0
13
0
2
2
5
3
10
8
10
21
29
21
24
1
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/clp.h> |
20 | 20 |
#include <coin/ClpSimplex.hpp> |
21 | 21 |
|
22 | 22 |
namespace lemon { |
23 | 23 |
|
24 | 24 |
ClpLp::ClpLp() { |
25 | 25 |
_prob = new ClpSimplex(); |
26 | 26 |
_init_temporals(); |
27 | 27 |
messageLevel(MESSAGE_NO_OUTPUT); |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
ClpLp::ClpLp(const ClpLp& other) { |
31 | 31 |
_prob = new ClpSimplex(*other._prob); |
32 | 32 |
rows = other.rows; |
33 | 33 |
cols = other.cols; |
34 | 34 |
_init_temporals(); |
35 | 35 |
messageLevel(MESSAGE_NO_OUTPUT); |
36 | 36 |
} |
37 | 37 |
|
38 | 38 |
ClpLp::~ClpLp() { |
39 | 39 |
delete _prob; |
40 | 40 |
_clear_temporals(); |
41 | 41 |
} |
42 | 42 |
|
43 | 43 |
void ClpLp::_init_temporals() { |
44 | 44 |
_primal_ray = 0; |
45 | 45 |
_dual_ray = 0; |
46 | 46 |
} |
47 | 47 |
|
48 | 48 |
void ClpLp::_clear_temporals() { |
49 | 49 |
if (_primal_ray) { |
50 | 50 |
delete[] _primal_ray; |
51 | 51 |
_primal_ray = 0; |
52 | 52 |
} |
53 | 53 |
if (_dual_ray) { |
54 | 54 |
delete[] _dual_ray; |
55 | 55 |
_dual_ray = 0; |
56 | 56 |
} |
57 | 57 |
} |
58 | 58 |
|
59 |
ClpLp* ClpLp:: |
|
59 |
ClpLp* ClpLp::newSolver() const { |
|
60 | 60 |
ClpLp* newlp = new ClpLp; |
61 | 61 |
return newlp; |
62 | 62 |
} |
63 | 63 |
|
64 |
ClpLp* ClpLp:: |
|
64 |
ClpLp* ClpLp::cloneSolver() const { |
|
65 | 65 |
ClpLp* copylp = new ClpLp(*this); |
66 | 66 |
return copylp; |
67 | 67 |
} |
68 | 68 |
|
69 | 69 |
const char* ClpLp::_solverName() const { return "ClpLp"; } |
70 | 70 |
|
71 | 71 |
int ClpLp::_addCol() { |
72 | 72 |
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0); |
73 | 73 |
return _prob->numberColumns() - 1; |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
int ClpLp::_addRow() { |
77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
78 | 78 |
return _prob->numberRows() - 1; |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
|
82 | 82 |
void ClpLp::_eraseCol(int c) { |
83 | 83 |
_col_names_ref.erase(_prob->getColumnName(c)); |
84 | 84 |
_prob->deleteColumns(1, &c); |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
void ClpLp::_eraseRow(int r) { |
88 | 88 |
_row_names_ref.erase(_prob->getRowName(r)); |
89 | 89 |
_prob->deleteRows(1, &r); |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
void ClpLp::_eraseColId(int i) { |
93 | 93 |
cols.eraseIndex(i); |
94 | 94 |
cols.shiftIndices(i); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
void ClpLp::_eraseRowId(int i) { |
98 | 98 |
rows.eraseIndex(i); |
99 | 99 |
rows.shiftIndices(i); |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
void ClpLp::_getColName(int c, std::string& name) const { |
103 | 103 |
name = _prob->getColumnName(c); |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
void ClpLp::_setColName(int c, const std::string& name) { |
107 | 107 |
_prob->setColumnName(c, const_cast<std::string&>(name)); |
108 | 108 |
_col_names_ref[name] = c; |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
int ClpLp::_colByName(const std::string& name) const { |
112 | 112 |
std::map<std::string, int>::const_iterator it = _col_names_ref.find(name); |
113 | 113 |
return it != _col_names_ref.end() ? it->second : -1; |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
void ClpLp::_getRowName(int r, std::string& name) const { |
117 | 117 |
name = _prob->getRowName(r); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
void ClpLp::_setRowName(int r, const std::string& name) { |
