0
11
0
| ... | ... |
@@ -98,10 +98,10 @@ |
| 98 | 98 |
|
| 99 | 99 |
\subsection pri-loc-var Private member variables |
| 100 | 100 |
|
| 101 |
Private member variables should start with underscore |
|
| 101 |
Private member variables should start with underscore. |
|
| 102 | 102 |
|
| 103 | 103 |
\code |
| 104 |
|
|
| 104 |
_start_with_underscore |
|
| 105 | 105 |
\endcode |
| 106 | 106 |
|
| 107 | 107 |
\subsection cs-excep Exceptions |
| ... | ... |
@@ -406,10 +406,10 @@ |
| 406 | 406 |
- \ref CycleCanceling Cycle-Canceling algorithms, two of which are |
| 407 | 407 |
strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling. |
| 408 | 408 |
|
| 409 |
In general NetworkSimplex is the most efficient implementation, |
|
| 410 |
but in special cases other algorithms could be faster. |
|
| 409 |
In general, \ref NetworkSimplex and \ref CostScaling are the most efficient |
|
| 410 |
implementations, but the other two algorithms could be faster in special cases. |
|
| 411 | 411 |
For example, if the total supply and/or capacities are rather small, |
| 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
| 412 |
\ref CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
| 413 | 413 |
*/ |
| 414 | 414 |
|
| 415 | 415 |
/** |
| ... | ... |
@@ -471,7 +471,7 @@ |
| 471 | 471 |
- \ref HowardMmc Howard's policy iteration algorithm |
| 472 | 472 |
\ref dasdan98minmeancycle. |
| 473 | 473 |
|
| 474 |
In practice, the \ref HowardMmc "Howard" algorithm |
|
| 474 |
In practice, the \ref HowardMmc "Howard" algorithm turned out to be by far the |
|
| 475 | 475 |
most efficient one, though the best known theoretical bound on its running |
| 476 | 476 |
time is exponential. |
| 477 | 477 |
Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms |
| ... | ... |
@@ -539,7 +539,7 @@ |
| 539 | 539 |
*/ |
| 540 | 540 |
|
| 541 | 541 |
/** |
| 542 |
@defgroup planar |
|
| 542 |
@defgroup planar Planar Embedding and Drawing |
|
| 543 | 543 |
@ingroup algs |
| 544 | 544 |
\brief Algorithms for planarity checking, embedding and drawing |
| 545 | 545 |
| ... | ... |
@@ -89,8 +89,8 @@ |
| 89 | 89 |
/// \warning Both \c V and \c C must be signed number types. |
| 90 | 90 |
/// \warning All input data (capacities, supply values, and costs) must |
| 91 | 91 |
/// be integer. |
| 92 |
/// \warning This algorithm does not support negative costs for such |
|
| 93 |
/// arcs that have infinite upper bound. |
|
| 92 |
/// \warning This algorithm does not support negative costs for |
|
| 93 |
/// arcs having infinite upper bound. |
|
| 94 | 94 |
#ifdef DOXYGEN |
| 95 | 95 |
template <typename GR, typename V, typename C, typename TR> |
| 96 | 96 |
#else |
| ... | ... |
@@ -423,7 +423,7 @@ |
| 423 | 423 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 424 | 424 |
/// |
| 425 | 425 |
/// Using this function has the same effect as using \ref supplyMap() |
| 426 |
/// with |
|
| 426 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
| 427 | 427 |
/// assigned to \c t and all other nodes have zero supply value. |
| 428 | 428 |
/// |
| 429 | 429 |
/// \param s The source node. |
| ... | ... |
@@ -97,6 +97,9 @@ |
| 97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
| 98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
| 99 | 99 |
/// |
| 100 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
|
| 101 |
/// implementations available in LEMON for this problem. |
|
| 102 |
/// |
|
| 100 | 103 |
/// Most of the parameters of the problem (except for the digraph) |
| 101 | 104 |
/// can be given using separate functions, and the algorithm can be |
| 102 | 105 |
/// executed using the \ref run() function. If some parameters are not |
| ... | ... |
@@ -116,8 +119,8 @@ |
| 116 | 119 |
/// \warning Both \c V and \c C must be signed number types. |
| 117 | 120 |
/// \warning All input data (capacities, supply values, and costs) must |
| 118 | 121 |
/// be integer. |
| 119 |
/// \warning This algorithm does not support negative costs for such |
|
| 120 |
/// arcs that have infinite upper bound. |
|
| 122 |
/// \warning This algorithm does not support negative costs for |
|
| 123 |
/// arcs having infinite upper bound. |
|
| 121 | 124 |
/// |
