | 1112 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1113 |
{ |
1114 | 1114 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1115 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1116 |
} |
1117 | 1117 |
|
1118 | 1118 |
template<class T> |
1119 | 1119 |
struct SetProcessedMapBase : public Base { |
1120 | 1120 |
typedef T ProcessedMap; |
1121 | 1121 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1122 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1123 |
}; |
1124 | 1124 |
///\brief \ref named-func-param "Named parameter" |
1125 | 1125 |
///for setting ProcessedMap object. |
1126 | 1126 |
/// |
1127 | 1127 |
/// \ref named-func-param "Named parameter" |
1128 | 1128 |
///for setting ProcessedMap object. |
1129 | 1129 |
template<class T> |
1130 | 1130 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1131 |
{ |
1132 | 1132 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1133 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1134 |
} |
1135 | 1135 |
|
1136 | 1136 |
template<class T> |
1137 | 1137 |
struct SetPathBase : public Base { |
1138 | 1138 |
typedef T Path; |
1139 | 1139 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1140 |
}; |
1141 | 1141 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1142 |
///for getting the shortest path to the target node. |
1143 | 1143 |
/// |
1144 | 1144 |
///\ref named-func-param "Named parameter" |
1145 | 1145 |
///for getting the shortest path to the target node. |
1146 | 1146 |
template<class T> |
1147 | 1147 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1148 |
{ |
1149 | 1149 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1150 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1151 |
} |
1152 | 1152 |
|
1153 | 1153 |
///\brief \ref named-func-param "Named parameter" |
1154 | 1154 |
///for getting the distance of the target node. |
1155 | 1155 |
/// |
1156 | 1156 |
///\ref named-func-param "Named parameter" |
1157 | 1157 |
///for getting the distance of the target node. |
1158 | 1158 |
BfsWizard dist(const int &d) |
1159 | 1159 |
{ |
1160 | 1160 |
Base::_di=const_cast<int*>(&d); |
1161 | 1161 |
return *this; |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
}; |
1165 | 1165 |
|
1166 | 1166 |
///Function-type interface for BFS algorithm. |
1167 | 1167 |
|
1168 | 1168 |
/// \ingroup search |
1169 | 1169 |
///Function-type interface for BFS algorithm. |
1170 | 1170 |
/// |
1171 | 1171 |
///This function also has several \ref named-func-param "named parameters", |
1172 | 1172 |
///they are declared as the members of class \ref BfsWizard. |
1173 | 1173 |
///The following examples show how to use these parameters. |
1174 | 1174 |
///\code |
1175 | 1175 |
/// // Compute shortest path from node s to each node |
1176 | 1176 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1177 | 1177 |
/// |
1178 | 1178 |
/// // Compute shortest path from s to t |
1179 | 1179 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1180 | 1180 |
///\endcode |
1181 | 1181 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1182 | 1182 |
///to the end of the parameter list. |
1183 | 1183 |
///\sa BfsWizard |
1184 | 1184 |
///\sa Bfs |
1185 | 1185 |
template<class GR> |
1186 | 1186 |
BfsWizard<BfsWizardBase<GR> > |
1187 | 1187 |
bfs(const GR &digraph) |
1188 | 1188 |
{ |
1189 | 1189 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1190 | 1190 |
} |
1191 | 1191 |
|
1192 | 1192 |
#ifdef DOXYGEN |
1193 | 1193 |
/// \brief Visitor class for BFS. |
1194 | 1194 |
/// |
1195 | 1195 |
/// This class defines the interface of the BfsVisit events, and |
1196 | 1196 |
/// it could be the base of a real visitor class. |
1197 | 1197 |
template <typename _Digraph> |
1198 | 1198 |
struct BfsVisitor { |
1199 | 1199 |
typedef _Digraph Digraph; |
1200 | 1200 |
typedef typename Digraph::Arc Arc; |
1201 | 1201 |
typedef typename Digraph::Node Node; |
1202 | 1202 |
/// \brief Called for the source node(s) of the BFS. |
1203 | 1203 |
/// |
1204 | 1204 |
/// This function is called for the source node(s) of the BFS. |
1205 | 1205 |
void start(const Node& node) {} |
1206 | 1206 |
/// \brief Called when a node is reached first time. |
1207 | 1207 |
/// |
1208 | 1208 |
/// This function is called when a node is reached first time. |
1209 | 1209 |
void reach(const Node& node) {} |
1210 | 1210 |
/// \brief Called when a node is processed. |
1211 | 1211 |
/// |
1212 | 1212 |
/// This function is called when a node is processed. |
1213 | 1213 |
void process(const Node& node) {} |
1214 | 1214 |
/// \brief Called when an arc reaches a new node. |
1215 | 1215 |
/// |
1216 | 1216 |
/// This function is called when the BFS finds an arc whose target node |
1217 | 1217 |
/// is not reached yet. |
1218 | 1218 |
void discover(const Arc& arc) {} |
1219 | 1219 |
/// \brief Called when an arc is examined but its target node is |
1220 | 1220 |
/// already discovered. |
1221 | 1221 |
/// |
1222 | 1222 |
/// This function is called when an arc is examined but its target node is |
1223 | 1223 |
/// already discovered. |
1224 | 1224 |
void examine(const Arc& arc) {} |
1225 | 1225 |
}; |
1226 | 1226 |
#else |
1227 | 1227 |
template <typename _Digraph> |
1228 | 1228 |
struct BfsVisitor { |
1229 | 1229 |
typedef _Digraph Digraph; |
1230 | 1230 |
typedef typename Digraph::Arc Arc; |
1231 | 1231 |
typedef typename Digraph::Node Node; |
1232 | 1232 |
void start(const Node&) {} |
1233 | 1233 |
void reach(const Node&) {} |
1234 | 1234 |
void process(const Node&) {} |
1235 | 1235 |
void discover(const Arc&) {} |
1236 | 1236 |
void examine(const Arc&) {} |
1237 | 1237 |
|
1238 | 1238 |
template <typename _Visitor> |
1239 | 1239 |
struct Constraints { |
1240 | 1240 |
void constraints() { |
1241 | 1241 |
Arc arc; |
1242 | 1242 |
Node node; |
1243 | 1243 |
visitor.start(node); |
1244 | 1244 |
visitor.reach(node); |
1245 | 1245 |
visitor.process(node); |
1246 | 1246 |
visitor.discover(arc); |
1247 | 1247 |
visitor.examine(arc); |
1248 | 1248 |
} |
1249 | 1249 |
_Visitor& visitor; |
1250 | 1250 |
}; |
1251 | 1251 |
}; |
1252 | 1252 |
#endif |
1253 | 1253 |
|
1254 | 1254 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1255 |
/// |
1256 | 1256 |
/// Default traits class of BfsVisit class. |
1257 | 1257 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1258 | 1258 |
template<class _Digraph> |
1259 | 1259 |
struct BfsVisitDefaultTraits { |
1260 | 1260 |
|
1261 | 1261 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1262 |
typedef _Digraph Digraph; |
1263 | 1263 |
|
1264 | 1264 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1265 |
/// |
1266 | 1266 |
/// The type of the map that indicates which nodes are reached. |
1267 | 1267 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1268 | 1268 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1269 |
|
1270 | 1270 |
/// \brief Instantiates a ReachedMap. |
1271 | 1271 |
/// |
1272 | 1272 |
/// This function instantiates a ReachedMap. |
1273 | 1273 |
/// \param digraph is the digraph, to which |
1274 | 1274 |
/// we would like to define the ReachedMap. |
1275 | 1275 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1276 |
return new ReachedMap(digraph); |
1277 | 1277 |
} |
1278 | 1278 |
|
1279 | 1279 |
}; |
1280 | 1280 |
|
1281 | 1281 |
/// \ingroup search |
1282 | 1282 |
/// |