121 | 121 |
_prob->setRowName(r, const_cast<std::string&>(name)); |
122 | 122 |
_row_names_ref[name] = r; |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
int ClpLp::_rowByName(const std::string& name) const { |
126 | 126 |
std::map<std::string, int>::const_iterator it = _row_names_ref.find(name); |
127 | 127 |
return it != _row_names_ref.end() ? it->second : -1; |
128 | 128 |
} |
129 | 129 |
|
130 | 130 |
|
131 | 131 |
void ClpLp::_setRowCoeffs(int ix, ExprIterator b, ExprIterator e) { |
132 | 132 |
std::map<int, Value> coeffs; |
133 | 133 |
|
134 | 134 |
int n = _prob->clpMatrix()->getNumCols(); |
135 | 135 |
|
136 | 136 |
const int* indices = _prob->clpMatrix()->getIndices(); |
137 | 137 |
const double* elements = _prob->clpMatrix()->getElements(); |
138 | 138 |
|
139 | 139 |
for (int i = 0; i < n; ++i) { |
140 | 140 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[i]; |
141 | 141 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[i]; |
142 | 142 |
|
143 | 143 |
const int* it = std::lower_bound(indices + begin, indices + end, ix); |
144 | 144 |
if (it != indices + end && *it == ix && elements[it - indices] != 0.0) { |
145 | 145 |
coeffs[i] = 0.0; |
146 | 146 |
} |
147 | 147 |
} |
148 | 148 |
|
149 | 149 |
for (ExprIterator it = b; it != e; ++it) { |
150 | 150 |
coeffs[it->first] = it->second; |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
for (std::map<int, Value>::iterator it = coeffs.begin(); |
154 | 154 |
it != coeffs.end(); ++it) { |
155 | 155 |
_prob->modifyCoefficient(ix, it->first, it->second); |
156 | 156 |
} |
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
void ClpLp::_getRowCoeffs(int ix, InsertIterator b) const { |
160 | 160 |
int n = _prob->clpMatrix()->getNumCols(); |
161 | 161 |
|
162 | 162 |
const int* indices = _prob->clpMatrix()->getIndices(); |
163 | 163 |
const double* elements = _prob->clpMatrix()->getElements(); |
164 | 164 |
|
165 | 165 |
for (int i = 0; i < n; ++i) { |
166 | 166 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[i]; |
167 | 167 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[i]; |
168 | 168 |
|
169 | 169 |
const int* it = std::lower_bound(indices + begin, indices + end, ix); |
170 | 170 |
if (it != indices + end && *it == ix) { |
171 | 171 |
*b = std::make_pair(i, elements[it - indices]); |
172 | 172 |
} |
173 | 173 |
} |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
void ClpLp::_setColCoeffs(int ix, ExprIterator b, ExprIterator e) { |
177 | 177 |
std::map<int, Value> coeffs; |
178 | 178 |
|
179 | 179 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
180 | 180 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
181 | 181 |
|
182 | 182 |
const int* indices = _prob->clpMatrix()->getIndices(); |
183 | 183 |
const double* elements = _prob->clpMatrix()->getElements(); |
184 | 184 |
|
185 | 185 |
for (CoinBigIndex i = begin; i != end; ++i) { |
186 | 186 |
if (elements[i] != 0.0) { |
187 | 187 |
coeffs[indices[i]] = 0.0; |
188 | 188 |
} |
189 | 189 |
} |
190 | 190 |
for (ExprIterator it = b; it != e; ++it) { |
191 | 191 |
coeffs[it->first] = it->second; |
192 | 192 |
} |
193 | 193 |
for (std::map<int, Value>::iterator it = coeffs.begin(); |
194 | 194 |
it != coeffs.end(); ++it) { |
195 | 195 |
_prob->modifyCoefficient(it->first, ix, it->second); |
196 | 196 |
} |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
void ClpLp::_getColCoeffs(int ix, InsertIterator b) const { |
