gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Improvements and unifications for BellmanFord (#51) - Rework the function type interface to fit to dijkstra(). - Rename named template parameters (Def* -> Set*). - Rename some private member variables (to start with an underscore). - Simplify template parameter names. - Many unifications and improvements in the doc.
0 1 0
default
1 file changed with 593 insertions and 525 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -16,18 +16,18 @@
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_BELMANN_FORD_H
20
#define LEMON_BELMANN_FORD_H
19
#ifndef LEMON_BELLMAN_FORD_H
20
#define LEMON_BELLMAN_FORD_H
21 21

	
22 22
/// \ingroup shortest_path
23 23
/// \file
24 24
/// \brief Bellman-Ford algorithm.
25
///
26 25

	
27 26
#include <lemon/bits/path_dump.h>
28 27
#include <lemon/core.h>
29 28
#include <lemon/error.h>
30 29
#include <lemon/maps.h>
30
#include <lemon/path.h>
31 31

	
32 32
#include <limits>
33 33

	
... ...
@@ -35,15 +35,17 @@
35 35

	
36 36
  /// \brief Default OperationTraits for the BellmanFord algorithm class.
37 37
  ///  
38
  /// It defines all computational operations and constants which are
39
  /// used in the Bellman-Ford algorithm. The default implementation
40
  /// is based on the numeric_limits class. If the numeric type does not
41
  /// have infinity value then the maximum value is used as extremal
42
  /// infinity value.
38
  /// This operation traits class defines all computational operations
39
  /// and constants that are used in the Bellman-Ford algorithm.
40
  /// The default implementation is based on the \c numeric_limits class.
41
  /// If the numeric type does not have infinity value, then the maximum
42
  /// value is used as extremal infinity value.
43 43
  template <
44
    typename Value, 
45
    bool has_infinity = std::numeric_limits<Value>::has_infinity>
44
    typename V, 
45
    bool has_inf = std::numeric_limits<V>::has_infinity>
46 46
  struct BellmanFordDefaultOperationTraits {
47
    /// \e
48
    typedef V Value;
47 49
    /// \brief Gives back the zero value of the type.
48 50
    static Value zero() {
49 51
      return static_cast<Value>(0);
... ...
@@ -56,14 +58,16 @@
56 58
    static Value plus(const Value& left, const Value& right) {
57 59
      return left + right;
58 60
    }
59
    /// \brief Gives back true only if the first value less than the second.
61
    /// \brief Gives back \c true only if the first value is less than
62
    /// the second.
60 63
    static bool less(const Value& left, const Value& right) {
61 64
      return left < right;
62 65
    }
63 66
  };
64 67

	
65
  template <typename Value>
66
  struct BellmanFordDefaultOperationTraits<Value, false> {
68
  template <typename V>
69
  struct BellmanFordDefaultOperationTraits<V, false> {
70
    typedef V Value;
67 71
    static Value zero() {
68 72
      return static_cast<Value>(0);
69 73
    }
... ...
@@ -82,26 +86,26 @@
82 86
  /// \brief Default traits class of BellmanFord class.
83 87
  ///
84 88
  /// Default traits class of BellmanFord class.
85
  /// \param _Digraph Digraph type.
86
  /// \param _LegthMap Type of length map.
87
  template<class _Digraph, class _LengthMap>
89
  /// \param GR The type of the digraph.
90
  /// \param LEN The type of the length map.
91
  template<typename GR, typename LEN>
88 92
  struct BellmanFordDefaultTraits {
89
    /// The digraph type the algorithm runs on. 
90
    typedef _Digraph Digraph;
93
    /// The type of the digraph the algorithm runs on. 
94
    typedef GR Digraph;
91 95

	
92 96
    /// \brief The type of the map that stores the arc lengths.
93 97
    ///
94 98
    /// The type of the map that stores the arc lengths.
95
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
96
    typedef _LengthMap LengthMap;
99
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
100
    typedef LEN LengthMap;
97 101

	
98
    // The type of the length of the arcs.
99
    typedef typename _LengthMap::Value Value;
102
    /// The type of the arc lengths.
103
    typedef typename LEN::Value Value;
100 104

	
101 105
    /// \brief Operation traits for Bellman-Ford algorithm.
102 106
    ///
103
    /// It defines the infinity type on the given Value type
104
    /// and the used operation.
107
    /// It defines the used operations and the infinity value for the
108
    /// given \c Value type.
105 109
    /// \see BellmanFordDefaultOperationTraits
106 110
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
107 111
 
... ...
@@ -110,33 +114,31 @@
110 114
    /// 
111 115
    /// The type of the map that stores the last
112 116
    /// arcs of the shortest paths.
113
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
114
    ///
115
    typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap;
117
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
118
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
116 119

	
117
    /// \brief Instantiates a PredMap.
120
    /// \brief Instantiates a \c PredMap.
118 121
    /// 
119 122
    /// This function instantiates a \ref PredMap. 
120
    /// \param digraph is the digraph, to which we would like to define the PredMap.
121
    static PredMap *createPredMap(const _Digraph& digraph) {
122
      return new PredMap(digraph);
123
    /// \param g is the digraph to which we would like to define the
124
    /// \ref PredMap.
125
    static PredMap *createPredMap(const GR& g) {
126
      return new PredMap(g);
123 127
    }
124 128

	
125
    /// \brief The type of the map that stores the dists of the nodes.
129
    /// \brief The type of the map that stores the distances of the nodes.
126 130
    ///
127
    /// The type of the map that stores the dists of the nodes.
128
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
129
    ///
130
    typedef typename Digraph::template NodeMap<typename _LengthMap::Value> 
131
    DistMap;
131
    /// The type of the map that stores the distances of the nodes.
132
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
133
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
132 134

	
133
    /// \brief Instantiates a DistMap.
135
    /// \brief Instantiates a \c DistMap.
134 136
    ///
135 137
    /// This function instantiates a \ref DistMap. 
136
    /// \param digraph is the digraph, to which we would like to define the 
137
    /// \ref DistMap
138
    static DistMap *createDistMap(const _Digraph& digraph) {
139
      return new DistMap(digraph);
138
    /// \param g is the digraph to which we would like to define the 
139
    /// \ref DistMap.
140
    static DistMap *createDistMap(const GR& g) {
141
      return new DistMap(g);
140 142
    }
141 143

