0
2
0
17
28
20
15
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_FOURARY_HEAP_H |
20 | 20 |
#define LEMON_FOURARY_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 | 24 |
///\brief Fourary heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 | 34 |
///\brief Fourary heap data structure. |
35 | 35 |
/// |
36 | 36 |
/// This class implements the \e fourary \e heap data structure. |
37 | 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
38 | 38 |
/// |
39 | 39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
40 | 40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
41 | 41 |
/// but its nodes have at most four children, instead of two. |
42 | 42 |
/// |
43 | 43 |
/// \tparam PR Type of the priorities of the items. |
44 | 44 |
/// \tparam IM A read-writable item map with \c int values, used |
45 | 45 |
/// internally to handle the cross references. |
46 | 46 |
/// \tparam CMP A functor class for comparing the priorities. |
47 | 47 |
/// The default is \c std::less<PR>. |
48 | 48 |
/// |
49 | 49 |
///\sa BinHeap |
50 | 50 |
///\sa KaryHeap |
51 | 51 |
#ifdef DOXYGEN |
52 | 52 |
template <typename PR, typename IM, typename CMP> |
53 | 53 |
#else |
54 | 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
55 | 55 |
#endif |
56 | 56 |
class FouraryHeap { |
57 | 57 |
public: |
58 | 58 |
/// Type of the item-int map. |
59 | 59 |
typedef IM ItemIntMap; |
60 | 60 |
/// Type of the priorities. |
61 | 61 |
typedef PR Prio; |
62 | 62 |
/// Type of the items stored in the heap. |
63 | 63 |
typedef typename ItemIntMap::Key Item; |
64 | 64 |
/// Type of the item-priority pairs. |
65 | 65 |
typedef std::pair<Item,Prio> Pair; |
66 | 66 |
/// Functor type for comparing the priorities. |
67 | 67 |
typedef CMP Compare; |
68 | 68 |
|
69 | 69 |
/// \brief Type to represent the states of the items. |
70 | 70 |
/// |
71 | 71 |
/// Each item has a state associated to it. It can be "in heap", |
72 | 72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
73 | 73 |
/// heap's point of view, but may be useful to the user. |
74 | 74 |
/// |
75 | 75 |
/// The item-int map must be initialized in such way that it assigns |
76 | 76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
77 | 77 |
enum State { |
78 | 78 |
IN_HEAP = 0, ///< = 0. |
79 | 79 |
PRE_HEAP = -1, ///< = -1. |
80 | 80 |
POST_HEAP = -2 ///< = -2. |
81 | 81 |
}; |
82 | 82 |
|
83 | 83 |
private: |
84 | 84 |
std::vector<Pair> _data; |
85 | 85 |
Compare _comp; |
86 | 86 |
ItemIntMap &_iim; |
87 | 87 |
|
88 | 88 |
public: |
89 | 89 |
/// \brief Constructor. |
90 | 90 |
/// |
91 | 91 |
/// Constructor. |
92 | 92 |
/// \param map A map that assigns \c int values to the items. |
93 | 93 |
/// It is used internally to handle the cross references. |
94 | 94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
95 | 95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {} |
96 | 96 |
|
97 | 97 |
/// \brief Constructor. |
98 | 98 |
/// |
99 | 99 |
/// Constructor. |
100 | 100 |
/// \param map A map that assigns \c int values to the items. |
101 | 101 |
/// It is used internally to handle the cross references. |
102 | 102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
103 | 103 |
/// \param comp The function object used for comparing the priorities. |
104 | 104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
105 | 105 |
: _iim(map), _comp(comp) {} |
106 | 106 |
|
107 | 107 |