200 | 200 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
201 | 201 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
202 | 202 |
|
203 | 203 |
const int* indices = _prob->clpMatrix()->getIndices(); |
204 | 204 |
const double* elements = _prob->clpMatrix()->getElements(); |
205 | 205 |
|
206 | 206 |
for (CoinBigIndex i = begin; i != end; ++i) { |
207 | 207 |
*b = std::make_pair(indices[i], elements[i]); |
208 | 208 |
++b; |
209 | 209 |
} |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
void ClpLp::_setCoeff(int ix, int jx, Value value) { |
213 | 213 |
_prob->modifyCoefficient(ix, jx, value); |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
ClpLp::Value ClpLp::_getCoeff(int ix, int jx) const { |
217 | 217 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
218 | 218 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
219 | 219 |
|
220 | 220 |
const int* indices = _prob->clpMatrix()->getIndices(); |
221 | 221 |
const double* elements = _prob->clpMatrix()->getElements(); |
222 | 222 |
|
223 | 223 |
const int* it = std::lower_bound(indices + begin, indices + end, jx); |
224 | 224 |
if (it != indices + end && *it == jx) { |
225 | 225 |
return elements[it - indices]; |
226 | 226 |
} else { |
227 | 227 |
return 0.0; |
228 | 228 |
} |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
void ClpLp::_setColLowerBound(int i, Value lo) { |
232 | 232 |
_prob->setColumnLower(i, lo == - INF ? - COIN_DBL_MAX : lo); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
ClpLp::Value ClpLp::_getColLowerBound(int i) const { |
236 | 236 |
double val = _prob->getColLower()[i]; |
237 | 237 |
return val == - COIN_DBL_MAX ? - INF : val; |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
void ClpLp::_setColUpperBound(int i, Value up) { |
241 | 241 |
_prob->setColumnUpper(i, up == INF ? COIN_DBL_MAX : up); |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
ClpLp::Value ClpLp::_getColUpperBound(int i) const { |
245 | 245 |
double val = _prob->getColUpper()[i]; |
246 | 246 |
return val == COIN_DBL_MAX ? INF : val; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
void ClpLp::_setRowLowerBound(int i, Value lo) { |
250 | 250 |
_prob->setRowLower(i, lo == - INF ? - COIN_DBL_MAX : lo); |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
ClpLp::Value ClpLp::_getRowLowerBound(int i) const { |
254 | 254 |
double val = _prob->getRowLower()[i]; |
255 | 255 |
return val == - COIN_DBL_MAX ? - INF : val; |
256 | 256 |
} |
257 | 257 |
|
258 | 258 |
void ClpLp::_setRowUpperBound(int i, Value up) { |
259 | 259 |
_prob->setRowUpper(i, up == INF ? COIN_DBL_MAX : up); |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
ClpLp::Value ClpLp::_getRowUpperBound(int i) const { |
263 | 263 |
double val = _prob->getRowUpper()[i]; |
264 | 264 |
return val == COIN_DBL_MAX ? INF : val; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
void ClpLp::_setObjCoeffs(ExprIterator b, ExprIterator e) { |
268 | 268 |
int num = _prob->clpMatrix()->getNumCols(); |
269 | 269 |
for (int i = 0; i < num; ++i) { |
270 | 270 |
_prob->setObjectiveCoefficient(i, 0.0); |
271 | 271 |
} |
272 | 272 |
for (ExprIterator it = b; it != e; ++it) { |
273 | 273 |
_prob->setObjectiveCoefficient(it->first, it->second); |
274 | 274 |
} |
275 | 275 |
} |
276 | 276 |
|
277 | 277 |
void ClpLp::_getObjCoeffs(InsertIterator b) const { |
278 | 278 |
int num = _prob->clpMatrix()->getNumCols(); |
279 | 279 |
for (int i = 0; i < num; ++i) { |
280 | 280 |
Value coef = _prob->getObjCoefficients()[i]; |