| 122 | 125 |
/// \note %CostScaling provides three different internal methods, |
| 123 | 126 |
/// from which the most efficient one is used by default. |
| ... | ... |
@@ -179,7 +182,7 @@ |
| 179 | 182 |
/// in their base operations, which are used in conjunction with the |
| 180 | 183 |
/// relabel operation. |
| 181 | 184 |
/// By default, the so called \ref PARTIAL_AUGMENT |
| 182 |
/// "Partial Augment-Relabel" method is used, which |
|
| 185 |
/// "Partial Augment-Relabel" method is used, which turned out to be |
|
| 183 | 186 |
/// the most efficient and the most robust on various test inputs. |
| 184 | 187 |
/// However, the other methods can be selected using the \ref run() |
| 185 | 188 |
/// function with the proper parameter. |
| ... | ... |
@@ -448,7 +451,7 @@ |
| 448 | 451 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 449 | 452 |
/// |
| 450 | 453 |
/// Using this function has the same effect as using \ref supplyMap() |
| 451 |
/// with |
|
| 454 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
| 452 | 455 |
/// assigned to \c t and all other nodes have zero supply value. |
| 453 | 456 |
/// |
| 454 | 457 |
/// \param s The source node. |
| ... | ... |
@@ -68,8 +68,8 @@ |
| 68 | 68 |
/// \warning Both \c V and \c C must be signed number types. |
| 69 | 69 |
/// \warning All input data (capacities, supply values, and costs) must |
| 70 | 70 |
/// be integer. |
| 71 |
/// \warning This algorithm does not support negative costs for such |
|
| 72 |
/// arcs that have infinite upper bound. |
|
| 71 |
/// \warning This algorithm does not support negative costs for |
|
| 72 |
/// arcs having infinite upper bound. |
|
| 73 | 73 |
/// |
| 74 | 74 |
/// \note For more information about the three available methods, |
| 75 | 75 |
/// see \ref Method. |
| ... | ... |
@@ -117,8 +117,7 @@ |
| 117 | 117 |
/// |
| 118 | 118 |
/// \ref CycleCanceling provides three different cycle-canceling |
| 119 | 119 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
| 120 |
/// is used, which proved to be the most efficient and the most robust |
|
| 121 |
/// on various test inputs. |
|
| 120 |
/// is used, which is by far the most efficient and the most robust. |
|
| 122 | 121 |
/// However, the other methods can be selected using the \ref run() |
| 123 | 122 |
/// function with the proper parameter. |
| 124 | 123 |
enum Method {
|
| ... | ... |
@@ -350,7 +349,7 @@ |
| 350 | 349 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 351 | 350 |
/// |
| 352 | 351 |
/// Using this function has the same effect as using \ref supplyMap() |
| 353 |
/// with |
|
| 352 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
| 354 | 353 |
/// assigned to \c t and all other nodes have zero supply value. |
| 355 | 354 |
/// |
| 356 | 355 |
/// \param s The source node. |
| ... | ... |
@@ -36,7 +36,7 @@ |
| 36 | 36 |
|
| 37 | 37 |
///Euler tour iterator for digraphs. |
| 38 | 38 |
|
| 39 |
/// \ingroup |
|
| 39 |
/// \ingroup graph_properties |
|
| 40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
| 41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
| 42 | 42 |
/// |
| ... | ... |
@@ -46,8 +46,12 @@ |
| 46 | 46 |
/// pair of nodes is connected. |
| 47 | 47 |
/// |
| 48 | 48 |
/// This class provides a simple but highly efficient and robust heuristic |
| 49 |
/// method that quickly finds a large clique, but not necessarily the |
|
| 49 |
/// method that quickly finds a quite large clique, but not necessarily the |
|
| 50 | 50 |
/// largest one. |
| 51 |
/// The algorithm performs a certain number of iterations to find several |
|
| 52 |
/// cliques and selects the largest one among them. Various limits can be |
|
| 53 |
/// specified to control the running time and the effectiveness of the |
|
| 54 |
/// search process. |
|
| 51 | 55 |
/// |
| 52 | 56 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 53 | 57 |
/// |
| ... | ... |
@@ -84,6 +88,22 @@ |
| 84 | 88 |
PENALTY_BASED |
| 85 | 89 |
}; |
| 86 | 90 |
|
| 91 |
/// \brief Constants for the causes of search termination. |
|
| 92 |
/// |
|
| 93 |
/// Enum type containing constants for the different causes of search |
|
| 94 |
