↑ Collapse diff ↑
Show white space 4096 line context
1 1
LEMON code without an explicit copyright is covered by the following
2 2
copyright/license.
3 3

	
4
Copyright (C) 2003-2008 Egervary Jeno Kombinatorikus Optimalizalasi
4
Copyright (C) 2003-2009 Egervary Jeno Kombinatorikus Optimalizalasi
5 5
Kutatocsoport (Egervary Combinatorial Optimization Research Group,
6 6
EGRES).
7 7

	
8 8
Permission is hereby granted, free of charge, to any person or organization
9 9
obtaining a copy of the software and accompanying documentation covered by
10 10
this license (the "Software") to use, reproduce, display, distribute,
11 11
execute, and transmit the Software, and to prepare derivative works of the
12 12
Software, and to permit third-parties to whom the Software is furnished to
13 13
do so, all subject to the following:
14 14

	
15 15
The copyright notices in the Software and this entire statement, including
16 16
the above license grant, this restriction and the following disclaimer,
17 17
must be included in all copies of the Software, in whole or in part, and
18 18
all derivative works of the Software, unless such copies or derivative
19 19
works are solely in the form of machine-executable object code generated by
20 20
a source language processor.
21 21

	
22 22
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 23
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 24
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
25 25
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
26 26
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
27 27
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 28
DEALINGS IN THE SOFTWARE.
29 29

	
30 30
===========================================================================
31 31
This license is a verbatim copy of the Boost Software License, Version 1.0.
32 32

	
33 33

	
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup demos
20 20
///\file
21 21
///\brief Argument parser demo
22 22
///
23 23
/// This example shows how the argument parser can be used.
24 24
///
25 25
/// \include arg_parser_demo.cc
26 26

	
27 27
#include <lemon/arg_parser.h>
28 28

	
29 29
using namespace lemon;
30 30
int main(int argc, char **argv)
31 31
{
32 32
  // Initialize the argument parser
33 33
  ArgParser ap(argc, argv);
34 34
  int i;
35 35
  std::string s;
36 36
  double d = 1.0;
37 37
  bool b, nh;
38 38
  bool g1, g2, g3;
39 39

	
40 40
  // Add a mandatory integer option with storage reference
41 41
  ap.refOption("n", "An integer input.", i, true);
42 42
  // Add a double option with storage reference (the default value is 1.0)
43 43
  ap.refOption("val", "A double input.", d);
44 44
  // Add a double option without storage reference (the default value is 3.14)
45 45
  ap.doubleOption("val2", "A double input.", 3.14);
46 46
  // Set synonym for -val option
47 47
  ap.synonym("vals", "val");
48 48
  // Add a string option
49 49
  ap.refOption("name", "A string input.", s);
50 50
  // Add bool options
51 51
  ap.refOption("f", "A switch.", b)
52 52
    .refOption("nohelp", "", nh)
53 53
    .refOption("gra", "Choice A", g1)
54 54
    .refOption("grb", "Choice B", g2)
55 55
    .refOption("grc", "Choice C", g3);
56 56
  // Bundle -gr* options into a group
57 57
  ap.optionGroup("gr", "gra")
58 58
    .optionGroup("gr", "grb")
59 59
    .optionGroup("gr", "grc");
60 60
  // Set the group mandatory
61 61
  ap.mandatoryGroup("gr");
62 62
  // Set the options of the group exclusive (only one option can be given)
63 63
  ap.onlyOneGroup("gr");
64 64
  // Add non-parsed arguments (e.g. input files)
65 65
  ap.other("infile", "The input file.")
66 66
    .other("...");
67 67

	
68 68
  // Perform the parsing process
69 69
  // (in case of any error it terminates the program)
70 70
  ap.parse();
71 71

	
72 72
  // Check each option if it has been given and print its value
73 73
  std::cout << "Parameters of '" << ap.commandName() << "':\n";
74 74

	
75 75
  std::cout << "  Value of -n: " << i << std::endl;
76 76
  if(ap.given("val")) std::cout << "  Value of -val: " << d << std::endl;
77 77
  if(ap.given("val2")) {
78 78
    d = ap["val2"];
79 79
    std::cout << "  Value of -val2: " << d << std::endl;
80 80
  }
81 81
  if(ap.given("name")) std::cout << "  Value of -name: " << s << std::endl;
82 82
  if(ap.given("f")) std::cout << "  -f is given\n";
83 83
  if(ap.given("nohelp")) std::cout << "  Value of -nohelp: " << nh << std::endl;
84 84
  if(ap.given("gra")) std::cout << "  -gra is given\n";
85 85
  if(ap.given("grb")) std::cout << "  -grb is given\n";
86 86
  if(ap.given("grc")) std::cout << "  -grc is given\n";
87 87

	
88 88
  switch(ap.files().size()) {
89 89
  case 0:
90 90
    std::cout << "  No file argument was given.\n";
91 91
    break;
92 92
  case 1:
93 93
    std::cout << "  1 file argument was given. It is:\n";
94 94
    break;
95 95
  default:
96 96
    std::cout << "  "
97 97
              << ap.files().size() << " file arguments were given. They are:\n";
98 98
  }
99 99
  for(unsigned int i=0;i<ap.files().size();++i)
100 100
    std::cout << "    '" << ap.files()[i] << "'\n";
101 101

	
102 102
  return 0;
103 103
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/// \ingroup demos
20 20
/// \file
21 21
/// \brief Demo of the graph drawing function \ref graphToEps()
22 22
///
23 23
/// This demo program shows examples how to use the function \ref
24 24
/// graphToEps(). It takes no input but simply creates seven
25 25
/// <tt>.eps</tt> files demonstrating the capability of \ref
26 26
/// graphToEps(), and showing how to draw directed graphs,
27 27
/// how to handle parallel egdes, how to change the properties (like
28 28
/// color, shape, size, title etc.) of nodes and arcs individually
29 29
/// using appropriate graph maps.
30 30
///
31 31
/// \include graph_to_eps_demo.cc
32 32

	
33 33
#include<lemon/list_graph.h>
34 34
#include<lemon/graph_to_eps.h>
35 35
#include<lemon/math.h>
36 36

	
37 37
using namespace std;
38 38
using namespace lemon;
39 39

	
40 40
int main()
41 41
{
42 42
  Palette palette;
43 43
  Palette paletteW(true);
44 44

	
45 45
  // Create a small digraph
46 46
  ListDigraph g;
47 47
  typedef ListDigraph::Node Node;
48 48
  typedef ListDigraph::NodeIt NodeIt;
49 49
  typedef ListDigraph::Arc Arc;
50 50
  typedef dim2::Point<int> Point;
51 51

	
52 52
  Node n1=g.addNode();
53 53
  Node n2=g.addNode();
54 54
  Node n3=g.addNode();
55 55
  Node n4=g.addNode();
56 56
  Node n5=g.addNode();
57 57

	
58 58
  ListDigraph::NodeMap<Point> coords(g);
59 59
  ListDigraph::NodeMap<double> sizes(g);
60 60
  ListDigraph::NodeMap<int> colors(g);
61 61
  ListDigraph::NodeMap<int> shapes(g);
62 62
  ListDigraph::ArcMap<int> acolors(g);
63 63
  ListDigraph::ArcMap<int> widths(g);
64 64

	
65 65
  coords[n1]=Point(50,50);  sizes[n1]=1; colors[n1]=1; shapes[n1]=0;
66 66
  coords[n2]=Point(50,70);  sizes[n2]=2; colors[n2]=2; shapes[n2]=2;
67 67
  coords[n3]=Point(70,70);  sizes[n3]=1; colors[n3]=3; shapes[n3]=0;
68 68
  coords[n4]=Point(70,50);  sizes[n4]=2; colors[n4]=4; shapes[n4]=1;
69 69
  coords[n5]=Point(85,60);  sizes[n5]=3; colors[n5]=5; shapes[n5]=2;
70 70

	
71 71
  Arc a;
72 72

	
73 73
  a=g.addArc(n1,n2); acolors[a]=0; widths[a]=1;
74 74
  a=g.addArc(n2,n3); acolors[a]=0; widths[a]=1;
75 75
  a=g.addArc(n3,n5); acolors[a]=0; widths[a]=3;
76 76
  a=g.addArc(n5,n4); acolors[a]=0; widths[a]=1;
77 77
  a=g.addArc(n4,n1); acolors[a]=0; widths[a]=1;
78 78
  a=g.addArc(n2,n4); acolors[a]=1; widths[a]=2;
79 79
  a=g.addArc(n3,n4); acolors[a]=2; widths[a]=1;
80 80

	
81 81
  IdMap<ListDigraph,Node> id(g);
82 82

	
83 83
  // Create .eps files showing the digraph with different options
84 84
  cout << "Create 'graph_to_eps_demo_out_1_pure.eps'" << endl;
85 85
  graphToEps(g,"graph_to_eps_demo_out_1_pure.eps").
86 86
    coords(coords).
87 87
    title("Sample .eps figure").
88
    copyright("(C) 2003-2008 LEMON Project").
88
    copyright("(C) 2003-2009 LEMON Project").
89 89
    run();
90 90

	
91 91
  cout << "Create 'graph_to_eps_demo_out_2.eps'" << endl;
92 92
  graphToEps(g,"graph_to_eps_demo_out_2.eps").
93 93
    coords(coords).
94 94
    title("Sample .eps figure").
95
    copyright("(C) 2003-2008 LEMON Project").
95
    copyright("(C) 2003-2009 LEMON Project").
96 96
    absoluteNodeSizes().absoluteArcWidths().
97 97
    nodeScale(2).nodeSizes(sizes).
98 98
    nodeShapes(shapes).
99 99
    nodeColors(composeMap(palette,colors)).
100 100
    arcColors(composeMap(palette,acolors)).
101 101
    arcWidthScale(.4).arcWidths(widths).
102 102
    nodeTexts(id).nodeTextSize(3).
103 103
    run();
104 104

	
105 105
  cout << "Create 'graph_to_eps_demo_out_3_arr.eps'" << endl;
106 106
  graphToEps(g,"graph_to_eps_demo_out_3_arr.eps").
107 107
    title("Sample .eps figure (with arrowheads)").
108
    copyright("(C) 2003-2008 LEMON Project").
108
    copyright("(C) 2003-2009 LEMON Project").
109 109
    absoluteNodeSizes().absoluteArcWidths().
110 110
    nodeColors(composeMap(palette,colors)).
111 111
    coords(coords).
112 112
    nodeScale(2).nodeSizes(sizes).
113 113
    nodeShapes(shapes).
114 114
    arcColors(composeMap(palette,acolors)).
115 115
    arcWidthScale(.4).arcWidths(widths).
116 116
    nodeTexts(id).nodeTextSize(3).
117 117
    drawArrows().arrowWidth(2).arrowLength(2).
118 118
    run();
119 119

	
120 120
  // Add more arcs to the digraph
121 121
  a=g.addArc(n1,n4); acolors[a]=2; widths[a]=1;
122 122
  a=g.addArc(n4,n1); acolors[a]=1; widths[a]=2;
123 123

	
124 124
  a=g.addArc(n1,n2); acolors[a]=1; widths[a]=1;
125 125
  a=g.addArc(n1,n2); acolors[a]=2; widths[a]=1;
126 126
  a=g.addArc(n1,n2); acolors[a]=3; widths[a]=1;
127 127
  a=g.addArc(n1,n2); acolors[a]=4; widths[a]=1;
128 128
  a=g.addArc(n1,n2); acolors[a]=5; widths[a]=1;
129 129
  a=g.addArc(n1,n2); acolors[a]=6; widths[a]=1;
130 130
  a=g.addArc(n1,n2); acolors[a]=7; widths[a]=1;
131 131

	
132 132
  cout << "Create 'graph_to_eps_demo_out_4_par.eps'" << endl;
133 133
  graphToEps(g,"graph_to_eps_demo_out_4_par.eps").
134 134
    title("Sample .eps figure (parallel arcs)").
135
    copyright("(C) 2003-2008 LEMON Project").
135
    copyright("(C) 2003-2009 LEMON Project").
136 136
    absoluteNodeSizes().absoluteArcWidths().
137 137
    nodeShapes(shapes).
138 138
    coords(coords).
139 139
    nodeScale(2).nodeSizes(sizes).
140 140
    nodeColors(composeMap(palette,colors)).
141 141
    arcColors(composeMap(palette,acolors)).
142 142
    arcWidthScale(.4).arcWidths(widths).
143 143
    nodeTexts(id).nodeTextSize(3).
144 144
    enableParallel().parArcDist(1.5).
145 145
    run();
146 146

	
147 147
  cout << "Create 'graph_to_eps_demo_out_5_par_arr.eps'" << endl;
148 148
  graphToEps(g,"graph_to_eps_demo_out_5_par_arr.eps").
149 149
    title("Sample .eps figure (parallel arcs and arrowheads)").
150
    copyright("(C) 2003-2008 LEMON Project").
150
    copyright("(C) 2003-2009 LEMON Project").
151 151
    absoluteNodeSizes().absoluteArcWidths().
152 152
    nodeScale(2).nodeSizes(sizes).
153 153
    coords(coords).
154 154
    nodeShapes(shapes).
155 155
    nodeColors(composeMap(palette,colors)).
156 156
    arcColors(composeMap(palette,acolors)).
157 157
    arcWidthScale(.3).arcWidths(widths).
158 158
    nodeTexts(id).nodeTextSize(3).
159 159
    enableParallel().parArcDist(1).
160 160
    drawArrows().arrowWidth(1).arrowLength(1).
161 161
    run();
162 162

	
163 163
  cout << "Create 'graph_to_eps_demo_out_6_par_arr_a4.eps'" << endl;
164 164
  graphToEps(g,"graph_to_eps_demo_out_6_par_arr_a4.eps").
165 165
    title("Sample .eps figure (fits to A4)").
166
    copyright("(C) 2003-2008 LEMON Project").
166
    copyright("(C) 2003-2009 LEMON Project").
167 167
    scaleToA4().
168 168
    absoluteNodeSizes().absoluteArcWidths().
169 169
    nodeScale(2).nodeSizes(sizes).
170 170
    coords(coords).
171 171
    nodeShapes(shapes).
172 172
    nodeColors(composeMap(palette,colors)).
173 173
    arcColors(composeMap(palette,acolors)).
174 174
    arcWidthScale(.3).arcWidths(widths).
175 175
    nodeTexts(id).nodeTextSize(3).
176 176
    enableParallel().parArcDist(1).
177 177
    drawArrows().arrowWidth(1).arrowLength(1).
178 178
    run();
179 179

	
180 180
  // Create an .eps file showing the colors of a default Palette
181 181
  ListDigraph h;
182 182
  ListDigraph::NodeMap<int> hcolors(h);
183 183
  ListDigraph::NodeMap<Point> hcoords(h);
184 184

	
185 185
  int cols=int(sqrt(double(palette.size())));
186 186
  for(int i=0;i<int(paletteW.size());i++) {
187 187
    Node n=h.addNode();
188 188
    hcoords[n]=Point(1+i%cols,1+i/cols);
189 189
    hcolors[n]=i;
190 190
  }
191 191

	
192 192
  cout << "Create 'graph_to_eps_demo_out_7_colors.eps'" << endl;
193 193
  graphToEps(h,"graph_to_eps_demo_out_7_colors.eps").
194 194
    scale(60).
195 195
    title("Sample .eps figure (Palette demo)").
196
    copyright("(C) 2003-2008 LEMON Project").
196
    copyright("(C) 2003-2009 LEMON Project").
197 197
    coords(hcoords).
198 198
    absoluteNodeSizes().absoluteArcWidths().
199 199
    nodeScale(.45).
200 200
    distantColorNodeTexts().
201 201
    nodeTexts(hcolors).nodeTextSize(.6).
202 202
    nodeColors(composeMap(paletteW,hcolors)).
203 203
    run();
204 204

	
205 205
  return 0;
206 206
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup demos
20 20
///\file
21 21
///\brief Demonstrating graph input and output
22 22
///
23 23
/// This program gives an example of how to read and write a digraph
24 24
/// and additional maps from/to a stream or a file using the
25 25
/// \ref lgf-format "LGF" format.
26 26
///
27 27
/// The \c "digraph.lgf" file:
28 28
/// \include digraph.lgf
29 29
///
30 30
/// And the program which reads it and prints the digraph to the
31 31
/// standard output:
32 32
/// \include lgf_demo.cc
33 33

	
34 34
#include <iostream>
35 35
#include <lemon/smart_graph.h>
36 36
#include <lemon/lgf_reader.h>
37 37
#include <lemon/lgf_writer.h>
38 38

	
39 39
using namespace lemon;
40 40

	
41 41
int main() {
42 42
  SmartDigraph g;
43 43
  SmartDigraph::ArcMap<int> cap(g);
44 44
  SmartDigraph::Node s, t;
45 45

	
46 46
  try {
47 47
    digraphReader(g, "digraph.lgf"). // read the directed graph into g
48 48
      arcMap("capacity", cap).       // read the 'capacity' arc map into cap
49 49
      node("source", s).             // read 'source' node to s
50 50
      node("target", t).             // read 'target' node to t
51 51
      run();
52 52
  } catch (Exception& error) { // check if there was any error
53 53
    std::cerr << "Error: " << error.what() << std::endl;
54 54
    return -1;
55 55
  }
56 56

	
57 57
  std::cout << "A digraph is read from 'digraph.lgf'." << std::endl;
58 58
  std::cout << "Number of nodes: " << countNodes(g) << std::endl;
59 59
  std::cout << "Number of arcs: " << countArcs(g) << std::endl;
60 60

	
61 61
  std::cout << "We can write it to the standard output:" << std::endl;
62 62

	
63 63
  digraphWriter(g).                // write g to the standard output
64 64
    arcMap("capacity", cap).       // write cap into 'capacity'
65 65
    node("source", s).             // write s to 'source'
66 66
    node("target", t).             // write t to 'target'
67 67
    run();
68 68

	
69 69
  return 0;
70 70
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/*!
20 20

	
21 21
\page coding_style LEMON Coding Style
22 22

	
23 23
\section naming_conv Naming Conventions
24 24

	
25 25
In order to make development easier we have made some conventions
26 26
according to coding style. These include names of types, classes,
27 27
functions, variables, constants and exceptions. If these conventions
28 28
are met in one's code then it is easier to read and maintain
29 29
it. Please comply with these conventions if you want to contribute
30 30
developing LEMON library.
31 31

	
32 32
\note When the coding style requires the capitalization of an abbreviation,
33 33
only the first letter should be upper case.
34 34

	
35 35
\code
36 36
XmlReader
37 37
\endcode
38 38

	
39 39

	
40 40
\warning In some cases we diverge from these rules.
41 41
This is primary done because STL uses different naming convention and
42 42
in certain cases
43 43
it is beneficial to provide STL compatible interface.
44 44

	
45 45
\subsection cs-files File Names
46 46

	
47 47
The header file names should look like the following.
48 48

	
49 49
\code
50 50
header_file.h
51 51
\endcode
52 52

	
53 53
Note that all standard LEMON headers are located in the \c lemon subdirectory,
54 54
so you should include them from C++ source like this:
55 55

	
56 56
\code
57 57
#include <lemon/header_file.h>
58 58
\endcode
59 59

	
60 60
The source code files use the same style and they have '.cc' extension.
61 61

	
62 62
\code
63 63
source_code.cc
64 64
\endcode
65 65

	
66 66
\subsection cs-class Classes and other types
67 67

	
68 68
The name of a class or any type should look like the following.
69 69

	
70 70
\code
71 71
AllWordsCapitalizedWithoutUnderscores
72 72
\endcode
73 73

	
74 74
\subsection cs-func Methods and other functions
75 75

	
76 76
The name of a function should look like the following.
77 77

	
78 78
\code
79 79
firstWordLowerCaseRestCapitalizedWithoutUnderscores
80 80
\endcode
81 81

	
82 82
\subsection cs-funcs Constants, Macros
83 83

	
84 84
The names of constants and macros should look like the following.
85 85

	
86 86
\code
87 87
ALL_UPPER_CASE_WITH_UNDERSCORES
88 88
\endcode
89 89

	
90 90
\subsection cs-loc-var Class and instance member variables, auto variables
91 91

	
92 92
The names of class and instance member variables and auto variables
93 93
(=variables used locally in methods) should look like the following.
94 94

	
95 95
\code
96 96
all_lower_case_with_underscores
97 97
\endcode
98 98

	
99 99
\subsection pri-loc-var Private member variables
100 100

	
101 101
Private member variables should start with underscore
102 102

	
103 103
\code
104 104
_start_with_underscores
105 105
\endcode
106 106

	
107 107
\subsection cs-excep Exceptions
108 108

	
109 109
When writing exceptions please comply the following naming conventions.
110 110

	
111 111
\code
112 112
ClassNameEndsWithException
113 113
\endcode
114 114

	
115 115
or
116 116

	
117 117
\code
118 118
ClassNameEndsWithError
119 119
\endcode
120 120

	
121 121
\section header-template Template Header File
122 122

	
123 123
Each LEMON header file should look like this:
124 124

	
125 125
\include template.h
126 126

	
127 127
*/
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\dir demo
21 21
\brief A collection of demo applications.
22 22

	
23 23
This directory contains several simple demo applications, mainly
24 24
for educational purposes.
25 25
*/
26 26

	
27 27
/**
28 28
\dir doc
29 29
\brief Auxiliary (and the whole generated) documentation.
30 30

	
31 31
This directory contains some auxiliary pages and the whole generated
32 32
documentation.
33 33
*/
34 34

	
35 35
/**
36 36
\dir test
37 37
\brief Test programs.
38 38

	
39 39
This directory contains several test programs that check the consistency
40 40
of the code.
41 41
*/
42 42

	
43 43
/**
44 44
\dir tools
45 45
\brief Some useful executables.
46 46

	
47 47
This directory contains the sources of some useful complete executables.
48 48
*/
49 49

	
50 50
/**
51 51
\dir lemon
52 52
\brief Base include directory of LEMON.
53 53

	
54 54
This is the base directory of LEMON includes, so each include file must be
55 55
prefixed with this, e.g.
56 56
\code
57 57
#include<lemon/list_graph.h>
58 58
#include<lemon/dijkstra.h>
59 59
\endcode
60 60
*/
61 61

	
62 62
/**
63 63
\dir concepts
64 64
\brief Concept descriptors and checking classes.
65 65

	
66 66
This directory contains the concept descriptors and concept checking tools.
67 67
For more information see the \ref concept "Concepts" module.
68 68
*/
69 69

	
70 70
/**
71 71
\dir bits
72 72
\brief Auxiliary tools for implementation.
73 73

	
74 74
This directory contains some auxiliary classes for implementing graphs, 
75 75
maps and some other classes.
76 76
As a user you typically don't have to deal with these files.
77 77
*/
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
@defgroup datas Data Structures
23 23
This group describes the several data structures implemented in LEMON.
24 24
*/
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65 65
@defgroup graph_adaptors Adaptor Classes for graphs
66 66
@ingroup graphs
67 67
\brief This group contains several adaptor classes for digraphs and graphs
68 68

	
69 69
The main parts of LEMON are the different graph structures, generic
70 70
graph algorithms, graph concepts which couple these, and graph
71 71
adaptors. While the previous notions are more or less clear, the
72 72
latter one needs further explanation. Graph adaptors are graph classes
73 73
which serve for considering graph structures in different ways.
74 74

	
75 75
A short example makes this much clearer.  Suppose that we have an
76 76
instance \c g of a directed graph type say ListDigraph and an algorithm
77 77
\code
78 78
template <typename Digraph>
79 79
int algorithm(const Digraph&);
80 80
\endcode
81 81
is needed to run on the reverse oriented graph.  It may be expensive
82 82
(in time or in memory usage) to copy \c g with the reversed
83 83
arcs.  In this case, an adaptor class is used, which (according
84 84
to LEMON digraph concepts) works as a digraph.  The adaptor uses the
85 85
original digraph structure and digraph operations when methods of the
86 86
reversed oriented graph are called.  This means that the adaptor have
87 87
minor memory usage, and do not perform sophisticated algorithmic
88 88
actions.  The purpose of it is to give a tool for the cases when a
89 89
graph have to be used in a specific alteration.  If this alteration is
90 90
obtained by a usual construction like filtering the arc-set or
91 91
considering a new orientation, then an adaptor is worthwhile to use.
92 92
To come back to the reverse oriented graph, in this situation
93 93
\code
94 94
template<typename Digraph> class ReverseDigraph;
95 95
\endcode
96 96
template class can be used. The code looks as follows
97 97
\code
98 98
ListDigraph g;
99 99
ReverseDigraph<ListGraph> rg(g);
100 100
int result = algorithm(rg);
101 101
\endcode
102 102
After running the algorithm, the original graph \c g is untouched.
103 103
This techniques gives rise to an elegant code, and based on stable
104 104
graph adaptors, complex algorithms can be implemented easily.
105 105

	
106 106
In flow, circulation and bipartite matching problems, the residual
107 107
graph is of particular importance. Combining an adaptor implementing
108 108
this, shortest path algorithms and minimum mean cycle algorithms,
109 109
a range of weighted and cardinality optimization algorithms can be
110 110
obtained. For other examples, the interested user is referred to the
111 111
detailed documentation of particular adaptors.
112 112

	
113 113
The behavior of graph adaptors can be very different. Some of them keep
114 114
capabilities of the original graph while in other cases this would be
115 115
meaningless. This means that the concepts that they are models of depend
116 116
on the graph adaptor, and the wrapped graph(s).
117 117
If an arc of \c rg is deleted, this is carried out by deleting the
118 118
corresponding arc of \c g, thus the adaptor modifies the original graph.
119 119

	
120 120
But for a residual graph, this operation has no sense.
121 121
Let us stand one more example here to simplify your work.
122 122
RevGraphAdaptor has constructor
123 123
\code
124 124
ReverseDigraph(Digraph& digraph);
125 125
\endcode
126 126
This means that in a situation, when a <tt>const ListDigraph&</tt>
127 127
reference to a graph is given, then it have to be instantiated with
128 128
<tt>Digraph=const ListDigraph</tt>.
129 129
\code
130 130
int algorithm1(const ListDigraph& g) {
131 131
  RevGraphAdaptor<const ListDigraph> rg(g);
132 132
  return algorithm2(rg);
133 133
}
134 134
\endcode
135 135
*/
136 136

	
137 137
/**
138 138
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
139 139
@ingroup graphs
140 140
\brief Graph types between real graphs and graph adaptors.
141 141

	
142 142
This group describes some graph types between real graphs and graph adaptors.
143 143
These classes wrap graphs to give new functionality as the adaptors do it.
144 144
On the other hand they are not light-weight structures as the adaptors.
145 145
*/
146 146

	
147 147
/**
148 148
@defgroup maps Maps
149 149
@ingroup datas
150 150
\brief Map structures implemented in LEMON.
151 151

	
152 152
This group describes the map structures implemented in LEMON.
153 153

	
154 154
LEMON provides several special purpose maps and map adaptors that e.g. combine
155 155
new maps from existing ones.
156 156

	
157 157
<b>See also:</b> \ref map_concepts "Map Concepts".
158 158
*/
159 159

	
160 160
/**
161 161
@defgroup graph_maps Graph Maps
162 162
@ingroup maps
163 163
\brief Special graph-related maps.
164 164

	
165 165
This group describes maps that are specifically designed to assign
166 166
values to the nodes and arcs/edges of graphs.
167 167

	
168 168
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
169 169
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
170 170
*/
171 171

	
172 172
/**
173 173
\defgroup map_adaptors Map Adaptors
174 174
\ingroup maps
175 175
\brief Tools to create new maps from existing ones
176 176

	
177 177
This group describes map adaptors that are used to create "implicit"
178 178
maps from other maps.
179 179

	
180 180
Most of them are \ref concepts::ReadMap "read-only maps".
181 181
They can make arithmetic and logical operations between one or two maps
182 182
(negation, shifting, addition, multiplication, logical 'and', 'or',
183 183
'not' etc.) or e.g. convert a map to another one of different Value type.
184 184

	
185 185
The typical usage of this classes is passing implicit maps to
186 186
algorithms.  If a function type algorithm is called then the function
187 187
type map adaptors can be used comfortable. For example let's see the
188 188
usage of map adaptors with the \c graphToEps() function.
189 189
\code
190 190
  Color nodeColor(int deg) {
191 191
    if (deg >= 2) {
192 192
      return Color(0.5, 0.0, 0.5);
193 193
    } else if (deg == 1) {
194 194
      return Color(1.0, 0.5, 1.0);
195 195
    } else {
196 196
      return Color(0.0, 0.0, 0.0);
197 197
    }
198 198
  }
199 199

	
200 200
  Digraph::NodeMap<int> degree_map(graph);
201 201

	
202 202
  graphToEps(graph, "graph.eps")
203 203
    .coords(coords).scaleToA4().undirected()
204 204
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
205 205
    .run();
206 206
\endcode
207 207
The \c functorToMap() function makes an \c int to \c Color map from the
208 208
\c nodeColor() function. The \c composeMap() compose the \c degree_map
209 209
and the previously created map. The composed map is a proper function to
210 210
get the color of each node.
211 211

	
212 212
The usage with class type algorithms is little bit harder. In this
213 213
case the function type map adaptors can not be used, because the
214 214
function map adaptors give back temporary objects.
215 215
\code
216 216
  Digraph graph;
217 217

	
218 218
  typedef Digraph::ArcMap<double> DoubleArcMap;
219 219
  DoubleArcMap length(graph);
220 220
  DoubleArcMap speed(graph);
221 221

	
222 222
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
223 223
  TimeMap time(length, speed);
224 224

	
225 225
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
226 226
  dijkstra.run(source, target);
227 227
\endcode
228 228
We have a length map and a maximum speed map on the arcs of a digraph.
229 229
The minimum time to pass the arc can be calculated as the division of
230 230
the two maps which can be done implicitly with the \c DivMap template
231 231
class. We use the implicit minimum time map as the length map of the
232 232
\c Dijkstra algorithm.
233 233
*/
234 234

	
235 235
/**
236 236
@defgroup matrices Matrices
237 237
@ingroup datas
238 238
\brief Two dimensional data storages implemented in LEMON.
239 239

	
240 240
This group describes two dimensional data storages implemented in LEMON.
241 241
*/
242 242

	
243 243
/**
244 244
@defgroup paths Path Structures
245 245
@ingroup datas
246 246
\brief %Path structures implemented in LEMON.
247 247

	
248 248
This group describes the path structures implemented in LEMON.
249 249

	
250 250
LEMON provides flexible data structures to work with paths.
251 251
All of them have similar interfaces and they can be copied easily with
252 252
assignment operators and copy constructors. This makes it easy and
253 253
efficient to have e.g. the Dijkstra algorithm to store its result in
254 254
any kind of path structure.
255 255

	
256 256
\sa lemon::concepts::Path
257 257
*/
258 258

	
259 259
/**
260 260
@defgroup auxdat Auxiliary Data Structures
261 261
@ingroup datas
262 262
\brief Auxiliary data structures implemented in LEMON.
263 263

	
264 264
This group describes some data structures implemented in LEMON in
265 265
order to make it easier to implement combinatorial algorithms.
266 266
*/
267 267

	
268 268
/**
269 269
@defgroup algs Algorithms
270 270
\brief This group describes the several algorithms
271 271
implemented in LEMON.
272 272

	
273 273
This group describes the several algorithms
274 274
implemented in LEMON.
275 275
*/
276 276

	
277 277
/**
278 278
@defgroup search Graph Search
279 279
@ingroup algs
280 280
\brief Common graph search algorithms.
281 281

	
282 282
This group describes the common graph search algorithms, namely
283 283
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
284 284
*/
285 285

	
286 286
/**
287 287
@defgroup shortest_path Shortest Path Algorithms
288 288
@ingroup algs
289 289
\brief Algorithms for finding shortest paths.
290 290

	
291 291
This group describes the algorithms for finding shortest paths in digraphs.
292 292

	
293 293
 - \ref Dijkstra algorithm for finding shortest paths from a source node
294 294
   when all arc lengths are non-negative.
295 295
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
296 296
   from a source node when arc lenghts can be either positive or negative,
297 297
   but the digraph should not contain directed cycles with negative total
298 298
   length.
299 299
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
300 300
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
301 301
   lenghts can be either positive or negative, but the digraph should
302 302
   not contain directed cycles with negative total length.
303 303
 - \ref Suurballe A successive shortest path algorithm for finding
304 304
   arc-disjoint paths between two nodes having minimum total length.
305 305
*/
306 306

	
307 307
/**
308 308
@defgroup max_flow Maximum Flow Algorithms
309 309
@ingroup algs
310 310
\brief Algorithms for finding maximum flows.
311 311

	
312 312
This group describes the algorithms for finding maximum flows and
313 313
feasible circulations.
314 314

	
315 315
The \e maximum \e flow \e problem is to find a flow of maximum value between
316 316
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
317 317
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
318 318
\f$s, t \in V\f$ source and target nodes.
319 319
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
320 320
following optimization problem.
321 321

	
322 322
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
323 323
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
324 324
    \qquad \forall v\in V\setminus\{s,t\} \f]
325 325
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
326 326

	
327 327
LEMON contains several algorithms for solving maximum flow problems:
328 328
- \ref EdmondsKarp Edmonds-Karp algorithm.
329 329
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
330 330
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
331 331
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
332 332

	
333 333
In most cases the \ref Preflow "Preflow" algorithm provides the
334 334
fastest method for computing a maximum flow. All implementations
335 335
provides functions to also query the minimum cut, which is the dual
336 336
problem of the maximum flow.
337 337
*/
338 338

	
339 339
/**
340 340
@defgroup min_cost_flow Minimum Cost Flow Algorithms
341 341
@ingroup algs
342 342

	
343 343
\brief Algorithms for finding minimum cost flows and circulations.
344 344

	
345 345
This group describes the algorithms for finding minimum cost flows and
346 346
circulations.
347 347

	
348 348
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
349 349
minimum total cost from a set of supply nodes to a set of demand nodes
350 350
in a network with capacity constraints and arc costs.
351 351
Formally, let \f$G=(V,A)\f$ be a digraph,
352 352
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
353 353
upper bounds for the flow values on the arcs,
354 354
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
355 355
on the arcs, and
356 356
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
357 357
of the nodes.
358 358
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
359 359
the following optimization problem.
360 360

	
361 361
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
362 362
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
363 363
    supply(v) \qquad \forall v\in V \f]
364 364
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
365 365

	
366 366
LEMON contains several algorithms for solving minimum cost flow problems:
367 367
 - \ref CycleCanceling Cycle-canceling algorithms.
368 368
 - \ref CapacityScaling Successive shortest path algorithm with optional
369 369
   capacity scaling.
370 370
 - \ref CostScaling Push-relabel and augment-relabel algorithms based on
371 371
   cost scaling.
372 372
 - \ref NetworkSimplex Primal network simplex algorithm with various
373 373
   pivot strategies.
374 374
*/
375 375

	
376 376
/**
377 377
@defgroup min_cut Minimum Cut Algorithms
378 378
@ingroup algs
379 379