281 | 281 |
if (coef != 0.0) { |
282 | 282 |
*b = std::make_pair(i, coef); |
283 | 283 |
++b; |
284 | 284 |
} |
285 | 285 |
} |
286 | 286 |
} |
287 | 287 |
|
288 | 288 |
void ClpLp::_setObjCoeff(int i, Value obj_coef) { |
289 | 289 |
_prob->setObjectiveCoefficient(i, obj_coef); |
290 | 290 |
} |
291 | 291 |
|
292 | 292 |
ClpLp::Value ClpLp::_getObjCoeff(int i) const { |
293 | 293 |
return _prob->getObjCoefficients()[i]; |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
ClpLp::SolveExitStatus ClpLp::_solve() { |
297 | 297 |
return _prob->primal() >= 0 ? SOLVED : UNSOLVED; |
298 | 298 |
} |
299 | 299 |
|
300 | 300 |
ClpLp::SolveExitStatus ClpLp::solvePrimal() { |
301 | 301 |
return _prob->primal() >= 0 ? SOLVED : UNSOLVED; |
302 | 302 |
} |
303 | 303 |
|
304 | 304 |
ClpLp::SolveExitStatus ClpLp::solveDual() { |
305 | 305 |
return _prob->dual() >= 0 ? SOLVED : UNSOLVED; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
ClpLp::SolveExitStatus ClpLp::solveBarrier() { |
309 | 309 |
return _prob->barrier() >= 0 ? SOLVED : UNSOLVED; |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
ClpLp::Value ClpLp::_getPrimal(int i) const { |
313 | 313 |
return _prob->primalColumnSolution()[i]; |
314 | 314 |
} |
315 | 315 |
ClpLp::Value ClpLp::_getPrimalValue() const { |
316 | 316 |
return _prob->objectiveValue(); |
317 | 317 |
} |
318 | 318 |
|
319 | 319 |
ClpLp::Value ClpLp::_getDual(int i) const { |
320 | 320 |
return _prob->dualRowSolution()[i]; |
321 | 321 |
} |
322 | 322 |
|
323 | 323 |
ClpLp::Value ClpLp::_getPrimalRay(int i) const { |
324 | 324 |
if (!_primal_ray) { |
325 | 325 |
_primal_ray = _prob->unboundedRay(); |
326 | 326 |
LEMON_ASSERT(_primal_ray != 0, "Primal ray is not provided"); |
327 | 327 |
} |
328 | 328 |
return _primal_ray[i]; |
329 | 329 |
} |
330 | 330 |
|
331 | 331 |
ClpLp::Value ClpLp::_getDualRay(int i) const { |
332 | 332 |
if (!_dual_ray) { |
333 | 333 |
_dual_ray = _prob->infeasibilityRay(); |
334 | 334 |
LEMON_ASSERT(_dual_ray != 0, "Dual ray is not provided"); |
335 | 335 |
} |
336 | 336 |
return _dual_ray[i]; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
ClpLp::VarStatus ClpLp::_getColStatus(int i) const { |
340 | 340 |
switch (_prob->getColumnStatus(i)) { |
341 | 341 |
case ClpSimplex::basic: |
342 | 342 |
return BASIC; |
343 | 343 |
case ClpSimplex::isFree: |
344 | 344 |
return FREE; |
345 | 345 |
case ClpSimplex::atUpperBound: |
346 | 346 |
return UPPER; |
347 | 347 |
case ClpSimplex::atLowerBound: |
348 | 348 |
return LOWER; |
349 | 349 |
case ClpSimplex::isFixed: |
350 | 350 |
return FIXED; |
351 | 351 |
case ClpSimplex::superBasic: |
352 | 352 |
return FREE; |
353 | 353 |
default: |
354 | 354 |
LEMON_ASSERT(false, "Wrong column status"); |
355 | 355 |
return VarStatus(); |
356 | 356 |
} |
357 | 357 |
} |
358 | 358 |
|
359 | 359 |
ClpLp::VarStatus ClpLp::_getRowStatus(int i) const { |
360 | 360 |
switch (_prob->getColumnStatus(i)) { |
361 | 361 |
case ClpSimplex::basic: |
362 | 362 |
return BASIC; |
363 | 363 |
case ClpSimplex::isFree: |
364 | 364 |
return FREE; |
365 | 365 |
case ClpSimplex::atUpperBound: |
366 | 366 |
return UPPER; |
367 | 367 |
case ClpSimplex::atLowerBound: |
368 | 368 |
return LOWER; |
369 | 369 |
case ClpSimplex::isFixed: |
370 | 370 |
return FIXED; |
371 | 371 |
case ClpSimplex::superBasic: |
372 | 372 |
return FREE; |
373 | 373 |
default: |
374 | 374 |
LEMON_ASSERT(false, "Wrong row status"); |
375 | 375 |
return VarStatus(); |
376 | 376 |
} |
