... | ... |
@@ -133,52 +133,55 @@ |
133 | 133 |
// Result maps |
134 | 134 |
FlowMap *_flow_map; |
135 | 135 |
PotentialMap *_potential_map; |
136 | 136 |
bool _local_flow; |
137 | 137 |
bool _local_potential; |
138 | 138 |
|
139 | 139 |
// The number of nodes and arcs in the original graph |
140 | 140 |
int _node_num; |
141 | 141 |
int _arc_num; |
142 | 142 |
|
143 | 143 |
// Data structures for storing the graph |
144 | 144 |
IntNodeMap _node_id; |
145 | 145 |
ArcVector _arc_ref; |
146 | 146 |
IntVector _source; |
147 | 147 |
IntVector _target; |
148 | 148 |
|
149 | 149 |
// Node and arc maps |
150 | 150 |
CapacityVector _cap; |
151 | 151 |
CostVector _cost; |
152 | 152 |
CostVector _supply; |
153 | 153 |
CapacityVector _flow; |
154 | 154 |
CostVector _pi; |
155 | 155 |
|
156 | 156 |
// Data for storing the spanning tree structure |
157 |
IntVector _depth; |
|
158 | 157 |
IntVector _parent; |
159 | 158 |
IntVector _pred; |
160 | 159 |
IntVector _thread; |
160 |
IntVector _rev_thread; |
|
161 |
IntVector _succ_num; |
|
162 |
IntVector _last_succ; |
|
163 |
IntVector _dirty_revs; |
|
161 | 164 |
BoolVector _forward; |
162 | 165 |
IntVector _state; |
163 | 166 |
int _root; |
164 | 167 |
|
165 | 168 |
// Temporary data used in the current pivot iteration |
166 | 169 |
int in_arc, join, u_in, v_in, u_out, v_out; |
167 | 170 |
int first, second, right, last; |
168 | 171 |
int stem, par_stem, new_stem; |
169 | 172 |
Capacity delta; |
170 | 173 |
|
171 | 174 |
private: |
172 | 175 |
|
173 | 176 |
/// \brief Implementation of the "First Eligible" pivot rule for the |
174 | 177 |
/// \ref NetworkSimplex "network simplex" algorithm. |
175 | 178 |
/// |
176 | 179 |
/// This class implements the "First Eligible" pivot rule |
177 | 180 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
178 | 181 |
/// |
179 | 182 |
/// For more information see \ref NetworkSimplex::run(). |
180 | 183 |
class FirstEligiblePivotRule |
181 | 184 |
{ |
182 | 185 |
private: |
183 | 186 |
|
184 | 187 |
// References to the NetworkSimplex class |
... | ... |
@@ -829,149 +832,156 @@ |
829 | 832 |
_flow_map = new FlowMap(_graph); |
830 | 833 |
_local_flow = true; |
831 | 834 |
} |
832 | 835 |
if (!_potential_map) { |
833 | 836 |
_potential_map = new PotentialMap(_graph); |
834 | 837 |
_local_potential = true; |
835 | 838 |
} |
836 | 839 |
|
837 | 840 |
// Initialize vectors |
838 | 841 |
_node_num = countNodes(_graph); |
839 | 842 |
_arc_num = countArcs(_graph); |
840 | 843 |
int all_node_num = _node_num + 1; |
841 | 844 |
int all_arc_num = _arc_num + _node_num; |
842 | 845 |
|
843 | 846 |
_arc_ref.resize(_arc_num); |
844 | 847 |
_source.resize(all_arc_num); |
845 | 848 |
_target.resize(all_arc_num); |
846 | 849 |
|
847 | 850 |
_cap.resize(all_arc_num); |
848 | 851 |
_cost.resize(all_arc_num); |
849 | 852 |
_supply.resize(all_node_num); |
850 | 853 |
_flow.resize(all_arc_num, 0); |
851 | 854 |
_pi.resize(all_node_num, 0); |
852 | 855 |
|
853 |
_depth.resize(all_node_num); |
|
854 | 856 |
_parent.resize(all_node_num); |
855 | 857 |
_pred.resize(all_node_num); |
856 | 858 |
_forward.resize(all_node_num); |
857 | 859 |
_thread.resize(all_node_num); |