1283 | 1283 |
/// \brief %BFS algorithm class with visitor interface. |
1284 | 1284 |
/// |
1285 | 1285 |
/// This class provides an efficient implementation of the %BFS algorithm |
1286 | 1286 |
/// with visitor interface. |
1287 | 1287 |
/// |
1288 | 1288 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1289 | 1289 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1290 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1291 |
/// |
1292 | 1292 |
/// This interface of the BFS algorithm should be used in special cases |
1293 | 1293 |
/// when extra actions have to be performed in connection with certain |
1294 | 1294 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1295 | 1295 |
/// instead. |
1296 | 1296 |
/// |
1297 | 1297 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1298 | 1298 |
/// The default value is |
1299 | 1299 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1300 | 1300 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
1301 | 1301 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1302 | 1302 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
1303 | 1303 |
/// does not observe the BFS events. If you want to observe the BFS |
1304 | 1304 |
/// events, you should implement your own visitor class. |
1305 | 1305 |
/// \tparam _Traits Traits class to set various data types used by the |
1306 | 1306 |
/// algorithm. The default traits class is |
1307 | 1307 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1308 | 1308 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1309 | 1309 |
/// a BFS visit traits class. |
1310 | 1310 |
#ifdef DOXYGEN |
1311 | 1311 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1312 | 1312 |
#else |
1313 | 1313 |
template <typename _Digraph = ListDigraph, |
1314 | 1314 |
typename _Visitor = BfsVisitor<_Digraph>, |
1315 | 1315 |
typename _Traits = BfsVisitDefaultTraits<_Digraph> > |
1316 | 1316 |
#endif |
1317 | 1317 |
class BfsVisit { |
1318 | 1318 |
public: |
1319 | 1319 |
|
1320 | 1320 |
///The traits class. |
1321 | 1321 |
typedef _Traits Traits; |
1322 | 1322 |
|
1323 | 1323 |
///The type of the digraph the algorithm runs on. |
1324 | 1324 |
typedef typename Traits::Digraph Digraph; |
1325 | 1325 |
|
1326 | 1326 |
///The visitor type used by the algorithm. |
1327 | 1327 |
typedef _Visitor Visitor; |
1328 | 1328 |
|
1329 | 1329 |
///The type of the map that indicates which nodes are reached. |
1330 | 1330 |
typedef typename Traits::ReachedMap ReachedMap; |
1331 | 1331 |
|
1332 | 1332 |
private: |
1333 | 1333 |
|
1334 | 1334 |
typedef typename Digraph::Node Node; |
1335 | 1335 |
typedef typename Digraph::NodeIt NodeIt; |
1336 | 1336 |
typedef typename Digraph::Arc Arc; |
1337 | 1337 |
typedef typename Digraph::OutArcIt OutArcIt; |
1338 | 1338 |
|
1339 | 1339 |
//Pointer to the underlying digraph. |
1340 | 1340 |
const Digraph *_digraph; |
1341 | 1341 |
//Pointer to the visitor object. |
1342 | 1342 |
Visitor *_visitor; |
1343 | 1343 |
//Pointer to the map of reached status of the nodes. |
1344 | 1344 |
ReachedMap *_reached; |
1345 | 1345 |
//Indicates if _reached is locally allocated (true) or not. |
1346 | 1346 |
bool local_reached; |
1347 | 1347 |
|
1348 | 1348 |
std::vector<typename Digraph::Node> _list; |
1349 | 1349 |
int _list_front, _list_back; |
1350 | 1350 |
|
1351 | 1351 |
//Creates the maps if necessary. |
1352 | 1352 |
void create_maps() { |
1353 | 1353 |
if(!_reached) { |
1354 | 1354 |
local_reached = true; |
1355 | 1355 |
_reached = Traits::createReachedMap(*_digraph); |
1356 | 1356 |
} |
1357 | 1357 |
} |
1358 | 1358 |
|
1359 | 1359 |
protected: |
1360 | 1360 |
|
1361 | 1361 |
BfsVisit() {} |
1362 | 1362 |
|
1363 | 1363 |
public: |
1364 | 1364 |
|
1365 | 1365 |
typedef BfsVisit Create; |
1366 | 1366 |
|
1367 | 1367 |
/// \name Named Template Parameters |
1368 | 1368 |
|
1369 | 1369 |
///@{ |
1370 | 1370 |
template <class T> |
1371 | 1371 |
struct SetReachedMapTraits : public Traits { |
1372 | 1372 |
typedef T ReachedMap; |
1373 | 1373 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1374 | 1374 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1375 | 1375 |
return 0; // ignore warnings |
1376 | 1376 |
} |
1377 | 1377 |
}; |
1378 | 1378 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1379 | 1379 |
/// ReachedMap type. |
1380 | 1380 |
/// |
1381 | 1381 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1382 | 1382 |
template <class T> |
1383 | 1383 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1384 | 1384 |
SetReachedMapTraits<T> > { |
1385 | 1385 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1386 | 1386 |
}; |
1387 | 1387 |
///@} |
1388 | 1388 |
|
1389 | 1389 |
public: |
1390 | 1390 |
|
1391 | 1391 |
/// \brief Constructor. |
1392 | 1392 |
/// |
1393 | 1393 |
/// Constructor. |
1394 | 1394 |
/// |
1395 | 1395 |
/// \param digraph The digraph the algorithm runs on. |
1396 | 1396 |
/// \param visitor The visitor object of the algorithm. |
1397 | 1397 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1398 | 1398 |
: _digraph(&digraph), _visitor(&visitor), |
1399 | 1399 |
_reached(0), local_reached(false) {} |
1400 | 1400 |
|
1401 | 1401 |
/// \brief Destructor. |
1402 | 1402 |
~BfsVisit() { |
1403 | 1403 |
if(local_reached) delete _reached; |
1404 | 1404 |
} |
1405 | 1405 |
|
1406 | 1406 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1407 |
/// |
1408 | 1408 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1409 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1410 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1411 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1412 |
/// of course. |
1413 | 1413 |
/// \return <tt> (*this) </tt> |
1414 | 1414 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1415 |
if(local_reached) { |
1416 | 1416 |
delete _reached; |
1417 | 1417 |
local_reached = false; |
1418 | 1418 |
} |
1419 | 1419 |
_reached = &m; |
1420 | 1420 |
return *this; |
1421 | 1421 |
} |
1422 | 1422 |
|
1423 | 1423 |
public: |
1424 | 1424 |
|
1425 | 1425 |
/// \name Execution Control |
1426 | 1426 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1427 |
/// member functions called \ref run(Node) "run()".\n |
1428 | 1428 |
/// If you need more control on the execution, first you have to call |
1429 | 1429 |
/// \ref init(), then you can add several source nodes with |
1430 | 1430 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1431 |
/// performed with one of the \ref start() functions. |
1432 | 1432 |
|
1433 | 1433 |
/// @{ |
1434 | 1434 |
|
1435 | 1435 |
/// \brief Initializes the internal data structures. |
1436 | 1436 |
/// |
1437 | 1437 |
/// Initializes the internal data structures. |
1438 | 1438 |
void init() { |
1439 | 1439 |
create_maps(); |
1440 | 1440 |
_list.resize(countNodes(*_digraph)); |
1441 | 1441 |
_list_front = _list_back = -1; |
1442 | 1442 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1443 |
_reached->set(u, false); |
1444 | 1444 |
} |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
/// \brief Adds a new source node. |
1448 | 1448 |
/// |
1449 | 1449 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1450 |
void addSource(Node s) { |
1451 | 1451 |
if(!(*_reached)[s]) { |
1452 | 1452 |
_reached->set(s,true); |
1453 | 1453 |
_visitor->start(s); |
1454 | 1454 |
_visitor->reach(s); |