377 | 377 |
} |
378 | 378 |
|
379 | 379 |
|
380 | 380 |
ClpLp::ProblemType ClpLp::_getPrimalType() const { |
381 | 381 |
if (_prob->isProvenOptimal()) { |
382 | 382 |
return OPTIMAL; |
383 | 383 |
} else if (_prob->isProvenPrimalInfeasible()) { |
384 | 384 |
return INFEASIBLE; |
385 | 385 |
} else if (_prob->isProvenDualInfeasible()) { |
386 | 386 |
return UNBOUNDED; |
387 | 387 |
} else { |
388 | 388 |
return UNDEFINED; |
389 | 389 |
} |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
ClpLp::ProblemType ClpLp::_getDualType() const { |
393 | 393 |
if (_prob->isProvenOptimal()) { |
394 | 394 |
return OPTIMAL; |
395 | 395 |
} else if (_prob->isProvenDualInfeasible()) { |
396 | 396 |
return INFEASIBLE; |
397 | 397 |
} else if (_prob->isProvenPrimalInfeasible()) { |
398 | 398 |
return INFEASIBLE; |
399 | 399 |
} else { |
400 | 400 |
return UNDEFINED; |
401 | 401 |
} |
402 | 402 |
} |
403 | 403 |
|
404 | 404 |
void ClpLp::_setSense(ClpLp::Sense sense) { |
405 | 405 |
switch (sense) { |
406 | 406 |
case MIN: |
407 | 407 |
_prob->setOptimizationDirection(1); |
408 | 408 |
break; |
409 | 409 |
case MAX: |
410 | 410 |
_prob->setOptimizationDirection(-1); |
411 | 411 |
break; |
412 | 412 |
} |
413 | 413 |
} |
414 | 414 |
|
415 | 415 |
ClpLp::Sense ClpLp::_getSense() const { |
416 | 416 |
double dir = _prob->optimizationDirection(); |
417 | 417 |
if (dir > 0.0) { |
418 | 418 |
return MIN; |
419 | 419 |
} else { |
420 | 420 |
return MAX; |
421 | 421 |
} |
422 | 422 |
} |
423 | 423 |
|
424 | 424 |
void ClpLp::_clear() { |
425 | 425 |
delete _prob; |
426 | 426 |
_prob = new ClpSimplex(); |
427 | 427 |
rows.clear(); |
428 | 428 |
cols.clear(); |
429 | 429 |
_col_names_ref.clear(); |
430 | 430 |
_clear_temporals(); |
431 | 431 |
} |
432 | 432 |
|
433 | 433 |
void ClpLp::messageLevel(MessageLevel m) { |
434 | 434 |
_prob->setLogLevel(static_cast<int>(m)); |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
} //END OF NAMESPACE LEMON |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CLP_H |
20 | 20 |
#define LEMON_CLP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-CLP lp solver interface. |
24 | 24 |
|
25 | 25 |
#include <vector> |
26 | 26 |
#include <string> |
27 | 27 |
|
28 | 28 |
#include <lemon/lp_base.h> |
29 | 29 |
|
30 | 30 |
class ClpSimplex; |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \ingroup lp_group |
35 | 35 |
/// |
36 | 36 |
/// \brief Interface for the CLP solver |
37 | 37 |
/// |
38 | 38 |
/// This class implements an interface for the Clp LP solver. The |
39 | 39 |
/// Clp library is an object oriented lp solver library developed at |
40 | 40 |
/// the IBM. The CLP is part of the COIN-OR package and it can be |
41 | 41 |
/// used with Common Public License. |
42 | 42 |
class ClpLp : public LpSolver { |
43 | 43 |
protected: |
44 | 44 |
|
45 | 45 |
ClpSimplex* _prob; |
46 | 46 |
|
47 | 47 |
std::map<std::string, int> _col_names_ref; |
48 | 48 |
std::map<std::string, int> _row_names_ref; |
49 | 49 |
|
50 | 50 |
public: |
51 | 51 |
|
52 | 52 |
/// \e |
53 | 53 |
ClpLp(); |
54 | 54 |
/// \e |
55 | 55 |
ClpLp(const ClpLp&); |
56 | 56 |
/// \e |
57 | 57 |
~ClpLp(); |
58 | 58 |
|
59 |
/// \e |
|
60 |
virtual ClpLp* newSolver() const; |
|
61 |
/// \e |
|
62 |
virtual ClpLp* cloneSolver() const; |
|
63 |
|
|
59 | 64 |
protected: |
60 | 65 |
|
61 | 66 |
mutable double* _primal_ray; |
62 | 67 |
mutable double* _dual_ray; |
63 | 68 |
|
64 | 69 |
void _init_temporals(); |
65 | 70 |
void _clear_temporals(); |