	
380 380
\brief Algorithms for finding minimum cut in graphs.
381 381

	
382 382
This group describes the algorithms for finding minimum cut in graphs.
383 383

	
384 384
The \e minimum \e cut \e problem is to find a non-empty and non-complete
385 385
\f$X\f$ subset of the nodes with minimum overall capacity on
386 386
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
387 387
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
388 388
cut is the \f$X\f$ solution of the next optimization problem:
389 389

	
390 390
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
391 391
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
392 392

	
393 393
LEMON contains several algorithms related to minimum cut problems:
394 394

	
395 395
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
396 396
  in directed graphs.
397 397
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
398 398
  calculating minimum cut in undirected graphs.
399 399
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
400 400
  all-pairs minimum cut in undirected graphs.
401 401

	
402 402
If you want to find minimum cut just between two distinict nodes,
403 403
see the \ref max_flow "maximum flow problem".
404 404
*/
405 405

	
406 406
/**
407 407
@defgroup graph_prop Connectivity and Other Graph Properties
408 408
@ingroup algs
409 409
\brief Algorithms for discovering the graph properties
410 410

	
411 411
This group describes the algorithms for discovering the graph properties
412 412
like connectivity, bipartiteness, euler property, simplicity etc.
413 413

	
414 414
\image html edge_biconnected_components.png
415 415
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
416 416
*/
417 417

	
418 418
/**
419 419
@defgroup planar Planarity Embedding and Drawing
420 420
@ingroup algs
421 421
\brief Algorithms for planarity checking, embedding and drawing
422 422

	
423 423
This group describes the algorithms for planarity checking,
424 424
embedding and drawing.
425 425

	
426 426
\image html planar.png
427 427
\image latex planar.eps "Plane graph" width=\textwidth
428 428
*/
429 429

	
430 430
/**
431 431
@defgroup matching Matching Algorithms
432 432
@ingroup algs
433 433
\brief Algorithms for finding matchings in graphs and bipartite graphs.
434 434

	
435 435
This group contains algorithm objects and functions to calculate
436 436
matchings in graphs and bipartite graphs. The general matching problem is
437 437
finding a subset of the arcs which does not shares common endpoints.
438 438

	
439 439
There are several different algorithms for calculate matchings in
440 440
graphs.  The matching problems in bipartite graphs are generally
441 441
easier than in general graphs. The goal of the matching optimization
442 442
can be finding maximum cardinality, maximum weight or minimum cost
443 443
matching. The search can be constrained to find perfect or
444 444
maximum cardinality matching.
445 445

	
446 446
The matching algorithms implemented in LEMON:
447 447
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
448 448
  for calculating maximum cardinality matching in bipartite graphs.
449 449
- \ref PrBipartiteMatching Push-relabel algorithm
450 450
  for calculating maximum cardinality matching in bipartite graphs.
451 451
- \ref MaxWeightedBipartiteMatching
452 452
  Successive shortest path algorithm for calculating maximum weighted
453 453
  matching and maximum weighted bipartite matching in bipartite graphs.
454 454
- \ref MinCostMaxBipartiteMatching
455 455
  Successive shortest path algorithm for calculating minimum cost maximum
456 456
  matching in bipartite graphs.
457 457
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
458 458
  maximum cardinality matching in general graphs.
459 459
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
460 460
  maximum weighted matching in general graphs.
461 461
- \ref MaxWeightedPerfectMatching
462 462
  Edmond's blossom shrinking algorithm for calculating maximum weighted
463 463
  perfect matching in general graphs.
464 464

	
465 465
\image html bipartite_matching.png
466 466
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
467 467
*/
468 468

	
469 469
/**
470 470
@defgroup spantree Minimum Spanning Tree Algorithms
471 471
@ingroup algs
472 472
\brief Algorithms for finding a minimum cost spanning tree in a graph.
473 473

	
474 474
This group describes the algorithms for finding a minimum cost spanning
475 475
tree in a graph.
476 476
*/
477 477

	
478 478
/**
479 479
@defgroup auxalg Auxiliary Algorithms
480 480
@ingroup algs
481 481
\brief Auxiliary algorithms implemented in LEMON.
482 482

	
483 483
This group describes some algorithms implemented in LEMON
484 484
in order to make it easier to implement complex algorithms.
485 485
*/
486 486

	
487 487
/**
488 488
@defgroup approx Approximation Algorithms
489 489
@ingroup algs
490 490
\brief Approximation algorithms.
491 491

	
492 492
This group describes the approximation and heuristic algorithms
493 493
implemented in LEMON.
494 494
*/
495 495

	
496 496
/**
497 497
@defgroup gen_opt_group General Optimization Tools
498 498
\brief This group describes some general optimization frameworks
499 499
implemented in LEMON.
500 500

	
501 501
This group describes some general optimization frameworks
502 502
implemented in LEMON.
503 503
*/
504 504

	
505 505
/**
506 506
@defgroup lp_group Lp and Mip Solvers
507 507
@ingroup gen_opt_group
508 508
\brief Lp and Mip solver interfaces for LEMON.
509 509

	
510 510
This group describes Lp and Mip solver interfaces for LEMON. The
511 511
various LP solvers could be used in the same manner with this
512 512
interface.
513 513
*/
514 514

	
515 515
/**
516 516
@defgroup lp_utils Tools for Lp and Mip Solvers
517 517
@ingroup lp_group
518 518
\brief Helper tools to the Lp and Mip solvers.
519 519

	
520 520
This group adds some helper tools to general optimization framework
521 521
implemented in LEMON.
522 522
*/
523 523

	
524 524
/**
525 525
@defgroup metah Metaheuristics
526 526
@ingroup gen_opt_group
527 527
\brief Metaheuristics for LEMON library.
528 528

	
529 529
This group describes some metaheuristic optimization tools.
530 530
*/
531 531

	
532 532
/**
533 533
@defgroup utils Tools and Utilities
534 534
\brief Tools and utilities for programming in LEMON
535 535

	
536 536
Tools and utilities for programming in LEMON.
537 537
*/
538 538

	
539 539
/**
540 540
@defgroup gutils Basic Graph Utilities
541 541
@ingroup utils
542 542
\brief Simple basic graph utilities.
543 543

	
544 544
This group describes some simple basic graph utilities.
545 545
*/
546 546

	
547 547
/**
548 548
@defgroup misc Miscellaneous Tools
549 549
@ingroup utils
550 550
\brief Tools for development, debugging and testing.
551 551

	
552 552
This group describes several useful tools for development,
553 553
debugging and testing.
554 554
*/
555 555

	
556 556
/**
557 557
@defgroup timecount Time Measuring and Counting
558 558
@ingroup misc
559 559
\brief Simple tools for measuring the performance of algorithms.
560 560

	
561 561
This group describes simple tools for measuring the performance
562 562
of algorithms.
563 563
*/
564 564

	
565 565
/**
566 566
@defgroup exceptions Exceptions
567 567
@ingroup utils
568 568
\brief Exceptions defined in LEMON.
569 569

	
570 570
This group describes the exceptions defined in LEMON.
571 571
*/
572 572

	
573 573
/**
574 574
@defgroup io_group Input-Output
575 575
\brief Graph Input-Output methods
576 576

	
577 577
This group describes the tools for importing and exporting graphs
578 578
and graph related data. Now it supports the \ref lgf-format
579 579
"LEMON Graph Format", the \c DIMACS format and the encapsulated
580 580
postscript (EPS) format.
581 581
*/
582 582

	
583 583
/**
584 584
@defgroup lemon_io LEMON Graph Format
585 585
@ingroup io_group
586 586
\brief Reading and writing LEMON Graph Format.
587 587

	
588 588
This group describes methods for reading and writing
589 589
\ref lgf-format "LEMON Graph Format".
590 590
*/
591 591

	
592 592
/**
593 593
@defgroup eps_io Postscript Exporting
594 594
@ingroup io_group
595 595
\brief General \c EPS drawer and graph exporter
596 596

	
597 597
This group describes general \c EPS drawing methods and special
598 598
graph exporting tools.
599 599
*/
600 600

	
601 601
/**
602 602
@defgroup dimacs_group DIMACS format
603 603
@ingroup io_group
604 604
\brief Read and write files in DIMACS format
605 605

	
606 606
Tools to read a digraph from or write it to a file in DIMACS format data.
607 607
*/
608 608

	
609 609
/**
610 610
@defgroup nauty_group NAUTY Format
611 611
@ingroup io_group
612 612
\brief Read \e Nauty format
613 613

	
614 614
Tool to read graphs from \e Nauty format data.
615 615
*/
616 616

	
617 617
/**
618 618
@defgroup concept Concepts
619 619
\brief Skeleton classes and concept checking classes
620 620

	
621 621
This group describes the data/algorithm skeletons and concept checking
622 622
classes implemented in LEMON.
623 623

	
624 624
The purpose of the classes in this group is fourfold.
625 625

	
626 626
- These classes contain the documentations of the %concepts. In order
627 627
  to avoid document multiplications, an implementation of a concept
628 628
  simply refers to the corresponding concept class.
629 629

	
630 630
- These classes declare every functions, <tt>typedef</tt>s etc. an
631 631
  implementation of the %concepts should provide, however completely
632 632
  without implementations and real data structures behind the
633 633
  interface. On the other hand they should provide nothing else. All
634 634
  the algorithms working on a data structure meeting a certain concept
635 635
  should compile with these classes. (Though it will not run properly,
636 636
  of course.) In this way it is easily to check if an algorithm
637 637
  doesn't use any extra feature of a certain implementation.
638 638

	
639 639
- The concept descriptor classes also provide a <em>checker class</em>
640 640
  that makes it possible to check whether a certain implementation of a
641 641
  concept indeed provides all the required features.
642 642

	
643 643
- Finally, They can serve as a skeleton of a new implementation of a concept.
644 644
*/
645 645

	
646 646
/**
647 647
@defgroup graph_concepts Graph Structure Concepts
648 648
@ingroup concept
649 649
\brief Skeleton and concept checking classes for graph structures
650 650

	
651 651
This group describes the skeletons and concept checking classes of LEMON's
652 652
graph structures and helper classes used to implement these.
653 653
*/
654 654

	
655 655
/**
656 656
@defgroup map_concepts Map Concepts
657 657
@ingroup concept
658 658
\brief Skeleton and concept checking classes for maps
659 659

	
660 660
This group describes the skeletons and concept checking classes of maps.
661 661
*/
662 662

	
663 663
/**
664 664
\anchor demoprograms
665 665

	
666 666
@defgroup demos Demo Programs
667 667

	
668 668
Some demo programs are listed here. Their full source codes can be found in
669 669
the \c demo subdirectory of the source tree.
670 670

	
671 671
It order to compile them, use <tt>--enable-demo</tt> configure option when
672 672
build the library.
673 673
*/
674 674

	
675 675
/**
676 676
@defgroup tools Standalone Utility Applications
677 677

	
678 678
Some utility applications are listed here.
679 679

	
680 680
The standard compilation procedure (<tt>./configure;make</tt>) will compile
681 681
them, as well.
682 682
*/
683 683

	
684 684
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22

	
23 23

	
24 24
\page lgf-format LEMON Graph Format (LGF)
25 25

	
26 26
The \e LGF is a <em>column oriented</em>
27 27
file format for storing graphs and associated data like
28 28
node and edge maps.
29 29

	
30 30
Each line with \c '#' first non-whitespace
31 31
character is considered as a comment line.
32 32

	
33 33
Otherwise the file consists of sections starting with
34 34
a header line. The header lines starts with an \c '@' character followed by the
35 35
type of section. The standard section types are \c \@nodes, \c
36 36
\@arcs and \c \@edges
37 37
and \@attributes. Each header line may also have an optional
38 38
\e name, which can be use to distinguish the sections of the same
39 39
type.
40 40

	
41 41
The standard sections are column oriented, each line consists of
42 42
<em>token</em>s separated by whitespaces. A token can be \e plain or
43 43
\e quoted. A plain token is just a sequence of non-whitespace characters,
44 44
while a quoted token is a
45 45
character sequence surrounded by double quotes, and it can also
46 46
contain whitespaces and escape sequences.
47 47

	
48 48
The \c \@nodes section describes a set of nodes and associated
49 49
maps. The first is a header line, its columns are the names of the
50 50
maps appearing in the following lines.
51 51
One of the maps must be called \c
52 52
"label", which plays special role in the file.
53 53
The following
54 54
non-empty lines until the next section describes nodes of the
55 55
graph. Each line contains the values of the node maps
56 56
associated to the current node.
57 57

	
58 58
\code
59 59
 @nodes
60 60
 label  coordinates  size    title
61 61
 1      (10,20)      10      "First node"
62 62
 2      (80,80)      8       "Second node"
63 63
 3      (40,10)      10      "Third node"
64 64
\endcode
65 65

	
66 66
The \c \@arcs section is very similar to the \c \@nodes section,
67 67
it again starts with a header line describing the names of the maps,
68 68
but the \c "label" map is not obligatory here. The following lines
69 69
describe the arcs. The first two tokens of each line are
70 70
the source and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81 81
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
82 82
also store the edge set of an undirected graph. In such case there is
83 83
a conventional method for store arc maps in the file, if two columns
84 84
has the same caption with \c '+' and \c '-' prefix, then these columns
85 85
can be regarded as the values of an arc map.
86 86

	
87 87
The \c \@attributes section contains key-value pairs, each line
88 88
consists of two tokens, an attribute name, and then an attribute
89 89
value. The value of the attribute could be also a label value of a
90 90
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
91 91
which regards to the forward or backward directed arc of the
92 92
corresponding edge.
93 93

	
94 94
\code
95 95
 @attributes
96 96
 source 1
97 97
 target 3
98 98
 caption "LEMON test digraph"
99 99
\endcode
100 100

	
101 101
The \e LGF can contain extra sections, but there is no restriction on
102 102
the format of such sections.
103 103

	
104 104
*/
105 105
}
106 106

	
107 107
//  LocalWords:  whitespace whitespaces
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20

	
21 21
\page license License Terms
22 22

	
23 23
\verbinclude LICENSE
24 24

	
25 25
*/
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\mainpage LEMON Documentation
21 21

	
22 22
\section intro Introduction
23 23

	
24 24
\subsection whatis What is LEMON
25 25

	
26 26
LEMON stands for
27 27
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels
28 28
and <b>O</b>ptimization in <b>N</b>etworks.
29 29
It is a C++ template
30 30
library aimed at combinatorial optimization tasks which
31 31
often involve in working
32 32
with graphs.
33 33

	
34 34
<b>
35 35
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
36 36
project.
37 37
You are free to use it in your commercial or
38 38
non-commercial applications under very permissive
39 39
\ref license "license terms".
40 40
</b>
41 41

	
42 42
\subsection howtoread How to read the documentation
43 43

	
44 44
If you want to get a quick start and see the most important features then
45 45
take a look at our \ref quicktour
46 46
"Quick Tour to LEMON" which will guide you along.
47 47

	
48 48
If you already feel like using our library, see the page that tells you
49 49
\ref getstart "How to start using LEMON".
50 50

	
51 51
If you
52 52
want to see how LEMON works, see
53 53
some \ref demoprograms "demo programs".
54 54

	
55 55
If you know what you are looking for then try to find it under the
56 56
<a class="el" href="modules.html">Modules</a>
57 57
section.
58 58

	
59 59
If you are a user of the old (0.x) series of LEMON, please check out the
60 60
\ref migration "Migration Guide" for the backward incompatibilities.
61 61
*/
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22
\page migration Migration from the 0.x Series
23 23

	
24 24
This guide gives an in depth description on what has changed compared
25 25
to the 0.x release series.
26 26

	
27 27
Many of these changes adjusted automatically by the
28 28
<tt>lemon-0.x-to-1.x.sh</tt> tool. Those requiring manual
29 29
update are typeset <b>boldface</b>.
30 30

	
31 31
\section migration-graph Graph Related Name Changes
32 32

	
33 33
- \ref concepts::Digraph "Directed graphs" are called \c Digraph and
34 34
  they have <tt>Arc</tt>s (instead of <tt>Edge</tt>s), while
35 35
  \ref concepts::Graph "undirected graphs" are called \c Graph
36 36
  (instead of \c UGraph) and they have <tt>Edge</tt>s (instead of
37 37
  <tt>UEdge</tt>s). These changes reflected thoroughly everywhere in
38 38
  the library. Namely,
39 39
  - \c Graph -> \c Digraph
40 40
    - \c %ListGraph -> \c ListDigraph, \c %SmartGraph -> \c SmartDigraph etc.
41 41
  - \c UGraph -> \c Graph
42 42
    - \c ListUGraph -> \c ListGraph, \c SmartUGraph -> \c SmartGraph etc.
43 43
  - \c Edge -> \c Arc, \c UEdge -> \c Edge
44 44
  - \c EdgeMap -> \c ArcMap, \c UEdgeMap -> \c EdgeMap
45 45
  - \c EdgeIt -> \c ArcIt, \c UEdgeIt -> \c EdgeIt
46 46
  - Class names and function names containing the words \c graph,
47 47
    \c ugraph, \e edge or \e arc should also be updated.
48 48
- <b>The two endpoints of an (\e undirected) \c Edge can be obtained by the
49 49
  <tt>u()</tt> and <tt>v()</tt> member function of the graph
50 50
  (instead of <tt>source()</tt> and <tt>target()</tt>). This change
51 51
  must be done by hand.</b>
52 52
  \n Of course, you can still use <tt>source()</tt> and <tt>target()</tt>
53 53
  for <tt>Arc</tt>s (directed edges).
54 54

	
55 55
\warning
56 56
<b>The <tt>lemon-0.x-to-1.x.sh</tt> script replaces the words \c graph,
57 57
\c ugraph, \c edge and \c uedge in your own identifiers and in
58 58
strings, comments etc. as well as in all LEMON specific identifiers.
59 59
So use the script carefully and make a backup copy of your source files
60 60
before applying the script to them.</b>
61 61

	
62 62
\section migration-lgf LGF tools
63 63
 - The \ref lgf-format "LGF file format" has changed,
64 64
   <tt>\@nodeset</tt> has changed to <tt>\@nodes</tt>,
65 65
   <tt>\@edgeset</tt> and <tt>\@uedgeset</tt> to <tt>\@arcs</tt> or
66 66
   <tt>\@edges</tt>, which become completely equivalents. The
67 67
   <tt>\@nodes</tt>, <tt>\@edges</tt> and <tt>\@uedges</tt> sections are
68 68
   removed from the format, the content of them should be
69 69
   the part of <tt>\@attributes</tt> section. The data fields in
70 70
   the sections must follow a strict format, they must be either character
71 71
   sequences without whitespaces or quoted strings.
72 72
 - The <tt>LemonReader</tt> and <tt>LemonWriter</tt> core interfaces
73 73
   are no longer available.
74 74
 - The implementation of the general section readers and writers has changed
75 75
   they are simple functors now. Beside the old
76 76
   stream based section handling, currently line oriented section
77 77
   reading and writing are also supported. In the
78 78
   section readers the lines must be counted manually. The sections
79 79
   should be read and written with the SectionWriter and SectionReader
80 80
   classes.
81 81
 - Instead of the item readers and writers, item converters should be
82 82
   used. The converters are functors, which map the type to
83 83
   std::string or std::string to the type. The converters for standard
84 84
   containers hasn't yet been implemented in the new LEMON. The converters
85 85
   can return strings in any format, because if it is necessary, the LGF
86 86
   writer and reader will quote and unquote the given value.
87 87
 - The DigraphReader and DigraphWriter can used similarly to the
88 88
   0.x series, however the <tt>read</tt> or <tt>write</tt> prefix of
89 89
   the member functions are removed.
90 90
 - The new LEMON supports the function like interface, the \c
91 91
   digraphReader and \c digraphWriter functions are more convenient than
92 92
   using the classes directly.
93 93

	
94 94
\section migration-search BFS, DFS and Dijkstra
95 95
- <b>Using the function interface of BFS, DFS and %Dijkstra both source and
96 96
  target nodes can be given as parameters of the <tt>run()</tt> function
97 97
  (instead of \c bfs(), \c dfs() or \c dijkstra() itself).</b>
98 98
- \ref named-templ-param "Named class template parameters" of \c Bfs,
99 99
  \c Dfs, \c Dijkstra, \c BfsVisit, \c DfsVisit are renamed to start
100 100
  with "Set" instead of "Def". Namely,
101 101
  - \c DefPredMap -> \c SetPredMap
102 102
  - \c DefDistMap -> \c SetDistMap
103 103
  - \c DefReachedMap -> \c SetReachedMap
104 104
  - \c DefProcessedMap -> \c SetProcessedMap
105 105
  - \c DefHeap -> \c SetHeap
106 106
  - \c DefStandardHeap -> \c SetStandardHeap
107 107
  - \c DefOperationTraits -> \c SetOperationTraits
108 108
  - \c DefProcessedMapToBeDefaultMap -> \c SetStandardProcessedMap
109 109

	
110 110
\section migration-error Exceptions and Debug tools
111 111

	
112 112
<b>The class hierarchy of exceptions has largely been simplified. Now,
113 113
only the i/o related tools may throw exceptions. All other exceptions
114 114
have been replaced with either the \c LEMON_ASSERT or the \c LEMON_DEBUG
115 115
macros.</b>
116 116

	
117 117
<b>On the other hand, the parameter order of constructors of the
118 118
exceptions has been changed. See \ref IoError and \ref FormatError for
119 119
more details.</b>
120 120

	
121 121
\section migration-other Others
122 122
- <b>The contents of <tt>graph_utils.h</tt> are moved to <tt>core.h</tt>
123 123
  and <tt>maps.h</tt>. <tt>core.h</tt> is included by all graph types,
124 124
  therefore it usually do not have to be included directly.</b>
125 125
- <b><tt>path_utils.h</tt> is merged to \c path.h.</b>
126 126
- <b>The semantic of the assignment operations and copy constructors of maps
127 127
  are still under discussion. So, you must copy them by hand (i.e. copy
128 128
  each entry one-by-one)</b>
129 129
- <b>The parameters of the graph copying tools (i.e. \c GraphCopy,
130 130
  \c DigraphCopy) have to be given in the from-to order.</b>
131 131
- \c copyDigraph() and \c copyGraph() are renamed to \c digraphCopy()
132 132
  and \c graphCopy(), respectively.
133 133
- <b>The interface of \ref DynArcLookUp has changed. It is now the same as
134 134
  of \ref ArcLookUp and \ref AllArcLookUp</b>
135 135
- Some map types should also been renamed. Namely,
136 136
  - \c IntegerMap -> \c RangeMap
137 137
  - \c StdMap -> \c SparseMap
138 138
  - \c FunctorMap -> \c FunctorToMap
139 139
  - \c MapFunctor -> \c MapToFunctor
140 140
  - \c ForkWriteMap -> \c ForkMap
141 141
  - \c StoreBoolMap -> \c LoggerBoolMap
142 142
- \c dim2::BoundingBox -> \c dim2::Box
143 143

	
144 144
*/
145 145
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/*!
20 20

	
21 21
\page named-param Named Parameters
22 22

	
23 23
\section named-func-param Named Function Parameters
24 24

	
25 25
Several modern languages provide a convenient way to refer the
26 26
function parameters by name also when you call the function. It is
27 27
especially comfortable in case of a function having tons of parameters
28 28
with natural default values. Sadly, C++ lack this amenity.
29 29

	
30 30
However, with a crafty trick and with some little
31 31
inconvenience, it is possible to emulate is.
32 32
The example below shows how to do it.
33 33

	
34 34
\code
35 35
class namedFn
36 36
{
37 37
  int _id;
38 38
  double _val;
39 39
  int _dim;
40 40

	
41 41
  public:
42 42
  namedFn() : _id(0), _val(1), _dim(2) {}
43 43
  namedFn& id(int p)     { _id  = p ; return *this; }
44 44
  namedFn& val(double p) { _val = p ; return *this; }
45 45
  namedFn& dim(int p)    { _dim = p ; return *this; }
46 46

	
47 47
  run() {
48 48
    std::cout << "Here comes the function itself\n" <<
49 49
              << "With parameters "
50 50
              << _id << ", " << _val << ", " << _dim << std::endl;
51 51
  }
52 52
};
53 53
\endcode
54 54

	
55 55
Then you can use it like this.
56 56

	
57 57
\code
58 58
namedFn().id(3).val(2).run();
59 59
\endcode
60 60

	
61 61
The trick is obvious, each "named parameter" changes one component of
62 62
the underlying class, then gives back a reference to it. Finally,
63 63
<tt>run()</tt> executes the algorithm itself.
64 64

	
65 65
\note Although it is a class, namedFn is used pretty much like as it were
66 66
a function. That it why we called it namedFn instead of \c NamedFn.
67 67

	
68 68
\note In fact, the final <tt>.run()</tt> could be made unnecessary,
69 69
because the algorithm could also be implemented in the destructor of
70 70
\c namedFn instead. This however would make it impossible to implement
71 71
functions with return values, and would also cause serious problems when
72 72
implementing \ref named-templ-func-param "named template parameters".
73 73
<b>Therefore, by convention, <tt>.run()</tt> must be used
74 74
explicitly to execute a function having named parameters
75 75
everywhere in LEMON.</b>
76 76

	
77 77
\section named-templ-func-param Named Function Template Parameters
78 78

	
79 79
A named parameter can also be a template function. The usage is
80 80
exactly the same, but the implementation behind is a kind of black
81 81
magic and they are the dirtiest part of the LEMON code.
82 82

	
83 83
You will probably never need to know how it works, but if you really
84 84
committed, have a look at \ref lemon/graph_to_eps.h for an example.
85 85

	
86 86
\section traits-classes Traits Classes
87 87

	
88 88
A similar game can also be played when defining classes. In this case
89 89
the type of the class attributes can be changed. Initially we have to
90 90
define a special class called <em>Traits Class</em> defining the
91 91
default type of the attributes. Then the types of these attributes can
92 92
be changed in the same way as described in the next section.
93 93

	
94 94
See \ref lemon::DijkstraDefaultTraits for an
95 95
example how a traits class implementation looks like.
96 96

	
97 97
\section named-templ-param Named Class Template Parameters
98 98

	
99 99
If we would like to change the type of an attribute in a class that
100 100
was instantiated by using a traits class as a template parameter, and
101 101
the class contains named parameters, we do not have to instantiate again
102 102
the class with new traits class, but instead adaptor classes can
103 103
be used as shown in the following example.
104 104

	
105 105
\code
106 106
Dijkstra<>::SetPredMap<NullMap<Node,Arc> >::Create
107 107
\endcode
108 108

	
109 109
It can also be used in conjunction with other named template
110 110
parameters in arbitrary order.
111 111

	
112 112
\code
113 113
Dijkstra<>::SetDistMap<MyMap>::SetPredMap<NullMap<Node,Arc> >::Create
114 114
\endcode
115 115

	
116 116
The result will be an instantiated Dijkstra class, in which the
117 117
DistMap and the PredMap is modified.
118 118

	
119 119
*/
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/// The namespace of LEMON
20 20

	
21 21
/// The namespace of LEMON
22 22
///
23 23
namespace lemon {
24 24

	
25 25
  /// The namespace of LEMON concepts and concept checking classes
26 26

	
27 27
  /// The namespace of LEMON concepts and concept checking classes
28 28
  ///
29 29
  namespace concepts {}
30 30
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_TEMPLATE_H
20 20
#define LEMON_TEMPLATE_H
21 21

	
22 22
#endif // LEMON_TEMPLATE_H
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_ADAPTORS_H
20 20
#define LEMON_ADAPTORS_H
21 21

	
22 22
/// \ingroup graph_adaptors
23 23
/// \file
24 24
/// \brief Several graph adaptors
25 25
///
26 26
/// This file contains several useful adaptors for digraphs and graphs.
27 27

	
28 28
#include <lemon/core.h>
29 29
#include <lemon/maps.h>
30 30
#include <lemon/bits/variant.h>
31 31

	
32 32
#include <lemon/bits/graph_adaptor_extender.h>
33 33
#include <lemon/tolerance.h>
34 34

	
35 35
#include <algorithm>
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  template<typename _Digraph>
40 40
  class DigraphAdaptorBase {
41 41
  public:
42 42
    typedef _Digraph Digraph;
43 43
    typedef DigraphAdaptorBase Adaptor;
44 44
    typedef Digraph ParentDigraph;
45 45

	
46 46
  protected:
47 47
    Digraph* _digraph;
48 48
    DigraphAdaptorBase() : _digraph(0) { }
49 49
    void setDigraph(Digraph& digraph) { _digraph = &digraph; }
50 50

	
51 51
  public:
52 52
    DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { }
53 53

	
54 54
    typedef typename Digraph::Node Node;
55 55
    typedef typename Digraph::Arc Arc;
56 56

	
57 57
    void first(Node& i) const { _digraph->first(i); }
58 58
    void first(Arc& i) const { _digraph->first(i); }
59 59
    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
60 60
    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
61 61

	
62 62
    void next(Node& i) const { _digraph->next(i); }
63 63
    void next(Arc& i) const { _digraph->next(i); }
64 64
    void nextIn(Arc& i) const { _digraph->nextIn(i); }
65 65
    void nextOut(Arc& i) const { _digraph->nextOut(i); }
66 66

	
67 67
    Node source(const Arc& a) const { return _digraph->source(a); }
68 68
    Node target(const Arc& a) const { return _digraph->target(a); }
69 69

	
70 70
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
71 71
    int nodeNum() const { return _digraph->nodeNum(); }
72 72

	
73 73
    typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
74 74
    int arcNum() const { return _digraph->arcNum(); }
75 75

	
76 76
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
77 77
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
78 78
      return _digraph->findArc(u, v, prev);
79 79
    }
80 80

	
81 81
    Node addNode() { return _digraph->addNode(); }
82 82
    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
83 83

	
84 84
    void erase(const Node& n) const { _digraph->erase(n); }
85 85
    void erase(const Arc& a) const { _digraph->erase(a); }
86 86

	
87 87
    void clear() const { _digraph->clear(); }
88 88

	
89 89
    int id(const Node& n) const { return _digraph->id(n); }
90 90
    int id(const Arc& a) const { return _digraph->id(a); }
91 91

	
92 92
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
93 93
    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
94 94

	
95 95
    int maxNodeId() const { return _digraph->maxNodeId(); }
96 96
    int maxArcId() const { return _digraph->maxArcId(); }
97 97

	
98 98
    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
99 99
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
100 100

	
101 101
    typedef typename ItemSetTraits<Digraph, Arc>::ItemNotifier ArcNotifier;
102 102
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
103 103

	
104 104
    template <typename _Value>
105 105
    class NodeMap : public Digraph::template NodeMap<_Value> {
106 106
    public:
107 107

	
108 108
      typedef typename Digraph::template NodeMap<_Value> Parent;
109 109

	
110 110
      explicit NodeMap(const Adaptor& adaptor)
111 111
        : Parent(*adaptor._digraph) {}
112 112

	
113 113
      NodeMap(const Adaptor& adaptor, const _Value& value)
114 114
        : Parent(*adaptor._digraph, value) { }
115 115

	
116 116
    private:
117 117
      NodeMap& operator=(const NodeMap& cmap) {
118 118
        return operator=<NodeMap>(cmap);
119 119
      }
120 120

	
121 121
      template <typename CMap>
122 122
      NodeMap& operator=(const CMap& cmap) {
123 123
        Parent::operator=(cmap);
124 124
        return *this;
125 125
      }
126 126

	
127 127
    };
128 128

	
129 129
    template <typename _Value>
130 130
    class ArcMap : public Digraph::template ArcMap<_Value> {
131 131
    public:
132 132

	
133 133
      typedef typename Digraph::template ArcMap<_Value> Parent;
134 134

	
135 135
      explicit ArcMap(const Adaptor& adaptor)
136 136
        : Parent(*adaptor._digraph) {}
137 137

	
138 138
      ArcMap(const Adaptor& adaptor, const _Value& value)
139 139
        : Parent(*adaptor._digraph, value) {}
140 140

	
141 141
    private:
142 142
      ArcMap& operator=(const ArcMap& cmap) {
143 143
        return operator=<ArcMap>(cmap);
144 144
      }
145 145

	
146 146
      template <typename CMap>
147 147
      ArcMap& operator=(const CMap& cmap) {
148 148
        Parent::operator=(cmap);
149 149
        return *this;
150 150
      }
151 151

	
152 152
    };
153 153

	
154 154
  };
155 155

	
156 156
  template<typename _Graph>
157 157
  class GraphAdaptorBase {
158 158
  public:
159 159
    typedef _Graph Graph;
160 160
    typedef Graph ParentGraph;
161 161

	
162 162
  protected:
163 163
    Graph* _graph;
164 164

	
165 165
    GraphAdaptorBase() : _graph(0) {}
166 166

	
167 167
    void setGraph(Graph& graph) { _graph = &graph; }
168 168

	
169 169
  public:
170 170
    GraphAdaptorBase(Graph& graph) : _graph(&graph) {}
171 171

	
172 172
    typedef typename Graph::Node Node;
173 173
    typedef typename Graph::Arc Arc;
174 174
    typedef typename Graph::Edge Edge;
175 175

	
176 176
    void first(Node& i) const { _graph->first(i); }
177 177
    void first(Arc& i) const { _graph->first(i); }
178 178
    void first(Edge& i) const { _graph->first(i); }
179 179
    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
180 180
    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
181 181
    void firstInc(Edge &i, bool &d, const Node &n) const {
182 182
      _graph->firstInc(i, d, n);
183 183
    }
184 184

	
185 185
    void next(Node& i) const { _graph->next(i); }
186 186
    void next(Arc& i) const { _graph->next(i); }
187 187
    void next(Edge& i) const { _graph->next(i); }
188 188
    void nextIn(Arc& i) const { _graph->nextIn(i); }
189 189
    void nextOut(Arc& i) const { _graph->nextOut(i); }
190 190
    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
191 191

	
192 192
    Node u(const Edge& e) const { return _graph->u(e); }
193 193
    Node v(const Edge& e) const { return _graph->v(e); }
194 194

	
195 195
    Node source(const Arc& a) const { return _graph->source(a); }
196 196
    Node target(const Arc& a) const { return _graph->target(a); }
197 197

	
198 198
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
199 199
    int nodeNum() const { return _graph->nodeNum(); }
200 200

	
201 201
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
202 202
    int arcNum() const { return _graph->arcNum(); }
203 203
    int edgeNum() const { return _graph->edgeNum(); }
204 204

	
205 205
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
206 206
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
207 207
      return _graph->findArc(u, v, prev);
208 208
    }
209 209
    Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) {
210 210
      return _graph->findEdge(u, v, prev);
211 211
    }
212 212

	
213 213
    Node addNode() { return _graph->addNode(); }
214 214
    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
215 215

	
216 216
    void erase(const Node& i) { _graph->erase(i); }
217 217
    void erase(const Edge& i) { _graph->erase(i); }
218 218

	
219 219
    void clear() { _graph->clear(); }
220 220

	
221 221
    bool direction(const Arc& a) const { return _graph->direction(a); }
222 222
    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
223 223

