0
                         11
                         0
                     
                 
                    | ... | ... | 
		@@ -98,10 +98,10 @@  | 
| 98 | 98 | 
		 | 
| 99 | 99 | 
		\subsection pri-loc-var Private member variables  | 
| 100 | 100 | 
		 | 
| 101 | 
		Private member variables should start with underscore  | 
|
| 101 | 
		Private member variables should start with underscore.  | 
|
| 102 | 102 | 
		 | 
| 103 | 103 | 
		\code  | 
| 104 | 
		
  | 
|
| 104 | 
		_start_with_underscore  | 
|
| 105 | 105 | 
		\endcode  | 
| 106 | 106 | 
		 | 
| 107 | 107 | 
		\subsection cs-excep Exceptions  | 
| ... | ... | 
		@@ -406,10 +406,10 @@  | 
| 406 | 406 | 
		- \ref CycleCanceling Cycle-Canceling algorithms, two of which are  | 
| 407 | 407 | 
		strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.  | 
| 408 | 408 | 
		 | 
| 409 | 
		In general NetworkSimplex is the most efficient implementation,  | 
|
| 410 | 
		but in special cases other algorithms could be faster.  | 
|
| 409 | 
		In general, \ref NetworkSimplex and \ref CostScaling are the most efficient  | 
|
| 410 | 
		implementations, but the other two algorithms could be faster in special cases.  | 
|
| 411 | 411 | 
		For example, if the total supply and/or capacities are rather small,  | 
| 412 | 
		CapacityScaling is usually the fastest algorithm (without effective scaling).  | 
|
| 412 | 
		\ref CapacityScaling is usually the fastest algorithm (without effective scaling).  | 
|
| 413 | 413 | 
		*/  | 
| 414 | 414 | 
		 | 
| 415 | 415 | 
		/**  | 
| ... | ... | 
		@@ -471,7 +471,7 @@  | 
| 471 | 471 | 
		- \ref HowardMmc Howard's policy iteration algorithm  | 
| 472 | 472 | 
		\ref dasdan98minmeancycle.  | 
| 473 | 473 | 
		 | 
| 474 | 
		In practice, the \ref HowardMmc "Howard" algorithm  | 
|
| 474 | 
		In practice, the \ref HowardMmc "Howard" algorithm turned out to be by far the  | 
|
| 475 | 475 | 
		most efficient one, though the best known theoretical bound on its running  | 
| 476 | 476 | 
		time is exponential.  | 
| 477 | 477 | 
		Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms  | 
| ... | ... | 
		@@ -539,7 +539,7 @@  | 
| 539 | 539 | 
		*/  | 
| 540 | 540 | 
		 | 
| 541 | 541 | 
		/**  | 
| 542 | 
		@defgroup planar  | 
|
| 542 | 
		@defgroup planar Planar Embedding and Drawing  | 
|
| 543 | 543 | 
		@ingroup algs  | 
| 544 | 544 | 
		\brief Algorithms for planarity checking, embedding and drawing  | 
| 545 | 545 | 
| ... | ... | 
		@@ -89,8 +89,8 @@  | 
| 89 | 89 | 
		/// \warning Both \c V and \c C must be signed number types.  | 
| 90 | 90 | 
		/// \warning All input data (capacities, supply values, and costs) must  | 
| 91 | 91 | 
		/// be integer.  | 
| 92 | 
		/// \warning This algorithm does not support negative costs for such  | 
|
| 93 | 
		/// arcs that have infinite upper bound.  | 
|
| 92 | 
		/// \warning This algorithm does not support negative costs for  | 
|
| 93 | 
		/// arcs having infinite upper bound.  | 
|
| 94 | 94 | 
		#ifdef DOXYGEN  | 
| 95 | 95 | 
		template <typename GR, typename V, typename C, typename TR>  | 
| 96 | 96 | 
		#else  | 
| ... | ... | 
		@@ -423,7 +423,7 @@  | 
| 423 | 423 | 
		/// calling \ref run(), the supply of each node will be set to zero.  | 
| 424 | 424 | 
		///  | 
| 425 | 425 | 
		/// Using this function has the same effect as using \ref supplyMap()  | 
| 426 | 
		/// with  | 
|
| 426 | 
		/// with a map in which \c k is assigned to \c s, \c -k is  | 
|
| 427 | 427 | 
		/// assigned to \c t and all other nodes have zero supply value.  | 
| 428 | 428 | 
		///  | 
| 429 | 429 | 
		/// \param s The source node.  | 
| ... | ... | 
		@@ -97,6 +97,9 @@  | 
| 97 | 97 | 
		/// can be viewed as the generalization of the \ref Preflow  | 
| 98 | 98 | 
		/// "preflow push-relabel" algorithm for the maximum flow problem.  | 
| 99 | 99 | 
		///  | 
| 100 | 
		/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest  | 
|
| 101 | 
		/// implementations available in LEMON for this problem.  | 
|
| 102 | 
		///  | 
|
| 100 | 103 | 
		/// Most of the parameters of the problem (except for the digraph)  | 
| 101 | 104 | 
		/// can be given using separate functions, and the algorithm can be  | 
| 102 | 105 | 
		/// executed using the \ref run() function. If some parameters are not  | 
| ... | ... | 
		@@ -116,8 +119,8 @@  | 
| 116 | 119 | 
		/// \warning Both \c V and \c C must be signed number types.  | 
| 117 | 120 | 
		/// \warning All input data (capacities, supply values, and costs) must  | 
| 118 | 121 | 
		/// be integer.  | 
| 119 | 
		/// \warning This algorithm does not support negative costs for such  | 
|
| 120 | 
		/// arcs that have infinite upper bound.  | 
|
| 122 | 
		/// \warning This algorithm does not support negative costs for  | 
|
| 123 | 
		/// arcs having infinite upper bound.  | 
