... | ... |
@@ -16,18 +16,18 @@ |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_BELMANN_FORD_H |
|
20 |
#define LEMON_BELMANN_FORD_H |
|
19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
20 |
#define LEMON_BELLMAN_FORD_H |
|
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 |
/// |
|
26 | 25 |
|
27 | 26 |
#include <lemon/bits/path_dump.h> |
28 | 27 |
#include <lemon/core.h> |
29 | 28 |
#include <lemon/error.h> |
30 | 29 |
#include <lemon/maps.h> |
30 |
#include <lemon/path.h> |
|
31 | 31 |
|
32 | 32 |
#include <limits> |
33 | 33 |
|
... | ... |
@@ -35,15 +35,17 @@ |
35 | 35 |
|
36 | 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
37 | 37 |
/// |
38 |
/// It defines all computational operations and constants which are |
|
39 |
/// used in the Bellman-Ford algorithm. The default implementation |
|
40 |
/// is based on the numeric_limits class. If the numeric type does not |
|
41 |
/// have infinity value then the maximum value is used as extremal |
|
42 |
/// |
|
38 |
/// This operation traits class defines all computational operations |
|
39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
40 |
/// The default implementation is based on the \c numeric_limits class. |
|
41 |
/// If the numeric type does not have infinity value, then the maximum |
|
42 |
/// value is used as extremal infinity value. |
|
43 | 43 |
template < |
44 |
typename Value, |
|
45 |
bool has_infinity = std::numeric_limits<Value>::has_infinity> |
|
44 |
typename V, |
|
45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
46 | 46 |
struct BellmanFordDefaultOperationTraits { |
47 |
/// \e |
|
48 |
typedef V Value; |
|
47 | 49 |
/// \brief Gives back the zero value of the type. |
48 | 50 |
static Value zero() { |
49 | 51 |
return static_cast<Value>(0); |
... | ... |
@@ -56,14 +58,16 @@ |
56 | 58 |
static Value plus(const Value& left, const Value& right) { |
57 | 59 |
return left + right; |
58 | 60 |
} |
59 |
/// \brief Gives back true only if the first value less than |
|
61 |
/// \brief Gives back \c true only if the first value is less than |
|
62 |
/// the second. |
|
60 | 63 |
static bool less(const Value& left, const Value& right) { |
61 | 64 |
return left < right; |
62 | 65 |
} |
63 | 66 |
}; |
64 | 67 |
|
65 |
template <typename Value> |
|
66 |
struct BellmanFordDefaultOperationTraits<Value, false> { |
|
68 |
template <typename V> |
|
69 |
struct BellmanFordDefaultOperationTraits<V, false> { |
|
70 |
typedef V Value; |
|
67 | 71 |
static Value zero() { |
68 | 72 |
return static_cast<Value>(0); |
69 | 73 |
} |
... | ... |
@@ -82,26 +86,26 @@ |
82 | 86 |
/// \brief Default traits class of BellmanFord class. |
83 | 87 |
/// |
84 | 88 |
/// Default traits class of BellmanFord class. |
85 |
/// \param _Digraph Digraph type. |
|
86 |
/// \param _LegthMap Type of length map. |
|
87 |
|
|
89 |
/// \param GR The type of the digraph. |
|
90 |
/// \param LEN The type of the length map. |
|
91 |
template<typename GR, typename LEN> |
|
88 | 92 |
struct BellmanFordDefaultTraits { |
89 |
/// The digraph type the algorithm runs on. |
|
90 |
typedef _Digraph Digraph; |
|
93 |
/// The type of the digraph the algorithm runs on. |
|
94 |
typedef GR Digraph; |
|
91 | 95 |
|
92 | 96 |
/// \brief The type of the map that stores the arc lengths. |
93 | 97 |
/// |
94 | 98 |
/// The type of the map that stores the arc lengths. |
95 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
96 |
typedef _LengthMap LengthMap; |
|
99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
100 |
typedef LEN LengthMap; |
|
97 | 101 |
|
98 |
// The type of the length of the arcs. |
|
99 |
typedef typename _LengthMap::Value Value; |
|
102 |
/// The type of the arc lengths. |
|
103 |
typedef typename LEN::Value Value; |
|
100 | 104 |
|
101 | 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
102 | 106 |
/// |
103 |
/// It defines the infinity type on the given Value type |
|
104 |
/// and the used operation. |
|
107 |
/// It defines the used operations and the infinity value for the |
|
108 |
/// given \c Value type. |
|
105 | 109 |
/// \see BellmanFordDefaultOperationTraits |
106 | 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
107 | 111 |
|
... | ... |
@@ -110,33 +114,31 @@ |
110 | 114 |
/// |
111 | 115 |
/// The type of the map that stores the last |
112 | 116 |
/// arcs of the shortest paths. |
113 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
114 |
/// |
|
115 |
|
|
117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
116 | 119 |
|
117 |
/// \brief Instantiates a PredMap. |
|
120 |
/// \brief Instantiates a \c PredMap. |
|
118 | 121 |
/// |
119 | 122 |
/// This function instantiates a \ref PredMap. |
120 |
/// \param digraph is the digraph, to which we would like to define the PredMap. |
|
121 |
static PredMap *createPredMap(const _Digraph& digraph) { |
|
122 |
|
|
123 |
/// \param g is the digraph to which we would like to define the |
|
124 |
/// \ref PredMap. |
|
125 |
static PredMap *createPredMap(const GR& g) { |
|
126 |
return new PredMap(g); |
|
123 | 127 |
} |
124 | 128 |
|
125 |
/// \brief The type of the map that stores the |
|
129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
126 | 130 |
/// |
127 |
/// The type of the map that stores the dists of the nodes. |
|
128 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
129 |
/// |
|
130 |
typedef typename Digraph::template NodeMap<typename _LengthMap::Value> |
|
131 |
|
|
131 |
/// The type of the map that stores the distances of the nodes. |
|
132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
132 | 134 |
|
133 |
/// \brief Instantiates a DistMap. |
|
135 |
/// \brief Instantiates a \c DistMap. |
|
134 | 136 |
/// |
135 | 137 |
/// This function instantiates a \ref DistMap. |
136 |
/// \param digraph is the digraph, to which we would like to define the |
|
137 |
/// \ref DistMap |
|
138 |
static DistMap *createDistMap(const _Digraph& digraph) { |
|
139 |
return new DistMap(digraph); |
|
138 |
/// \param g is the digraph to which we would like to define the |
|
139 |
/// \ref DistMap. |
|
140 |
static DistMap *createDistMap(const GR& g) { |
|
141 |
return new DistMap(g); |
|
140 | 142 |
} |
141 | 143 |
|
142 | 144 |
}; |
... | ... |
@@ -144,106 +146,109 @@ |
144 | 146 |
/// \brief %BellmanFord algorithm class. |
145 | 147 |
/// |
146 | 148 |
/// \ingroup shortest_path |
147 |
/// This class provides an efficient implementation of \c Bellman-Ford |
|
148 |
/// algorithm. The arc lengths are passed to the algorithm using a |
|
149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
151 |
/// <tt>O(ne)</tt>. |
|
152 |
/// |
|
153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
155 |
/// should not contain directed cycles with negative total length. |
|
156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
157 |
/// algorithm instead, since it is more efficient. |
|
158 |
/// |
|
159 |
/// The arc lengths are passed to the algorithm using a |
|
149 | 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
150 |
/// kind of length. |
|
161 |
/// kind of length. The type of the length values is determined by the |
|
162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
151 | 163 |
/// |
152 |
/// The Bellman-Ford algorithm solves the shortest path from one node |
|
153 |
/// problem when the arcs can have negative length but the digraph should |
|
154 |
/// not contain cycles with negative sum of length. If we can assume |
|
155 |
/// that all arc is non-negative in the digraph then the dijkstra algorithm |
|
156 |
/// |
|
164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
166 |
/// it can be used easier. |
|
157 | 167 |
/// |
158 |
/// The maximal time complexity of the algorithm is \f$ O(ne) \f$. |
|
159 |
/// |
|
160 |
/// The type of the length is determined by the |
|
161 |
/// \ref concepts::ReadMap::Value "Value" of the length map. |
|
162 |
/// |
|
163 |
/// \param _Digraph The digraph type the algorithm runs on. The default value |
|
164 |
/// is \ref ListDigraph. The value of _Digraph is not used directly by |
|
165 |
/// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
166 |
