0
2
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/list_graph.h> |
32 |
#include <lemon/dijkstra.h> |
|
32 | 33 |
#include <lemon/maps.h> |
33 | 34 |
|
34 | 35 |
namespace lemon { |
35 | 36 |
|
36 | 37 |
/// \addtogroup shortest_path |
37 | 38 |
/// @{ |
38 | 39 |
|
39 | 40 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
40 | 41 |
/// having minimum total length. |
41 | 42 |
/// |
42 | 43 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
43 | 44 |
/// finding arc-disjoint paths having minimum total length (cost) |
44 | 45 |
/// from a given source node to a given target node in a digraph. |
45 | 46 |
/// |
46 | 47 |
/// Note that this problem is a special case of the \ref min_cost_flow |
47 | 48 |
/// "minimum cost flow problem". This implementation is actually an |
48 | 49 |
/// efficient specialized version of the \ref CapacityScaling |
49 | 50 |
/// "successive shortest path" algorithm directly for this problem. |
50 | 51 |
/// Therefore this class provides query functions for flow values and |
51 | 52 |
/// node potentials (the dual solution) just like the minimum cost flow |
52 | 53 |
/// algorithms. |
53 | 54 |
/// |
54 | 55 |
/// \tparam GR The digraph type the algorithm runs on. |
55 | 56 |
/// \tparam LEN The type of the length map. |
56 | 57 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
57 | 58 |
/// |
58 | 59 |
/// \warning Length values should be \e non-negative. |
59 | 60 |
/// |
60 | 61 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
61 | 62 |
/// along with the \ref SplitNodes adaptor. |
62 | 63 |
#ifdef DOXYGEN |
63 | 64 |
template <typename GR, typename LEN> |
64 | 65 |
#else |
65 | 66 |
template < typename GR, |
66 | 67 |
typename LEN = typename GR::template ArcMap<int> > |
67 | 68 |
#endif |
68 | 69 |
class Suurballe |
69 | 70 |
{ |
70 | 71 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
71 | 72 |
|
72 | 73 |
typedef ConstMap<Arc, int> ConstArcMap; |
73 | 74 |
typedef typename GR::template NodeMap<Arc> PredMap; |
74 | 75 |
|
75 | 76 |
public: |
76 | 77 |
|
77 | 78 |
/// The type of the digraph the algorithm runs on. |
78 | 79 |
typedef GR Digraph; |
79 | 80 |
/// The type of the length map. |
80 | 81 |
typedef LEN LengthMap; |
81 | 82 |
/// The type of the lengths. |
82 | 83 |
typedef typename LengthMap::Value Length; |
83 | 84 |
#ifdef DOXYGEN |
84 | 85 |
/// The type of the flow map. |
85 | 86 |
typedef GR::ArcMap<int> FlowMap; |
86 | 87 |
/// The type of the potential map. |
87 | 88 |
typedef GR::NodeMap<Length> PotentialMap; |
88 | 89 |
#else |
89 | 90 |
/// The type of the flow map. |
90 | 91 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
91 | 92 |
/// The type of the potential map. |
92 | 93 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
93 | 94 |
#endif |
94 | 95 |
|
95 | 96 |
/// The type of the path structures. |
96 | 97 |
typedef SimplePath<GR> Path; |
97 | 98 |
|
98 | 99 |
private: |
99 | 100 |
|
101 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
102 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
103 |
|
|
100 | 104 |
// ResidualDijkstra is a special implementation of the |
101 | 105 |
// Dijkstra algorithm for finding shortest paths in the |
102 | 106 |
// residual network with respect to the reduced arc lengths |
103 | 107 |
// and modifying the node potentials according to the |
104 | 108 |
// distance of the nodes. |
105 | 109 |
class ResidualDijkstra |
106 | 110 |
{ |