|
| 121 | 124 | 
		///  | 
| 122 | 125 | 
		/// \note %CostScaling provides three different internal methods,  | 
| 123 | 126 | 
		/// from which the most efficient one is used by default.  | 
| ... | ... | 
		@@ -179,7 +182,7 @@  | 
| 179 | 182 | 
		/// in their base operations, which are used in conjunction with the  | 
| 180 | 183 | 
		/// relabel operation.  | 
| 181 | 184 | 
		/// By default, the so called \ref PARTIAL_AUGMENT  | 
| 182 | 
		/// "Partial Augment-Relabel" method is used, which  | 
|
| 185 | 
		/// "Partial Augment-Relabel" method is used, which turned out to be  | 
|
| 183 | 186 | 
		/// the most efficient and the most robust on various test inputs.  | 
| 184 | 187 | 
		/// However, the other methods can be selected using the \ref run()  | 
| 185 | 188 | 
		/// function with the proper parameter.  | 
| ... | ... | 
		@@ -448,7 +451,7 @@  | 
| 448 | 451 | 
		/// calling \ref run(), the supply of each node will be set to zero.  | 
| 449 | 452 | 
		///  | 
| 450 | 453 | 
		/// Using this function has the same effect as using \ref supplyMap()  | 
| 451 | 
		/// with  | 
|
| 454 | 
		/// with a map in which \c k is assigned to \c s, \c -k is  | 
|
| 452 | 455 | 
		/// assigned to \c t and all other nodes have zero supply value.  | 
| 453 | 456 | 
		///  | 
| 454 | 457 | 
		/// \param s The source node.  | 
| ... | ... | 
		@@ -68,8 +68,8 @@  | 
| 68 | 68 | 
		/// \warning Both \c V and \c C must be signed number types.  | 
| 69 | 69 | 
		/// \warning All input data (capacities, supply values, and costs) must  | 
| 70 | 70 | 
		/// be integer.  | 
| 71 | 
		/// \warning This algorithm does not support negative costs for such  | 
|
| 72 | 
		/// arcs that have infinite upper bound.  | 
|
| 71 | 
		/// \warning This algorithm does not support negative costs for  | 
|
| 72 | 
		/// arcs having infinite upper bound.  | 
|
| 73 | 73 | 
		///  | 
| 74 | 74 | 
		/// \note For more information about the three available methods,  | 
| 75 | 75 | 
		/// see \ref Method.  | 
| ... | ... | 
		@@ -117,8 +117,7 @@  | 
| 117 | 117 | 
		///  | 
| 118 | 118 | 
		/// \ref CycleCanceling provides three different cycle-canceling  | 
| 119 | 119 | 
		/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"  | 
| 120 | 
		/// is used, which proved to be the most efficient and the most robust  | 
|
| 121 | 
		/// on various test inputs.  | 
|
| 120 | 
		/// is used, which is by far the most efficient and the most robust.  | 
|
| 122 | 121 | 
		/// However, the other methods can be selected using the \ref run()  | 
| 123 | 122 | 
		/// function with the proper parameter.  | 
| 124 | 123 | 
		    enum Method {
	 | 
| ... | ... | 
		@@ -350,7 +349,7 @@  | 
| 350 | 349 | 
		/// calling \ref run(), the supply of each node will be set to zero.  | 
| 351 | 350 | 
		///  | 
| 352 | 351 | 
		/// Using this function has the same effect as using \ref supplyMap()  | 
| 353 | 
		/// with  | 
|
| 352 | 
		/// with a map in which \c k is assigned to \c s, \c -k is  | 
|
| 354 | 353 | 
		/// assigned to \c t and all other nodes have zero supply value.  | 
| 355 | 354 | 
		///  | 
| 356 | 355 | 
		/// \param s The source node.  | 
| ... | ... | 
		@@ -36,7 +36,7 @@  | 
| 36 | 36 | 
		 | 
| 37 | 37 | 
		///Euler tour iterator for digraphs.  | 
| 38 | 38 | 
		 | 
| 39 | 
		/// \ingroup  | 
|
| 39 | 
		/// \ingroup graph_properties  | 
|
| 40 | 40 | 
		///This iterator provides an Euler tour (Eulerian circuit) of a \e directed  | 
| 41 | 41 | 
		///graph (if there exists) and it converts to the \c Arc type of the digraph.  | 
| 42 | 42 | 
		///  | 
| ... | ... | 
		@@ -46,8 +46,12 @@  | 
| 46 | 46 | 
		/// pair of nodes is connected.  | 
| 47 | 47 | 
		///  | 
| 48 | 48 | 
		/// This class provides a simple but highly efficient and robust heuristic  | 
| 49 | 
		/// method that quickly finds a large clique, but not necessarily the  | 
|
| 49 | 
		/// method that quickly finds a quite large clique, but not necessarily the  | 
|
| 50 | 50 | 
		/// largest one.  | 
| 51 | 
		/// The algorithm performs a certain number of iterations to find several  | 
|
| 52 | 
		/// cliques and selects the largest one among them. Various limits can be  | 
|
| 53 | 
		/// specified to control the running time and the effectiveness of the  | 
|
| 54 | 
		/// search process.  | 
|
| 51 | 55 | 
		///  | 
| 52 | 56 | 
		/// \tparam GR The undirected graph type the algorithm runs on.  | 
| 53 | 57 | 
		///  | 
| ... | ... | 
		@@ -84,6 +88,22 @@  | 
| 84 | 88 | 
		PENALTY_BASED  | 
| 85 | 89 | 
		};  | 
| 86 | 90 | 
		 | 
| 91 | 
		/// \brief Constants for the causes of search termination.  | 
|
| 92 | 
		///  | 
|
| 93 | 
		/// Enum type containing constants for the different causes of search  | 
|
| 94 | 
		/// termination. The \ref run() function returns one of these values.  | 