/// termination. The \ref run() function returns one of these values. |
|
| 95 |
enum TerminationCause {
|
|
| 96 |
|
|
| 97 |
/// The iteration count limit is reached. |
|
| 98 |
ITERATION_LIMIT, |
|
| 99 |
|
|
| 100 |
/// The step count limit is reached. |
|
| 101 |
STEP_LIMIT, |
|
| 102 |
|
|
| 103 |
/// The clique size limit is reached. |
|
| 104 |
SIZE_LIMIT |
|
| 105 |
}; |
|
| 106 |
|
|
| 87 | 107 |
private: |
| 88 | 108 |
|
| 89 | 109 |
TEMPLATE_GRAPH_TYPEDEFS(GR); |
| ... | ... |
@@ -93,12 +113,22 @@ |
| 93 | 113 |
typedef std::vector<BoolVector> BoolMatrix; |
| 94 | 114 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
| 95 | 115 |
|
| 116 |
// The underlying graph |
|
| 96 | 117 |
const GR &_graph; |
| 97 | 118 |
IntNodeMap _id; |
| 98 | 119 |
|
| 99 | 120 |
// Internal matrix representation of the graph |
| 100 | 121 |
BoolMatrix _gr; |
| 101 | 122 |
int _n; |
| 123 |
|
|
| 124 |
// Search options |
|
| 125 |
bool _delta_based_restart; |
|
| 126 |
int _restart_delta_limit; |
|
| 127 |
|
|
| 128 |
// Search limits |
|
| 129 |
int _iteration_limit; |
|
| 130 |
int _step_limit; |
|
| 131 |
int _size_limit; |
|
| 102 | 132 |
|
| 103 | 133 |
// The current clique |
| 104 | 134 |
BoolVector _clique; |
| ... | ... |
@@ -380,7 +410,9 @@ |
| 380 | 410 |
/// \param graph The undirected graph the algorithm runs on. |
| 381 | 411 |
GrossoLocatelliPullanMc(const GR& graph) : |
| 382 | 412 |
_graph(graph), _id(_graph), _rnd(rnd) |
| 383 |
{
|
|
| 413 |
{
|
|
| 414 |
initOptions(); |
|
| 415 |
} |
|
| 384 | 416 |
|
| 385 | 417 |
/// \brief Constructor with random seed. |
| 386 | 418 |
/// |
| ... | ... |
@@ -391,7 +423,9 @@ |
| 391 | 423 |
/// that is used during the algorithm. |
| 392 | 424 |
GrossoLocatelliPullanMc(const GR& graph, int seed) : |
| 393 | 425 |
_graph(graph), _id(_graph), _rnd(seed) |
| 394 |
{
|
|
| 426 |
{
|
|
| 427 |
initOptions(); |
|
| 428 |
} |
|
| 395 | 429 |
|
| 396 | 430 |
/// \brief Constructor with random number generator. |
| 397 | 431 |
/// |
| ... | ... |
@@ -402,43 +436,155 @@ |
| 402 | 436 |
/// algorithm. |
| 403 | 437 |
GrossoLocatelliPullanMc(const GR& graph, const Random& random) : |
| 404 | 438 |
_graph(graph), _id(_graph), _rnd(random) |
| 405 |
{
|
|
| 439 |
{
|
|
| 440 |
initOptions(); |
|
| 441 |
} |
|
| 406 | 442 |
|
| 407 | 443 |
/// \name Execution Control |
| 444 |
/// The \ref run() function can be used to execute the algorithm.\n |
|
| 445 |
/// The functions \ref iterationLimit(int), \ref stepLimit(int), and |
|
| 446 |
/// \ref sizeLimit(int) can be used to specify various limits for the |
|
| 447 |
/// search process. |
|
| 448 |
|
|
| 408 | 449 |
/// @{
|
| 450 |
|
|
| 451 |
/// \brief Sets the maximum number of iterations. |
|
| 452 |
/// |
|
| 453 |
/// This function sets the maximum number of iterations. |
|
| 454 |
/// Each iteration of the algorithm finds a maximal clique (but not |
|
| 455 |
/// necessarily the largest one) by performing several search steps |
|
| 456 |
/// (node selections). |
|
| 457 |
/// |
|
| 458 |
/// This limit controls the running time and the success of the |
|
| 459 |
/// algorithm. For larger values, the algorithm runs slower, but it more |
|
| 460 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
| 461 |
/// faster but probably gives worse results. |
|
| 462 |
/// |
|
| 463 |
/// The default value is \c 1000. |
|
| 464 |
/// \c -1 means that number of iterations is not limited. |
|
| 465 |
/// |
|
| 466 |
/// \warning You should specify a reasonable limit for the number of |
|
| 467 |
/// iterations and/or the number of search steps. |
|
| 468 |
/// |
|
| 469 |
/// \return <tt>(*this)</tt> |
|
| 470 |
/// |
|
| 471 |
/// \sa stepLimit(int) |
|
| 472 |
/// \sa sizeLimit(int) |
|
| 473 |
GrossoLocatelliPullanMc& iterationLimit(int limit) {
|
|
| 474 |
_iteration_limit = limit; |
|
| 475 |
return *this; |
|
| 476 |
} |
|
| 477 |
|
|
| 478 |
/// \brief Sets the maximum number of search steps. |
|
| 479 |
/// |
|
| 480 |
/// This function sets the maximum number of elementary search steps. |
|
| 481 |
/// Each iteration of the algorithm finds a maximal clique (but not |
|
| 482 |
/// necessarily the largest one) by performing several search steps |