1455 | 1455 |
_list[++_list_back] = s; |
1456 | 1456 |
} |
1457 | 1457 |
} |
1458 | 1458 |
|
1459 | 1459 |
/// \brief Processes the next node. |
1460 | 1460 |
/// |
1461 | 1461 |
/// Processes the next node. |
1462 | 1462 |
/// |
1463 | 1463 |
/// \return The processed node. |
1464 | 1464 |
/// |
1465 | 1465 |
/// \pre The queue must not be empty. |
1466 | 1466 |
Node processNextNode() { |
1467 | 1467 |
Node n = _list[++_list_front]; |
1468 | 1468 |
_visitor->process(n); |
1469 | 1469 |
Arc e; |
1470 | 1470 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1471 | 1471 |
Node m = _digraph->target(e); |
1472 | 1472 |
if (!(*_reached)[m]) { |
1473 | 1473 |
_visitor->discover(e); |
1474 | 1474 |
_visitor->reach(m); |
1475 | 1475 |
_reached->set(m, true); |
1476 | 1476 |
_list[++_list_back] = m; |
1477 | 1477 |
} else { |
1478 | 1478 |
_visitor->examine(e); |
1479 | 1479 |
} |
1480 | 1480 |
} |
1481 | 1481 |
return n; |
1482 | 1482 |
} |
1483 | 1483 |
|
1484 | 1484 |
/// \brief Processes the next node. |
1485 | 1485 |
/// |
1486 | 1486 |
/// Processes the next node and checks if the given target node |
1487 | 1487 |
/// is reached. If the target node is reachable from the processed |
1488 | 1488 |
/// node, then the \c reach parameter will be set to \c true. |
1489 | 1489 |
/// |
1490 | 1490 |
/// \param target The target node. |
1491 | 1491 |
/// \retval reach Indicates if the target node is reached. |
1492 | 1492 |
/// It should be initially \c false. |
1493 | 1493 |
/// |
1494 | 1494 |
/// \return The processed node. |
1495 | 1495 |
/// |
1496 | 1496 |
/// \pre The queue must not be empty. |
1497 | 1497 |
Node processNextNode(Node target, bool& reach) { |
1498 | 1498 |
Node n = _list[++_list_front]; |
1499 | 1499 |
_visitor->process(n); |
1500 | 1500 |
Arc e; |
1501 | 1501 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1502 | 1502 |
Node m = _digraph->target(e); |
1503 | 1503 |
if (!(*_reached)[m]) { |
1504 | 1504 |
_visitor->discover(e); |
1505 | 1505 |
_visitor->reach(m); |
1506 | 1506 |
_reached->set(m, true); |
1507 | 1507 |
_list[++_list_back] = m; |
1508 | 1508 |
reach = reach || (target == m); |
1509 | 1509 |
} else { |
1510 | 1510 |
_visitor->examine(e); |
1511 | 1511 |
} |
1512 | 1512 |
} |
1513 | 1513 |
return n; |
1514 | 1514 |
} |
1515 | 1515 |
|
1516 | 1516 |
/// \brief Processes the next node. |
1517 | 1517 |
/// |
1518 | 1518 |
/// Processes the next node and checks if at least one of reached |
1519 | 1519 |
/// nodes has \c true value in the \c nm node map. If one node |
1520 | 1520 |
/// with \c true value is reachable from the processed node, then the |
1521 | 1521 |
/// \c rnode parameter will be set to the first of such nodes. |
1522 | 1522 |
/// |
1523 | 1523 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1524 | 1524 |
/// possible targets. |
1525 | 1525 |
/// \retval rnode The reached target node. |
1526 | 1526 |
/// It should be initially \c INVALID. |
1527 | 1527 |
/// |
1528 | 1528 |
/// \return The processed node. |
1529 | 1529 |
/// |
1530 | 1530 |
/// \pre The queue must not be empty. |
1531 | 1531 |
template <typename NM> |
1532 | 1532 |
Node processNextNode(const NM& nm, Node& rnode) { |
1533 | 1533 |
Node n = _list[++_list_front]; |
1534 | 1534 |
_visitor->process(n); |
1535 | 1535 |
Arc e; |
1536 | 1536 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1537 | 1537 |
Node m = _digraph->target(e); |
1538 | 1538 |
if (!(*_reached)[m]) { |
1539 | 1539 |
_visitor->discover(e); |
1540 | 1540 |
_visitor->reach(m); |
1541 | 1541 |
_reached->set(m, true); |
1542 | 1542 |
_list[++_list_back] = m; |
1543 | 1543 |
if (nm[m] && rnode == INVALID) rnode = m; |
1544 | 1544 |
} else { |
1545 | 1545 |
_visitor->examine(e); |
1546 | 1546 |
} |
1547 | 1547 |
} |
1548 | 1548 |
return n; |
1549 | 1549 |
} |
1550 | 1550 |
|
1551 | 1551 |
/// \brief The next node to be processed. |
1552 | 1552 |
/// |
1553 | 1553 |
/// Returns the next node to be processed or \c INVALID if the queue |
1554 | 1554 |
/// is empty. |
1555 | 1555 |
Node nextNode() const { |
1556 | 1556 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1557 | 1557 |
} |
1558 | 1558 |
|
1559 | 1559 |
/// \brief Returns \c false if there are nodes |
1560 | 1560 |
/// to be processed. |
1561 | 1561 |
/// |
1562 | 1562 |
/// Returns \c false if there are nodes |
1563 | 1563 |
/// to be processed in the queue. |
1564 | 1564 |
bool emptyQueue() const { return _list_front == _list_back; } |
1565 | 1565 |
|
1566 | 1566 |
/// \brief Returns the number of the nodes to be processed. |
1567 | 1567 |
/// |
1568 | 1568 |
/// Returns the number of the nodes to be processed in the queue. |
1569 | 1569 |
int queueSize() const { return _list_back - _list_front; } |
1570 | 1570 |
|
1571 | 1571 |
/// \brief Executes the algorithm. |
1572 | 1572 |
/// |
1573 | 1573 |
/// Executes the algorithm. |
1574 | 1574 |
/// |
1575 | 1575 |
/// This method runs the %BFS algorithm from the root node(s) |
1576 | 1576 |
/// in order to compute the shortest path to each node. |
1577 | 1577 |
/// |
1578 | 1578 |
/// The algorithm computes |
1579 | 1579 |
/// - the shortest path tree (forest), |
1580 | 1580 |
/// - the distance of each node from the root(s). |
1581 | 1581 |
/// |
1582 | 1582 |
/// \pre init() must be called and at least one root node should be added |
1583 | 1583 |
/// with addSource() before using this function. |
1584 | 1584 |
/// |
1585 | 1585 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1586 | 1586 |
/// \code |
1587 | 1587 |
/// while ( !b.emptyQueue() ) { |
1588 | 1588 |
/// b.processNextNode(); |
1589 | 1589 |
/// } |
1590 | 1590 |
/// \endcode |
1591 | 1591 |
void start() { |
1592 | 1592 |
while ( !emptyQueue() ) processNextNode(); |
1593 | 1593 |
} |
1594 | 1594 |
|
1595 | 1595 |
/// \brief Executes the algorithm until the given target node is reached. |
1596 | 1596 |
/// |
1597 | 1597 |
/// Executes the algorithm until the given target node is reached. |
1598 | 1598 |
/// |
1599 | 1599 |
/// This method runs the %BFS algorithm from the root node(s) |
1600 | 1600 |
/// in order to compute the shortest path to \c t. |
1601 | 1601 |
/// |
1602 | 1602 |
/// The algorithm computes |
1603 | 1603 |
/// - the shortest path to \c t, |
1604 | 1604 |
/// - the distance of \c t from the root(s). |
1605 | 1605 |
/// |
1606 | 1606 |
/// \pre init() must be called and at least one root node should be |
1607 | 1607 |
/// added with addSource() before using this function. |
1608 | 1608 |
/// |
1609 | 1609 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1610 | 1610 |
/// \code |
1611 | 1611 |
/// bool reach = false; |
1612 | 1612 |
/// while ( !b.emptyQueue() && !reach ) { |
1613 | 1613 |
/// b.processNextNode(t, reach); |
1614 | 1614 |
/// } |
1615 | 1615 |
/// \endcode |
1616 | 1616 |
void start(Node t) { |
1617 | 1617 |
bool reach = false; |
1618 | 1618 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1619 | 1619 |
} |
1620 | 1620 |
|
1621 | 1621 |
/// \brief Executes the algorithm until a condition is met. |
1622 | 1622 |
/// |
1623 | 1623 |
/// Executes the algorithm until a condition is met. |
1624 | 1624 |
/// |
1625 | 1625 |
/// This method runs the %BFS algorithm from the root node(s) in |
1626 | 1626 |
/// order to compute the shortest path to a node \c v with |