860 |
_rev_thread.resize(all_node_num); |
|
861 |
_succ_num.resize(all_node_num); |
|
862 |
_last_succ.resize(all_node_num); |
|
858 | 863 |
_state.resize(all_arc_num, STATE_LOWER); |
859 | 864 |
|
860 | 865 |
// Initialize node related data |
861 | 866 |
bool valid_supply = true; |
862 | 867 |
if (_orig_supply) { |
863 | 868 |
Supply sum = 0; |
864 | 869 |
int i = 0; |
865 | 870 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
866 | 871 |
_node_id[n] = i; |
867 | 872 |
_supply[i] = (*_orig_supply)[n]; |
868 | 873 |
sum += _supply[i]; |
869 | 874 |
} |
870 | 875 |
valid_supply = (sum == 0); |
871 | 876 |
} else { |
872 | 877 |
int i = 0; |
873 | 878 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
874 | 879 |
_node_id[n] = i; |
875 | 880 |
_supply[i] = 0; |
876 | 881 |
} |
877 | 882 |
_supply[_node_id[_orig_source]] = _orig_flow_value; |
878 | 883 |
_supply[_node_id[_orig_target]] = -_orig_flow_value; |
879 | 884 |
} |
880 | 885 |
if (!valid_supply) return false; |
881 | 886 |
|
882 | 887 |
// Set data for the artificial root node |
883 | 888 |
_root = _node_num; |
884 |
_depth[_root] = 0; |
|
885 | 889 |
_parent[_root] = -1; |
886 | 890 |
_pred[_root] = -1; |
887 | 891 |
_thread[_root] = 0; |
892 |
_rev_thread[0] = _root; |
|
893 |
_succ_num[_root] = all_node_num; |
|
894 |
_last_succ[_root] = _root - 1; |
|
888 | 895 |
_supply[_root] = 0; |
889 | 896 |
_pi[_root] = 0; |
890 | 897 |
|
891 | 898 |
// Store the arcs in a mixed order |
892 | 899 |
int k = std::max(int(sqrt(_arc_num)), 10); |
893 | 900 |
int i = 0; |
894 | 901 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
895 | 902 |
_arc_ref[i] = e; |
896 | 903 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
897 | 904 |
} |
898 | 905 |
|
899 | 906 |
// Initialize arc maps |
900 | 907 |
for (int i = 0; i != _arc_num; ++i) { |
901 | 908 |
Arc e = _arc_ref[i]; |
902 | 909 |
_source[i] = _node_id[_graph.source(e)]; |
903 | 910 |
_target[i] = _node_id[_graph.target(e)]; |
904 | 911 |
_cost[i] = _orig_cost[e]; |
905 | 912 |
_cap[i] = _orig_cap[e]; |
906 | 913 |
} |
907 | 914 |
|
908 | 915 |
// Remove non-zero lower bounds |
909 | 916 |
if (_orig_lower) { |
910 | 917 |
for (int i = 0; i != _arc_num; ++i) { |
911 | 918 |
Capacity c = (*_orig_lower)[_arc_ref[i]]; |
912 | 919 |
if (c != 0) { |
913 | 920 |
_cap[i] -= c; |
914 | 921 |
_supply[_source[i]] -= c; |
915 | 922 |
_supply[_target[i]] += c; |
916 | 923 |
} |
917 | 924 |
} |
918 | 925 |
} |
919 | 926 |
|
920 | 927 |
// Add artificial arcs and initialize the spanning tree data structure |
921 | 928 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
922 | 929 |
Capacity max_cap = std::numeric_limits<Capacity>::max(); |
923 | 930 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
924 | 931 |
_thread[u] = u + 1; |
925 |
|
|
932 |
_rev_thread[u + 1] = u; |
|
933 |
_succ_num[u] = 1; |
|
934 |
_last_succ[u] = u; |
|
926 | 935 |
_parent[u] = _root; |
927 | 936 |
_pred[u] = e; |
928 | 937 |
if (_supply[u] >= 0) { |
929 | 938 |
_flow[e] = _supply[u]; |
930 | 939 |
_forward[u] = true; |
931 | 940 |
_pi[u] = -max_cost; |
932 | 941 |
} else { |
933 | 942 |
_flow[e] = -_supply[u]; |