/// \param _LengthMap This read-only ArcMap determines the lengths of the |
|
167 |
/// arcs. The default map type is \ref concepts::Digraph::ArcMap |
|
168 |
/// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly |
|
169 |
/// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
170 |
/// \param _Traits Traits class to set various data types used by the |
|
171 |
/// algorithm. The default traits class is \ref BellmanFordDefaultTraits |
|
172 |
/// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref |
|
173 |
/// BellmanFordDefaultTraits for the documentation of a BellmanFord traits |
|
174 |
/// |
|
168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
169 |
/// The default type is \ref ListDigraph. |
|
170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
171 |
/// the lengths of the arcs. The default map type is |
|
172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
175 | 173 |
#ifdef DOXYGEN |
176 |
template <typename |
|
174 |
template <typename GR, typename LEN, typename TR> |
|
177 | 175 |
#else |
178 |
template <typename _Digraph, |
|
179 |
typename _LengthMap=typename _Digraph::template ArcMap<int>, |
|
180 |
|
|
176 |
template <typename GR=ListDigraph, |
|
177 |
typename LEN=typename GR::template ArcMap<int>, |
|
178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
181 | 179 |
#endif |
182 | 180 |
class BellmanFord { |
183 | 181 |
public: |
184 | 182 |
|
185 |
typedef _Traits Traits; |
|
186 | 183 |
///The type of the underlying digraph. |
187 |
typedef typename |
|
184 |
typedef typename TR::Digraph Digraph; |
|
185 |
|
|
186 |
/// \brief The type of the arc lengths. |
|
187 |
typedef typename TR::LengthMap::Value Value; |
|
188 |
/// \brief The type of the map that stores the arc lengths. |
|
189 |
typedef typename TR::LengthMap LengthMap; |
|
190 |
/// \brief The type of the map that stores the last |
|
191 |
/// arcs of the shortest paths. |
|
192 |
typedef typename TR::PredMap PredMap; |
|
193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
194 |
typedef typename TR::DistMap DistMap; |
|
195 |
/// The type of the paths. |
|
196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
198 |
/// "operation traits class" of the algorithm. |
|
199 |
typedef typename TR::OperationTraits OperationTraits; |
|
200 |
|
|
201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
202 |
typedef TR Traits; |
|
203 |
|
|
204 |
private: |
|
188 | 205 |
|
189 | 206 |
typedef typename Digraph::Node Node; |
190 | 207 |
typedef typename Digraph::NodeIt NodeIt; |
191 | 208 |
typedef typename Digraph::Arc Arc; |
192 | 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
193 |
|
|
194 |
/// \brief The type of the length of the arcs. |
|
195 |
typedef typename _Traits::LengthMap::Value Value; |
|
196 |
/// \brief The type of the map that stores the arc lengths. |
|
197 |
typedef typename _Traits::LengthMap LengthMap; |
|
198 |
/// \brief The type of the map that stores the last |
|
199 |
/// arcs of the shortest paths. |
|
200 |
typedef typename _Traits::PredMap PredMap; |
|
201 |
/// \brief The type of the map that stores the dists of the nodes. |
|
202 |
typedef typename _Traits::DistMap DistMap; |
|
203 |
/// \brief The operation traits. |
|
204 |
typedef typename _Traits::OperationTraits OperationTraits; |
|
205 |
private: |
|
206 |
/// Pointer to the underlying digraph. |
|
207 |
const Digraph *digraph; |
|
208 |
/// Pointer to the length map |
|
209 |
const LengthMap *length; |
|
210 |
///Pointer to the map of predecessors arcs. |
|
210 |
|
|
211 |
// Pointer to the underlying digraph. |
|
212 |
const Digraph *_gr; |
|
213 |
// Pointer to the length map |
|
214 |
const LengthMap *_length; |
|
215 |
// Pointer to the map of predecessors arcs. |
|
211 | 216 |
PredMap *_pred; |
212 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
213 |
bool local_pred; |
|
214 |
// |
|
217 |
// Indicates if _pred is locally allocated (true) or not. |
|
218 |
bool _local_pred; |
|
219 |
// Pointer to the map of distances. |
|
215 | 220 |
DistMap *_dist; |
216 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
217 |
bool local_dist; |
|
221 |
// Indicates if _dist is locally allocated (true) or not. |
|
222 |
bool _local_dist; |
|
218 | 223 |
|
219 | 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
220 | 225 |
MaskMap *_mask; |
221 | 226 |
|
222 | 227 |
std::vector<Node> _process; |
223 | 228 |
|
224 |
|
|
229 |
// Creates the maps if necessary. |
|
225 | 230 |
void create_maps() { |
226 | 231 |
if(!_pred) { |
227 |
local_pred = true; |
|
228 |
_pred = Traits::createPredMap(*digraph); |
|
232 |
_local_pred = true; |
|
233 |
_pred = Traits::createPredMap(*_gr); |
|
229 | 234 |
} |
230 | 235 |
if(!_dist) { |
231 |
local_dist = true; |
|
232 |
_dist = Traits::createDistMap(*digraph); |
|
236 |
_local_dist = true; |
|
237 |
_dist = Traits::createDistMap(*_gr); |
|
233 | 238 |
} |
234 |
_mask = new MaskMap(* |
|
239 |
_mask = new MaskMap(*_gr, false); |
|
235 | 240 |
} |
236 | 241 |
|
237 | 242 |
public : |
238 | 243 |
|
239 | 244 |
typedef BellmanFord Create; |
240 | 245 |
|
241 |
/// \name Named |
|
246 |
/// \name Named Template Parameters |
|
242 | 247 |
|
243 | 248 |
///@{ |
244 | 249 |
|
245 | 250 |
template <class T> |
246 |
struct |
|
251 |
struct SetPredMapTraits : public Traits { |
|
247 | 252 |
typedef T PredMap; |
248 | 253 |
static PredMap *createPredMap(const Digraph&) { |
249 | 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
... | ... |
@@ -251,18 +256,20 @@ |
251 | 256 |
} |
252 | 257 |
}; |
253 | 258 |
|
254 |
/// \brief \ref named-templ-param "Named parameter" for setting PredMap |
|
255 |
/// type |
|
256 |
/// \ref named-templ-param "Named parameter" for setting |
|
259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
260 |
/// \c PredMap type. |
|
257 | 261 |
/// |
262 |
/// \ref named-templ-param "Named parameter" for setting |
|
263 |
/// \c PredMap type. |
|
264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
258 | 265 |
template <class T> |
259 | 266 |
struct SetPredMap |
260 |
: public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > { |
|
261 |
typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
|
267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
|
268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
262 | 269 |
}; |
263 | 270 |
|
264 | 271 |
template <class T> |
265 |
struct |
|
272 |
struct SetDistMapTraits : public Traits { |
|
266 | 273 |
typedef T DistMap; |
267 | 274 |
static DistMap *createDistMap(const Digraph&) { |
268 | 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
... | ... |
@@ -270,31 +277,33 @@ |
270 | 277 |
} |
271 | 278 |
}; |
272 | 279 |
|
273 |
/// \brief \ref named-templ-param "Named parameter" for setting DistMap |
|
274 |
/// type |
|
280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
281 |
/// \c DistMap type. |
|
275 | 282 |
/// |
276 |
/// \ref named-templ-param "Named parameter" for setting DistMap type |
|
277 |
/// |
|
283 |
/// \ref named-templ-param "Named parameter" for setting |
|
284 |
/// \c DistMap type. |
|
285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
278 | 286 |
template <class T> |
279 | 287 |
struct SetDistMap |
280 |
: public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > { |
|
281 |
typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
|
288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
|
289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
282 | 290 |
}; |
283 |
|
|
291 |
|
|
284 | 292 |
template <class T> |
285 |
struct |
|
293 |
struct SetOperationTraitsTraits : public Traits { |
|
286 | 294 |
typedef T OperationTraits; |
287 | 295 |
}; |
288 | 296 |
|
289 | 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
290 |
/// OperationTraits type |
|
298 |
/// \c OperationTraits type. |
|
291 | 299 |
/// |
292 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
|
293 |
/// type |
|
300 |
/// \ref named-templ-param "Named parameter" for setting |
|
301 |
/// \c OperationTraits type. |
|
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
294 | 303 |
template <class T> |
295 | 304 |
struct SetOperationTraits |