	
224 224
    int id(const Node& v) const { return _graph->id(v); }
225 225
    int id(const Arc& a) const { return _graph->id(a); }
226 226
    int id(const Edge& e) const { return _graph->id(e); }
227 227

	
228 228
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
229 229
    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
230 230
    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
231 231

	
232 232
    int maxNodeId() const { return _graph->maxNodeId(); }
233 233
    int maxArcId() const { return _graph->maxArcId(); }
234 234
    int maxEdgeId() const { return _graph->maxEdgeId(); }
235 235

	
236 236
    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
237 237
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
238 238

	
239 239
    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
240 240
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
241 241

	
242 242
    typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
243 243
    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
244 244

	
245 245
    template <typename _Value>
246 246
    class NodeMap : public Graph::template NodeMap<_Value> {
247 247
    public:
248 248
      typedef typename Graph::template NodeMap<_Value> Parent;
249 249
      explicit NodeMap(const GraphAdaptorBase<Graph>& adapter)
250 250
        : Parent(*adapter._graph) {}
251 251
      NodeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
252 252
        : Parent(*adapter._graph, value) {}
253 253

	
254 254
    private:
255 255
      NodeMap& operator=(const NodeMap& cmap) {
256 256
        return operator=<NodeMap>(cmap);
257 257
      }
258 258

	
259 259
      template <typename CMap>
260 260
      NodeMap& operator=(const CMap& cmap) {
261 261
        Parent::operator=(cmap);
262 262
        return *this;
263 263
      }
264 264

	
265 265
    };
266 266

	
267 267
    template <typename _Value>
268 268
    class ArcMap : public Graph::template ArcMap<_Value> {
269 269
    public:
270 270
      typedef typename Graph::template ArcMap<_Value> Parent;
271 271
      explicit ArcMap(const GraphAdaptorBase<Graph>& adapter)
272 272
        : Parent(*adapter._graph) {}
273 273
      ArcMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
274 274
        : Parent(*adapter._graph, value) {}
275 275

	
276 276
    private:
277 277
      ArcMap& operator=(const ArcMap& cmap) {
278 278
        return operator=<ArcMap>(cmap);
279 279
      }
280 280

	
281 281
      template <typename CMap>
282 282
      ArcMap& operator=(const CMap& cmap) {
283 283
        Parent::operator=(cmap);
284 284
        return *this;
285 285
      }
286 286
    };
287 287

	
288 288
    template <typename _Value>
289 289
    class EdgeMap : public Graph::template EdgeMap<_Value> {
290 290
    public:
291 291
      typedef typename Graph::template EdgeMap<_Value> Parent;
292 292
      explicit EdgeMap(const GraphAdaptorBase<Graph>& adapter)
293 293
        : Parent(*adapter._graph) {}
294 294
      EdgeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
295 295
        : Parent(*adapter._graph, value) {}
296 296

	
297 297
    private:
298 298
      EdgeMap& operator=(const EdgeMap& cmap) {
299 299
        return operator=<EdgeMap>(cmap);
300 300
      }
301 301

	
302 302
      template <typename CMap>
303 303
      EdgeMap& operator=(const CMap& cmap) {
304 304
        Parent::operator=(cmap);
305 305
        return *this;
306 306
      }
307 307
    };
308 308

	
309 309
  };
310 310

	
311 311
  template <typename _Digraph>
312 312
  class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> {
313 313
  public:
314 314
    typedef _Digraph Digraph;
315 315
    typedef DigraphAdaptorBase<_Digraph> Parent;
316 316
  protected:
317 317
    ReverseDigraphBase() : Parent() { }
318 318
  public:
319 319
    typedef typename Parent::Node Node;
320 320
    typedef typename Parent::Arc Arc;
321 321

	
322 322
    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
323 323
    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
324 324

	
325 325
    void nextIn(Arc& a) const { Parent::nextOut(a); }
326 326
    void nextOut(Arc& a) const { Parent::nextIn(a); }
327 327

	
328 328
    Node source(const Arc& a) const { return Parent::target(a); }
329 329
    Node target(const Arc& a) const { return Parent::source(a); }
330 330

	
331 331
    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
332 332

	
333 333
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
334 334
    Arc findArc(const Node& u, const Node& v,
335 335
                const Arc& prev = INVALID) {
336 336
      return Parent::findArc(v, u, prev);
337 337
    }
338 338

	
339 339
  };
340 340

	
341 341
  /// \ingroup graph_adaptors
342 342
  ///
343 343
  /// \brief A digraph adaptor which reverses the orientation of the arcs.
344 344
  ///
345 345
  /// ReverseDigraph reverses the arcs in the adapted digraph. The
346 346
  /// SubDigraph is conform to the \ref concepts::Digraph
347 347
  /// "Digraph concept".
348 348
  ///
349 349
  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
350 350
  /// "Digraph concept". The type can be specified to be const.
351 351
  template<typename _Digraph>
352 352
  class ReverseDigraph :
353 353
    public DigraphAdaptorExtender<ReverseDigraphBase<_Digraph> > {
354 354
  public:
355 355
    typedef _Digraph Digraph;
356 356
    typedef DigraphAdaptorExtender<
357 357
      ReverseDigraphBase<_Digraph> > Parent;
358 358
  protected:
359 359
    ReverseDigraph() { }
360 360
  public:
361 361

	
362 362
    /// \brief Constructor
363 363
    ///
364 364
    /// Creates a reverse digraph adaptor for the given digraph
365 365
    explicit ReverseDigraph(Digraph& digraph) {
366 366
      Parent::setDigraph(digraph);
367 367
    }
368 368
  };
369 369

	
370 370
  /// \brief Just gives back a reverse digraph adaptor
371 371
  ///
372 372
  /// Just gives back a reverse digraph adaptor
373 373
  template<typename Digraph>
374 374
  ReverseDigraph<const Digraph> reverseDigraph(const Digraph& digraph) {
375 375
    return ReverseDigraph<const Digraph>(digraph);
376 376
  }
377 377

	
378 378
  template <typename _Digraph, typename _NodeFilterMap,
379 379
            typename _ArcFilterMap, bool _checked = true>
380 380
  class SubDigraphBase : public DigraphAdaptorBase<_Digraph> {
381 381
  public:
382 382
    typedef _Digraph Digraph;
383 383
    typedef _NodeFilterMap NodeFilterMap;
384 384
    typedef _ArcFilterMap ArcFilterMap;
385 385

	
386 386
    typedef SubDigraphBase Adaptor;
387 387
    typedef DigraphAdaptorBase<_Digraph> Parent;
388 388
  protected:
389 389
    NodeFilterMap* _node_filter;
390 390
    ArcFilterMap* _arc_filter;
391 391
    SubDigraphBase()
392 392
      : Parent(), _node_filter(0), _arc_filter(0) { }
393 393

	
394 394
    void setNodeFilterMap(NodeFilterMap& node_filter) {
395 395
      _node_filter = &node_filter;
396 396
    }
397 397
    void setArcFilterMap(ArcFilterMap& arc_filter) {
398 398
      _arc_filter = &arc_filter;
399 399
    }
400 400

	
401 401
  public:
402 402

	
403 403
    typedef typename Parent::Node Node;
404 404
    typedef typename Parent::Arc Arc;
405 405

	
406 406
    void first(Node& i) const {
407 407
      Parent::first(i);
408 408
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
409 409
    }
410 410

	
411 411
    void first(Arc& i) const {
412 412
      Parent::first(i);
413 413
      while (i != INVALID && (!(*_arc_filter)[i]
414 414
                              || !(*_node_filter)[Parent::source(i)]
415 415
                              || !(*_node_filter)[Parent::target(i)]))
416 416
        Parent::next(i);
417 417
    }
418 418

	
419 419
    void firstIn(Arc& i, const Node& n) const {
420 420
      Parent::firstIn(i, n);
421 421
      while (i != INVALID && (!(*_arc_filter)[i]
422 422
                              || !(*_node_filter)[Parent::source(i)]))
423 423
        Parent::nextIn(i);
424 424
    }
425 425

	
426 426
    void firstOut(Arc& i, const Node& n) const {
427 427
      Parent::firstOut(i, n);
428 428
      while (i != INVALID && (!(*_arc_filter)[i]
429 429
                              || !(*_node_filter)[Parent::target(i)]))
430 430
        Parent::nextOut(i);
431 431
    }
432 432

	
433 433
    void next(Node& i) const {
434 434
      Parent::next(i);
435 435
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
436 436
    }
437 437

	
438 438
    void next(Arc& i) const {
439 439
      Parent::next(i);
440 440
      while (i != INVALID && (!(*_arc_filter)[i]
441 441
                              || !(*_node_filter)[Parent::source(i)]
442 442
                              || !(*_node_filter)[Parent::target(i)]))
443 443
        Parent::next(i);
444 444
    }
445 445

	
446 446
    void nextIn(Arc& i) const {
447 447
      Parent::nextIn(i);
448 448
      while (i != INVALID && (!(*_arc_filter)[i]
449 449
                              || !(*_node_filter)[Parent::source(i)]))
450 450
        Parent::nextIn(i);
451 451
    }
452 452

	
453 453
    void nextOut(Arc& i) const {
454 454
      Parent::nextOut(i);
455 455
      while (i != INVALID && (!(*_arc_filter)[i]
456 456
                              || !(*_node_filter)[Parent::target(i)]))
457 457
        Parent::nextOut(i);
458 458
    }
459 459

	
460 460
    void hide(const Node& n) const { _node_filter->set(n, false); }
461 461
    void hide(const Arc& a) const { _arc_filter->set(a, false); }
462 462

	
463 463
    void unHide(const Node& n) const { _node_filter->set(n, true); }
464 464
    void unHide(const Arc& a) const { _arc_filter->set(a, true); }
465 465

	
466 466
    bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
467 467
    bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; }
468 468

	
469 469
    typedef False NodeNumTag;
470 470
    typedef False EdgeNumTag;
471 471

	
472 472
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
473 473
    Arc findArc(const Node& source, const Node& target,
474 474
                const Arc& prev = INVALID) {
475 475
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
476 476
        return INVALID;
477 477
      }
478 478
      Arc arc = Parent::findArc(source, target, prev);
479 479
      while (arc != INVALID && !(*_arc_filter)[arc]) {
480 480
        arc = Parent::findArc(source, target, arc);
481 481
      }
482 482
      return arc;
483 483
    }
484 484

	
485 485
    template <typename _Value>
486 486
    class NodeMap : public SubMapExtender<Adaptor,
487 487
      typename Parent::template NodeMap<_Value> > {
488 488
    public:
489 489
      typedef _Value Value;
490 490
      typedef SubMapExtender<Adaptor, typename Parent::
491 491
                             template NodeMap<Value> > MapParent;
492 492

	
493 493
      NodeMap(const Adaptor& adaptor)
494 494
        : MapParent(adaptor) {}
495 495
      NodeMap(const Adaptor& adaptor, const Value& value)
496 496
        : MapParent(adaptor, value) {}
497 497

	
498 498
    private:
499 499
      NodeMap& operator=(const NodeMap& cmap) {
500 500
        return operator=<NodeMap>(cmap);
501 501
      }
502 502

	
503 503
      template <typename CMap>
504 504
      NodeMap& operator=(const CMap& cmap) {
505 505
        MapParent::operator=(cmap);
506 506
        return *this;
507 507
      }
508 508
    };
509 509

	
510 510
    template <typename _Value>
511 511
    class ArcMap : public SubMapExtender<Adaptor,
512 512
      typename Parent::template ArcMap<_Value> > {
513 513
    public:
514 514
      typedef _Value Value;
515 515
      typedef SubMapExtender<Adaptor, typename Parent::
516 516
                             template ArcMap<Value> > MapParent;
517 517

	
518 518
      ArcMap(const Adaptor& adaptor)
519 519
        : MapParent(adaptor) {}
520 520
      ArcMap(const Adaptor& adaptor, const Value& value)
521 521
        : MapParent(adaptor, value) {}
522 522

	
523 523
    private:
524 524
      ArcMap& operator=(const ArcMap& cmap) {
525 525
        return operator=<ArcMap>(cmap);
526 526
      }
527 527

	
528 528
      template <typename CMap>
529 529
      ArcMap& operator=(const CMap& cmap) {
530 530
        MapParent::operator=(cmap);
531 531
        return *this;
532 532
      }
533 533
    };
534 534

	
535 535
  };
536 536

	
537 537
  template <typename _Digraph, typename _NodeFilterMap, typename _ArcFilterMap>
538 538
  class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false>
539 539
    : public DigraphAdaptorBase<_Digraph> {
540 540
  public:
541 541
    typedef _Digraph Digraph;
542 542
    typedef _NodeFilterMap NodeFilterMap;
543 543
    typedef _ArcFilterMap ArcFilterMap;
544 544

	
545 545
    typedef SubDigraphBase Adaptor;
546 546
    typedef DigraphAdaptorBase<Digraph> Parent;
547 547
  protected:
548 548
    NodeFilterMap* _node_filter;
549 549
    ArcFilterMap* _arc_filter;
550 550
    SubDigraphBase()
551 551
      : Parent(), _node_filter(0), _arc_filter(0) { }
552 552

	
553 553
    void setNodeFilterMap(NodeFilterMap& node_filter) {
554 554
      _node_filter = &node_filter;
555 555
    }
556 556
    void setArcFilterMap(ArcFilterMap& arc_filter) {
557 557
      _arc_filter = &arc_filter;
558 558
    }
559 559

	
560 560
  public:
561 561

	
562 562
    typedef typename Parent::Node Node;
563 563
    typedef typename Parent::Arc Arc;
564 564

	
565 565
    void first(Node& i) const {
566 566
      Parent::first(i);
567 567
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
568 568
    }
569 569

	
570 570
    void first(Arc& i) const {
571 571
      Parent::first(i);
572 572
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
573 573
    }
574 574

	
575 575
    void firstIn(Arc& i, const Node& n) const {
576 576
      Parent::firstIn(i, n);
577 577
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
578 578
    }
579 579

	
580 580
    void firstOut(Arc& i, const Node& n) const {
581 581
      Parent::firstOut(i, n);
582 582
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
583 583
    }
584 584

	
585 585
    void next(Node& i) const {
586 586
      Parent::next(i);
587 587
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
588 588
    }
589 589
    void next(Arc& i) const {
590 590
      Parent::next(i);
591 591
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
592 592
    }
593 593
    void nextIn(Arc& i) const {
594 594
      Parent::nextIn(i);
595 595
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
596 596
    }
597 597

	
598 598
    void nextOut(Arc& i) const {
599 599
      Parent::nextOut(i);
600 600
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
601 601
    }
602 602

	
603 603
    void hide(const Node& n) const { _node_filter->set(n, false); }
604 604
    void hide(const Arc& e) const { _arc_filter->set(e, false); }
605 605

	
606 606
    void unHide(const Node& n) const { _node_filter->set(n, true); }
607 607
    void unHide(const Arc& e) const { _arc_filter->set(e, true); }
608 608

	
609 609
    bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
610 610
    bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; }
611 611

	
612 612
    typedef False NodeNumTag;
613 613
    typedef False EdgeNumTag;
614 614

	
615 615
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
616 616
    Arc findArc(const Node& source, const Node& target,
617 617
                const Arc& prev = INVALID) {
618 618
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
619 619
        return INVALID;
620 620
      }
621 621
      Arc arc = Parent::findArc(source, target, prev);
622 622
      while (arc != INVALID && !(*_arc_filter)[arc]) {
623 623
        arc = Parent::findArc(source, target, arc);
624 624
      }
625 625
      return arc;
626 626
    }
627 627

	
628 628
    template <typename _Value>
629 629
    class NodeMap : public SubMapExtender<Adaptor,
630 630
      typename Parent::template NodeMap<_Value> > {
631 631
    public:
632 632
      typedef _Value Value;
633 633
      typedef SubMapExtender<Adaptor, typename Parent::
634 634
                             template NodeMap<Value> > MapParent;
635 635

	
636 636
      NodeMap(const Adaptor& adaptor)
637 637
        : MapParent(adaptor) {}
638 638
      NodeMap(const Adaptor& adaptor, const Value& value)
639 639
        : MapParent(adaptor, value) {}
640 640

	
641 641
    private:
642 642
      NodeMap& operator=(const NodeMap& cmap) {
643 643
        return operator=<NodeMap>(cmap);
644 644
      }
645 645

	
646 646
      template <typename CMap>
647 647
      NodeMap& operator=(const CMap& cmap) {
648 648
        MapParent::operator=(cmap);
649 649
        return *this;
650 650
      }
651 651
    };
652 652

	
653 653
    template <typename _Value>
654 654
    class ArcMap : public SubMapExtender<Adaptor,
655 655
      typename Parent::template ArcMap<_Value> > {
656 656
    public:
657 657
      typedef _Value Value;
658 658
      typedef SubMapExtender<Adaptor, typename Parent::
659 659
                             template ArcMap<Value> > MapParent;
660 660

	
661 661
      ArcMap(const Adaptor& adaptor)
662 662
        : MapParent(adaptor) {}
663 663
      ArcMap(const Adaptor& adaptor, const Value& value)
664 664
        : MapParent(adaptor, value) {}
665 665

	
666 666
    private:
667 667
      ArcMap& operator=(const ArcMap& cmap) {
668 668
        return operator=<ArcMap>(cmap);
669 669
      }
670 670

	
671 671
      template <typename CMap>
672 672
      ArcMap& operator=(const CMap& cmap) {
673 673
        MapParent::operator=(cmap);
674 674
        return *this;
675 675
      }
676 676
    };
677 677

	
678 678
  };
679 679

	
680 680
  /// \ingroup graph_adaptors
681 681
  ///
682 682
  /// \brief An adaptor for hiding nodes and arcs in a digraph
683 683
  ///
684 684
  /// SubDigraph hides nodes and arcs in a digraph. A bool node map
685 685
  /// and a bool arc map must be specified, which define the filters
686 686
  /// for nodes and arcs. Just the nodes and arcs with true value are
687 687
  /// shown in the subdigraph. The SubDigraph is conform to the \ref
688 688
  /// concepts::Digraph "Digraph concept". If the \c _checked parameter
689 689
  /// is true, then the arcs incident to filtered nodes are also
690 690
  /// filtered out.
691 691
  ///
692 692
  /// \tparam _Digraph It must be conform to the \ref
693 693
  /// concepts::Digraph "Digraph concept". The type can be specified
694 694
  /// to const.
695 695
  /// \tparam _NodeFilterMap A bool valued node map of the the adapted digraph.
696 696
  /// \tparam _ArcFilterMap A bool valued arc map of the the adapted digraph.
697 697
  /// \tparam _checked If the parameter is false then the arc filtering
698 698
  /// is not checked with respect to node filter. Otherwise, each arc
699 699
  /// is automatically filtered, which is incident to a filtered node.
700 700
  ///
701 701
  /// \see FilterNodes
702 702
  /// \see FilterArcs
703 703
  template<typename _Digraph,
704 704
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
705 705
           typename _ArcFilterMap = typename _Digraph::template ArcMap<bool>,
706 706
           bool _checked = true>
707 707
  class SubDigraph
708 708
    : public DigraphAdaptorExtender<
709 709
      SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > {
710 710
  public:
711 711
    typedef _Digraph Digraph;
712 712
    typedef _NodeFilterMap NodeFilterMap;
713 713
    typedef _ArcFilterMap ArcFilterMap;
714 714

	
715 715
    typedef DigraphAdaptorExtender<
716 716
      SubDigraphBase<Digraph, NodeFilterMap, ArcFilterMap, _checked> >
717 717
    Parent;
718 718

	
719 719
    typedef typename Parent::Node Node;
720 720
    typedef typename Parent::Arc Arc;
721 721

	
722 722
  protected:
723 723
    SubDigraph() { }
724 724
  public:
725 725

	
726 726
    /// \brief Constructor
727 727
    ///
728 728
    /// Creates a subdigraph for the given digraph with
729 729
    /// given node and arc map filters.
730 730
    SubDigraph(Digraph& digraph, NodeFilterMap& node_filter,
731 731
               ArcFilterMap& arc_filter) {
732 732
      setDigraph(digraph);
733 733
      setNodeFilterMap(node_filter);
734 734
      setArcFilterMap(arc_filter);
735 735
    }
736 736

	
737 737
    /// \brief Hides the node of the graph
738 738
    ///
739 739
    /// This function hides \c n in the digraph, i.e. the iteration
740 740
    /// jumps over it. This is done by simply setting the value of \c n
741 741
    /// to be false in the corresponding node-map.
742 742
    void hide(const Node& n) const { Parent::hide(n); }
743 743

	
744 744
    /// \brief Hides the arc of the graph
745 745
    ///
746 746
    /// This function hides \c a in the digraph, i.e. the iteration
747 747
    /// jumps over it. This is done by simply setting the value of \c a
748 748
    /// to be false in the corresponding arc-map.
749 749
    void hide(const Arc& a) const { Parent::hide(a); }
750 750

	
751 751
    /// \brief Unhides the node of the graph
752 752
    ///
753 753
    /// The value of \c n is set to be true in the node-map which stores
754 754
    /// hide information. If \c n was hidden previuosly, then it is shown
755 755
    /// again
756 756
    void unHide(const Node& n) const { Parent::unHide(n); }
757 757

	
758 758
    /// \brief Unhides the arc of the graph
759 759
    ///
760 760
    /// The value of \c a is set to be true in the arc-map which stores
761 761
    /// hide information. If \c a was hidden previuosly, then it is shown
762 762
    /// again
763 763
    void unHide(const Arc& a) const { Parent::unHide(a); }
764 764

	
765 765
    /// \brief Returns true if \c n is hidden.
766 766
    ///
767 767
    /// Returns true if \c n is hidden.
768 768
    ///
769 769
    bool hidden(const Node& n) const { return Parent::hidden(n); }
770 770

	
771 771
    /// \brief Returns true if \c a is hidden.
772 772
    ///
773 773
    /// Returns true if \c a is hidden.
774 774
    ///
775 775
    bool hidden(const Arc& a) const { return Parent::hidden(a); }
776 776

	
777 777
  };
778 778

	
779 779
  /// \brief Just gives back a subdigraph
780 780
  ///
781 781
  /// Just gives back a subdigraph
782 782
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
783 783
  SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
784 784
  subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) {
785 785
    return SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
786 786
      (digraph, nfm, afm);
787 787
  }
788 788

	
789 789
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
790 790
  SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
791 791
  subDigraph(const Digraph& digraph,
792 792
             const NodeFilterMap& nfm, ArcFilterMap& afm) {
793 793
    return SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
794 794
      (digraph, nfm, afm);
795 795
  }
796 796

	
797 797
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
798 798
  SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
799 799
  subDigraph(const Digraph& digraph,
800 800
             NodeFilterMap& nfm, const ArcFilterMap& afm) {
801 801
    return SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
802 802
      (digraph, nfm, afm);
803 803
  }
804 804

	
805 805
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
806 806
  SubDigraph<const Digraph, const NodeFilterMap, const ArcFilterMap>
807 807
  subDigraph(const Digraph& digraph,
808 808
             const NodeFilterMap& nfm, const ArcFilterMap& afm) {
809 809
    return SubDigraph<const Digraph, const NodeFilterMap,
810 810
      const ArcFilterMap>(digraph, nfm, afm);
811 811
  }
812 812

	
813 813

	
814 814
  template <typename _Graph, typename NodeFilterMap,
815 815
            typename EdgeFilterMap, bool _checked = true>
816 816
  class SubGraphBase : public GraphAdaptorBase<_Graph> {
817 817
  public:
818 818
    typedef _Graph Graph;
819 819
    typedef SubGraphBase Adaptor;
820 820
    typedef GraphAdaptorBase<_Graph> Parent;
821 821
  protected:
822 822

	
823 823
    NodeFilterMap* _node_filter_map;
824 824
    EdgeFilterMap* _edge_filter_map;
825 825

	
826 826
    SubGraphBase()
827 827
      : Parent(), _node_filter_map(0), _edge_filter_map(0) { }
828 828

	
829 829
    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
830 830
      _node_filter_map=&node_filter_map;
831 831
    }
832 832
    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
833 833
      _edge_filter_map=&edge_filter_map;
834 834
    }
835 835

	
836 836
  public:
837 837

	
838 838
    typedef typename Parent::Node Node;
839 839
    typedef typename Parent::Arc Arc;
840 840
    typedef typename Parent::Edge Edge;
841 841

	
842 842
    void first(Node& i) const {
843 843
      Parent::first(i);
844 844
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
845 845
    }
846 846

	
847 847
    void first(Arc& i) const {
848 848
      Parent::first(i);
849 849
      while (i!=INVALID && (!(*_edge_filter_map)[i]
850 850
                            || !(*_node_filter_map)[Parent::source(i)]
851 851
                            || !(*_node_filter_map)[Parent::target(i)]))
852 852
        Parent::next(i);
853 853
    }
854 854

	
855 855
    void first(Edge& i) const {
856 856
      Parent::first(i);
857 857
      while (i!=INVALID && (!(*_edge_filter_map)[i]
858 858
                            || !(*_node_filter_map)[Parent::u(i)]
859 859
                            || !(*_node_filter_map)[Parent::v(i)]))
860 860
        Parent::next(i);
861 861
    }
862 862

	
863 863
    void firstIn(Arc& i, const Node& n) const {
864 864
      Parent::firstIn(i, n);
865 865
      while (i!=INVALID && (!(*_edge_filter_map)[i]
866 866
                            || !(*_node_filter_map)[Parent::source(i)]))
867 867
        Parent::nextIn(i);
868 868
    }
869 869

	
870 870
    void firstOut(Arc& i, const Node& n) const {
871 871
      Parent::firstOut(i, n);
872 872
      while (i!=INVALID && (!(*_edge_filter_map)[i]
873 873
                            || !(*_node_filter_map)[Parent::target(i)]))
874 874
        Parent::nextOut(i);
875 875
    }
876 876

	
877 877
    void firstInc(Edge& i, bool& d, const Node& n) const {
878 878
      Parent::firstInc(i, d, n);
879 879
      while (i!=INVALID && (!(*_edge_filter_map)[i]
880 880
                            || !(*_node_filter_map)[Parent::u(i)]
881 881
                            || !(*_node_filter_map)[Parent::v(i)]))
882 882
        Parent::nextInc(i, d);
883 883
    }
884 884

	
885 885
    void next(Node& i) const {
886 886
      Parent::next(i);
887 887
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
888 888
    }
889 889

	
890 890
    void next(Arc& i) const {
891 891
      Parent::next(i);
892 892
      while (i!=INVALID && (!(*_edge_filter_map)[i]
893 893
                            || !(*_node_filter_map)[Parent::source(i)]
894 894
                            || !(*_node_filter_map)[Parent::target(i)]))
895 895
        Parent::next(i);
896 896
    }
897 897

	
898 898
    void next(Edge& i) const {
899 899
      Parent::next(i);
900 900
      while (i!=INVALID && (!(*_edge_filter_map)[i]
901 901
                            || !(*_node_filter_map)[Parent::u(i)]
902 902
                            || !(*_node_filter_map)[Parent::v(i)]))
903 903
        Parent::next(i);
904 904
    }
905 905

	
906 906
    void nextIn(Arc& i) const {
907 907
      Parent::nextIn(i);
908 908
      while (i!=INVALID && (!(*_edge_filter_map)[i]
909 909
                            || !(*_node_filter_map)[Parent::source(i)]))
910 910
        Parent::nextIn(i);
911 911
    }
912 912

	
913 913
    void nextOut(Arc& i) const {
914 914
      Parent::nextOut(i);
915 915
      while (i!=INVALID && (!(*_edge_filter_map)[i]
916 916
                            || !(*_node_filter_map)[Parent::target(i)]))
917 917
        Parent::nextOut(i);
918 918
    }
919 919

	
920 920
    void nextInc(Edge& i, bool& d) const {
921 921
      Parent::nextInc(i, d);
922 922
      while (i!=INVALID && (!(*_edge_filter_map)[i]
923 923
                            || !(*_node_filter_map)[Parent::u(i)]
924 924
                            || !(*_node_filter_map)[Parent::v(i)]))
925 925
        Parent::nextInc(i, d);
926 926
    }
927 927

	
928 928
    void hide(const Node& n) const { _node_filter_map->set(n, false); }
929 929
    void hide(const Edge& e) const { _edge_filter_map->set(e, false); }
930 930

	
931 931
    void unHide(const Node& n) const { _node_filter_map->set(n, true); }
932 932
    void unHide(const Edge& e) const { _edge_filter_map->set(e, true); }
933 933

	
934 934
    bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; }
935 935
    bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; }
936 936

	
937 937
    typedef False NodeNumTag;
938 938
    typedef False EdgeNumTag;
939 939

	
940 940
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
941 941
    Arc findArc(const Node& u, const Node& v,
942 942
                const Arc& prev = INVALID) {
943 943
      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
944 944
        return INVALID;
945 945
      }
946 946
      Arc arc = Parent::findArc(u, v, prev);
947 947
      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
948 948
        arc = Parent::findArc(u, v, arc);
949 949
      }
950 950
      return arc;
951 951
    }
952 952
    Edge findEdge(const Node& u, const Node& v,
953 953
                  const Edge& prev = INVALID) {
954 954
      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
955 955
        return INVALID;
956 956
      }
957 957
      Edge edge = Parent::findEdge(u, v, prev);
958 958
      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
959 959
        edge = Parent::findEdge(u, v, edge);
960 960
      }
961 961
      return edge;
962 962
    }
963 963

	
964 964
    template <typename _Value>
965 965
    class NodeMap : public SubMapExtender<Adaptor,
966 966
      typename Parent::template NodeMap<_Value> > {
967 967
    public:
968 968
      typedef _Value Value;
969 969
      typedef SubMapExtender<Adaptor, typename Parent::
970 970
                             template NodeMap<Value> > MapParent;
971 971

	
972 972
      NodeMap(const Adaptor& adaptor)
973 973
        : MapParent(adaptor) {}
974 974
      NodeMap(const Adaptor& adaptor, const Value& value)
975 975
        : MapParent(adaptor, value) {}
976 976

	
977 977
    private:
978 978
      NodeMap& operator=(const NodeMap& cmap) {
979 979
        return operator=<NodeMap>(cmap);
980 980
      }
981 981

	
982 982
      template <typename CMap>
983 983
      NodeMap& operator=(const CMap& cmap) {
984 984
        MapParent::operator=(cmap);
985 985
        return *this;
986 986
      }
987 987
    };
988 988

	
989 989
    template <typename _Value>
990 990
    class ArcMap : public SubMapExtender<Adaptor,
991 991
      typename Parent::template ArcMap<_Value> > {
992 992
    public:
993 993
      typedef _Value Value;
994 994
      typedef SubMapExtender<Adaptor, typename Parent::
995 995
                             template ArcMap<Value> > MapParent;
996 996

	
997 997
      ArcMap(const Adaptor& adaptor)
998 998
        : MapParent(adaptor) {}
999 999
      ArcMap(const Adaptor& adaptor, const Value& value)
1000 1000
        : MapParent(adaptor, value) {}
1001 1001

	
1002 1002
    private:
1003 1003
      ArcMap& operator=(const ArcMap& cmap) {
1004 1004
        return operator=<ArcMap>(cmap);
1005 1005
      }
1006 1006

	
1007 1007
      template <typename CMap>
1008 1008
      ArcMap& operator=(const CMap& cmap) {
1009 1009
        MapParent::operator=(cmap);
1010 1010
        return *this;
1011 1011
      }
1012 1012
    };
1013 1013

	
1014 1014
    template <typename _Value>
1015 1015
    class EdgeMap : public SubMapExtender<Adaptor,
1016 1016
      typename Parent::template EdgeMap<_Value> > {
1017 1017
    public:
1018 1018
      typedef _Value Value;
1019 1019
      typedef SubMapExtender<Adaptor, typename Parent::
1020 1020
                             template EdgeMap<Value> > MapParent;
1021 1021

	
1022 1022
      EdgeMap(const Adaptor& adaptor)
1023 1023
        : MapParent(adaptor) {}
1024 1024

	
1025 1025
      EdgeMap(const Adaptor& adaptor, const Value& value)
1026 1026
        : MapParent(adaptor, value) {}
1027 1027

	
1028 1028
    private:
1029 1029
      EdgeMap& operator=(const EdgeMap& cmap) {
1030 1030
        return operator=<EdgeMap>(cmap);
1031 1031
      }
1032 1032

	
1033 1033
      template <typename CMap>
1034 1034
      EdgeMap& operator=(const CMap& cmap) {
1035 1035
        MapParent::operator=(cmap);
1036 1036
        return *this;
1037 1037
      }
1038 1038
    };
1039 1039

	
1040 1040
  };
1041 1041

	
1042 1042
  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
1043 1043
  class SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, false>
1044 1044
    : public GraphAdaptorBase<_Graph> {
1045 1045
  public:
1046 1046
    typedef _Graph Graph;
1047 1047
    typedef SubGraphBase Adaptor;
1048 1048
    typedef GraphAdaptorBase<_Graph> Parent;
1049 1049
  protected:
1050 1050
    NodeFilterMap* _node_filter_map;
1051 1051
    EdgeFilterMap* _edge_filter_map;
1052 1052
    SubGraphBase() : Parent(),
1053 1053
                     _node_filter_map(0), _edge_filter_map(0) { }
1054 1054

	
1055 1055
    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
1056 1056
      _node_filter_map=&node_filter_map;
1057 1057
    }
1058 1058
    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
1059 1059
      _edge_filter_map=&edge_filter_map;
1060 1060
    }
1061 1061

	
1062 1062
  public:
1063 1063

	
1064 1064
    typedef typename Parent::Node Node;
1065 1065
    typedef typename Parent::Arc Arc;
1066 1066
    typedef typename Parent::Edge Edge;
1067 1067

	
1068 1068
    void first(Node& i) const {
1069 1069
      Parent::first(i);
1070 1070
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
1071 1071
    }
1072 1072

	
1073 1073
    void first(Arc& i) const {
1074 1074
      Parent::first(i);
1075 1075
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1076 1076
    }
1077 1077

	
1078 1078
    void first(Edge& i) const {
1079 1079
      Parent::first(i);
1080 1080
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1081 1081
    }
1082 1082

	
1083 1083
    void firstIn(Arc& i, const Node& n) const {
1084 1084
      Parent::firstIn(i, n);
1085 1085
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
1086 1086
    }
1087 1087

	
1088 1088
    void firstOut(Arc& i, const Node& n) const {
1089 1089
      Parent::firstOut(i, n);
1090 1090
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
1091 1091
    }
1092 1092

	
1093 1093
    void firstInc(Edge& i, bool& d, const Node& n) const {
1094 1094
      Parent::firstInc(i, d, n);
1095 1095
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
1096 1096
    }
1097 1097

	
1098 1098
    void next(Node& i) const {
1099 1099
      Parent::next(i);
1100 1100
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
1101 1101
    }
1102 1102
    void next(Arc& i) const {
1103 1103
      Parent::next(i);
1104 1104
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1105 1105
    }
1106 1106
    void next(Edge& i) const {
1107 1107
      Parent::next(i);
1108 1108
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1109 1109
    }
1110 1110
    void nextIn(Arc& i) const {
1111 1111
      Parent::nextIn(i);
1112 1112
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
1113 1113
    }
1114 1114