934 | 943 |
_forward[u] = false; |
935 | 944 |
_pi[u] = max_cost; |
936 | 945 |
} |
937 | 946 |
_cost[e] = max_cost; |
938 | 947 |
_cap[e] = max_cap; |
939 | 948 |
_state[e] = STATE_TREE; |
940 | 949 |
} |
941 | 950 |
|
942 | 951 |
return true; |
943 | 952 |
} |
944 | 953 |
|
945 | 954 |
// Find the join node |
946 | 955 |
void findJoinNode() { |
947 | 956 |
int u = _source[in_arc]; |
948 | 957 |
int v = _target[in_arc]; |
949 |
while (_depth[u] > _depth[v]) u = _parent[u]; |
|
950 |
while (_depth[v] > _depth[u]) v = _parent[v]; |
|
951 | 958 |
while (u != v) { |
952 |
u = _parent[u]; |
|
953 |
v = _parent[v]; |
|
959 |
if (_succ_num[u] < _succ_num[v]) { |
|
960 |
u = _parent[u]; |
|
961 |
} else { |
|
962 |
v = _parent[v]; |
|
963 |
} |
|
954 | 964 |
} |
955 | 965 |
join = u; |
956 | 966 |
} |
957 | 967 |
|
958 | 968 |
// Find the leaving arc of the cycle and returns true if the |
959 | 969 |
// leaving arc is not the same as the entering arc |
960 | 970 |
bool findLeavingArc() { |
961 | 971 |
// Initialize first and second nodes according to the direction |
962 | 972 |
// of the cycle |
963 | 973 |
if (_state[in_arc] == STATE_LOWER) { |
964 | 974 |
first = _source[in_arc]; |
965 | 975 |
second = _target[in_arc]; |
966 | 976 |
} else { |
967 | 977 |
first = _target[in_arc]; |
968 | 978 |
second = _source[in_arc]; |
969 | 979 |
} |
970 | 980 |
delta = _cap[in_arc]; |
971 | 981 |
int result = 0; |
972 | 982 |
Capacity d; |
973 | 983 |
int e; |
974 | 984 |
|
975 | 985 |
// Search the cycle along the path form the first node to the root |
976 | 986 |
for (int u = first; u != join; u = _parent[u]) { |
977 | 987 |
e = _pred[u]; |
... | ... |
@@ -1005,164 +1015,222 @@ |
1005 | 1015 |
|
1006 | 1016 |
// Change _flow and _state vectors |
1007 | 1017 |
void changeFlow(bool change) { |
1008 | 1018 |
// Augment along the cycle |
1009 | 1019 |
if (delta > 0) { |
1010 | 1020 |
Capacity val = _state[in_arc] * delta; |
1011 | 1021 |
_flow[in_arc] += val; |
1012 | 1022 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1013 | 1023 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1014 | 1024 |
} |
1015 | 1025 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1016 | 1026 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1017 | 1027 |
} |
1018 | 1028 |
} |
1019 | 1029 |
// Update the state of the entering and leaving arcs |
1020 | 1030 |
if (change) { |
1021 | 1031 |
_state[in_arc] = STATE_TREE; |
1022 | 1032 |
_state[_pred[u_out]] = |
1023 | 1033 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1024 | 1034 |
} else { |
1025 | 1035 |
_state[in_arc] = -_state[in_arc]; |
1026 | 1036 |
} |
1027 | 1037 |
} |
1028 | 1038 |
|
1029 |
// Update _thread and _parent vectors |
|
1030 |
void updateThreadParent() { |
|
1031 |
|
|
1039 |
// Update the tree structure |
|
1040 |
void updateTreeStructure() { |
|
1041 |
int u, w; |
|
1042 |
int old_rev_thread = _rev_thread[u_out]; |
|
1043 |
int old_succ_num = _succ_num[u_out]; |
|
1044 |
int old_last_succ = _last_succ[u_out]; |
|
1032 | 1045 |
v_out = _parent[u_out]; |
1033 | 1046 |
|
1034 |
// Handle the case when join and v_out coincide |
|
1035 |
