|
1 |
/* -*- C++ -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2008
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_GOMORY_HU_TREE_H
|
|
20 |
#define LEMON_GOMORY_HU_TREE_H
|
|
21 |
|
|
22 |
#include <limits>
|
|
23 |
|
|
24 |
#include <lemon/preflow.h>
|
|
25 |
#include <lemon/concept_check.h>
|
|
26 |
#include <lemon/concepts/maps.h>
|
|
27 |
|
|
28 |
/// \ingroup min_cut
|
|
29 |
/// \file
|
|
30 |
/// \brief Gomory-Hu cut tree in graphs.
|
|
31 |
|
|
32 |
namespace lemon {
|
|
33 |
|
|
34 |
/// \ingroup min_cut
|
|
35 |
///
|
|
36 |
/// \brief Gomory-Hu cut tree algorithm
|
|
37 |
///
|
|
38 |
/// The Gomory-Hu tree is a tree on the nodeset of the digraph, but it
|
|
39 |
/// may contain arcs which are not in the original digraph. It helps
|
|
40 |
/// to calculate the minimum cut between all pairs of nodes, because
|
|
41 |
/// the minimum capacity arc on the tree path between two nodes has
|
|
42 |
/// the same weight as the minimum cut in the digraph between these
|
|
43 |
/// nodes. Moreover this arc separates the nodes to two parts which
|
|
44 |
/// determine this minimum cut.
|
|
45 |
///
|
|
46 |
/// The algorithm calculates \e n-1 distinict minimum cuts with
|
|
47 |
/// preflow algorithm, therefore the algorithm has
|
|
48 |
/// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
|
|
49 |
/// rooted Gomory-Hu tree, the structure of the tree and the weights
|
|
50 |
/// can be obtained with \c predNode() and \c predValue()
|
|
51 |
/// functions. The \c minCutValue() and \c minCutMap() calculates
|
|
52 |
/// the minimum cut and the minimum cut value between any two node
|
|
53 |
/// in the digraph.
|
|
54 |
template <typename _Graph,
|
|
55 |
typename _Capacity = typename _Graph::template EdgeMap<int> >
|
|
56 |
class GomoryHuTree {
|
|
57 |
public:
|
|
58 |
|
|
59 |
/// The graph type
|
|
60 |
typedef _Graph Graph;
|
|
61 |
/// The capacity on edges
|
|
62 |
typedef _Capacity Capacity;
|
|
63 |
/// The value type of capacities
|
|
64 |
typedef typename Capacity::Value Value;
|
|
65 |
|
|
66 |
private:
|
|
67 |
|
|
68 |
TEMPLATE_GRAPH_TYPEDEFS(Graph);
|
|
69 |
|
|
70 |
const Graph& _graph;
|
|
71 |
const Capacity& _capacity;
|
|
72 |
|
|
73 |
Node _root;
|
|
74 |
typename Graph::template NodeMap<Node>* _pred;
|
|
75 |
typename Graph::template NodeMap<Value>* _weight;
|
|
76 |
typename Graph::template NodeMap<int>* _order;
|
|
77 |
|
|
78 |
void createStructures() {
|
|
79 |
if (!_pred) {
|
|
80 |
_pred = new typename Graph::template NodeMap<Node>(_graph);
|
|
81 |
}
|
|
82 |
if (!_weight) {
|
|
83 |
_weight = new typename Graph::template NodeMap<Value>(_graph);
|
|
84 |
}
|
|
85 |
if (!_order) {
|
|
86 |
_order = new typename Graph::template NodeMap<int>(_graph);
|
|
87 |
}
|
|
88 |
}
|
|
89 |
|
|
90 |
void destroyStructures() {
|
|
91 |
if (_pred) {
|
|
92 |
delete _pred;
|
|
93 |
}
|
|
94 |
if (_weight) {
|
|
95 |
delete _weight;
|
|
96 |
}
|
|
97 |
if (_order) {
|
|
98 |
delete _order;
|
|
99 |
}
|
|
100 |
}
|
|
101 |
|
|
102 |
public:
|
|
103 |
|
|
104 |
/// \brief Constructor
|
|
105 |
///
|
|
106 |
/// Constructor
|
|
107 |
/// \param graph The graph type.