66 | 71 |
|
67 | 72 |
protected: |
68 | 73 |
|
69 |
virtual ClpLp* _newSolver() const; |
|
70 |
virtual ClpLp* _cloneSolver() const; |
|
71 |
|
|
72 | 74 |
virtual const char* _solverName() const; |
73 | 75 |
|
74 | 76 |
virtual int _addCol(); |
75 | 77 |
virtual int _addRow(); |
76 | 78 |
|
77 | 79 |
virtual void _eraseCol(int i); |
78 | 80 |
virtual void _eraseRow(int i); |
79 | 81 |
|
80 | 82 |
virtual void _eraseColId(int i); |
81 | 83 |
virtual void _eraseRowId(int i); |
82 | 84 |
|
83 | 85 |
virtual void _getColName(int col, std::string& name) const; |
84 | 86 |
virtual void _setColName(int col, const std::string& name); |
85 | 87 |
virtual int _colByName(const std::string& name) const; |
86 | 88 |
|
87 | 89 |
virtual void _getRowName(int row, std::string& name) const; |
88 | 90 |
virtual void _setRowName(int row, const std::string& name); |
89 | 91 |
virtual int _rowByName(const std::string& name) const; |
90 | 92 |
|
91 | 93 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
92 | 94 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
93 | 95 |
|
94 | 96 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
95 | 97 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
96 | 98 |
|
97 | 99 |
virtual void _setCoeff(int row, int col, Value value); |
98 | 100 |
virtual Value _getCoeff(int row, int col) const; |
99 | 101 |
|
100 | 102 |
virtual void _setColLowerBound(int i, Value value); |
101 | 103 |
virtual Value _getColLowerBound(int i) const; |
102 | 104 |
virtual void _setColUpperBound(int i, Value value); |
103 | 105 |
virtual Value _getColUpperBound(int i) const; |
104 | 106 |
|
105 | 107 |
virtual void _setRowLowerBound(int i, Value value); |
106 | 108 |
virtual Value _getRowLowerBound(int i) const; |
107 | 109 |
virtual void _setRowUpperBound(int i, Value value); |
108 | 110 |
virtual Value _getRowUpperBound(int i) const; |
109 | 111 |
|
110 | 112 |
virtual void _setObjCoeffs(ExprIterator, ExprIterator); |
111 | 113 |
virtual void _getObjCoeffs(InsertIterator) const; |
112 | 114 |
|
113 | 115 |
virtual void _setObjCoeff(int i, Value obj_coef); |
114 | 116 |
virtual Value _getObjCoeff(int i) const; |
115 | 117 |
|
116 | 118 |
virtual void _setSense(Sense sense); |
117 | 119 |
virtual Sense _getSense() const; |
118 | 120 |
|
119 | 121 |
virtual SolveExitStatus _solve(); |
120 | 122 |
|
121 | 123 |
virtual Value _getPrimal(int i) const; |
122 | 124 |
virtual Value _getDual(int i) const; |
123 | 125 |
|
124 | 126 |
virtual Value _getPrimalValue() const; |
125 | 127 |
|
126 | 128 |
virtual Value _getPrimalRay(int i) const; |
127 | 129 |
virtual Value _getDualRay(int i) const; |
128 | 130 |
|
129 | 131 |
virtual VarStatus _getColStatus(int i) const; |
130 | 132 |
virtual VarStatus _getRowStatus(int i) const; |
131 | 133 |
|
132 | 134 |
virtual ProblemType _getPrimalType() const; |
133 | 135 |
virtual ProblemType _getDualType() const; |
134 | 136 |
|
135 | 137 |
virtual void _clear(); |
136 | 138 |
|
137 | 139 |
public: |
138 | 140 |
|
139 | 141 |
///Solves LP with primal simplex method. |
140 | 142 |
SolveExitStatus solvePrimal(); |
141 | 143 |
|
142 | 144 |
///Solves LP with dual simplex method. |
143 | 145 |
SolveExitStatus solveDual(); |
144 | 146 |
|
145 | 147 |
///Solves LP with barrier method. |
146 | 148 |
SolveExitStatus solveBarrier(); |
147 | 149 |
|
148 | 150 |
///Returns the constraint identifier understood by CLP. |
149 | 151 |
int clpRow(Row r) const { return rows(id(r)); } |
150 | 152 |
|