	
142 144
  };
... ...
@@ -144,106 +146,109 @@
144 146
  /// \brief %BellmanFord algorithm class.
145 147
  ///
146 148
  /// \ingroup shortest_path
147
  /// This class provides an efficient implementation of \c Bellman-Ford 
148
  /// algorithm. The arc lengths are passed to the algorithm using a
149
  /// This class provides an efficient implementation of the Bellman-Ford 
150
  /// algorithm. The maximum time complexity of the algorithm is
151
  /// <tt>O(ne)</tt>.
152
  ///
153
  /// The Bellman-Ford algorithm solves the single-source shortest path
154
  /// problem when the arcs can have negative lengths, but the digraph
155
  /// should not contain directed cycles with negative total length.
156
  /// If all arc costs are non-negative, consider to use the Dijkstra
157
  /// algorithm instead, since it is more efficient.
158
  ///
159
  /// The arc lengths are passed to the algorithm using a
149 160
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
150
  /// kind of length.
161
  /// kind of length. The type of the length values is determined by the
162
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
151 163
  ///
152
  /// The Bellman-Ford algorithm solves the shortest path from one node
153
  /// problem when the arcs can have negative length but the digraph should
154
  /// not contain cycles with negative sum of length. If we can assume
155
  /// that all arc is non-negative in the digraph then the dijkstra algorithm
156
  /// should be used rather.
164
  /// There is also a \ref bellmanFord() "function-type interface" for the
165
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
166
  /// it can be used easier.
157 167
  ///
158
  /// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
159
  ///
160
  /// The type of the length is determined by the
161
  /// \ref concepts::ReadMap::Value "Value" of the length map.
162
  ///
163
  /// \param _Digraph The digraph type the algorithm runs on. The default value
164
  /// is \ref ListDigraph. The value of _Digraph is not used directly by
165
  /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
166
  /// \param _LengthMap This read-only ArcMap determines the lengths of the
167
  /// arcs. The default map type is \ref concepts::Digraph::ArcMap 
168
  /// "Digraph::ArcMap<int>".  The value of _LengthMap is not used directly 
169
  /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.  
170
  /// \param _Traits Traits class to set various data types used by the 
171
  /// algorithm.  The default traits class is \ref BellmanFordDefaultTraits
172
  /// "BellmanFordDefaultTraits<_Digraph,_LengthMap>".  See \ref
173
  /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
174
  /// class.
168
  /// \tparam GR The type of the digraph the algorithm runs on.
169
  /// The default type is \ref ListDigraph.
170
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
171
  /// the lengths of the arcs. The default map type is
172
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
175 173
#ifdef DOXYGEN
176
  template <typename _Digraph, typename _LengthMap, typename _Traits>
174
  template <typename GR, typename LEN, typename TR>
177 175
#else
178
  template <typename _Digraph,
179
	    typename _LengthMap=typename _Digraph::template ArcMap<int>,
180
	    typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> >
176
  template <typename GR=ListDigraph,
177
            typename LEN=typename GR::template ArcMap<int>,
178
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
181 179
#endif
182 180
  class BellmanFord {
183 181
  public:
184 182

	
185
    typedef _Traits Traits;
186 183
    ///The type of the underlying digraph.
187
    typedef typename _Traits::Digraph Digraph;
184
    typedef typename TR::Digraph Digraph;
185
    
186
    /// \brief The type of the arc lengths.
187
    typedef typename TR::LengthMap::Value Value;
188
    /// \brief The type of the map that stores the arc lengths.
189
    typedef typename TR::LengthMap LengthMap;
190
    /// \brief The type of the map that stores the last
191
    /// arcs of the shortest paths.
192
    typedef typename TR::PredMap PredMap;
193
    /// \brief The type of the map that stores the distances of the nodes.
194
    typedef typename TR::DistMap DistMap;
195
    /// The type of the paths.
196
    typedef PredMapPath<Digraph, PredMap> Path;
197
    ///\brief The \ref BellmanFordDefaultOperationTraits
198
    /// "operation traits class" of the algorithm.
199
    typedef typename TR::OperationTraits OperationTraits;
200

	
201
    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
202
    typedef TR Traits;
203

	
204
  private:
188 205

	
189 206
    typedef typename Digraph::Node Node;
190 207
    typedef typename Digraph::NodeIt NodeIt;
191 208
    typedef typename Digraph::Arc Arc;
192 209
    typedef typename Digraph::OutArcIt OutArcIt;
193
    
194
    /// \brief The type of the length of the arcs.
195
    typedef typename _Traits::LengthMap::Value Value;
196
    /// \brief The type of the map that stores the arc lengths.
197
    typedef typename _Traits::LengthMap LengthMap;
198
    /// \brief The type of the map that stores the last
199
    /// arcs of the shortest paths.
200
    typedef typename _Traits::PredMap PredMap;
201
    /// \brief The type of the map that stores the dists of the nodes.
202
    typedef typename _Traits::DistMap DistMap;
203
    /// \brief The operation traits.
204
    typedef typename _Traits::OperationTraits OperationTraits;
205
  private:
206
    /// Pointer to the underlying digraph.
207
    const Digraph *digraph;
208
    /// Pointer to the length map
209
    const LengthMap *length;
210
    ///Pointer to the map of predecessors arcs.
210

	
211
    // Pointer to the underlying digraph.
212
    const Digraph *_gr;
213
    // Pointer to the length map
214
    const LengthMap *_length;
215
    // Pointer to the map of predecessors arcs.
211 216
    PredMap *_pred;
212
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
213
    bool local_pred;
214
    ///Pointer to the map of distances.
217
    // Indicates if _pred is locally allocated (true) or not.
218
    bool _local_pred;
219
    // Pointer to the map of distances.
215 220
    DistMap *_dist;
216
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
217
    bool local_dist;
221
    // Indicates if _dist is locally allocated (true) or not.
222
    bool _local_dist;
218 223

	
219 224
    typedef typename Digraph::template NodeMap<bool> MaskMap;
220 225
    MaskMap *_mask;
221 226

	
222 227
    std::vector<Node> _process;
223 228

	
224
    /// Creates the maps if necessary.
229
    // Creates the maps if necessary.
225 230
    void create_maps() {
226 231
      if(!_pred) {
227
	local_pred = true;
228
	_pred = Traits::createPredMap(*digraph);
232
	_local_pred = true;
233
	_pred = Traits::createPredMap(*_gr);
229 234
      }
230 235
      if(!_dist) {
231
	local_dist = true;
232
	_dist = Traits::createDistMap(*digraph);
236
	_local_dist = true;
237
	_dist = Traits::createDistMap(*_gr);
233 238
      }
234
      _mask = new MaskMap(*digraph, false);
239
      _mask = new MaskMap(*_gr, false);
235 240
    }
236 241
    
237 242
  public :
238 243
 
239 244
    typedef BellmanFord Create;
240 245

	
241
    /// \name Named template parameters
246
    /// \name Named Template Parameters
242 247

	
243 248
    ///@{
244 249

	
245 250
    template <class T>
246
    struct DefPredMapTraits : public Traits {
251
    struct SetPredMapTraits : public Traits {
247 252
      typedef T PredMap;
248 253
      static PredMap *createPredMap(const Digraph&) {
249 254
        LEMON_ASSERT(false, "PredMap is not initialized");
... ...
@@ -251,18 +256,20 @@
251 256
      }
252 257
    };
253 258

	
254
    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
255
    /// type
256
    /// \ref named-templ-param "Named parameter" for setting PredMap type
259
    /// \brief \ref named-templ-param "Named parameter" for setting
260
    /// \c PredMap type.
257 261
    ///
262
    /// \ref named-templ-param "Named parameter" for setting
263
    /// \c PredMap type.
264
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
258 265
    template <class T>
259 266
    struct SetPredMap 
260
      : public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > {
261
      typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create;
267
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
268
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
262 269
    };
263 270
    
264 271
    template <class T>
265
    struct DefDistMapTraits : public Traits {
272
    struct SetDistMapTraits : public Traits {
266 273
      typedef T DistMap;
267 274
      static DistMap *createDistMap(const Digraph&) {
268 275
        LEMON_ASSERT(false, "DistMap is not initialized");
... ...
@@ -270,31 +277,33 @@
270 277
      }
271 278
    };
272 279

	
273
    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
274
    /// type
280
    /// \brief \ref named-templ-param "Named parameter" for setting
281
    /// \c DistMap type.
275 282
    ///
276
    /// \ref named-templ-param "Named parameter" for setting DistMap type
277
    ///
283
    /// \ref named-templ-param "Named parameter" for setting
284
    /// \c DistMap type.
285
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
278 286
    template <class T>
279 287
    struct SetDistMap 
280
      : public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > {
281
      typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create;
288
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
289
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
282 290
    };
283
    
291

	
284 292
    template <class T>
285
    struct DefOperationTraitsTraits : public Traits {
293
    struct SetOperationTraitsTraits : public Traits {
286 294
      typedef T OperationTraits;
287 295
    };
288 296
    