/// \brief The number of items stored in the heap. |
108 | 108 |
/// |
109 | 109 |
/// This function returns the number of items stored in the heap. |
110 | 110 |
int size() const { return _data.size(); } |
111 | 111 |
|
112 | 112 |
/// \brief Check if the heap is empty. |
113 | 113 |
/// |
114 | 114 |
/// This function returns \c true if the heap is empty. |
115 | 115 |
bool empty() const { return _data.empty(); } |
116 | 116 |
|
117 | 117 |
/// \brief Make the heap empty. |
118 | 118 |
/// |
119 | 119 |
/// This functon makes the heap empty. |
120 | 120 |
/// It does not change the cross reference map. If you want to reuse |
121 | 121 |
/// a heap that is not surely empty, you should first clear it and |
122 | 122 |
/// then you should set the cross reference map to \c PRE_HEAP |
123 | 123 |
/// for each item. |
124 | 124 |
void clear() { _data.clear(); } |
125 | 125 |
|
126 | 126 |
private: |
127 | 127 |
static int parent(int i) { return (i-1)/4; } |
128 | 128 |
static int firstChild(int i) { return 4*i+1; } |
129 | 129 |
|
130 | 130 |
bool less(const Pair &p1, const Pair &p2) const { |
131 | 131 |
return _comp(p1.second, p2.second); |
132 | 132 |
} |
133 | 133 |
|
134 |
int findMin(const int child, const int length) { |
|
135 |
int min=child; |
|
136 |
if( child+3<length ) { |
|
137 |
if( less(_data[child+3], _data[min]) ) |
|
138 |
min=child+3; |
|
139 |
if( less(_data[child+2], _data[min]) ) |
|
140 |
min=child+2; |
|
141 |
if( less(_data[child+1], _data[min]) ) |
|
142 |
min=child+1; |
|
143 |
} |
|
144 |
else if( child+2<length ) { |
|
145 |
if( less(_data[child+2], _data[min]) ) |
|
146 |
min=child+2; |
|
147 |
if( less(_data[child+1], _data[min]) ) |
|
148 |
min=child+1; |
|
149 |
} |
|
150 |
else if( child+1<length ) { |
|
151 |
if( less(_data[child+1], _data[min]) ) |
|
152 |
min=child+1; |
|
153 |
} |
|
154 |
return min; |
|
155 |
} |
|
156 |
|
|
157 | 134 |
void bubbleUp(int hole, Pair p) { |
158 | 135 |
int par = parent(hole); |
159 | 136 |
while( hole>0 && less(p,_data[par]) ) { |
160 | 137 |
move(_data[par],hole); |
161 | 138 |
hole = par; |
162 | 139 |
par = parent(hole); |
163 | 140 |
} |
164 | 141 |
move(p, hole); |
165 | 142 |
} |
166 | 143 |
|
167 | 144 |
void bubbleDown(int hole, Pair p, int length) { |
168 | 145 |
if( length>1 ) { |
169 | 146 |
int child = firstChild(hole); |
170 |
while( child<length ) { |
|
171 |
child = findMin(child, length); |
|
172 |
|
|
147 |
while( child+3<length ) { |
|
148 |
int min=child; |
|
149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
152 |
if( !less(_data[min], p) ) |
|
173 | 153 |
goto ok; |
174 |
move(_data[child], hole); |
|
175 |
hole = child; |
|
154 |
move(_data[min], hole); |
|
155 |
hole = min; |
|
176 | 156 |
child = firstChild(hole); |
177 | 157 |
} |
158 |
if ( child<length ) { |
|
159 |
int min = child; |
|
160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
162 |
if( less(_data[min], p) ) { |
|
163 |
move(_data[min], hole); |
|
164 |
hole = min; |
|
165 |
} |
|
166 |
} |
|
178 | 167 |
} |
179 | 168 |
ok: |
180 | 169 |
move(p, hole); |
181 | 170 |
} |
182 | 171 |
|
183 | 172 |
void move(const Pair &p, int i) { |
184 | 173 |
_data[i] = p; |
185 | 174 |
_iim.set(p.first, i); |
186 | 175 |
} |
187 | 176 |
|
188 | 177 |
public: |
189 | 178 |
/// \brief Insert a pair of item and priority into the heap. |
190 | 179 |
/// |
191 | 180 |