1627 | 1627 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1628 | 1628 |
/// |
1629 | 1629 |
/// \param nm must be a bool (or convertible) node map. The |
1630 | 1630 |
/// algorithm will stop when it reaches a node \c v with |
1631 | 1631 |
/// <tt>nm[v]</tt> true. |
1632 | 1632 |
/// |
1633 | 1633 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1634 | 1634 |
/// \c INVALID if no such node was found. |
1635 | 1635 |
/// |
1636 | 1636 |
/// \pre init() must be called and at least one root node should be |
1637 | 1637 |
/// added with addSource() before using this function. |
1638 | 1638 |
/// |
1639 | 1639 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
1640 | 1640 |
/// \code |
1641 | 1641 |
/// Node rnode = INVALID; |
1642 | 1642 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
1643 | 1643 |
/// b.processNextNode(nm, rnode); |
1644 | 1644 |
/// } |
1645 | 1645 |
/// return rnode; |
1646 | 1646 |
/// \endcode |
1647 | 1647 |
template <typename NM> |
1648 | 1648 |
Node start(const NM &nm) { |
1649 | 1649 |
Node rnode = INVALID; |
1650 | 1650 |
while ( !emptyQueue() && rnode == INVALID ) { |
1651 | 1651 |
processNextNode(nm, rnode); |
1652 | 1652 |
} |
1653 | 1653 |
return rnode; |
1654 | 1654 |
} |
1655 | 1655 |
|
1656 | 1656 |
/// \brief Runs the algorithm from the given source node. |
1657 | 1657 |
/// |
1658 | 1658 |
/// This method runs the %BFS algorithm from node \c s |
1659 | 1659 |
/// in order to compute the shortest path to each node. |
1660 | 1660 |
/// |
1661 | 1661 |
/// The algorithm computes |
1662 | 1662 |
/// - the shortest path tree, |
1663 | 1663 |
/// - the distance of each node from the root. |
1664 | 1664 |
/// |
1665 | 1665 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1666 | 1666 |
///\code |
1667 | 1667 |
/// b.init(); |
1668 | 1668 |
/// b.addSource(s); |
1669 | 1669 |
/// b.start(); |
1670 | 1670 |
///\endcode |
1671 | 1671 |
void run(Node s) { |
1672 | 1672 |
init(); |
1673 | 1673 |
addSource(s); |
1674 | 1674 |
start(); |
1675 | 1675 |
} |
1676 | 1676 |
|
1677 | 1677 |
/// \brief Finds the shortest path between \c s and \c t. |
1678 | 1678 |
/// |
1679 | 1679 |
/// This method runs the %BFS algorithm from node \c s |
1680 | 1680 |
/// in order to compute the shortest path to node \c t |
1681 | 1681 |
/// (it stops searching when \c t is processed). |
1682 | 1682 |
/// |
1683 | 1683 |
/// \return \c true if \c t is reachable form \c s. |
1684 | 1684 |
/// |
1685 | 1685 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1686 | 1686 |
/// shortcut of the following code. |
1687 | 1687 |
///\code |
1688 | 1688 |
/// b.init(); |
1689 | 1689 |
/// b.addSource(s); |
1690 | 1690 |
/// b.start(t); |
1691 | 1691 |
///\endcode |
1692 | 1692 |
bool run(Node s,Node t) { |
1693 | 1693 |
init(); |
1694 | 1694 |
addSource(s); |
1695 | 1695 |
start(t); |
1696 | 1696 |
return reached(t); |
1697 | 1697 |
} |
1698 | 1698 |
|
1699 | 1699 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1700 | 1700 |
/// |
1701 | 1701 |
/// This method runs the %BFS algorithm in order to |
1702 | 1702 |
/// compute the shortest path to each node. |
1703 | 1703 |
/// |
1704 | 1704 |
/// The algorithm computes |
1705 | 1705 |
/// - the shortest path tree (forest), |
1706 | 1706 |
/// - the distance of each node from the root(s). |
1707 | 1707 |
/// |
1708 | 1708 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1709 | 1709 |
///\code |
1710 | 1710 |
/// b.init(); |
1711 | 1711 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1712 | 1712 |
/// if (!b.reached(n)) { |
1713 | 1713 |
/// b.addSource(n); |
1714 | 1714 |
/// b.start(); |
1715 | 1715 |
/// } |
1716 | 1716 |
/// } |
1717 | 1717 |
///\endcode |
1718 | 1718 |
void run() { |
1719 | 1719 |
init(); |
1720 | 1720 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1721 | 1721 |
if (!reached(it)) { |
1722 | 1722 |
addSource(it); |
1723 | 1723 |
start(); |
1724 | 1724 |
} |
1725 | 1725 |
} |
1726 | 1726 |
} |
1727 | 1727 |
|
1728 | 1728 |
///@} |
1729 | 1729 |
|
1730 | 1730 |
/// \name Query Functions |
1731 | 1731 |
/// The results of the BFS algorithm can be obtained using these |
1732 | 1732 |
/// functions.\n |
1733 | 1733 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1734 | 1734 |
/// before using them. |
1735 | 1735 |
|
1736 | 1736 |
///@{ |
1737 | 1737 |
|
1738 | 1738 |
/// \brief Checks if a node is reached from the root(s). |
1739 | 1739 |
/// |
1740 | 1740 |
/// Returns \c true if \c v is reached from the root(s). |
1741 | 1741 |
/// |
1742 | 1742 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1743 | 1743 |
/// must be called before using this function. |
1744 | 1744 |
bool reached(Node v) const { return (*_reached)[v]; } |
1745 | 1745 |
|
1746 | 1746 |
///@} |
1747 | 1747 |
|
1748 | 1748 |
}; |
1749 | 1749 |
|
1750 | 1750 |
} //END OF NAMESPACE LEMON |
1751 | 1751 |
|
1752 | 1752 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Binary Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
///\ingroup auxdat |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. A \e heap |
37 | 37 |
///is a data structure for storing items with specified values called \e |
38 | 38 |
///priorities in such a way that finding the item with minimum priority is |
39 | 39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
40 | 40 |
///one can change the priority of an item, add or erase an item, etc. |
41 | 41 |
/// |
42 | 42 |
///\tparam _Prio Type of the priority of the items. |
43 | 43 |
///\tparam _ItemIntMap A read and writable Item int map, used internally |
44 | 44 |
///to handle the cross references. |
45 | 45 |
///\tparam _Compare A class for the ordering of the priorities. The |
46 | 46 |
///default is \c std::less<_Prio>. |
47 | 47 |
/// |
48 | 48 |
///\sa FibHeap |
49 | 49 |
///\sa Dijkstra |
50 | 50 |
template <typename _Prio, typename _ItemIntMap, |
51 | 51 |
typename _Compare = std::less<_Prio> > |
52 | 52 |
class BinHeap { |
53 | 53 |
|
54 | 54 |
public: |
55 | 55 |
///\e |
56 | 56 |
typedef _ItemIntMap ItemIntMap; |
57 | 57 |
///\e |
58 | 58 |
typedef _Prio Prio; |
59 | 59 |
///\e |
60 | 60 |
typedef typename ItemIntMap::Key Item; |
61 | 61 |
///\e |
62 | 62 |
typedef std::pair<Item,Prio> Pair; |
63 | 63 |
///\e |
64 | 64 |
typedef _Compare Compare; |
65 | 65 |
|
66 | 66 |
/// \brief Type to represent the items states. |
67 | 67 |
/// |
68 | 68 |
/// Each Item element have a state associated to it. It may be "in heap", |
69 | 69 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
70 | 70 |
/// heap's point of view, but may be useful to the user. |
71 | 71 |
/// |
72 | 72 |
/// The ItemIntMap \e should be initialized in such way that it maps |
73 | 73 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
74 | 74 |
enum State { |
75 | 75 |
IN_HEAP = 0, |
76 | 76 |
PRE_HEAP = -1, |
77 | 77 |
POST_HEAP = -2 |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
private: |
81 | 81 |
std::vector<Pair> data; |
82 | 82 |
Compare comp; |
83 | 83 |
ItemIntMap &iim; |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
/// \brief The constructor. |
87 | 87 |
/// |
88 | 88 |
/// The constructor. |
89 | 89 |
/// \param _iim should be given to the constructor, since it is used |
90 | 90 |
/// internally to handle the cross references. The value of the map |
91 | 91 |