289 297
    /// \brief \ref named-templ-param "Named parameter" for setting 
290
    /// OperationTraits type
298
    /// \c OperationTraits type.
291 299
    ///
292
    /// \ref named-templ-param "Named parameter" for setting OperationTraits
293
    /// type
300
    /// \ref named-templ-param "Named parameter" for setting
301
    /// \c OperationTraits type.
302
    /// For more information see \ref BellmanFordDefaultOperationTraits.
294 303
    template <class T>
295 304
    struct SetOperationTraits
296
      : public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > {
297
      typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> >
305
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
306
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
298 307
      Create;
299 308
    };
300 309
    
... ...
@@ -308,85 +317,89 @@
308 317
    
309 318
    /// \brief Constructor.
310 319
    ///
311
    /// \param _graph the digraph the algorithm will run on.
312
    /// \param _length the length map used by the algorithm.
313
    BellmanFord(const Digraph& _graph, const LengthMap& _length) :
314
      digraph(&_graph), length(&_length),
315
      _pred(0), local_pred(false),
316
      _dist(0), local_dist(false), _mask(0) {}
320
    /// Constructor.
321
    /// \param g The digraph the algorithm runs on.
322
    /// \param length The length map used by the algorithm.
323
    BellmanFord(const Digraph& g, const LengthMap& length) :
324
      _gr(&g), _length(&length),
325
      _pred(0), _local_pred(false),
326
      _dist(0), _local_dist(false), _mask(0) {}
317 327
    
318 328
    ///Destructor.
319 329
    ~BellmanFord() {
320
      if(local_pred) delete _pred;
321
      if(local_dist) delete _dist;
330
      if(_local_pred) delete _pred;
331
      if(_local_dist) delete _dist;
322 332
      if(_mask) delete _mask;
323 333
    }
324 334

	
325 335
    /// \brief Sets the length map.
326 336
    ///
327 337
    /// Sets the length map.
328
    /// \return \c (*this)
329
    BellmanFord &lengthMap(const LengthMap &m) {
330
      length = &m;
338
    /// \return <tt>(*this)</tt>
339
    BellmanFord &lengthMap(const LengthMap &map) {
340
      _length = &map;
331 341
      return *this;
332 342
    }
333 343

	
334
    /// \brief Sets the map storing the predecessor arcs.
344
    /// \brief Sets the map that stores the predecessor arcs.
335 345
    ///
336
    /// Sets the map storing the predecessor arcs.
337
    /// If you don't use this function before calling \ref run(),
338
    /// it will allocate one. The destuctor deallocates this
339
    /// automatically allocated map, of course.
340
    /// \return \c (*this)
341
    BellmanFord &predMap(PredMap &m) {
342
      if(local_pred) {
346
    /// Sets the map that stores the predecessor arcs.
347
    /// If you don't use this function before calling \ref run()
348
    /// or \ref init(), an instance will be allocated automatically.
349
    /// The destructor deallocates this automatically allocated map,
350
    /// of course.
351
    /// \return <tt>(*this)</tt>
352
    BellmanFord &predMap(PredMap &map) {
353
      if(_local_pred) {
343 354
	delete _pred;
344
	local_pred=false;
355
	_local_pred=false;
345 356
      }
346
      _pred = &m;
357
      _pred = &map;
347 358
      return *this;
348 359
    }
349 360

	
350
    /// \brief Sets the map storing the distances calculated by the algorithm.
361
    /// \brief Sets the map that stores the distances of the nodes.
351 362
    ///
352
    /// Sets the map storing the distances calculated by the algorithm.
353
    /// If you don't use this function before calling \ref run(),
354
    /// it will allocate one. The destuctor deallocates this
355
    /// automatically allocated map, of course.
356
    /// \return \c (*this)
357
    BellmanFord &distMap(DistMap &m) {
358
      if(local_dist) {
363
    /// Sets the map that stores the distances of the nodes calculated
364
    /// by the algorithm.
365
    /// If you don't use this function before calling \ref run()
366
    /// or \ref init(), an instance will be allocated automatically.
367
    /// The destructor deallocates this automatically allocated map,
368
    /// of course.
369
    /// \return <tt>(*this)</tt>
370
    BellmanFord &distMap(DistMap &map) {
371
      if(_local_dist) {
359 372
	delete _dist;
360
	local_dist=false;
373
	_local_dist=false;
361 374
      }
362
      _dist = &m;
375
      _dist = &map;
363 376
      return *this;
364 377
    }
365 378

	
366
    /// \name Execution control
367
    /// The simplest way to execute the algorithm is to use
368
    /// one of the member functions called \c run(...).
369
    /// \n
370
    /// If you need more control on the execution,
371
    /// first you must call \ref init(), then you can add several source nodes
372
    /// with \ref addSource().
373
    /// Finally \ref start() will perform the actual path
374
    /// computation.
379
    /// \name Execution Control
380
    /// The simplest way to execute the Bellman-Ford algorithm is to use
381
    /// one of the member functions called \ref run().\n
382
    /// If you need better control on the execution, you have to call
383
    /// \ref init() first, then you can add several source nodes
384
    /// with \ref addSource(). Finally the actual path computation can be
385
    /// performed with \ref start(), \ref checkedStart() or
386
    /// \ref limitedStart().
375 387

	
376 388
    ///@{
377 389

	
378 390
    /// \brief Initializes the internal data structures.
379 391
    /// 
380
    /// Initializes the internal data structures.
392
    /// Initializes the internal data structures. The optional parameter
393
    /// is the initial distance of each node.
381 394
    void init(const Value value = OperationTraits::infinity()) {
382 395
      create_maps();
383
      for (NodeIt it(*digraph); it != INVALID; ++it) {
396
      for (NodeIt it(*_gr); it != INVALID; ++it) {
384 397
	_pred->set(it, INVALID);
385 398
	_dist->set(it, value);
386 399
      }
387 400
      _process.clear();
388 401
      if (OperationTraits::less(value, OperationTraits::infinity())) {
389
	for (NodeIt it(*digraph); it != INVALID; ++it) {
402
	for (NodeIt it(*_gr); it != INVALID; ++it) {
390 403
	  _process.push_back(it);
391 404
	  _mask->set(it, true);
392 405
	}
... ...
@@ -395,9 +408,8 @@
395 408
    
396 409
    /// \brief Adds a new source node.
397 410
    ///
398
    /// Adds a new source node. The optional second parameter is the 
399
    /// initial distance of the node. It just sets the distance of the 
400
    /// node to the given value.
411
    /// This function adds a new source node. The optional second parameter
412
    /// is the initial distance of the node.
401 413
    void addSource(Node source, Value dst = OperationTraits::zero()) {
402 414
      _dist->set(source, dst);
403 415
      if (!(*_mask)[source]) {
... ...
@@ -409,19 +421,22 @@
409 421
    /// \brief Executes one round from the Bellman-Ford algorithm.
410 422
    ///
411 423
    /// If the algoritm calculated the distances in the previous round
412
    /// exactly for all at most \f$ k \f$ length path lengths then it will
413
    /// calculate the distances exactly for all at most \f$ k + 1 \f$
414
    /// length path lengths. With \f$ k \f$ iteration this function
415
    /// calculates the at most \f$ k \f$ length path lengths.
424
    /// exactly for the paths of at most \c k arcs, then this function
425
    /// will calculate the distances exactly for the paths of at most
426
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
427
    /// calculates the shortest path distances exactly for the paths
428
    /// consisting of at most \c k arcs.
416 429
    ///
417 430
    /// \warning The paths with limited arc number cannot be retrieved
418
    /// easily with \ref path() or \ref predArc() functions. If you
419
    /// need the shortest path and not just the distance you should store
420
    /// after each iteration the \ref predMap() map and manually build
421
    /// the path.
431
    /// easily with \ref path() or \ref predArc() functions. If you also
432
    /// need the shortest paths and not only the distances, you should
433
    /// store the \ref predMap() "predecessor map" after each iteration
434
    /// and build the path manually.
422 435
    ///
423 436
    /// \return \c true when the algorithm have not found more shorter
424 437
    /// paths.
438
    ///
439
    /// \see ActiveIt
425 440
    bool processNextRound() {
426 441
      for (int i = 0; i < int(_process.size()); ++i) {
427 442
	_mask->set(_process[i], false);
... ...
@@ -432,9 +447,9 @@
432 447
	values[i] = (*_dist)[_process[i]];
433 448
      }
434 449
      for (int i = 0; i < int(_process.size()); ++i) {
435
	for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
436
	  Node target = digraph->target(it);
437
	  Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
450
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
451
	  Node target = _gr->target(it);
452
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
438 453
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
439 454
	    _pred->set(target, it);
440 455
	    _dist->set(target, relaxed);
... ...
@@ -451,23 +466,28 @@
451 466