	
1115 1115
    void nextOut(Arc& i) const {
1116 1116
      Parent::nextOut(i);
1117 1117
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
1118 1118
    }
1119 1119
    void nextInc(Edge& i, bool& d) const {
1120 1120
      Parent::nextInc(i, d);
1121 1121
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
1122 1122
    }
1123 1123

	
1124 1124
    void hide(const Node& n) const { _node_filter_map->set(n, false); }
1125 1125
    void hide(const Edge& e) const { _edge_filter_map->set(e, false); }
1126 1126

	
1127 1127
    void unHide(const Node& n) const { _node_filter_map->set(n, true); }
1128 1128
    void unHide(const Edge& e) const { _edge_filter_map->set(e, true); }
1129 1129

	
1130 1130
    bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; }
1131 1131
    bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; }
1132 1132

	
1133 1133
    typedef False NodeNumTag;
1134 1134
    typedef False EdgeNumTag;
1135 1135

	
1136 1136
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1137 1137
    Arc findArc(const Node& u, const Node& v,
1138 1138
                const Arc& prev = INVALID) {
1139 1139
      Arc arc = Parent::findArc(u, v, prev);
1140 1140
      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
1141 1141
        arc = Parent::findArc(u, v, arc);
1142 1142
      }
1143 1143
      return arc;
1144 1144
    }
1145 1145
    Edge findEdge(const Node& u, const Node& v,
1146 1146
                  const Edge& prev = INVALID) {
1147 1147
      Edge edge = Parent::findEdge(u, v, prev);
1148 1148
      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
1149 1149
        edge = Parent::findEdge(u, v, edge);
1150 1150
      }
1151 1151
      return edge;
1152 1152
    }
1153 1153

	
1154 1154
    template <typename _Value>
1155 1155
    class NodeMap : public SubMapExtender<Adaptor,
1156 1156
      typename Parent::template NodeMap<_Value> > {
1157 1157
    public:
1158 1158
      typedef _Value Value;
1159 1159
      typedef SubMapExtender<Adaptor, typename Parent::
1160 1160
                             template NodeMap<Value> > MapParent;
1161 1161

	
1162 1162
      NodeMap(const Adaptor& adaptor)
1163 1163
        : MapParent(adaptor) {}
1164 1164
      NodeMap(const Adaptor& adaptor, const Value& value)
1165 1165
        : MapParent(adaptor, value) {}
1166 1166

	
1167 1167
    private:
1168 1168
      NodeMap& operator=(const NodeMap& cmap) {
1169 1169
        return operator=<NodeMap>(cmap);
1170 1170
      }
1171 1171

	
1172 1172
      template <typename CMap>
1173 1173
      NodeMap& operator=(const CMap& cmap) {
1174 1174
        MapParent::operator=(cmap);
1175 1175
        return *this;
1176 1176
      }
1177 1177
    };
1178 1178

	
1179 1179
    template <typename _Value>
1180 1180
    class ArcMap : public SubMapExtender<Adaptor,
1181 1181
      typename Parent::template ArcMap<_Value> > {
1182 1182
    public:
1183 1183
      typedef _Value Value;
1184 1184
      typedef SubMapExtender<Adaptor, typename Parent::
1185 1185
                             template ArcMap<Value> > MapParent;
1186 1186

	
1187 1187
      ArcMap(const Adaptor& adaptor)
1188 1188
        : MapParent(adaptor) {}
1189 1189
      ArcMap(const Adaptor& adaptor, const Value& value)
1190 1190
        : MapParent(adaptor, value) {}
1191 1191

	
1192 1192
    private:
1193 1193
      ArcMap& operator=(const ArcMap& cmap) {
1194 1194
        return operator=<ArcMap>(cmap);
1195 1195
      }
1196 1196

	
1197 1197
      template <typename CMap>
1198 1198
      ArcMap& operator=(const CMap& cmap) {
1199 1199
        MapParent::operator=(cmap);
1200 1200
        return *this;
1201 1201
      }
1202 1202
    };
1203 1203

	
1204 1204
    template <typename _Value>
1205 1205
    class EdgeMap : public SubMapExtender<Adaptor,
1206 1206
      typename Parent::template EdgeMap<_Value> > {
1207 1207
    public:
1208 1208
      typedef _Value Value;
1209 1209
      typedef SubMapExtender<Adaptor, typename Parent::
1210 1210
                             template EdgeMap<Value> > MapParent;
1211 1211

	
1212 1212
      EdgeMap(const Adaptor& adaptor)
1213 1213
        : MapParent(adaptor) {}
1214 1214

	
1215 1215
      EdgeMap(const Adaptor& adaptor, const _Value& value)
1216 1216
        : MapParent(adaptor, value) {}
1217 1217

	
1218 1218
    private:
1219 1219
      EdgeMap& operator=(const EdgeMap& cmap) {
1220 1220
        return operator=<EdgeMap>(cmap);
1221 1221
      }
1222 1222

	
1223 1223
      template <typename CMap>
1224 1224
      EdgeMap& operator=(const CMap& cmap) {
1225 1225
        MapParent::operator=(cmap);
1226 1226
        return *this;
1227 1227
      }
1228 1228
    };
1229 1229

	
1230 1230
  };
1231 1231

	
1232 1232
  /// \ingroup graph_adaptors
1233 1233
  ///
1234 1234
  /// \brief A graph adaptor for hiding nodes and edges in an
1235 1235
  /// undirected graph.
1236 1236
  ///
1237 1237
  /// SubGraph hides nodes and edges in a graph. A bool node map and a
1238 1238
  /// bool edge map must be specified, which define the filters for
1239 1239
  /// nodes and edges. Just the nodes and edges with true value are
1240 1240
  /// shown in the subgraph. The SubGraph is conform to the \ref
1241 1241
  /// concepts::Graph "Graph concept". If the \c _checked parameter is
1242 1242
  /// true, then the edges incident to filtered nodes are also
1243 1243
  /// filtered out.
1244 1244
  ///
1245 1245
  /// \tparam _Graph It must be conform to the \ref
1246 1246
  /// concepts::Graph "Graph concept". The type can be specified
1247 1247
  /// to const.
1248 1248
  /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph.
1249 1249
  /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted graph.
1250 1250
  /// \tparam _checked If the parameter is false then the edge filtering
1251 1251
  /// is not checked with respect to node filter. Otherwise, each edge
1252 1252
  /// is automatically filtered, which is incident to a filtered node.
1253 1253
  ///
1254 1254
  /// \see FilterNodes
1255 1255
  /// \see FilterEdges
1256 1256
  template<typename _Graph, typename NodeFilterMap,
1257 1257
           typename EdgeFilterMap, bool _checked = true>
1258 1258
  class SubGraph
1259 1259
    : public GraphAdaptorExtender<
1260 1260
      SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, _checked> > {
1261 1261
  public:
1262 1262
    typedef _Graph Graph;
1263 1263
    typedef GraphAdaptorExtender<
1264 1264
      SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
1265 1265

	
1266 1266
    typedef typename Parent::Node Node;
1267 1267
    typedef typename Parent::Edge Edge;
1268 1268

	
1269 1269
  protected:
1270 1270
    SubGraph() { }
1271 1271
  public:
1272 1272

	
1273 1273
    /// \brief Constructor
1274 1274
    ///
1275 1275
    /// Creates a subgraph for the given graph with given node and
1276 1276
    /// edge map filters.
1277 1277
    SubGraph(Graph& _graph, NodeFilterMap& node_filter_map,
1278 1278
             EdgeFilterMap& edge_filter_map) {
1279 1279
      setGraph(_graph);
1280 1280
      setNodeFilterMap(node_filter_map);
1281 1281
      setEdgeFilterMap(edge_filter_map);
1282 1282
    }
1283 1283

	
1284 1284
    /// \brief Hides the node of the graph
1285 1285
    ///
1286 1286
    /// This function hides \c n in the graph, i.e. the iteration
1287 1287
    /// jumps over it. This is done by simply setting the value of \c n
1288 1288
    /// to be false in the corresponding node-map.
1289 1289
    void hide(const Node& n) const { Parent::hide(n); }
1290 1290

	
1291 1291
    /// \brief Hides the edge of the graph
1292 1292
    ///
1293 1293
    /// This function hides \c e in the graph, i.e. the iteration
1294 1294
    /// jumps over it. This is done by simply setting the value of \c e
1295 1295
    /// to be false in the corresponding edge-map.
1296 1296
    void hide(const Edge& e) const { Parent::hide(e); }
1297 1297

	
1298 1298
    /// \brief Unhides the node of the graph
1299 1299
    ///
1300 1300
    /// The value of \c n is set to be true in the node-map which stores
1301 1301
    /// hide information. If \c n was hidden previuosly, then it is shown
1302 1302
    /// again
1303 1303
    void unHide(const Node& n) const { Parent::unHide(n); }
1304 1304

	
1305 1305
    /// \brief Unhides the edge of the graph
1306 1306
    ///
1307 1307
    /// The value of \c e is set to be true in the edge-map which stores
1308 1308
    /// hide information. If \c e was hidden previuosly, then it is shown
1309 1309
    /// again
1310 1310
    void unHide(const Edge& e) const { Parent::unHide(e); }
1311 1311

	
1312 1312
    /// \brief Returns true if \c n is hidden.
1313 1313
    ///
1314 1314
    /// Returns true if \c n is hidden.
1315 1315
    ///
1316 1316
    bool hidden(const Node& n) const { return Parent::hidden(n); }
1317 1317

	
1318 1318
    /// \brief Returns true if \c e is hidden.
1319 1319
    ///
1320 1320
    /// Returns true if \c e is hidden.
1321 1321
    ///
1322 1322
    bool hidden(const Edge& e) const { return Parent::hidden(e); }
1323 1323
  };
1324 1324

	
1325 1325
  /// \brief Just gives back a subgraph
1326 1326
  ///
1327 1327
  /// Just gives back a subgraph
1328 1328
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1329 1329
  SubGraph<const Graph, NodeFilterMap, ArcFilterMap>
1330 1330
  subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) {
1331 1331
    return SubGraph<const Graph, NodeFilterMap, ArcFilterMap>(graph, nfm, efm);
1332 1332
  }
1333 1333

	
1334 1334
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1335 1335
  SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
1336 1336
  subGraph(const Graph& graph,
1337 1337
           const NodeFilterMap& nfm, ArcFilterMap& efm) {
1338 1338
    return SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
1339 1339
      (graph, nfm, efm);
1340 1340
  }
1341 1341

	
1342 1342
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1343 1343
  SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
1344 1344
  subGraph(const Graph& graph,
1345 1345
           NodeFilterMap& nfm, const ArcFilterMap& efm) {
1346 1346
    return SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
1347 1347
      (graph, nfm, efm);
1348 1348
  }
1349 1349

	
1350 1350
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1351 1351
  SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
1352 1352
  subGraph(const Graph& graph,
1353 1353
           const NodeFilterMap& nfm, const ArcFilterMap& efm) {
1354 1354
    return SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
1355 1355
      (graph, nfm, efm);
1356 1356
  }
1357 1357

	
1358 1358
  /// \ingroup graph_adaptors
1359 1359
  ///
1360 1360
  /// \brief An adaptor for hiding nodes from a digraph or a graph.
1361 1361
  ///
1362 1362
  /// FilterNodes adaptor hides nodes in a graph or a digraph. A bool
1363 1363
  /// node map must be specified, which defines the filters for
1364 1364
  /// nodes. Just the unfiltered nodes and the arcs or edges incident
1365 1365
  /// to unfiltered nodes are shown in the subdigraph or subgraph. The
1366 1366
  /// FilterNodes is conform to the \ref concepts::Digraph
1367 1367
  /// "Digraph concept" or \ref concepts::Graph "Graph concept" depending
1368 1368
  /// on the \c _Digraph template parameter. If the \c _checked
1369 1369
  /// parameter is true, then the arc or edges incident to filtered nodes
1370 1370
  /// are also filtered out.
1371 1371
  ///
1372 1372
  /// \tparam _Digraph It must be conform to the \ref
1373 1373
  /// concepts::Digraph "Digraph concept" or \ref concepts::Graph
1374 1374
  /// "Graph concept". The type can be specified to be const.
1375 1375
  /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph.
1376 1376
  /// \tparam _checked If the parameter is false then the arc or edge
1377 1377
  /// filtering is not checked with respect to node filter. In this
1378 1378
  /// case just isolated nodes can be filtered out from the
1379 1379
  /// graph.
1380 1380
#ifdef DOXYGEN
1381 1381
  template<typename _Digraph,
1382 1382
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
1383 1383
           bool _checked = true>
1384 1384
#else
1385 1385
  template<typename _Digraph,
1386 1386
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
1387 1387
           bool _checked = true,
1388 1388
           typename Enable = void>
1389 1389
#endif
1390 1390
  class FilterNodes
1391 1391
    : public SubDigraph<_Digraph, _NodeFilterMap,
1392 1392
                        ConstMap<typename _Digraph::Arc, bool>, _checked> {
1393 1393
  public:
1394 1394

	
1395 1395
    typedef _Digraph Digraph;
1396 1396
    typedef _NodeFilterMap NodeFilterMap;
1397 1397

	
1398 1398
    typedef SubDigraph<Digraph, NodeFilterMap,
1399 1399
                       ConstMap<typename Digraph::Arc, bool>, _checked>
1400 1400
    Parent;
1401 1401

	
1402 1402
    typedef typename Parent::Node Node;
1403 1403

	
1404 1404
  protected:
1405 1405
    ConstMap<typename Digraph::Arc, bool> const_true_map;
1406 1406

	
1407 1407
    FilterNodes() : const_true_map(true) {
1408 1408
      Parent::setArcFilterMap(const_true_map);
1409 1409
    }
1410 1410

	
1411 1411
  public:
1412 1412

	
1413 1413
    /// \brief Constructor
1414 1414
    ///
1415 1415
    /// Creates an adaptor for the given digraph or graph with
1416 1416
    /// given node filter map.
1417 1417
    FilterNodes(Digraph& _digraph, NodeFilterMap& node_filter) :
1418 1418
      Parent(), const_true_map(true) {
1419 1419
      Parent::setDigraph(_digraph);
1420 1420
      Parent::setNodeFilterMap(node_filter);
1421 1421
      Parent::setArcFilterMap(const_true_map);
1422 1422
    }
1423 1423

	
1424 1424
    /// \brief Hides the node of the graph
1425 1425
    ///
1426 1426
    /// This function hides \c n in the digraph or graph, i.e. the iteration
1427 1427
    /// jumps over it. This is done by simply setting the value of \c n
1428 1428
    /// to be false in the corresponding node map.
1429 1429
    void hide(const Node& n) const { Parent::hide(n); }
1430 1430

	
1431 1431
    /// \brief Unhides the node of the graph
1432 1432
    ///
1433 1433
    /// The value of \c n is set to be true in the node-map which stores
1434 1434
    /// hide information. If \c n was hidden previuosly, then it is shown
1435 1435
    /// again
1436 1436
    void unHide(const Node& n) const { Parent::unHide(n); }
1437 1437

	
1438 1438
    /// \brief Returns true if \c n is hidden.
1439 1439
    ///
1440 1440
    /// Returns true if \c n is hidden.
1441 1441
    ///
1442 1442
    bool hidden(const Node& n) const { return Parent::hidden(n); }
1443 1443

	
1444 1444
  };
1445 1445

	
1446 1446
  template<typename _Graph, typename _NodeFilterMap, bool _checked>
1447 1447
  class FilterNodes<_Graph, _NodeFilterMap, _checked,
1448 1448
                    typename enable_if<UndirectedTagIndicator<_Graph> >::type>
1449 1449
    : public SubGraph<_Graph, _NodeFilterMap,
1450 1450
                      ConstMap<typename _Graph::Edge, bool>, _checked> {
1451 1451
  public:
1452 1452
    typedef _Graph Graph;
1453 1453
    typedef _NodeFilterMap NodeFilterMap;
1454 1454
    typedef SubGraph<Graph, NodeFilterMap,
1455 1455
                     ConstMap<typename Graph::Edge, bool> > Parent;
1456 1456

	
1457 1457
    typedef typename Parent::Node Node;
1458 1458
  protected:
1459 1459
    ConstMap<typename Graph::Edge, bool> const_true_map;
1460 1460

	
1461 1461
    FilterNodes() : const_true_map(true) {
1462 1462
      Parent::setEdgeFilterMap(const_true_map);
1463 1463
    }
1464 1464

	
1465 1465
  public:
1466 1466

	
1467 1467
    FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) :
1468 1468
      Parent(), const_true_map(true) {
1469 1469
      Parent::setGraph(_graph);
1470 1470
      Parent::setNodeFilterMap(node_filter_map);
1471 1471
      Parent::setEdgeFilterMap(const_true_map);
1472 1472
    }
1473 1473

	
1474 1474
    void hide(const Node& n) const { Parent::hide(n); }
1475 1475
    void unHide(const Node& n) const { Parent::unHide(n); }
1476 1476
    bool hidden(const Node& n) const { return Parent::hidden(n); }
1477 1477

	
1478 1478
  };
1479 1479

	
1480 1480

	
1481 1481
  /// \brief Just gives back a FilterNodes adaptor
1482 1482
  ///
1483 1483
  /// Just gives back a FilterNodes adaptor
1484 1484
  template<typename Digraph, typename NodeFilterMap>
1485 1485
  FilterNodes<const Digraph, NodeFilterMap>
1486 1486
  filterNodes(const Digraph& digraph, NodeFilterMap& nfm) {
1487 1487
    return FilterNodes<const Digraph, NodeFilterMap>(digraph, nfm);
1488 1488
  }
1489 1489

	
1490 1490
  template<typename Digraph, typename NodeFilterMap>
1491 1491
  FilterNodes<const Digraph, const NodeFilterMap>
1492 1492
  filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) {
1493 1493
    return FilterNodes<const Digraph, const NodeFilterMap>(digraph, nfm);
1494 1494
  }
1495 1495

	
1496 1496
  /// \ingroup graph_adaptors
1497 1497
  ///
1498 1498
  /// \brief An adaptor for hiding arcs from a digraph.
1499 1499
  ///
1500 1500
  /// FilterArcs adaptor hides arcs in a digraph. A bool arc map must
1501 1501
  /// be specified, which defines the filters for arcs. Just the
1502 1502
  /// unfiltered arcs are shown in the subdigraph. The FilterArcs is
1503 1503
  /// conform to the \ref concepts::Digraph "Digraph concept".
1504 1504
  ///
1505 1505
  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
1506 1506
  /// "Digraph concept". The type can be specified to be const.
1507 1507
  /// \tparam _ArcFilterMap A bool valued arc map of the the adapted
1508 1508
  /// graph.
1509 1509
  template<typename _Digraph, typename _ArcFilterMap>
1510 1510
  class FilterArcs :
1511 1511
    public SubDigraph<_Digraph, ConstMap<typename _Digraph::Node, bool>,
1512 1512
                      _ArcFilterMap, false> {
1513 1513
  public:
1514 1514
    typedef _Digraph Digraph;
1515 1515
    typedef _ArcFilterMap ArcFilterMap;
1516 1516

	
1517 1517
    typedef SubDigraph<Digraph, ConstMap<typename Digraph::Node, bool>,
1518 1518
                       ArcFilterMap, false> Parent;
1519 1519

	
1520 1520
    typedef typename Parent::Arc Arc;
1521 1521

	
1522 1522
  protected:
1523 1523
    ConstMap<typename Digraph::Node, bool> const_true_map;
1524 1524

	
1525 1525
    FilterArcs() : const_true_map(true) {
1526 1526
      Parent::setNodeFilterMap(const_true_map);
1527 1527
    }
1528 1528

	
1529 1529
  public:
1530 1530

	
1531 1531
    /// \brief Constructor
1532 1532
    ///
1533 1533
    /// Creates a FilterArcs adaptor for the given graph with
1534 1534
    /// given arc map filter.
1535 1535
    FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter)
1536 1536
      : Parent(), const_true_map(true) {
1537 1537
      Parent::setDigraph(digraph);
1538 1538
      Parent::setNodeFilterMap(const_true_map);
1539 1539
      Parent::setArcFilterMap(arc_filter);
1540 1540
    }
1541 1541

	
1542 1542
    /// \brief Hides the arc of the graph
1543 1543
    ///
1544 1544
    /// This function hides \c a in the graph, i.e. the iteration
1545 1545
    /// jumps over it. This is done by simply setting the value of \c a
1546 1546
    /// to be false in the corresponding arc map.
1547 1547
    void hide(const Arc& a) const { Parent::hide(a); }
1548 1548

	
1549 1549
    /// \brief Unhides the arc of the graph
1550 1550
    ///
1551 1551
    /// The value of \c a is set to be true in the arc-map which stores
1552 1552
    /// hide information. If \c a was hidden previuosly, then it is shown
1553 1553
    /// again
1554 1554
    void unHide(const Arc& a) const { Parent::unHide(a); }
1555 1555

	
1556 1556
    /// \brief Returns true if \c a is hidden.
1557 1557
    ///
1558 1558
    /// Returns true if \c a is hidden.
1559 1559
    ///
1560 1560
    bool hidden(const Arc& a) const { return Parent::hidden(a); }
1561 1561

	
1562 1562
  };
1563 1563

	
1564 1564
  /// \brief Just gives back an FilterArcs adaptor
1565 1565
  ///
1566 1566
  /// Just gives back an FilterArcs adaptor
1567 1567
  template<typename Digraph, typename ArcFilterMap>
1568 1568
  FilterArcs<const Digraph, ArcFilterMap>
1569 1569
  filterArcs(const Digraph& digraph, ArcFilterMap& afm) {
1570 1570
    return FilterArcs<const Digraph, ArcFilterMap>(digraph, afm);
1571 1571
  }
1572 1572

	
1573 1573
  template<typename Digraph, typename ArcFilterMap>
1574 1574
  FilterArcs<const Digraph, const ArcFilterMap>
1575 1575
  filterArcs(const Digraph& digraph, const ArcFilterMap& afm) {
1576 1576
    return FilterArcs<const Digraph, const ArcFilterMap>(digraph, afm);
1577 1577
  }
1578 1578

	
1579 1579
  /// \ingroup graph_adaptors
1580 1580
  ///
1581 1581
  /// \brief An adaptor for hiding edges from a graph.
1582 1582
  ///
1583 1583
  /// FilterEdges adaptor hides edges in a digraph. A bool edge map must
1584 1584
  /// be specified, which defines the filters for edges. Just the
1585 1585
  /// unfiltered edges are shown in the subdigraph. The FilterEdges is
1586 1586
  /// conform to the \ref concepts::Graph "Graph concept".
1587 1587
  ///
1588 1588
  /// \tparam _Graph It must be conform to the \ref concepts::Graph
1589 1589
  /// "Graph concept". The type can be specified to be const.
1590 1590
  /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted
1591 1591
  /// graph.
1592 1592
  template<typename _Graph, typename _EdgeFilterMap>
1593 1593
  class FilterEdges :
1594 1594
    public SubGraph<_Graph, ConstMap<typename _Graph::Node,bool>,
1595 1595
                    _EdgeFilterMap, false> {
1596 1596
  public:
1597 1597
    typedef _Graph Graph;
1598 1598
    typedef _EdgeFilterMap EdgeFilterMap;
1599 1599
    typedef SubGraph<Graph, ConstMap<typename Graph::Node,bool>,
1600 1600
                     EdgeFilterMap, false> Parent;
1601 1601
    typedef typename Parent::Edge Edge;
1602 1602
  protected:
1603 1603
    ConstMap<typename Graph::Node, bool> const_true_map;
1604 1604

	
1605 1605
    FilterEdges() : const_true_map(true) {
1606 1606
      Parent::setNodeFilterMap(const_true_map);
1607 1607
    }
1608 1608

	
1609 1609
  public:
1610 1610

	
1611 1611
    /// \brief Constructor
1612 1612
    ///
1613 1613
    /// Creates a FilterEdges adaptor for the given graph with
1614 1614
    /// given edge map filters.
1615 1615
    FilterEdges(Graph& _graph, EdgeFilterMap& edge_filter_map) :
1616 1616
      Parent(), const_true_map(true) {
1617 1617
      Parent::setGraph(_graph);
1618 1618
      Parent::setNodeFilterMap(const_true_map);
1619 1619
      Parent::setEdgeFilterMap(edge_filter_map);
1620 1620
    }
1621 1621

	
1622 1622
    /// \brief Hides the edge of the graph
1623 1623
    ///
1624 1624
    /// This function hides \c e in the graph, i.e. the iteration
1625 1625
    /// jumps over it. This is done by simply setting the value of \c e
1626 1626
    /// to be false in the corresponding edge-map.
1627 1627
    void hide(const Edge& e) const { Parent::hide(e); }
1628 1628

	
1629 1629
    /// \brief Unhides the edge of the graph
1630 1630
    ///
1631 1631
    /// The value of \c e is set to be true in the edge-map which stores
1632 1632
    /// hide information. If \c e was hidden previuosly, then it is shown
1633 1633
    /// again
1634 1634
    void unHide(const Edge& e) const { Parent::unHide(e); }
1635 1635

	
1636 1636
    /// \brief Returns true if \c e is hidden.
1637 1637
    ///
1638 1638
    /// Returns true if \c e is hidden.
1639 1639
    ///
1640 1640
    bool hidden(const Edge& e) const { return Parent::hidden(e); }
1641 1641

	
1642 1642
  };
1643 1643

	
1644 1644
  /// \brief Just gives back a FilterEdges adaptor
1645 1645
  ///
1646 1646
  /// Just gives back a FilterEdges adaptor
1647 1647
  template<typename Graph, typename EdgeFilterMap>
1648 1648
  FilterEdges<const Graph, EdgeFilterMap>
1649 1649
  filterEdges(const Graph& graph, EdgeFilterMap& efm) {
1650 1650
    return FilterEdges<const Graph, EdgeFilterMap>(graph, efm);
1651 1651
  }
1652 1652

	
1653 1653
  template<typename Graph, typename EdgeFilterMap>
1654 1654
  FilterEdges<const Graph, const EdgeFilterMap>
1655 1655
  filterEdges(const Graph& graph, const EdgeFilterMap& efm) {
1656 1656
    return FilterEdges<const Graph, const EdgeFilterMap>(graph, efm);
1657 1657
  }
1658 1658

	
1659 1659
  template <typename _Digraph>
1660 1660
  class UndirectorBase {
1661 1661
  public:
1662 1662
    typedef _Digraph Digraph;
1663 1663
    typedef UndirectorBase Adaptor;
1664 1664

	
1665 1665
    typedef True UndirectedTag;
1666 1666

	
1667 1667
    typedef typename Digraph::Arc Edge;
1668 1668
    typedef typename Digraph::Node Node;
1669 1669

	
1670 1670
    class Arc : public Edge {
1671 1671
      friend class UndirectorBase;
1672 1672
    protected:
1673 1673
      bool _forward;
1674 1674

	
1675 1675
      Arc(const Edge& edge, bool forward) :
1676 1676
        Edge(edge), _forward(forward) {}
1677 1677

	
1678 1678
    public:
1679 1679
      Arc() {}
1680 1680

	
1681 1681
      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1682 1682

	
1683 1683
      bool operator==(const Arc &other) const {
1684 1684
        return _forward == other._forward &&
1685 1685
          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1686 1686
      }
1687 1687
      bool operator!=(const Arc &other) const {
1688 1688
        return _forward != other._forward ||
1689 1689
          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1690 1690
      }
1691 1691
      bool operator<(const Arc &other) const {
1692 1692
        return _forward < other._forward ||
1693 1693
          (_forward == other._forward &&
1694 1694
           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1695 1695
      }
1696 1696
    };
1697 1697

	
1698 1698

	
1699 1699

	
1700 1700
    void first(Node& n) const {
1701 1701
      _digraph->first(n);
1702 1702
    }
1703 1703

	
1704 1704
    void next(Node& n) const {
1705 1705
      _digraph->next(n);
1706 1706
    }
1707 1707

	
1708 1708
    void first(Arc& a) const {
1709 1709
      _digraph->first(a);
1710 1710
      a._forward = true;
1711 1711
    }
1712 1712

	
1713 1713
    void next(Arc& a) const {
1714 1714
      if (a._forward) {
1715 1715
        a._forward = false;
1716 1716
      } else {
1717 1717
        _digraph->next(a);
1718 1718
        a._forward = true;
1719 1719
      }
1720 1720
    }
1721 1721

	
1722 1722
    void first(Edge& e) const {
1723 1723
      _digraph->first(e);
1724 1724
    }
1725 1725

	
1726 1726
    void next(Edge& e) const {
1727 1727
      _digraph->next(e);
1728 1728
    }
1729 1729

	
1730 1730
    void firstOut(Arc& a, const Node& n) const {
1731 1731
      _digraph->firstIn(a, n);
1732 1732
      if( static_cast<const Edge&>(a) != INVALID ) {
1733 1733
        a._forward = false;
1734 1734
      } else {
1735 1735
        _digraph->firstOut(a, n);
1736 1736
        a._forward = true;
1737 1737
      }
1738 1738
    }
1739 1739
    void nextOut(Arc &a) const {
1740 1740
      if (!a._forward) {
1741 1741
        Node n = _digraph->target(a);
1742 1742
        _digraph->nextIn(a);
1743 1743
        if (static_cast<const Edge&>(a) == INVALID ) {
1744 1744
          _digraph->firstOut(a, n);
1745 1745
          a._forward = true;
1746 1746
        }
1747 1747
      }
1748 1748
      else {
1749 1749
        _digraph->nextOut(a);
1750 1750
      }
1751 1751
    }
1752 1752

	
1753 1753
    void firstIn(Arc &a, const Node &n) const {
1754 1754
      _digraph->firstOut(a, n);
1755 1755
      if (static_cast<const Edge&>(a) != INVALID ) {
1756 1756
        a._forward = false;
1757 1757
      } else {
1758 1758
        _digraph->firstIn(a, n);
1759 1759
        a._forward = true;
1760 1760
      }
1761 1761
    }
1762 1762
    void nextIn(Arc &a) const {
1763 1763
      if (!a._forward) {
1764 1764
        Node n = _digraph->source(a);
1765 1765
        _digraph->nextOut(a);
1766 1766
        if( static_cast<const Edge&>(a) == INVALID ) {
1767 1767
          _digraph->firstIn(a, n);
1768 1768
          a._forward = true;
1769 1769
        }
1770 1770
      }
1771 1771
      else {
1772 1772
        _digraph->nextIn(a);
1773 1773
      }
1774 1774
    }
1775 1775

	
1776 1776
    void firstInc(Edge &e, bool &d, const Node &n) const {
1777 1777
      d = true;
1778 1778
      _digraph->firstOut(e, n);
1779 1779
      if (e != INVALID) return;
1780 1780
      d = false;
1781 1781
      _digraph->firstIn(e, n);
1782 1782
    }
1783 1783

	
1784 1784
    void nextInc(Edge &e, bool &d) const {
1785 1785
      if (d) {
1786 1786
        Node s = _digraph->source(e);
1787 1787
        _digraph->nextOut(e);
1788 1788
        if (e != INVALID) return;
1789 1789
        d = false;
1790 1790
        _digraph->firstIn(e, s);
1791 1791
      } else {
1792 1792
        _digraph->nextIn(e);
1793 1793
      }
1794 1794
    }
1795 1795

	
1796 1796
    Node u(const Edge& e) const {
1797 1797
      return _digraph->source(e);
1798 1798
    }
1799 1799

	
1800 1800
    Node v(const Edge& e) const {
1801 1801
      return _digraph->target(e);
1802 1802
    }
1803 1803

	
1804 1804
    Node source(const Arc &a) const {
1805 1805
      return a._forward ? _digraph->source(a) : _digraph->target(a);
1806 1806
    }
1807 1807

	
1808 1808
    Node target(const Arc &a) const {
1809 1809
      return a._forward ? _digraph->target(a) : _digraph->source(a);
1810 1810
    }
1811 1811

	
1812 1812
    static Arc direct(const Edge &e, bool d) {
1813 1813
      return Arc(e, d);
1814 1814
    }
1815 1815
    Arc direct(const Edge &e, const Node& n) const {
1816 1816
      return Arc(e, _digraph->source(e) == n);
1817 1817
    }
1818 1818

	
1819 1819
    static bool direction(const Arc &a) { return a._forward; }
1820 1820

	
1821 1821
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1822 1822
    Arc arcFromId(int ix) const {
1823 1823
      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1824 1824
    }
1825 1825
    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1826 1826

	
1827 1827
    int id(const Node &n) const { return _digraph->id(n); }
1828 1828
    int id(const Arc &a) const {
1829 1829
      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1830 1830
    }
1831 1831
    int id(const Edge &e) const { return _digraph->id(e); }
1832 1832

	
1833 1833
    int maxNodeId() const { return _digraph->maxNodeId(); }
1834 1834
    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
1835 1835
    int maxEdgeId() const { return _digraph->maxArcId(); }
1836 1836

	
1837 1837
    Node addNode() { return _digraph->addNode(); }
1838 1838
    Edge addEdge(const Node& u, const Node& v) {
1839 1839
      return _digraph->addArc(u, v);
1840 1840
    }
1841 1841

	
1842 1842
    void erase(const Node& i) { _digraph->erase(i); }
1843 1843
    void erase(const Edge& i) { _digraph->erase(i); }
1844 1844

	
1845 1845
    void clear() { _digraph->clear(); }
1846 1846

	
1847 1847
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
1848 1848
    int nodeNum() const { return 2 * _digraph->arcNum(); }
1849 1849
    typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
1850 1850
    int arcNum() const { return 2 * _digraph->arcNum(); }
1851 1851
    int edgeNum() const { return _digraph->arcNum(); }
1852 1852

	
1853 1853
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
1854 1854
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
1855 1855
      if (p == INVALID) {
1856 1856
        Edge arc = _digraph->findArc(s, t);
1857 1857
        if (arc != INVALID) return direct(arc, true);
1858 1858
        arc = _digraph->findArc(t, s);
1859 1859
        if (arc != INVALID) return direct(arc, false);
1860 1860
      } else if (direction(p)) {
1861 1861
        Edge arc = _digraph->findArc(s, t, p);
1862 1862
        if (arc != INVALID) return direct(arc, true);
1863 1863
        arc = _digraph->findArc(t, s);
1864 1864
        if (arc != INVALID) return direct(arc, false);
1865 1865
      } else {
1866 1866
        Edge arc = _digraph->findArc(t, s, p);
1867 1867
        if (arc != INVALID) return direct(arc, false);
1868 1868
      }
1869 1869
      return INVALID;
1870 1870
    }
1871 1871