|
| 483 |
/// (node selections). |
|
| 484 |
/// |
|
| 485 |
/// This limit controls the running time and the success of the |
|
| 486 |
/// algorithm. For larger values, the algorithm runs slower, but it more |
|
| 487 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
| 488 |
/// faster but probably gives worse results. |
|
| 489 |
/// |
|
| 490 |
/// The default value is \c -1, which means that number of steps |
|
| 491 |
/// is not limited explicitly. However, the number of iterations is |
|
| 492 |
/// limited and each iteration performs a finite number of search steps. |
|
| 493 |
/// |
|
| 494 |
/// \warning You should specify a reasonable limit for the number of |
|
| 495 |
/// iterations and/or the number of search steps. |
|
| 496 |
/// |
|
| 497 |
/// \return <tt>(*this)</tt> |
|
| 498 |
/// |
|
| 499 |
/// \sa iterationLimit(int) |
|
| 500 |
/// \sa sizeLimit(int) |
|
| 501 |
GrossoLocatelliPullanMc& stepLimit(int limit) {
|
|
| 502 |
_step_limit = limit; |
|
| 503 |
return *this; |
|
| 504 |
} |
|
| 505 |
|
|
| 506 |
/// \brief Sets the desired clique size. |
|
| 507 |
/// |
|
| 508 |
/// This function sets the desired clique size that serves as a search |
|
| 509 |
/// limit. If a clique of this size (or a larger one) is found, then the |
|
| 510 |
/// algorithm terminates. |
|
| 511 |
/// |
|
| 512 |
/// This function is especially useful if you know an exact upper bound |
|
| 513 |
/// for the size of the cliques in the graph or if any clique above |
|
| 514 |
/// a certain size limit is sufficient for your application. |
|
| 515 |
/// |
|
| 516 |
/// The default value is \c -1, which means that the size limit is set to |
|
| 517 |
/// the number of nodes in the graph. |
|
| 518 |
/// |
|
| 519 |
/// \return <tt>(*this)</tt> |
|
| 520 |
/// |
|
| 521 |
/// \sa iterationLimit(int) |
|
| 522 |
/// \sa stepLimit(int) |
|
| 523 |
GrossoLocatelliPullanMc& sizeLimit(int limit) {
|
|
| 524 |
_size_limit = limit; |
|
| 525 |
return *this; |
|
| 526 |
} |
|
| 527 |
|
|
| 528 |
/// \brief The maximum number of iterations. |
|
| 529 |
/// |
|
| 530 |
/// This function gives back the maximum number of iterations. |
|
| 531 |
/// \c -1 means that no limit is specified. |
|
| 532 |
/// |
|
| 533 |
/// \sa iterationLimit(int) |
|
| 534 |
int iterationLimit() const {
|
|
| 535 |
return _iteration_limit; |
|
| 536 |
} |
|
| 537 |
|
|
| 538 |
/// \brief The maximum number of search steps. |
|
| 539 |
/// |
|
| 540 |
/// This function gives back the maximum number of search steps. |
|
| 541 |
/// \c -1 means that no limit is specified. |
|
| 542 |
/// |
|
| 543 |
/// \sa stepLimit(int) |
|
| 544 |
int stepLimit() const {
|
|
| 545 |
return _step_limit; |
|
| 546 |
} |
|
| 547 |
|
|
| 548 |
/// \brief The desired clique size. |
|
| 549 |
/// |
|
| 550 |
/// This function gives back the desired clique size that serves as a |
|
| 551 |
/// search limit. \c -1 means that this limit is set to the number of |
|
| 552 |
/// nodes in the graph. |
|
| 553 |
/// |
|
| 554 |
/// \sa sizeLimit(int) |
|
| 555 |
int sizeLimit() const {
|
|
| 556 |
return _size_limit; |
|
| 557 |
} |
|
| 409 | 558 |
|
| 410 | 559 |
/// \brief Runs the algorithm. |
| 411 | 560 |
/// |
| 412 |
/// This function runs the algorithm. |
|
| 561 |
/// This function runs the algorithm. If one of the specified limits |
|
| 562 |
/// is reached, the search process terminates. |
|
| 413 | 563 |
/// |
| 414 |
/// \param step_num The maximum number of node selections (steps) |
|
| 415 |
/// during the search process. |
|
| 416 |
/// This parameter controls the running time and the success of the |
|
| 417 |
/// algorithm. For larger values, the algorithm runs slower but it more |
|
| 418 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
| 419 |
/// faster but probably gives worse results. |
|
| 420 | 564 |
/// \param rule The node selection rule. For more information, see |
| 421 | 565 |
/// \ref SelectionRule. |
| 422 | 566 |
/// |
| 423 |
/// \return The size of the found clique. |
|
| 424 |
int run(int step_num = 100000, |
|
| 425 |
|
|
| 567 |
/// \return The termination cause of the search. For more information, |
|
| 568 |
/// see \ref TerminationCause. |