	
452 467
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
453 468
    ///
454
    /// If the algorithm calculated the distances in the
455
    /// previous round at least for all at most k length paths then it will
456
    /// calculate the distances at least for all at most k + 1 length paths.
457
    /// This function does not make it possible to calculate strictly the
458
    /// at most k length minimal paths, this is why it is
459
    /// called just weak round.
460
    /// \return \c true when the algorithm have not found more shorter paths.
469
    /// If the algorithm calculated the distances in the previous round
470
    /// at least for the paths of at most \c k arcs, then this function
471
    /// will calculate the distances at least for the paths of at most
472
    /// <tt>k+1</tt> arcs.
473
    /// This function does not make it possible to calculate the shortest
474
    /// path distances exactly for paths consisting of at most \c k arcs,
475
    /// this is why it is called weak round.
476
    ///
477
    /// \return \c true when the algorithm have not found more shorter
478
    /// paths.
479
    ///
480
    /// \see ActiveIt
461 481
    bool processNextWeakRound() {
462 482
      for (int i = 0; i < int(_process.size()); ++i) {
463 483
	_mask->set(_process[i], false);
464 484
      }
465 485
      std::vector<Node> nextProcess;
466 486
      for (int i = 0; i < int(_process.size()); ++i) {
467
	for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
468
	  Node target = digraph->target(it);
487
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
488
	  Node target = _gr->target(it);
469 489
	  Value relaxed = 
470
	    OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
490
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
471 491
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
472 492
	    _pred->set(target, it);
473 493
	    _dist->set(target, relaxed);
... ...
@@ -484,16 +504,19 @@
484 504

	
485 505
    /// \brief Executes the algorithm.
486 506
    ///
487
    /// \pre init() must be called and at least one node should be added
488
    /// with addSource() before using this function.
507
    /// Executes the algorithm.
489 508
    ///
490
    /// This method runs the %BellmanFord algorithm from the root node(s)
491
    /// in order to compute the shortest path to each node. The algorithm 
492
    /// computes 
493
    /// - The shortest path tree.
494
    /// - The distance of each node from the root(s).
509
    /// This method runs the Bellman-Ford algorithm from the root node(s)
510
    /// in order to compute the shortest path to each node.
511
    ///
512
    /// The algorithm computes
513
    /// - the shortest path tree (forest),
514
    /// - the distance of each node from the root(s).
515
    ///
516
    /// \pre init() must be called and at least one root node should be
517
    /// added with addSource() before using this function.
495 518
    void start() {
496
      int num = countNodes(*digraph) - 1;
519
      int num = countNodes(*_gr) - 1;
497 520
      for (int i = 0; i < num; ++i) {
498 521
	if (processNextWeakRound()) break;
499 522
      }
... ...
@@ -501,83 +524,98 @@
501 524

	
502 525
    /// \brief Executes the algorithm and checks the negative cycles.
503 526
    ///
504
    /// \pre init() must be called and at least one node should be added
505
    /// with addSource() before using this function. 
527
    /// Executes the algorithm and checks the negative cycles.
506 528
    ///
507
    /// This method runs the %BellmanFord algorithm from the root node(s)
508
    /// in order to compute the shortest path to each node. The algorithm 
509
    /// computes 
510
    /// - The shortest path tree.
511
    /// - The distance of each node from the root(s).
529
    /// This method runs the Bellman-Ford algorithm from the root node(s)
530
    /// in order to compute the shortest path to each node and also checks
531
    /// if the digraph contains cycles with negative total length.
532
    ///
533
    /// The algorithm computes 
534
    /// - the shortest path tree (forest),
535
    /// - the distance of each node from the root(s).
512 536
    /// 
513 537
    /// \return \c false if there is a negative cycle in the digraph.
538
    ///
539
    /// \pre init() must be called and at least one root node should be
540
    /// added with addSource() before using this function. 
514 541
    bool checkedStart() {
515
      int num = countNodes(*digraph);
542
      int num = countNodes(*_gr);
516 543
      for (int i = 0; i < num; ++i) {
517 544
	if (processNextWeakRound()) return true;
518 545
      }
519 546
      return _process.empty();
520 547
    }
521 548

	
522
    /// \brief Executes the algorithm with path length limit.
549
    /// \brief Executes the algorithm with arc number limit.
523 550
    ///
524
    /// \pre init() must be called and at least one node should be added
525
    /// with addSource() before using this function.
551
    /// Executes the algorithm with arc number limit.
526 552
    ///
527
    /// This method runs the %BellmanFord algorithm from the root
528
    /// node(s) in order to compute the shortest path lengths with at
529
    /// most \c num arc.
553
    /// This method runs the Bellman-Ford algorithm from the root node(s)
554
    /// in order to compute the shortest path distance for each node
555
    /// using only the paths consisting of at most \c num arcs.
556
    ///
557
    /// The algorithm computes
558
    /// - the limited distance of each node from the root(s),
559
    /// - the predecessor arc for each node.
530 560
    ///
531 561
    /// \warning The paths with limited arc number cannot be retrieved
532
    /// easily with \ref path() or \ref predArc() functions. If you
533
    /// need the shortest path and not just the distance you should store
534
    /// after each iteration the \ref predMap() map and manually build
535
    /// the path.
562
    /// easily with \ref path() or \ref predArc() functions. If you also
563
    /// need the shortest paths and not only the distances, you should
564
    /// store the \ref predMap() "predecessor map" after each iteration
565
    /// and build the path manually.
536 566
    ///
537
    /// The algorithm computes
538
    /// - The predecessor arc from each node.
539
    /// - The limited distance of each node from the root(s).
567
    /// \pre init() must be called and at least one root node should be
568
    /// added with addSource() before using this function. 
540 569
    void limitedStart(int num) {
541 570
      for (int i = 0; i < num; ++i) {
542 571
	if (processNextRound()) break;
543 572
      }
544 573
    }
545 574
    
546
    /// \brief Runs %BellmanFord algorithm from node \c s.
575
    /// \brief Runs the algorithm from the given root node.
547 576
    ///    
548
    /// This method runs the %BellmanFord algorithm from a root node \c s
549
    /// in order to compute the shortest path to each node. The algorithm 
550
    /// computes
551
    /// - The shortest path tree.
552
    /// - The distance of each node from the root.
577
    /// This method runs the Bellman-Ford algorithm from the given root
578
    /// node \c s in order to compute the shortest path to each node.
553 579
    ///
554
    /// \note d.run(s) is just a shortcut of the following code.
555
    ///\code
556
    ///  d.init();
557
    ///  d.addSource(s);
558
    ///  d.start();
559
    ///\endcode
580
    /// The algorithm computes
581
    /// - the shortest path tree (forest),
582
    /// - the distance of each node from the root(s).
583
    ///
584
    /// \note bf.run(s) is just a shortcut of the following code.
585
    /// \code
586
    ///   bf.init();
587
    ///   bf.addSource(s);
588
    ///   bf.start();
589
    /// \endcode
560 590
    void run(Node s) {
561 591
      init();
562 592
      addSource(s);
563 593
      start();
564 594
    }
565 595
    