|
| 95 | 
		    enum TerminationCause {
	 | 
|
| 96 | 
		 | 
|
| 97 | 
		/// The iteration count limit is reached.  | 
|
| 98 | 
		ITERATION_LIMIT,  | 
|
| 99 | 
		 | 
|
| 100 | 
		/// The step count limit is reached.  | 
|
| 101 | 
		STEP_LIMIT,  | 
|
| 102 | 
		 | 
|
| 103 | 
		/// The clique size limit is reached.  | 
|
| 104 | 
		SIZE_LIMIT  | 
|
| 105 | 
		};  | 
|
| 106 | 
		 | 
|
| 87 | 107 | 
		private:  | 
| 88 | 108 | 
		 | 
| 89 | 109 | 
		TEMPLATE_GRAPH_TYPEDEFS(GR);  | 
| ... | ... | 
		@@ -93,12 +113,22 @@  | 
| 93 | 113 | 
		typedef std::vector<BoolVector> BoolMatrix;  | 
| 94 | 114 | 
		// Note: vector<char> is used instead of vector<bool> for efficiency reasons  | 
| 95 | 115 | 
		 | 
| 116 | 
		// The underlying graph  | 
|
| 96 | 117 | 
		const GR &_graph;  | 
| 97 | 118 | 
		IntNodeMap _id;  | 
| 98 | 119 | 
		 | 
| 99 | 120 | 
		// Internal matrix representation of the graph  | 
| 100 | 121 | 
		BoolMatrix _gr;  | 
| 101 | 122 | 
		int _n;  | 
| 123 | 
		 | 
|
| 124 | 
		// Search options  | 
|
| 125 | 
		bool _delta_based_restart;  | 
|
| 126 | 
		int _restart_delta_limit;  | 
|
| 127 | 
		 | 
|
| 128 | 
		// Search limits  | 
|
| 129 | 
		int _iteration_limit;  | 
|
| 130 | 
		int _step_limit;  | 
|
| 131 | 
		int _size_limit;  | 
|
| 102 | 132 | 
		 | 
| 103 | 133 | 
		// The current clique  | 
| 104 | 134 | 
		BoolVector _clique;  | 
| ... | ... | 
		@@ -380,7 +410,9 @@  | 
| 380 | 410 | 
		/// \param graph The undirected graph the algorithm runs on.  | 
| 381 | 411 | 
		GrossoLocatelliPullanMc(const GR& graph) :  | 
| 382 | 412 | 
		_graph(graph), _id(_graph), _rnd(rnd)  | 
| 383 | 
		    {
	 | 
|
| 413 | 
		    {
	 | 
|
| 414 | 
		initOptions();  | 
|
| 415 | 
		}  | 
|
| 384 | 416 | 
		 | 
| 385 | 417 | 
		/// \brief Constructor with random seed.  | 
| 386 | 418 | 
		///  | 
| ... | ... | 
		@@ -391,7 +423,9 @@  | 
| 391 | 423 | 
		/// that is used during the algorithm.  | 
| 392 | 424 | 
		GrossoLocatelliPullanMc(const GR& graph, int seed) :  | 
| 393 | 425 | 
		_graph(graph), _id(_graph), _rnd(seed)  | 
| 394 | 
		    {
	 | 
|
| 426 | 
		    {
	 | 
|
| 427 | 
		initOptions();  | 
|
| 428 | 
		}  | 
|
| 395 | 429 | 
		 | 
| 396 | 430 | 
		/// \brief Constructor with random number generator.  | 
| 397 | 431 | 
		///  | 
| ... | ... | 
		@@ -402,43 +436,155 @@  | 
| 402 | 436 | 
		/// algorithm.  | 
| 403 | 437 | 
		GrossoLocatelliPullanMc(const GR& graph, const Random& random) :  | 
| 404 | 438 | 
		_graph(graph), _id(_graph), _rnd(random)  | 
| 405 | 
		    {
	 | 
|
| 439 | 
		    {
	 | 
|
| 440 | 
		initOptions();  | 
|
| 441 | 
		}  | 
|
| 406 | 442 | 
		 | 
| 407 | 443 | 
		/// \name Execution Control  | 
| 444 | 
		/// The \ref run() function can be used to execute the algorithm.\n  | 
|
| 445 | 
		/// The functions \ref iterationLimit(int), \ref stepLimit(int), and  | 
|
| 446 | 
		/// \ref sizeLimit(int) can be used to specify various limits for the  | 
|
| 447 | 
		/// search process.  | 
|
| 448 | 
		 | 
|
| 408 | 449 | 
		    /// @{
	 | 
| 450 | 
		 | 
|
| 451 | 
		/// \brief Sets the maximum number of iterations.  | 
|
| 452 | 
		///  | 
|
| 453 | 
		/// This function sets the maximum number of iterations.  | 
|
| 454 | 
		/// Each iteration of the algorithm finds a maximal clique (but not  | 
|
| 455 | 
		/// necessarily the largest one) by performing several search steps  | 
|
| 456 | 
		/// (node selections).  | 
|
| 457 | 
		///  | 
|
| 458 | 
		/// This limit controls the running time and the success of the  | 
|
| 459 | 
		/// algorithm. For larger values, the algorithm runs slower, but it more  | 
|
| 460 | 
		/// likely finds larger cliques. For smaller values, the algorithm is  | 
|
| 461 | 
		/// faster but probably gives worse results.  | 
|
| 462 | 
		///  | 
|
| 463 | 
		/// The default value is \c 1000.  | 
|
| 464 | 
		/// \c -1 means that number of iterations is not limited.  | 
|
| 465 | 
		///  | 
|
| 466 | 
		/// \warning You should specify a reasonable limit for the number of  | 
|
| 467 | 
		/// iterations and/or the number of search steps.  | 
|
| 468 | 
		///  | 
|
| 469 | 
		/// \return <tt>(*this)</tt>  | 
|
| 470 | 
		///  | 
|
| 471 | 
		/// \sa stepLimit(int)  | 
|
| 472 | 
		/// \sa sizeLimit(int)  | 
|
| 473 | 
		    GrossoLocatelliPullanMc& iterationLimit(int limit) {
	 | 
|
| 474 | 
		_iteration_limit = limit;  | 
|
| 475 | 
		return *this;  | 
|
| 476 | 
		}  | 
|
| 477 | 
		 | 
|
| 478 | 
		/// \brief Sets the maximum number of search steps.  | 
|
| 479 | 
		///  | 
|
| 480 | 
		/// This function sets the maximum number of elementary search steps.  | 
|
| 481 | 
		/// Each iteration of the algorithm finds a maximal clique (but not  | 
|
| 482 | 
		/// necessarily the largest one) by performing several search steps  | 
