↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -99,8 +99,8 @@
99 99
\subsection pri-loc-var Private member variables
100 100

	
101
Private member variables should start with underscore
101
Private member variables should start with underscore.
102 102

	
103 103
\code
104
_start_with_underscores
104
_start_with_underscore
105 105
\endcode
106 106

	
Ignore white space 6 line context
... ...
@@ -407,8 +407,8 @@
407 407
   strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.
408 408

	
409
In general NetworkSimplex is the most efficient implementation,
410
but in special cases other algorithms could be faster.
409
In general, \ref NetworkSimplex and \ref CostScaling are the most efficient
410
implementations, but the other two algorithms could be faster in special cases.
411 411
For example, if the total supply and/or capacities are rather small,
412
CapacityScaling is usually the fastest algorithm (without effective scaling).
412
\ref CapacityScaling is usually the fastest algorithm (without effective scaling).
413 413
*/
414 414

	
... ...
@@ -472,5 +472,5 @@
472 472
  \ref dasdan98minmeancycle.
473 473

	
474
In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the
474
In practice, the \ref HowardMmc "Howard" algorithm turned out to be by far the
475 475
most efficient one, though the best known theoretical bound on its running
476 476
time is exponential.
... ...
@@ -540,5 +540,5 @@
540 540

	
541 541
/**
542
@defgroup planar Planarity Embedding and Drawing
542
@defgroup planar Planar Embedding and Drawing
543 543
@ingroup algs
544 544
\brief Algorithms for planarity checking, embedding and drawing
Ignore white space 6 line context
... ...
@@ -90,6 +90,6 @@
90 90
  /// \warning All input data (capacities, supply values, and costs) must
91 91
  /// be integer.
92
  /// \warning This algorithm does not support negative costs for such
93
  /// arcs that have infinite upper bound.
92
  /// \warning This algorithm does not support negative costs for
93
  /// arcs having infinite upper bound.
94 94
#ifdef DOXYGEN
95 95
  template <typename GR, typename V, typename C, typename TR>
... ...
@@ -424,5 +424,5 @@
424 424
    ///
425 425
    /// Using this function has the same effect as using \ref supplyMap()
426
    /// with such a map in which \c k is assigned to \c s, \c -k is
426
    /// with a map in which \c k is assigned to \c s, \c -k is
427 427
    /// assigned to \c t and all other nodes have zero supply value.
428 428
    ///
Ignore white space 6 line context
... ...
@@ -448,5 +448,5 @@
448 448
  }
449 449