107 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
108 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
109 |
|
|
110 | 111 |
private: |
111 | 112 |
|
112 | 113 |
const Digraph &_graph; |
113 | 114 |
const LengthMap &_length; |
114 | 115 |
const FlowMap &_flow; |
115 | 116 |
PotentialMap &_pi; |
116 | 117 |
PredMap &_pred; |
117 | 118 |
Node _s; |
118 | 119 |
Node _t; |
119 | 120 |
|
120 | 121 |
PotentialMap _dist; |
121 | 122 |
std::vector<Node> _proc_nodes; |
122 | 123 |
|
123 | 124 |
public: |
124 | 125 |
|
125 | 126 |
// Constructor |
126 | 127 |
ResidualDijkstra(Suurballe &srb) : |
127 | 128 |
_graph(srb._graph), _length(srb._length), |
128 | 129 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
129 | 130 |
_s(srb._s), _t(srb._t), _dist(_graph) {} |
130 | 131 |
|
131 | 132 |
// Run the algorithm and return true if a path is found |
132 | 133 |
// from the source node to the target node. |
133 | 134 |
bool run(int cnt) { |
134 | 135 |
return cnt == 0 ? startFirst() : start(); |
135 | 136 |
} |
136 | 137 |
|
137 | 138 |
private: |
138 | 139 |
|
139 | 140 |
// Execute the algorithm for the first time (the flow and potential |
140 | 141 |
// functions have to be identically zero). |
141 | 142 |
bool startFirst() { |
142 | 143 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
143 | 144 |
Heap heap(heap_cross_ref); |
144 | 145 |
heap.push(_s, 0); |
145 | 146 |
_pred[_s] = INVALID; |
146 | 147 |
_proc_nodes.clear(); |
147 | 148 |
|
148 | 149 |
// Process nodes |
149 | 150 |
while (!heap.empty() && heap.top() != _t) { |
150 | 151 |
Node u = heap.top(), v; |
151 | 152 |
Length d = heap.prio(), dn; |
152 | 153 |
_dist[u] = heap.prio(); |
153 | 154 |
_proc_nodes.push_back(u); |
154 | 155 |
heap.pop(); |
155 | 156 |
|
156 | 157 |
// Traverse outgoing arcs |
157 | 158 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
... | ... |
@@ -233,233 +234,318 @@ |
233 | 234 |
dn = d - _length[e] - _pi[v]; |
234 | 235 |
if (dn < heap[v]) { |
235 | 236 |
heap.decrease(v, dn); |
236 | 237 |
_pred[v] = e; |
237 | 238 |
} |
238 | 239 |
break; |
239 | 240 |
case Heap::POST_HEAP: |
240 | 241 |
break; |
241 | 242 |
} |
242 | 243 |
} |
243 | 244 |
} |
244 | 245 |
} |
245 | 246 |
if (heap.empty()) return false; |
246 | 247 |
|
247 | 248 |
// Update potentials of processed nodes |
248 | 249 |
Length t_dist = heap.prio(); |
249 | 250 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
250 | 251 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
251 | 252 |
return true; |
252 | 253 |
} |
253 | 254 |
|
254 | 255 |
}; //class ResidualDijkstra |
255 | 256 |
|
256 | 257 |
private: |
257 | 258 |
|
258 | 259 |
// The digraph the algorithm runs on |
259 | 260 |
const Digraph &_graph; |
260 | 261 |
// The length map |
261 | 262 |
const LengthMap &_length; |
262 | 263 |
|
263 | 264 |
// Arc map of the current flow |
264 | 265 |
FlowMap *_flow; |
265 | 266 |
bool _local_flow; |
266 | 267 |
// Node map of the current potentials |
267 | 268 |
PotentialMap *_potential; |
268 | 269 |
bool _local_potential; |
269 | 270 |
|
270 | 271 |
// The source node |
271 | 272 |
Node _s; |
272 | 273 |
// The target node |
273 | 274 |
Node _t; |
274 | 275 |
|
275 | 276 |
// Container to store the found paths |
276 | 277 |
std::vector<Path> _paths; |
277 | 278 |
int _path_num; |
278 | 279 |
|
279 | 280 |
// The pred arc map |
280 | 281 |
PredMap _pred; |
282 |
|
|
283 |
// Data for full init |
|
284 |
PotentialMap *_init_dist; |
|
285 |
PredMap *_init_pred; |