	
1872 1872
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
1873 1873
      if (s != t) {
1874 1874
        if (p == INVALID) {
1875 1875
          Edge arc = _digraph->findArc(s, t);
1876 1876
          if (arc != INVALID) return arc;
1877 1877
          arc = _digraph->findArc(t, s);
1878 1878
          if (arc != INVALID) return arc;
1879 1879
        } else if (_digraph->s(p) == s) {
1880 1880
          Edge arc = _digraph->findArc(s, t, p);
1881 1881
          if (arc != INVALID) return arc;
1882 1882
          arc = _digraph->findArc(t, s);
1883 1883
          if (arc != INVALID) return arc;
1884 1884
        } else {
1885 1885
          Edge arc = _digraph->findArc(t, s, p);
1886 1886
          if (arc != INVALID) return arc;
1887 1887
        }
1888 1888
      } else {
1889 1889
        return _digraph->findArc(s, t, p);
1890 1890
      }
1891 1891
      return INVALID;
1892 1892
    }
1893 1893

	
1894 1894
  private:
1895 1895

	
1896 1896
    template <typename _Value>
1897 1897
    class ArcMapBase {
1898 1898
    private:
1899 1899

	
1900 1900
      typedef typename Digraph::template ArcMap<_Value> MapImpl;
1901 1901

	
1902 1902
    public:
1903 1903

	
1904 1904
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
1905 1905

	
1906 1906
      typedef _Value Value;
1907 1907
      typedef Arc Key;
1908 1908

	
1909 1909
      ArcMapBase(const Adaptor& adaptor) :
1910 1910
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
1911 1911

	
1912 1912
      ArcMapBase(const Adaptor& adaptor, const Value& v)
1913 1913
        : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {}
1914 1914

	
1915 1915
      void set(const Arc& a, const Value& v) {
1916 1916
        if (direction(a)) {
1917 1917
          _forward.set(a, v);
1918 1918
        } else {
1919 1919
          _backward.set(a, v);
1920 1920
        }
1921 1921
      }
1922 1922

	
1923 1923
      typename MapTraits<MapImpl>::ConstReturnValue
1924 1924
      operator[](const Arc& a) const {
1925 1925
        if (direction(a)) {
1926 1926
          return _forward[a];
1927 1927
        } else {
1928 1928
          return _backward[a];
1929 1929
        }
1930 1930
      }
1931 1931

	
1932 1932
      typename MapTraits<MapImpl>::ReturnValue
1933 1933
      operator[](const Arc& a) {
1934 1934
        if (direction(a)) {
1935 1935
          return _forward[a];
1936 1936
        } else {
1937 1937
          return _backward[a];
1938 1938
        }
1939 1939
      }
1940 1940

	
1941 1941
    protected:
1942 1942

	
1943 1943
      MapImpl _forward, _backward;
1944 1944

	
1945 1945
    };
1946 1946

	
1947 1947
  public:
1948 1948

	
1949 1949
    template <typename _Value>
1950 1950
    class NodeMap : public Digraph::template NodeMap<_Value> {
1951 1951
    public:
1952 1952

	
1953 1953
      typedef _Value Value;
1954 1954
      typedef typename Digraph::template NodeMap<Value> Parent;
1955 1955

	
1956 1956
      explicit NodeMap(const Adaptor& adaptor)
1957 1957
        : Parent(*adaptor._digraph) {}
1958 1958

	
1959 1959
      NodeMap(const Adaptor& adaptor, const _Value& value)
1960 1960
        : Parent(*adaptor._digraph, value) { }
1961 1961

	
1962 1962
    private:
1963 1963
      NodeMap& operator=(const NodeMap& cmap) {
1964 1964
        return operator=<NodeMap>(cmap);
1965 1965
      }
1966 1966

	
1967 1967
      template <typename CMap>
1968 1968
      NodeMap& operator=(const CMap& cmap) {
1969 1969
        Parent::operator=(cmap);
1970 1970
        return *this;
1971 1971
      }
1972 1972

	
1973 1973
    };
1974 1974

	
1975 1975
    template <typename _Value>
1976 1976
    class ArcMap
1977 1977
      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
1978 1978
    {
1979 1979
    public:
1980 1980
      typedef _Value Value;
1981 1981
      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
1982 1982

	
1983 1983
      ArcMap(const Adaptor& adaptor)
1984 1984
        : Parent(adaptor) {}
1985 1985

	
1986 1986
      ArcMap(const Adaptor& adaptor, const Value& value)
1987 1987
        : Parent(adaptor, value) {}
1988 1988

	
1989 1989
    private:
1990 1990
      ArcMap& operator=(const ArcMap& cmap) {
1991 1991
        return operator=<ArcMap>(cmap);
1992 1992
      }
1993 1993

	
1994 1994
      template <typename CMap>
1995 1995
      ArcMap& operator=(const CMap& cmap) {
1996 1996
        Parent::operator=(cmap);
1997 1997
        return *this;
1998 1998
      }
1999 1999
    };
2000 2000

	
2001 2001
    template <typename _Value>
2002 2002
    class EdgeMap : public Digraph::template ArcMap<_Value> {
2003 2003
    public:
2004 2004

	
2005 2005
      typedef _Value Value;
2006 2006
      typedef typename Digraph::template ArcMap<Value> Parent;
2007 2007

	
2008 2008
      explicit EdgeMap(const Adaptor& adaptor)
2009 2009
        : Parent(*adaptor._digraph) {}
2010 2010

	
2011 2011
      EdgeMap(const Adaptor& adaptor, const Value& value)
2012 2012
        : Parent(*adaptor._digraph, value) {}
2013 2013

	
2014 2014
    private:
2015 2015
      EdgeMap& operator=(const EdgeMap& cmap) {
2016 2016
        return operator=<EdgeMap>(cmap);
2017 2017
      }
2018 2018

	
2019 2019
      template <typename CMap>
2020 2020
      EdgeMap& operator=(const CMap& cmap) {
2021 2021
        Parent::operator=(cmap);
2022 2022
        return *this;
2023 2023
      }
2024 2024

	
2025 2025
    };
2026 2026

	
2027 2027
    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
2028 2028
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2029 2029

	
2030 2030
  protected:
2031 2031

	
2032 2032
    UndirectorBase() : _digraph(0) {}
2033 2033

	
2034 2034
    Digraph* _digraph;
2035 2035

	
2036 2036
    void setDigraph(Digraph& digraph) {
2037 2037
      _digraph = &digraph;
2038 2038
    }
2039 2039

	
2040 2040
  };
2041 2041

	
2042 2042
  /// \ingroup graph_adaptors
2043 2043
  ///
2044 2044
  /// \brief Undirect the graph
2045 2045
  ///
2046 2046
  /// This adaptor makes an undirected graph from a directed
2047 2047
  /// graph. All arcs of the underlying digraph will be showed in the
2048 2048
  /// adaptor as an edge. The Orienter adaptor is conform to the \ref
2049 2049
  /// concepts::Graph "Graph concept".
2050 2050
  ///
2051 2051
  /// \tparam _Digraph It must be conform to the \ref
2052 2052
  /// concepts::Digraph "Digraph concept". The type can be specified
2053 2053
  /// to const.
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/arg_parser.h>
20 20

	
21 21
namespace lemon {
22 22

	
23 23
  void ArgParser::_showHelp(void *p)
24 24
  {
25 25
    (static_cast<ArgParser*>(p))->showHelp();
26 26
    exit(1);
27 27
  }
28 28

	
29 29
  ArgParser::ArgParser(int argc, const char * const *argv)
30 30
    :_argc(argc), _argv(argv), _command_name(argv[0]) {
31 31
    funcOption("-help","Print a short help message",_showHelp,this);
32 32
    synonym("help","-help");
33 33
    synonym("h","-help");
34 34
  }
35 35

	
36 36
  ArgParser::~ArgParser()
37 37
  {
38 38
    for(Opts::iterator i=_opts.begin();i!=_opts.end();++i)
39 39
      if(i->second.self_delete)
40 40
        switch(i->second.type) {
41 41
        case BOOL:
42 42
          delete i->second.bool_p;
43 43
          break;
44 44
        case STRING:
45 45
          delete i->second.string_p;
46 46
          break;
47 47
        case DOUBLE:
48 48
          delete i->second.double_p;
49 49
          break;
50 50
        case INTEGER:
51 51
          delete i->second.int_p;
52 52
          break;
53 53
        case UNKNOWN:
54 54
          break;
55 55
        case FUNC:
56 56
          break;
57 57
        }
58 58
  }
59 59

	
60 60

	
61 61
  ArgParser &ArgParser::intOption(const std::string &name,
62 62
                               const std::string &help,
63 63
                               int value, bool obl)
64 64
  {
65 65
    ParData p;
66 66
    p.int_p=new int(value);
67 67
    p.self_delete=true;
68 68
    p.help=help;
69 69
    p.type=INTEGER;
70 70
    p.mandatory=obl;
71 71
    _opts[name]=p;
72 72
    return *this;
73 73
  }
74 74

	
75 75
  ArgParser &ArgParser::doubleOption(const std::string &name,
76 76
                               const std::string &help,
77 77
                               double value, bool obl)
78 78
  {
79 79
    ParData p;
80 80
    p.double_p=new double(value);
81 81
    p.self_delete=true;
82 82
    p.help=help;
83 83
    p.type=DOUBLE;
84 84
    p.mandatory=obl;
85 85
    _opts[name]=p;
86 86
    return *this;
87 87
  }
88 88

	
89 89
  ArgParser &ArgParser::boolOption(const std::string &name,
90 90
                               const std::string &help,
91 91
                               bool value, bool obl)
92 92
  {
93 93
    ParData p;
94 94
    p.bool_p=new bool(value);
95 95
    p.self_delete=true;
96 96
    p.help=help;
97 97
    p.type=BOOL;
98 98
    p.mandatory=obl;
99 99
    _opts[name]=p;
100 100
    return *this;
101 101
  }
102 102

	
103 103
  ArgParser &ArgParser::stringOption(const std::string &name,
104 104
                               const std::string &help,
105 105
                               std::string value, bool obl)
106 106
  {
107 107
    ParData p;
108 108
    p.string_p=new std::string(value);
109 109
    p.self_delete=true;
110 110
    p.help=help;
111 111
    p.type=STRING;
112 112
    p.mandatory=obl;
113 113
    _opts[name]=p;
114 114
    return *this;
115 115
  }
116 116

	
117 117
  ArgParser &ArgParser::refOption(const std::string &name,
118 118
                               const std::string &help,
119 119
                               int &ref, bool obl)
120 120
  {
121 121
    ParData p;
122 122
    p.int_p=&ref;
123 123
    p.self_delete=false;
124 124
    p.help=help;
125 125
    p.type=INTEGER;
126 126
    p.mandatory=obl;
127 127
    _opts[name]=p;
128 128
    return *this;
129 129
  }
130 130

	
131 131
  ArgParser &ArgParser::refOption(const std::string &name,
132 132
                                  const std::string &help,
133 133
                                  double &ref, bool obl)
134 134
  {
135 135
    ParData p;
136 136
    p.double_p=&ref;
137 137
    p.self_delete=false;
138 138
    p.help=help;
139 139
    p.type=DOUBLE;
140 140
    p.mandatory=obl;
141 141
    _opts[name]=p;
142 142
    return *this;
143 143
  }
144 144

	
145 145
  ArgParser &ArgParser::refOption(const std::string &name,
146 146
                                  const std::string &help,
147 147
                                  bool &ref, bool obl)
148 148
  {
149 149
    ParData p;
150 150
    p.bool_p=&ref;
151 151
    p.self_delete=false;
152 152
    p.help=help;
153 153
    p.type=BOOL;
154 154
    p.mandatory=obl;
155 155
    _opts[name]=p;
156 156

	
157 157
    ref = false;
158 158

	
159 159
    return *this;
160 160
  }
161 161

	
162 162
  ArgParser &ArgParser::refOption(const std::string &name,
163 163
                               const std::string &help,
164 164
                               std::string &ref, bool obl)
165 165
  {
166 166
    ParData p;
167 167
    p.string_p=&ref;
168 168
    p.self_delete=false;
169 169
    p.help=help;
170 170
    p.type=STRING;
171 171
    p.mandatory=obl;
172 172
    _opts[name]=p;
173 173
    return *this;
174 174
  }
175 175

	
176 176
  ArgParser &ArgParser::funcOption(const std::string &name,
177 177
                               const std::string &help,
178 178
                               void (*func)(void *),void *data)
179 179
  {
180 180
    ParData p;
181 181
    p.func_p.p=func;
182 182
    p.func_p.data=data;
183 183
    p.self_delete=false;
184 184
    p.help=help;
185 185
    p.type=FUNC;
186 186
    p.mandatory=false;
187 187
    _opts[name]=p;
188 188
    return *this;
189 189
  }
190 190

	
191 191
  ArgParser &ArgParser::optionGroup(const std::string &group,
192 192
                                    const std::string &opt)
193 193
  {
194 194
    Opts::iterator i = _opts.find(opt);
195 195
    LEMON_ASSERT(i!=_opts.end(), "Unknown option: '"+opt+"'");
196 196
    LEMON_ASSERT(!(i->second.ingroup),
197 197
                 "Option already in option group: '"+opt+"'");
198 198
    GroupData &g=_groups[group];
199 199
    g.opts.push_back(opt);
200 200
    i->second.ingroup=true;
201 201
    return *this;
202 202
  }
203 203

	
204 204
  ArgParser &ArgParser::onlyOneGroup(const std::string &group)
205 205
  {
206 206
    GroupData &g=_groups[group];
207 207
    g.only_one=true;
208 208
    return *this;
209 209
  }
210 210

	
211 211
  ArgParser &ArgParser::synonym(const std::string &syn,
212 212
                                const std::string &opt)
213 213
  {
214 214
    Opts::iterator o = _opts.find(opt);
215 215
    Opts::iterator s = _opts.find(syn);
216 216
    LEMON_ASSERT(o!=_opts.end(), "Unknown option: '"+opt+"'");
217 217
    LEMON_ASSERT(s==_opts.end(), "Option already used: '"+syn+"'");
218 218
    ParData p;
219 219
    p.help=opt;
220 220
    p.mandatory=false;
221 221
    p.syn=true;
222 222
    _opts[syn]=p;
223 223
    o->second.has_syn=true;
224 224
    return *this;
225 225
  }
226 226

	
227 227
  ArgParser &ArgParser::mandatoryGroup(const std::string &group)
228 228
  {
229 229
    GroupData &g=_groups[group];
230 230
    g.mandatory=true;
231 231
    return *this;
232 232
  }
233 233

	
234 234
  ArgParser &ArgParser::other(const std::string &name,
235 235
                              const std::string &help)
236 236
  {
237 237
    _others_help.push_back(OtherArg(name,help));
238 238
    return *this;
239 239
  }
240 240

	
241 241
  void ArgParser::show(std::ostream &os,Opts::const_iterator i) const
242 242
  {
243 243
    os << "-" << i->first;
244 244
    if(i->second.has_syn)
245 245
      for(Opts::const_iterator j=_opts.begin();j!=_opts.end();++j)
246 246
        if(j->second.syn&&j->second.help==i->first)
247 247
          os << "|-" << j->first;
248 248
    switch(i->second.type) {
249 249
    case STRING:
250 250
      os << " str";
251 251
      break;
252 252
    case INTEGER:
253 253
      os << " int";
254 254
      break;
255 255
    case DOUBLE:
256 256
      os << " num";
257 257
      break;
258 258
    default:
259 259
      break;
260 260
    }
261 261
  }
262 262

	
263 263
  void ArgParser::show(std::ostream &os,Groups::const_iterator i) const
264 264
  {
265 265
    GroupData::Opts::const_iterator o=i->second.opts.begin();
266 266
    while(o!=i->second.opts.end()) {
267 267
      show(os,_opts.find(*o));
268 268
      ++o;
269 269
      if(o!=i->second.opts.end()) os<<'|';
270 270
    }
271 271
  }
272 272

	
273 273
  void ArgParser::showHelp(Opts::const_iterator i) const
274 274
  {
275 275
    if(i->second.help.size()==0||i->second.syn) return;
276 276
    std::cerr << "  ";
277 277
    show(std::cerr,i);
278 278
    std::cerr << std::endl;
279 279
    std::cerr << "     " << i->second.help << std::endl;
280 280
  }
281 281
  void ArgParser::showHelp(std::vector<ArgParser::OtherArg>::const_iterator i)
282 282
    const
283 283
  {
284 284
    if(i->help.size()==0) return;
285 285
    std::cerr << "  " << i->name << std::endl
286 286
              << "     " << i->help << std::endl;
287 287
  }
288 288

	
289 289
  void ArgParser::shortHelp() const
290 290
  {
291 291
    const unsigned int LINE_LEN=77;
292 292
    const std::string indent("    ");
293 293
    std::cerr << "Usage:\n  " << _command_name;
294 294
    int pos=_command_name.size()+2;
295 295
    for(Groups::const_iterator g=_groups.begin();g!=_groups.end();++g) {
296 296
      std::ostringstream cstr;
297 297
      cstr << ' ';
298 298
      if(!g->second.mandatory) cstr << '[';
299 299
      show(cstr,g);
300 300
      if(!g->second.mandatory) cstr << ']';
301 301
      if(pos+cstr.str().size()>LINE_LEN) {
302 302
        std::cerr << std::endl << indent;
303 303
        pos=indent.size();
304 304
      }
305 305
      std::cerr << cstr.str();
306 306
      pos+=cstr.str().size();
307 307
    }
308 308
    for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i)
309 309
      if(!i->second.ingroup&&!i->second.syn) {
310 310
        std::ostringstream cstr;
311 311
        cstr << ' ';
312 312
        if(!i->second.mandatory) cstr << '[';
313 313
        show(cstr,i);
314 314
        if(!i->second.mandatory) cstr << ']';
315 315
        if(pos+cstr.str().size()>LINE_LEN) {
316 316
          std::cerr << std::endl << indent;
317 317
          pos=indent.size();
318 318
        }
319 319
        std::cerr << cstr.str();
320 320
        pos+=cstr.str().size();
321 321
      }
322 322
    for(std::vector<OtherArg>::const_iterator i=_others_help.begin();
323 323
        i!=_others_help.end();++i)
324 324
      {
325 325
        std::ostringstream cstr;
326 326
        cstr << ' ' << i->name;
327 327

	
328 328
        if(pos+cstr.str().size()>LINE_LEN) {
329 329
          std::cerr << std::endl << indent;
330 330
          pos=indent.size();
331 331
        }
332 332
        std::cerr << cstr.str();
333 333
        pos+=cstr.str().size();
334 334
      }
335 335
    std::cerr << std::endl;
336 336
  }
337 337

	
338 338
  void ArgParser::showHelp() const
339 339
  {
340 340
    shortHelp();
341 341
    std::cerr << "Where:\n";
342 342
    for(std::vector<OtherArg>::const_iterator i=_others_help.begin();
343 343
        i!=_others_help.end();++i) showHelp(i);
344 344
    for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) showHelp(i);
345 345
    exit(1);
346 346
  }
347 347

	
348 348

	
349 349
  void ArgParser::unknownOpt(std::string arg) const
350 350
  {
351 351
    std::cerr << "\nUnknown option: " << arg << "\n";
352 352
    std::cerr << "\nType '" << _command_name <<
353 353
      " --help' to obtain a short summary on the usage.\n\n";
354 354
    exit(1);
355 355
  }
356 356

	
357 357
  void ArgParser::requiresValue(std::string arg, OptType t) const
358 358
  {
359 359
    std::cerr << "Argument '" << arg << "' requires a";
360 360
    switch(t) {
361 361
    case STRING:
362 362
      std::cerr << " string";
363 363
      break;
364 364
    case INTEGER:
365 365
      std::cerr << "n integer";
366 366
      break;
367 367
    case DOUBLE:
368 368
      std::cerr << " floating point";
369 369
      break;
370 370
    default:
371 371
      break;
372 372
    }
373 373
    std::cerr << " value\n\n";
374 374
    showHelp();
375 375
  }
376 376

	
377 377

	
378 378
  void ArgParser::checkMandatories() const
379 379
  {
380 380
    bool ok=true;
381 381
    for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i)
382 382
      if(i->second.mandatory&&!i->second.set)
383 383
        {
384 384
          if(ok)
385 385
            std::cerr << _command_name
386 386
                      << ": The following mandatory arguments are missing.\n";
387 387
          ok=false;
388 388
          showHelp(i);
389 389
        }
390 390
    for(Groups::const_iterator i=_groups.begin();i!=_groups.end();++i)
391 391
      if(i->second.mandatory||i->second.only_one)
392 392
        {
393 393
          int set=0;
394 394
          for(GroupData::Opts::const_iterator o=i->second.opts.begin();
395 395
              o!=i->second.opts.end();++o)
396 396
            if(_opts.find(*o)->second.set) ++set;
397 397
          if(i->second.mandatory&&!set) {
398 398
            std::cerr << _command_name <<
399 399
              ": At least one of the following arguments is mandatory.\n";
400 400
            ok=false;
401 401
            for(GroupData::Opts::const_iterator o=i->second.opts.begin();
402 402
                o!=i->second.opts.end();++o)
403 403
              showHelp(_opts.find(*o));
404 404
          }
405 405
          if(i->second.only_one&&set>1) {
406 406
            std::cerr << _command_name <<
407 407
              ": At most one of the following arguments can be given.\n";
408 408
            ok=false;
409 409
            for(GroupData::Opts::const_iterator o=i->second.opts.begin();
410 410
                o!=i->second.opts.end();++o)
411 411
              showHelp(_opts.find(*o));
412 412
          }
413 413
        }
414 414
    if(!ok) {
415 415
      std::cerr << "\nType '" << _command_name <<
416 416
        " --help' to obtain a short summary on the usage.\n\n";
417 417
      exit(1);
418 418
    }
419 419
  }
420 420

	
421 421
  ArgParser &ArgParser::parse()
422 422
  {
423 423
    for(int ar=1; ar<_argc; ++ar) {
424 424
      std::string arg(_argv[ar]);
425 425
      if (arg[0] != '-' || arg.size() == 1) {
426 426
        _file_args.push_back(arg);
427 427
      }
428 428
      else {
429 429
        Opts::iterator i = _opts.find(arg.substr(1));
430 430
        if(i==_opts.end()) unknownOpt(arg);
431 431
        else {
432 432
          if(i->second.syn) i=_opts.find(i->second.help);
433 433
          ParData &p(i->second);
434 434
          if (p.type==BOOL) *p.bool_p=true;
435 435
          else if (p.type==FUNC) p.func_p.p(p.func_p.data);
436 436
          else if(++ar==_argc) requiresValue(arg, p.type);
437 437
          else {
438 438
            std::string val(_argv[ar]);
439 439
            std::istringstream vals(val);
440 440
            switch(p.type) {
441 441
            case STRING:
442 442
              *p.string_p=val;
443 443
              break;
444 444
            case INTEGER:
445 445
              vals >> *p.int_p;
446 446
              break;
447 447
            case DOUBLE:
448 448
              vals >> *p.double_p;
449 449
              break;
450 450
            default:
451 451
              break;
452 452
            }
453 453
            if(p.type!=STRING&&(!vals||!vals.eof()))
454 454
              requiresValue(arg, p.type);
455 455
          }
456 456
          p.set = true;
457 457
        }
458 458
      }
459 459
    }
460 460
    checkMandatories();
461 461

	
462 462
    return *this;
463 463
  }
464 464

	
465 465
}
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_ARG_PARSER_H
20 20
#define LEMON_ARG_PARSER_H
21 21

	
22 22
#include <vector>
23 23
#include <map>
24 24
#include <list>
25 25
#include <string>
26 26
#include <iostream>
27 27
#include <sstream>
28 28
#include <algorithm>
29 29
#include <lemon/assert.h>
30 30

	
31 31
///\ingroup misc
32 32
///\file
33 33
///\brief A tool to parse command line arguments.
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  ///Command line arguments parser
38 38

	
39 39
  ///\ingroup misc
40 40
  ///Command line arguments parser.
41 41
  ///
42 42
  ///For a complete example see the \ref arg_parser_demo.cc demo file.
43 43
  class ArgParser {
44 44

	
45 45
    static void _showHelp(void *p);
46 46
  protected:
47 47

	
48 48
    int _argc;
49 49
    const char * const *_argv;
50 50

	
51 51
    enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 };
52 52

	
53 53
    class ParData {
54 54
    public:
55 55
      union {
56 56
        bool *bool_p;
57 57
        int *int_p;
58 58
        double *double_p;
59 59
        std::string *string_p;
60 60
        struct {
61 61
          void (*p)(void *);
62 62
          void *data;
63 63
        } func_p;
64 64

	
65 65
      };
66 66
      std::string help;
67 67
      bool mandatory;
68 68
      OptType type;
69 69
      bool set;
70 70
      bool ingroup;
71 71
      bool has_syn;
72 72
      bool syn;
73 73
      bool self_delete;
74 74
      ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false),
75 75
                  has_syn(false), syn(false), self_delete(false) {}
76 76
    };
77 77

	
78 78
    typedef std::map<std::string,ParData> Opts;
79 79
    Opts _opts;
80 80

	
81 81
    class GroupData
82 82
    {
83 83
    public:
84 84
      typedef std::list<std::string> Opts;
85 85
      Opts opts;
86 86
      bool only_one;
87 87
      bool mandatory;
88 88
      GroupData() :only_one(false), mandatory(false) {}
89 89
    };
90 90

	
91 91
    typedef std::map<std::string,GroupData> Groups;
92 92
    Groups _groups;
93 93

	
94 94
    struct OtherArg
95 95
    {
96 96
      std::string name;
97 97
      std::string help;
98 98
      OtherArg(std::string n, std::string h) :name(n), help(h) {}
99 99

	
100 100
    };
101 101

	
102 102
    std::vector<OtherArg> _others_help;
103 103
    std::vector<std::string> _file_args;
104 104
    std::string _command_name;
105 105

	
106 106

	
107 107
  private:
108 108
    //Bind a function to an option.
109 109

	
110 110
    //\param name The name of the option. The leading '-' must be omitted.
111 111
    //\param help A help string.
112 112
    //\retval func The function to be called when the option is given. It
113 113
    //  must be of type "void f(void *)"
114 114
    //\param data Data to be passed to \c func
115 115
    ArgParser &funcOption(const std::string &name,
116 116
                    const std::string &help,
117 117
                    void (*func)(void *),void *data);
118 118

	
119 119
  public:
120 120

	
121 121
    ///Constructor
122 122
    ArgParser(int argc, const char * const *argv);
123 123

	
124 124
    ~ArgParser();
125 125

	
126 126
    ///\name Options
127 127
    ///
128 128

	
129 129
    ///@{
130 130

	
131 131
    ///Add a new integer type option
132 132

	
133 133
    ///Add a new integer type option.
134 134
    ///\param name The name of the option. The leading '-' must be omitted.
135 135
    ///\param help A help string.
136 136
    ///\param value A default value for the option.
137 137
    ///\param obl Indicate if the option is mandatory.
138 138
    ArgParser &intOption(const std::string &name,
139 139
                    const std::string &help,
140 140
                    int value=0, bool obl=false);
141 141

	
142 142
    ///Add a new floating point type option
143 143

	
144 144
    ///Add a new floating point type option.
145 145
    ///\param name The name of the option. The leading '-' must be omitted.
146 146
    ///\param help A help string.
147 147
    ///\param value A default value for the option.
148 148
    ///\param obl Indicate if the option is mandatory.
149 149
    ArgParser &doubleOption(const std::string &name,
150 150
                      const std::string &help,
151 151
                      double value=0, bool obl=false);
152 152

	
153 153
    ///Add a new bool type option
154 154

	
155 155
    ///Add a new bool type option.
156 156
    ///\param name The name of the option. The leading '-' must be omitted.
157 157
    ///\param help A help string.
158 158
    ///\param value A default value for the option.
159 159
    ///\param obl Indicate if the option is mandatory.
160 160
    ///\note A mandatory bool obtion is of very little use.
161 161
    ArgParser &boolOption(const std::string &name,
162 162
                      const std::string &help,
163 163
                      bool value=false, bool obl=false);
164 164

	
165 165
    ///Add a new string type option
166 166

	
167 167
    ///Add a new string type option.
168 168
    ///\param name The name of the option. The leading '-' must be omitted.
169 169
    ///\param help A help string.
170 170
    ///\param value A default value for the option.
171 171
    ///\param obl Indicate if the option is mandatory.
172 172
    ArgParser &stringOption(const std::string &name,
173 173
                      const std::string &help,
174 174
                      std::string value="", bool obl=false);
175 175

	
176 176
    ///Give help string for non-parsed arguments.
177 177

	
178 178
    ///With this function you can give help string for non-parsed arguments.
179 179
    ///The parameter \c name will be printed in the short usage line, while
180 180
    ///\c help gives a more detailed description.
181 181
    ArgParser &other(const std::string &name,
182 182
                     const std::string &help="");
183 183

	
184 184
    ///@}
185 185

	
186 186
    ///\name Options with External Storage
187 187
    ///Using this functions, the value of the option will be directly written
188 188
    ///into a variable once the option appears in the command line.
189 189

	
190 190
    ///@{
191 191

	
192 192
    ///Add a new integer type option with a storage reference
193 193

	
194 194
    ///Add a new integer type option with a storage reference.
195 195
    ///\param name The name of the option. The leading '-' must be omitted.
196 196
    ///\param help A help string.
197 197
    ///\param obl Indicate if the option is mandatory.
198 198
    ///\retval ref The value of the argument will be written to this variable.
199 199
    ArgParser &refOption(const std::string &name,
200 200
                    const std::string &help,
201 201
                    int &ref, bool obl=false);
202 202

	
203 203
    ///Add a new floating type option with a storage reference
204 204

	
205 205
    ///Add a new floating type option with a storage reference.
206 206
    ///\param name The name of the option. The leading '-' must be omitted.
207 207
    ///\param help A help string.
208 208
    ///\param obl Indicate if the option is mandatory.
209 209
    ///\retval ref The value of the argument will be written to this variable.
210 210
    ArgParser &refOption(const std::string &name,
211 211
                      const std::string &help,
212 212
                      double &ref, bool obl=false);
213 213

	
214 214
    ///Add a new bool type option with a storage reference
215 215

	
216 216
    ///Add a new bool type option with a storage reference.
217 217
    ///\param name The name of the option. The leading '-' must be omitted.
218 218
    ///\param help A help string.
219 219
    ///\param obl Indicate if the option is mandatory.
220 220
    ///\retval ref The value of the argument will be written to this variable.
221 221
    ///\note A mandatory bool obtion is of very little use.
222 222
    ArgParser &refOption(const std::string &name,
223 223
                      const std::string &help,
224 224
                      bool &ref, bool obl=false);
225 225

	
226 226
    ///Add a new string type option with a storage reference
227 227

	
228 228
    ///Add a new string type option with a storage reference.
229 229
    ///\param name The name of the option. The leading '-' must be omitted.
230 230
    ///\param help A help string.
231 231
    ///\param obl Indicate if the option is mandatory.
232 232
    ///\retval ref The value of the argument will be written to this variable.
233 233
    ArgParser &refOption(const std::string &name,
234 234
                      const std::string &help,
235 235
                      std::string &ref, bool obl=false);
236 236

	
237 237
    ///@}
238 238

	
239 239
    ///\name Option Groups and Synonyms
240 240
    ///
241 241

	
242 242
    ///@{
243 243

	
244 244
    ///Bundle some options into a group
245 245

	
246 246
    /// You can group some option by calling this function repeatedly for each
247 247
    /// option to be grouped with the same groupname.
248 248
    ///\param group The group name.
249 249
    ///\param opt The option name.
250 250
    ArgParser &optionGroup(const std::string &group,
251 251
                           const std::string &opt);
252 252

	
253 253
    ///Make the members of a group exclusive
254 254

	
255 255
    ///If you call this function for a group, than at most one of them can be
256 256
    ///given at the same time.
257 257
    ArgParser &onlyOneGroup(const std::string &group);
258 258

	
259 259
    ///Make a group mandatory
260 260

	
261 261
    ///Using this function, at least one of the members of \c group
262 262
    ///must be given.
263 263
    ArgParser &mandatoryGroup(const std::string &group);
264 264

	
265 265
    ///Create synonym to an option
266 266

	
267 267
    ///With this function you can create a synonym \c syn of the
268 268
    ///option \c opt.
269 269
    ArgParser &synonym(const std::string &syn,
270 270
                           const std::string &opt);
271 271

	
272 272
    ///@}
273 273

	
274 274
  private:
275 275
    void show(std::ostream &os,Opts::const_iterator i) const;
276 276
    void show(std::ostream &os,Groups::const_iterator i) const;
277 277
    void showHelp(Opts::const_iterator i) const;
278 278
    void showHelp(std::vector<OtherArg>::const_iterator i) const;
279 279

	
280 280
    void unknownOpt(std::string arg) const;
281 281

	
282 282
    void requiresValue(std::string arg, OptType t) const;
283 283
    void checkMandatories() const;
284 284

	
285 285
    void shortHelp() const;
286 286
    void showHelp() const;
287 287
  public:
288 288

	
289 289
    ///Start the parsing process
290 290
    ArgParser &parse();
291 291

	
292 292
    /// Synonym for parse()
293 293
    ArgParser &run()
294 294
    {
295 295
      return parse();
296 296
    }
297 297

	
298 298
    ///Give back the command name (the 0th argument)
299 299
    const std::string &commandName() const { return _command_name; }
300 300

	
301 301
    ///Check if an opion has been given to the command.
302 302
    bool given(std::string op) const
303 303
    {
304 304
      Opts::const_iterator i = _opts.find(op);
305 305
      return i!=_opts.end()?i->second.set:false;
306 306
    }
307 307

	
308 308

	
309 309
    ///Magic type for operator[]
310 310

	
311 311
    ///This is the type of the return value of ArgParser::operator[]().
312 312
    ///It automatically converts to \c int, \c double, \c bool or
313 313
    ///\c std::string if the type of the option matches, which is checked
314 314
    ///with an \ref LEMON_ASSERT "assertion" (i.e. it performs runtime
315 315
    ///type checking).
316 316
    class RefType
317 317
    {
318 318
      const ArgParser &_parser;
319 319
      std::string _name;
320 320
    public:
321 321
      ///\e
322 322
      RefType(const ArgParser &p,const std::string &n) :_parser(p),_name(n) {}
323 323
      ///\e
324 324
      operator bool()
325 325
      {
326 326
        Opts::const_iterator i = _parser._opts.find(_name);
327 327
        LEMON_ASSERT(i!=_parser._opts.end(),
328 328
                     std::string()+"Unkown option: '"+_name+"'");
329 329
        LEMON_ASSERT(i->second.type==ArgParser::BOOL,
330 330
                     std::string()+"'"+_name+"' is a bool option");
331 331
        return *(i->second.bool_p);
332 332
      }
333 333
      ///\e
334 334
      operator std::string()
335 335
      {
336 336
        Opts::const_iterator i = _parser._opts.find(_name);
337 337
        LEMON_ASSERT(i!=_parser._opts.end(),
338 338
                     std::string()+"Unkown option: '"+_name+"'");
339 339
        LEMON_ASSERT(i->second.type==ArgParser::STRING,
340 340
                     std::string()+"'"+_name+"' is a string option");
341 341
        return *(i->second.string_p);
342 342
      }
343 343
      ///\e
344 344
      operator double()
345 345
      {
346 346
        Opts::const_iterator i = _parser._opts.find(_name);
347 347
        LEMON_ASSERT(i!=_parser._opts.end(),
348 348
                     std::string()+"Unkown option: '"+_name+"'");
349 349
        LEMON_ASSERT(i->second.type==ArgParser::DOUBLE ||
350 350
                     i->second.type==ArgParser::INTEGER,
351 351
                     std::string()+"'"+_name+"' is a floating point option");
352 352
        return i->second.type==ArgParser::DOUBLE ?
353 353
          *(i->second.double_p) : *(i->second.int_p);
354 354
      }
355 355
      ///\e
356 356
      operator int()
357 357
      {
358 358
        Opts::const_iterator i = _parser._opts.find(_name);
359 359
        LEMON_ASSERT(i!=_parser._opts.end(),
360 360
                     std::string()+"Unkown option: '"+_name+"'");
361 361
        LEMON_ASSERT(i->second.type==ArgParser::INTEGER,
362 362
                     std::string()+"'"+_name+"' is an integer option");
363 363
        return *(i->second.int_p);
364 364
      }
365 365