	
450
  /// Check whether a graph is undirected.
450
  /// \brief Check whether a graph is undirected.
451 451
  ///
452 452
  /// This function returns \c true if the given graph is undirected.
Ignore white space 6 line context
... ...
@@ -98,4 +98,7 @@
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
101
  /// implementations available in LEMON for this problem.
102
  ///
100 103
  /// Most of the parameters of the problem (except for the digraph)
101 104
  /// can be given using separate functions, and the algorithm can be
... ...
@@ -117,6 +120,6 @@
117 120
  /// \warning All input data (capacities, supply values, and costs) must
118 121
  /// be integer.
119
  /// \warning This algorithm does not support negative costs for such
120
  /// arcs that have infinite upper bound.
122
  /// \warning This algorithm does not support negative costs for
123
  /// arcs having infinite upper bound.
121 124
  ///
122 125
  /// \note %CostScaling provides three different internal methods,
... ...
@@ -180,5 +183,5 @@
180 183
    /// relabel operation.
181 184
    /// By default, the so called \ref PARTIAL_AUGMENT
182
    /// "Partial Augment-Relabel" method is used, which proved to be
185
    /// "Partial Augment-Relabel" method is used, which turned out to be
183 186
    /// the most efficient and the most robust on various test inputs.
184 187
    /// However, the other methods can be selected using the \ref run()
... ...
@@ -449,5 +452,5 @@
449 452
    ///
450 453
    /// Using this function has the same effect as using \ref supplyMap()
451
    /// with such a map in which \c k is assigned to \c s, \c -k is
454
    /// with a map in which \c k is assigned to \c s, \c -k is
452 455
    /// assigned to \c t and all other nodes have zero supply value.
453 456
    ///
Ignore white space 4 line context
... ...
@@ -69,6 +69,6 @@
69 69
  /// \warning All input data (capacities, supply values, and costs) must
70 70
  /// be integer.
71
  /// \warning This algorithm does not support negative costs for such
72
  /// arcs that have infinite upper bound.
71
  /// \warning This algorithm does not support negative costs for
72
  /// arcs having infinite upper bound.
73 73
  ///
74 74
  /// \note For more information about the three available methods,
... ...
@@ -118,6 +118,5 @@
118 118
    /// \ref CycleCanceling provides three different cycle-canceling
119 119
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
120
    /// is used, which proved to be the most efficient and the most robust
121
    /// on various test inputs.
120
    /// is used, which is by far the most efficient and the most robust.
122 121
    /// However, the other methods can be selected using the \ref run()
123 122
    /// function with the proper parameter.
... ...
@@ -351,5 +350,5 @@
351 350
    ///
352 351
    /// Using this function has the same effect as using \ref supplyMap()
353
    /// with such a map in which \c k is assigned to \c s, \c -k is
352
    /// with a map in which \c k is assigned to \c s, \c -k is
354 353
    /// assigned to \c t and all other nodes have zero supply value.
355 354
    ///
Ignore white space 6 line context
... ...
@@ -37,5 +37,5 @@
37 37
  ///Euler tour iterator for digraphs.
38 38

	
39
  /// \ingroup graph_prop
39
  /// \ingroup graph_properties
40 40
  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
41 41
  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
Ignore white space 6 line context
... ...
@@ -47,6 +47,10 @@
47 47
  ///
48 48
  /// This class provides a simple but highly efficient and robust heuristic
49
  /// method that quickly finds a large clique, but not necessarily the
49
  /// method that quickly finds a quite large clique, but not necessarily the
50 50
  /// largest one.
51
  /// The algorithm performs a certain number of iterations to find several
52
  /// cliques and selects the largest one among them. Various limits can be
53
  /// specified to control the running time and the effectiveness of the
54
  /// search process.
51 55
  ///
52 56
  /// \tparam GR The undirected graph type the algorithm runs on.
... ...
@@ -85,4 +89,20 @@
85 89
    };
86 90

	
91
    /// \brief Constants for the causes of search termination.
92
    ///
93
    /// Enum type containing constants for the different causes of search
94
    /// termination. The \ref run() function returns one of these values.
95
    enum TerminationCause {
96

	
97
      /// The iteration count limit is reached.
98
      ITERATION_LIMIT,
99

	
100
      /// The step count limit is reached.
101
      STEP_LIMIT,
102

	
103
      /// The clique size limit is reached.
104
      SIZE_LIMIT
105
    };
106

	
87 107
  private:
88 108

	
... ...
@@ -94,4 +114,5 @@
94 114
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
95 115

	
116
    // The underlying graph
96 117
    const GR &_graph;
97 118
    IntNodeMap _id;
... ...
@@ -100,4 +121,13 @@
100 121
    BoolMatrix _gr;
101 122
    int _n;
123
    
124
    // Search options
125
    bool _delta_based_restart;
126
    int _restart_delta_limit;
127
 
128
    // Search limits
129
    int _iteration_limit;
130
    int _step_limit;
131
    int _size_limit;
102 132

	
103 133
    // The current clique
... ...
@@ -381,5 +411,7 @@
381 411
    GrossoLocatelliPullanMc(const GR& graph) :
382 412
      _graph(graph), _id(_graph), _rnd(rnd)
383
    {}
413
    {
414
      initOptions();
415
    }
384 416

	
385 417
    /// \brief Constructor with random seed.
... ...
@@ -392,5 +424,7 @@
392 424
    GrossoLocatelliPullanMc(const GR& graph, int seed) :
393 425
      _graph(graph), _id(_graph), _rnd(seed)
394
    {}
426
    {
427
      initOptions();
428
    }
395 429