|
| 569 |
TerminationCause run(SelectionRule rule = PENALTY_BASED) |
|
| 426 | 570 |
{
|
| 427 | 571 |
init(); |
| 428 | 572 |
switch (rule) {
|
| 429 | 573 |
case RANDOM: |
| 430 |
return start<RandomSelectionRule>( |
|
| 574 |
return start<RandomSelectionRule>(); |
|
| 431 | 575 |
case DEGREE_BASED: |
| 432 |
return start<DegreeBasedSelectionRule>(step_num); |
|
| 433 |
case PENALTY_BASED: |
|
| 434 |
return start< |
|
| 576 |
return start<DegreeBasedSelectionRule>(); |
|
| 577 |
default: |
|
| 578 |
return start<PenaltyBasedSelectionRule>(); |
|
| 435 | 579 |
} |
| 436 |
return 0; // avoid warning |
|
| 437 | 580 |
} |
| 438 | 581 |
|
| 439 | 582 |
/// @} |
| 440 | 583 |
|
| 441 | 584 |
/// \name Query Functions |
| 585 |
/// The results of the algorithm can be obtained using these functions.\n |
|
| 586 |
/// The run() function must be called before using them. |
|
| 587 |
|
|
| 442 | 588 |
/// @{
|
| 443 | 589 |
|
| 444 | 590 |
/// \brief The size of the found clique |
| ... | ... |
@@ -530,6 +676,18 @@ |
| 530 | 676 |
/// @} |
| 531 | 677 |
|
| 532 | 678 |
private: |
| 679 |
|
|
| 680 |
// Initialize search options and limits |
|
| 681 |
void initOptions() {
|
|
| 682 |
// Search options |
|
| 683 |
_delta_based_restart = true; |
|
| 684 |
_restart_delta_limit = 4; |
|
| 685 |
|
|
| 686 |
// Search limits |
|
| 687 |
_iteration_limit = 1000; |
|
| 688 |
_step_limit = -1; // this is disabled by default |
|
| 689 |
_size_limit = -1; // this is disabled by default |
|
| 690 |
} |
|
| 533 | 691 |
|
| 534 | 692 |
// Adds a node to the current clique |
| 535 | 693 |
void addCliqueNode(int u) {
|
| ... | ... |
@@ -586,30 +744,32 @@ |
| 586 | 744 |
|
| 587 | 745 |
// Executes the algorithm |
| 588 | 746 |
template <typename SelectionRuleImpl> |
| 589 |
int start(int max_select) {
|
|
| 590 |
// Options for the restart rule |
|
| 591 |
const bool delta_based_restart = true; |
|
| 592 |
const int restart_delta_limit = 4; |
|
| 593 |
|
|
| 594 |
if (_n == 0) return 0; |
|
| 747 |
TerminationCause start() {
|
|
| 748 |
if (_n == 0) return SIZE_LIMIT; |
|
| 595 | 749 |
if (_n == 1) {
|
| 596 | 750 |
_best_clique[0] = true; |
| 597 | 751 |
_best_size = 1; |
| 598 |
return |
|
| 752 |
return SIZE_LIMIT; |
|
| 599 | 753 |
} |
| 600 | 754 |
|
| 601 |
// Iterated local search |
|
| 755 |
// Iterated local search algorithm |
|
| 756 |
const int max_size = _size_limit >= 0 ? _size_limit : _n; |
|
| 757 |
const int max_restart = _iteration_limit >= 0 ? |
|
| 758 |
_iteration_limit : std::numeric_limits<int>::max(); |
|
| 759 |
const int max_select = _step_limit >= 0 ? |
|
| 760 |
_step_limit : std::numeric_limits<int>::max(); |
|
| 761 |
|
|
| 602 | 762 |
SelectionRuleImpl sel_method(*this); |
| 603 |
int select = 0; |
|
| 763 |
int select = 0, restart = 0; |
|
| 604 | 764 |
IntVector restart_nodes; |
| 605 |
|
|
| 606 |
while (select < max_select) {
|
|
| 765 |
while (select < max_select && restart < max_restart) {
|
|
| 607 | 766 |
|
| 608 | 767 |
// Perturbation/restart |
| 609 |
|
|
| 768 |
restart++; |
|
| 769 |
if (_delta_based_restart) {
|
|
| 610 | 770 |
restart_nodes.clear(); |
| 611 | 771 |
for (int i = 0; i != _n; i++) {
|
| 612 |
if (_delta[i] >= |
|
| 772 |
if (_delta[i] >= _restart_delta_limit) |
|
| 613 | 773 |
restart_nodes.push_back(i); |
| 614 | 774 |
} |
| 615 | 775 |
} |
| ... | ... |
@@ -663,12 +823,12 @@ |
| 663 | 823 |
if (_size > _best_size) {
|
| 664 | 824 |
_best_clique = _clique; |
| 665 | 825 |
_best_size = _size; |
| 666 |
if (_best_size |
|
| 826 |
if (_best_size >= max_size) return SIZE_LIMIT; |
|
| 667 | 827 |
} |
| 668 | 828 |
sel_method.update(); |
| 669 | 829 |
} |
| 670 | 830 |
|
| 671 |
return |
|
| 831 |
return (restart >= max_restart ? ITERATION_LIMIT : STEP_LIMIT); |
|
| 672 | 832 |
} |
| 673 | 833 |
|
| 674 | 834 |
}; //class GrossoLocatelliPullanMc |
| ... | ... |
@@ -47,10 +47,10 @@ |
| 47 | 47 |
/// linear programming simplex method directly for the minimum cost |
| 48 | 48 |
/// flow problem. |
| 49 | 49 |
/// |
| 50 |
/// In general, %NetworkSimplex is the fastest implementation available |
|
| 51 |
/// in LEMON for this problem. |
|
| 52 |