|
|
108 |
/// \param capacity The capacity map.
|
|
109 |
GomoryHuTree(const Graph& graph, const Capacity& capacity)
|
|
110 |
: _graph(graph), _capacity(capacity),
|
|
111 |
_pred(0), _weight(0), _order(0)
|
|
112 |
{
|
|
113 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
|
|
114 |
}
|
|
115 |
|
|
116 |
|
|
117 |
/// \brief Destructor
|
|
118 |
///
|
|
119 |
/// Destructor
|
|
120 |
~GomoryHuTree() {
|
|
121 |
destroyStructures();
|
|
122 |
}
|
|
123 |
|
|
124 |
/// \brief Initializes the internal data structures.
|
|
125 |
///
|
|
126 |
/// Initializes the internal data structures.
|
|
127 |
///
|
|
128 |
void init() {
|
|
129 |
createStructures();
|
|
130 |
|
|
131 |
_root = NodeIt(_graph);
|
|
132 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
133 |
_pred->set(n, _root);
|
|
134 |
_order->set(n, -1);
|
|
135 |
}
|
|
136 |
_pred->set(_root, INVALID);
|
|
137 |
_weight->set(_root, std::numeric_limits<Value>::max());
|
|
138 |
}
|
|
139 |
|
|
140 |
|
|
141 |
/// \brief Starts the algorithm
|
|
142 |
///
|
|
143 |
/// Starts the algorithm.
|
|
144 |
void start() {
|
|
145 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
|
|
146 |
|
|
147 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
148 |
if (n == _root) continue;
|
|
149 |
|
|
150 |
Node pn = (*_pred)[n];
|
|
151 |
fa.source(n);
|
|
152 |
fa.target(pn);
|
|
153 |
|
|
154 |
fa.runMinCut();
|
|
155 |
|
|
156 |
_weight->set(n, fa.flowValue());
|
|
157 |
|
|
158 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
|
|
159 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
|
|
160 |
_pred->set(nn, n);
|
|
161 |
}
|
|
162 |
}
|
|
163 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
|
|
164 |
_pred->set(n, (*_pred)[pn]);
|
|
165 |
_pred->set(pn, n);
|
|
166 |
_weight->set(n, (*_weight)[pn]);
|
|
167 |
_weight->set(pn, fa.flowValue());
|
|
168 |
}
|
|
169 |
}
|
|
170 |
|
|
171 |
_order->set(_root, 0);
|
|
172 |
int index = 1;
|
|
173 |
|
|
174 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
175 |
std::vector<Node> st;
|
|
176 |
Node nn = n;
|
|
177 |
while ((*_order)[nn] == -1) {
|
|
178 |
st.push_back(nn);
|
|
179 |
nn = (*_pred)[nn];
|
|
180 |
}
|
|
181 |
while (!st.empty()) {
|
|
182 |
_order->set(st.back(), index++);
|
|
183 |
st.pop_back();
|
|
184 |
}
|
|
185 |
}
|
|
186 |
}
|
|
187 |
|
|
188 |
/// \brief Runs the Gomory-Hu algorithm.
|
|
189 |
///
|
|
190 |
/// Runs the Gomory-Hu algorithm.
|
|
191 |
/// \note gh.run() is just a shortcut of the following code.
|
|
192 |
/// \code
|
|
193 |
/// ght.init();
|
|
194 |
/// ght.start();
|
|
195 |
/// \endcode
|
|
196 |
void run() {
|
|
197 |
init();
|
|
198 |
start();
|
|
199 |
}
|
|
200 |
|
|
201 |
/// \brief Returns the predecessor node in the Gomory-Hu tree.
|
|
202 |
///
|
|
203 |
/// Returns the predecessor node in the Gomory-Hu tree. If the node is
|
|
204 |
/// the root of the Gomory-Hu tree, then it returns \c INVALID.
|
|
205 |
Node predNode(const Node& node) {
|
|
206 |
return (*_pred)[node];
|
|
207 |
}
|
|
208 |
|
|
209 |
/// \brief Returns the weight of the predecessor arc in the
|
|
210 |
/// Gomory-Hu tree.