	
396 430
    /// \brief Constructor with random number generator.
... ...
@@ -403,36 +437,145 @@
403 437
    GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
404 438
      _graph(graph), _id(_graph), _rnd(random)
405
    {}
439
    {
440
      initOptions();
441
    }
406 442

	
407 443
    /// \name Execution Control
444
    /// The \ref run() function can be used to execute the algorithm.\n
445
    /// The functions \ref iterationLimit(int), \ref stepLimit(int), and 
446
    /// \ref sizeLimit(int) can be used to specify various limits for the
447
    /// search process.
448
    
408 449
    /// @{
450
    
451
    /// \brief Sets the maximum number of iterations.
452
    ///
453
    /// This function sets the maximum number of iterations.
454
    /// Each iteration of the algorithm finds a maximal clique (but not
455
    /// necessarily the largest one) by performing several search steps
456
    /// (node selections).
457
    ///
458
    /// This limit controls the running time and the success of the
459
    /// algorithm. For larger values, the algorithm runs slower, but it more
460
    /// likely finds larger cliques. For smaller values, the algorithm is
461
    /// faster but probably gives worse results.
462
    /// 
463
    /// The default value is \c 1000.
464
    /// \c -1 means that number of iterations is not limited.
465
    ///
466
    /// \warning You should specify a reasonable limit for the number of
467
    /// iterations and/or the number of search steps.
468
    ///
469
    /// \return <tt>(*this)</tt>
470
    ///
471
    /// \sa stepLimit(int)
472
    /// \sa sizeLimit(int)
473
    GrossoLocatelliPullanMc& iterationLimit(int limit) {
474
      _iteration_limit = limit;
475
      return *this;
476
    }
477
    
478
    /// \brief Sets the maximum number of search steps.
479
    ///
480
    /// This function sets the maximum number of elementary search steps.
481
    /// Each iteration of the algorithm finds a maximal clique (but not
482
    /// necessarily the largest one) by performing several search steps
483
    /// (node selections).
484
    ///
485
    /// This limit controls the running time and the success of the
486
    /// algorithm. For larger values, the algorithm runs slower, but it more
487
    /// likely finds larger cliques. For smaller values, the algorithm is
488
    /// faster but probably gives worse results.
489
    /// 
490
    /// The default value is \c -1, which means that number of steps
491
    /// is not limited explicitly. However, the number of iterations is
492
    /// limited and each iteration performs a finite number of search steps.
493
    ///
494
    /// \warning You should specify a reasonable limit for the number of
495
    /// iterations and/or the number of search steps.
496
    ///
497
    /// \return <tt>(*this)</tt>
498
    ///
499
    /// \sa iterationLimit(int)
500
    /// \sa sizeLimit(int)
501
    GrossoLocatelliPullanMc& stepLimit(int limit) {
502
      _step_limit = limit;
503
      return *this;
504
    }
505
    
506
    /// \brief Sets the desired clique size.
507
    ///
508
    /// This function sets the desired clique size that serves as a search
509
    /// limit. If a clique of this size (or a larger one) is found, then the
510
    /// algorithm terminates.
511
    /// 
512
    /// This function is especially useful if you know an exact upper bound
513
    /// for the size of the cliques in the graph or if any clique above 
514
    /// a certain size limit is sufficient for your application.
515
    /// 
516
    /// The default value is \c -1, which means that the size limit is set to
517
    /// the number of nodes in the graph.
518
    ///
519
    /// \return <tt>(*this)</tt>
520
    ///
521
    /// \sa iterationLimit(int)
522
    /// \sa stepLimit(int)
523
    GrossoLocatelliPullanMc& sizeLimit(int limit) {
524
      _size_limit = limit;
525
      return *this;
526
    }
527
    
528
    /// \brief The maximum number of iterations.
529
    ///
530
    /// This function gives back the maximum number of iterations.
531
    /// \c -1 means that no limit is specified.
532
    ///
533
    /// \sa iterationLimit(int)
534
    int iterationLimit() const {
535
      return _iteration_limit;
536
    }
537
    