/// Moreover, it supports both directions of the supply/demand inequality |
|
| 53 |
/// constraints. For more information, see \ref SupplyType. |
|
| 50 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
|
| 51 |
/// implementations available in LEMON for this problem. |
|
| 52 |
/// Furthermore, this class supports both directions of the supply/demand |
|
| 53 |
/// inequality constraints. For more information, see \ref SupplyType. |
|
| 54 | 54 |
/// |
| 55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
| 56 | 56 |
/// can be given using separate functions, and the algorithm can be |
| ... | ... |
@@ -126,7 +126,7 @@ |
| 126 | 126 |
/// implementations that significantly affect the running time |
| 127 | 127 |
/// of the algorithm. |
| 128 | 128 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
| 129 |
/// |
|
| 129 |
/// turend out to be the most efficient and the most robust on various |
|
| 130 | 130 |
/// test inputs. |
| 131 | 131 |
/// However, another pivot rule can be selected using the \ref run() |
| 132 | 132 |
/// function with the proper parameter. |
| ... | ... |
@@ -168,7 +168,7 @@ |
| 168 | 168 |
typedef std::vector<Value> ValueVector; |
| 169 | 169 |
typedef std::vector<Cost> CostVector; |
| 170 | 170 |
typedef std::vector<signed char> CharVector; |
| 171 |
// Note: vector<signed char> is used instead of vector<ArcState> and |
|
| 171 |
// Note: vector<signed char> is used instead of vector<ArcState> and |
|
| 172 | 172 |
// vector<ArcDirection> for efficiency reasons |
| 173 | 173 |
|
| 174 | 174 |
// State constants for arcs |
| ... | ... |
@@ -735,6 +735,8 @@ |
| 735 | 735 |
/// of the algorithm. |
| 736 | 736 |
/// |
| 737 | 737 |
/// \return <tt>(*this)</tt> |
| 738 |
/// |
|
| 739 |
/// \sa supplyType() |
|
| 738 | 740 |
template<typename SupplyMap> |
| 739 | 741 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
| 740 | 742 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| ... | ... |
@@ -751,7 +753,7 @@ |
| 751 | 753 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 752 | 754 |
/// |
| 753 | 755 |
/// Using this function has the same effect as using \ref supplyMap() |
| 754 |
/// with |
|
| 756 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
| 755 | 757 |
/// assigned to \c t and all other nodes have zero supply value. |
| 756 | 758 |
/// |
| 757 | 759 |
/// \param s The source node. |
| ... | ... |
@@ -43,7 +43,7 @@ |
| 43 | 43 |
/// \tparam GR The digraph type in which the path is. |
| 44 | 44 |
/// |
| 45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
| 46 |
/// |
|
| 46 |
/// LEMON path type stores just this list. As a consequence, it |
|
| 47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
| 48 | 48 |
/// a zero length path is undefined. |
| 49 | 49 |
/// |
| ... | ... |
@@ -135,7 +135,7 @@ |
| 135 | 135 |
/// \brief Reset the path to an empty one. |
| 136 | 136 |
void clear() { head.clear(); tail.clear(); }
|
| 137 | 137 |
|
| 138 |
/// \brief The |
|
| 138 |
/// \brief The n-th arc. |
|
| 139 | 139 |
/// |
| 140 | 140 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 141 | 141 |
const Arc& nth(int n) const {
|
| ... | ... |
@@ -143,7 +143,7 @@ |
| 143 | 143 |
*(tail.begin() + (n - head.size())); |
| 144 | 144 |
} |
| 145 | 145 |
|
| 146 |
/// \brief Initialize arc iterator to point to the |
|
| 146 |
/// \brief Initialize arc iterator to point to the n-th arc |
|
| 147 | 147 |
/// |
| 148 | 148 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 149 | 149 |
ArcIt nthIt(int n) const {
|
| ... | ... |
@@ -231,7 +231,7 @@ |
| 231 | 231 |
/// \tparam GR The digraph type in which the path is. |
| 232 | 232 |
/// |
| 233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
| 234 |
/// |
|
| 234 |
/// LEMON path type stores just this list. As a consequence it |
|
| 235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 236 | 236 |
/// cannot store the source. |
| 237 | 237 |
/// |
| ... | ... |
@@ -327,14 +327,14 @@ |
| 327 | 327 |
/// \brief Reset the path to an empty one. |
| 328 | 328 |
void clear() { data.clear(); }
|
| 329 | 329 |
|
| 330 |
/// \brief The |
|
| 330 |
/// \brief The n-th arc. |
|
| 331 | 331 |
/// |