|
286 |
bool _full_init; |
|
281 | 287 |
|
282 | 288 |
public: |
283 | 289 |
|
284 | 290 |
/// \brief Constructor. |
285 | 291 |
/// |
286 | 292 |
/// Constructor. |
287 | 293 |
/// |
288 | 294 |
/// \param graph The digraph the algorithm runs on. |
289 | 295 |
/// \param length The length (cost) values of the arcs. |
290 | 296 |
Suurballe( const Digraph &graph, |
291 | 297 |
const LengthMap &length ) : |
292 | 298 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
293 |
_potential(0), _local_potential(false), _pred(graph) |
|
299 |
_potential(0), _local_potential(false), _pred(graph), |
|
300 |
_init_dist(0), _init_pred(0) |
|
294 | 301 |
{} |
295 | 302 |
|
296 | 303 |
/// Destructor. |
297 | 304 |
~Suurballe() { |
298 | 305 |
if (_local_flow) delete _flow; |
299 | 306 |
if (_local_potential) delete _potential; |
307 |
delete _init_dist; |
|
308 |
delete _init_pred; |
|
300 | 309 |
} |
301 | 310 |
|
302 | 311 |
/// \brief Set the flow map. |
303 | 312 |
/// |
304 | 313 |
/// This function sets the flow map. |
305 | 314 |
/// If it is not used before calling \ref run() or \ref init(), |
306 | 315 |
/// an instance will be allocated automatically. The destructor |
307 | 316 |
/// deallocates this automatically allocated map, of course. |
308 | 317 |
/// |
309 | 318 |
/// The found flow contains only 0 and 1 values, since it is the |
310 | 319 |
/// union of the found arc-disjoint paths. |
311 | 320 |
/// |
312 | 321 |
/// \return <tt>(*this)</tt> |
313 | 322 |
Suurballe& flowMap(FlowMap &map) { |
314 | 323 |
if (_local_flow) { |
315 | 324 |
delete _flow; |
316 | 325 |
_local_flow = false; |
317 | 326 |
} |
318 | 327 |
_flow = ↦ |
319 | 328 |
return *this; |
320 | 329 |
} |
321 | 330 |
|
322 | 331 |
/// \brief Set the potential map. |
323 | 332 |
/// |
324 | 333 |
/// This function sets the potential map. |
325 | 334 |
/// If it is not used before calling \ref run() or \ref init(), |
326 | 335 |
/// an instance will be allocated automatically. The destructor |
327 | 336 |
/// deallocates this automatically allocated map, of course. |
328 | 337 |
/// |
329 | 338 |
/// The node potentials provide the dual solution of the underlying |
330 | 339 |
/// \ref min_cost_flow "minimum cost flow problem". |
331 | 340 |
/// |
332 | 341 |
/// \return <tt>(*this)</tt> |
333 | 342 |
Suurballe& potentialMap(PotentialMap &map) { |
334 | 343 |
if (_local_potential) { |
335 | 344 |
delete _potential; |
336 | 345 |
_local_potential = false; |
337 | 346 |
} |
338 | 347 |
_potential = ↦ |
339 | 348 |
return *this; |
340 | 349 |
} |
341 | 350 |
|
342 | 351 |
/// \name Execution Control |
343 | 352 |
/// The simplest way to execute the algorithm is to call the run() |
344 |
/// function. |
|
345 |
/// \n |
|
353 |
/// function.\n |
|
354 |
/// If you need to execute the algorithm many times using the same |
|
355 |
/// source node, then you may call fullInit() once and start() |
|
356 |
/// for each target node.\n |
|
346 | 357 |
/// If you only need the flow that is the union of the found |
347 |
/// arc-disjoint paths, you may call |
|
358 |
/// arc-disjoint paths, then you may call findFlow() instead of |
|
359 |
/// start(). |
|
348 | 360 |
|
349 | 361 |
/// @{ |
350 | 362 |
|
351 | 363 |
/// \brief Run the algorithm. |
352 | 364 |
/// |
353 | 365 |
/// This function runs the algorithm. |
354 | 366 |
/// |
355 | 367 |
/// \param s The source node. |
356 | 368 |
/// \param t The target node. |
357 | 369 |