bool par_first = false; |
|
1036 |
if (join == v_out) { |
|
1037 |
for (u = join; u != u_in && u != v_in; u = _thread[u]) ; |
|
1038 |
if (u == v_in) { |
|
1039 |
par_first = true; |
|
1040 |
while (_thread[u] != u_out) u = _thread[u]; |
|
1041 |
first = u; |
|
1042 |
|
|
1047 |
u = _last_succ[u_in]; // the last successor of u_in |
|
1048 |
right = _thread[u]; // the node after it |
|
1049 |
|
|
1050 |
// Handle the case when old_rev_thread equals to v_in |
|
1051 |
// (it also means that join and v_out coincide) |
|
1052 |
if (old_rev_thread == v_in) { |
|
1053 |
last = _thread[_last_succ[u_out]]; |
|
1054 |
} else { |
|
1055 |
last = _thread[v_in]; |
|
1043 | 1056 |
} |
1044 | 1057 |
|
1045 |
// Find the last successor of u_in (u) and the node after it (right) |
|
1046 |
// according to the thread index |
|
1047 |
for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ; |
|
1048 |
right = _thread[u]; |
|
1049 |
if (_thread[v_in] == u_out) { |
|
1050 |
for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ; |
|
1051 |
if (last == u_out) last = _thread[last]; |
|
1052 |
} |
|
1053 |
else last = _thread[v_in]; |
|
1054 |
|
|
1055 |
// Update stem nodes |
|
1058 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
|
1059 |
// between u_in and u_out, whose parent have to be changed) |
|
1056 | 1060 |
_thread[v_in] = stem = u_in; |
1061 |
_dirty_revs.clear(); |
|
1062 |
_dirty_revs.push_back(v_in); |
|
1057 | 1063 |
par_stem = v_in; |
1058 | 1064 |
while (stem != u_out) { |
1059 |
|
|
1065 |
// Insert the next stem node into the thread list |
|
1066 |
new_stem = _parent[stem]; |
|
1067 |
_thread[u] = new_stem; |
|
1068 |
_dirty_revs.push_back(u); |
|
1060 | 1069 |
|
1061 |
// Find the node just before the stem node (u) according to |
|
1062 |
// the original thread index |
|
1063 |
for (u = new_stem; _thread[u] != stem; u = _thread[u]) ; |
|
1064 |
_thread[u] = right; |
|
1070 |
// Remove the subtree of stem from the thread list |
|
1071 |
w = _rev_thread[stem]; |
|
1072 |
_thread[w] = right; |
|
1073 |
_rev_thread[right] = w; |
|
1065 | 1074 |
|
1066 |
// Change the parent node |
|
1075 |
// Change the parent node and shift stem nodes |
|
1067 | 1076 |
_parent[stem] = par_stem; |
1068 | 1077 |
par_stem = stem; |
1069 | 1078 |
stem = new_stem; |
1070 | 1079 |
|
1071 |
// Find the last successor of stem (u) and the node after it (right) |
|
1072 |
// according to the thread index |
|
1073 |
|
|
1080 |
// Update u and right |
|
1081 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
|
1082 |
_rev_thread[par_stem] : _last_succ[stem]; |
|
1074 | 1083 |
right = _thread[u]; |
1075 | 1084 |
} |
1076 | 1085 |
_parent[u_out] = par_stem; |
1077 | 1086 |
_thread[u] = last; |
1087 |
_rev_thread[last] = u; |
|
1088 |
_last_succ[u_out] = u; |
|
1078 | 1089 |
|
1079 |
if (join == v_out && par_first) { |
|
1080 |
if (first != v_in) _thread[first] = right; |
|
1090 |
// Remove the subtree of u_out from the thread list except for |
|
1091 |
// the case when old_rev_thread equals to v_in |
|
1092 |
// (it also means that join and v_out coincide) |
|
1093 |
if (old_rev_thread != v_in) { |
|
1094 |
_thread[old_rev_thread] = right; |