/// should be PRE_HEAP (-1) for each element. |
92 | 92 |
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {} |
93 | 93 |
|
94 | 94 |
/// \brief The constructor. |
95 | 95 |
/// |
96 | 96 |
/// The constructor. |
97 | 97 |
/// \param _iim should be given to the constructor, since it is used |
98 | 98 |
/// internally to handle the cross references. The value of the map |
99 | 99 |
/// should be PRE_HEAP (-1) for each element. |
100 | 100 |
/// |
101 | 101 |
/// \param _comp The comparator function object. |
102 | 102 |
BinHeap(ItemIntMap &_iim, const Compare &_comp) |
103 | 103 |
: iim(_iim), comp(_comp) {} |
104 | 104 |
|
105 | 105 |
|
106 | 106 |
/// The number of items stored in the heap. |
107 | 107 |
/// |
108 | 108 |
/// \brief Returns the number of items stored in the heap. |
109 | 109 |
int size() const { return data.size(); } |
110 | 110 |
|
111 | 111 |
/// \brief Checks if the heap stores no items. |
112 | 112 |
/// |
113 | 113 |
/// Returns \c true if and only if the heap stores no items. |
114 | 114 |
bool empty() const { return data.empty(); } |
115 | 115 |
|
116 | 116 |
/// \brief Make empty this heap. |
117 | 117 |
/// |
118 | 118 |
/// Make empty this heap. It does not change the cross reference map. |
119 | 119 |
/// If you want to reuse what is not surely empty you should first clear |
120 | 120 |
/// the heap and after that you should set the cross reference map for |
121 | 121 |
/// each item to \c PRE_HEAP. |
122 | 122 |
void clear() { |
123 | 123 |
data.clear(); |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
private: |
127 | 127 |
static int parent(int i) { return (i-1)/2; } |
128 | 128 |
|
129 | 129 |
static int second_child(int i) { return 2*i+2; } |
130 | 130 |
bool less(const Pair &p1, const Pair &p2) const { |
131 | 131 |
return comp(p1.second, p2.second); |
132 | 132 |
} |
133 | 133 |
|
134 | 134 |
int bubble_up(int hole, Pair p) { |
135 | 135 |
int par = parent(hole); |
136 | 136 |
while( hole>0 && less(p,data[par]) ) { |
137 | 137 |
move(data[par],hole); |
138 | 138 |
hole = par; |
139 | 139 |
par = parent(hole); |
140 | 140 |
} |
141 | 141 |
move(p, hole); |
142 | 142 |
return hole; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
int bubble_down(int hole, Pair p, int length) { |
146 | 146 |
int child = second_child(hole); |
147 | 147 |
while(child < length) { |
148 | 148 |
if( less(data[child-1], data[child]) ) { |
149 | 149 |
--child; |
150 | 150 |
} |
151 | 151 |
if( !less(data[child], p) ) |
152 | 152 |
goto ok; |
153 | 153 |
move(data[child], hole); |
154 | 154 |
hole = child; |
155 | 155 |
child = second_child(hole); |
156 | 156 |
} |
157 | 157 |
child--; |
158 | 158 |
if( child<length && less(data[child], p) ) { |
159 | 159 |
move(data[child], hole); |
160 | 160 |
hole=child; |
161 | 161 |
} |
162 | 162 |
ok: |
163 | 163 |
move(p, hole); |
164 | 164 |
return hole; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
void move(const Pair &p, int i) { |
168 | 168 |
data[i] = p; |
169 | 169 |
iim.set(p.first, i); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
public: |
173 | 173 |
/// \brief Insert a pair of item and priority into the heap. |
174 | 174 |
/// |
175 | 175 |
/// Adds \c p.first to the heap with priority \c p.second. |
176 | 176 |
/// \param p The pair to insert. |
177 | 177 |
void push(const Pair &p) { |
178 | 178 |
int n = data.size(); |
179 | 179 |
data.resize(n+1); |
180 | 180 |
bubble_up(n, p); |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
/// \brief Insert an item into the heap with the given heap. |
184 | 184 |
/// |
185 | 185 |
/// Adds \c i to the heap with priority \c p. |
186 | 186 |
/// \param i The item to insert. |
187 | 187 |
/// \param p The priority of the item. |
188 | 188 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
189 | 189 |
|
190 | 190 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
191 | 191 |
/// |
192 | 192 |
/// This method returns the item with minimum priority relative to \c |
193 | 193 |
/// Compare. |
194 | 194 |
/// \pre The heap must be nonempty. |
195 | 195 |
Item top() const { |
196 | 196 |
return data[0].first; |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
/// \brief Returns the minimum priority relative to \c Compare. |
200 | 200 |
/// |
201 | 201 |
/// It returns the minimum priority relative to \c Compare. |
202 | 202 |
/// \pre The heap must be nonempty. |
203 | 203 |
Prio prio() const { |
204 | 204 |
return data[0].second; |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
208 | 208 |
/// |
209 | 209 |
/// This method deletes the item with minimum priority relative to \c |
210 | 210 |
/// Compare from the heap. |
211 | 211 |
/// \pre The heap must be non-empty. |
212 | 212 |
void pop() { |
213 | 213 |
int n = data.size()-1; |
214 | 214 |
iim.set(data[0].first, POST_HEAP); |
215 | 215 |
if (n > 0) { |
216 | 216 |
bubble_down(0, data[n], n); |
217 | 217 |
} |
218 | 218 |
data.pop_back(); |
219 | 219 |
} |
220 | 220 |
|
221 | 221 |
/// \brief Deletes \c i from the heap. |
222 | 222 |
/// |
223 | 223 |
/// This method deletes item \c i from the heap. |
224 | 224 |
/// \param i The item to erase. |
225 | 225 |
/// \pre The item should be in the heap. |
226 | 226 |
void erase(const Item &i) { |
227 | 227 |
int h = iim[i]; |
228 | 228 |
int n = data.size()-1; |
229 | 229 |
iim.set(data[h].first, POST_HEAP); |
230 | 230 |
if( h < n ) { |
231 | 231 |
if ( bubble_up(h, data[n]) == h) { |
232 | 232 |
bubble_down(h, data[n], n); |
233 | 233 |
} |
234 | 234 |
} |
235 | 235 |
data.pop_back(); |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
|
239 | 239 |
/// \brief Returns the priority of \c i. |
240 | 240 |
/// |
241 | 241 |
/// This function returns the priority of item \c i. |
242 | 242 |
/// \pre \c i must be in the heap. |
243 | 243 |
/// \param i The item. |
244 | 244 |
Prio operator[](const Item &i) const { |
245 | 245 |
int idx = iim[i]; |
246 | 246 |
return data[idx].second; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \brief \c i gets to the heap with priority \c p independently |
250 | 250 |
/// if \c i was already there. |
251 | 251 |
/// |
252 | 252 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
253 | 253 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
254 | 254 |
/// \param i The item. |
255 | 255 |
/// \param p The priority. |
256 | 256 |
void set(const Item &i, const Prio &p) { |
257 | 257 |
int idx = iim[i]; |
258 | 258 |
if( idx < 0 ) { |
259 | 259 |
push(i,p); |
260 | 260 |
} |
261 | 261 |
else if( comp(p, data[idx].second) ) { |
262 | 262 |
bubble_up(idx, Pair(i,p)); |
263 | 263 |
} |
264 | 264 |
else { |
265 | 265 |
bubble_down(idx, Pair(i,p), data.size()); |
266 | 266 |
} |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
/// \brief Decreases the priority of \c i to \c p. |
270 | 270 |
/// |
271 | 271 |
/// This method decreases the priority of item \c i to \c p. |
272 | 272 |
/// \pre \c i must be stored in the heap with priority at least \c |
273 | 273 |
/// p relative to \c Compare. |
274 | 274 |
/// \param i The item. |
275 | 275 |
/// \param p The priority. |
276 | 276 |
void decrease(const Item &i, const Prio &p) { |
277 | 277 |
int idx = iim[i]; |
278 | 278 |
bubble_up(idx, Pair(i,p)); |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
/// \brief Increases the priority of \c i to \c p. |