/// This function inserts \c p.first to the heap with priority |
192 | 181 |
/// \c p.second. |
193 | 182 |
/// \param p The pair to insert. |
194 | 183 |
/// \pre \c p.first must not be stored in the heap. |
195 | 184 |
void push(const Pair &p) { |
196 | 185 |
int n = _data.size(); |
197 | 186 |
_data.resize(n+1); |
198 | 187 |
bubbleUp(n, p); |
199 | 188 |
} |
200 | 189 |
|
201 | 190 |
/// \brief Insert an item into the heap with the given priority. |
202 | 191 |
/// |
203 | 192 |
/// This function inserts the given item into the heap with the |
204 | 193 |
/// given priority. |
205 | 194 |
/// \param i The item to insert. |
206 | 195 |
/// \param p The priority of the item. |
207 | 196 |
/// \pre \e i must not be stored in the heap. |
208 | 197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
209 | 198 |
|
210 | 199 |
/// \brief Return the item having minimum priority. |
211 | 200 |
/// |
212 | 201 |
/// This function returns the item having minimum priority. |
213 | 202 |
/// \pre The heap must be non-empty. |
214 | 203 |
Item top() const { return _data[0].first; } |
215 | 204 |
|
216 | 205 |
/// \brief The minimum priority. |
217 | 206 |
/// |
218 | 207 |
/// This function returns the minimum priority. |
219 | 208 |
/// \pre The heap must be non-empty. |
220 | 209 |
Prio prio() const { return _data[0].second; } |
221 | 210 |
|
222 | 211 |
/// \brief Remove the item having minimum priority. |
223 | 212 |
/// |
224 | 213 |
/// This function removes the item having minimum priority. |
225 | 214 |
/// \pre The heap must be non-empty. |
226 | 215 |
void pop() { |
227 | 216 |
int n = _data.size()-1; |
228 | 217 |
_iim.set(_data[0].first, POST_HEAP); |
229 | 218 |
if (n>0) bubbleDown(0, _data[n], n); |
230 | 219 |
_data.pop_back(); |
231 | 220 |
} |
232 | 221 |
|
233 | 222 |
/// \brief Remove the given item from the heap. |
234 | 223 |
/// |
235 | 224 |
/// This function removes the given item from the heap if it is |
236 | 225 |
/// already stored. |
237 | 226 |
/// \param i The item to delete. |
238 | 227 |
/// \pre \e i must be in the heap. |
239 | 228 |
void erase(const Item &i) { |
240 | 229 |
int h = _iim[i]; |
241 | 230 |
int n = _data.size()-1; |
242 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
243 | 232 |
if( h<n ) { |
244 | 233 |
if( less(_data[parent(h)], _data[n]) ) |
245 | 234 |
bubbleDown(h, _data[n], n); |
246 | 235 |
else |
247 | 236 |
bubbleUp(h, _data[n]); |
248 | 237 |
} |
249 | 238 |
_data.pop_back(); |
250 | 239 |
} |
251 | 240 |
|
252 | 241 |
/// \brief The priority of the given item. |
253 | 242 |
/// |
254 | 243 |
/// This function returns the priority of the given item. |
255 | 244 |
/// \param i The item. |
256 | 245 |
/// \pre \e i must be in the heap. |
257 | 246 |
Prio operator[](const Item &i) const { |
258 | 247 |
int idx = _iim[i]; |
259 | 248 |
return _data[idx].second; |
260 | 249 |
} |
261 | 250 |
|
262 | 251 |
/// \brief Set the priority of an item or insert it, if it is |
263 | 252 |
/// not stored in the heap. |
264 | 253 |
/// |
265 | 254 |
/// This method sets the priority of the given item if it is |
266 | 255 |
/// already stored in the heap. Otherwise it inserts the given |
267 | 256 |
/// item into the heap with the given priority. |
268 | 257 |
/// \param i The item. |
269 | 258 |
/// \param p The priority. |
270 | 259 |
void set(const Item &i, const Prio &p) { |
271 | 260 |
int idx = _iim[i]; |