|
1095 |
_rev_thread[right] = old_rev_thread; |
|
1096 |
} |
|
1097 |
|
|
1098 |
// Update _rev_thread using the new _thread values |
|
1099 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
|
1100 |
u = _dirty_revs[i]; |
|
1101 |
_rev_thread[_thread[u]] = u; |
|
1102 |
} |
|
1103 |
|
|
1104 |
// Update _pred, _forward, _last_succ and _succ_num for the |
|
1105 |
// stem nodes from u_out to u_in |
|
1106 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
|
1107 |
u = u_out; |
|
1108 |
while (u != u_in) { |
|
1109 |
w = _parent[u]; |
|
1110 |
_pred[u] = _pred[w]; |
|
1111 |
_forward[u] = !_forward[w]; |
|
1112 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
|
1113 |
_succ_num[u] = tmp_sc; |
|
1114 |
_last_succ[w] = tmp_ls; |
|
1115 |
u = w; |
|
1116 |
} |
|
1117 |
_pred[u_in] = in_arc; |
|
1118 |
_forward[u_in] = (u_in == _source[in_arc]); |
|
1119 |
_succ_num[u_in] = old_succ_num; |
|
1120 |
|
|
1121 |
// Set limits for updating _last_succ form v_in and v_out |
|
1122 |
// towards the root |
|
1123 |
int up_limit_in = -1; |
|
1124 |
int up_limit_out = -1; |
|
1125 |
if (_last_succ[join] == v_in) { |
|
1126 |
up_limit_out = join; |
|
1081 | 1127 |
} else { |
1082 |
for (u = v_out; _thread[u] != u_out; u = _thread[u]) ; |
|
1083 |
_thread[u] = right; |
|
1128 |
up_limit_in = join; |
|
1129 |
} |
|
1130 |
|
|
1131 |
// Update _last_succ from v_in towards the root |
|
1132 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
|
1133 |
u = _parent[u]) { |
|
1134 |
_last_succ[u] = _last_succ[u_out]; |
|
1135 |
} |
|
1136 |
// Update _last_succ from v_out towards the root |
|
1137 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
|
1138 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1139 |
u = _parent[u]) { |
|
1140 |
_last_succ[u] = old_rev_thread; |
|
1141 |
} |
|
1142 |
} else { |
|
1143 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1144 |
u = _parent[u]) { |
|
1145 |
_last_succ[u] = _last_succ[u_out]; |
|
1146 |
} |
|
1147 |
} |
|
1148 |
|
|
1149 |
// Update _succ_num from v_in to join |
|
1150 |
for (u = v_in; u != join; u = _parent[u]) { |
|
1151 |
_succ_num[u] += old_succ_num; |
|
1152 |
} |
|
1153 |
// Update _succ_num from v_out to join |
|
1154 |
for (u = v_out; u != join; u = _parent[u]) { |
|
1155 |
_succ_num[u] -= old_succ_num; |
|
1084 | 1156 |
} |
1085 | 1157 |
} |
1086 | 1158 |
|
1087 |
// Update _pred and _forward vectors |
|
1088 |
void updatePredArc() { |
|
1089 |
int u = u_out, v; |
|
1090 |
while (u != u_in) { |
|
1091 |
v = _parent[u]; |
|
1092 |
_pred[u] = _pred[v]; |
|
1093 |
_forward[u] = !_forward[v]; |
|
1094 |
u = v; |
|
1095 |
} |
|
1096 |
_pred[u_in] = in_arc; |
|
1097 |
_forward[u_in] = (u_in == _source[in_arc]); |
|
1098 |
} |
|
1099 |
|
|
1100 |
// Update _depth and _potential vectors |
|
1101 |
void updateDepthPotential() { |
|
1102 |
_depth[u_in] = _depth[v_in] + 1; |
|
1159 |
// Update potentials |
|
1160 |
void updatePotential() { |
|
1103 | 1161 |
Cost sigma = _forward[u_in] ? |
1104 | 1162 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1105 | 1163 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1106 |
_pi[u_in] += sigma; |