|
| 483 | 
		/// (node selections).  | 
|
| 484 | 
		///  | 
|
| 485 | 
		/// This limit controls the running time and the success of the  | 
|
| 486 | 
		/// algorithm. For larger values, the algorithm runs slower, but it more  | 
|
| 487 | 
		/// likely finds larger cliques. For smaller values, the algorithm is  | 
|
| 488 | 
		/// faster but probably gives worse results.  | 
|
| 489 | 
		///  | 
|
| 490 | 
		/// The default value is \c -1, which means that number of steps  | 
|
| 491 | 
		/// is not limited explicitly. However, the number of iterations is  | 
|
| 492 | 
		/// limited and each iteration performs a finite number of search steps.  | 
|
| 493 | 
		///  | 
|
| 494 | 
		/// \warning You should specify a reasonable limit for the number of  | 
|
| 495 | 
		/// iterations and/or the number of search steps.  | 
|
| 496 | 
		///  | 
|
| 497 | 
		/// \return <tt>(*this)</tt>  | 
|
| 498 | 
		///  | 
|
| 499 | 
		/// \sa iterationLimit(int)  | 
|
| 500 | 
		/// \sa sizeLimit(int)  | 
|
| 501 | 
		    GrossoLocatelliPullanMc& stepLimit(int limit) {
	 | 
|
| 502 | 
		_step_limit = limit;  | 
|
| 503 | 
		return *this;  | 
|
| 504 | 
		}  | 
|
| 505 | 
		 | 
|
| 506 | 
		/// \brief Sets the desired clique size.  | 
|
| 507 | 
		///  | 
|
| 508 | 
		/// This function sets the desired clique size that serves as a search  | 
|
| 509 | 
		/// limit. If a clique of this size (or a larger one) is found, then the  | 
|
| 510 | 
		/// algorithm terminates.  | 
|
| 511 | 
		///  | 
|
| 512 | 
		/// This function is especially useful if you know an exact upper bound  | 
|
| 513 | 
		/// for the size of the cliques in the graph or if any clique above  | 
|
| 514 | 
		/// a certain size limit is sufficient for your application.  | 
|
| 515 | 
		///  | 
|
| 516 | 
		/// The default value is \c -1, which means that the size limit is set to  | 
|
| 517 | 
		/// the number of nodes in the graph.  | 
|
| 518 | 
		///  | 
|
| 519 | 
		/// \return <tt>(*this)</tt>  | 
|
| 520 | 
		///  | 
|
| 521 | 
		/// \sa iterationLimit(int)  | 
|
| 522 | 
		/// \sa stepLimit(int)  | 
|
| 523 | 
		    GrossoLocatelliPullanMc& sizeLimit(int limit) {
	 | 
|
| 524 | 
		_size_limit = limit;  | 
|
| 525 | 
		return *this;  | 
|
| 526 | 
		}  | 
|
| 527 | 
		 | 
|
| 528 | 
		/// \brief The maximum number of iterations.  | 
|
| 529 | 
		///  | 
|
| 530 | 
		/// This function gives back the maximum number of iterations.  | 
|
| 531 | 
		/// \c -1 means that no limit is specified.  | 
|
| 532 | 
		///  | 
|
| 533 | 
		/// \sa iterationLimit(int)  | 
|
| 534 | 
		    int iterationLimit() const {
	 | 
|
| 535 | 
		return _iteration_limit;  | 
|
| 536 | 
		}  | 
|
| 537 | 
		 | 
|
| 538 | 
		/// \brief The maximum number of search steps.  | 
|
| 539 | 
		///  | 
|
| 540 | 
		/// This function gives back the maximum number of search steps.  | 
|
| 541 | 
		/// \c -1 means that no limit is specified.  | 
|
| 542 | 
		///  | 
|
| 543 | 
		/// \sa stepLimit(int)  | 
|
| 544 | 
		    int stepLimit() const {
	 | 
|
| 545 | 
		return _step_limit;  | 
|
| 546 | 
		}  | 
|
| 547 | 
		 | 
|
| 548 | 
		/// \brief The desired clique size.  | 
|
| 549 | 
		///  | 
|
| 550 | 
		/// This function gives back the desired clique size that serves as a  | 
|
| 551 | 
		/// search limit. \c -1 means that this limit is set to the number of  | 
|
| 552 | 
		/// nodes in the graph.  | 
|
| 553 | 
		///  | 
|
| 554 | 
		/// \sa sizeLimit(int)  | 
|
| 555 | 
		    int sizeLimit() const {
	 | 
|
| 556 | 
		return _size_limit;  | 
|
| 557 | 
		}  | 
|
| 409 | 558 | 
		 | 
| 410 | 559 | 
		/// \brief Runs the algorithm.  | 
| 411 | 560 | 
		///  | 
| 412 | 
		/// This function runs the algorithm.  | 
|
| 561 | 
		/// This function runs the algorithm. If one of the specified limits  | 
|
| 562 | 
		/// is reached, the search process terminates.  | 
|
| 413 | 563 | 
		///  | 
| 414 | 
		/// \param step_num The maximum number of node selections (steps)  | 
|
| 415 | 
		/// during the search process.  | 
|
| 416 | 
		/// This parameter controls the running time and the success of the  | 
|
| 417 | 
		/// algorithm. For larger values, the algorithm runs slower but it more  | 
|
| 418 | 
		/// likely finds larger cliques. For smaller values, the algorithm is  | 
|
| 419 | 
		/// faster but probably gives worse results.  | 
|
| 420 | 564 | 
		/// \param rule The node selection rule. For more information, see  | 
| 421 | 565 | 
		/// \ref SelectionRule.  | 
| 422 | 566 | 
		///  | 
| 423 | 
		/// \return The size of the found clique.  | 
|
| 424 | 
		int run(int step_num = 100000,  | 
|
| 425 | 
		
  | 
|
| 567 | 
		/// \return The termination cause of the search. For more information,  | 
|
| 568 | 
		/// see \ref TerminationCause.  | 
|
| 569 | 