/// \param k The number of paths to be found. |
358 | 370 |
/// |
359 | 371 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
360 | 372 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
361 | 373 |
/// arc-disjoint paths found. |
362 | 374 |
/// |
363 | 375 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
364 | 376 |
/// just a shortcut of the following code. |
365 | 377 |
/// \code |
366 | 378 |
/// s.init(s); |
367 |
/// s.findFlow(t, k); |
|
368 |
/// s.findPaths(); |
|
379 |
/// s.start(t, k); |
|
369 | 380 |
/// \endcode |
370 | 381 |
int run(const Node& s, const Node& t, int k = 2) { |
371 | 382 |
init(s); |
372 |
findFlow(t, k); |
|
373 |
findPaths(); |
|
383 |
start(t, k); |
|
374 | 384 |
return _path_num; |
375 | 385 |
} |
376 | 386 |
|
377 | 387 |
/// \brief Initialize the algorithm. |
378 | 388 |
/// |
379 |
/// This function initializes the algorithm. |
|
389 |
/// This function initializes the algorithm with the given source node. |
|
380 | 390 |
/// |
381 | 391 |
/// \param s The source node. |
382 | 392 |
void init(const Node& s) { |
383 | 393 |
_s = s; |
384 | 394 |
|
385 | 395 |
// Initialize maps |
386 | 396 |
if (!_flow) { |
387 | 397 |
_flow = new FlowMap(_graph); |
388 | 398 |
_local_flow = true; |
389 | 399 |
} |
390 | 400 |
if (!_potential) { |
391 | 401 |
_potential = new PotentialMap(_graph); |
392 | 402 |
_local_potential = true; |
393 | 403 |
} |
394 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
|
395 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
|
404 |
_full_init = false; |
|
405 |
} |
|
406 |
|
|
407 |
/// \brief Initialize the algorithm and perform Dijkstra. |
|
408 |
/// |
|
409 |
/// This function initializes the algorithm and performs a full |
|
410 |
/// Dijkstra search from the given source node. It makes consecutive |
|
411 |
/// executions of \ref start() "start(t, k)" faster, since they |
|
412 |
/// have to perform %Dijkstra only k-1 times. |
|
413 |
/// |
|
414 |
/// This initialization is usually worth using instead of \ref init() |
|
415 |
/// if the algorithm is executed many times using the same source node. |
|
416 |
/// |
|
417 |
/// \param s The source node. |
|
418 |
void fullInit(const Node& s) { |
|
419 |
// Initialize maps |
|
420 |
init(s); |
|
421 |
if (!_init_dist) { |
|
422 |
_init_dist = new PotentialMap(_graph); |
|
423 |
} |
|
424 |
if (!_init_pred) { |
|
425 |
_init_pred = new PredMap(_graph); |
|
426 |
} |
|
427 |
|
|
428 |
// Run a full Dijkstra |
|
429 |
typename Dijkstra<Digraph, LengthMap> |
|
430 |
::template SetStandardHeap<Heap> |
|
431 |
::template SetDistMap<PotentialMap> |
|
432 |
::template SetPredMap<PredMap> |
|
433 |
::Create dijk(_graph, _length); |
|
434 |
dijk.distMap(*_init_dist).predMap(*_init_pred); |
|
435 |
dijk.run(s); |
|
436 |
|
|
437 |
_full_init = true; |
|
438 |
} |
|
439 |
|
|
440 |
/// \brief Execute the algorithm. |
|
441 |
/// |
|
442 |
/// This function executes the algorithm. |
|
443 |
/// |
|
444 |
/// \param t The target node. |
|
445 |
/// \param k The number of paths to be found. |
|
446 |
/// |
|
447 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
|
448 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
|
449 |
/// arc-disjoint paths found. |
|
450 |
/// |
|
451 |
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is |
|
452 |
/// just a shortcut of the following code. |
|
453 |
/// \code |
|
454 |
/// s.findFlow(t, k); |
|
455 |
/// s.findPaths(); |