272 | 261 |
if( idx < 0 ) |
273 | 262 |
push(i,p); |
274 | 263 |
else if( _comp(p, _data[idx].second) ) |
275 | 264 |
bubbleUp(idx, Pair(i,p)); |
276 | 265 |
else |
277 | 266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
278 | 267 |
} |
279 | 268 |
|
280 | 269 |
/// \brief Decrease the priority of an item to the given value. |
281 | 270 |
/// |
282 | 271 |
/// This function decreases the priority of an item to the given value. |
283 | 272 |
/// \param i The item. |
284 | 273 |
/// \param p The priority. |
285 | 274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
286 | 275 |
void decrease(const Item &i, const Prio &p) { |
287 | 276 |
int idx = _iim[i]; |
288 | 277 |
bubbleUp(idx, Pair(i,p)); |
289 | 278 |
} |
290 | 279 |
|
291 | 280 |
/// \brief Increase the priority of an item to the given value. |
292 | 281 |
/// |
293 | 282 |
/// This function increases the priority of an item to the given value. |
294 | 283 |
/// \param i The item. |
295 | 284 |
/// \param p The priority. |
296 | 285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
297 | 286 |
void increase(const Item &i, const Prio &p) { |
298 | 287 |
int idx = _iim[i]; |
299 | 288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
300 | 289 |
} |
301 | 290 |
|
302 | 291 |
/// \brief Return the state of an item. |
303 | 292 |
/// |
304 | 293 |
/// This method returns \c PRE_HEAP if the given item has never |
305 | 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
306 | 295 |
/// and \c POST_HEAP otherwise. |
307 | 296 |
/// In the latter case it is possible that the item will get back |
308 | 297 |
/// to the heap again. |
309 | 298 |
/// \param i The item. |
310 | 299 |
State state(const Item &i) const { |
311 | 300 |
int s = _iim[i]; |
312 | 301 |
if (s>=0) s=0; |
313 | 302 |
return State(s); |
314 | 303 |
} |
315 | 304 |
|
316 | 305 |
/// \brief Set the state of an item in the heap. |
317 | 306 |
/// |
318 | 307 |
/// This function sets the state of the given item in the heap. |
319 | 308 |
/// It can be used to manually clear the heap when it is important |
320 | 309 |
/// to achive better time complexity. |
321 | 310 |
/// \param i The item. |
322 | 311 |
/// \param st The state. It should not be \c IN_HEAP. |
323 | 312 |
void state(const Item& i, State st) { |
324 | 313 |
switch (st) { |
325 | 314 |
case POST_HEAP: |
326 | 315 |
case PRE_HEAP: |
327 | 316 |
if (state(i) == IN_HEAP) erase(i); |
328 | 317 |
_iim[i] = st; |
329 | 318 |
break; |
330 | 319 |
case IN_HEAP: |
331 | 320 |
break; |
332 | 321 |
} |
333 | 322 |
} |
334 | 323 |
|
335 | 324 |
/// \brief Replace an item in the heap. |
336 | 325 |
/// |
337 | 326 |
/// This function replaces item \c i with item \c j. |
338 | 327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
339 | 328 |
/// After calling this method, item \c i will be out of the |
340 | 329 |
/// heap and \c j will be in the heap with the same prioriority |
341 | 330 |
/// as item \c i had before. |
342 | 331 |
void replace(const Item& i, const Item& j) { |
343 | 332 |
int idx = _iim[i]; |
344 | 333 |
_iim.set(i, _iim[j]); |
345 | 334 |
_iim.set(j, idx); |
346 | 335 |
_data[idx].first = j; |
347 | 336 |
} |
348 | 337 |
|
349 | 338 |
}; // class FouraryHeap |
350 | 339 |
|
351 | 340 |
} // namespace lemon |
352 | 341 |
|
353 | 342 |
#endif // LEMON_FOURARY_HEAP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KARY_HEAP_H |