		TerminationCause run(SelectionRule rule = PENALTY_BASED)  | 
|
| 426 | 570 | 
		    {
	 | 
| 427 | 571 | 
		init();  | 
| 428 | 572 | 
		      switch (rule) {
	 | 
| 429 | 573 | 
		case RANDOM:  | 
| 430 | 
		return start<RandomSelectionRule>(  | 
|
| 574 | 
		return start<RandomSelectionRule>();  | 
|
| 431 | 575 | 
		case DEGREE_BASED:  | 
| 432 | 
		return start<DegreeBasedSelectionRule>(step_num);  | 
|
| 433 | 
		case PENALTY_BASED:  | 
|
| 434 | 
		return start<  | 
|
| 576 | 
		return start<DegreeBasedSelectionRule>();  | 
|
| 577 | 
		default:  | 
|
| 578 | 
		return start<PenaltyBasedSelectionRule>();  | 
|
| 435 | 579 | 
		}  | 
| 436 | 
		return 0; // avoid warning  | 
|
| 437 | 580 | 
		}  | 
| 438 | 581 | 
		 | 
| 439 | 582 | 
		/// @}  | 
| 440 | 583 | 
		 | 
| 441 | 584 | 
		/// \name Query Functions  | 
| 585 | 
		/// The results of the algorithm can be obtained using these functions.\n  | 
|
| 586 | 
		/// The run() function must be called before using them.  | 
|
| 587 | 
		 | 
|
| 442 | 588 | 
		    /// @{
	 | 
| 443 | 589 | 
		 | 
| 444 | 590 | 
		/// \brief The size of the found clique  | 
| ... | ... | 
		@@ -530,6 +676,18 @@  | 
| 530 | 676 | 
		/// @}  | 
| 531 | 677 | 
		 | 
| 532 | 678 | 
		private:  | 
| 679 | 
		 | 
|
| 680 | 
		// Initialize search options and limits  | 
|
| 681 | 
		    void initOptions() {
	 | 
|
| 682 | 
		// Search options  | 
|
| 683 | 
		_delta_based_restart = true;  | 
|
| 684 | 
		_restart_delta_limit = 4;  | 
|
| 685 | 
		 | 
|
| 686 | 
		// Search limits  | 
|
| 687 | 
		_iteration_limit = 1000;  | 
|
| 688 | 
		_step_limit = -1; // this is disabled by default  | 
|
| 689 | 
		_size_limit = -1; // this is disabled by default  | 
|
| 690 | 
		}  | 
|
| 533 | 691 | 
		 | 
| 534 | 692 | 
		// Adds a node to the current clique  | 
| 535 | 693 | 
		    void addCliqueNode(int u) {
	 | 
| ... | ... | 
		@@ -586,30 +744,32 @@  | 
| 586 | 744 | 
		 | 
| 587 | 745 | 
		// Executes the algorithm  | 
| 588 | 746 | 
		template <typename SelectionRuleImpl>  | 
| 589 | 
		    int start(int max_select) {
	 | 
|
| 590 | 
		// Options for the restart rule  | 
|
| 591 | 
		const bool delta_based_restart = true;  | 
|
| 592 | 
		const int restart_delta_limit = 4;  | 
|
| 593 | 
		 | 
|
| 594 | 
		if (_n == 0) return 0;  | 
|
| 747 | 
		    TerminationCause start() {
	 | 
|
| 748 | 
		if (_n == 0) return SIZE_LIMIT;  | 
|
| 595 | 749 | 
		      if (_n == 1) {
	 | 
| 596 | 750 | 
		_best_clique[0] = true;  | 
| 597 | 751 | 
		_best_size = 1;  | 
| 598 | 
		return  | 
|
| 752 | 
		return SIZE_LIMIT;  | 
|
| 599 | 753 | 
		}  | 
| 600 | 754 | 
		 | 
| 601 | 
		// Iterated local search  | 
|
| 755 | 
		// Iterated local search algorithm  | 
|
| 756 | 
		const int max_size = _size_limit >= 0 ? _size_limit : _n;  | 
|
| 757 | 
		const int max_restart = _iteration_limit >= 0 ?  | 
|
| 758 | 
		_iteration_limit : std::numeric_limits<int>::max();  | 
|
| 759 | 
		const int max_select = _step_limit >= 0 ?  | 
|
| 760 | 
		_step_limit : std::numeric_limits<int>::max();  | 
|
| 761 | 
		 | 
|
| 602 | 762 | 
		SelectionRuleImpl sel_method(*this);  | 
| 603 | 
		int select = 0;  | 
|
| 763 | 
		int select = 0, restart = 0;  | 
|
| 604 | 764 | 
		IntVector restart_nodes;  | 
| 605 | 
		 | 
|
| 606 | 
		      while (select < max_select) {
	 | 
|
| 765 | 
		      while (select < max_select && restart < max_restart) {
	 | 
|
| 607 | 766 | 
		 | 
| 608 | 767 | 
		// Perturbation/restart  | 
| 609 | 
		
  | 
|
| 768 | 
		restart++;  | 
|
| 769 | 
		        if (_delta_based_restart) {
	 | 
|
| 610 | 770 | 
		restart_nodes.clear();  | 
| 611 | 771 | 
		          for (int i = 0; i != _n; i++) {
	 | 
| 612 | 
		if (_delta[i] >=  | 
|
| 772 | 
		if (_delta[i] >= _restart_delta_limit)  | 
|
| 613 | 773 | 
		restart_nodes.push_back(i);  | 
| 614 | 774 | 
		}  | 
| 615 | 775 | 
		}  | 
| ... | ... | 
		@@ -663,12 +823,12 @@  | 
| 663 | 823 | 
		        if (_size > _best_size) {
	 | 
| 664 | 824 | 
		_best_clique = _clique;  | 
| 665 | 825 | 
		_best_size = _size;  | 
| 666 | 
		if (_best_size  | 
|
| 826 | 
		if (_best_size >= max_size) return SIZE_LIMIT;  | 
|
| 667 | 827 | 
		}  | 
| 668 | 828 | 
		sel_method.update();  | 
| 669 | 829 | 
		}  | 
| 670 | 830 | 
		 | 
| 671 | 
		return  | 
|
| 831 | 
		return (restart >= max_restart ? ITERATION_LIMIT : STEP_LIMIT);  | 
|
| 672 | 832 | 
		}  | 
| 673 | 833 | 
		 | 
| 674 | 834 | 
		}; //class GrossoLocatelliPullanMc  | 
| ... | ... | 
		@@ -47,10 +47,10 @@  | 
| 47 | 47 | 
		/// linear programming simplex method directly for the minimum cost  | 
| 48 | 48 | 
		/// flow problem.  | 
| 49 | 49 | 
		///  | 
| 50 | 
		/// In general, %NetworkSimplex is the fastest implementation available  | 
|
| 51 | 
		/// in LEMON for this problem.  | 
|
| 52 | 