296 |
: public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
|
297 |
typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > |
|
305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
|
306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
298 | 307 |
Create; |
299 | 308 |
}; |
300 | 309 |
|
... | ... |
@@ -308,85 +317,89 @@ |
308 | 317 |
|
309 | 318 |
/// \brief Constructor. |
310 | 319 |
/// |
311 |
/// \param _graph the digraph the algorithm will run on. |
|
312 |
/// \param _length the length map used by the algorithm. |
|
313 |
BellmanFord(const Digraph& _graph, const LengthMap& _length) : |
|
314 |
digraph(&_graph), length(&_length), |
|
315 |
_pred(0), local_pred(false), |
|
316 |
_dist(0), local_dist(false), _mask(0) {} |
|
320 |
/// Constructor. |
|
321 |
/// \param g The digraph the algorithm runs on. |
|
322 |
/// \param length The length map used by the algorithm. |
|
323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
324 |
_gr(&g), _length(&length), |
|
325 |
_pred(0), _local_pred(false), |
|
326 |
_dist(0), _local_dist(false), _mask(0) {} |
|
317 | 327 |
|
318 | 328 |
///Destructor. |
319 | 329 |
~BellmanFord() { |
320 |
if(local_pred) delete _pred; |
|
321 |
if(local_dist) delete _dist; |
|
330 |
if(_local_pred) delete _pred; |
|
331 |
if(_local_dist) delete _dist; |
|
322 | 332 |
if(_mask) delete _mask; |
323 | 333 |
} |
324 | 334 |
|
325 | 335 |
/// \brief Sets the length map. |
326 | 336 |
/// |
327 | 337 |
/// Sets the length map. |
328 |
/// \return \c (*this) |
|
329 |
BellmanFord &lengthMap(const LengthMap &m) { |
|
330 |
|
|
338 |
/// \return <tt>(*this)</tt> |
|
339 |
BellmanFord &lengthMap(const LengthMap &map) { |
|
340 |
_length = ↦ |
|
331 | 341 |
return *this; |
332 | 342 |
} |
333 | 343 |
|
334 |
/// \brief Sets the map |
|
344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
335 | 345 |
/// |
336 |
/// Sets the map storing the predecessor arcs. |
|
337 |
/// If you don't use this function before calling \ref run(), |
|
338 |
/// it will allocate one. The destuctor deallocates this |
|
339 |
/// automatically allocated map, of course. |
|
340 |
/// \return \c (*this) |
|
341 |
BellmanFord &predMap(PredMap &m) { |
|
342 |
|
|
346 |
/// Sets the map that stores the predecessor arcs. |
|
347 |
/// If you don't use this function before calling \ref run() |
|
348 |
/// or \ref init(), an instance will be allocated automatically. |
|
349 |
/// The destructor deallocates this automatically allocated map, |
|
350 |
/// of course. |
|
351 |
/// \return <tt>(*this)</tt> |
|
352 |
BellmanFord &predMap(PredMap &map) { |
|
353 |
if(_local_pred) { |
|
343 | 354 |
delete _pred; |
344 |
|
|
355 |
_local_pred=false; |
|
345 | 356 |
} |
346 |
_pred = & |
|
357 |
_pred = ↦ |
|
347 | 358 |
return *this; |
348 | 359 |
} |
349 | 360 |
|
350 |
/// \brief Sets the map |
|
361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
351 | 362 |
/// |
352 |
/// Sets the map storing the distances calculated by the algorithm. |
|
353 |
/// If you don't use this function before calling \ref run(), |
|
354 |
/// it will allocate one. The destuctor deallocates this |
|
355 |
/// automatically allocated map, of course. |
|
356 |
/// \return \c (*this) |
|
357 |
BellmanFord &distMap(DistMap &m) { |
|
358 |
|
|
363 |
/// Sets the map that stores the distances of the nodes calculated |
|
364 |
/// by the algorithm. |
|
365 |
/// If you don't use this function before calling \ref run() |
|
366 |
/// or \ref init(), an instance will be allocated automatically. |
|
367 |
/// The destructor deallocates this automatically allocated map, |
|
368 |
/// of course. |
|
369 |
/// \return <tt>(*this)</tt> |
|
370 |
BellmanFord &distMap(DistMap &map) { |
|
371 |
if(_local_dist) { |
|
359 | 372 |
delete _dist; |
360 |
|
|
373 |
_local_dist=false; |
|
361 | 374 |
} |
362 |
_dist = & |
|
375 |
_dist = ↦ |
|
363 | 376 |
return *this; |
364 | 377 |
} |
365 | 378 |
|
366 |
/// \name Execution control |
|
367 |
/// The simplest way to execute the algorithm is to use |
|
368 |
/// one of the member functions called \c run(...). |
|
369 |
/// \n |
|
370 |
/// If you need more control on the execution, |
|
371 |
/// first you must call \ref init(), then you can add several source nodes |
|
372 |
/// with \ref addSource(). |
|
373 |
/// Finally \ref start() will perform the actual path |
|
374 |
/// |
|
379 |
/// \name Execution Control |
|
380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
381 |
/// one of the member functions called \ref run().\n |
|
382 |
/// If you need better control on the execution, you have to call |
|
383 |
/// \ref init() first, then you can add several source nodes |
|
384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
385 |
/// performed with \ref start(), \ref checkedStart() or |
|
386 |
/// \ref limitedStart(). |
|
375 | 387 |
|
376 | 388 |
///@{ |
377 | 389 |
|
378 | 390 |
/// \brief Initializes the internal data structures. |
379 | 391 |
/// |
380 |
/// Initializes the internal data structures. |
|
392 |
/// Initializes the internal data structures. The optional parameter |
|
393 |
/// is the initial distance of each node. |
|
381 | 394 |
void init(const Value value = OperationTraits::infinity()) { |
382 | 395 |
create_maps(); |
383 |
for (NodeIt it(* |
|
396 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
384 | 397 |
_pred->set(it, INVALID); |
385 | 398 |
_dist->set(it, value); |
386 | 399 |
} |
387 | 400 |
_process.clear(); |
388 | 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
389 |
for (NodeIt it(* |
|
402 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
390 | 403 |
_process.push_back(it); |
391 | 404 |
_mask->set(it, true); |
392 | 405 |
} |
... | ... |
@@ -395,9 +408,8 @@ |
395 | 408 |
|
396 | 409 |
/// \brief Adds a new source node. |
397 | 410 |
/// |
398 |
/// Adds a new source node. The optional second parameter is the |
|
399 |
/// initial distance of the node. It just sets the distance of the |
|
400 |
/// |
|
411 |
/// This function adds a new source node. The optional second parameter |
|
412 |
/// is the initial distance of the node. |
|
401 | 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
402 | 414 |
_dist->set(source, dst); |
403 | 415 |
if (!(*_mask)[source]) { |
... | ... |
@@ -409,19 +421,22 @@ |
409 | 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
410 | 422 |
/// |
411 | 423 |
/// If the algoritm calculated the distances in the previous round |
412 |
/// exactly for all at most \f$ k \f$ length path lengths then it will |
|
413 |
/// calculate the distances exactly for all at most \f$ k + 1 \f$ |
|
414 |
/// length path lengths. With \f$ k \f$ iteration this function |
|
415 |
/// calculates the at most \f$ k \f$ length path lengths. |
|
424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
425 |
/// will calculate the distances exactly for the paths of at most |
|
426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
427 |
/// calculates the shortest path distances exactly for the paths |
|
428 |
/// consisting of at most \c k arcs. |
|
416 | 429 |
/// |
417 | 430 |
/// \warning The paths with limited arc number cannot be retrieved |
418 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
419 |
/// need the shortest path and not just the distance you should store |
|
420 |
/// after each iteration the \ref predMap() map and manually build |
|
421 |
/// the path. |
|
431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
432 |
/// need the shortest paths and not only the distances, you should |
|
433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
434 |
/// and build the path manually. |
|
422 | 435 |
/// |
423 | 436 |
/// \return \c true when the algorithm have not found more shorter |
424 | 437 |
/// paths. |
438 |
/// |
|
439 |
/// \see ActiveIt |
|
425 | 440 |
bool processNextRound() { |
426 | 441 |
for (int i = 0; i < int(_process.size()); ++i) { |
427 | 442 |
_mask->set(_process[i], false); |
... | ... |
@@ -432,9 +447,9 @@ |
432 | 447 |
values[i] = (*_dist)[_process[i]]; |
433 | 448 |
} |
434 | 449 |
for (int i = 0; i < int(_process.size()); ++i) { |