20 | 20 |
#define LEMON_KARY_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 | 24 |
///\brief Fourary heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \ingroup heaps |
33 | 33 |
/// |
34 | 34 |
///\brief K-ary heap data structure. |
35 | 35 |
/// |
36 | 36 |
/// This class implements the \e K-ary \e heap data structure. |
37 | 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
38 | 38 |
/// |
39 | 39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
40 | 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
41 | 41 |
/// \c K children, instead of two. |
42 | 42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
43 | 43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
44 | 44 |
/// |
45 | 45 |
/// \tparam PR Type of the priorities of the items. |
46 | 46 |
/// \tparam IM A read-writable item map with \c int values, used |
47 | 47 |
/// internally to handle the cross references. |
48 | 48 |
/// \tparam K The degree of the heap, each node have at most \e K |
49 | 49 |
/// children. The default is 16. Powers of two are suggested to use |
50 | 50 |
/// so that the multiplications and divisions needed to traverse the |
51 | 51 |
/// nodes of the heap could be performed faster. |
52 | 52 |
/// \tparam CMP A functor class for comparing the priorities. |
53 | 53 |
/// The default is \c std::less<PR>. |
54 | 54 |
/// |
55 | 55 |
///\sa BinHeap |
56 | 56 |
///\sa FouraryHeap |
57 | 57 |
#ifdef DOXYGEN |
58 | 58 |
template <typename PR, typename IM, int K, typename CMP> |
59 | 59 |
#else |
60 | 60 |
template <typename PR, typename IM, int K = 16, |
61 | 61 |
typename CMP = std::less<PR> > |
62 | 62 |
#endif |
63 | 63 |
class KaryHeap { |
64 | 64 |
public: |
65 | 65 |
/// Type of the item-int map. |
66 | 66 |
typedef IM ItemIntMap; |
67 | 67 |
/// Type of the priorities. |
68 | 68 |
typedef PR Prio; |
69 | 69 |
/// Type of the items stored in the heap. |
70 | 70 |
typedef typename ItemIntMap::Key Item; |
71 | 71 |
/// Type of the item-priority pairs. |
72 | 72 |
typedef std::pair<Item,Prio> Pair; |
73 | 73 |
/// Functor type for comparing the priorities. |
74 | 74 |
typedef CMP Compare; |
75 | 75 |
|
76 | 76 |
/// \brief Type to represent the states of the items. |
77 | 77 |
/// |
78 | 78 |
/// Each item has a state associated to it. It can be "in heap", |
79 | 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
80 | 80 |
/// heap's point of view, but may be useful to the user. |
81 | 81 |
/// |
82 | 82 |
/// The item-int map must be initialized in such way that it assigns |
83 | 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
84 | 84 |
enum State { |
85 | 85 |
IN_HEAP = 0, ///< = 0. |
86 | 86 |
PRE_HEAP = -1, ///< = -1. |
87 | 87 |
POST_HEAP = -2 ///< = -2. |
88 | 88 |
}; |
89 | 89 |
|
90 | 90 |
private: |
91 | 91 |
std::vector<Pair> _data; |
92 | 92 |
Compare _comp; |
93 | 93 |
ItemIntMap &_iim; |
94 | 94 |
|
95 | 95 |
public: |
96 | 96 |
/// \brief Constructor. |
97 | 97 |
/// |
98 | 98 |
/// Constructor. |
99 | 99 |
/// \param map A map that assigns \c int values to the items. |
100 | 100 |
/// It is used internally to handle the cross references. |
101 | 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
102 | 102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {} |
103 | 103 |
|
104 | 104 |
/// \brief Constructor. |
105 | 105 |
/// |
106 | 106 |
/// Constructor. |
107 | 107 |