566
    /// \brief Runs %BellmanFord algorithm with limited path length 
567
    /// from node \c s.
596
    /// \brief Runs the algorithm from the given root node with arc
597
    /// number limit.
568 598
    ///    
569
    /// This method runs the %BellmanFord algorithm from a root node \c s
570
    /// in order to compute the shortest path with at most \c len arcs 
571
    /// to each node. The algorithm computes
572
    /// - The shortest path tree.
573
    /// - The distance of each node from the root.
599
    /// This method runs the Bellman-Ford algorithm from the given root
600
    /// node \c s in order to compute the shortest path distance for each
601
    /// node using only the paths consisting of at most \c num arcs.
574 602
    ///
575
    /// \note d.run(s, num) is just a shortcut of the following code.
576
    ///\code
577
    ///  d.init();
578
    ///  d.addSource(s);
579
    ///  d.limitedStart(num);
580
    ///\endcode
603
    /// The algorithm computes
604
    /// - the limited distance of each node from the root(s),
605
    /// - the predecessor arc for each node.
606
    ///
607
    /// \warning The paths with limited arc number cannot be retrieved
608
    /// easily with \ref path() or \ref predArc() functions. If you also
609
    /// need the shortest paths and not only the distances, you should
610
    /// store the \ref predMap() "predecessor map" after each iteration
611
    /// and build the path manually.
612
    ///
613
    /// \note bf.run(s, num) is just a shortcut of the following code.
614
    /// \code
615
    ///   bf.init();
616
    ///   bf.addSource(s);
617
    ///   bf.limitedStart(num);
618
    /// \endcode
581 619
    void run(Node s, int num) {
582 620
      init();
583 621
      addSource(s);
... ...
@@ -586,27 +624,19 @@
586 624
    
587 625
    ///@}
588 626

	
589
    /// \name Query Functions
590
    /// The result of the %BellmanFord algorithm can be obtained using these
591
    /// functions.\n
592
    /// Before the use of these functions,
593
    /// either run() or start() must be called.
594
    
595
    ///@{
596

	
597
    /// \brief Lemon iterator for get the active nodes.
627
    /// \brief LEMON iterator for getting the active nodes.
598 628
    ///
599
    /// Lemon iterator for get the active nodes. This class provides a
600
    /// common style lemon iterator which gives back a subset of the
601
    /// nodes. The iterated nodes are active in the algorithm after
602
    /// the last phase so these should be checked in the next phase to
603
    /// find augmenting arcs from these.
629
    /// This class provides a common style LEMON iterator that traverses
630
    /// the active nodes of the Bellman-Ford algorithm after the last
631
    /// phase. These nodes should be checked in the next phase to
632
    /// find augmenting arcs outgoing from them.
604 633
    class ActiveIt {
605 634
    public:
606 635

	
607 636
      /// \brief Constructor.
608 637
      ///
609
      /// Constructor for get the nodeset of the variable. 
638
      /// Constructor for getting the active nodes of the given BellmanFord
639
      /// instance. 
610 640
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
611 641
      {
612 642
        _index = _algorithm->_process.size() - 1;
... ...
@@ -617,9 +647,9 @@
617 647
      /// Invalid constructor.
618 648
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
619 649

	
620
      /// \brief Conversion to node.
650
      /// \brief Conversion to \c Node.
621 651
      ///
622
      /// Conversion to node.
652
      /// Conversion to \c Node.
623 653
      operator Node() const { 
624 654
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
625 655
      }
... ...
@@ -646,394 +676,432 @@
646 676
      const BellmanFord* _algorithm;
647 677
      int _index;
648 678
    };
679
    
680
    /// \name Query Functions
681
    /// The result of the Bellman-Ford algorithm can be obtained using these
682
    /// functions.\n
683
    /// Either \ref run() or \ref init() should be called before using them.
684
    
685
    ///@{
649 686

	
650
    typedef PredMapPath<Digraph, PredMap> Path;
687
    /// \brief The shortest path to the given node.
688
    ///    
689
    /// Gives back the shortest path to the given node from the root(s).
690
    ///
691
    /// \warning \c t should be reached from the root(s).
692
    ///
693
    /// \pre Either \ref run() or \ref init() must be called before
694
    /// using this function.
695
    Path path(Node t) const
696
    {
697
      return Path(*_gr, *_pred, t);
698
    }
699
	  
700
    /// \brief The distance of the given node from the root(s).
701
    ///
702
    /// Returns the distance of the given node from the root(s).
703
    ///
704
    /// \warning If node \c v is not reached from the root(s), then
705
    /// the return value of this function is undefined.
706
    ///
707
    /// \pre Either \ref run() or \ref init() must be called before
708
    /// using this function.
709
    Value dist(Node v) const { return (*_dist)[v]; }
651 710

	
652
    /// \brief Gives back the shortest path.
653
    ///    
654
    /// Gives back the shortest path.
655
    /// \pre The \c t should be reachable from the source.
656
    Path path(Node t) 
657
    {
658
      return Path(*digraph, *_pred, t);
711
    /// \brief Returns the 'previous arc' of the shortest path tree for
712
    /// the given node.
713
    ///
714
    /// This function returns the 'previous arc' of the shortest path
715
    /// tree for node \c v, i.e. it returns the last arc of a
716
    /// shortest path from a root to \c v. It is \c INVALID if \c v
717
    /// is not reached from the root(s) or if \c v is a root.
718
    ///
719
    /// The shortest path tree used here is equal to the shortest path
720
    /// tree used in \ref predNode() and \predMap().
721
    ///
722
    /// \pre Either \ref run() or \ref init() must be called before
723
    /// using this function.
724
    Arc predArc(Node v) const { return (*_pred)[v]; }
725

	
726
    /// \brief Returns the 'previous node' of the shortest path tree for
727
    /// the given node.
728
    ///
729
    /// This function returns the 'previous node' of the shortest path
730
    /// tree for node \c v, i.e. it returns the last but one node of
731
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
732
    /// is not reached from the root(s) or if \c v is a root.
733
    ///
734
    /// The shortest path tree used here is equal to the shortest path
735
    /// tree used in \ref predArc() and \predMap().
736
    ///
737
    /// \pre Either \ref run() or \ref init() must be called before
738
    /// using this function.
739
    Node predNode(Node v) const { 
740
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
741
    }
742
    
743
    /// \brief Returns a const reference to the node map that stores the
744
    /// distances of the nodes.
745
    ///
746
    /// Returns a const reference to the node map that stores the distances
747
    /// of the nodes calculated by the algorithm.
748
    ///
749
    /// \pre Either \ref run() or \ref init() must be called before
750
    /// using this function.
751
    const DistMap &distMap() const { return *_dist;}
752
 
753
    /// \brief Returns a const reference to the node map that stores the
754
    /// predecessor arcs.
755
    ///
756
    /// Returns a const reference to the node map that stores the predecessor
757
    /// arcs, which form the shortest path tree (forest).
758
    ///
759
    /// \pre Either \ref run() or \ref init() must be called before
760
    /// using this function.
761
    const PredMap &predMap() const { return *_pred; }
762
 
763
    /// \brief Checks if a node is reached from the root(s).
764
    ///
765
    /// Returns \c true if \c v is reached from the root(s).
766
    ///
767
    /// \pre Either \ref run() or \ref init() must be called before
768
    /// using this function.
769
    bool reached(Node v) const {
770
      return (*_dist)[v] != OperationTraits::infinity();
659 771
    }
660 772