538
    /// \brief The maximum number of search steps.
539
    ///
540
    /// This function gives back the maximum number of search steps.
541
    /// \c -1 means that no limit is specified.
542
    ///
543
    /// \sa stepLimit(int)
544
    int stepLimit() const {
545
      return _step_limit;
546
    }
547
    
548
    /// \brief The desired clique size.
549
    ///
550
    /// This function gives back the desired clique size that serves as a
551
    /// search limit. \c -1 means that this limit is set to the number of
552
    /// nodes in the graph.
553
    ///
554
    /// \sa sizeLimit(int)
555
    int sizeLimit() const {
556
      return _size_limit;
557
    }
409 558

	
410 559
    /// \brief Runs the algorithm.
411 560
    ///
412
    /// This function runs the algorithm.
561
    /// This function runs the algorithm. If one of the specified limits
562
    /// is reached, the search process terminates.
413 563
    ///
414
    /// \param step_num The maximum number of node selections (steps)
415
    /// during the search process.
416
    /// This parameter controls the running time and the success of the
417
    /// algorithm. For larger values, the algorithm runs slower but it more
418
    /// likely finds larger cliques. For smaller values, the algorithm is
419
    /// faster but probably gives worse results.
420 564
    /// \param rule The node selection rule. For more information, see
421 565
    /// \ref SelectionRule.
422 566
    ///
423
    /// \return The size of the found clique.
424
    int run(int step_num = 100000,
425
            SelectionRule rule = PENALTY_BASED)
567
    /// \return The termination cause of the search. For more information,
568
    /// see \ref TerminationCause.
569
    TerminationCause run(SelectionRule rule = PENALTY_BASED)
426 570
    {
427 571
      init();
428 572
      switch (rule) {
429 573
        case RANDOM:
430
          return start<RandomSelectionRule>(step_num);
574
          return start<RandomSelectionRule>();
431 575
        case DEGREE_BASED:
432
          return start<DegreeBasedSelectionRule>(step_num);
433
        case PENALTY_BASED:
434
          return start<PenaltyBasedSelectionRule>(step_num);
576
          return start<DegreeBasedSelectionRule>();
577
        default:
578
          return start<PenaltyBasedSelectionRule>();
435 579
      }
436
      return 0; // avoid warning
437 580
    }
438 581

	
... ...
@@ -440,4 +583,7 @@
440 583

	
441 584
    /// \name Query Functions
585
    /// The results of the algorithm can be obtained using these functions.\n
586
    /// The run() function must be called before using them. 
587

	
442 588
    /// @{
443 589

	
... ...
@@ -531,4 +677,16 @@
531 677

	
532 678
  private:
679
  
680
    // Initialize search options and limits
681
    void initOptions() {
682
      // Search options
683
      _delta_based_restart = true;
684
      _restart_delta_limit = 4;
685
     
686
      // Search limits
687
      _iteration_limit = 1000;
688
      _step_limit = -1;             // this is disabled by default
689
      _size_limit = -1;             // this is disabled by default
690
    }
533 691

	
534 692
    // Adds a node to the current clique
... ...
@@ -587,28 +745,30 @@
587 745
    // Executes the algorithm
588 746
    template <typename SelectionRuleImpl>
589
    int start(int max_select) {
590
      // Options for the restart rule
591
      const bool delta_based_restart = true;
592
      const int restart_delta_limit = 4;
593

	
594
      if (_n == 0) return 0;
747
    TerminationCause start() {
748
      if (_n == 0) return SIZE_LIMIT;
595 749
      if (_n == 1) {
596 750
        _best_clique[0] = true;
597 751
        _best_size = 1;
598
        return _best_size;
752
        return SIZE_LIMIT;
599 753
      }
600 754