		/// Moreover, it supports both directions of the supply/demand inequality  | 
|
| 53 | 
		/// constraints. For more information, see \ref SupplyType.  | 
|
| 50 | 
		/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest  | 
|
| 51 | 
		/// implementations available in LEMON for this problem.  | 
|
| 52 | 
		/// Furthermore, this class supports both directions of the supply/demand  | 
|
| 53 | 
		/// inequality constraints. For more information, see \ref SupplyType.  | 
|
| 54 | 54 | 
		///  | 
| 55 | 55 | 
		/// Most of the parameters of the problem (except for the digraph)  | 
| 56 | 56 | 
		/// can be given using separate functions, and the algorithm can be  | 
| ... | ... | 
		@@ -126,7 +126,7 @@  | 
| 126 | 126 | 
		/// implementations that significantly affect the running time  | 
| 127 | 127 | 
		/// of the algorithm.  | 
| 128 | 128 | 
		/// By default, \ref BLOCK_SEARCH "Block Search" is used, which  | 
| 129 | 
		///  | 
|
| 129 | 
		/// turend out to be the most efficient and the most robust on various  | 
|
| 130 | 130 | 
		/// test inputs.  | 
| 131 | 131 | 
		/// However, another pivot rule can be selected using the \ref run()  | 
| 132 | 132 | 
		/// function with the proper parameter.  | 
| ... | ... | 
		@@ -168,7 +168,7 @@  | 
| 168 | 168 | 
		typedef std::vector<Value> ValueVector;  | 
| 169 | 169 | 
		typedef std::vector<Cost> CostVector;  | 
| 170 | 170 | 
		typedef std::vector<signed char> CharVector;  | 
| 171 | 
		// Note: vector<signed char> is used instead of vector<ArcState> and  | 
|
| 171 | 
		// Note: vector<signed char> is used instead of vector<ArcState> and  | 
|
| 172 | 172 | 
		// vector<ArcDirection> for efficiency reasons  | 
| 173 | 173 | 
		 | 
| 174 | 174 | 
		// State constants for arcs  | 
| ... | ... | 
		@@ -735,6 +735,8 @@  | 
| 735 | 735 | 
		/// of the algorithm.  | 
| 736 | 736 | 
		///  | 
| 737 | 737 | 
		/// \return <tt>(*this)</tt>  | 
| 738 | 
		///  | 
|
| 739 | 
		/// \sa supplyType()  | 
|
| 738 | 740 | 
		template<typename SupplyMap>  | 
| 739 | 741 | 
		    NetworkSimplex& supplyMap(const SupplyMap& map) {
	 | 
| 740 | 742 | 
		      for (NodeIt n(_graph); n != INVALID; ++n) {
	 | 
| ... | ... | 
		@@ -751,7 +753,7 @@  | 
| 751 | 753 | 
		/// calling \ref run(), the supply of each node will be set to zero.  | 
| 752 | 754 | 
		///  | 
| 753 | 755 | 
		/// Using this function has the same effect as using \ref supplyMap()  | 
| 754 | 
		/// with  | 
|
| 756 | 
		/// with a map in which \c k is assigned to \c s, \c -k is  | 
|
| 755 | 757 | 
		/// assigned to \c t and all other nodes have zero supply value.  | 
| 756 | 758 | 
		///  | 
| 757 | 759 | 
		/// \param s The source node.  | 
| ... | ... | 
		@@ -43,7 +43,7 @@  | 
| 43 | 43 | 
		/// \tparam GR The digraph type in which the path is.  | 
| 44 | 44 | 
		///  | 
| 45 | 45 | 
		/// In a sense, the path can be treated as a list of arcs. The  | 
| 46 | 
		///  | 
|
| 46 | 
		/// LEMON path type stores just this list. As a consequence, it  | 
|
| 47 | 47 | 
		/// cannot enumerate the nodes of the path and the source node of  | 
| 48 | 48 | 
		/// a zero length path is undefined.  | 
| 49 | 49 | 
		///  | 
| ... | ... | 
		@@ -135,7 +135,7 @@  | 
| 135 | 135 | 
		/// \brief Reset the path to an empty one.  | 
| 136 | 136 | 
		    void clear() { head.clear(); tail.clear(); }
	 | 
| 137 | 137 | 
		 | 
| 138 | 
		/// \brief The  | 
|
| 138 | 
		/// \brief The n-th arc.  | 
|
| 139 | 139 | 
		///  | 
| 140 | 140 | 
		/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.  | 
| 141 | 141 | 
		    const Arc& nth(int n) const {
	 | 
| ... | ... | 
		@@ -143,7 +143,7 @@  | 
| 143 | 143 | 
		*(tail.begin() + (n - head.size()));  | 
| 144 | 144 | 
		}  | 
| 145 | 145 | 
		 | 
| 146 | 
		/// \brief Initialize arc iterator to point to the  | 
|
| 146 | 
		/// \brief Initialize arc iterator to point to the n-th arc  | 
|
| 147 | 147 | 
		///  | 
| 148 | 148 | 
		/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.  | 
| 149 | 149 | 
		    ArcIt nthIt(int n) const {
	 | 
| ... | ... | 
		@@ -231,7 +231,7 @@  | 
| 231 | 231 | 
		/// \tparam GR The digraph type in which the path is.  | 
| 232 | 232 | 
		///  | 
| 233 | 233 | 
		/// In a sense, the path can be treated as a list of arcs. The  | 
| 234 | 
		///  | 
|
| 234 | 
		/// LEMON path type stores just this list. As a consequence it  | 
|
| 235 | 235 | 
		/// cannot enumerate the nodes in the path and the zero length paths  | 
| 236 | 236 | 
		/// cannot store the source.  | 
| 237 | 237 | 
		///  | 
| ... | ... | 
		@@ -327,14 +327,14 @@  | 
| 327 | 327 | 
		/// \brief Reset the path to an empty one.  | 
| 328 | 328 | 
		    void clear() { data.clear(); }
	 | 
| 329 | 329 | 
		 | 
| 330 | 
		/// \brief The  | 
|
| 330 | 
		/// \brief The n-th arc.  | 
|
| 331 | 331 | 
		///  | 
| 332 | 332 | 