282 | 282 |
/// |
283 | 283 |
/// This method sets the priority of item \c i to \c p. |
284 | 284 |
/// \pre \c i must be stored in the heap with priority at most \c |
285 | 285 |
/// p relative to \c Compare. |
286 | 286 |
/// \param i The item. |
287 | 287 |
/// \param p The priority. |
288 | 288 |
void increase(const Item &i, const Prio &p) { |
289 | 289 |
int idx = iim[i]; |
290 | 290 |
bubble_down(idx, Pair(i,p), data.size()); |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
/// \brief Returns if \c item is in, has already been in, or has |
294 | 294 |
/// never been in the heap. |
295 | 295 |
/// |
296 | 296 |
/// This method returns PRE_HEAP if \c item has never been in the |
297 | 297 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
298 | 298 |
/// otherwise. In the latter case it is possible that \c item will |
299 | 299 |
/// get back to the heap again. |
300 | 300 |
/// \param i The item. |
301 | 301 |
State state(const Item &i) const { |
302 | 302 |
int s = iim[i]; |
303 | 303 |
if( s>=0 ) |
304 | 304 |
s=0; |
305 | 305 |
return State(s); |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
/// \brief Sets the state of the \c item in the heap. |
309 | 309 |
/// |
310 | 310 |
/// Sets the state of the \c item in the heap. It can be used to |
311 | 311 |
/// manually clear the heap when it is important to achive the |
312 | 312 |
/// better time complexity. |
313 | 313 |
/// \param i The item. |
314 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
315 | 315 |
void state(const Item& i, State st) { |
316 | 316 |
switch (st) { |
317 | 317 |
case POST_HEAP: |
318 | 318 |
case PRE_HEAP: |
319 | 319 |
if (state(i) == IN_HEAP) { |
320 | 320 |
erase(i); |
321 | 321 |
} |
322 | 322 |
iim[i] = st; |
323 | 323 |
break; |
324 | 324 |
case IN_HEAP: |
325 | 325 |
break; |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
/// \brief Replaces an item in the heap. |
330 | 330 |
/// |
331 | 331 |
/// The \c i item is replaced with \c j item. The \c i item should |
332 | 332 |
/// be in the heap, while the \c j should be out of the heap. The |
333 | 333 |
/// \c i item will out of the heap and \c j will be in the heap |
334 | 334 |
/// with the same prioriority as prevoiusly the \c i item. |
335 | 335 |
void replace(const Item& i, const Item& j) { |
336 | 336 |
int idx = iim[i]; |
337 | 337 |
iim.set(i, iim[j]); |
338 | 338 |
iim.set(j, idx); |
339 | 339 |
data[idx].first = j; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
}; // class BinHeap |
343 | 343 |
|
344 | 344 |
} // namespace lemon |
345 | 345 |
|
346 | 346 |
#endif // LEMON_BIN_HEAP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2009 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H |
20 | 20 |
#define LEMON_BITS_ALTERATION_NOTIFIER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
|
25 | 25 |
#include <lemon/core.h> |
26 | 26 |
|
27 | 27 |
//\ingroup graphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Observer notifier for graph alteration observers. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
// \ingroup graphbits |
34 | 34 |
// |
35 | 35 |
// \brief Notifier class to notify observes about alterations in |
36 | 36 |
// a container. |
37 | 37 |
// |
38 | 38 |
// The simple graphs can be refered as two containers: a node container |
39 | 39 |
// and an edge container. But they do not store values directly, they |
40 | 40 |
// are just key continars for more value containers, which are the |
41 | 41 |
// node and edge maps. |
42 | 42 |
// |
43 | 43 |
// The node and edge sets of the graphs can be changed as we add or erase |
44 | 44 |
// nodes and edges in the graph. LEMON would like to handle easily |
45 | 45 |
// that the node and edge maps should contain values for all nodes or |
46 | 46 |
// edges. If we want to check on every indicing if the map contains |
47 | 47 |
// the current indicing key that cause a drawback in the performance |
48 | 48 |
// in the library. We use another solution: we notify all maps about |
49 | 49 |
// an alteration in the graph, which cause only drawback on the |
50 | 50 |
// alteration of the graph. |
51 | 51 |
// |
52 | 52 |
// This class provides an interface to a node or edge container. |
53 | 53 |
// The first() and next() member functions make possible |
54 | 54 |
// to iterate on the keys of the container. |
55 | 55 |
// The id() function returns an integer id for each key. |
56 | 56 |
// The maxId() function gives back an upper bound of the ids. |
57 | 57 |
// |
58 | 58 |
// For the proper functonality of this class, we should notify it |
59 | 59 |
// about each alteration in the container. The alterations have four type: |
60 | 60 |
// add(), erase(), build() and clear(). The add() and |
61 | 61 |
// erase() signal that only one or few items added or erased to or |
62 | 62 |
// from the graph. If all items are erased from the graph or if a new graph |
63 | 63 |
// is built from an empty graph, then it can be signaled with the |
64 | 64 |
// clear() and build() members. Important rule that if we erase items |
65 | 65 |
// from graphs we should first signal the alteration and after that erase |
66 | 66 |
// them from the container, on the other way on item addition we should |
67 | 67 |
// first extend the container and just after that signal the alteration. |
68 | 68 |
// |
69 | 69 |
// The alteration can be observed with a class inherited from the |
70 | 70 |
// ObserverBase nested class. The signals can be handled with |
71 | 71 |
// overriding the virtual functions defined in the base class. The |
72 | 72 |
// observer base can be attached to the notifier with the |
73 | 73 |
// attach() member and can be detached with detach() function. The |
74 | 74 |
// alteration handlers should not call any function which signals |
75 | 75 |
// an other alteration in the same notifier and should not |
76 | 76 |
// detach any observer from the notifier. |
77 | 77 |
// |
78 | 78 |
// Alteration observers try to be exception safe. If an add() or |
79 | 79 |
// a clear() function throws an exception then the remaining |
80 | 80 |
// observeres will not be notified and the fulfilled additions will |
81 | 81 |
// be rolled back by calling the erase() or clear() functions. |
82 | 82 |
// Hence erase() and clear() should not throw exception. |
83 | 83 |
// Actullay, they can throw only \ref ImmediateDetach exception, |
84 | 84 |
// which detach the observer from the notifier. |
85 | 85 |
// |
86 | 86 |
// There are some cases, when the alteration observing is not completly |
87 | 87 |
// reliable. If we want to carry out the node degree in the graph |
88 | 88 |
// as in the \ref InDegMap and we use the reverseArc(), then it cause |
89 | 89 |
// unreliable functionality. Because the alteration observing signals |
90 | 90 |
// only erasing and adding but not the reversing, it will stores bad |
91 | 91 |
// degrees. Apart form that the subgraph adaptors cannot even signal |
92 | 92 |
// the alterations because just a setting in the filter map can modify |
93 | 93 |
// the graph and this cannot be watched in any way. |
94 | 94 |
// |
95 | 95 |
// \param _Container The container which is observed. |
96 | 96 |
// \param _Item The item type which is obserbved. |
97 | 97 |
|
98 | 98 |
template <typename _Container, typename _Item> |
99 | 99 |