435 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
|
436 |
Node target = digraph->target(it); |
|
437 |
|
|
450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
451 |
Node target = _gr->target(it); |
|
452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
438 | 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
439 | 454 |
_pred->set(target, it); |
440 | 455 |
_dist->set(target, relaxed); |
... | ... |
@@ -451,23 +466,28 @@ |
451 | 466 |
|
452 | 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
453 | 468 |
/// |
454 |
/// If the algorithm calculated the distances in the |
|
455 |
/// previous round at least for all at most k length paths then it will |
|
456 |
/// calculate the distances at least for all at most k + 1 length paths. |
|
457 |
/// This function does not make it possible to calculate strictly the |
|
458 |
/// at most k length minimal paths, this is why it is |
|
459 |
/// called just weak round. |
|
460 |
/// |
|
469 |
/// If the algorithm calculated the distances in the previous round |
|
470 |
/// at least for the paths of at most \c k arcs, then this function |
|
471 |
/// will calculate the distances at least for the paths of at most |
|
472 |
/// <tt>k+1</tt> arcs. |
|
473 |
/// This function does not make it possible to calculate the shortest |
|
474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
475 |
/// this is why it is called weak round. |
|
476 |
/// |
|
477 |
/// \return \c true when the algorithm have not found more shorter |
|
478 |
/// paths. |
|
479 |
/// |
|
480 |
/// \see ActiveIt |
|
461 | 481 |
bool processNextWeakRound() { |
462 | 482 |
for (int i = 0; i < int(_process.size()); ++i) { |
463 | 483 |
_mask->set(_process[i], false); |
464 | 484 |
} |
465 | 485 |
std::vector<Node> nextProcess; |
466 | 486 |
for (int i = 0; i < int(_process.size()); ++i) { |
467 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
|
468 |
Node target = digraph->target(it); |
|
487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
488 |
Node target = _gr->target(it); |
|
469 | 489 |
Value relaxed = |
470 |
OperationTraits::plus((*_dist)[_process[i]], (* |
|
490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
471 | 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
472 | 492 |
_pred->set(target, it); |
473 | 493 |
_dist->set(target, relaxed); |
... | ... |
@@ -484,16 +504,19 @@ |
484 | 504 |
|
485 | 505 |
/// \brief Executes the algorithm. |
486 | 506 |
/// |
487 |
/// \pre init() must be called and at least one node should be added |
|
488 |
/// with addSource() before using this function. |
|
507 |
/// Executes the algorithm. |
|
489 | 508 |
/// |
490 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
491 |
/// in order to compute the shortest path to each node. The algorithm |
|
492 |
/// computes |
|
493 |
/// - The shortest path tree. |
|
494 |
/// - |
|
509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
510 |
/// in order to compute the shortest path to each node. |
|
511 |
/// |
|
512 |
/// The algorithm computes |
|
513 |
/// - the shortest path tree (forest), |
|
514 |
/// - the distance of each node from the root(s). |
|
515 |
/// |
|
516 |
/// \pre init() must be called and at least one root node should be |
|
517 |
/// added with addSource() before using this function. |
|
495 | 518 |
void start() { |
496 |
int num = countNodes(* |
|
519 |
int num = countNodes(*_gr) - 1; |
|
497 | 520 |
for (int i = 0; i < num; ++i) { |
498 | 521 |
if (processNextWeakRound()) break; |
499 | 522 |
} |
... | ... |
@@ -501,83 +524,98 @@ |
501 | 524 |
|
502 | 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
503 | 526 |
/// |
504 |
/// \pre init() must be called and at least one node should be added |
|
505 |
/// with addSource() before using this function. |
|
527 |
/// Executes the algorithm and checks the negative cycles. |
|
506 | 528 |
/// |
507 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
508 |
/// in order to compute the shortest path to each node. The algorithm |
|
509 |
/// computes |
|
510 |
/// - The shortest path tree. |
|
511 |
/// - |
|
529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
530 |
/// in order to compute the shortest path to each node and also checks |
|
531 |
/// if the digraph contains cycles with negative total length. |
|
532 |
/// |
|
533 |
/// The algorithm computes |
|
534 |
/// - the shortest path tree (forest), |
|
535 |
/// - the distance of each node from the root(s). |
|
512 | 536 |
/// |
513 | 537 |
/// \return \c false if there is a negative cycle in the digraph. |
538 |
/// |
|
539 |
/// \pre init() must be called and at least one root node should be |
|
540 |
/// added with addSource() before using this function. |
|
514 | 541 |
bool checkedStart() { |
515 |
int num = countNodes(* |
|
542 |
int num = countNodes(*_gr); |
|
516 | 543 |
for (int i = 0; i < num; ++i) { |
517 | 544 |
if (processNextWeakRound()) return true; |
518 | 545 |
} |
519 | 546 |
return _process.empty(); |
520 | 547 |
} |
521 | 548 |
|
522 |
/// \brief Executes the algorithm with |
|
549 |
/// \brief Executes the algorithm with arc number limit. |
|
523 | 550 |
/// |
524 |
/// \pre init() must be called and at least one node should be added |
|
525 |
/// with addSource() before using this function. |
|
551 |
/// Executes the algorithm with arc number limit. |
|
526 | 552 |
/// |
527 |
/// This method runs the %BellmanFord algorithm from the root |
|
528 |
/// node(s) in order to compute the shortest path lengths with at |
|
529 |
/// |
|
553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
554 |
/// in order to compute the shortest path distance for each node |
|
555 |
/// using only the paths consisting of at most \c num arcs. |
|
556 |
/// |
|
557 |
/// The algorithm computes |
|
558 |
/// - the limited distance of each node from the root(s), |
|
559 |
/// - the predecessor arc for each node. |
|
530 | 560 |
/// |
531 | 561 |
/// \warning The paths with limited arc number cannot be retrieved |
532 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
533 |
/// need the shortest path and not just the distance you should store |
|
534 |
/// after each iteration the \ref predMap() map and manually build |
|
535 |
/// the path. |
|
562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
563 |
/// need the shortest paths and not only the distances, you should |
|
564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
565 |
/// and build the path manually. |
|
536 | 566 |
/// |
537 |
/// The algorithm computes |
|
538 |
/// - The predecessor arc from each node. |
|
539 |
/// |
|
567 |
/// \pre init() must be called and at least one root node should be |
|
568 |
/// added with addSource() before using this function. |
|
540 | 569 |
void limitedStart(int num) { |
541 | 570 |
for (int i = 0; i < num; ++i) { |
542 | 571 |
if (processNextRound()) break; |
543 | 572 |
} |
544 | 573 |
} |
545 | 574 |
|
546 |
/// \brief Runs |
|
575 |
/// \brief Runs the algorithm from the given root node. |
|
547 | 576 |
/// |
548 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
549 |
/// in order to compute the shortest path to each node. The algorithm |
|
550 |
/// computes |
|
551 |
/// - The shortest path tree. |
|
552 |
/// - |
|
577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
578 |
/// node \c s in order to compute the shortest path to each node. |
|
553 | 579 |
/// |
554 |
/// \note d.run(s) is just a shortcut of the following code. |
|
555 |
///\code |
|
556 |
/// d.init(); |
|
557 |
/// d.addSource(s); |
|
558 |
/// d.start(); |
|
559 |
///\endcode |
|
580 |
/// The algorithm computes |
|
581 |
/// - the shortest path tree (forest), |
|
582 |
/// - the distance of each node from the root(s). |
|
583 |
/// |
|
584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
585 |
/// \code |
|
586 |
/// bf.init(); |
|
587 |
/// bf.addSource(s); |
|
588 |
/// bf.start(); |
|
589 |
/// \endcode |
|
560 | 590 |
void run(Node s) { |
561 | 591 |
init(); |
562 | 592 |
addSource(s); |
563 | 593 |
start(); |
564 | 594 |
} |
565 | 595 |
|
566 |
/// \brief Runs %BellmanFord algorithm with limited path length |