	
661

	
662
    // TODO : implement negative cycle
663
//     /// \brief Gives back a negative cycle.
664
//     ///    
665
//     /// This function gives back a negative cycle.
666
//     /// If the algorithm have not found yet negative cycle it will give back
667
//     /// an empty path.
668
//     Path negativeCycle() {
669
//       typename Digraph::template NodeMap<int> state(*digraph, 0);
670
//       for (ActiveIt it(*this); it != INVALID; ++it) {
671
//         if (state[it] == 0) {
672
//           for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
673
//             if (state[t] == 0) {
674
//               state[t] = 1;
675
//             } else if (state[t] == 2) {
676
//               break;
677
//             } else {
678
//               p.clear();
679
//               typename Path::Builder b(p);
680
//               b.setStartNode(t);
681
//               b.pushFront(predArc(t));
682
//               for(Node s = predNode(t); s != t; s = predNode(s)) {
683
//                 b.pushFront(predArc(s));
684
//               }
685
//               b.commit();
686
//               return true;
687
//             }
688
//           }
689
//           for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
690
//             if (state[t] == 1) {
691
//               state[t] = 2;
692
//             } else {
693
//               break;
694
//             }
695
//           }
696
//         }
697
//       }
698
//       return false;
699
//     }
700
	  
701
    /// \brief The distance of a node from the root.
702
    ///
703
    /// Returns the distance of a node from the root.
704
    /// \pre \ref run() must be called before using this function.
705
    /// \warning If node \c v in unreachable from the root the return value
706
    /// of this funcion is undefined.
707
    Value dist(Node v) const { return (*_dist)[v]; }
708

	
709
    /// \brief Returns the 'previous arc' of the shortest path tree.
710
    ///
711
    /// For a node \c v it returns the 'previous arc' of the shortest path 
712
    /// tree, i.e. it returns the last arc of a shortest path from the root 
713
    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
714
    /// if \c v=s. The shortest path tree used here is equal to the shortest 
715
    /// path tree used in \ref predNode(). 
716
    /// \pre \ref run() must be called before using
717
    /// this function.
718
    Arc predArc(Node v) const { return (*_pred)[v]; }
719

	
720
    /// \brief Returns the 'previous node' of the shortest path tree.
721
    ///
722
    /// For a node \c v it returns the 'previous node' of the shortest path 
723
    /// tree, i.e. it returns the last but one node from a shortest path from 
724
    /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
725
    /// or if \c v=s. The shortest path tree used here is equal to the 
726
    /// shortest path tree used in \ref predArc().  \pre \ref run() must be 
727
    /// called before using this function.
728
    Node predNode(Node v) const { 
729
      return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); 
730
    }
731
    
732
    /// \brief Returns a reference to the NodeMap of distances.
733
    ///
734
    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
735
    /// be called before using this function.
736
    const DistMap &distMap() const { return *_dist;}
737
 
738
    /// \brief Returns a reference to the shortest path tree map.
739
    ///
740
    /// Returns a reference to the NodeMap of the arcs of the
741
    /// shortest path tree.
742
    /// \pre \ref run() must be called before using this function.
743
    const PredMap &predMap() const { return *_pred; }
744
 
745
    /// \brief Checks if a node is reachable from the root.
746
    ///
747
    /// Returns \c true if \c v is reachable from the root.
748
    /// \pre \ref run() must be called before using this function.
749
    ///
750
    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
773
    // TODO: implement negative cycle
774
//    /// \brief Gives back a negative cycle.
775
//    ///    
776
//    /// This function gives back a negative cycle.
777
//    /// If the algorithm have not found yet negative cycle it will give back
778
//    /// an empty path.
779
//    Path negativeCycle() {
780
//      typename Digraph::template NodeMap<int> state(*digraph, 0);
781
//      for (ActiveIt it(*this); it != INVALID; ++it) {
782
//        if (state[it] == 0) {
783
//          for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
784
//            if (state[t] == 0) {
785
//              state[t] = 1;
786
//            } else if (state[t] == 2) {
787
//              break;
788
//            } else {
789
//              p.clear();
790
//              typename Path::Builder b(p);
791
//              b.setStartNode(t);
792
//              b.pushFront(predArc(t));
793
//              for(Node s = predNode(t); s != t; s = predNode(s)) {
794
//                b.pushFront(predArc(s));
795
//              }
796
//              b.commit();
797
//              return true;
798
//            }
799
//          }
800
//          for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
801
//            if (state[t] == 1) {
802
//              state[t] = 2;
803
//            } else {
804
//              break;
805
//            }
806
//          }
807
//        }
808
//      }
809
//      return false;
810
//    }
751 811
    
752 812
    ///@}
753 813
  };
754 814
 
755
  /// \brief Default traits class of BellmanFord function.
815
  /// \brief Default traits class of bellmanFord() function.
756 816
  ///
757
  /// Default traits class of BellmanFord function.
758
  /// \param _Digraph Digraph type.
759
  /// \param _LengthMap Type of length map.
760
  template <typename _Digraph, typename _LengthMap>
817
  /// Default traits class of bellmanFord() function.
818
  /// \tparam GR The type of the digraph.
819
  /// \tparam LEN The type of the length map.
820
  template <typename GR, typename LEN>
761 821
  struct BellmanFordWizardDefaultTraits {
762
    /// \brief The digraph type the algorithm runs on. 
763
    typedef _Digraph Digraph;
822
    /// The type of the digraph the algorithm runs on. 
823
    typedef GR Digraph;
764 824

	
765 825
    /// \brief The type of the map that stores the arc lengths.
766 826
    ///
767 827
    /// The type of the map that stores the arc lengths.
768 828
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
769
    typedef _LengthMap LengthMap;
829
    typedef LEN LengthMap;
770 830

	
771
    /// \brief The value type of the length map.
772
    typedef typename _LengthMap::Value Value;
831
    /// The type of the arc lengths.
832
    typedef typename LEN::Value Value;
773 833

	
774 834
    /// \brief Operation traits for Bellman-Ford algorithm.
775 835
    ///
776
    /// It defines the infinity type on the given Value type
777
    /// and the used operation.
836
    /// It defines the used operations and the infinity value for the
837
    /// given \c Value type.
778 838
    /// \see BellmanFordDefaultOperationTraits
779 839
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
780 840

	
781 841
    /// \brief The type of the map that stores the last
782 842
    /// arcs of the shortest paths.
783 843
    /// 
784
    /// The type of the map that stores the last
785
    /// arcs of the shortest paths.
786
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
787
    typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap;
844
    /// The type of the map that stores the last arcs of the shortest paths.
845
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
846
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
788 847

	
789
    /// \brief Instantiates a PredMap.
848
    /// \brief Instantiates a \c PredMap.
790 849
    /// 
791
    /// This function instantiates a \ref PredMap. 
792
    static PredMap *createPredMap(const _Digraph &) {
793
      return new PredMap();
850
    /// This function instantiates a \ref PredMap.
851
    /// \param g is the digraph to which we would like to define the
852
    /// \ref PredMap.
853
    static PredMap *createPredMap(const GR &g) {
854
      return new PredMap(g);
794 855
    }
795
    /// \brief The type of the map that stores the dists of the nodes.
856

	
857
    /// \brief The type of the map that stores the distances of the nodes.
796 858
    ///
797
    /// The type of the map that stores the dists of the nodes.
798
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
799
    typedef NullMap<typename Digraph::Node, Value> DistMap;
800
    /// \brief Instantiates a DistMap.
859
    /// The type of the map that stores the distances of the nodes.
860
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
861
    typedef typename GR::template NodeMap<Value> DistMap;
862