|
456 |
/// \endcode |
|
457 |
int start(const Node& t, int k = 2) { |
|
458 |
findFlow(t, k); |
|
459 |
findPaths(); |
|
460 |
return _path_num; |
|
396 | 461 |
} |
397 | 462 |
|
398 | 463 |
/// \brief Execute the algorithm to find an optimal flow. |
399 | 464 |
/// |
400 | 465 |
/// This function executes the successive shortest path algorithm to |
401 | 466 |
/// find a minimum cost flow, which is the union of \c k (or less) |
402 | 467 |
/// arc-disjoint paths. |
403 | 468 |
/// |
404 | 469 |
/// \param t The target node. |
405 | 470 |
/// \param k The number of paths to be found. |
406 | 471 |
/// |
407 | 472 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
408 | 473 |
/// the source node to the given node \c t in the digraph. |
409 | 474 |
/// Otherwise it returns the number of arc-disjoint paths found. |
410 | 475 |
/// |
411 | 476 |
/// \pre \ref init() must be called before using this function. |
412 | 477 |
int findFlow(const Node& t, int k = 2) { |
413 | 478 |
_t = t; |
414 | 479 |
ResidualDijkstra dijkstra(*this); |
480 |
|
|
481 |
// Initialization |
|
482 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
483 |
(*_flow)[e] = 0; |
|
484 |
} |
|
485 |
if (_full_init) { |
|
486 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
487 |
(*_potential)[n] = (*_init_dist)[n]; |
|
488 |
} |
|
489 |
Node u = _t; |
|
490 |
Arc e; |
|
491 |
while ((e = (*_init_pred)[u]) != INVALID) { |
|
492 |
(*_flow)[e] = 1; |
|
493 |
u = _graph.source(e); |
|
494 |
} |
|
495 |
_path_num = 1; |
|
496 |
} else { |
|
497 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
498 |
(*_potential)[n] = 0; |
|
499 |
} |
|
500 |
_path_num = 0; |
|
501 |
} |
|
415 | 502 |
|
416 | 503 |
// Find shortest paths |
417 |
_path_num = 0; |
|
418 | 504 |
while (_path_num < k) { |
419 | 505 |
// Run Dijkstra |
420 | 506 |
if (!dijkstra.run(_path_num)) break; |
421 | 507 |
++_path_num; |
422 | 508 |
|
423 | 509 |
// Set the flow along the found shortest path |
424 | 510 |
Node u = _t; |
425 | 511 |
Arc e; |
426 | 512 |
while ((e = _pred[u]) != INVALID) { |
427 | 513 |
if (u == _graph.target(e)) { |
428 | 514 |
(*_flow)[e] = 1; |
429 | 515 |
u = _graph.source(e); |
430 | 516 |
} else { |
431 | 517 |
(*_flow)[e] = 0; |
432 | 518 |
u = _graph.target(e); |
433 | 519 |
} |
434 | 520 |
} |
435 | 521 |
} |
436 | 522 |
return _path_num; |
437 | 523 |
} |
438 | 524 |
|
439 | 525 |
/// \brief Compute the paths from the flow. |
440 | 526 |
/// |
441 | 527 |
/// This function computes arc-disjoint paths from the found minimum |
442 | 528 |
/// cost flow, which is the union of them. |
443 | 529 |
/// |
444 | 530 |
/// \pre \ref init() and \ref findFlow() must be called before using |
445 | 531 |
/// this function. |
446 | 532 |
void findPaths() { |
447 | 533 |
FlowMap res_flow(_graph); |
448 | 534 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
449 | 535 |
|
450 | 536 |
_paths.clear(); |
451 | 537 |
_paths.resize(_path_num); |
452 | 538 |
for (int i = 0; i < _path_num; ++i) { |
453 | 539 |
Node n = _s; |
454 | 540 |
while (n != _t) { |
455 | 541 |
OutArcIt e(_graph, n); |
456 | 542 |
for ( ; res_flow[e] == 0; ++e) ; |
457 | 543 |
n = _graph.target(e); |
458 | 544 |
_paths[i].addBack(e); |
459 | 545 |
res_flow[e] = 0; |
460 | 546 |
} |
461 | 547 |
} |
462 | 548 |
} |
463 | 549 |
|
464 | 550 |
/// @} |
465 | 551 |
... | ... |
@@ -56,96 +56,99 @@ |
56 | 56 |
" 5 7 60\n" |
57 | 57 |
" 5 11 120\n" |
58 | 58 |
" 6 3 0\n" |