		/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.  | 
| 333 | 333 | 
		    const Arc& nth(int n) const {
	 | 
| 334 | 334 | 
		return data[n];  | 
| 335 | 335 | 
		}  | 
| 336 | 336 | 
		 | 
| 337 | 
		/// \brief Initializes arc iterator to point to the  | 
|
| 337 | 
		/// \brief Initializes arc iterator to point to the n-th arc.  | 
|
| 338 | 338 | 
		    ArcIt nthIt(int n) const {
	 | 
| 339 | 339 | 
		return ArcIt(*this, n);  | 
| 340 | 340 | 
		}  | 
| ... | ... | 
		@@ -395,7 +395,7 @@  | 
| 395 | 395 | 
		/// \tparam GR The digraph type in which the path is.  | 
| 396 | 396 | 
		///  | 
| 397 | 397 | 
		/// In a sense, the path can be treated as a list of arcs. The  | 
| 398 | 
		///  | 
|
| 398 | 
		/// LEMON path type stores just this list. As a consequence it  | 
|
| 399 | 399 | 
		/// cannot enumerate the nodes in the path and the zero length paths  | 
| 400 | 400 | 
		/// cannot store the source.  | 
| 401 | 401 | 
		///  | 
| ... | ... | 
		@@ -504,9 +504,9 @@  | 
| 504 | 504 | 
		Node *node;  | 
| 505 | 505 | 
		};  | 
| 506 | 506 | 
		 | 
| 507 | 
		/// \brief The  | 
|
| 507 | 
		/// \brief The n-th arc.  | 
|
| 508 | 508 | 
		///  | 
| 509 | 
		/// This function looks for the  | 
|
| 509 | 
		/// This function looks for the n-th arc in O(n) time.  | 
|
| 510 | 510 | 
		/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.  | 
| 511 | 511 | 
		    const Arc& nth(int n) const {
	 | 
| 512 | 512 | 
		Node *node = first;  | 
| ... | ... | 
		@@ -516,7 +516,7 @@  | 
| 516 | 516 | 
		return node->arc;  | 
| 517 | 517 | 
		}  | 
| 518 | 518 | 
		 | 
| 519 | 
		/// \brief Initializes arc iterator to point to the  | 
|
| 519 | 
		/// \brief Initializes arc iterator to point to the n-th arc.  | 
|
| 520 | 520 | 
		    ArcIt nthIt(int n) const {
	 | 
| 521 | 521 | 
		Node *node = first;  | 
| 522 | 522 | 
		      for (int i = 0; i < n; ++i) {
	 | 
| ... | ... | 
		@@ -735,7 +735,7 @@  | 
| 735 | 735 | 
		/// \tparam GR The digraph type in which the path is.  | 
| 736 | 736 | 
		///  | 
| 737 | 737 | 
		/// In a sense, the path can be treated as a list of arcs. The  | 
| 738 | 
		///  | 
|
| 738 | 
		/// LEMON path type stores just this list. As a consequence it  | 
|
| 739 | 739 | 
		/// cannot enumerate the nodes in the path and the source node of  | 
| 740 | 740 | 
		/// a zero length path is undefined.  | 
| 741 | 741 | 
		///  | 
| ... | ... | 
		@@ -831,14 +831,14 @@  | 
| 831 | 831 | 
		int idx;  | 
| 832 | 832 | 
		};  | 
| 833 | 833 | 
		 | 
| 834 | 
		/// \brief The  | 
|
| 834 | 
		/// \brief The n-th arc.  | 
|
| 835 | 835 | 
		///  | 
| 836 | 836 | 
		/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.  | 
| 837 | 837 | 
		    const Arc& nth(int n) const {
	 | 
| 838 | 838 | 
		return arcs[n];  | 
| 839 | 839 | 
		}  | 
| 840 | 840 | 
		 | 
| 841 | 
		/// \brief The arc iterator pointing to the  | 
|
| 841 | 
		/// \brief The arc iterator pointing to the n-th arc.  | 
|
| 842 | 842 | 
		    ArcIt nthIt(int n) const {
	 | 
| 843 | 843 | 
		return ArcIt(*this, n);  | 
| 844 | 844 | 
		}  | 
| ... | ... | 
		@@ -1042,7 +1042,7 @@  | 
| 1042 | 1042 | 
		/// \brief Class which helps to iterate through the nodes of a path  | 
| 1043 | 1043 | 
		///  | 
| 1044 | 1044 | 
		/// In a sense, the path can be treated as a list of arcs. The  | 
| 1045 | 
		///  | 
|
| 1045 | 
		/// LEMON path type stores only this list. As a consequence, it  | 
|
| 1046 | 1046 | 
		/// cannot enumerate the nodes in the path and the zero length paths  | 
| 1047 | 1047 | 
		/// cannot have a source node.  | 
| 1048 | 1048 | 
		///  | 
| ... | ... | 
		@@ -58,7 +58,7 @@  | 
| 58 | 58 | 
		 | 
| 59 | 59 | 
		// Check with general graphs  | 
| 60 | 60 | 
		template <typename Param>  | 
| 61 | 
		void checkMaxCliqueGeneral(  | 
|
| 61 | 
		void checkMaxCliqueGeneral(Param rule) {
	 | 
|
| 62 | 62 | 
		typedef ListGraph GR;  | 
| 63 | 63 | 
		typedef GrossoLocatelliPullanMc<GR> McAlg;  | 
| 64 | 64 | 
		typedef McAlg::CliqueNodeIt CliqueIt;  | 
| ... | ... | 
		@@ -68,12 +68,13 @@  | 
| 68 | 68 | 
		GR g;  | 
| 69 | 69 | 
		GR::NodeMap<bool> map(g);  | 
| 70 | 70 | 
		McAlg mc(g);  | 
| 71 | 
		
  | 
|
| 71 | 
		mc.iterationLimit(50);  | 
|
| 72 | 
		check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");  | 
|
| 72 | 73 | 
		check(mc.cliqueSize() == 0, "Wrong clique size");  | 
| 73 | 74 | 
		check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt");  | 
| 74 | 75 | 
		 | 
| 75 | 76 | 
		GR::Node u = g.addNode();  | 
| 76 | 
		check(mc.run(  | 
|
| 77 | 
		check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");  | 
|
| 77 | 78 | 
		check(mc.cliqueSize() == 1, "Wrong clique size");  | 
| 78 | 79 | 
		mc.cliqueMap(map);  | 
| 79 | 80 | 
		check(map[u], "Wrong clique map");  | 
| ... | ... | 
		@@ -82,7 +83,7 @@  | 