	
366 366
    };
367 367

	
368 368
    ///Give back the value of an option
369 369

	
370 370
    ///Give back the value of an option.
371 371
    ///\sa RefType
372 372
    RefType operator[](const std::string &n) const
373 373
    {
374 374
      return RefType(*this, n);
375 375
    }
376 376

	
377 377
    ///Give back the non-option type arguments.
378 378

	
379 379
    ///Give back a reference to a vector consisting of the program arguments
380 380
    ///not starting with a '-' character.
381 381
    const std::vector<std::string> &files() const { return _file_args; }
382 382

	
383 383
  };
384 384
}
385 385

	
386 386
#endif // LEMON_ARG_PARSER_H
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_ASSERT_H
20 20
#define LEMON_ASSERT_H
21 21

	
22 22
/// \ingroup exceptions
23 23
/// \file
24 24
/// \brief Extended assertion handling
25 25

	
26 26
#include <lemon/error.h>
27 27

	
28 28
namespace lemon {
29 29

	
30 30
  inline void assert_fail_abort(const char *file, int line,
31 31
                                const char *function, const char* message,
32 32
                                const char *assertion)
33 33
  {
34 34
    std::cerr << file << ":" << line << ": ";
35 35
    if (function)
36 36
      std::cerr << function << ": ";
37 37
    std::cerr << message;
38 38
    if (assertion)
39 39
      std::cerr << " (assertion '" << assertion << "' failed)";
40 40
    std::cerr << std::endl;
41 41
    std::abort();
42 42
  }
43 43

	
44 44
  namespace _assert_bits {
45 45

	
46 46

	
47 47
    inline const char* cstringify(const std::string& str) {
48 48
      return str.c_str();
49 49
    }
50 50

	
51 51
    inline const char* cstringify(const char* str) {
52 52
      return str;
53 53
    }
54 54
  }
55 55
}
56 56

	
57 57
#endif // LEMON_ASSERT_H
58 58

	
59 59
#undef LEMON_ASSERT
60 60
#undef LEMON_DEBUG
61 61

	
62 62
#if (defined(LEMON_ASSERT_ABORT) ? 1 : 0) +               \
63 63
  (defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) > 1
64 64
#error "LEMON assertion system is not set properly"
65 65
#endif
66 66

	
67 67
#if ((defined(LEMON_ASSERT_ABORT) ? 1 : 0) +            \
68 68
     (defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) == 1 ||     \
69 69
     defined(LEMON_ENABLE_ASSERTS)) &&                  \
70 70
  (defined(LEMON_DISABLE_ASSERTS) ||                    \
71 71
   defined(NDEBUG))
72 72
#error "LEMON assertion system is not set properly"
73 73
#endif
74 74

	
75 75

	
76 76
#if defined LEMON_ASSERT_ABORT
77 77
#  undef LEMON_ASSERT_HANDLER
78 78
#  define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort
79 79
#elif defined LEMON_ASSERT_CUSTOM
80 80
#  undef LEMON_ASSERT_HANDLER
81 81
#  ifndef LEMON_CUSTOM_ASSERT_HANDLER
82 82
#    error "LEMON_CUSTOM_ASSERT_HANDLER is not set"
83 83
#  endif
84 84
#  define LEMON_ASSERT_HANDLER LEMON_CUSTOM_ASSERT_HANDLER
85 85
#elif defined LEMON_DISABLE_ASSERTS
86 86
#  undef LEMON_ASSERT_HANDLER
87 87
#elif defined NDEBUG
88 88
#  undef LEMON_ASSERT_HANDLER
89 89
#else
90 90
#  define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort
91 91
#endif
92 92

	
93 93
#ifndef LEMON_FUNCTION_NAME
94 94
#  if defined __GNUC__
95 95
#    define LEMON_FUNCTION_NAME (__PRETTY_FUNCTION__)
96 96
#  elif defined _MSC_VER
97 97
#    define LEMON_FUNCTION_NAME (__FUNCSIG__)
98 98
#  elif __STDC_VERSION__ >= 199901L
99 99
#    define LEMON_FUNCTION_NAME (__func__)
100 100
#  else
101 101
#    define LEMON_FUNCTION_NAME ("<unknown>")
102 102
#  endif
103 103
#endif
104 104

	
105 105
#ifdef DOXYGEN
106 106

	
107 107
/// \ingroup exceptions
108 108
///
109 109
/// \brief Macro for assertion with customizable message
110 110
///
111 111
/// Macro for assertion with customizable message.
112 112
/// \param exp An expression that must be convertible to \c bool.  If it is \c
113 113
/// false, then an assertion is raised. The concrete behaviour depends on the
114 114
/// settings of the assertion system.
115 115
/// \param msg A <tt>const char*</tt> parameter, which can be used to provide
116 116
/// information about the circumstances of the failed assertion.
117 117
///
118 118
/// The assertions are enabled in the default behaviour.
119 119
/// You can disable them with the following code:
120 120
/// \code
121 121
/// #define LEMON_DISABLE_ASSERTS
122 122
/// \endcode
123 123
/// or with compilation parameters:
124 124
/// \code
125 125
/// g++ -DLEMON_DISABLE_ASSERTS
126 126
/// make CXXFLAGS='-DLEMON_DISABLE_ASSERTS'
127 127
/// \endcode
128 128
/// The checking is also disabled when the standard macro \c NDEBUG is defined.
129 129
///
130 130
/// As a default behaviour the failed assertion prints a short log message to
131 131
/// the standard error and aborts the execution.
132 132
///
133 133
/// However, the following modes can be used in the assertion system:
134 134
/// - \c LEMON_ASSERT_ABORT The failed assertion prints a short log message to
135 135
///   the standard error and aborts the program. It is the default behaviour.
136 136
/// - \c LEMON_ASSERT_CUSTOM The user can define own assertion handler
137 137
///   function.
138 138
///   \code
139 139
///     void custom_assert_handler(const char* file, int line,
140 140
///                                const char* function, const char* message,
141 141
///                                const char* assertion);
142 142
///   \endcode
143 143
///   The name of the function should be defined as the \c
144 144
///   LEMON_CUSTOM_ASSERT_HANDLER macro name.
145 145
///   \code
146 146
///     #define LEMON_CUSTOM_ASSERT_HANDLER custom_assert_handler
147 147
///   \endcode
148 148
///   Whenever an assertion is occured, the custom assertion
149 149
///   handler is called with appropiate parameters.
150 150
///
151 151
/// The assertion mode can also be changed within one compilation unit.
152 152
/// If the macros are redefined with other settings and the
153 153
/// \ref lemon/assert.h "assert.h" file is reincluded, then the
154 154
/// behaviour is changed appropiately to the new settings.
155 155
#  define LEMON_ASSERT(exp, msg)                                        \
156 156
  (static_cast<void> (!!(exp) ? 0 : (                                   \
157 157
    LEMON_ASSERT_HANDLER(__FILE__, __LINE__,                            \
158 158
                         LEMON_FUNCTION_NAME,                           \
159 159
                         ::lemon::_assert_bits::cstringify(msg), #exp), 0)))
160 160

	
161 161
/// \ingroup exceptions
162 162
///
163 163
/// \brief Macro for internal assertions
164 164
///
165 165
/// Macro for internal assertions, it is used in the library to check
166 166
/// the consistency of results of algorithms, several pre- and
167 167
/// postconditions and invariants. The checking is disabled by
168 168
/// default, but it can be turned on with the macro \c
169 169
/// LEMON_ENABLE_DEBUG.
170 170
/// \code
171 171
/// #define LEMON_ENABLE_DEBUG
172 172
/// \endcode
173 173
/// or with compilation parameters:
174 174
/// \code
175 175
/// g++ -DLEMON_ENABLE_DEBUG
176 176
/// make CXXFLAGS='-DLEMON_ENABLE_DEBUG'
177 177
/// \endcode
178 178
///
179 179
/// This macro works like the \c LEMON_ASSERT macro, therefore the
180 180
/// current behaviour depends on the settings of \c LEMON_ASSERT
181 181
/// macro.
182 182
///
183 183
/// \see LEMON_ASSERT
184 184
#  define LEMON_DEBUG(exp, msg)                                         \
185 185
  (static_cast<void> (!!(exp) ? 0 : (                                   \
186 186
    LEMON_ASSERT_HANDLER(__FILE__, __LINE__,                            \
187 187
                         LEMON_FUNCTION_NAME,                           \
188 188
                         ::lemon::_assert_bits::cstringify(msg), #exp), 0)))
189 189

	
190 190
#else
191 191

	
192 192
#  ifndef LEMON_ASSERT_HANDLER
193 193
#    define LEMON_ASSERT(exp, msg)  (static_cast<void>(0))
194 194
#    define LEMON_DEBUG(exp, msg) (static_cast<void>(0))
195 195
#  else
196 196
#    define LEMON_ASSERT(exp, msg)                                      \
197 197
       (static_cast<void> (!!(exp) ? 0 : (                              \
198 198
        LEMON_ASSERT_HANDLER(__FILE__, __LINE__,                        \
199 199
                             LEMON_FUNCTION_NAME,                       \
200 200
                             ::lemon::_assert_bits::cstringify(msg),    \
201 201
                             #exp), 0)))
202 202
#    if LEMON_ENABLE_DEBUG
203 203
#      define LEMON_DEBUG(exp, msg)                                     \
204 204
         (static_cast<void> (!!(exp) ? 0 : (                            \
205 205
           LEMON_ASSERT_HANDLER(__FILE__, __LINE__,                     \
206 206
                                LEMON_FUNCTION_NAME,                    \
207 207
                                ::lemon::_assert_bits::cstringify(msg), \
208 208
                                #exp), 0)))
209 209
#    else
210 210
#      define LEMON_DEBUG(exp, msg) (static_cast<void>(0))
211 211
#    endif
212 212
#  endif
213 213

	
214 214
#endif
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/tolerance.h>
23 23
#include<lemon/core.h>
24 24
namespace lemon {
25 25

	
26 26
  float Tolerance<float>::def_epsilon = 1e-4;
27 27
  double Tolerance<double>::def_epsilon = 1e-10;
28 28
  long double Tolerance<long double>::def_epsilon = 1e-14;
29 29

	
30 30
#ifndef LEMON_ONLY_TEMPLATES
31 31
  const Invalid INVALID = Invalid();
32 32
#endif
33 33

	
34 34
} //namespace lemon
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BFS_H
20 20
#define LEMON_BFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief BFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Bfs class.
36 36

	
37 37
  ///Default traits class of Bfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct BfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50 50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a PredMap.
53 53

	
54 54
    ///This function instantiates a PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
66 66
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67 67
    ///Instantiates a ProcessedMap.
68 68

	
69 69
    ///This function instantiates a ProcessedMap.
70 70
    ///\param g is the digraph, to which
71 71
    ///we would like to define the ProcessedMap
72 72
#ifdef DOXYGEN
73 73
    static ProcessedMap *createProcessedMap(const Digraph &g)
74 74
#else
75 75
    static ProcessedMap *createProcessedMap(const Digraph &)
76 76
#endif
77 77
    {
78 78
      return new ProcessedMap();
79 79
    }
80 80

	
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86 86
    ///Instantiates a ReachedMap.
87 87

	
88 88
    ///This function instantiates a ReachedMap.
89 89
    ///\param g is the digraph, to which
90 90
    ///we would like to define the ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101 101
    ///Instantiates a DistMap.
102 102

	
103 103
    ///This function instantiates a DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105 105
    ///DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%BFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %BFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref bfs() "function-type interface" for the BFS
118 118
  ///algorithm, which is convenient in the simplier cases and it can be
119 119
  ///used easier.
120 120
  ///
121 121
  ///\tparam GR The type of the digraph the algorithm runs on.
122 122
  ///The default type is \ref ListDigraph.
123 123
#ifdef DOXYGEN
124 124
  template <typename GR,
125 125
            typename TR>
126 126
#else
127 127
  template <typename GR=ListDigraph,
128 128
            typename TR=BfsDefaultTraits<GR> >
129 129
#endif
130 130
  class Bfs {
131 131
  public:
132 132

	
133 133
    ///The type of the digraph the algorithm runs on.
134 134
    typedef typename TR::Digraph Digraph;
135 135

	
136 136
    ///\brief The type of the map that stores the predecessor arcs of the
137 137
    ///shortest paths.
138 138
    typedef typename TR::PredMap PredMap;
139 139
    ///The type of the map that stores the distances of the nodes.
140 140
    typedef typename TR::DistMap DistMap;
141 141
    ///The type of the map that indicates which nodes are reached.
142 142
    typedef typename TR::ReachedMap ReachedMap;
143 143
    ///The type of the map that indicates which nodes are processed.
144 144
    typedef typename TR::ProcessedMap ProcessedMap;
145 145
    ///The type of the paths.
146 146
    typedef PredMapPath<Digraph, PredMap> Path;
147 147

	
148 148
    ///The \ref BfsDefaultTraits "traits class" of the algorithm.
149 149
    typedef TR Traits;
150 150

	
151 151
  private:
152 152

	
153 153
    typedef typename Digraph::Node Node;
154 154
    typedef typename Digraph::NodeIt NodeIt;
155 155
    typedef typename Digraph::Arc Arc;
156 156
    typedef typename Digraph::OutArcIt OutArcIt;
157 157

	
158 158
    //Pointer to the underlying digraph.
159 159
    const Digraph *G;
160 160
    //Pointer to the map of predecessor arcs.
161 161
    PredMap *_pred;
162 162
    //Indicates if _pred is locally allocated (true) or not.
163 163
    bool local_pred;
164 164
    //Pointer to the map of distances.
165 165
    DistMap *_dist;
166 166
    //Indicates if _dist is locally allocated (true) or not.
167 167
    bool local_dist;
168 168
    //Pointer to the map of reached status of the nodes.
169 169
    ReachedMap *_reached;
170 170
    //Indicates if _reached is locally allocated (true) or not.
171 171
    bool local_reached;
172 172
    //Pointer to the map of processed status of the nodes.
173 173
    ProcessedMap *_processed;
174 174
    //Indicates if _processed is locally allocated (true) or not.
175 175
    bool local_processed;
176 176

	
177 177
    std::vector<typename Digraph::Node> _queue;
178 178
    int _queue_head,_queue_tail,_queue_next_dist;
179 179
    int _curr_dist;
180 180

	
181 181
    //Creates the maps if necessary.
182 182
    void create_maps()
183 183
    {
184 184
      if(!_pred) {
185 185
        local_pred = true;
186 186
        _pred = Traits::createPredMap(*G);
187 187
      }
188 188
      if(!_dist) {
189 189
        local_dist = true;
190 190
        _dist = Traits::createDistMap(*G);
191 191
      }
192 192
      if(!_reached) {
193 193
        local_reached = true;
194 194
        _reached = Traits::createReachedMap(*G);
195 195
      }
196 196
      if(!_processed) {
197 197
        local_processed = true;
198 198
        _processed = Traits::createProcessedMap(*G);
199 199
      }
200 200
    }
201 201

	
202 202
  protected:
203 203

	
204 204
    Bfs() {}
205 205

	
206 206
  public:
207 207

	
208 208
    typedef Bfs Create;
209 209

	
210 210
    ///\name Named Template Parameters
211 211

	
212 212
    ///@{
213 213

	
214 214
    template <class T>
215 215
    struct SetPredMapTraits : public Traits {
216 216
      typedef T PredMap;
217 217
      static PredMap *createPredMap(const Digraph &)
218 218
      {
219 219
        LEMON_ASSERT(false, "PredMap is not initialized");
220 220
        return 0; // ignore warnings
221 221
      }
222 222
    };
223 223
    ///\brief \ref named-templ-param "Named parameter" for setting
224 224
    ///PredMap type.
225 225
    ///
226 226
    ///\ref named-templ-param "Named parameter" for setting
227 227
    ///PredMap type.
228 228
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
229 229
    template <class T>
230 230
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
231 231
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
232 232
    };
233 233

	
234 234
    template <class T>
235 235
    struct SetDistMapTraits : public Traits {
236 236
      typedef T DistMap;
237 237
      static DistMap *createDistMap(const Digraph &)
238 238
      {
239 239
        LEMON_ASSERT(false, "DistMap is not initialized");
240 240
        return 0; // ignore warnings
241 241
      }
242 242
    };
243 243
    ///\brief \ref named-templ-param "Named parameter" for setting
244 244
    ///DistMap type.
245 245
    ///
246 246
    ///\ref named-templ-param "Named parameter" for setting
247 247
    ///DistMap type.
248 248
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
249 249
    template <class T>
250 250
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
251 251
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
252 252
    };
253 253

	
254 254
    template <class T>
255 255
    struct SetReachedMapTraits : public Traits {
256 256
      typedef T ReachedMap;
257 257
      static ReachedMap *createReachedMap(const Digraph &)
258 258
      {
259 259
        LEMON_ASSERT(false, "ReachedMap is not initialized");
260 260
        return 0; // ignore warnings
261 261
      }
262 262
    };
263 263
    ///\brief \ref named-templ-param "Named parameter" for setting
264 264
    ///ReachedMap type.
265 265
    ///
266 266
    ///\ref named-templ-param "Named parameter" for setting
267 267
    ///ReachedMap type.
268 268
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
269 269
    template <class T>
270 270
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
271 271
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
272 272
    };
273 273

	
274 274
    template <class T>
275 275
    struct SetProcessedMapTraits : public Traits {
276 276
      typedef T ProcessedMap;
277 277
      static ProcessedMap *createProcessedMap(const Digraph &)
278 278
      {
279 279
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
280 280
        return 0; // ignore warnings
281 281
      }
282 282
    };
283 283
    ///\brief \ref named-templ-param "Named parameter" for setting
284 284
    ///ProcessedMap type.
285 285
    ///
286 286
    ///\ref named-templ-param "Named parameter" for setting
287 287
    ///ProcessedMap type.
288 288
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
289 289
    template <class T>
290 290
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
291 291
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
292 292
    };
293 293

	
294 294
    struct SetStandardProcessedMapTraits : public Traits {
295 295
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
296 296
      static ProcessedMap *createProcessedMap(const Digraph &g)
297 297
      {
298 298
        return new ProcessedMap(g);
299 299
        return 0; // ignore warnings
300 300
      }
301 301
    };
302 302
    ///\brief \ref named-templ-param "Named parameter" for setting
303 303
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
304 304
    ///
305 305
    ///\ref named-templ-param "Named parameter" for setting
306 306
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
307 307
    ///If you don't set it explicitly, it will be automatically allocated.
308 308
    struct SetStandardProcessedMap :
309 309
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
310 310
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
311 311
    };
312 312

	
313 313
    ///@}
314 314

	
315 315
  public:
316 316

	
317 317
    ///Constructor.
318 318

	
319 319
    ///Constructor.
320 320
    ///\param g The digraph the algorithm runs on.
321 321
    Bfs(const Digraph &g) :
322 322
      G(&g),
323 323
      _pred(NULL), local_pred(false),
324 324
      _dist(NULL), local_dist(false),
325 325
      _reached(NULL), local_reached(false),
326 326
      _processed(NULL), local_processed(false)
327 327
    { }
328 328

	
329 329
    ///Destructor.
330 330
    ~Bfs()
331 331
    {
332 332
      if(local_pred) delete _pred;
333 333
      if(local_dist) delete _dist;
334 334
      if(local_reached) delete _reached;
335 335
      if(local_processed) delete _processed;
336 336
    }
337 337

	
338 338
    ///Sets the map that stores the predecessor arcs.
339 339

	
340 340
    ///Sets the map that stores the predecessor arcs.
341 341
    ///If you don't use this function before calling \ref run(Node) "run()"
342 342
    ///or \ref init(), an instance will be allocated automatically.
343 343
    ///The destructor deallocates this automatically allocated map,
344 344
    ///of course.
345 345
    ///\return <tt> (*this) </tt>
346 346
    Bfs &predMap(PredMap &m)
347 347
    {
348 348
      if(local_pred) {
349 349
        delete _pred;
350 350
        local_pred=false;
351 351
      }
352 352
      _pred = &m;
353 353
      return *this;
354 354
    }
355 355

	
356 356
    ///Sets the map that indicates which nodes are reached.
357 357

	
358 358
    ///Sets the map that indicates which nodes are reached.
359 359
    ///If you don't use this function before calling \ref run(Node) "run()"
360 360
    ///or \ref init(), an instance will be allocated automatically.
361 361
    ///The destructor deallocates this automatically allocated map,
362 362
    ///of course.
363 363
    ///\return <tt> (*this) </tt>
364 364
    Bfs &reachedMap(ReachedMap &m)
365 365
    {
366 366
      if(local_reached) {
367 367
        delete _reached;
368 368
        local_reached=false;
369 369
      }
370 370
      _reached = &m;
371 371
      return *this;
372 372
    }
373 373

	
374 374
    ///Sets the map that indicates which nodes are processed.
375 375

	
376 376
    ///Sets the map that indicates which nodes are processed.
377 377
    ///If you don't use this function before calling \ref run(Node) "run()"
378 378
    ///or \ref init(), an instance will be allocated automatically.
379 379
    ///The destructor deallocates this automatically allocated map,
380 380
    ///of course.
381 381
    ///\return <tt> (*this) </tt>
382 382
    Bfs &processedMap(ProcessedMap &m)
383 383
    {
384 384
      if(local_processed) {
385 385
        delete _processed;
386 386
        local_processed=false;
387 387
      }
388 388
      _processed = &m;
389 389
      return *this;
390 390
    }
391 391

	
392 392
    ///Sets the map that stores the distances of the nodes.
393 393

	
394 394
    ///Sets the map that stores the distances of the nodes calculated by
395 395
    ///the algorithm.
396 396
    ///If you don't use this function before calling \ref run(Node) "run()"
397 397
    ///or \ref init(), an instance will be allocated automatically.
398 398
    ///The destructor deallocates this automatically allocated map,
399 399
    ///of course.
400 400
    ///\return <tt> (*this) </tt>
401 401
    Bfs &distMap(DistMap &m)
402 402
    {
403 403
      if(local_dist) {
404 404
        delete _dist;
405 405
        local_dist=false;
406 406
      }
407 407
      _dist = &m;
408 408
      return *this;
409 409
    }
410 410

	
411 411
  public:
412 412

	
413 413
    ///\name Execution Control
414 414
    ///The simplest way to execute the BFS algorithm is to use one of the
415 415
    ///member functions called \ref run(Node) "run()".\n
416 416
    ///If you need more control on the execution, first you have to call
417 417
    ///\ref init(), then you can add several source nodes with
418 418
    ///\ref addSource(). Finally the actual path computation can be
419 419
    ///performed with one of the \ref start() functions.
420 420

	
421 421
    ///@{
422 422

	
423 423
    ///\brief Initializes the internal data structures.
424 424
    ///
425 425
    ///Initializes the internal data structures.
426 426
    void init()
427 427
    {
428 428
      create_maps();
429 429
      _queue.resize(countNodes(*G));
430 430
      _queue_head=_queue_tail=0;
431 431
      _curr_dist=1;
432 432
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
433 433
        _pred->set(u,INVALID);
434 434
        _reached->set(u,false);
435 435
        _processed->set(u,false);
436 436
      }
437 437
    }
438 438

	
439 439
    ///Adds a new source node.
440 440

	
441 441
    ///Adds a new source node to the set of nodes to be processed.
442 442
    ///
443 443
    void addSource(Node s)
444 444
    {
445 445
      if(!(*_reached)[s])
446 446
        {
447 447
          _reached->set(s,true);
448 448
          _pred->set(s,INVALID);
449 449
          _dist->set(s,0);
450 450
          _queue[_queue_head++]=s;
451 451
          _queue_next_dist=_queue_head;
452 452
        }
453 453
    }
454 454

	
455 455
    ///Processes the next node.
456 456

	
457 457
    ///Processes the next node.
458 458
    ///
459 459
    ///\return The processed node.
460 460
    ///
461 461
    ///\pre The queue must not be empty.
462 462
    Node processNextNode()
463 463
    {
464 464
      if(_queue_tail==_queue_next_dist) {
465 465
        _curr_dist++;
466 466
        _queue_next_dist=_queue_head;
467 467
      }
468 468
      Node n=_queue[_queue_tail++];
469 469
      _processed->set(n,true);
470 470
      Node m;
471 471
      for(OutArcIt e(*G,n);e!=INVALID;++e)
472 472
        if(!(*_reached)[m=G->target(e)]) {
473 473
          _queue[_queue_head++]=m;
474 474
          _reached->set(m,true);
475 475
          _pred->set(m,e);
476 476
          _dist->set(m,_curr_dist);
477 477
        }
478 478
      return n;
479 479
    }
480 480

	
481 481
    ///Processes the next node.
482 482

	
483 483
    ///Processes the next node and checks if the given target node
484 484
    ///is reached. If the target node is reachable from the processed
485 485
    ///node, then the \c reach parameter will be set to \c true.
486 486
    ///
487 487
    ///\param target The target node.
488 488
    ///\retval reach Indicates if the target node is reached.
489 489
    ///It should be initially \c false.
490 490
    ///
491 491
    ///\return The processed node.
492 492
    ///
493 493
    ///\pre The queue must not be empty.
494 494
    Node processNextNode(Node target, bool& reach)
495 495
    {
496 496
      if(_queue_tail==_queue_next_dist) {
497 497
        _curr_dist++;
498 498
        _queue_next_dist=_queue_head;
499 499
      }
500 500
      Node n=_queue[_queue_tail++];
501 501
      _processed->set(n,true);
502 502
      Node m;
503 503
      for(OutArcIt e(*G,n);e!=INVALID;++e)
504 504
        if(!(*_reached)[m=G->target(e)]) {
505 505
          _queue[_queue_head++]=m;
506 506
          _reached->set(m,true);
507 507
          _pred->set(m,e);
508 508
          _dist->set(m,_curr_dist);
509 509
          reach = reach || (target == m);
510 510
        }
511 511
      return n;
512 512
    }
513 513

	
514 514
    ///Processes the next node.
515 515

	
516 516
    ///Processes the next node and checks if at least one of reached
517 517
    ///nodes has \c true value in the \c nm node map. If one node
518 518
    ///with \c true value is reachable from the processed node, then the
519 519
    ///\c rnode parameter will be set to the first of such nodes.
520 520
    ///
521 521
    ///\param nm A \c bool (or convertible) node map that indicates the
522 522
    ///possible targets.
523 523
    ///\retval rnode The reached target node.
524 524
    ///It should be initially \c INVALID.
525 525
    ///
526 526
    ///\return The processed node.
527 527
    ///
528 528
    ///\pre The queue must not be empty.
529 529
    template<class NM>
530 530
    Node processNextNode(const NM& nm, Node& rnode)
531 531
    {
532 532
      if(_queue_tail==_queue_next_dist) {
533 533
        _curr_dist++;
534 534
        _queue_next_dist=_queue_head;
535 535
      }
536 536
      Node n=_queue[_queue_tail++];
537 537
      _processed->set(n,true);
538 538
      Node m;
539 539
      for(OutArcIt e(*G,n);e!=INVALID;++e)
540 540
        if(!(*_reached)[m=G->target(e)]) {
541 541
          _queue[_queue_head++]=m;
542 542
          _reached->set(m,true);
543 543
          _pred->set(m,e);
544 544
          _dist->set(m,_curr_dist);
545 545
          if (nm[m] && rnode == INVALID) rnode = m;
546 546
        }
547 547
      return n;
548 548
    }
549 549

	
550 550
    ///The next node to be processed.
551 551

	
552 552
    ///Returns the next node to be processed or \c INVALID if the queue
553 553
    ///is empty.
554 554
    Node nextNode() const
555 555
    {
556 556
      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
557 557
    }
558 558

	
559 559
    ///Returns \c false if there are nodes to be processed.
560 560

	
561 561
    ///Returns \c false if there are nodes to be processed
562 562
    ///in the queue.
563 563
    bool emptyQueue() const { return _queue_tail==_queue_head; }
564 564

	
565 565
    ///Returns the number of the nodes to be processed.
566 566

	
567 567
    ///Returns the number of the nodes to be processed
568 568
    ///in the queue.
569 569
    int queueSize() const { return _queue_head-_queue_tail; }
570 570

	
571 571
    ///Executes the algorithm.
572 572

	
573 573
    ///Executes the algorithm.
574 574
    ///
575 575
    ///This method runs the %BFS algorithm from the root node(s)
576 576
    ///in order to compute the shortest path to each node.
577 577
    ///
578 578
    ///The algorithm computes
579 579
    ///- the shortest path tree (forest),
580 580
    ///- the distance of each node from the root(s).
581 581
    ///
582 582
    ///\pre init() must be called and at least one root node should be
583 583
    ///added with addSource() before using this function.
584 584
    ///
585 585
    ///\note <tt>b.start()</tt> is just a shortcut of the following code.
586 586
    ///\code
587 587
    ///  while ( !b.emptyQueue() ) {
588 588
    ///    b.processNextNode();
589 589
    ///  }
590 590
    ///\endcode
591 591
    void start()
592 592
    {
593 593
      while ( !emptyQueue() ) processNextNode();
594 594
    }
595 595

	
596 596
    ///Executes the algorithm until the given target node is reached.
597 597

	
598 598
    ///Executes the algorithm until the given target node is reached.
599 599
    ///
600 600
    ///This method runs the %BFS algorithm from the root node(s)
601 601
    ///in order to compute the shortest path to \c t.
602 602
    ///
603 603
    ///The algorithm computes
604 604
    ///- the shortest path to \c t,
605 605
    ///- the distance of \c t from the root(s).
606 606
    ///
607 607
    ///\pre init() must be called and at least one root node should be
608 608
    ///added with addSource() before using this function.
609 609
    ///
610 610
    ///\note <tt>b.start(t)</tt> is just a shortcut of the following code.
611 611
    ///\code
612 612
    ///  bool reach = false;
613 613
    ///  while ( !b.emptyQueue() && !reach ) {
614 614
    ///    b.processNextNode(t, reach);
615 615
    ///  }
616 616
    ///\endcode
617 617
    void start(Node t)
618 618
    {
619 619
      bool reach = false;
620 620
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
621 621
    }
622 622

	
623 623
    ///Executes the algorithm until a condition is met.
624 624

	
625 625
    ///Executes the algorithm until a condition is met.
626 626
    ///
627 627
    ///This method runs the %BFS algorithm from the root node(s) in
628 628
    ///order to compute the shortest path to a node \c v with
629 629
    /// <tt>nm[v]</tt> true, if such a node can be found.
630 630
    ///
631 631
    ///\param nm A \c bool (or convertible) node map. The algorithm
632 632
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
633 633
    ///
634 634
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
635 635
    ///\c INVALID if no such node was found.
636 636
    ///
637 637
    ///\pre init() must be called and at least one root node should be
638 638
    ///added with addSource() before using this function.
639 639
    ///
640 640
    ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code.
641 641
    ///\code
642 642
    ///  Node rnode = INVALID;
643 643
    ///  while ( !b.emptyQueue() && rnode == INVALID ) {
644 644
    ///    b.processNextNode(nm, rnode);
645 645
    ///  }
646 646
    ///  return rnode;
647 647
    ///\endcode
648 648
    template<class NodeBoolMap>
649 649
    Node start(const NodeBoolMap &nm)
650 650
    {
651 651
      Node rnode = INVALID;
652 652
      while ( !emptyQueue() && rnode == INVALID ) {
653 653
        processNextNode(nm, rnode);
654 654
      }
655 655
      return rnode;
656 656
    }
657 657

	
658 658
    ///Runs the algorithm from the given source node.
659 659

	
660 660
    ///This method runs the %BFS algorithm from node \c s
661 661
    ///in order to compute the shortest path to each node.
662 662
    ///
663 663
    ///The algorithm computes
664 664
    ///- the shortest path tree,
665 665
    ///- the distance of each node from the root.
666 666
    ///
667 667
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
668 668
    ///\code
669 669
    ///  b.init();
670 670
    ///  b.addSource(s);
671 671
    ///  b.start();
672 672
    ///\endcode
673 673
    void run(Node s) {
674 674
      init();
675 675
      addSource(s);
676 676
      start();
677 677
    }
678 678

	
679 679
    ///Finds the shortest path between \c s and \c t.
680 680

	
681 681
    ///This method runs the %BFS algorithm from node \c s
682 682
    ///in order to compute the shortest path to node \c t
683 683
    ///(it stops searching when \c t is processed).
684 684
    ///
685 685
    ///\return \c true if \c t is reachable form \c s.
686 686
    ///
687 687
    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
688 688
    ///shortcut of the following code.
689 689
    ///\code
690 690
    ///  b.init();
691 691
    ///  b.addSource(s);
692 692
    ///  b.start(t);
693 693
    ///\endcode
694 694
    bool run(Node s,Node t) {
695 695
      init();
696 696
      addSource(s);
697 697
      start(t);
698 698
      return reached(t);
699 699
    }
700 700

	
701 701
    ///Runs the algorithm to visit all nodes in the digraph.
702 702

	
703 703
    ///This method runs the %BFS algorithm in order to
704 704
    ///compute the shortest path to each node.
705 705
    ///
706 706
    ///The algorithm computes
707 707
    ///- the shortest path tree (forest),
708 708
    ///- the distance of each node from the root(s).
709 709
    ///
710 710
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
711 711
    ///\code
712 712
    ///  b.init();
713 713
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
714 714
    ///    if (!b.reached(n)) {
715 715
    ///      b.addSource(n);
716 716
    ///      b.start();
717 717
    ///    }
718 718
    ///  }
719 719
    ///\endcode
720 720
    void run() {
721 721
      init();
722 722
      for (NodeIt n(*G); n != INVALID; ++n) {
723 723
        if (!reached(n)) {
724 724
          addSource(n);
725 725
          start();
726 726
        }
727 727
      }
728 728
    }
729 729

	
730 730
    ///@}
731 731

	
732 732
    ///\name Query Functions
733 733
    ///The results of the BFS algorithm can be obtained using these
734 734
    ///functions.\n
735 735
    ///Either \ref run(Node) "run()" or \ref start() should be called
736 736
    ///before using them.
737 737