|
567 |
/// from node \c s. |
|
596 |
/// \brief Runs the algorithm from the given root node with arc |
|
597 |
/// number limit. |
|
568 | 598 |
/// |
569 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
570 |
/// in order to compute the shortest path with at most \c len arcs |
|
571 |
/// to each node. The algorithm computes |
|
572 |
/// - The shortest path tree. |
|
573 |
/// - |
|
599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
600 |
/// node \c s in order to compute the shortest path distance for each |
|
601 |
/// node using only the paths consisting of at most \c num arcs. |
|
574 | 602 |
/// |
575 |
/// \note d.run(s, num) is just a shortcut of the following code. |
|
576 |
///\code |
|
577 |
/// d.init(); |
|
578 |
/// d.addSource(s); |
|
579 |
/// d.limitedStart(num); |
|
580 |
///\endcode |
|
603 |
/// The algorithm computes |
|
604 |
/// - the limited distance of each node from the root(s), |
|
605 |
/// - the predecessor arc for each node. |
|
606 |
/// |
|
607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
609 |
/// need the shortest paths and not only the distances, you should |
|
610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
611 |
/// and build the path manually. |
|
612 |
/// |
|
613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
614 |
/// \code |
|
615 |
/// bf.init(); |
|
616 |
/// bf.addSource(s); |
|
617 |
/// bf.limitedStart(num); |
|
618 |
/// \endcode |
|
581 | 619 |
void run(Node s, int num) { |
582 | 620 |
init(); |
583 | 621 |
addSource(s); |
... | ... |
@@ -586,27 +624,19 @@ |
586 | 624 |
|
587 | 625 |
///@} |
588 | 626 |
|
589 |
/// \name Query Functions |
|
590 |
/// The result of the %BellmanFord algorithm can be obtained using these |
|
591 |
/// functions.\n |
|
592 |
/// Before the use of these functions, |
|
593 |
/// either run() or start() must be called. |
|
594 |
|
|
595 |
///@{ |
|
596 |
|
|
597 |
/// \brief |
|
627 |
/// \brief LEMON iterator for getting the active nodes. |
|
598 | 628 |
/// |
599 |
/// Lemon iterator for get the active nodes. This class provides a |
|
600 |
/// common style lemon iterator which gives back a subset of the |
|
601 |
/// nodes. The iterated nodes are active in the algorithm after |
|
602 |
/// the last phase so these should be checked in the next phase to |
|
603 |
/// |
|
629 |
/// This class provides a common style LEMON iterator that traverses |
|
630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
631 |
/// phase. These nodes should be checked in the next phase to |
|
632 |
/// find augmenting arcs outgoing from them. |
|
604 | 633 |
class ActiveIt { |
605 | 634 |
public: |
606 | 635 |
|
607 | 636 |
/// \brief Constructor. |
608 | 637 |
/// |
609 |
/// Constructor for |
|
638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
639 |
/// instance. |
|
610 | 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
611 | 641 |
{ |
612 | 642 |
_index = _algorithm->_process.size() - 1; |
... | ... |
@@ -617,9 +647,9 @@ |
617 | 647 |
/// Invalid constructor. |
618 | 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
619 | 649 |
|
620 |
/// \brief Conversion to |
|
650 |
/// \brief Conversion to \c Node. |
|
621 | 651 |
/// |
622 |
/// Conversion to |
|
652 |
/// Conversion to \c Node. |
|
623 | 653 |
operator Node() const { |
624 | 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
625 | 655 |
} |
... | ... |
@@ -646,394 +676,432 @@ |
646 | 676 |
const BellmanFord* _algorithm; |
647 | 677 |
int _index; |
648 | 678 |
}; |
679 |
|
|
680 |
/// \name Query Functions |
|
681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
682 |
/// functions.\n |
|
683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
684 |
|
|
685 |
///@{ |
|
649 | 686 |
|
650 |
|
|
687 |
/// \brief The shortest path to the given node. |
|
688 |
/// |
|
689 |
/// Gives back the shortest path to the given node from the root(s). |
|
690 |
/// |
|
691 |
/// \warning \c t should be reached from the root(s). |
|
692 |
/// |
|
693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
694 |
/// using this function. |
|
695 |
Path path(Node t) const |
|
696 |
{ |
|
697 |
return Path(*_gr, *_pred, t); |
|
698 |
} |
|
699 |
|
|
700 |
/// \brief The distance of the given node from the root(s). |
|
701 |
/// |
|
702 |
/// Returns the distance of the given node from the root(s). |
|
703 |
/// |
|
704 |
/// \warning If node \c v is not reached from the root(s), then |
|
705 |
/// the return value of this function is undefined. |
|
706 |
/// |
|
707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
708 |
/// using this function. |
|
709 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
651 | 710 |
|
652 |
/// \brief Gives back the shortest path. |
|
653 |
/// |
|
654 |
/// Gives back the shortest path. |
|
655 |
/// \pre The \c t should be reachable from the source. |
|
656 |
Path path(Node t) |
|
657 |
{ |
|
658 |
|
|
711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
712 |
/// the given node. |
|
713 |
/// |
|
714 |
/// This function returns the 'previous arc' of the shortest path |
|
715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
717 |
/// is not reached from the root(s) or if \c v is a root. |
|
718 |
/// |
|
719 |
/// The shortest path tree used here is equal to the shortest path |
|
720 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// |
|
722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
723 |
/// using this function. |
|
724 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
725 |
|
|
726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
727 |
/// the given node. |
|
728 |
/// |
|
729 |
/// This function returns the 'previous node' of the shortest path |
|
730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
732 |
/// is not reached from the root(s) or if \c v is a root. |
|
733 |
/// |
|
734 |
/// The shortest path tree used here is equal to the shortest path |
|
735 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// |
|
737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
738 |
/// using this function. |
|
739 |
Node predNode(Node v) const { |
|
740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
741 |
} |
|
742 |
|
|
743 |
/// \brief Returns a const reference to the node map that stores the |
|
744 |
/// distances of the nodes. |
|
745 |
/// |
|
746 |
/// Returns a const reference to the node map that stores the distances |
|
747 |
/// of the nodes calculated by the algorithm. |
|
748 |
/// |
|
749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
750 |
/// using this function. |
|
751 |
const DistMap &distMap() const { return *_dist;} |
|
752 |
|
|
753 |
/// \brief Returns a const reference to the node map that stores the |
|
754 |
/// predecessor arcs. |
|
755 |
/// |
|
756 |
/// Returns a const reference to the node map that stores the predecessor |
|
757 |
/// arcs, which form the shortest path tree (forest). |
|
758 |
/// |
|
759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
760 |
/// using this function. |
|
761 |
const PredMap &predMap() const { return *_pred; } |
|
762 |
|
|
763 |
/// \brief Checks if a node is reached from the root(s). |
|
764 |
/// |
|
765 |
/// Returns \c true if \c v is reached from the root(s). |
|
766 |
/// |
|
767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
768 |
/// using this function. |
|
769 |
bool reached(Node v) const { |
|
770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
659 | 771 |
} |
660 | 772 |
|
661 |
|
|
662 |
// TODO : implement negative cycle |
|
663 |
// /// \brief Gives back a negative cycle. |
|
664 |
// /// |
|
665 |
// /// This function gives back a negative cycle. |
|
666 |
// /// If the algorithm have not found yet negative cycle it will give back |
|
667 |
// /// an empty path. |
|
668 |
// Path negativeCycle() { |
|
669 |
// typename Digraph::template NodeMap<int> state(*digraph, 0); |
|
670 |
// for (ActiveIt it(*this); it != INVALID; ++it) { |
|
671 |
// if (state[it] == 0) { |
|
672 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
|
673 |
// if (state[t] == 0) { |
|
674 |
// state[t] = 1; |
|
675 |
// } else if (state[t] == 2) { |