|
|
211 |
///
|
|
212 |
/// Returns the weight of the predecessor arc in the Gomory-Hu
|
|
213 |
/// tree. If the node is the root of the Gomory-Hu tree, the
|
|
214 |
/// result is undefined.
|
|
215 |
Value predValue(const Node& node) {
|
|
216 |
return (*_weight)[node];
|
|
217 |
}
|
|
218 |
|
|
219 |
/// \brief Returns the minimum cut value between two nodes
|
|
220 |
///
|
|
221 |
/// Returns the minimum cut value between two nodes. The
|
|
222 |
/// algorithm finds the nearest common ancestor in the Gomory-Hu
|
|
223 |
/// tree and calculates the minimum weight arc on the paths to
|
|
224 |
/// the ancestor.
|
|
225 |
Value minCutValue(const Node& s, const Node& t) const {
|
|
226 |
Node sn = s, tn = t;
|
|
227 |
Value value = std::numeric_limits<Value>::max();
|
|
228 |
|
|
229 |
while (sn != tn) {
|
|
230 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
231 |
if ((*_weight)[tn] < value) value = (*_weight)[tn];
|
|
232 |
tn = (*_pred)[tn];
|
|
233 |
} else {
|
|
234 |
if ((*_weight)[sn] < value) value = (*_weight)[sn];
|
|
235 |
sn = (*_pred)[sn];
|
|
236 |
}
|
|
237 |
}
|
|
238 |
return value;
|
|
239 |
}
|
|
240 |
|
|
241 |
/// \brief Returns the minimum cut between two nodes
|
|
242 |
///
|
|
243 |
/// Returns the minimum cut value between two nodes. The
|
|
244 |
/// algorithm finds the nearest common ancestor in the Gomory-Hu
|
|
245 |
/// tree and calculates the minimum weight arc on the paths to
|
|
246 |
/// the ancestor. Then it sets all nodes to the cut determined by
|
|
247 |
/// this arc. The \c cutMap should be \ref concepts::ReadWriteMap
|
|
248 |
/// "ReadWriteMap".
|
|
249 |
template <typename CutMap>
|
|
250 |
Value minCutMap(const Node& s, const Node& t, CutMap& cutMap) const {
|
|
251 |
Node sn = s, tn = t;
|
|
252 |
|
|
253 |
Node rn = INVALID;
|
|
254 |
Value value = std::numeric_limits<Value>::max();
|
|
255 |
|
|
256 |
while (sn != tn) {
|
|
257 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
258 |
if ((*_weight)[tn] < value) {
|
|
259 |
rn = tn;
|
|
260 |
value = (*_weight)[tn];
|
|
261 |
}
|
|
262 |
tn = (*_pred)[tn];
|
|
263 |
} else {
|
|
264 |
if ((*_weight)[sn] < value) {
|
|
265 |
rn = sn;
|
|
266 |
value = (*_weight)[sn];
|
|
267 |
}
|
|
268 |
sn = (*_pred)[sn];
|
|
269 |
}
|
|
270 |
}
|
|
271 |
|
|
272 |
typename Graph::template NodeMap<bool> reached(_graph, false);
|
|
273 |
reached.set(_root, true);
|
|
274 |
cutMap.set(_root, false);
|
|
275 |
reached.set(rn, true);
|
|
276 |
cutMap.set(rn, true);
|
|
277 |
|
|
278 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
279 |
std::vector<Node> st;
|
|
280 |
Node nn = n;
|
|
281 |
while (!reached[nn]) {
|
|
282 |
st.push_back(nn);
|
|
283 |
nn = (*_pred)[nn];
|
|
284 |
}
|
|
285 |
while (!st.empty()) {
|
|
286 |
cutMap.set(st.back(), cutMap[nn]);
|
|
287 |
st.pop_back();
|
|
288 |
}
|
|
289 |
}
|
|
290 |
|
|
291 |
return value;
|
|
292 |
}
|
|
293 |
|
|
294 |
};
|
|
295 |
|
|
296 |
}
|
|
297 |
|
|
298 |
#endif
|