	
738 738
    ///@{
739 739

	
740 740
    ///The shortest path to a node.
741 741

	
742 742
    ///Returns the shortest path to a node.
743 743
    ///
744 744
    ///\warning \c t should be reached from the root(s).
745 745
    ///
746 746
    ///\pre Either \ref run(Node) "run()" or \ref init()
747 747
    ///must be called before using this function.
748 748
    Path path(Node t) const { return Path(*G, *_pred, t); }
749 749

	
750 750
    ///The distance of a node from the root(s).
751 751

	
752 752
    ///Returns the distance of a node from the root(s).
753 753
    ///
754 754
    ///\warning If node \c v is not reached from the root(s), then
755 755
    ///the return value of this function is undefined.
756 756
    ///
757 757
    ///\pre Either \ref run(Node) "run()" or \ref init()
758 758
    ///must be called before using this function.
759 759
    int dist(Node v) const { return (*_dist)[v]; }
760 760

	
761 761
    ///Returns the 'previous arc' of the shortest path tree for a node.
762 762

	
763 763
    ///This function returns the 'previous arc' of the shortest path
764 764
    ///tree for the node \c v, i.e. it returns the last arc of a
765 765
    ///shortest path from a root to \c v. It is \c INVALID if \c v
766 766
    ///is not reached from the root(s) or if \c v is a root.
767 767
    ///
768 768
    ///The shortest path tree used here is equal to the shortest path
769 769
    ///tree used in \ref predNode().
770 770
    ///
771 771
    ///\pre Either \ref run(Node) "run()" or \ref init()
772 772
    ///must be called before using this function.
773 773
    Arc predArc(Node v) const { return (*_pred)[v];}
774 774

	
775 775
    ///Returns the 'previous node' of the shortest path tree for a node.
776 776

	
777 777
    ///This function returns the 'previous node' of the shortest path
778 778
    ///tree for the node \c v, i.e. it returns the last but one node
779 779
    ///from a shortest path from a root to \c v. It is \c INVALID
780 780
    ///if \c v is not reached from the root(s) or if \c v is a root.
781 781
    ///
782 782
    ///The shortest path tree used here is equal to the shortest path
783 783
    ///tree used in \ref predArc().
784 784
    ///
785 785
    ///\pre Either \ref run(Node) "run()" or \ref init()
786 786
    ///must be called before using this function.
787 787
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
788 788
                                  G->source((*_pred)[v]); }
789 789

	
790 790
    ///\brief Returns a const reference to the node map that stores the
791 791
    /// distances of the nodes.
792 792
    ///
793 793
    ///Returns a const reference to the node map that stores the distances
794 794
    ///of the nodes calculated by the algorithm.
795 795
    ///
796 796
    ///\pre Either \ref run(Node) "run()" or \ref init()
797 797
    ///must be called before using this function.
798 798
    const DistMap &distMap() const { return *_dist;}
799 799

	
800 800
    ///\brief Returns a const reference to the node map that stores the
801 801
    ///predecessor arcs.
802 802
    ///
803 803
    ///Returns a const reference to the node map that stores the predecessor
804 804
    ///arcs, which form the shortest path tree.
805 805
    ///
806 806
    ///\pre Either \ref run(Node) "run()" or \ref init()
807 807
    ///must be called before using this function.
808 808
    const PredMap &predMap() const { return *_pred;}
809 809

	
810 810
    ///Checks if a node is reached from the root(s).
811 811

	
812 812
    ///Returns \c true if \c v is reached from the root(s).
813 813
    ///
814 814
    ///\pre Either \ref run(Node) "run()" or \ref init()
815 815
    ///must be called before using this function.
816 816
    bool reached(Node v) const { return (*_reached)[v]; }
817 817

	
818 818
    ///@}
819 819
  };
820 820

	
821 821
  ///Default traits class of bfs() function.
822 822

	
823 823
  ///Default traits class of bfs() function.
824 824
  ///\tparam GR Digraph type.
825 825
  template<class GR>
826 826
  struct BfsWizardDefaultTraits
827 827
  {
828 828
    ///The type of the digraph the algorithm runs on.
829 829
    typedef GR Digraph;
830 830

	
831 831
    ///\brief The type of the map that stores the predecessor
832 832
    ///arcs of the shortest paths.
833 833
    ///
834 834
    ///The type of the map that stores the predecessor
835 835
    ///arcs of the shortest paths.
836 836
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
837 837
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
838 838
    ///Instantiates a PredMap.
839 839

	
840 840
    ///This function instantiates a PredMap.
841 841
    ///\param g is the digraph, to which we would like to define the
842 842
    ///PredMap.
843 843
    static PredMap *createPredMap(const Digraph &g)
844 844
    {
845 845
      return new PredMap(g);
846 846
    }
847 847

	
848 848
    ///The type of the map that indicates which nodes are processed.
849 849

	
850 850
    ///The type of the map that indicates which nodes are processed.
851 851
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
852 852
    ///By default it is a NullMap.
853 853
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
854 854
    ///Instantiates a ProcessedMap.
855 855

	
856 856
    ///This function instantiates a ProcessedMap.
857 857
    ///\param g is the digraph, to which
858 858
    ///we would like to define the ProcessedMap.
859 859
#ifdef DOXYGEN
860 860
    static ProcessedMap *createProcessedMap(const Digraph &g)
861 861
#else
862 862
    static ProcessedMap *createProcessedMap(const Digraph &)
863 863
#endif
864 864
    {
865 865
      return new ProcessedMap();
866 866
    }
867 867

	
868 868
    ///The type of the map that indicates which nodes are reached.
869 869

	
870 870
    ///The type of the map that indicates which nodes are reached.
871 871
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
872 872
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
873 873
    ///Instantiates a ReachedMap.
874 874

	
875 875
    ///This function instantiates a ReachedMap.
876 876
    ///\param g is the digraph, to which
877 877
    ///we would like to define the ReachedMap.
878 878
    static ReachedMap *createReachedMap(const Digraph &g)
879 879
    {
880 880
      return new ReachedMap(g);
881 881
    }
882 882

	
883 883
    ///The type of the map that stores the distances of the nodes.
884 884

	
885 885
    ///The type of the map that stores the distances of the nodes.
886 886
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
887 887
    typedef typename Digraph::template NodeMap<int> DistMap;
888 888
    ///Instantiates a DistMap.
889 889

	
890 890
    ///This function instantiates a DistMap.
891 891
    ///\param g is the digraph, to which we would like to define
892 892
    ///the DistMap
893 893
    static DistMap *createDistMap(const Digraph &g)
894 894
    {
895 895
      return new DistMap(g);
896 896
    }
897 897

	
898 898
    ///The type of the shortest paths.
899 899

	
900 900
    ///The type of the shortest paths.
901 901
    ///It must meet the \ref concepts::Path "Path" concept.
902 902
    typedef lemon::Path<Digraph> Path;
903 903
  };
904 904

	
905 905
  /// Default traits class used by BfsWizard
906 906

	
907 907
  /// To make it easier to use Bfs algorithm
908 908
  /// we have created a wizard class.
909 909
  /// This \ref BfsWizard class needs default traits,
910 910
  /// as well as the \ref Bfs class.
911 911
  /// The \ref BfsWizardBase is a class to be the default traits of the
912 912
  /// \ref BfsWizard class.
913 913
  template<class GR>
914 914
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
915 915
  {
916 916

	
917 917
    typedef BfsWizardDefaultTraits<GR> Base;
918 918
  protected:
919 919
    //The type of the nodes in the digraph.
920 920
    typedef typename Base::Digraph::Node Node;
921 921

	
922 922
    //Pointer to the digraph the algorithm runs on.
923 923
    void *_g;
924 924
    //Pointer to the map of reached nodes.
925 925
    void *_reached;
926 926
    //Pointer to the map of processed nodes.
927 927
    void *_processed;
928 928
    //Pointer to the map of predecessors arcs.
929 929
    void *_pred;
930 930
    //Pointer to the map of distances.
931 931
    void *_dist;
932 932
    //Pointer to the shortest path to the target node.
933 933
    void *_path;
934 934
    //Pointer to the distance of the target node.
935 935
    int *_di;
936 936

	
937 937
    public:
938 938
    /// Constructor.
939 939

	
940 940
    /// This constructor does not require parameters, therefore it initiates
941 941
    /// all of the attributes to \c 0.
942 942
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
943 943
                      _dist(0), _path(0), _di(0) {}
944 944

	
945 945
    /// Constructor.
946 946

	
947 947
    /// This constructor requires one parameter,
948 948
    /// others are initiated to \c 0.
949 949
    /// \param g The digraph the algorithm runs on.
950 950
    BfsWizardBase(const GR &g) :
951 951
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
952 952
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
953 953

	
954 954
  };
955 955

	
956 956
  /// Auxiliary class for the function-type interface of BFS algorithm.
957 957

	
958 958
  /// This auxiliary class is created to implement the
959 959
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
960 960
  /// It does not have own \ref run(Node) "run()" method, it uses the
961 961
  /// functions and features of the plain \ref Bfs.
962 962
  ///
963 963
  /// This class should only be used through the \ref bfs() function,
964 964
  /// which makes it easier to use the algorithm.
965 965
  template<class TR>
966 966
  class BfsWizard : public TR
967 967
  {
968 968
    typedef TR Base;
969 969

	
970 970
    ///The type of the digraph the algorithm runs on.
971 971
    typedef typename TR::Digraph Digraph;
972 972

	
973 973
    typedef typename Digraph::Node Node;
974 974
    typedef typename Digraph::NodeIt NodeIt;
975 975
    typedef typename Digraph::Arc Arc;
976 976
    typedef typename Digraph::OutArcIt OutArcIt;
977 977

	
978 978
    ///\brief The type of the map that stores the predecessor
979 979
    ///arcs of the shortest paths.
980 980
    typedef typename TR::PredMap PredMap;
981 981
    ///\brief The type of the map that stores the distances of the nodes.
982 982
    typedef typename TR::DistMap DistMap;
983 983
    ///\brief The type of the map that indicates which nodes are reached.
984 984
    typedef typename TR::ReachedMap ReachedMap;
985 985
    ///\brief The type of the map that indicates which nodes are processed.
986 986
    typedef typename TR::ProcessedMap ProcessedMap;
987 987
    ///The type of the shortest paths
988 988
    typedef typename TR::Path Path;
989 989

	
990 990
  public:
991 991

	
992 992
    /// Constructor.
993 993
    BfsWizard() : TR() {}
994 994

	
995 995
    /// Constructor that requires parameters.
996 996

	
997 997
    /// Constructor that requires parameters.
998 998
    /// These parameters will be the default values for the traits class.
999 999
    /// \param g The digraph the algorithm runs on.
1000 1000
    BfsWizard(const Digraph &g) :
1001 1001
      TR(g) {}
1002 1002

	
1003 1003
    ///Copy constructor
1004 1004
    BfsWizard(const TR &b) : TR(b) {}
1005 1005

	
1006 1006
    ~BfsWizard() {}
1007 1007

	
1008 1008
    ///Runs BFS algorithm from the given source node.
1009 1009

	
1010 1010
    ///This method runs BFS algorithm from node \c s
1011 1011
    ///in order to compute the shortest path to each node.
1012 1012
    void run(Node s)
1013 1013
    {
1014 1014
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1015 1015
      if (Base::_pred)
1016 1016
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1017 1017
      if (Base::_dist)
1018 1018
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1019 1019
      if (Base::_reached)
1020 1020
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1021 1021
      if (Base::_processed)
1022 1022
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1023 1023
      if (s!=INVALID)
1024 1024
        alg.run(s);
1025 1025
      else
1026 1026
        alg.run();
1027 1027
    }
1028 1028

	
1029 1029
    ///Finds the shortest path between \c s and \c t.
1030 1030

	
1031 1031
    ///This method runs BFS algorithm from node \c s
1032 1032
    ///in order to compute the shortest path to node \c t
1033 1033
    ///(it stops searching when \c t is processed).
1034 1034
    ///
1035 1035
    ///\return \c true if \c t is reachable form \c s.
1036 1036
    bool run(Node s, Node t)
1037 1037
    {
1038 1038
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1039 1039
      if (Base::_pred)
1040 1040
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1041 1041
      if (Base::_dist)
1042 1042
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1043 1043
      if (Base::_reached)
1044 1044
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1045 1045
      if (Base::_processed)
1046 1046
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1047 1047
      alg.run(s,t);
1048 1048
      if (Base::_path)
1049 1049
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
1050 1050
      if (Base::_di)
1051 1051
        *Base::_di = alg.dist(t);
1052 1052
      return alg.reached(t);
1053 1053
    }
1054 1054

	
1055 1055
    ///Runs BFS algorithm to visit all nodes in the digraph.
1056 1056

	
1057 1057
    ///This method runs BFS algorithm in order to compute
1058 1058
    ///the shortest path to each node.
1059 1059
    void run()
1060 1060
    {
1061 1061
      run(INVALID);
1062 1062
    }
1063 1063

	
1064 1064
    template<class T>
1065 1065
    struct SetPredMapBase : public Base {
1066 1066
      typedef T PredMap;
1067 1067
      static PredMap *createPredMap(const Digraph &) { return 0; };
1068 1068
      SetPredMapBase(const TR &b) : TR(b) {}
1069 1069
    };
1070 1070
    ///\brief \ref named-func-param "Named parameter"
1071 1071
    ///for setting PredMap object.
1072 1072
    ///
1073 1073
    ///\ref named-func-param "Named parameter"
1074 1074
    ///for setting PredMap object.
1075 1075
    template<class T>
1076 1076
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
1077 1077
    {
1078 1078
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1079 1079
      return BfsWizard<SetPredMapBase<T> >(*this);
1080 1080
    }
1081 1081

	
1082 1082
    template<class T>
1083 1083
    struct SetReachedMapBase : public Base {
1084 1084
      typedef T ReachedMap;
1085 1085
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1086 1086
      SetReachedMapBase(const TR &b) : TR(b) {}
1087 1087
    };
1088 1088
    ///\brief \ref named-func-param "Named parameter"
1089 1089
    ///for setting ReachedMap object.
1090 1090
    ///
1091 1091
    /// \ref named-func-param "Named parameter"
1092 1092
    ///for setting ReachedMap object.
1093 1093
    template<class T>
1094 1094
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1095 1095
    {
1096 1096
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1097 1097
      return BfsWizard<SetReachedMapBase<T> >(*this);
1098 1098
    }
1099 1099

	
1100 1100
    template<class T>
1101 1101
    struct SetDistMapBase : public Base {
1102 1102
      typedef T DistMap;
1103 1103
      static DistMap *createDistMap(const Digraph &) { return 0; };
1104 1104
      SetDistMapBase(const TR &b) : TR(b) {}
1105 1105
    };
1106 1106
    ///\brief \ref named-func-param "Named parameter"
1107 1107
    ///for setting DistMap object.
1108 1108
    ///
1109 1109
    /// \ref named-func-param "Named parameter"
1110 1110
    ///for setting DistMap object.
1111 1111
    template<class T>
1112 1112
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
1113 1113
    {
1114 1114
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1115 1115
      return BfsWizard<SetDistMapBase<T> >(*this);
1116 1116
    }
1117 1117

	
1118 1118
    template<class T>
1119 1119
    struct SetProcessedMapBase : public Base {
1120 1120
      typedef T ProcessedMap;
1121 1121
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1122 1122
      SetProcessedMapBase(const TR &b) : TR(b) {}
1123 1123
    };
1124 1124
    ///\brief \ref named-func-param "Named parameter"
1125 1125
    ///for setting ProcessedMap object.
1126 1126
    ///
1127 1127
    /// \ref named-func-param "Named parameter"
1128 1128
    ///for setting ProcessedMap object.
1129 1129
    template<class T>
1130 1130
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1131 1131
    {
1132 1132
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1133 1133
      return BfsWizard<SetProcessedMapBase<T> >(*this);
1134 1134
    }
1135 1135

	
1136 1136
    template<class T>
1137 1137
    struct SetPathBase : public Base {
1138 1138
      typedef T Path;
1139 1139
      SetPathBase(const TR &b) : TR(b) {}
1140 1140
    };
1141 1141
    ///\brief \ref named-func-param "Named parameter"
1142 1142
    ///for getting the shortest path to the target node.
1143 1143
    ///
1144 1144
    ///\ref named-func-param "Named parameter"
1145 1145
    ///for getting the shortest path to the target node.
1146 1146
    template<class T>
1147 1147
    BfsWizard<SetPathBase<T> > path(const T &t)
1148 1148
    {
1149 1149
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1150 1150
      return BfsWizard<SetPathBase<T> >(*this);
1151 1151
    }
1152 1152

	
1153 1153
    ///\brief \ref named-func-param "Named parameter"
1154 1154
    ///for getting the distance of the target node.
1155 1155
    ///
1156 1156
    ///\ref named-func-param "Named parameter"
1157 1157
    ///for getting the distance of the target node.
1158 1158
    BfsWizard dist(const int &d)
1159 1159
    {
1160 1160
      Base::_di=const_cast<int*>(&d);
1161 1161
      return *this;
1162 1162
    }
1163 1163

	
1164 1164
  };
1165 1165

	
1166 1166
  ///Function-type interface for BFS algorithm.
1167 1167

	
1168 1168
  /// \ingroup search
1169 1169
  ///Function-type interface for BFS algorithm.
1170 1170
  ///
1171 1171
  ///This function also has several \ref named-func-param "named parameters",
1172 1172
  ///they are declared as the members of class \ref BfsWizard.
1173 1173
  ///The following examples show how to use these parameters.
1174 1174
  ///\code
1175 1175
  ///  // Compute shortest path from node s to each node
1176 1176
  ///  bfs(g).predMap(preds).distMap(dists).run(s);
1177 1177
  ///
1178 1178
  ///  // Compute shortest path from s to t
1179 1179
  ///  bool reached = bfs(g).path(p).dist(d).run(s,t);
1180 1180
  ///\endcode
1181 1181
  ///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()"
1182 1182
  ///to the end of the parameter list.
1183 1183
  ///\sa BfsWizard
1184 1184
  ///\sa Bfs
1185 1185
  template<class GR>
1186 1186
  BfsWizard<BfsWizardBase<GR> >
1187 1187
  bfs(const GR &digraph)
1188 1188
  {
1189 1189
    return BfsWizard<BfsWizardBase<GR> >(digraph);
1190 1190
  }
1191 1191

	
1192 1192
#ifdef DOXYGEN
1193 1193
  /// \brief Visitor class for BFS.
1194 1194
  ///
1195 1195
  /// This class defines the interface of the BfsVisit events, and
1196 1196
  /// it could be the base of a real visitor class.
1197 1197
  template <typename _Digraph>
1198 1198
  struct BfsVisitor {
1199 1199
    typedef _Digraph Digraph;
1200 1200
    typedef typename Digraph::Arc Arc;
1201 1201
    typedef typename Digraph::Node Node;
1202 1202
    /// \brief Called for the source node(s) of the BFS.
1203 1203
    ///
1204 1204
    /// This function is called for the source node(s) of the BFS.
1205 1205
    void start(const Node& node) {}
1206 1206
    /// \brief Called when a node is reached first time.
1207 1207
    ///
1208 1208
    /// This function is called when a node is reached first time.
1209 1209
    void reach(const Node& node) {}
1210 1210
    /// \brief Called when a node is processed.
1211 1211
    ///
1212 1212
    /// This function is called when a node is processed.
1213 1213
    void process(const Node& node) {}
1214 1214
    /// \brief Called when an arc reaches a new node.
1215 1215
    ///
1216 1216
    /// This function is called when the BFS finds an arc whose target node
1217 1217
    /// is not reached yet.
1218 1218
    void discover(const Arc& arc) {}
1219 1219
    /// \brief Called when an arc is examined but its target node is
1220 1220
    /// already discovered.
1221 1221
    ///
1222 1222
    /// This function is called when an arc is examined but its target node is
1223 1223
    /// already discovered.
1224 1224
    void examine(const Arc& arc) {}
1225 1225
  };
1226 1226
#else
1227 1227
  template <typename _Digraph>
1228 1228
  struct BfsVisitor {
1229 1229
    typedef _Digraph Digraph;
1230 1230
    typedef typename Digraph::Arc Arc;
1231 1231
    typedef typename Digraph::Node Node;
1232 1232
    void start(const Node&) {}
1233 1233
    void reach(const Node&) {}
1234 1234
    void process(const Node&) {}
1235 1235
    void discover(const Arc&) {}
1236 1236
    void examine(const Arc&) {}
1237 1237

	
1238 1238
    template <typename _Visitor>
1239 1239
    struct Constraints {
1240 1240
      void constraints() {
1241 1241
        Arc arc;
1242 1242
        Node node;
1243 1243
        visitor.start(node);
1244 1244
        visitor.reach(node);
1245 1245
        visitor.process(node);
1246 1246
        visitor.discover(arc);
1247 1247
        visitor.examine(arc);
1248 1248
      }
1249 1249
      _Visitor& visitor;
1250 1250
    };
1251 1251
  };
1252 1252
#endif
1253 1253

	
1254 1254
  /// \brief Default traits class of BfsVisit class.
1255 1255
  ///
1256 1256
  /// Default traits class of BfsVisit class.
1257 1257
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1258 1258
  template<class _Digraph>
1259 1259
  struct BfsVisitDefaultTraits {
1260 1260

	
1261 1261
    /// \brief The type of the digraph the algorithm runs on.
1262 1262
    typedef _Digraph Digraph;
1263 1263

	
1264 1264
    /// \brief The type of the map that indicates which nodes are reached.
1265 1265
    ///
1266 1266
    /// The type of the map that indicates which nodes are reached.
1267 1267
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1268 1268
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1269 1269

	
1270 1270
    /// \brief Instantiates a ReachedMap.
1271 1271
    ///
1272 1272
    /// This function instantiates a ReachedMap.
1273 1273
    /// \param digraph is the digraph, to which
1274 1274
    /// we would like to define the ReachedMap.
1275 1275
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1276 1276
      return new ReachedMap(digraph);
1277 1277
    }
1278 1278

	
1279 1279
  };
1280 1280

	
1281 1281
  /// \ingroup search
1282 1282
  ///
1283 1283
  /// \brief %BFS algorithm class with visitor interface.
1284 1284
  ///
1285 1285
  /// This class provides an efficient implementation of the %BFS algorithm
1286 1286
  /// with visitor interface.
1287 1287
  ///
1288 1288
  /// The %BfsVisit class provides an alternative interface to the Bfs
1289 1289
  /// class. It works with callback mechanism, the BfsVisit object calls
1290 1290
  /// the member functions of the \c Visitor class on every BFS event.
1291 1291
  ///
1292 1292
  /// This interface of the BFS algorithm should be used in special cases
1293 1293
  /// when extra actions have to be performed in connection with certain
1294 1294
  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
1295 1295
  /// instead.
1296 1296
  ///
1297 1297
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1298 1298
  /// The default value is
1299 1299
  /// \ref ListDigraph. The value of _Digraph is not used directly by
1300 1300
  /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits.
1301 1301
  /// \tparam _Visitor The Visitor type that is used by the algorithm.
1302 1302
  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which
1303 1303
  /// does not observe the BFS events. If you want to observe the BFS
1304 1304
  /// events, you should implement your own visitor class.
1305 1305
  /// \tparam _Traits Traits class to set various data types used by the
1306 1306
  /// algorithm. The default traits class is
1307 1307
  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
1308 1308
  /// See \ref BfsVisitDefaultTraits for the documentation of
1309 1309
  /// a BFS visit traits class.
1310 1310
#ifdef DOXYGEN
1311 1311
  template <typename _Digraph, typename _Visitor, typename _Traits>
1312 1312
#else
1313 1313
  template <typename _Digraph = ListDigraph,
1314 1314
            typename _Visitor = BfsVisitor<_Digraph>,
1315 1315
            typename _Traits = BfsVisitDefaultTraits<_Digraph> >
1316 1316
#endif
1317 1317
  class BfsVisit {
1318 1318
  public:
1319 1319

	
1320 1320
    ///The traits class.
1321 1321
    typedef _Traits Traits;
1322 1322

	
1323 1323
    ///The type of the digraph the algorithm runs on.
1324 1324
    typedef typename Traits::Digraph Digraph;
1325 1325

	
1326 1326
    ///The visitor type used by the algorithm.
1327 1327
    typedef _Visitor Visitor;
1328 1328

	
1329 1329
    ///The type of the map that indicates which nodes are reached.
1330 1330
    typedef typename Traits::ReachedMap ReachedMap;
1331 1331

	
1332 1332
  private:
1333 1333

	
1334 1334
    typedef typename Digraph::Node Node;
1335 1335
    typedef typename Digraph::NodeIt NodeIt;
1336 1336
    typedef typename Digraph::Arc Arc;
1337 1337
    typedef typename Digraph::OutArcIt OutArcIt;
1338 1338

	
1339 1339
    //Pointer to the underlying digraph.
1340 1340
    const Digraph *_digraph;
1341 1341
    //Pointer to the visitor object.
1342 1342
    Visitor *_visitor;
1343 1343
    //Pointer to the map of reached status of the nodes.
1344 1344
    ReachedMap *_reached;
1345 1345
    //Indicates if _reached is locally allocated (true) or not.
1346 1346
    bool local_reached;
1347 1347

	
1348 1348
    std::vector<typename Digraph::Node> _list;
1349 1349
    int _list_front, _list_back;
1350 1350

	
1351 1351
    //Creates the maps if necessary.
1352 1352
    void create_maps() {
1353 1353
      if(!_reached) {
1354 1354
        local_reached = true;
1355 1355
        _reached = Traits::createReachedMap(*_digraph);
1356 1356
      }
1357 1357
    }
1358 1358

	
1359 1359
  protected:
1360 1360

	
1361 1361
    BfsVisit() {}
1362 1362

	
1363 1363
  public:
1364 1364

	
1365 1365
    typedef BfsVisit Create;
1366 1366

	
1367 1367
    /// \name Named Template Parameters
1368 1368

	
1369 1369
    ///@{
1370 1370
    template <class T>
1371 1371
    struct SetReachedMapTraits : public Traits {
1372 1372
      typedef T ReachedMap;
1373 1373
      static ReachedMap *createReachedMap(const Digraph &digraph) {
1374 1374
        LEMON_ASSERT(false, "ReachedMap is not initialized");
1375 1375
        return 0; // ignore warnings
1376 1376
      }
1377 1377
    };
1378 1378
    /// \brief \ref named-templ-param "Named parameter" for setting
1379 1379
    /// ReachedMap type.
1380 1380
    ///
1381 1381
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
1382 1382
    template <class T>
1383 1383
    struct SetReachedMap : public BfsVisit< Digraph, Visitor,
1384 1384
                                            SetReachedMapTraits<T> > {
1385 1385
      typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
1386 1386
    };
1387 1387
    ///@}
1388 1388

	
1389 1389
  public:
1390 1390

	
1391 1391
    /// \brief Constructor.
1392 1392
    ///
1393 1393
    /// Constructor.
1394 1394
    ///
1395 1395
    /// \param digraph The digraph the algorithm runs on.
1396 1396
    /// \param visitor The visitor object of the algorithm.
1397 1397
    BfsVisit(const Digraph& digraph, Visitor& visitor)
1398 1398
      : _digraph(&digraph), _visitor(&visitor),
1399 1399
        _reached(0), local_reached(false) {}
1400 1400

	
1401 1401
    /// \brief Destructor.
1402 1402
    ~BfsVisit() {
1403 1403
      if(local_reached) delete _reached;
1404 1404
    }
1405 1405

	
1406 1406
    /// \brief Sets the map that indicates which nodes are reached.
1407 1407
    ///
1408 1408
    /// Sets the map that indicates which nodes are reached.
1409 1409
    /// If you don't use this function before calling \ref run(Node) "run()"
1410 1410
    /// or \ref init(), an instance will be allocated automatically.
1411 1411
    /// The destructor deallocates this automatically allocated map,
1412 1412
    /// of course.
1413 1413
    /// \return <tt> (*this) </tt>
1414 1414
    BfsVisit &reachedMap(ReachedMap &m) {
1415 1415
      if(local_reached) {
1416 1416
        delete _reached;
1417 1417
        local_reached = false;
1418 1418
      }
1419 1419
      _reached = &m;
1420 1420
      return *this;
1421 1421
    }
1422 1422

	
1423 1423
  public:
1424 1424

	
1425 1425
    /// \name Execution Control
1426 1426
    /// The simplest way to execute the BFS algorithm is to use one of the
1427 1427
    /// member functions called \ref run(Node) "run()".\n
1428 1428
    /// If you need more control on the execution, first you have to call
1429 1429
    /// \ref init(), then you can add several source nodes with
1430 1430
    /// \ref addSource(). Finally the actual path computation can be
1431 1431
    /// performed with one of the \ref start() functions.
1432 1432

	
1433 1433
    /// @{
1434 1434

	
1435 1435
    /// \brief Initializes the internal data structures.
1436 1436
    ///
1437 1437
    /// Initializes the internal data structures.
1438 1438
    void init() {
1439 1439
      create_maps();
1440 1440
      _list.resize(countNodes(*_digraph));
1441 1441
      _list_front = _list_back = -1;
1442 1442
      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
1443 1443
        _reached->set(u, false);
1444 1444
      }
1445 1445
    }
1446 1446

	
1447 1447
    /// \brief Adds a new source node.
1448 1448
    ///
1449 1449
    /// Adds a new source node to the set of nodes to be processed.
1450 1450
    void addSource(Node s) {
1451 1451
      if(!(*_reached)[s]) {
1452 1452
          _reached->set(s,true);
1453 1453
          _visitor->start(s);
1454 1454
          _visitor->reach(s);
1455 1455
          _list[++_list_back] = s;
1456 1456
        }
1457 1457
    }
1458 1458

	
1459 1459
    /// \brief Processes the next node.
1460 1460
    ///
1461 1461
    /// Processes the next node.
1462 1462
    ///
1463 1463
    /// \return The processed node.
1464 1464
    ///
1465 1465
    /// \pre The queue must not be empty.
1466 1466
    Node processNextNode() {
1467 1467
      Node n = _list[++_list_front];
1468 1468
      _visitor->process(n);
1469 1469
      Arc e;
1470 1470
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1471 1471
        Node m = _digraph->target(e);
1472 1472
        if (!(*_reached)[m]) {
1473 1473
          _visitor->discover(e);
1474 1474
          _visitor->reach(m);
1475 1475
          _reached->set(m, true);
1476 1476
          _list[++_list_back] = m;
1477 1477
        } else {
1478 1478
          _visitor->examine(e);
1479 1479
        }
1480 1480
      }
1481 1481
      return n;
1482 1482
    }
1483 1483

	
1484 1484
    /// \brief Processes the next node.
1485 1485
    ///
1486 1486
    /// Processes the next node and checks if the given target node
1487 1487
    /// is reached. If the target node is reachable from the processed
1488 1488
    /// node, then the \c reach parameter will be set to \c true.
1489 1489
    ///
1490 1490
    /// \param target The target node.
1491 1491
    /// \retval reach Indicates if the target node is reached.
1492 1492
    /// It should be initially \c false.
1493 1493
    ///
1494 1494
    /// \return The processed node.
1495 1495
    ///
1496 1496
    /// \pre The queue must not be empty.
1497 1497
    Node processNextNode(Node target, bool& reach) {
1498 1498
      Node n = _list[++_list_front];
1499 1499
      _visitor->process(n);
1500 1500
      Arc e;
1501 1501
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1502 1502
        Node m = _digraph->target(e);
1503 1503
        if (!(*_reached)[m]) {
1504 1504
          _visitor->discover(e);
1505 1505
          _visitor->reach(m);
1506 1506
          _reached->set(m, true);
1507 1507
          _list[++_list_back] = m;
1508 1508
          reach = reach || (target == m);
1509 1509
        } else {
1510 1510
          _visitor->examine(e);
1511 1511
        }
1512 1512
      }
1513 1513
      return n;
1514 1514
    }
1515 1515

	
1516 1516
    /// \brief Processes the next node.
1517 1517
    ///
1518 1518
    /// Processes the next node and checks if at least one of reached
1519 1519
    /// nodes has \c true value in the \c nm node map. If one node
1520 1520
    /// with \c true value is reachable from the processed node, then the
1521 1521
    /// \c rnode parameter will be set to the first of such nodes.
1522 1522
    ///
1523 1523
    /// \param nm A \c bool (or convertible) node map that indicates the
1524 1524
    /// possible targets.
1525 1525
    /// \retval rnode The reached target node.
1526 1526
    /// It should be initially \c INVALID.
1527 1527
    ///
1528 1528
    /// \return The processed node.
1529 1529
    ///
1530 1530
    /// \pre The queue must not be empty.
1531 1531
    template <typename NM>
1532 1532
    Node processNextNode(const NM& nm, Node& rnode) {
1533 1533
      Node n = _list[++_list_front];
1534 1534
      _visitor->process(n);
1535 1535
      Arc e;
1536 1536
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1537 1537
        Node m = _digraph->target(e);
1538 1538
        if (!(*_reached)[m]) {
1539 1539
          _visitor->discover(e);
1540 1540
          _visitor->reach(m);
1541 1541
          _reached->set(m, true);
1542 1542
          _list[++_list_back] = m;
1543 1543
          if (nm[m] && rnode == INVALID) rnode = m;
1544 1544
        } else {
1545 1545
          _visitor->examine(e);
1546 1546
        }
1547 1547
      }
1548 1548
      return n;
1549 1549
    }
1550 1550

	
1551 1551
    /// \brief The next node to be processed.
1552 1552
    ///
1553 1553
    /// Returns the next node to be processed or \c INVALID if the queue
1554 1554
    /// is empty.
1555 1555
    Node nextNode() const {
1556 1556
      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
1557 1557
    }
1558 1558

	
1559 1559
    /// \brief Returns \c false if there are nodes
1560 1560
    /// to be processed.
1561 1561
    ///
1562 1562
    /// Returns \c false if there are nodes
1563 1563
    /// to be processed in the queue.
1564 1564
    bool emptyQueue() const { return _list_front == _list_back; }
1565 1565

	
1566 1566
    /// \brief Returns the number of the nodes to be processed.
1567 1567
    ///
1568 1568
    /// Returns the number of the nodes to be processed in the queue.
1569 1569
    int queueSize() const { return _list_back - _list_front; }
1570 1570

	
1571 1571
    /// \brief Executes the algorithm.
1572 1572
    ///
1573 1573
    /// Executes the algorithm.
1574 1574
    ///
1575 1575
    /// This method runs the %BFS algorithm from the root node(s)
1576 1576
    /// in order to compute the shortest path to each node.
1577 1577
    ///
1578 1578
    /// The algorithm computes
1579 1579
    /// - the shortest path tree (forest),
1580 1580
    /// - the distance of each node from the root(s).
1581 1581
    ///
1582 1582
    /// \pre init() must be called and at least one root node should be added
1583 1583
    /// with addSource() before using this function.
1584 1584
    ///
1585 1585
    /// \note <tt>b.start()</tt> is just a shortcut of the following code.
1586 1586
    /// \code
1587 1587
    ///   while ( !b.emptyQueue() ) {
1588 1588
    ///     b.processNextNode();
1589 1589
    ///   }
1590 1590
    /// \endcode
1591 1591
    void start() {
1592 1592
      while ( !emptyQueue() ) processNextNode();
1593 1593
    }
1594 1594