	
863
    /// \brief Instantiates a \c DistMap.
801 864
    ///
802 865
    /// This function instantiates a \ref DistMap. 
803
    static DistMap *createDistMap(const _Digraph &) {
804
      return new DistMap();
866
    /// \param g is the digraph to which we would like to define the
867
    /// \ref DistMap.
868
    static DistMap *createDistMap(const GR &g) {
869
      return new DistMap(g);
805 870
    }
871

	
872
    ///The type of the shortest paths.
873

	
874
    ///The type of the shortest paths.
875
    ///It must meet the \ref concepts::Path "Path" concept.
876
    typedef lemon::Path<Digraph> Path;
806 877
  };
807 878
  
808
  /// \brief Default traits used by \ref BellmanFordWizard
879
  /// \brief Default traits class used by BellmanFordWizard.
809 880
  ///
810
  /// To make it easier to use BellmanFord algorithm
811
  /// we have created a wizard class.
812
  /// This \ref BellmanFordWizard class needs default traits,
813
  /// as well as the \ref BellmanFord class.
814
  /// The \ref BellmanFordWizardBase is a class to be the default traits of the
815
  /// \ref BellmanFordWizard class.
816
  /// \todo More named parameters are required...
817
  template<class _Digraph,class _LengthMap>
881
  /// Default traits class used by BellmanFordWizard.
882
  /// \tparam GR The type of the digraph.
883
  /// \tparam LEN The type of the length map.
884
  template <typename GR, typename LEN>
818 885
  class BellmanFordWizardBase 
819
    : public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> {
886
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
820 887

	
821
    typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base;
888
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
822 889
  protected:
823
    /// Type of the nodes in the digraph.
890
    // Type of the nodes in the digraph.
824 891
    typedef typename Base::Digraph::Node Node;
825 892

	
826
    /// Pointer to the underlying digraph.
893
    // Pointer to the underlying digraph.
827 894
    void *_graph;
828
    /// Pointer to the length map
895
    // Pointer to the length map
829 896
    void *_length;
830
    ///Pointer to the map of predecessors arcs.
897
    // Pointer to the map of predecessors arcs.
831 898
    void *_pred;
832
    ///Pointer to the map of distances.
899
    // Pointer to the map of distances.
833 900
    void *_dist;
834
    ///Pointer to the source node.
835
    Node _source;
901
    //Pointer to the shortest path to the target node.
902
    void *_path;
903
    //Pointer to the distance of the target node.
904
    void *_di;
836 905

	
837 906
    public:
838 907
    /// Constructor.
839 908
    
840
    /// This constructor does not require parameters, therefore it initiates
841
    /// all of the attributes to default values (0, INVALID).
842
    BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
843
			   _dist(0), _source(INVALID) {}
909
    /// This constructor does not require parameters, it initiates
910
    /// all of the attributes to default values \c 0.
911
    BellmanFordWizardBase() :
912
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
844 913

	
845 914
    /// Constructor.
846 915
    
847
    /// This constructor requires some parameters,
848
    /// listed in the parameters list.
849
    /// Others are initiated to 0.
850
    /// \param digraph is the initial value of  \ref _graph
851
    /// \param length is the initial value of  \ref _length
852
    /// \param source is the initial value of  \ref _source
853
    BellmanFordWizardBase(const _Digraph& digraph, 
854
			  const _LengthMap& length, 
855
			  Node source = INVALID) :
856
      _graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), 
857
      _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), 
858
      _pred(0), _dist(0), _source(source) {}
916
    /// This constructor requires two parameters,
917
    /// others are initiated to \c 0.
918
    /// \param gr The digraph the algorithm runs on.
919
    /// \param len The length map.
920
    BellmanFordWizardBase(const GR& gr, 
921
			  const LEN& len) :
922
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
923
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
924
      _pred(0), _dist(0), _path(0), _di(0) {}
859 925

	
860 926
  };
861 927
  
862
  /// A class to make the usage of BellmanFord algorithm easier
928
  /// \brief Auxiliary class for the function-type interface of the
929
  /// \ref BellmanFord "Bellman-Ford" algorithm.
930
  ///
931
  /// This auxiliary class is created to implement the
932
  /// \ref bellmanFord() "function-type interface" of the
933
  /// \ref BellmanFord "Bellman-Ford" algorithm.
934
  /// It does not have own \ref run() method, it uses the
935
  /// functions and features of the plain \ref BellmanFord.
936
  ///
937
  /// This class should only be used through the \ref bellmanFord()
938
  /// function, which makes it easier to use the algorithm.
939
  template<class TR>
940
  class BellmanFordWizard : public TR {
941
    typedef TR Base;
863 942

	
864
  /// This class is created to make it easier to use BellmanFord algorithm.
865
  /// It uses the functions and features of the plain \ref BellmanFord,
866
  /// but it is much simpler to use it.
867
  ///
868
  /// Simplicity means that the way to change the types defined
869
  /// in the traits class is based on functions that returns the new class
870
  /// and not on templatable built-in classes.
871
  /// When using the plain \ref BellmanFord
872
  /// the new class with the modified type comes from
873
  /// the original class by using the ::
874
  /// operator. In the case of \ref BellmanFordWizard only
875
  /// a function have to be called and it will
876
  /// return the needed class.
877
  ///
878
  /// It does not have own \ref run method. When its \ref run method is called
879
  /// it initiates a plain \ref BellmanFord class, and calls the \ref 
880
  /// BellmanFord::run method of it.
881
  template<class _Traits>
882
  class BellmanFordWizard : public _Traits {
883
    typedef _Traits Base;
884

	
885
    ///The type of the underlying digraph.
886
    typedef typename _Traits::Digraph Digraph;
943
    typedef typename TR::Digraph Digraph;
887 944

	
888 945
    typedef typename Digraph::Node Node;
889 946
    typedef typename Digraph::NodeIt NodeIt;
890 947
    typedef typename Digraph::Arc Arc;
891 948
    typedef typename Digraph::OutArcIt ArcIt;
892 949
    
893
    ///The type of the map that stores the arc lengths.
894
    typedef typename _Traits::LengthMap LengthMap;
895

	
896
    ///The type of the length of the arcs.
950
    typedef typename TR::LengthMap LengthMap;
897 951
    typedef typename LengthMap::Value Value;
898

	
899
    ///\brief The type of the map that stores the last
900
    ///arcs of the shortest paths.
901
    typedef typename _Traits::PredMap PredMap;
902

	
903
    ///The type of the map that stores the dists of the nodes.
904
    typedef typename _Traits::DistMap DistMap;
952
    typedef typename TR::PredMap PredMap;
953
    typedef typename TR::DistMap DistMap;
954
    typedef typename TR::Path Path;
905 955

	
906 956
  public:
907 957
    /// Constructor.
908
    BellmanFordWizard() : _Traits() {}
958
    BellmanFordWizard() : TR() {}
909 959

	
910 960
    /// \brief Constructor that requires parameters.
911 961
    ///
912 962
    /// Constructor that requires parameters.
913 963
    /// These parameters will be the default values for the traits class.
914
    BellmanFordWizard(const Digraph& digraph, const LengthMap& length, 
915
		      Node src = INVALID) 
916
      : _Traits(digraph, length, src) {}
964
    /// \param gr The digraph the algorithm runs on.
965
    /// \param len The length map.
966
    BellmanFordWizard(const Digraph& gr, const LengthMap& len) 
967
      : TR(gr, len) {}
917 968

	
918 969
    /// \brief Copy constructor
919
    BellmanFordWizard(const _Traits &b) : _Traits(b) {}
970
    BellmanFordWizard(const TR &b) : TR(b) {}
920 971