| 82 | 83 | 
		"Wrong CliqueNodeIt");  | 
| 83 | 84 | 
		 | 
| 84 | 85 | 
		GR::Node v = g.addNode();  | 
| 85 | 
		check(mc.run(  | 
|
| 86 | 
		check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");  | 
|
| 86 | 87 | 
		check(mc.cliqueSize() == 1, "Wrong clique size");  | 
| 87 | 88 | 
		mc.cliqueMap(map);  | 
| 88 | 89 | 
		check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map");  | 
| ... | ... | 
		@@ -90,7 +91,7 @@  | 
| 90 | 91 | 
		check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt");  | 
| 91 | 92 | 
		 | 
| 92 | 93 | 
		g.addEdge(u, v);  | 
| 93 | 
		check(mc.run(  | 
|
| 94 | 
		check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");  | 
|
| 94 | 95 | 
		check(mc.cliqueSize() == 2, "Wrong clique size");  | 
| 95 | 96 | 
		mc.cliqueMap(map);  | 
| 96 | 97 | 
		check(map[u] && map[v], "Wrong clique map");  | 
| ... | ... | 
		@@ -110,7 +111,8 @@  | 
| 110 | 111 | 
		.run();  | 
| 111 | 112 | 
		 | 
| 112 | 113 | 
		McAlg mc(g);  | 
| 113 | 
		
  | 
|
| 114 | 
		mc.iterationLimit(50);  | 
|
| 115 | 
		check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");  | 
|
| 114 | 116 | 
		check(mc.cliqueSize() == 4, "Wrong clique size");  | 
| 115 | 117 | 
		mc.cliqueMap(map);  | 
| 116 | 118 | 
		    for (GR::NodeIt n(g); n != INVALID; ++n) {
	 | 
| ... | ... | 
		@@ -127,7 +129,7 @@  | 
| 127 | 129 | 
		 | 
| 128 | 130 | 
		// Check with full graphs  | 
| 129 | 131 | 
		template <typename Param>  | 
| 130 | 
		void checkMaxCliqueFullGraph(  | 
|
| 132 | 
		void checkMaxCliqueFullGraph(Param rule) {
	 | 
|
| 131 | 133 | 
		typedef FullGraph GR;  | 
| 132 | 134 | 
		typedef GrossoLocatelliPullanMc<FullGraph> McAlg;  | 
| 133 | 135 | 
		typedef McAlg::CliqueNodeIt CliqueIt;  | 
| ... | ... | 
		@@ -136,7 +138,7 @@  | 
| 136 | 138 | 
		GR g(size);  | 
| 137 | 139 | 
		GR::NodeMap<bool> map(g);  | 
| 138 | 140 | 
		McAlg mc(g);  | 
| 139 | 
		check(mc.run(  | 
|
| 141 | 
		check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");  | 
|
| 140 | 142 | 
		check(mc.cliqueSize() == size, "Wrong clique size");  | 
| 141 | 143 | 
		mc.cliqueMap(map);  | 
| 142 | 144 | 
		    for (GR::NodeIt n(g); n != INVALID; ++n) {
	 | 
| ... | ... | 
		@@ -150,27 +152,37 @@  | 
| 150 | 152 | 
		 | 
| 151 | 153 | 
		// Check with grid graphs  | 
| 152 | 154 | 
		template <typename Param>  | 
| 153 | 
		void checkMaxCliqueGridGraph(  | 
|
| 155 | 
		void checkMaxCliqueGridGraph(Param rule) {
	 | 
|
| 154 | 156 | 
		GridGraph g(5, 7);  | 
| 155 | 157 | 
		GridGraph::NodeMap<char> map(g);  | 
| 156 | 158 | 
		GrossoLocatelliPullanMc<GridGraph> mc(g);  | 
| 157 | 
		
  | 
|
| 159 | 
		 | 
|
| 160 | 
		mc.iterationLimit(100);  | 
|
| 161 | 
		check(mc.run(rule) == mc.ITERATION_LIMIT, "Wrong termination cause");  | 
|
| 162 | 
		check(mc.cliqueSize() == 2, "Wrong clique size");  | 
|
| 163 | 
		 | 
|
| 164 | 
		mc.stepLimit(100);  | 
|
| 165 | 
		check(mc.run(rule) == mc.STEP_LIMIT, "Wrong termination cause");  | 
|
| 166 | 
		check(mc.cliqueSize() == 2, "Wrong clique size");  | 
|
| 167 | 
		 | 
|
| 168 | 
		mc.sizeLimit(2);  | 
|
| 169 | 
		check(mc.run(rule) == mc.SIZE_LIMIT, "Wrong termination cause");  | 
|
| 158 | 170 | 
		check(mc.cliqueSize() == 2, "Wrong clique size");  | 
| 159 | 171 | 
		}  | 
| 160 | 172 | 
		 | 
| 161 | 173 | 
		 | 
| 162 | 174 | 
		int main() {
	 | 
| 163 | 
		checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM);  | 
|
| 164 | 
		checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);  | 
|
| 165 | 
		checkMaxCliqueGeneral(  | 
|
| 175 | 
		checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::RANDOM);  | 
|
| 176 | 
		checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);  | 
|
| 177 | 
		checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);  | 
|
| 166 | 178 | 
		 | 
| 167 | 
		checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM);  | 
|
| 168 | 
		checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);  | 
|
| 169 | 
		checkMaxCliqueFullGraph(  | 
|
| 179 | 
		checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::RANDOM);  | 
|
| 180 | 
		checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);  | 
|
| 181 | 
		checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);  | 
|
| 170 | 182 | 
		 | 
| 171 | 
		checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM);  | 
|
| 172 | 
		checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);  | 
|
| 173 | 
		checkMaxCliqueGridGraph(  | 
|
| 183 | 
		checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::RANDOM);  | 
|
| 184 | 
		checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);  | 
|
| 185 | 
		checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);  | 
|
| 174 | 186 | 
		 | 
| 175 | 187 | 
		return 0;  | 
| 176 | 188 | 
		}  | 
0 comments (0 inline)