|
676 |
// break; |
|
677 |
// } else { |
|
678 |
// p.clear(); |
|
679 |
// typename Path::Builder b(p); |
|
680 |
// b.setStartNode(t); |
|
681 |
// b.pushFront(predArc(t)); |
|
682 |
// for(Node s = predNode(t); s != t; s = predNode(s)) { |
|
683 |
// b.pushFront(predArc(s)); |
|
684 |
// } |
|
685 |
// b.commit(); |
|
686 |
// return true; |
|
687 |
// } |
|
688 |
// } |
|
689 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
|
690 |
// if (state[t] == 1) { |
|
691 |
// state[t] = 2; |
|
692 |
// } else { |
|
693 |
// break; |
|
694 |
// } |
|
695 |
// } |
|
696 |
// } |
|
697 |
// } |
|
698 |
// return false; |
|
699 |
// } |
|
700 |
|
|
701 |
/// \brief The distance of a node from the root. |
|
702 |
/// |
|
703 |
/// Returns the distance of a node from the root. |
|
704 |
/// \pre \ref run() must be called before using this function. |
|
705 |
/// \warning If node \c v in unreachable from the root the return value |
|
706 |
/// of this funcion is undefined. |
|
707 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
708 |
|
|
709 |
/// \brief Returns the 'previous arc' of the shortest path tree. |
|
710 |
/// |
|
711 |
/// For a node \c v it returns the 'previous arc' of the shortest path |
|
712 |
/// tree, i.e. it returns the last arc of a shortest path from the root |
|
713 |
/// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
|
714 |
/// if \c v=s. The shortest path tree used here is equal to the shortest |
|
715 |
/// path tree used in \ref predNode(). |
|
716 |
/// \pre \ref run() must be called before using |
|
717 |
/// this function. |
|
718 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
719 |
|
|
720 |
/// \brief Returns the 'previous node' of the shortest path tree. |
|
721 |
/// |
|
722 |
/// For a node \c v it returns the 'previous node' of the shortest path |
|
723 |
/// tree, i.e. it returns the last but one node from a shortest path from |
|
724 |
/// the root to \c /v. It is INVALID if \c v is unreachable from the root |
|
725 |
/// or if \c v=s. The shortest path tree used here is equal to the |
|
726 |
/// shortest path tree used in \ref predArc(). \pre \ref run() must be |
|
727 |
/// called before using this function. |
|
728 |
Node predNode(Node v) const { |
|
729 |
return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); |
|
730 |
} |
|
731 |
|
|
732 |
/// \brief Returns a reference to the NodeMap of distances. |
|
733 |
/// |
|
734 |
/// Returns a reference to the NodeMap of distances. \pre \ref run() must |
|
735 |
/// be called before using this function. |
|
736 |
const DistMap &distMap() const { return *_dist;} |
|
737 |
|
|
738 |
/// \brief Returns a reference to the shortest path tree map. |
|
739 |
/// |
|
740 |
/// Returns a reference to the NodeMap of the arcs of the |
|
741 |
/// shortest path tree. |
|
742 |
/// \pre \ref run() must be called before using this function. |
|
743 |
const PredMap &predMap() const { return *_pred; } |
|
744 |
|
|
745 |
/// \brief Checks if a node is reachable from the root. |
|
746 |
/// |
|
747 |
/// Returns \c true if \c v is reachable from the root. |
|
748 |
/// \pre \ref run() must be called before using this function. |
|
749 |
/// |
|
750 |
bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); } |
|
773 |
// TODO: implement negative cycle |
|
774 |
// /// \brief Gives back a negative cycle. |
|
775 |
// /// |
|
776 |
// /// This function gives back a negative cycle. |
|
777 |
// /// If the algorithm have not found yet negative cycle it will give back |
|
778 |
// /// an empty path. |
|
779 |
// Path negativeCycle() { |
|
780 |
// typename Digraph::template NodeMap<int> state(*digraph, 0); |
|
781 |
// for (ActiveIt it(*this); it != INVALID; ++it) { |
|
782 |
// if (state[it] == 0) { |
|
783 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
|
784 |
// if (state[t] == 0) { |
|
785 |
// state[t] = 1; |
|
786 |
// } else if (state[t] == 2) { |
|
787 |
// break; |
|
788 |
// } else { |
|
789 |
// p.clear(); |
|
790 |
// typename Path::Builder b(p); |
|
791 |
// b.setStartNode(t); |
|
792 |
// b.pushFront(predArc(t)); |
|
793 |
// for(Node s = predNode(t); s != t; s = predNode(s)) { |
|
794 |
// b.pushFront(predArc(s)); |
|
795 |
// } |
|
796 |
// b.commit(); |
|
797 |
// return true; |
|
798 |
// } |
|
799 |
// } |
|
800 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
|
801 |
// if (state[t] == 1) { |
|
802 |
// state[t] = 2; |
|
803 |
// } else { |
|
804 |
// break; |
|
805 |
// } |
|
806 |
// } |
|
807 |
// } |
|
808 |
// } |
|
809 |
// return false; |
|
810 |
// } |
|
751 | 811 |
|
752 | 812 |
///@} |
753 | 813 |
}; |
754 | 814 |
|
755 |
/// \brief Default traits class of |
|
815 |
/// \brief Default traits class of bellmanFord() function. |
|
756 | 816 |
/// |
757 |
/// Default traits class of BellmanFord function. |
|
758 |
/// \param _Digraph Digraph type. |
|
759 |
/// \param _LengthMap Type of length map. |
|
760 |
template <typename _Digraph, typename _LengthMap> |
|
817 |
/// Default traits class of bellmanFord() function. |
|
818 |
/// \tparam GR The type of the digraph. |
|
819 |
/// \tparam LEN The type of the length map. |
|
820 |
template <typename GR, typename LEN> |
|
761 | 821 |
struct BellmanFordWizardDefaultTraits { |
762 |
/// \brief The digraph type the algorithm runs on. |
|
763 |
typedef _Digraph Digraph; |
|
822 |
/// The type of the digraph the algorithm runs on. |
|
823 |
typedef GR Digraph; |
|
764 | 824 |
|
765 | 825 |
/// \brief The type of the map that stores the arc lengths. |
766 | 826 |
/// |
767 | 827 |
/// The type of the map that stores the arc lengths. |
768 | 828 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
769 |
typedef |
|
829 |
typedef LEN LengthMap; |
|
770 | 830 |
|
771 |
/// \brief The value type of the length map. |
|
772 |
typedef typename _LengthMap::Value Value; |
|
831 |
/// The type of the arc lengths. |
|
832 |
typedef typename LEN::Value Value; |
|
773 | 833 |
|
774 | 834 |
/// \brief Operation traits for Bellman-Ford algorithm. |
775 | 835 |
/// |
776 |
/// It defines the infinity type on the given Value type |
|
777 |
/// and the used operation. |
|
836 |
/// It defines the used operations and the infinity value for the |
|
837 |
/// given \c Value type. |
|
778 | 838 |
/// \see BellmanFordDefaultOperationTraits |
779 | 839 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
780 | 840 |
|
781 | 841 |
/// \brief The type of the map that stores the last |
782 | 842 |
/// arcs of the shortest paths. |
783 | 843 |
/// |
784 |
/// The type of the map that stores the last |
|
785 |
/// arcs of the shortest paths. |
|
786 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
787 |
typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap; |
|
844 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
845 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
846 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
788 | 847 |
|
789 |
/// \brief Instantiates a PredMap. |
|
848 |
/// \brief Instantiates a \c PredMap. |
|
790 | 849 |
/// |
791 |
/// This function instantiates a \ref PredMap. |
|
792 |
static PredMap *createPredMap(const _Digraph &) { |
|
793 |
|
|
850 |
/// This function instantiates a \ref PredMap. |
|
851 |
/// \param g is the digraph to which we would like to define the |
|
852 |
/// \ref PredMap. |
|
853 |
static PredMap *createPredMap(const GR &g) { |
|
854 |
return new PredMap(g); |
|
794 | 855 |
} |
795 |
|
|
856 |
|
|
857 |
/// \brief The type of the map that stores the distances of the nodes. |
|
796 | 858 |
/// |
797 |
/// The type of the map that stores the dists of the nodes. |
|
798 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
799 |
typedef NullMap<typename Digraph::Node, Value> DistMap; |
|
800 |
/// \brief Instantiates a DistMap. |
|
859 |
/// The type of the map that stores the distances of the nodes. |
|
860 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
861 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
862 |
|
|
863 |
/// \brief Instantiates a \c DistMap. |
|
801 | 864 |
/// |
802 | 865 |
/// This function instantiates a \ref DistMap. |