| 332 | 332 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 333 | 333 |
const Arc& nth(int n) const {
|
| 334 | 334 |
return data[n]; |
| 335 | 335 |
} |
| 336 | 336 |
|
| 337 |
/// \brief Initializes arc iterator to point to the |
|
| 337 |
/// \brief Initializes arc iterator to point to the n-th arc. |
|
| 338 | 338 |
ArcIt nthIt(int n) const {
|
| 339 | 339 |
return ArcIt(*this, n); |
| 340 | 340 |
} |
| ... | ... |
@@ -395,7 +395,7 @@ |
| 395 | 395 |
/// \tparam GR The digraph type in which the path is. |
| 396 | 396 |
/// |
| 397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
| 398 |
/// |
|
| 398 |
/// LEMON path type stores just this list. As a consequence it |
|
| 399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 400 | 400 |
/// cannot store the source. |
| 401 | 401 |
/// |
| ... | ... |
@@ -504,9 +504,9 @@ |
| 504 | 504 |
Node *node; |
| 505 | 505 |
}; |
| 506 | 506 |
|
| 507 |
/// \brief The |
|
| 507 |
/// \brief The n-th arc. |
|
| 508 | 508 |
/// |
| 509 |
/// This function looks for the |
|
| 509 |
/// This function looks for the n-th arc in O(n) time. |
|
| 510 | 510 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 511 | 511 |
const Arc& nth(int n) const {
|
| 512 | 512 |
Node *node = first; |
| ... | ... |
@@ -516,7 +516,7 @@ |
| 516 | 516 |
return node->arc; |
| 517 | 517 |
} |
| 518 | 518 |
|
| 519 |
/// \brief Initializes arc iterator to point to the |
|
| 519 |
/// \brief Initializes arc iterator to point to the n-th arc. |
|
| 520 | 520 |
ArcIt nthIt(int n) const {
|
| 521 | 521 |
Node *node = first; |
| 522 | 522 |
for (int i = 0; i < n; ++i) {
|
| ... | ... |
@@ -735,7 +735,7 @@ |
| 735 | 735 |
/// \tparam GR The digraph type in which the path is. |
| 736 | 736 |
/// |
| 737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
| 738 |
/// |
|
| 738 |
/// LEMON path type stores just this list. As a consequence it |
|
| 739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
| 740 | 740 |
/// a zero length path is undefined. |
| 741 | 741 |
/// |
| ... | ... |
@@ -831,14 +831,14 @@ |
| 831 | 831 |
int idx; |
| 832 | 832 |
}; |
| 833 | 833 |
|
| 834 |
/// \brief The |
|
| 834 |
/// \brief The n-th arc. |
|
| 835 | 835 |
/// |
| 836 | 836 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
| 837 | 837 |
const Arc& nth(int n) const {
|
| 838 | 838 |
return arcs[n]; |
| 839 | 839 |
} |
| 840 | 840 |
|
| 841 |
/// \brief The arc iterator pointing to the |
|
| 841 |
/// \brief The arc iterator pointing to the n-th arc. |
|
| 842 | 842 |
ArcIt nthIt(int n) const {
|
| 843 | 843 |
return ArcIt(*this, n); |
| 844 | 844 |
} |
| ... | ... |
@@ -1042,7 +1042,7 @@ |
| 1042 | 1042 |
/// \brief Class which helps to iterate through the nodes of a path |
| 1043 | 1043 |
/// |
| 1044 | 1044 |
/// In a sense, the path can be treated as a list of arcs. The |
| 1045 |
/// |
|
| 1045 |
/// LEMON path type stores only this list. As a consequence, it |
|
| 1046 | 1046 |
/// cannot enumerate the nodes in the path and the zero length paths |
| 1047 | 1047 |
/// cannot have a source node. |
| 1048 | 1048 |
/// |
| ... | ... |
@@ -58,7 +58,7 @@ |
| 58 | 58 |
|
| 59 | 59 |
// Check with general graphs |
| 60 | 60 |
template <typename Param> |
| 61 |
void checkMaxCliqueGeneral( |
|
| 61 |
void checkMaxCliqueGeneral(Param rule) {
|
|
| 62 | 62 |
typedef ListGraph GR; |
| 63 | 63 |
typedef GrossoLocatelliPullanMc<GR> McAlg; |
| 64 | 64 |
typedef McAlg::CliqueNodeIt CliqueIt; |
| ... | ... |
@@ -68,12 +68,13 @@ |
| 68 | 68 |
GR g; |
| 69 | 69 |
GR::NodeMap<bool> map(g); |
| 70 | 70 |
McAlg mc(g); |
| 71 |
|
|
| 71 |
mc.iterationLimit(50); |
|
| 72 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
| 72 | 73 |
check(mc.cliqueSize() == 0, "Wrong clique size"); |
| 73 | 74 |
check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt"); |
| 74 | 75 |
|
| 75 | 76 |
GR::Node u = g.addNode(); |
| 76 |
check(mc.run( |
|
| 77 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
| 77 | 78 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
| 78 | 79 |
mc.cliqueMap(map); |
| 79 | 80 |
check(map[u], "Wrong clique map"); |
| ... | ... |
@@ -82,7 +83,7 @@ |
| 82 | 83 |
"Wrong CliqueNodeIt"); |
| 83 | 84 |
|
| 84 | 85 |
GR::Node v = g.addNode(); |