	
601
      // Iterated local search
755
      // Iterated local search algorithm
756
      const int max_size = _size_limit >= 0 ? _size_limit : _n;
757
      const int max_restart = _iteration_limit >= 0 ?
758
        _iteration_limit : std::numeric_limits<int>::max();
759
      const int max_select = _step_limit >= 0 ?
760
        _step_limit : std::numeric_limits<int>::max();
761

	
602 762
      SelectionRuleImpl sel_method(*this);
603
      int select = 0;
763
      int select = 0, restart = 0;
604 764
      IntVector restart_nodes;
605

	
606
      while (select < max_select) {
765
      while (select < max_select && restart < max_restart) {
607 766

	
608 767
        // Perturbation/restart
609
        if (delta_based_restart) {
768
        restart++;
769
        if (_delta_based_restart) {
610 770
          restart_nodes.clear();
611 771
          for (int i = 0; i != _n; i++) {
612
            if (_delta[i] >= restart_delta_limit)
772
            if (_delta[i] >= _restart_delta_limit)
613 773
              restart_nodes.push_back(i);
614 774
          }
... ...
@@ -664,10 +824,10 @@
664 824
          _best_clique = _clique;
665 825
          _best_size = _size;
666
          if (_best_size == _n) return _best_size;
826
          if (_best_size >= max_size) return SIZE_LIMIT;
667 827
        }
668 828
        sel_method.update();
669 829
      }
670 830

	
671
      return _best_size;
831
      return (restart >= max_restart ? ITERATION_LIMIT : STEP_LIMIT);
672 832
    }
673 833

	
Ignore white space 6 line context
... ...
@@ -48,8 +48,8 @@
48 48
  /// flow problem.
49 49
  ///
50
  /// In general, %NetworkSimplex is the fastest implementation available
51
  /// in LEMON for this problem.
52
  /// Moreover, it supports both directions of the supply/demand inequality
53
  /// constraints. For more information, see \ref SupplyType.
50
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
51
  /// implementations available in LEMON for this problem.
52
  /// Furthermore, this class supports both directions of the supply/demand
53
  /// inequality constraints. For more information, see \ref SupplyType.
54 54
  ///
55 55
  /// Most of the parameters of the problem (except for the digraph)
... ...
@@ -127,5 +127,5 @@
127 127
    /// of the algorithm.
128 128
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
129
    /// proved to be the most efficient and the most robust on various
129
    /// turend out to be the most efficient and the most robust on various
130 130
    /// test inputs.
131 131
    /// However, another pivot rule can be selected using the \ref run()
... ...
@@ -169,5 +169,5 @@
169 169
    typedef std::vector<Cost> CostVector;
170 170
    typedef std::vector<signed char> CharVector;
171
    // Note: vector<signed char> is used instead of vector<ArcState> and 
171
    // Note: vector<signed char> is used instead of vector<ArcState> and
172 172
    // vector<ArcDirection> for efficiency reasons
173 173

	
... ...
@@ -736,4 +736,6 @@
736 736
    ///
737 737
    /// \return <tt>(*this)</tt>
738
    ///
739
    /// \sa supplyType()
738 740
    template<typename SupplyMap>
739 741
    NetworkSimplex& supplyMap(const SupplyMap& map) {
... ...
@@ -752,5 +754,5 @@
752 754
    ///
753 755
    /// Using this function has the same effect as using \ref supplyMap()
754
    /// with such a map in which \c k is assigned to \c s, \c -k is
756
    /// with a map in which \c k is assigned to \c s, \c -k is
755 757
    /// assigned to \c t and all other nodes have zero supply value.
756 758
    ///
Ignore white space 6 line context
... ...
@@ -44,5 +44,5 @@
44 44
  ///
45 45
  /// In a sense, the path can be treated as a list of arcs. The
46
  /// lemon path type stores just this list. As a consequence, it
46
  /// LEMON path type stores just this list. As a consequence, it
47 47
  /// cannot enumerate the nodes of the path and the source node of
48 48
  /// a zero length path is undefined.
... ...
@@ -136,5 +136,5 @@
136 136
    void clear() { head.clear(); tail.clear(); }
137 137