|
1107 |
for(int u = _thread[u_in]; _parent[u] != -1; u = _thread[u]) { |
|
1108 |
_depth[u] = _depth[_parent[u]] + 1; |
|
1109 |
if (_depth[u] <= _depth[u_in]) break; |
|
1110 |
|
|
1164 |
if (_succ_num[u_in] > _node_num / 2) { |
|
1165 |
// Update in the upper subtree (which contains the root) |
|
1166 |
int before = _rev_thread[u_in]; |
|
1167 |
int after = _thread[_last_succ[u_in]]; |
|
1168 |
_thread[before] = after; |
|
1169 |
_pi[_root] -= sigma; |
|
1170 |
for (int u = _thread[_root]; u != _root; u = _thread[u]) { |
|
1171 |
_pi[u] -= sigma; |
|
1172 |
} |
|
1173 |
_thread[before] = u_in; |
|
1174 |
} else { |
|
1175 |
// Update in the lower subtree (which has been moved) |
|
1176 |
int end = _thread[_last_succ[u_in]]; |
|
1177 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1178 |
_pi[u] += sigma; |
|
1179 |
} |
|
1111 | 1180 |
} |
1112 | 1181 |
} |
1113 | 1182 |
|
1114 | 1183 |
// Execute the algorithm |
1115 | 1184 |
bool start(PivotRuleEnum pivot_rule) { |
1116 | 1185 |
// Select the pivot rule implementation |
1117 | 1186 |
switch (pivot_rule) { |
1118 | 1187 |
case FIRST_ELIGIBLE_PIVOT: |
1119 | 1188 |
return start<FirstEligiblePivotRule>(); |
1120 | 1189 |
case BEST_ELIGIBLE_PIVOT: |
1121 | 1190 |
return start<BestEligiblePivotRule>(); |
1122 | 1191 |
case BLOCK_SEARCH_PIVOT: |
1123 | 1192 |
return start<BlockSearchPivotRule>(); |
1124 | 1193 |
case CANDIDATE_LIST_PIVOT: |
1125 | 1194 |
return start<CandidateListPivotRule>(); |
1126 | 1195 |
case ALTERING_LIST_PIVOT: |
1127 | 1196 |
return start<AlteringListPivotRule>(); |
1128 | 1197 |
} |
1129 | 1198 |
return false; |
1130 | 1199 |
} |
1131 | 1200 |
|
1132 | 1201 |
template<class PivotRuleImplementation> |
1133 | 1202 |
bool start() { |
1134 | 1203 |
PivotRuleImplementation pivot(*this); |
1135 | 1204 |
|
1136 | 1205 |
// Execute the network simplex algorithm |
1137 | 1206 |
while (pivot.findEnteringArc()) { |
1138 | 1207 |
findJoinNode(); |
1139 | 1208 |
bool change = findLeavingArc(); |
1140 | 1209 |
changeFlow(change); |
1141 | 1210 |
if (change) { |
1142 |
updateThreadParent(); |
|
1143 |
updatePredArc(); |
|
1144 |
|
|
1211 |
updateTreeStructure(); |
|
1212 |
updatePotential(); |
|
1145 | 1213 |
} |
1146 | 1214 |
} |
1147 | 1215 |
|
1148 | 1216 |
// Check if the flow amount equals zero on all the artificial arcs |
1149 | 1217 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
1150 | 1218 |
if (_flow[e] > 0) return false; |
1151 | 1219 |
} |
1152 | 1220 |
|
1153 | 1221 |
// Copy flow values to _flow_map |
1154 | 1222 |
if (_orig_lower) { |
1155 | 1223 |
for (int i = 0; i != _arc_num; ++i) { |
1156 | 1224 |
Arc e = _arc_ref[i]; |
1157 | 1225 |
_flow_map->set(e, (*_orig_lower)[e] + _flow[i]); |
1158 | 1226 |
} |
1159 | 1227 |
} else { |
1160 | 1228 |
for (int i = 0; i != _arc_num; ++i) { |
1161 | 1229 |
_flow_map->set(_arc_ref[i], _flow[i]); |
1162 | 1230 |
} |
1163 | 1231 |
} |
1164 | 1232 |
// Copy potential values to _potential_map |
1165 | 1233 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1166 | 1234 |
_potential_map->set(n, _pi[_node_id[n]]); |
1167 | 1235 |
} |
1168 | 1236 |
|
0 comments (0 inline)