| 85 |
check(mc.run( |
|
| 86 |
check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause"); |
|
| 86 | 87 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
| 87 | 88 |
mc.cliqueMap(map); |
| 88 | 89 |
check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map"); |
| ... | ... |
@@ -90,7 +91,7 @@ |
| 90 | 91 |
check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt"); |
| 91 | 92 |
|
| 92 | 93 |
g.addEdge(u, v); |
| 93 |
check(mc.run( |
|
| 94 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
| 94 | 95 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
| 95 | 96 |
mc.cliqueMap(map); |
| 96 | 97 |
check(map[u] && map[v], "Wrong clique map"); |
| ... | ... |
@@ -110,7 +111,8 @@ |
| 110 | 111 |
.run(); |
| 111 | 112 |
|
| 112 | 113 |
McAlg mc(g); |
| 113 |
|
|
| 114 |
mc.iterationLimit(50); |
|
| 115 |
check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause"); |
|
| 114 | 116 |
check(mc.cliqueSize() == 4, "Wrong clique size"); |
| 115 | 117 |
mc.cliqueMap(map); |
| 116 | 118 |
for (GR::NodeIt n(g); n != INVALID; ++n) {
|
| ... | ... |
@@ -127,7 +129,7 @@ |
| 127 | 129 |
|
| 128 | 130 |
// Check with full graphs |
| 129 | 131 |
template <typename Param> |
| 130 |
void checkMaxCliqueFullGraph( |
|
| 132 |
void checkMaxCliqueFullGraph(Param rule) {
|
|
| 131 | 133 |
typedef FullGraph GR; |
| 132 | 134 |
typedef GrossoLocatelliPullanMc<FullGraph> McAlg; |
| 133 | 135 |
typedef McAlg::CliqueNodeIt CliqueIt; |
| ... | ... |
@@ -136,7 +138,7 @@ |
| 136 | 138 |
GR g(size); |
| 137 | 139 |
GR::NodeMap<bool> map(g); |
| 138 | 140 |
McAlg mc(g); |
| 139 |
check(mc.run( |
|
| 141 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
| 140 | 142 |
check(mc.cliqueSize() == size, "Wrong clique size"); |
| 141 | 143 |
mc.cliqueMap(map); |
| 142 | 144 |
for (GR::NodeIt n(g); n != INVALID; ++n) {
|
| ... | ... |
@@ -150,27 +152,37 @@ |
| 150 | 152 |
|
| 151 | 153 |
// Check with grid graphs |
| 152 | 154 |
template <typename Param> |
| 153 |
void checkMaxCliqueGridGraph( |
|
| 155 |
void checkMaxCliqueGridGraph(Param rule) {
|
|
| 154 | 156 |
GridGraph g(5, 7); |
| 155 | 157 |
GridGraph::NodeMap<char> map(g); |
| 156 | 158 |
GrossoLocatelliPullanMc<GridGraph> mc(g); |
| 157 |
|
|
| 159 |
|
|
| 160 |
mc.iterationLimit(100); |
|
| 161 |
check(mc.run(rule) == mc.ITERATION_LIMIT, "Wrong termination cause"); |
|
| 162 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
| 163 |
|
|
| 164 |
mc.stepLimit(100); |
|
| 165 |
check(mc.run(rule) == mc.STEP_LIMIT, "Wrong termination cause"); |
|
| 166 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
| 167 |
|
|
| 168 |
mc.sizeLimit(2); |
|
| 169 |
check(mc.run(rule) == mc.SIZE_LIMIT, "Wrong termination cause"); |
|
| 158 | 170 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
| 159 | 171 |
} |
| 160 | 172 |
|
| 161 | 173 |
|
| 162 | 174 |
int main() {
|
| 163 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM); |
|
| 164 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED); |
|
| 165 |
checkMaxCliqueGeneral( |
|
| 175 |
checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::RANDOM); |
|
| 176 |
checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED); |
|
| 177 |
checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED); |
|
| 166 | 178 |
|
| 167 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM); |
|
| 168 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED); |
|
| 169 |
checkMaxCliqueFullGraph( |
|
| 179 |
checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::RANDOM); |
|
| 180 |
checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED); |
|
| 181 |
checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED); |
|
| 170 | 182 |
|
| 171 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM); |
|
| 172 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED); |
|
| 173 |
checkMaxCliqueGridGraph( |
|
| 183 |
checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::RANDOM); |
|
| 184 |
checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED); |
|
| 185 |
checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED); |
|
| 174 | 186 |
|
| 175 | 187 |
return 0; |
| 176 | 188 |
} |
0 comments (0 inline)