/// \param map A map that assigns \c int values to the items. |
108 | 108 |
/// It is used internally to handle the cross references. |
109 | 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
110 | 110 |
/// \param comp The function object used for comparing the priorities. |
111 | 111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
112 | 112 |
: _iim(map), _comp(comp) {} |
113 | 113 |
|
114 | 114 |
/// \brief The number of items stored in the heap. |
115 | 115 |
/// |
116 | 116 |
/// This function returns the number of items stored in the heap. |
117 | 117 |
int size() const { return _data.size(); } |
118 | 118 |
|
119 | 119 |
/// \brief Check if the heap is empty. |
120 | 120 |
/// |
121 | 121 |
/// This function returns \c true if the heap is empty. |
122 | 122 |
bool empty() const { return _data.empty(); } |
123 | 123 |
|
124 | 124 |
/// \brief Make the heap empty. |
125 | 125 |
/// |
126 | 126 |
/// This functon makes the heap empty. |
127 | 127 |
/// It does not change the cross reference map. If you want to reuse |
128 | 128 |
/// a heap that is not surely empty, you should first clear it and |
129 | 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
130 | 130 |
/// for each item. |
131 | 131 |
void clear() { _data.clear(); } |
132 | 132 |
|
133 | 133 |
private: |
134 | 134 |
int parent(int i) { return (i-1)/K; } |
135 | 135 |
int firstChild(int i) { return K*i+1; } |
136 | 136 |
|
137 | 137 |
bool less(const Pair &p1, const Pair &p2) const { |
138 | 138 |
return _comp(p1.second, p2.second); |
139 | 139 |
} |
140 | 140 |
|
141 |
int findMin(const int child, const int length) { |
|
142 |
int min=child, i=1; |
|
143 |
while( i<K && child+i<length ) { |
|
144 |
if( less(_data[child+i], _data[min]) ) |
|
145 |
min=child+i; |
|
146 |
++i; |
|
147 |
} |
|
148 |
return min; |
|
149 |
} |
|
150 |
|
|
151 | 141 |
void bubbleUp(int hole, Pair p) { |
152 | 142 |
int par = parent(hole); |
153 | 143 |
while( hole>0 && less(p,_data[par]) ) { |
154 | 144 |
move(_data[par],hole); |
155 | 145 |
hole = par; |
156 | 146 |
par = parent(hole); |
157 | 147 |
} |
158 | 148 |
move(p, hole); |
159 | 149 |
} |
160 | 150 |
|
161 | 151 |
void bubbleDown(int hole, Pair p, int length) { |
162 | 152 |
if( length>1 ) { |
163 | 153 |
int child = firstChild(hole); |
164 |
while( child<length ) { |
|
165 |
child = findMin(child, length); |
|
166 |
|
|
154 |
while( child+K<=length ) { |
|
155 |
int min=child; |
|
156 |
for (int i=1; i<K; ++i) { |
|
157 |
if( less(_data[child+i], _data[min]) ) |
|
158 |
min=child+i; |
|
159 |
} |
|
160 |
if( !less(_data[min], p) ) |
|
167 | 161 |
goto ok; |
168 |
move(_data[child], hole); |
|
169 |
hole = child; |
|
162 |
move(_data[min], hole); |
|
163 |
hole = min; |
|
170 | 164 |
child = firstChild(hole); |
171 | 165 |
} |
166 |
if ( child<length ) { |
|
167 |
int min = child; |
|
168 |
while (++child < length) { |
|
169 |
if( less(_data[child], _data[min]) ) |
|
170 |
min=child; |
|
171 |
} |
|
172 |
if( less(_data[min], p) ) { |
|
173 |
move(_data[min], hole); |
|
174 |
hole = min; |
|
175 |
} |
|
176 |
} |
|
172 | 177 |
} |
173 | 178 |
ok: |
174 | 179 |
move(p, hole); |
175 | 180 |
} |
176 | 181 |
|
177 | 182 |
void move(const Pair &p, int i) { |
178 | 183 |
_data[i] = p; |
179 | 184 |
_iim.set(p.first, i); |
180 | 185 |
} |
181 | 186 |
|
182 | 187 |
public: |
183 | 188 |
/// \brief Insert a pair of item and priority into the heap. |