803 |
static DistMap *createDistMap(const _Digraph &) { |
|
804 |
return new DistMap(); |
|
866 |
/// \param g is the digraph to which we would like to define the |
|
867 |
/// \ref DistMap. |
|
868 |
static DistMap *createDistMap(const GR &g) { |
|
869 |
return new DistMap(g); |
|
805 | 870 |
} |
871 |
|
|
872 |
///The type of the shortest paths. |
|
873 |
|
|
874 |
///The type of the shortest paths. |
|
875 |
///It must meet the \ref concepts::Path "Path" concept. |
|
876 |
typedef lemon::Path<Digraph> Path; |
|
806 | 877 |
}; |
807 | 878 |
|
808 |
/// \brief Default traits used by |
|
879 |
/// \brief Default traits class used by BellmanFordWizard. |
|
809 | 880 |
/// |
810 |
/// To make it easier to use BellmanFord algorithm |
|
811 |
/// we have created a wizard class. |
|
812 |
/// This \ref BellmanFordWizard class needs default traits, |
|
813 |
/// as well as the \ref BellmanFord class. |
|
814 |
/// The \ref BellmanFordWizardBase is a class to be the default traits of the |
|
815 |
/// \ref BellmanFordWizard class. |
|
816 |
/// \todo More named parameters are required... |
|
817 |
template<class _Digraph,class _LengthMap> |
|
881 |
/// Default traits class used by BellmanFordWizard. |
|
882 |
/// \tparam GR The type of the digraph. |
|
883 |
/// \tparam LEN The type of the length map. |
|
884 |
template <typename GR, typename LEN> |
|
818 | 885 |
class BellmanFordWizardBase |
819 |
: public BellmanFordWizardDefaultTraits< |
|
886 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
|
820 | 887 |
|
821 |
typedef BellmanFordWizardDefaultTraits< |
|
888 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
822 | 889 |
protected: |
823 |
|
|
890 |
// Type of the nodes in the digraph. |
|
824 | 891 |
typedef typename Base::Digraph::Node Node; |
825 | 892 |
|
826 |
|
|
893 |
// Pointer to the underlying digraph. |
|
827 | 894 |
void *_graph; |
828 |
|
|
895 |
// Pointer to the length map |
|
829 | 896 |
void *_length; |
830 |
// |
|
897 |
// Pointer to the map of predecessors arcs. |
|
831 | 898 |
void *_pred; |
832 |
// |
|
899 |
// Pointer to the map of distances. |
|
833 | 900 |
void *_dist; |
834 |
///Pointer to the source node. |
|
835 |
Node _source; |
|
901 |
//Pointer to the shortest path to the target node. |
|
902 |
void *_path; |
|
903 |
//Pointer to the distance of the target node. |
|
904 |
void *_di; |
|
836 | 905 |
|
837 | 906 |
public: |
838 | 907 |
/// Constructor. |
839 | 908 |
|
840 |
/// This constructor does not require parameters, therefore it initiates |
|
841 |
/// all of the attributes to default values (0, INVALID). |
|
842 |
BellmanFordWizardBase() : _graph(0), _length(0), _pred(0), |
|
843 |
_dist(0), _source(INVALID) {} |
|
909 |
/// This constructor does not require parameters, it initiates |
|
910 |
/// all of the attributes to default values \c 0. |
|
911 |
BellmanFordWizardBase() : |
|
912 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
|
844 | 913 |
|
845 | 914 |
/// Constructor. |
846 | 915 |
|
847 |
/// This constructor requires some parameters, |
|
848 |
/// listed in the parameters list. |
|
849 |
/// Others are initiated to 0. |
|
850 |
/// \param digraph is the initial value of \ref _graph |
|
851 |
/// \param length is the initial value of \ref _length |
|
852 |
/// \param source is the initial value of \ref _source |
|
853 |
BellmanFordWizardBase(const _Digraph& digraph, |
|
854 |
const _LengthMap& length, |
|
855 |
Node source = INVALID) : |
|
856 |
_graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), |
|
857 |
_length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), |
|
858 |
_pred(0), _dist(0), _source(source) {} |
|
916 |
/// This constructor requires two parameters, |
|
917 |
/// others are initiated to \c 0. |
|
918 |
/// \param gr The digraph the algorithm runs on. |
|
919 |
/// \param len The length map. |
|
920 |
BellmanFordWizardBase(const GR& gr, |
|
921 |
const LEN& len) : |
|
922 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
923 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
924 |
_pred(0), _dist(0), _path(0), _di(0) {} |
|
859 | 925 |
|
860 | 926 |
}; |
861 | 927 |
|
862 |
/// |
|
928 |
/// \brief Auxiliary class for the function-type interface of the |
|
929 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
930 |
/// |
|
931 |
/// This auxiliary class is created to implement the |
|
932 |
/// \ref bellmanFord() "function-type interface" of the |
|
933 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
934 |
/// It does not have own \ref run() method, it uses the |
|
935 |
/// functions and features of the plain \ref BellmanFord. |
|
936 |
/// |
|
937 |
/// This class should only be used through the \ref bellmanFord() |
|
938 |
/// function, which makes it easier to use the algorithm. |
|
939 |
template<class TR> |
|
940 |
class BellmanFordWizard : public TR { |
|
941 |
typedef TR Base; |
|
863 | 942 |
|
864 |
/// This class is created to make it easier to use BellmanFord algorithm. |
|
865 |
/// It uses the functions and features of the plain \ref BellmanFord, |
|
866 |
/// but it is much simpler to use it. |
|
867 |
/// |
|
868 |
/// Simplicity means that the way to change the types defined |
|
869 |
/// in the traits class is based on functions that returns the new class |
|
870 |
/// and not on templatable built-in classes. |
|
871 |
/// When using the plain \ref BellmanFord |
|
872 |
/// the new class with the modified type comes from |
|
873 |
/// the original class by using the :: |
|
874 |
/// operator. In the case of \ref BellmanFordWizard only |
|
875 |
/// a function have to be called and it will |
|
876 |
/// return the needed class. |
|
877 |
/// |
|
878 |
/// It does not have own \ref run method. When its \ref run method is called |
|
879 |
/// it initiates a plain \ref BellmanFord class, and calls the \ref |
|
880 |
/// BellmanFord::run method of it. |
|
881 |
template<class _Traits> |
|
882 |
class BellmanFordWizard : public _Traits { |
|
883 |
typedef _Traits Base; |
|
884 |
|
|
885 |
///The type of the underlying digraph. |
|
886 |
typedef typename |
|
943 |
typedef typename TR::Digraph Digraph; |
|
887 | 944 |
|
888 | 945 |
typedef typename Digraph::Node Node; |
889 | 946 |
typedef typename Digraph::NodeIt NodeIt; |
890 | 947 |
typedef typename Digraph::Arc Arc; |
891 | 948 |
typedef typename Digraph::OutArcIt ArcIt; |
892 | 949 |
|
893 |
///The type of the map that stores the arc lengths. |
|
894 |
typedef typename _Traits::LengthMap LengthMap; |
|
895 |
|
|
896 |
///The type of the length of the arcs. |
|
950 |
typedef typename TR::LengthMap LengthMap; |
|
897 | 951 |
typedef typename LengthMap::Value Value; |
898 |
|
|
899 |
///\brief The type of the map that stores the last |
|
900 |
///arcs of the shortest paths. |
|
901 |
typedef typename _Traits::PredMap PredMap; |
|
902 |
|
|
903 |
///The type of the map that stores the dists of the nodes. |
|
904 |
typedef typename |
|
952 |
typedef typename TR::PredMap PredMap; |
|
953 |
typedef typename TR::DistMap DistMap; |
|
954 |
typedef typename TR::Path Path; |
|
905 | 955 |
|
906 | 956 |
public: |
907 | 957 |
/// Constructor. |
908 |
BellmanFordWizard() : |
|
958 |
BellmanFordWizard() : TR() {} |
|
909 | 959 |
|
910 | 960 |
/// \brief Constructor that requires parameters. |
911 | 961 |
/// |
912 | 962 |
/// Constructor that requires parameters. |
913 | 963 |
/// These parameters will be the default values for the traits class. |
914 |
BellmanFordWizard(const Digraph& digraph, const LengthMap& length, |
|
915 |
Node src = INVALID) |
|
916 |
|
|
964 |
/// \param gr The digraph the algorithm runs on. |
|
965 |
/// \param len The length map. |
|
966 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
967 |
: TR(gr, len) {} |
|
917 | 968 |
|
918 | 969 |
/// \brief Copy constructor |
919 |
BellmanFordWizard(const |
|
970 |
BellmanFordWizard(const TR &b) : TR(b) {} |
|
920 | 971 |
|
921 | 972 |
~BellmanFordWizard() {} |
922 | 973 |
|
923 |
/// \brief Runs |
|
974 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
924 | 975 |
/// |
925 |
/// Runs BellmanFord algorithm from a given node. |
|
926 |