	
138
    /// \brief The nth arc.
138
    /// \brief The n-th arc.
139 139
    ///
140 140
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
... ...
@@ -144,5 +144,5 @@
144 144
    }
145 145

	
146
    /// \brief Initialize arc iterator to point to the nth arc
146
    /// \brief Initialize arc iterator to point to the n-th arc
147 147
    ///
148 148
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
... ...
@@ -232,5 +232,5 @@
232 232
  ///
233 233
  /// In a sense, the path can be treated as a list of arcs. The
234
  /// lemon path type stores just this list. As a consequence it
234
  /// LEMON path type stores just this list. As a consequence it
235 235
  /// cannot enumerate the nodes in the path and the zero length paths
236 236
  /// cannot store the source.
... ...
@@ -328,5 +328,5 @@
328 328
    void clear() { data.clear(); }
329 329

	
330
    /// \brief The nth arc.
330
    /// \brief The n-th arc.
331 331
    ///
332 332
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
... ...
@@ -335,5 +335,5 @@
335 335
    }
336 336

	
337
    /// \brief  Initializes arc iterator to point to the nth arc.
337
    /// \brief  Initializes arc iterator to point to the n-th arc.
338 338
    ArcIt nthIt(int n) const {
339 339
      return ArcIt(*this, n);
... ...
@@ -396,5 +396,5 @@
396 396
  ///
397 397
  /// In a sense, the path can be treated as a list of arcs. The
398
  /// lemon path type stores just this list. As a consequence it
398
  /// LEMON path type stores just this list. As a consequence it
399 399
  /// cannot enumerate the nodes in the path and the zero length paths
400 400
  /// cannot store the source.
... ...
@@ -505,7 +505,7 @@
505 505
    };
506 506

	
507
    /// \brief The nth arc.
507
    /// \brief The n-th arc.
508 508
    ///
509
    /// This function looks for the nth arc in O(n) time.
509
    /// This function looks for the n-th arc in O(n) time.
510 510
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
511 511
    const Arc& nth(int n) const {
... ...
@@ -517,5 +517,5 @@
517 517
    }
518 518

	
519
    /// \brief Initializes arc iterator to point to the nth arc.
519
    /// \brief Initializes arc iterator to point to the n-th arc.
520 520
    ArcIt nthIt(int n) const {
521 521
      Node *node = first;
... ...
@@ -736,5 +736,5 @@
736 736
  ///
737 737
  /// In a sense, the path can be treated as a list of arcs. The
738
  /// lemon path type stores just this list. As a consequence it
738
  /// LEMON path type stores just this list. As a consequence it
739 739
  /// cannot enumerate the nodes in the path and the source node of
740 740
  /// a zero length path is undefined.
... ...
@@ -832,5 +832,5 @@
832 832
    };
833 833

	
834
    /// \brief The nth arc.
834
    /// \brief The n-th arc.
835 835
    ///
836 836
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
... ...
@@ -839,5 +839,5 @@
839 839
    }
840 840

	
841
    /// \brief The arc iterator pointing to the nth arc.
841
    /// \brief The arc iterator pointing to the n-th arc.
842 842
    ArcIt nthIt(int n) const {
843 843
      return ArcIt(*this, n);
... ...
@@ -1043,5 +1043,5 @@
1043 1043
  ///
1044 1044
  /// In a sense, the path can be treated as a list of arcs. The
1045
  /// lemon path type stores only this list. As a consequence, it
1045
  /// LEMON path type stores only this list. As a consequence, it
1046 1046
  /// cannot enumerate the nodes in the path and the zero length paths
1047 1047
  /// cannot have a source node.
Ignore white space 6 line context
... ...
@@ -59,5 +59,5 @@
59 59
// Check with general graphs
60 60
template <typename Param>
61
void checkMaxCliqueGeneral(int max_sel, Param rule) {
61
void checkMaxCliqueGeneral(Param rule) {
62 62
  typedef ListGraph GR;
63 63
  typedef GrossoLocatelliPullanMc<GR> McAlg;
... ...
@@ -69,10 +69,11 @@
69 69
    GR::NodeMap<bool> map(g);
70 70
    McAlg mc(g);
71
    check(mc.run(max_sel, rule) == 0, "Wrong clique size");
71
    mc.iterationLimit(50);
72
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
72 73
    check(mc.cliqueSize() == 0, "Wrong clique size");
73 74
    check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt");
74 75