184 | 189 |
/// |
185 | 190 |
/// This function inserts \c p.first to the heap with priority |
186 | 191 |
/// \c p.second. |
187 | 192 |
/// \param p The pair to insert. |
188 | 193 |
/// \pre \c p.first must not be stored in the heap. |
189 | 194 |
void push(const Pair &p) { |
190 | 195 |
int n = _data.size(); |
191 | 196 |
_data.resize(n+1); |
192 | 197 |
bubbleUp(n, p); |
193 | 198 |
} |
194 | 199 |
|
195 | 200 |
/// \brief Insert an item into the heap with the given priority. |
196 | 201 |
/// |
197 | 202 |
/// This function inserts the given item into the heap with the |
198 | 203 |
/// given priority. |
199 | 204 |
/// \param i The item to insert. |
200 | 205 |
/// \param p The priority of the item. |
201 | 206 |
/// \pre \e i must not be stored in the heap. |
202 | 207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
203 | 208 |
|
204 | 209 |
/// \brief Return the item having minimum priority. |
205 | 210 |
/// |
206 | 211 |
/// This function returns the item having minimum priority. |
207 | 212 |
/// \pre The heap must be non-empty. |
208 | 213 |
Item top() const { return _data[0].first; } |
209 | 214 |
|
210 | 215 |
/// \brief The minimum priority. |
211 | 216 |
/// |
212 | 217 |
/// This function returns the minimum priority. |
213 | 218 |
/// \pre The heap must be non-empty. |
214 | 219 |
Prio prio() const { return _data[0].second; } |
215 | 220 |
|
216 | 221 |
/// \brief Remove the item having minimum priority. |
217 | 222 |
/// |
218 | 223 |
/// This function removes the item having minimum priority. |
219 | 224 |
/// \pre The heap must be non-empty. |
220 | 225 |
void pop() { |
221 | 226 |
int n = _data.size()-1; |
222 | 227 |
_iim.set(_data[0].first, POST_HEAP); |
223 | 228 |
if (n>0) bubbleDown(0, _data[n], n); |
224 | 229 |
_data.pop_back(); |
225 | 230 |
} |
226 | 231 |
|
227 | 232 |
/// \brief Remove the given item from the heap. |
228 | 233 |
/// |
229 | 234 |
/// This function removes the given item from the heap if it is |
230 | 235 |
/// already stored. |
231 | 236 |
/// \param i The item to delete. |
232 | 237 |
/// \pre \e i must be in the heap. |
233 | 238 |
void erase(const Item &i) { |
234 | 239 |
int h = _iim[i]; |
235 | 240 |
int n = _data.size()-1; |
236 | 241 |
_iim.set(_data[h].first, POST_HEAP); |
237 | 242 |
if( h<n ) { |
238 | 243 |
if( less(_data[parent(h)], _data[n]) ) |
239 | 244 |
bubbleDown(h, _data[n], n); |
240 | 245 |
else |
241 | 246 |
bubbleUp(h, _data[n]); |
242 | 247 |
} |
243 | 248 |
_data.pop_back(); |
244 | 249 |
} |
245 | 250 |
|
246 | 251 |
/// \brief The priority of the given item. |
247 | 252 |
/// |
248 | 253 |
/// This function returns the priority of the given item. |
249 | 254 |
/// \param i The item. |
250 | 255 |
/// \pre \e i must be in the heap. |
251 | 256 |
Prio operator[](const Item &i) const { |
252 | 257 |
int idx = _iim[i]; |
253 | 258 |
return _data[idx].second; |
254 | 259 |
} |
255 | 260 |
|
256 | 261 |
/// \brief Set the priority of an item or insert it, if it is |
257 | 262 |
/// not stored in the heap. |
258 | 263 |
/// |
259 | 264 |
/// This method sets the priority of the given item if it is |
260 | 265 |
/// already stored in the heap. Otherwise it inserts the given |
261 | 266 |
/// item into the heap with the given priority. |
262 | 267 |
/// \param i The item. |
263 | 268 |
/// \param p The priority. |
264 | 269 |
void set(const Item &i, const Prio &p) { |