59 | 59 |
" 6 9 140\n" |
60 | 60 |
" 6 10 90\n" |
61 | 61 |
" 7 1 30\n" |
62 | 62 |
" 8 12 60\n" |
63 | 63 |
" 9 12 50\n" |
64 | 64 |
"10 12 70\n" |
65 | 65 |
"10 2 100\n" |
66 | 66 |
"10 7 60\n" |
67 | 67 |
"11 10 20\n" |
68 | 68 |
"12 11 30\n" |
69 | 69 |
"@attributes\n" |
70 | 70 |
"source 1\n" |
71 | 71 |
"target 12\n" |
72 | 72 |
"@end\n"; |
73 | 73 |
|
74 | 74 |
// Check the interface of Suurballe |
75 | 75 |
void checkSuurballeCompile() |
76 | 76 |
{ |
77 | 77 |
typedef int VType; |
78 | 78 |
typedef concepts::Digraph Digraph; |
79 | 79 |
|
80 | 80 |
typedef Digraph::Node Node; |
81 | 81 |
typedef Digraph::Arc Arc; |
82 | 82 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
83 | 83 |
|
84 | 84 |
typedef Suurballe<Digraph, LengthMap> SuurballeType; |
85 | 85 |
|
86 | 86 |
Digraph g; |
87 | 87 |
Node n; |
88 | 88 |
Arc e; |
89 | 89 |
LengthMap len; |
90 | 90 |
SuurballeType::FlowMap flow(g); |
91 | 91 |
SuurballeType::PotentialMap pi(g); |
92 | 92 |
|
93 | 93 |
SuurballeType suurb_test(g, len); |
94 | 94 |
const SuurballeType& const_suurb_test = suurb_test; |
95 | 95 |
|
96 | 96 |
suurb_test |
97 | 97 |
.flowMap(flow) |
98 | 98 |
.potentialMap(pi); |
99 | 99 |
|
100 | 100 |
int k; |
101 | 101 |
k = suurb_test.run(n, n); |
102 | 102 |
k = suurb_test.run(n, n, k); |
103 | 103 |
suurb_test.init(n); |
104 |
suurb_test.fullInit(n); |
|
105 |
suurb_test.start(n); |
|
106 |
suurb_test.start(n, k); |
|
104 | 107 |
k = suurb_test.findFlow(n); |
105 | 108 |
k = suurb_test.findFlow(n, k); |
106 | 109 |
suurb_test.findPaths(); |
107 | 110 |
|
108 | 111 |
int f; |
109 | 112 |
VType c; |
110 | 113 |
c = const_suurb_test.totalLength(); |
111 | 114 |
f = const_suurb_test.flow(e); |
112 | 115 |
const SuurballeType::FlowMap& fm = |
113 | 116 |
const_suurb_test.flowMap(); |
114 | 117 |
c = const_suurb_test.potential(n); |
115 | 118 |
const SuurballeType::PotentialMap& pm = |
116 | 119 |
const_suurb_test.potentialMap(); |
117 | 120 |
k = const_suurb_test.pathNum(); |
118 | 121 |
Path<Digraph> p = const_suurb_test.path(k); |
119 | 122 |
|
120 | 123 |
ignore_unused_variable_warning(fm); |
121 | 124 |
ignore_unused_variable_warning(pm); |
122 | 125 |
} |
123 | 126 |
|
124 | 127 |
// Check the feasibility of the flow |
125 | 128 |
template <typename Digraph, typename FlowMap> |
126 | 129 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
127 | 130 |
typename Digraph::Node s, typename Digraph::Node t, |
128 | 131 |
int value ) |
129 | 132 |
{ |
130 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
131 | 134 |
for (ArcIt e(gr); e != INVALID; ++e) |
132 | 135 |
if (!(flow[e] == 0 || flow[e] == 1)) return false; |
133 | 136 |
|
134 | 137 |
for (NodeIt n(gr); n != INVALID; ++n) { |
135 | 138 |
int sum = 0; |
136 | 139 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
137 | 140 |
sum += flow[e]; |
138 | 141 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
139 | 142 |
sum -= flow[e]; |
140 | 143 |
if (n == s && sum != value) return false; |
141 | 144 |
if (n == t && sum != -value) return false; |
142 | 145 |
if (n != s && n != t && sum != 0) return false; |
143 | 146 |
} |
144 | 147 |
|
145 | 148 |
return true; |
146 | 149 |
} |
147 | 150 |
|
148 | 151 |
// Check the optimalitiy of the flow |
149 | 152 |
template < typename Digraph, typename CostMap, |
150 | 153 |
typename FlowMap, typename PotentialMap > |
151 | 154 |
bool checkOptimality( const Digraph& gr, const CostMap& cost, |
0 comments (0 inline)