	
75 76
    GR::Node u = g.addNode();
76
    check(mc.run(max_sel, rule) == 1, "Wrong clique size");
77
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
77 78
    check(mc.cliqueSize() == 1, "Wrong clique size");
78 79
    mc.cliqueMap(map);
... ...
@@ -83,5 +84,5 @@
83 84
    
84 85
    GR::Node v = g.addNode();
85
    check(mc.run(max_sel, rule) == 1, "Wrong clique size");
86
    check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");
86 87
    check(mc.cliqueSize() == 1, "Wrong clique size");
87 88
    mc.cliqueMap(map);
... ...
@@ -91,5 +92,5 @@
91 92

	
92 93
    g.addEdge(u, v);
93
    check(mc.run(max_sel, rule) == 2, "Wrong clique size");
94
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
94 95
    check(mc.cliqueSize() == 2, "Wrong clique size");
95 96
    mc.cliqueMap(map);
... ...
@@ -111,5 +112,6 @@
111 112
    
112 113
    McAlg mc(g);
113
    check(mc.run(max_sel, rule) == 4, "Wrong clique size");
114
    mc.iterationLimit(50);
115
    check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");
114 116
    check(mc.cliqueSize() == 4, "Wrong clique size");
115 117
    mc.cliqueMap(map);
... ...
@@ -128,5 +130,5 @@
128 130
// Check with full graphs
129 131
template <typename Param>
130
void checkMaxCliqueFullGraph(int max_sel, Param rule) {
132
void checkMaxCliqueFullGraph(Param rule) {
131 133
  typedef FullGraph GR;
132 134
  typedef GrossoLocatelliPullanMc<FullGraph> McAlg;
... ...
@@ -137,5 +139,5 @@
137 139
    GR::NodeMap<bool> map(g);
138 140
    McAlg mc(g);
139
    check(mc.run(max_sel, rule) == size, "Wrong clique size");
141
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
140 142
    check(mc.cliqueSize() == size, "Wrong clique size");
141 143
    mc.cliqueMap(map);
... ...
@@ -151,9 +153,19 @@
151 153
// Check with grid graphs
152 154
template <typename Param>
153
void checkMaxCliqueGridGraph(int max_sel, Param rule) {
155
void checkMaxCliqueGridGraph(Param rule) {
154 156
  GridGraph g(5, 7);
155 157
  GridGraph::NodeMap<char> map(g);
156 158
  GrossoLocatelliPullanMc<GridGraph> mc(g);
157
  check(mc.run(max_sel, rule) == 2, "Wrong clique size");
159
  
160
  mc.iterationLimit(100);
161
  check(mc.run(rule) == mc.ITERATION_LIMIT, "Wrong termination cause");
162
  check(mc.cliqueSize() == 2, "Wrong clique size");
163

	
164
  mc.stepLimit(100);
165
  check(mc.run(rule) == mc.STEP_LIMIT, "Wrong termination cause");
166
  check(mc.cliqueSize() == 2, "Wrong clique size");
167

	
168
  mc.sizeLimit(2);
169
  check(mc.run(rule) == mc.SIZE_LIMIT, "Wrong termination cause");
158 170
  check(mc.cliqueSize() == 2, "Wrong clique size");
159 171
}
... ...
@@ -161,15 +173,15 @@
161 173

	
162 174
int main() {
163
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM);
164
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);
165
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);
175
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::RANDOM);
176
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);
177
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);
166 178

	
167
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM);
168
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);
169
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);
179
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::RANDOM);
180
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);
181
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);
170 182
                       
171
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM);
172
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);
173
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);
183
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::RANDOM);
184
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);
185
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);
174 186
                       
175 187
  return 0;
0 comments (0 inline)