265 | 270 |
int idx = _iim[i]; |
266 | 271 |
if( idx<0 ) |
267 | 272 |
push(i,p); |
268 | 273 |
else if( _comp(p, _data[idx].second) ) |
269 | 274 |
bubbleUp(idx, Pair(i,p)); |
270 | 275 |
else |
271 | 276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
272 | 277 |
} |
273 | 278 |
|
274 | 279 |
/// \brief Decrease the priority of an item to the given value. |
275 | 280 |
/// |
276 | 281 |
/// This function decreases the priority of an item to the given value. |
277 | 282 |
/// \param i The item. |
278 | 283 |
/// \param p The priority. |
279 | 284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
280 | 285 |
void decrease(const Item &i, const Prio &p) { |
281 | 286 |
int idx = _iim[i]; |
282 | 287 |
bubbleUp(idx, Pair(i,p)); |
283 | 288 |
} |
284 | 289 |
|
285 | 290 |
/// \brief Increase the priority of an item to the given value. |
286 | 291 |
/// |
287 | 292 |
/// This function increases the priority of an item to the given value. |
288 | 293 |
/// \param i The item. |
289 | 294 |
/// \param p The priority. |
290 | 295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
291 | 296 |
void increase(const Item &i, const Prio &p) { |
292 | 297 |
int idx = _iim[i]; |
293 | 298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
294 | 299 |
} |
295 | 300 |
|
296 | 301 |
/// \brief Return the state of an item. |
297 | 302 |
/// |
298 | 303 |
/// This method returns \c PRE_HEAP if the given item has never |
299 | 304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
300 | 305 |
/// and \c POST_HEAP otherwise. |
301 | 306 |
/// In the latter case it is possible that the item will get back |
302 | 307 |
/// to the heap again. |
303 | 308 |
/// \param i The item. |
304 | 309 |
State state(const Item &i) const { |
305 | 310 |
int s = _iim[i]; |
306 | 311 |
if (s>=0) s=0; |
307 | 312 |
return State(s); |
308 | 313 |
} |
309 | 314 |
|
310 | 315 |
/// \brief Set the state of an item in the heap. |
311 | 316 |
/// |
312 | 317 |
/// This function sets the state of the given item in the heap. |
313 | 318 |
/// It can be used to manually clear the heap when it is important |
314 | 319 |
/// to achive better time complexity. |
315 | 320 |
/// \param i The item. |
316 | 321 |
/// \param st The state. It should not be \c IN_HEAP. |
317 | 322 |
void state(const Item& i, State st) { |
318 | 323 |
switch (st) { |
319 | 324 |
case POST_HEAP: |
320 | 325 |
case PRE_HEAP: |
321 | 326 |
if (state(i) == IN_HEAP) erase(i); |
322 | 327 |
_iim[i] = st; |
323 | 328 |
break; |
324 | 329 |
case IN_HEAP: |
325 | 330 |
break; |
326 | 331 |
} |
327 | 332 |
} |
328 | 333 |
|
329 | 334 |
/// \brief Replace an item in the heap. |
330 | 335 |
/// |
331 | 336 |
/// This function replaces item \c i with item \c j. |
332 | 337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
333 | 338 |
/// After calling this method, item \c i will be out of the |
334 | 339 |
/// heap and \c j will be in the heap with the same prioriority |
335 | 340 |
/// as item \c i had before. |
336 | 341 |
void replace(const Item& i, const Item& j) { |
337 | 342 |
int idx=_iim[i]; |
338 | 343 |
_iim.set(i, _iim[j]); |
339 | 344 |
_iim.set(j, idx); |
340 | 345 |
_data[idx].first=j; |
341 | 346 |
} |
342 | 347 |
|
343 | 348 |
}; // class KaryHeap |
344 | 349 |
|
345 | 350 |
} // namespace lemon |
346 | 351 |
|
347 | 352 |
#endif // LEMON_KARY_HEAP_H |
0 comments (0 inline)