/// The node can be given by the \ref source function. |
|
927 |
void run() { |
|
928 |
LEMON_ASSERT(Base::_source != INVALID, "Source node is not given"); |
|
929 |
|
|
976 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
977 |
/// node in order to compute the shortest path to each node. |
|
978 |
void run(Node s) { |
|
979 |
BellmanFord<Digraph,LengthMap,TR> |
|
930 | 980 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
931 | 981 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
932 | 982 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
933 | 983 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
934 |
bf.run( |
|
984 |
bf.run(s); |
|
935 | 985 |
} |
936 | 986 |
|
937 |
/// \brief Runs |
|
987 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
988 |
/// between \c s and \c t. |
|
938 | 989 |
/// |
939 |
/// Runs BellmanFord algorithm from the given node. |
|
940 |
/// \param src is the given source. |
|
941 |
void run(Node src) { |
|
942 |
Base::_source = src; |
|
943 |
|
|
990 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
991 |
/// in order to compute the shortest path to node \c t. |
|
992 |
/// Actually, it computes the shortest path to each node, but using |
|
993 |
/// this function you can retrieve the distance and the shortest path |
|
994 |
/// for a single target node easier. |
|
995 |
/// |
|
996 |
/// \return \c true if \c t is reachable form \c s. |
|
997 |
bool run(Node s, Node t) { |
|
998 |
BellmanFord<Digraph,LengthMap,TR> |
|
999 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
1000 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
1001 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
1002 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
1003 |
bf.run(s); |
|
1004 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
1005 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
1006 |
return bf.reached(t); |
|
944 | 1007 |
} |
945 | 1008 |
|
946 | 1009 |
template<class T> |
947 |
struct |
|
1010 |
struct SetPredMapBase : public Base { |
|
948 | 1011 |
typedef T PredMap; |
949 | 1012 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
950 |
|
|
1013 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
951 | 1014 |
}; |
952 | 1015 |
|
953 |
///\brief \ref named-templ-param "Named parameter" |
|
954 |
///function for setting PredMap type |
|
1016 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1017 |
/// the predecessor map. |
|
955 | 1018 |
/// |
956 |
/// \ref named-templ-param "Named parameter" |
|
957 |
///function for setting PredMap type |
|
958 |
/// |
|
1019 |
/// \ref named-templ-param "Named parameter" for setting |
|
1020 |
/// the map that stores the predecessor arcs of the nodes. |
|
959 | 1021 |
template<class T> |
960 |
BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) |
|
961 |
{ |
|
1022 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
|
962 | 1023 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
963 |
return BellmanFordWizard< |
|
1024 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
964 | 1025 |
} |
965 | 1026 |
|
966 | 1027 |
template<class T> |
967 |
struct |
|
1028 |
struct SetDistMapBase : public Base { |
|
968 | 1029 |
typedef T DistMap; |
969 | 1030 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
970 |
|
|
1031 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
971 | 1032 |
}; |
972 | 1033 |
|
973 |
///\brief \ref named-templ-param "Named parameter" |
|
974 |
///function for setting DistMap type |
|
1034 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1035 |
/// the distance map. |
|
975 | 1036 |
/// |
976 |
/// \ref named-templ-param "Named parameter" |
|
977 |
///function for setting DistMap type |
|
978 |
/// |
|
1037 |
/// \ref named-templ-param "Named parameter" for setting |
|
1038 |
/// the map that stores the distances of the nodes calculated |
|
1039 |
/// by the algorithm. |
|
979 | 1040 |
template<class T> |
980 |
BellmanFordWizard< |
|
1041 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
|
981 | 1042 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
982 |
return BellmanFordWizard< |
|
1043 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
983 | 1044 |
} |
984 | 1045 |
|
985 | 1046 |
template<class T> |
986 |
struct DefOperationTraitsBase : public Base { |
|
987 |
typedef T OperationTraits; |
|
988 |
|
|
1047 |
struct SetPathBase : public Base { |
|
1048 |
typedef T Path; |
|
1049 |
SetPathBase(const TR &b) : TR(b) {} |
|
989 | 1050 |
}; |
990 |
|
|
991 |
///\brief \ref named-templ-param "Named parameter" |
|
992 |
|
|
1051 |
|
|
1052 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1053 |
/// the shortest path to the target node. |
|
993 | 1054 |
/// |
994 |
/// \ref named-templ-param "Named parameter" |
|
995 |
///function for setting OperationTraits type |
|
1055 |
/// \ref named-func-param "Named parameter" for getting |
|
1056 |
/// the shortest path to the target node. |
|
1057 |
template<class T> |
|
1058 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
1059 |
{ |
|
1060 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1061 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
1062 |
} |
|
1063 |
|
|
1064 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1065 |
/// the distance of the target node. |
|
996 | 1066 |
/// |
997 |
template<class T> |
|
998 |
BellmanFordWizard<DefOperationTraitsBase<T> > distMap() { |
|
999 |
return BellmanFordWizard<DefDistMapBase<T> >(*this); |
|
1000 |
} |
|
1001 |
|
|
1002 |
/// \brief Sets the source node, from which the BellmanFord algorithm runs. |
|
1003 |
/// |
|
1004 |
/// Sets the source node, from which the BellmanFord algorithm runs. |
|
1005 |
/// \param src is the source node. |
|
1006 |
BellmanFordWizard<_Traits>& source(Node src) { |
|
1007 |
|
|
1067 |
/// \ref named-func-param "Named parameter" for getting |
|
1068 |
/// the distance of the target node. |
|
1069 |
BellmanFordWizard dist(const Value &d) |
|
1070 |
{ |
|
1071 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
1008 | 1072 |
return *this; |
1009 | 1073 |
} |
1010 | 1074 |
|
1011 | 1075 |
}; |
1012 | 1076 |
|
1013 |
/// \brief Function type interface for BellmanFord |
|
1077 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1078 |
/// algorithm. |
|
1014 | 1079 |
/// |
1015 | 1080 |
/// \ingroup shortest_path |
1016 |
/// Function type interface for BellmanFord |
|
1081 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1082 |
/// algorithm. |
|
1017 | 1083 |
/// |
1018 | 1084 |
/// This function also has several \ref named-templ-func-param |
1019 | 1085 |
/// "named parameters", they are declared as the members of class |
1020 | 1086 |
/// \ref BellmanFordWizard. |
1021 |
/// The following |
|
1022 |
/// example shows how to use these parameters. |
|
1023 |
///\code |
|
1024 |
/// bellmanford(g,length,source).predMap(preds).run(); |
|
1025 |
/// |
|
1087 |
/// The following examples show how to use these parameters. |
|
1088 |
/// \code |
|
1089 |
/// // Compute shortest path from node s to each node |
|
1090 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
1091 |
/// |
|
1092 |
/// // Compute shortest path from s to t |
|
1093 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
1094 |
/// \endcode |
|
1026 | 1095 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
1027 | 1096 |
/// to the end of the parameter list. |
1028 | 1097 |
/// \sa BellmanFordWizard |
1029 | 1098 |
/// \sa BellmanFord |
1030 |
template<class _Digraph, class _LengthMap> |
|
1031 |
BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
1032 |
bellmanFord(const _Digraph& digraph, |
|
1033 |
const _LengthMap& length, |
|
1034 |
typename _Digraph::Node source = INVALID) { |
|
1035 |
return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
1036 |
|
|
1099 |
template<typename GR, typename LEN> |
|
1100 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
1101 |
bellmanFord(const GR& digraph, |
|
1102 |
const LEN& length) |
|
1103 |
{ |
|
1104 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
1037 | 1105 |
} |
1038 | 1106 |
|
1039 | 1107 |
} //END OF NAMESPACE LEMON |
0 comments (0 inline)