class AlterationNotifier { |
100 | 100 |
public: |
101 | 101 |
|
102 | 102 |
typedef True Notifier; |
103 | 103 |
|
104 | 104 |
typedef _Container Container; |
105 | 105 |
typedef _Item Item; |
106 | 106 |
|
107 | 107 |
// \brief Exception which can be called from clear() and |
108 | 108 |
// erase(). |
109 | 109 |
// |
110 | 110 |
// From the clear() and erase() function only this |
111 | 111 |
// exception is allowed to throw. The exception immediatly |
112 | 112 |
// detaches the current observer from the notifier. Because the |
113 | 113 |
// clear() and erase() should not throw other exceptions |
114 | 114 |
// it can be used to invalidate the observer. |
115 | 115 |
struct ImmediateDetach {}; |
116 | 116 |
|
117 | 117 |
// \brief ObserverBase is the base class for the observers. |
118 | 118 |
// |
119 | 119 |
// ObserverBase is the abstract base class for the observers. |
120 | 120 |
// It will be notified about an item was inserted into or |
121 | 121 |
// erased from the graph. |
122 | 122 |
// |
123 | 123 |
// The observer interface contains some pure virtual functions |
124 | 124 |
// to override. The add() and erase() functions are |
125 | 125 |
// to notify the oberver when one item is added or erased. |
126 | 126 |
// |
127 | 127 |
// The build() and clear() members are to notify the observer |
128 | 128 |
// about the container is built from an empty container or |
129 | 129 |
// is cleared to an empty container. |
130 | 130 |
class ObserverBase { |
131 | 131 |
protected: |
132 | 132 |
typedef AlterationNotifier Notifier; |
133 | 133 |
|
134 | 134 |
friend class AlterationNotifier; |
135 | 135 |
|
136 | 136 |
// \brief Default constructor. |
137 | 137 |
// |
138 | 138 |
// Default constructor for ObserverBase. |
139 | 139 |
ObserverBase() : _notifier(0) {} |
140 | 140 |
|
141 | 141 |
// \brief Constructor which attach the observer into notifier. |
142 | 142 |
// |
143 | 143 |
// Constructor which attach the observer into notifier. |
144 | 144 |
ObserverBase(AlterationNotifier& nf) { |
145 | 145 |
attach(nf); |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
// \brief Constructor which attach the obserever to the same notifier. |
149 | 149 |
// |
150 | 150 |
// Constructor which attach the obserever to the same notifier as |
151 | 151 |
// the other observer is attached to. |
152 | 152 |
ObserverBase(const ObserverBase& copy) { |
153 | 153 |
if (copy.attached()) { |
154 | 154 |
attach(*copy.notifier()); |
155 | 155 |
} |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
// \brief Destructor |
159 | 159 |
virtual ~ObserverBase() { |
160 | 160 |
if (attached()) { |
161 | 161 |
detach(); |
162 | 162 |
} |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
// \brief Attaches the observer into an AlterationNotifier. |
166 | 166 |
// |
167 | 167 |
// This member attaches the observer into an AlterationNotifier. |
168 | 168 |
void attach(AlterationNotifier& nf) { |
169 | 169 |
nf.attach(*this); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
// \brief Detaches the observer into an AlterationNotifier. |
173 | 173 |
// |
174 | 174 |
// This member detaches the observer from an AlterationNotifier. |
175 | 175 |
void detach() { |
176 | 176 |
_notifier->detach(*this); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
// \brief Gives back a pointer to the notifier which the map |
180 | 180 |
// attached into. |
181 | 181 |
// |
182 | 182 |
// This function gives back a pointer to the notifier which the map |
183 | 183 |
// attached into. |
184 | 184 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); } |
185 | 185 |
|
186 | 186 |
// Gives back true when the observer is attached into a notifier. |
187 | 187 |
bool attached() const { return _notifier != 0; } |
188 | 188 |
|
189 | 189 |
private: |
190 | 190 |
|
191 | 191 |
ObserverBase& operator=(const ObserverBase& copy); |
192 | 192 |
|
193 | 193 |
protected: |
194 | 194 |
|
195 | 195 |
Notifier* _notifier; |
196 | 196 |
typename std::list<ObserverBase*>::iterator _index; |
197 | 197 |
|
198 | 198 |
// \brief The member function to notificate the observer about an |
199 | 199 |
// item is added to the container. |
200 | 200 |
// |
201 | 201 |
// The add() member function notificates the observer about an item |
202 | 202 |
// is added to the container. It have to be overrided in the |
203 | 203 |
// subclasses. |
204 | 204 |
virtual void add(const Item&) = 0; |
205 | 205 |
|
206 | 206 |
// \brief The member function to notificate the observer about |
207 | 207 |
// more item is added to the container. |
208 | 208 |
// |
209 | 209 |
// The add() member function notificates the observer about more item |
210 | 210 |
// is added to the container. It have to be overrided in the |
211 | 211 |
// subclasses. |
212 | 212 |
virtual void add(const std::vector<Item>& items) = 0; |
213 | 213 |
|
214 | 214 |
// \brief The member function to notificate the observer about an |
215 | 215 |
// item is erased from the container. |
216 | 216 |
// |
217 | 217 |
// The erase() member function notificates the observer about an |
218 | 218 |
// item is erased from the container. It have to be overrided in |
219 | 219 |
// the subclasses. |
220 | 220 |
virtual void erase(const Item&) = 0; |
221 | 221 |
|
222 | 222 |
// \brief The member function to notificate the observer about |
223 | 223 |
// more item is erased from the container. |
224 | 224 |
// |
225 | 225 |
// The erase() member function notificates the observer about more item |
226 | 226 |
// is erased from the container. It have to be overrided in the |
227 | 227 |
// subclasses. |
228 | 228 |
virtual void erase(const std::vector<Item>& items) = 0; |
229 | 229 |
|
230 | 230 |
// \brief The member function to notificate the observer about the |
231 | 231 |
// container is built. |
232 | 232 |
// |
233 | 233 |
// The build() member function notificates the observer about the |
234 | 234 |
// container is built from an empty container. It have to be |
235 | 235 |
// overrided in the subclasses. |
236 | 236 |
virtual void build() = 0; |
237 | 237 |
|
238 | 238 |
// \brief The member function to notificate the observer about all |
239 | 239 |
// items are erased from the container. |
240 | 240 |
// |
241 | 241 |
// The clear() member function notificates the observer about all |
242 | 242 |
// items are erased from the container. It have to be overrided in |
243 | 243 |
// the subclasses. |
244 | 244 |
virtual void clear() = 0; |
245 | 245 |
|
246 | 246 |
}; |
247 | 247 |
|
248 | 248 |
protected: |
249 | 249 |
|
250 | 250 |
const Container* container; |
251 | 251 |
|
252 | 252 |
typedef std::list<ObserverBase*> Observers; |
253 | 253 |
Observers _observers; |
254 | 254 |
|
255 | 255 |
|
256 | 256 |
public: |
257 | 257 |
|
258 | 258 |
// \brief Default constructor. |
259 | 259 |
// |
260 | 260 |
// The default constructor of the AlterationNotifier. |
261 | 261 |
// It creates an empty notifier. |
262 | 262 |
AlterationNotifier() |
263 | 263 |
: container(0) {} |
264 | 264 |
|
265 | 265 |
// \brief Constructor. |
266 | 266 |
// |
267 | 267 |
// Constructor with the observed container parameter. |
268 | 268 |
AlterationNotifier(const Container& _container) |
269 | 269 |
: container(&_container) {} |
270 | 270 |
|
271 | 271 |
// \brief Copy Constructor of the AlterationNotifier. |