	
1595 1595
    /// \brief Executes the algorithm until the given target node is reached.
1596 1596
    ///
1597 1597
    /// Executes the algorithm until the given target node is reached.
1598 1598
    ///
1599 1599
    /// This method runs the %BFS algorithm from the root node(s)
1600 1600
    /// in order to compute the shortest path to \c t.
1601 1601
    ///
1602 1602
    /// The algorithm computes
1603 1603
    /// - the shortest path to \c t,
1604 1604
    /// - the distance of \c t from the root(s).
1605 1605
    ///
1606 1606
    /// \pre init() must be called and at least one root node should be
1607 1607
    /// added with addSource() before using this function.
1608 1608
    ///
1609 1609
    /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
1610 1610
    /// \code
1611 1611
    ///   bool reach = false;
1612 1612
    ///   while ( !b.emptyQueue() && !reach ) {
1613 1613
    ///     b.processNextNode(t, reach);
1614 1614
    ///   }
1615 1615
    /// \endcode
1616 1616
    void start(Node t) {
1617 1617
      bool reach = false;
1618 1618
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
1619 1619
    }
1620 1620

	
1621 1621
    /// \brief Executes the algorithm until a condition is met.
1622 1622
    ///
1623 1623
    /// Executes the algorithm until a condition is met.
1624 1624
    ///
1625 1625
    /// This method runs the %BFS algorithm from the root node(s) in
1626 1626
    /// order to compute the shortest path to a node \c v with
1627 1627
    /// <tt>nm[v]</tt> true, if such a node can be found.
1628 1628
    ///
1629 1629
    /// \param nm must be a bool (or convertible) node map. The
1630 1630
    /// algorithm will stop when it reaches a node \c v with
1631 1631
    /// <tt>nm[v]</tt> true.
1632 1632
    ///
1633 1633
    /// \return The reached node \c v with <tt>nm[v]</tt> true or
1634 1634
    /// \c INVALID if no such node was found.
1635 1635
    ///
1636 1636
    /// \pre init() must be called and at least one root node should be
1637 1637
    /// added with addSource() before using this function.
1638 1638
    ///
1639 1639
    /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
1640 1640
    /// \code
1641 1641
    ///   Node rnode = INVALID;
1642 1642
    ///   while ( !b.emptyQueue() && rnode == INVALID ) {
1643 1643
    ///     b.processNextNode(nm, rnode);
1644 1644
    ///   }
1645 1645
    ///   return rnode;
1646 1646
    /// \endcode
1647 1647
    template <typename NM>
1648 1648
    Node start(const NM &nm) {
1649 1649
      Node rnode = INVALID;
1650 1650
      while ( !emptyQueue() && rnode == INVALID ) {
1651 1651
        processNextNode(nm, rnode);
1652 1652
      }
1653 1653
      return rnode;
1654 1654
    }
1655 1655

	
1656 1656
    /// \brief Runs the algorithm from the given source node.
1657 1657
    ///
1658 1658
    /// This method runs the %BFS algorithm from node \c s
1659 1659
    /// in order to compute the shortest path to each node.
1660 1660
    ///
1661 1661
    /// The algorithm computes
1662 1662
    /// - the shortest path tree,
1663 1663
    /// - the distance of each node from the root.
1664 1664
    ///
1665 1665
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
1666 1666
    ///\code
1667 1667
    ///   b.init();
1668 1668
    ///   b.addSource(s);
1669 1669
    ///   b.start();
1670 1670
    ///\endcode
1671 1671
    void run(Node s) {
1672 1672
      init();
1673 1673
      addSource(s);
1674 1674
      start();
1675 1675
    }
1676 1676

	
1677 1677
    /// \brief Finds the shortest path between \c s and \c t.
1678 1678
    ///
1679 1679
    /// This method runs the %BFS algorithm from node \c s
1680 1680
    /// in order to compute the shortest path to node \c t
1681 1681
    /// (it stops searching when \c t is processed).
1682 1682
    ///
1683 1683
    /// \return \c true if \c t is reachable form \c s.
1684 1684
    ///
1685 1685
    /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a
1686 1686
    /// shortcut of the following code.
1687 1687
    ///\code
1688 1688
    ///   b.init();
1689 1689
    ///   b.addSource(s);
1690 1690
    ///   b.start(t);
1691 1691
    ///\endcode
1692 1692
    bool run(Node s,Node t) {
1693 1693
      init();
1694 1694
      addSource(s);
1695 1695
      start(t);
1696 1696
      return reached(t);
1697 1697
    }
1698 1698

	
1699 1699
    /// \brief Runs the algorithm to visit all nodes in the digraph.
1700 1700
    ///
1701 1701
    /// This method runs the %BFS algorithm in order to
1702 1702
    /// compute the shortest path to each node.
1703 1703
    ///
1704 1704
    /// The algorithm computes
1705 1705
    /// - the shortest path tree (forest),
1706 1706
    /// - the distance of each node from the root(s).
1707 1707
    ///
1708 1708
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
1709 1709
    ///\code
1710 1710
    ///  b.init();
1711 1711
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
1712 1712
    ///    if (!b.reached(n)) {
1713 1713
    ///      b.addSource(n);
1714 1714
    ///      b.start();
1715 1715
    ///    }
1716 1716
    ///  }
1717 1717
    ///\endcode
1718 1718
    void run() {
1719 1719
      init();
1720 1720
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
1721 1721
        if (!reached(it)) {
1722 1722
          addSource(it);
1723 1723
          start();
1724 1724
        }
1725 1725
      }
1726 1726
    }
1727 1727

	
1728 1728
    ///@}
1729 1729

	
1730 1730
    /// \name Query Functions
1731 1731
    /// The results of the BFS algorithm can be obtained using these
1732 1732
    /// functions.\n
1733 1733
    /// Either \ref run(Node) "run()" or \ref start() should be called
1734 1734
    /// before using them.
1735 1735

	
1736 1736
    ///@{
1737 1737

	
1738 1738
    /// \brief Checks if a node is reached from the root(s).
1739 1739
    ///
1740 1740
    /// Returns \c true if \c v is reached from the root(s).
1741 1741
    ///
1742 1742
    /// \pre Either \ref run(Node) "run()" or \ref init()
1743 1743
    /// must be called before using this function.
1744 1744
    bool reached(Node v) const { return (*_reached)[v]; }
1745 1745

	
1746 1746
    ///@}
1747 1747

	
1748 1748
  };
1749 1749

	
1750 1750
} //END OF NAMESPACE LEMON
1751 1751

	
1752 1752
#endif
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Binary Heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  ///\ingroup auxdat
33 33
  ///
34 34
  ///\brief A Binary Heap implementation.
35 35
  ///
36 36
  ///This class implements the \e binary \e heap data structure. A \e heap
37 37
  ///is a data structure for storing items with specified values called \e
38 38
  ///priorities in such a way that finding the item with minimum priority is
39 39
  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
40 40
  ///one can change the priority of an item, add or erase an item, etc.
41 41
  ///
42 42
  ///\tparam _Prio Type of the priority of the items.
43 43
  ///\tparam _ItemIntMap A read and writable Item int map, used internally
44 44
  ///to handle the cross references.
45 45
  ///\tparam _Compare A class for the ordering of the priorities. The
46 46
  ///default is \c std::less<_Prio>.
47 47
  ///
48 48
  ///\sa FibHeap
49 49
  ///\sa Dijkstra
50 50
  template <typename _Prio, typename _ItemIntMap,
51 51
            typename _Compare = std::less<_Prio> >
52 52
  class BinHeap {
53 53

	
54 54
  public:
55 55
    ///\e
56 56
    typedef _ItemIntMap ItemIntMap;
57 57
    ///\e
58 58
    typedef _Prio Prio;
59 59
    ///\e
60 60
    typedef typename ItemIntMap::Key Item;
61 61
    ///\e
62 62
    typedef std::pair<Item,Prio> Pair;
63 63
    ///\e
64 64
    typedef _Compare Compare;
65 65

	
66 66
    /// \brief Type to represent the items states.
67 67
    ///
68 68
    /// Each Item element have a state associated to it. It may be "in heap",
69 69
    /// "pre heap" or "post heap". The latter two are indifferent from the
70 70
    /// heap's point of view, but may be useful to the user.
71 71
    ///
72 72
    /// The ItemIntMap \e should be initialized in such way that it maps
73 73
    /// PRE_HEAP (-1) to any element to be put in the heap...
74 74
    enum State {
75 75
      IN_HEAP = 0,
76 76
      PRE_HEAP = -1,
77 77
      POST_HEAP = -2
78 78
    };
79 79

	
80 80
  private:
81 81
    std::vector<Pair> data;
82 82
    Compare comp;
83 83
    ItemIntMap &iim;
84 84

	
85 85
  public:
86 86
    /// \brief The constructor.
87 87
    ///
88 88
    /// The constructor.
89 89
    /// \param _iim should be given to the constructor, since it is used
90 90
    /// internally to handle the cross references. The value of the map
91 91
    /// should be PRE_HEAP (-1) for each element.
92 92
    explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
93 93

	
94 94
    /// \brief The constructor.
95 95
    ///
96 96
    /// The constructor.
97 97
    /// \param _iim should be given to the constructor, since it is used
98 98
    /// internally to handle the cross references. The value of the map
99 99
    /// should be PRE_HEAP (-1) for each element.
100 100
    ///
101 101
    /// \param _comp The comparator function object.
102 102
    BinHeap(ItemIntMap &_iim, const Compare &_comp)
103 103
      : iim(_iim), comp(_comp) {}
104 104

	
105 105

	
106 106
    /// The number of items stored in the heap.
107 107
    ///
108 108
    /// \brief Returns the number of items stored in the heap.
109 109
    int size() const { return data.size(); }
110 110

	
111 111
    /// \brief Checks if the heap stores no items.
112 112
    ///
113 113
    /// Returns \c true if and only if the heap stores no items.
114 114
    bool empty() const { return data.empty(); }
115 115

	
116 116
    /// \brief Make empty this heap.
117 117
    ///
118 118
    /// Make empty this heap. It does not change the cross reference map.
119 119
    /// If you want to reuse what is not surely empty you should first clear
120 120
    /// the heap and after that you should set the cross reference map for
121 121
    /// each item to \c PRE_HEAP.
122 122
    void clear() {
123 123
      data.clear();
124 124
    }
125 125

	
126 126
  private:
127 127
    static int parent(int i) { return (i-1)/2; }
128 128

	
129 129
    static int second_child(int i) { return 2*i+2; }
130 130
    bool less(const Pair &p1, const Pair &p2) const {
131 131
      return comp(p1.second, p2.second);
132 132
    }
133 133

	
134 134
    int bubble_up(int hole, Pair p) {
135 135
      int par = parent(hole);
136 136
      while( hole>0 && less(p,data[par]) ) {
137 137
        move(data[par],hole);
138 138
        hole = par;
139 139
        par = parent(hole);
140 140
      }
141 141
      move(p, hole);
142 142
      return hole;
143 143
    }
144 144

	
145 145
    int bubble_down(int hole, Pair p, int length) {
146 146
      int child = second_child(hole);
147 147
      while(child < length) {
148 148
        if( less(data[child-1], data[child]) ) {
149 149
          --child;
150 150
        }
151 151
        if( !less(data[child], p) )
152 152
          goto ok;
153 153
        move(data[child], hole);
154 154
        hole = child;
155 155
        child = second_child(hole);
156 156
      }
157 157
      child--;
158 158
      if( child<length && less(data[child], p) ) {
159 159
        move(data[child], hole);
160 160
        hole=child;
161 161
      }
162 162
    ok:
163 163
      move(p, hole);
164 164
      return hole;
165 165
    }
166 166

	
167 167
    void move(const Pair &p, int i) {
168 168
      data[i] = p;
169 169
      iim.set(p.first, i);
170 170
    }
171 171

	
172 172
  public:
173 173
    /// \brief Insert a pair of item and priority into the heap.
174 174
    ///
175 175
    /// Adds \c p.first to the heap with priority \c p.second.
176 176
    /// \param p The pair to insert.
177 177
    void push(const Pair &p) {
178 178
      int n = data.size();
179 179
      data.resize(n+1);
180 180
      bubble_up(n, p);
181 181
    }
182 182

	
183 183
    /// \brief Insert an item into the heap with the given heap.
184 184
    ///
185 185
    /// Adds \c i to the heap with priority \c p.
186 186
    /// \param i The item to insert.
187 187
    /// \param p The priority of the item.
188 188
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
189 189

	
190 190
    /// \brief Returns the item with minimum priority relative to \c Compare.
191 191
    ///
192 192
    /// This method returns the item with minimum priority relative to \c
193 193
    /// Compare.
194 194
    /// \pre The heap must be nonempty.
195 195
    Item top() const {
196 196
      return data[0].first;
197 197
    }
198 198

	
199 199
    /// \brief Returns the minimum priority relative to \c Compare.
200 200
    ///
201 201
    /// It returns the minimum priority relative to \c Compare.
202 202
    /// \pre The heap must be nonempty.
203 203
    Prio prio() const {
204 204
      return data[0].second;
205 205
    }
206 206

	
207 207
    /// \brief Deletes the item with minimum priority relative to \c Compare.
208 208
    ///
209 209
    /// This method deletes the item with minimum priority relative to \c
210 210
    /// Compare from the heap.
211 211
    /// \pre The heap must be non-empty.
212 212
    void pop() {
213 213
      int n = data.size()-1;
214 214
      iim.set(data[0].first, POST_HEAP);
215 215
      if (n > 0) {
216 216
        bubble_down(0, data[n], n);
217 217
      }
218 218
      data.pop_back();
219 219
    }
220 220

	
221 221
    /// \brief Deletes \c i from the heap.
222 222
    ///
223 223
    /// This method deletes item \c i from the heap.
224 224
    /// \param i The item to erase.
225 225
    /// \pre The item should be in the heap.
226 226
    void erase(const Item &i) {
227 227
      int h = iim[i];
228 228
      int n = data.size()-1;
229 229
      iim.set(data[h].first, POST_HEAP);
230 230
      if( h < n ) {
231 231
        if ( bubble_up(h, data[n]) == h) {
232 232
          bubble_down(h, data[n], n);
233 233
        }
234 234
      }
235 235
      data.pop_back();
236 236
    }
237 237

	
238 238

	
239 239
    /// \brief Returns the priority of \c i.
240 240
    ///
241 241
    /// This function returns the priority of item \c i.
242 242
    /// \pre \c i must be in the heap.
243 243
    /// \param i The item.
244 244
    Prio operator[](const Item &i) const {
245 245
      int idx = iim[i];
246 246
      return data[idx].second;
247 247
    }
248 248

	
249 249
    /// \brief \c i gets to the heap with priority \c p independently
250 250
    /// if \c i was already there.
251 251
    ///
252 252
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
253 253
    /// in the heap and sets the priority of \c i to \c p otherwise.
254 254
    /// \param i The item.
255 255
    /// \param p The priority.
256 256
    void set(const Item &i, const Prio &p) {
257 257
      int idx = iim[i];
258 258
      if( idx < 0 ) {
259 259
        push(i,p);
260 260
      }
261 261
      else if( comp(p, data[idx].second) ) {
262 262
        bubble_up(idx, Pair(i,p));
263 263
      }
264 264
      else {
265 265
        bubble_down(idx, Pair(i,p), data.size());
266 266
      }
267 267
    }
268 268

	
269 269
    /// \brief Decreases the priority of \c i to \c p.
270 270
    ///
271 271
    /// This method decreases the priority of item \c i to \c p.
272 272
    /// \pre \c i must be stored in the heap with priority at least \c
273 273
    /// p relative to \c Compare.
274 274
    /// \param i The item.
275 275
    /// \param p The priority.
276 276
    void decrease(const Item &i, const Prio &p) {
277 277
      int idx = iim[i];
278 278
      bubble_up(idx, Pair(i,p));
279 279
    }
280 280

	
281 281
    /// \brief Increases the priority of \c i to \c p.
282 282
    ///
283 283
    /// This method sets the priority of item \c i to \c p.
284 284
    /// \pre \c i must be stored in the heap with priority at most \c
285 285
    /// p relative to \c Compare.
286 286
    /// \param i The item.
287 287
    /// \param p The priority.
288 288
    void increase(const Item &i, const Prio &p) {
289 289
      int idx = iim[i];
290 290
      bubble_down(idx, Pair(i,p), data.size());
291 291
    }
292 292

	
293 293
    /// \brief Returns if \c item is in, has already been in, or has
294 294
    /// never been in the heap.
295 295
    ///
296 296
    /// This method returns PRE_HEAP if \c item has never been in the
297 297
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
298 298
    /// otherwise. In the latter case it is possible that \c item will
299 299
    /// get back to the heap again.
300 300
    /// \param i The item.
301 301
    State state(const Item &i) const {
302 302
      int s = iim[i];
303 303
      if( s>=0 )
304 304
        s=0;
305 305
      return State(s);
306 306
    }
307 307

	
308 308
    /// \brief Sets the state of the \c item in the heap.
309 309
    ///
310 310
    /// Sets the state of the \c item in the heap. It can be used to
311 311
    /// manually clear the heap when it is important to achive the
312 312
    /// better time complexity.
313 313
    /// \param i The item.
314 314
    /// \param st The state. It should not be \c IN_HEAP.
315 315
    void state(const Item& i, State st) {
316 316
      switch (st) {
317 317
      case POST_HEAP:
318 318
      case PRE_HEAP:
319 319
        if (state(i) == IN_HEAP) {
320 320
          erase(i);
321 321
        }
322 322
        iim[i] = st;
323 323
        break;
324 324
      case IN_HEAP:
325 325
        break;
326 326
      }
327 327
    }
328 328

	
329 329
    /// \brief Replaces an item in the heap.
330 330
    ///
331 331
    /// The \c i item is replaced with \c j item. The \c i item should
332 332
    /// be in the heap, while the \c j should be out of the heap. The
333 333
    /// \c i item will out of the heap and \c j will be in the heap
334 334
    /// with the same prioriority as prevoiusly the \c i item.
335 335
    void replace(const Item& i, const Item& j) {
336 336
      int idx = iim[i];
337 337
      iim.set(i, iim[j]);
338 338
      iim.set(j, idx);
339 339
      data[idx].first = j;
340 340
    }
341 341

	
342 342
  }; // class BinHeap
343 343

	
344 344
} // namespace lemon
345 345

	
346 346
#endif // LEMON_BIN_HEAP_H
Show white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H
20 20
#define LEMON_BITS_ALTERATION_NOTIFIER_H
21 21

	
22 22
#include <vector>
23 23
#include <list>
24 24

	
25 25
#include <lemon/core.h>
26 26

	
27 27
//\ingroup graphbits
28 28
//\file
29 29
//\brief Observer notifier for graph alteration observers.
30 30

	
31 31
namespace lemon {
32 32

	
33 33
  // \ingroup graphbits
34 34
  //
35 35
  // \brief Notifier class to notify observes about alterations in
36 36
  // a container.
37 37
  //
38 38
  // The simple graphs can be refered as two containers: a node container
39 39
  // and an edge container. But they do not store values directly, they
40 40
  // are just key continars for more value containers, which are the
41 41
  // node and edge maps.
42 42
  //
43 43
  // The node and edge sets of the graphs can be changed as we add or erase
44 44
  // nodes and edges in the graph. LEMON would like to handle easily
45 45
  // that the node and edge maps should contain values for all nodes or
46 46
  // edges. If we want to check on every indicing if the map contains
47 47
  // the current indicing key that cause a drawback in the performance
48 48
  // in the library. We use another solution: we notify all maps about
49 49
  // an alteration in the graph, which cause only drawback on the
50 50
  // alteration of the graph.
51 51
  //
52 52
  // This class provides an interface to a node or edge container.
53 53
  // The first() and next() member functions make possible
54 54
  // to iterate on the keys of the container.
55 55
  // The id() function returns an integer id for each key.
56 56
  // The maxId() function gives back an upper bound of the ids.
57 57
  //
58 58
  // For the proper functonality of this class, we should notify it
59 59
  // about each alteration in the container. The alterations have four type:
60 60
  // add(), erase(), build() and clear(). The add() and
61 61
  // erase() signal that only one or few items added or erased to or
62 62
  // from the graph. If all items are erased from the graph or if a new graph
63 63
  // is built from an empty graph, then it can be signaled with the
64 64
  // clear() and build() members. Important rule that if we erase items
65 65
  // from graphs we should first signal the alteration and after that erase
66 66
  // them from the container, on the other way on item addition we should
67 67
  // first extend the container and just after that signal the alteration.
68 68
  //
69 69
  // The alteration can be observed with a class inherited from the
70 70
  // ObserverBase nested class. The signals can be handled with
71 71
  // overriding the virtual functions defined in the base class.  The
72 72
  // observer base can be attached to the notifier with the
73 73
  // attach() member and can be detached with detach() function. The
74 74
  // alteration handlers should not call any function which signals
75 75
  // an other alteration in the same notifier and should not
76 76
  // detach any observer from the notifier.
77 77
  //
78 78
  // Alteration observers try to be exception safe. If an add() or
79 79
  // a clear() function throws an exception then the remaining
80 80
  // observeres will not be notified and the fulfilled additions will
81 81
  // be rolled back by calling the erase() or clear() functions.
82 82
  // Hence erase() and clear() should not throw exception.
83 83
  // Actullay, they can throw only \ref ImmediateDetach exception,
84 84
  // which detach the observer from the notifier.
85 85
  //
86 86
  // There are some cases, when the alteration observing is not completly
87 87
  // reliable. If we want to carry out the node degree in the graph
88 88
  // as in the \ref InDegMap and we use the reverseArc(), then it cause
89 89
  // unreliable functionality. Because the alteration observing signals
90 90
  // only erasing and adding but not the reversing, it will stores bad
91 91
  // degrees. Apart form that the subgraph adaptors cannot even signal
92 92
  // the alterations because just a setting in the filter map can modify
93 93
  // the graph and this cannot be watched in any way.
94 94
  //
95 95
  // \param _Container The container which is observed.
96 96
  // \param _Item The item type which is obserbved.
97 97

	
98 98
  template <typename _Container, typename _Item>
99 99
  class AlterationNotifier {
100 100
  public:
101 101

	
102 102
    typedef True Notifier;
103 103

	
104 104
    typedef _Container Container;
105 105
    typedef _Item Item;
106 106

	
107 107
    // \brief Exception which can be called from clear() and
108 108
    // erase().
109 109
    //
110 110
    // From the clear() and erase() function only this
111 111
    // exception is allowed to throw. The exception immediatly
112 112
    // detaches the current observer from the notifier. Because the
113 113
    // clear() and erase() should not throw other exceptions
114 114
    // it can be used to invalidate the observer.
115 115
    struct ImmediateDetach {};
116 116

	
117 117
    // \brief ObserverBase is the base class for the observers.
118 118
    //
119 119
    // ObserverBase is the abstract base class for the observers.
120 120
    // It will be notified about an item was inserted into or
121 121
    // erased from the graph.
122 122
    //
123 123
    // The observer interface contains some pure virtual functions
124 124
    // to override. The add() and erase() functions are
125 125
    // to notify the oberver when one item is added or erased.
126 126
    //
127 127
    // The build() and clear() members are to notify the observer
128 128
    // about the container is built from an empty container or
129 129
    // is cleared to an empty container.
130 130
    class ObserverBase {
131 131
    protected:
132 132
      typedef AlterationNotifier Notifier;
133 133

	
134 134
      friend class AlterationNotifier;
135 135

	
136 136
      // \brief Default constructor.
137 137
      //
138 138
      // Default constructor for ObserverBase.
139 139
      ObserverBase() : _notifier(0) {}
140 140

	
141 141
      // \brief Constructor which attach the observer into notifier.
142 142
      //
143 143
      // Constructor which attach the observer into notifier.
144 144
      ObserverBase(AlterationNotifier& nf) {
145 145
        attach(nf);
146 146
      }
147 147

	
148 148
      // \brief Constructor which attach the obserever to the same notifier.
149 149
      //
150 150
      // Constructor which attach the obserever to the same notifier as
151 151
      // the other observer is attached to.
152 152
      ObserverBase(const ObserverBase& copy) {
153 153
        if (copy.attached()) {
154 154
          attach(*copy.notifier());
155 155
        }
156 156
      }
157 157

	
158 158
      // \brief Destructor
159 159
      virtual ~ObserverBase() {
160 160
        if (attached()) {
161 161
          detach();
162 162
        }
163 163
      }
164 164

	
165 165
      // \brief Attaches the observer into an AlterationNotifier.
166 166
      //
167 167
      // This member attaches the observer into an AlterationNotifier.
168 168
      void attach(AlterationNotifier& nf) {
169 169
        nf.attach(*this);
170 170
      }
171 171

	
172 172
      // \brief Detaches the observer into an AlterationNotifier.
173 173
      //
174 174
      // This member detaches the observer from an AlterationNotifier.
175 175
      void detach() {
176 176
        _notifier->detach(*this);
177 177
      }
178 178

	
179 179
      // \brief Gives back a pointer to the notifier which the map
180 180
      // attached into.
181 181
      //
182 182
      // This function gives back a pointer to the notifier which the map
183 183
      // attached into.
184 184
      Notifier* notifier() const { return const_cast<Notifier*>(_notifier); }
185 185

	
186 186
      // Gives back true when the observer is attached into a notifier.
187 187
      bool attached() const { return _notifier != 0; }
188 188

	
189 189
    private:
190 190

	
191 191
      ObserverBase& operator=(const ObserverBase& copy);
192 192

	
193 193
    protected:
194 194

	
195 195
      Notifier* _notifier;
196 196
      typename std::list<ObserverBase*>::iterator _index;
197 197

	
198 198
      // \brief The member function to notificate the observer about an
199 199
      // item is added to the container.
200 200
      //
201 201
      // The add() member function notificates the observer about an item
202 202
      // is added to the container. It have to be overrided in the
203 203
      // subclasses.
204 204
      virtual void add(const Item&) = 0;
205 205

	
206 206
      // \brief The member function to notificate the observer about
207 207
      // more item is added to the container.
208 208
      //
209 209
      // The add() member function notificates the observer about more item
210 210
      // is added to the container. It have to be overrided in the
211 211
      // subclasses.
212 212
      virtual void add(const std::vector<Item>& items) = 0;
213 213

	
214 214
      // \brief The member function to notificate the observer about an
215 215
      // item is erased from the container.
216 216
      //
217 217
      // The erase() member function notificates the observer about an
218 218
      // item is erased from the container. It have to be overrided in
219 219
      // the subclasses.
220 220
      virtual void erase(const Item&) = 0;
221 221

	
222 222
      // \brief The member function to notificate the observer about
223 223
      // more item is erased from the container.
224 224
      //
225 225
      // The erase() member function notificates the observer about more item
226 226
      // is erased from the container. It have to be overrided in the
227 227
      // subclasses.
228 228
      virtual void erase(const std::vector<Item>& items) = 0;
229 229

	
230 230
      // \brief The member function to notificate the observer about the
231 231
      // container is built.
232 232
      //
233 233
      // The build() member function notificates the observer about the
234 234
      // container is built from an empty container. It have to be
235 235
      // overrided in the subclasses.
236 236
      virtual void build() = 0;
237 237

	
238 238
      // \brief The member function to notificate the observer about all
239 239
      // items are erased from the container.
240 240
      //
241 241
      // The clear() member function notificates the observer about all
242 242
      // items are erased from the container. It have to be overrided in
243 243
      // the subclasses.
244 244
      virtual void clear() = 0;
245 245

	
246 246
    };
247 247

	
248 248
  protected:
249 249

	
250 250
    const Container* container;
251 251

	
252 252
    typedef std::list<ObserverBase*> Observers;
253 253
    Observers _observers;
254 254

	
255 255

	
256 256
  public:
257 257

	
258 258
    // \brief Default constructor.
259 259
    //
260 260
    // The default constructor of the AlterationNotifier.
261 261
    // It creates an empty notifier.
262 262
    AlterationNotifier()
263 263
      : container(0) {}
264 264

	
265 265
    // \brief Constructor.
266 266
    //
267 267
    // Constructor with the observed container parameter.
268 268
    AlterationNotifier(const Container& _container)
269 269
      : container(&_container) {}
270 270

	
271 271
    // \brief Copy Constructor of the AlterationNotifier.
272 272
    //
273 273
    // Copy constructor of the AlterationNotifier.
274 274
    // It creates only an empty notifier because the copiable
275 275
    // notifier's observers have to be registered still into that notifier.
276 276
    AlterationNotifier(const AlterationNotifier& _notifier)
277 277
      : container(_notifier.container) {}
278 278

	
279 279
    // \brief Destructor.
280 280
    //
281 281
    // Destructor of the AlterationNotifier.
282 282
    ~AlterationNotifier() {
283 283
      typename Observers::iterator it;
284 284
      for (it = _observers.begin(); it != _observers.end(); ++it) {
285 285
        (*it)->_notifier = 0;
286 286
      }
287 287
    }
288 288

	
289 289
    // \brief Sets the container.
290 290
    //
291 291
    // Sets the container.
292 292
    void setContainer(const Container& _container) {
293 293
      container = &_container;
294 294
    }
295 295

	
296 296
  protected:
297 297

	
298 298
    AlterationNotifier& operator=(const AlterationNotifier&);
299 299

	
300 300
  public:
301 301

	
302 302
    // \brief First item in the container.
303 303
    //
304 304
    // Returns the first item in the container. It is
305 305
    // for start the iteration on the container.
306 306
    void first(Item& item) const {
307 307
      container->first(item);
308 308
    }
309 309

	
310 310
    // \brief Next item in the container.
311 311
    //
312 312
    // Returns the next item in the container. It is
313 313
    // for iterate on the container.
314 314
    void next(Item& item) const {
315 315
      container->next(item);
316 316
    }
317 317

	
318 318
    // \brief Returns the id of the item.
319 319
    //
320 320
    // Returns the id of the item provided by the container.
321 321
    int id(const Item& item) const {
322 322
      return container->id(item);
323 323
    }
324 324

	
325 325
    // \brief Returns the maximum id of the container.
326 326
    //
327 327
    // Returns the maximum id of the container.
328 328
    int maxId() const {
329 329
      return container->maxId(Item());
330 330
    }
331 331

	
332 332
  protected:
333 333

	
334 334
    void attach(ObserverBase& observer) {
335 335
      observer._index = _observers.insert(_observers.begin(), &observer);
336 336
      observer._notifier = this;
337 337
    }
338 338

	
339 339
    void detach(ObserverBase& observer) {
340 340
      _observers.erase(observer._index);
341 341
      observer._index = _observers.end();
342 342
      observer._notifier = 0;
343 343
    }
344 344

	
345 345
  public:
346 346

	
347 347
    // \brief Notifies all the registed observers about an item added to
348 348
    // the container.
349 349
    //
350 350
    // It notifies all the registed observers about an item added to
351 351
    // the container.
352 352
    void add(const Item& item) {
353 353
      typename Observers::reverse_iterator it;
354 354
      try {
355 355
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
356 356
          (*it)->add(item);
357 357
        }
358 358
      } catch (...) {
359 359
        typename Observers::iterator jt;
360 360
        for (jt = it.base(); jt != _observers.end(); ++jt) {
361 361
          (*jt)->erase(item);
362 362
        }
363 363
        throw;
364 364
      }
365 365
    }
366 366

	
367 367
    // \brief Notifies all the registed observers about more item added to
368 368
    // the container.
369 369
    //
370 370
    // It notifies all the registed observers about more item added to
371 371
    // the container.
372 372
    void add(const std::vector<Item>& items) {
373 373
      typename Observers::reverse_iterator it;
374 374
      try {
375 375
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
376 376
          (*it)->add(items);
377 377
        }
378 378
      } catch (...) {
379 379
        typename Observers::iterator jt;
380 380
        for (jt = it.base(); jt != _observers.end(); ++jt) {
381 381
          (*jt)->erase(items);
382 382
        }
383 383
        throw;
384 384
      }
385 385
    }
386 386

	
387 387
    // \brief Notifies all the registed observers about an item erased from
388 388
    // the container.
389 389
    //
390 390
    // It notifies all the registed observers about an item erased from
391 391
    // the container.
392 392
    void erase(const Item& item) throw() {
393 393
      typename Observers::iterator it = _observers.begin();
394 394
      while (it != _observers.end()) {
395 395
        try {
396 396
          (*it)->erase(item);
397 397
          ++it;
398 398
        } catch (const ImmediateDetach&) {
399 399
          (*it)->_index = _observers.end();
400 400
          (*it)->_notifier = 0;
401 401
          it = _observers.erase(it);
402 402
        }
403 403
      }
404 404
    }
405 405

	
406 406
    // \brief Notifies all the registed observers about more item erased
407 407
    // from the container.
408 408
    //
409 409
    // It notifies all the registed observers about more item erased from
410 410
    // the container.
411 411
    void erase(const std::vector<Item>& items) {
412 412
      typename Observers::iterator it = _observers.begin();
413 413
      while (it != _observers.end()) {
414 414
        try {
415 415
          (*it)->erase(items);
416 416
          ++it;
417 417
        } catch (const ImmediateDetach&) {
418 418
          (*it)->_index = _observers.end();
419 419
          (*it)->_notifier = 0;
420 420
          it = _observers.erase(it);
421 421
        }
422 422
      }
423 423
    }
424 424

	
425 425
    // \brief Notifies all the registed observers about the container is
426 426
    // built.
427 427
    //
428 428
    // Notifies all the registed observers about the container is built
429 429
    // from an empty container.
430 430
    void build() {
431 431
      typename Observers::reverse_iterator it;
432 432
      try {
433 433
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
434 434
          (*it)->build();
435 435
        }
436 436
      } catch (...) {
437 437
        typename Observers::iterator jt;
438 438
        for (jt = it.base(); jt != _observers.end(); ++jt) {
439 439
          (*jt)->clear();
440 440
        }
441 441
        throw;
442 442
      }
443 443
    }
444 444

	
445 445
    // \brief Notifies all the registed observers about all items are
446 446
    // erased.
447 447
    //
448 448
    // Notifies all the registed observers about all items are erased
449 449
    // from the container.
450 450
    void clear() {
451 451
      typename Observers::iterator it = _observers.begin();
452 452
      while (it != _observers.end()) {
453 453
        try {
454 454
          (*it)->clear();
455 455
          ++it;
456 456
        } catch (const ImmediateDetach&) {
457 457
          (*it)->_index = _observers.end();
458 458
          (*it)->_notifier = 0;
459 459
          it = _observers.erase(it);
460 460
        }
461 461
      }
462 462
    }
463 463
  };
464 464

	
465 465
}
466 466

	
467 467
#endif

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)