	
921 972
    ~BellmanFordWizard() {}
922 973

	
923
    /// \brief Runs BellmanFord algorithm from a given node.
974
    /// \brief Runs the Bellman-Ford algorithm from the given source node.
924 975
    ///    
925
    /// Runs BellmanFord algorithm from a given node.
926
    /// The node can be given by the \ref source function.
927
    void run() {
928
      LEMON_ASSERT(Base::_source != INVALID, "Source node is not given");
929
      BellmanFord<Digraph,LengthMap,_Traits> 
976
    /// This method runs the Bellman-Ford algorithm from the given source
977
    /// node in order to compute the shortest path to each node.
978
    void run(Node s) {
979
      BellmanFord<Digraph,LengthMap,TR> 
930 980
	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
931 981
           *reinterpret_cast<const LengthMap*>(Base::_length));
932 982
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
933 983
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
934
      bf.run(Base::_source);
984
      bf.run(s);
935 985
    }
936 986

	
937
    /// \brief Runs BellmanFord algorithm from the given node.
987
    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
988
    /// between \c s and \c t.
938 989
    ///
939
    /// Runs BellmanFord algorithm from the given node.
940
    /// \param src is the given source.
941
    void run(Node src) {
942
      Base::_source = src;
943
      run();
990
    /// This method runs the Bellman-Ford algorithm from node \c s
991
    /// in order to compute the shortest path to node \c t.
992
    /// Actually, it computes the shortest path to each node, but using
993
    /// this function you can retrieve the distance and the shortest path
994
    /// for a single target node easier.
995
    ///
996
    /// \return \c true if \c t is reachable form \c s.
997
    bool run(Node s, Node t) {
998
      BellmanFord<Digraph,LengthMap,TR>
999
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
1000
           *reinterpret_cast<const LengthMap*>(Base::_length));
1001
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1002
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1003
      bf.run(s);
1004
      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
1005
      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
1006
      return bf.reached(t);
944 1007
    }
945 1008

	
946 1009
    template<class T>
947
    struct DefPredMapBase : public Base {
1010
    struct SetPredMapBase : public Base {
948 1011
      typedef T PredMap;
949 1012
      static PredMap *createPredMap(const Digraph &) { return 0; };
950
      DefPredMapBase(const _Traits &b) : _Traits(b) {}
1013
      SetPredMapBase(const TR &b) : TR(b) {}
951 1014
    };
952 1015
    
953
    ///\brief \ref named-templ-param "Named parameter"
954
    ///function for setting PredMap type
1016
    /// \brief \ref named-templ-param "Named parameter" for setting
1017
    /// the predecessor map.
955 1018
    ///
956
    /// \ref named-templ-param "Named parameter"
957
    ///function for setting PredMap type
958
    ///
1019
    /// \ref named-templ-param "Named parameter" for setting
1020
    /// the map that stores the predecessor arcs of the nodes.
959 1021
    template<class T>
960
    BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) 
961
    {
1022
    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
962 1023
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
963
      return BellmanFordWizard<DefPredMapBase<T> >(*this);
1024
      return BellmanFordWizard<SetPredMapBase<T> >(*this);
964 1025
    }
965 1026
    
966 1027
    template<class T>
967
    struct DefDistMapBase : public Base {
1028
    struct SetDistMapBase : public Base {
968 1029
      typedef T DistMap;
969 1030
      static DistMap *createDistMap(const Digraph &) { return 0; };
970
      DefDistMapBase(const _Traits &b) : _Traits(b) {}
1031
      SetDistMapBase(const TR &b) : TR(b) {}
971 1032
    };
972 1033
    
973
    ///\brief \ref named-templ-param "Named parameter"
974
    ///function for setting DistMap type
1034
    /// \brief \ref named-templ-param "Named parameter" for setting
1035
    /// the distance map.
975 1036
    ///
976
    /// \ref named-templ-param "Named parameter"
977
    ///function for setting DistMap type
978
    ///
1037
    /// \ref named-templ-param "Named parameter" for setting
1038
    /// the map that stores the distances of the nodes calculated
1039
    /// by the algorithm.
979 1040
    template<class T>
980
    BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
1041
    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
981 1042
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
982
      return BellmanFordWizard<DefDistMapBase<T> >(*this);
1043
      return BellmanFordWizard<SetDistMapBase<T> >(*this);
983 1044
    }
984 1045

	
985 1046
    template<class T>
986
    struct DefOperationTraitsBase : public Base {
987
      typedef T OperationTraits;
988
      DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
1047
    struct SetPathBase : public Base {
1048
      typedef T Path;
1049
      SetPathBase(const TR &b) : TR(b) {}
989 1050
    };
990
    
991
    ///\brief \ref named-templ-param "Named parameter"
992
    ///function for setting OperationTraits type
1051

	
1052
    /// \brief \ref named-func-param "Named parameter" for getting
1053
    /// the shortest path to the target node.
993 1054
    ///
994
    /// \ref named-templ-param "Named parameter"
995
    ///function for setting OperationTraits type
1055
    /// \ref named-func-param "Named parameter" for getting
1056
    /// the shortest path to the target node.
1057
    template<class T>
1058
    BellmanFordWizard<SetPathBase<T> > path(const T &t)
1059
    {
1060
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1061
      return BellmanFordWizard<SetPathBase<T> >(*this);
1062
    }
1063

	
1064
    /// \brief \ref named-func-param "Named parameter" for getting
1065
    /// the distance of the target node.
996 1066
    ///
997
    template<class T>
998
    BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
999
      return BellmanFordWizard<DefDistMapBase<T> >(*this);
1000
    }
1001
    
1002
    /// \brief Sets the source node, from which the BellmanFord algorithm runs.
1003
    ///
1004
    /// Sets the source node, from which the BellmanFord algorithm runs.
1005
    /// \param src is the source node.
1006
    BellmanFordWizard<_Traits>& source(Node src) {
1007
      Base::_source = src;
1067
    /// \ref named-func-param "Named parameter" for getting
1068
    /// the distance of the target node.
1069
    BellmanFordWizard dist(const Value &d)
1070
    {
1071
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1008 1072
      return *this;
1009 1073
    }
1010 1074
    
1011 1075
  };
1012 1076
  
1013
  /// \brief Function type interface for BellmanFord algorithm.
1077
  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
1078
  /// algorithm.
1014 1079
  ///
1015 1080
  /// \ingroup shortest_path
1016
  /// Function type interface for BellmanFord algorithm.
1081
  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
1082
  /// algorithm.
1017 1083
  ///
1018 1084
  /// This function also has several \ref named-templ-func-param 
1019 1085
  /// "named parameters", they are declared as the members of class 
1020 1086
  /// \ref BellmanFordWizard.
1021
  /// The following
1022
  /// example shows how to use these parameters.
1023
  ///\code
1024
  /// bellmanford(g,length,source).predMap(preds).run();
1025
  ///\endcode
1087
  /// The following examples show how to use these parameters.
1088
  /// \code
1089
  ///   // Compute shortest path from node s to each node
1090
  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
1091
  ///
1092
  ///   // Compute shortest path from s to t
1093
  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
1094
  /// \endcode
1026 1095
  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1027 1096
  /// to the end of the parameter list.
1028 1097
  /// \sa BellmanFordWizard
1029 1098
  /// \sa BellmanFord
1030
  template<class _Digraph, class _LengthMap>
1031
  BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
1032
  bellmanFord(const _Digraph& digraph,
1033
	      const _LengthMap& length, 
1034
	      typename _Digraph::Node source = INVALID) {
1035
    return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
1036
      (digraph, length, source);
1099
  template<typename GR, typename LEN>
1100
  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
1101
  bellmanFord(const GR& digraph,
1102
	      const LEN& length)
1103
  {
1104
    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
1037 1105
  }
1038 1106

	
1039 1107
} //END OF NAMESPACE LEMON
0 comments (0 inline)