272 | 272 |
// |
273 | 273 |
// Copy constructor of the AlterationNotifier. |
274 | 274 |
// It creates only an empty notifier because the copiable |
275 | 275 |
// notifier's observers have to be registered still into that notifier. |
276 | 276 |
AlterationNotifier(const AlterationNotifier& _notifier) |
277 | 277 |
: container(_notifier.container) {} |
278 | 278 |
|
279 | 279 |
// \brief Destructor. |
280 | 280 |
// |
281 | 281 |
// Destructor of the AlterationNotifier. |
282 | 282 |
~AlterationNotifier() { |
283 | 283 |
typename Observers::iterator it; |
284 | 284 |
for (it = _observers.begin(); it != _observers.end(); ++it) { |
285 | 285 |
(*it)->_notifier = 0; |
286 | 286 |
} |
287 | 287 |
} |
288 | 288 |
|
289 | 289 |
// \brief Sets the container. |
290 | 290 |
// |
291 | 291 |
// Sets the container. |
292 | 292 |
void setContainer(const Container& _container) { |
293 | 293 |
container = &_container; |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
protected: |
297 | 297 |
|
298 | 298 |
AlterationNotifier& operator=(const AlterationNotifier&); |
299 | 299 |
|
300 | 300 |
public: |
301 | 301 |
|
302 | 302 |
// \brief First item in the container. |
303 | 303 |
// |
304 | 304 |
// Returns the first item in the container. It is |
305 | 305 |
// for start the iteration on the container. |
306 | 306 |
void first(Item& item) const { |
307 | 307 |
container->first(item); |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
// \brief Next item in the container. |
311 | 311 |
// |
312 | 312 |
// Returns the next item in the container. It is |
313 | 313 |
// for iterate on the container. |
314 | 314 |
void next(Item& item) const { |
315 | 315 |
container->next(item); |
316 | 316 |
} |
317 | 317 |
|
318 | 318 |
// \brief Returns the id of the item. |
319 | 319 |
// |
320 | 320 |
// Returns the id of the item provided by the container. |
321 | 321 |
int id(const Item& item) const { |
322 | 322 |
return container->id(item); |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
// \brief Returns the maximum id of the container. |
326 | 326 |
// |
327 | 327 |
// Returns the maximum id of the container. |
328 | 328 |
int maxId() const { |
329 | 329 |
return container->maxId(Item()); |
330 | 330 |
} |
331 | 331 |
|
332 | 332 |
protected: |
333 | 333 |
|
334 | 334 |
void attach(ObserverBase& observer) { |
335 | 335 |
observer._index = _observers.insert(_observers.begin(), &observer); |
336 | 336 |
observer._notifier = this; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
void detach(ObserverBase& observer) { |
340 | 340 |
_observers.erase(observer._index); |
341 | 341 |
observer._index = _observers.end(); |
342 | 342 |
observer._notifier = 0; |
343 | 343 |
} |
344 | 344 |
|
345 | 345 |
public: |
346 | 346 |
|
347 | 347 |
// \brief Notifies all the registed observers about an item added to |
348 | 348 |
// the container. |
349 | 349 |
// |
350 | 350 |
// It notifies all the registed observers about an item added to |
351 | 351 |
// the container. |
352 | 352 |
void add(const Item& item) { |
353 | 353 |
typename Observers::reverse_iterator it; |
354 | 354 |
try { |
355 | 355 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
356 | 356 |
(*it)->add(item); |
357 | 357 |
} |
358 | 358 |
} catch (...) { |
359 | 359 |
typename Observers::iterator jt; |
360 | 360 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
361 | 361 |
(*jt)->erase(item); |
362 | 362 |
} |
363 | 363 |
throw; |
364 | 364 |
} |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
// \brief Notifies all the registed observers about more item added to |
368 | 368 |
// the container. |
369 | 369 |
// |
370 | 370 |
// It notifies all the registed observers about more item added to |
371 | 371 |
// the container. |
372 | 372 |
void add(const std::vector<Item>& items) { |
373 | 373 |
typename Observers::reverse_iterator it; |
374 | 374 |
try { |
375 | 375 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
376 | 376 |
(*it)->add(items); |
377 | 377 |
} |
378 | 378 |
} catch (...) { |
379 | 379 |
typename Observers::iterator jt; |
380 | 380 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
381 | 381 |
(*jt)->erase(items); |
382 | 382 |
} |
383 | 383 |
throw; |
384 | 384 |
} |
385 | 385 |
} |
386 | 386 |
|
387 | 387 |
// \brief Notifies all the registed observers about an item erased from |
388 | 388 |
// the container. |
389 | 389 |
// |
390 | 390 |
// It notifies all the registed observers about an item erased from |
391 | 391 |
// the container. |
392 | 392 |
void erase(const Item& item) throw() { |
393 | 393 |
typename Observers::iterator it = _observers.begin(); |
394 | 394 |
while (it != _observers.end()) { |
395 | 395 |
try { |
396 | 396 |
(*it)->erase(item); |
397 | 397 |
++it; |
398 | 398 |
} catch (const ImmediateDetach&) { |
399 | 399 |
(*it)->_index = _observers.end(); |
400 | 400 |
(*it)->_notifier = 0; |
401 | 401 |
it = _observers.erase(it); |
402 | 402 |
} |
403 | 403 |
} |
404 | 404 |
} |
405 | 405 |
|
406 | 406 |
// \brief Notifies all the registed observers about more item erased |
407 | 407 |
// from the container. |
408 | 408 |
// |
409 | 409 |
// It notifies all the registed observers about more item erased from |
410 | 410 |
// the container. |
411 | 411 |
void erase(const std::vector<Item>& items) { |
412 | 412 |
typename Observers::iterator it = _observers.begin(); |
413 | 413 |
while (it != _observers.end()) { |
414 | 414 |
try { |
415 | 415 |
(*it)->erase(items); |
416 | 416 |
++it; |
417 | 417 |
} catch (const ImmediateDetach&) { |
418 | 418 |
(*it)->_index = _observers.end(); |
419 | 419 |
(*it)->_notifier = 0; |
420 | 420 |
it = _observers.erase(it); |
421 | 421 |
} |
422 | 422 |
} |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
// \brief Notifies all the registed observers about the container is |
426 | 426 |
// built. |
427 | 427 |
// |
428 | 428 |
// Notifies all the registed observers about the container is built |
429 | 429 |
// from an empty container. |
430 | 430 |
void build() { |
431 | 431 |
typename Observers::reverse_iterator it; |
432 | 432 |
try { |
433 | 433 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
434 | 434 |
(*it)->build(); |
435 | 435 |
} |
436 | 436 |
} catch (...) { |
437 | 437 |
typename Observers::iterator jt; |
438 | 438 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
439 | 439 |
(*jt)->clear(); |
440 | 440 |
} |
441 | 441 |
throw; |
442 | 442 |
} |
443 | 443 |
} |
444 | 444 |
|
445 | 445 |
// \brief Notifies all the registed observers about all items are |
446 | 446 |
// erased. |
447 | 447 |
// |
448 | 448 |
// Notifies all the registed observers about all items are erased |
449 | 449 |
// from the container. |
450 | 450 |
void clear() { |
451 | 451 |
typename Observers::iterator it = _observers.begin(); |
452 | 452 |
while (it != _observers.end()) { |
453 | 453 |
try { |
454 | 454 |
(*it)->clear(); |
455 | 455 |
++it; |
456 | 456 |
} catch (const ImmediateDetach&) { |
457 | 457 |
(*it)->_index = _observers.end(); |
458 | 458 |
(*it)->_notifier = 0; |
459 | 459 |
it = _observers.erase(it); |
460 | 460 |
} |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
}; |
464 | 464 |
|
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
#endif |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)