151 | 153 |
///Returns the variable identifier understood by CLP. |
152 | 154 |
int clpCol(Col c) const { return cols(id(c)); } |
153 | 155 |
|
154 | 156 |
///Enum for \c messageLevel() parameter |
155 | 157 |
enum MessageLevel { |
156 | 158 |
/// no output (default value) |
157 | 159 |
MESSAGE_NO_OUTPUT = 0, |
158 | 160 |
/// print final solution |
159 | 161 |
MESSAGE_FINAL_SOLUTION = 1, |
160 | 162 |
/// print factorization |
161 | 163 |
MESSAGE_FACTORIZATION = 2, |
162 | 164 |
/// normal output |
163 | 165 |
MESSAGE_NORMAL_OUTPUT = 3, |
164 | 166 |
/// verbose output |
165 | 167 |
MESSAGE_VERBOSE_OUTPUT = 4 |
166 | 168 |
}; |
167 | 169 |
///Set the verbosity of the messages |
168 | 170 |
|
169 | 171 |
///Set the verbosity of the messages |
170 | 172 |
/// |
171 | 173 |
///\param m is the level of the messages output by the solver routines. |
172 | 174 |
void messageLevel(MessageLevel m); |
173 | 175 |
|
174 | 176 |
}; |
175 | 177 |
|
176 | 178 |
} //END OF NAMESPACE LEMON |
177 | 179 |
|
178 | 180 |
#endif //LEMON_CLP_H |
179 | 181 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <vector> |
21 | 21 |
#include <cstring> |
22 | 22 |
|
23 | 23 |
#include <lemon/cplex.h> |
24 | 24 |
|
25 | 25 |
extern "C" { |
26 | 26 |
#include <ilcplex/cplex.h> |
27 | 27 |
} |
28 | 28 |
|
29 | 29 |
|
30 | 30 |
///\file |
31 | 31 |
///\brief Implementation of the LEMON-CPLEX lp solver interface. |
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
CplexEnv::LicenseError::LicenseError(int status) { |
35 | 35 |
if (!CPXgeterrorstring(0, status, _message)) { |
36 | 36 |
std::strcpy(_message, "Cplex unknown error"); |
37 | 37 |
} |
38 | 38 |
} |
39 | 39 |
|
40 | 40 |
CplexEnv::CplexEnv() { |
41 | 41 |
int status; |
42 | 42 |
_cnt = new int; |
43 | 43 |
_env = CPXopenCPLEX(&status); |
44 | 44 |
if (_env == 0) { |
45 | 45 |
delete _cnt; |
46 | 46 |
_cnt = 0; |
47 | 47 |
throw LicenseError(status); |
48 | 48 |
} |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
CplexEnv::CplexEnv(const CplexEnv& other) { |
52 | 52 |
_env = other._env; |
53 | 53 |
_cnt = other._cnt; |
54 | 54 |
++(*_cnt); |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
CplexEnv& CplexEnv::operator=(const CplexEnv& other) { |
58 | 58 |
_env = other._env; |
59 | 59 |
_cnt = other._cnt; |
60 | 60 |
++(*_cnt); |
61 | 61 |
return *this; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
CplexEnv::~CplexEnv() { |
65 | 65 |
--(*_cnt); |
66 | 66 |
if (*_cnt == 0) { |
67 | 67 |
delete _cnt; |
68 | 68 |
CPXcloseCPLEX(&_env); |
69 | 69 |
} |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
CplexBase::CplexBase() : LpBase() { |
73 | 73 |
int status; |
74 | 74 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
75 | 75 |
} |
76 | 76 |
|
77 | 77 |
CplexBase::CplexBase(const CplexEnv& env) |
78 | 78 |
: LpBase(), _env(env) { |
79 | 79 |
int status; |
80 | 80 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
81 | 81 |
} |
82 | 82 |
|
83 | 83 |
CplexBase::CplexBase(const CplexBase& cplex) |
84 | 84 |
: LpBase() { |
85 | 85 |
int status; |
86 | 86 |
_prob = CPXcloneprob(cplexEnv(), cplex._prob, &status); |
87 | 87 |
rows = cplex.rows; |
88 | 88 |
cols = cplex.cols; |
89 | 89 |
} |
90 | 90 |
|
91 | 91 |
CplexBase::~CplexBase() { |
92 | 92 |
CPXfreeprob(cplexEnv(),&_prob); |
93 | 93 |
} |
94 | 94 |
|
95 | 95 |
int CplexBase::_addCol() { |
96 | 96 |
int i = CPXgetnumcols(cplexEnv(), _prob); |
97 | 97 |
double lb = -INF, ub = INF; |
98 | 98 |
CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0); |
99 | 99 |
return i; |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
|
103 | 103 |
int CplexBase::_addRow() { |
104 | 104 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
105 | 105 |
const double ub = INF; |
106 | 106 |
const char s = 'L'; |
107 | 107 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
108 | 108 |
return i; |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
|
112 | 112 |
void CplexBase::_eraseCol(int i) { |
113 | 113 |
CPXdelcols(cplexEnv(), _prob, i, i); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
void CplexBase::_eraseRow(int i) { |
117 | 117 |
CPXdelrows(cplexEnv(), _prob, i, i); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
void CplexBase::_eraseColId(int i) { |
121 | 121 |
cols.eraseIndex(i); |
122 | 122 |
cols.shiftIndices(i); |
123 | 123 |
} |
124 | 124 |
void CplexBase::_eraseRowId(int i) { |
125 | 125 |
rows.eraseIndex(i); |
126 | 126 |
rows.shiftIndices(i); |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
void CplexBase::_getColName(int col, std::string &name) const { |
130 | 130 |
int size; |
131 | 131 |
CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col); |
132 | 132 |
if (size == 0) { |
133 | 133 |
name.clear(); |
134 | 134 |
return; |
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
size *= -1; |
138 | 138 |
std::vector<char> buf(size); |
139 | 139 |
char *cname; |
140 | 140 |
int tmp; |
141 | 141 |
CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size, |
142 | 142 |
&tmp, col, col); |
143 | 143 |
name = cname; |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
void CplexBase::_setColName(int col, const std::string &name) { |
147 | 147 |
char *cname; |
148 | 148 |
cname = const_cast<char*>(name.c_str()); |
149 | 149 |
CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname); |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
int CplexBase::_colByName(const std::string& name) const { |
153 | 153 |
int index; |
154 | 154 |
if (CPXgetcolindex(cplexEnv(), _prob, |
155 | 155 |
const_cast<char*>(name.c_str()), &index) == 0) { |
156 | 156 |
return index; |
157 | 157 |
} |
158 | 158 |
return -1; |
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
void CplexBase::_getRowName(int row, std::string &name) const { |
162 | 162 |
int size; |
163 | 163 |
CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row); |
164 | 164 |
if (size == 0) { |
165 | 165 |
name.clear(); |
166 | 166 |
return; |
167 | 167 |
} |
168 | 168 |
|
169 | 169 |
size *= -1; |
170 | 170 |
std::vector<char> buf(size); |
171 | 171 |
char *cname; |
172 | 172 |
int tmp; |
173 | 173 |
CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size, |
174 | 174 |
&tmp, row, row); |
175 | 175 |
name = cname; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
void CplexBase::_setRowName(int row, const std::string &name) { |
179 | 179 |
char *cname; |
180 | 180 |
cname = const_cast<char*>(name.c_str()); |
181 | 181 |
CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname); |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
int CplexBase::_rowByName(const std::string& name) const { |
185 | 185 |
int index; |
186 | 186 |
if (CPXgetrowindex(cplexEnv(), _prob, |
187 | 187 |
const_cast<char*>(name.c_str()), &index) == 0) { |
188 | 188 |
return index; |
189 | 189 |
} |
190 | 190 |
return -1; |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
void CplexBase::_setRowCoeffs(int i, ExprIterator b, |
194 | 194 |
ExprIterator e) |
195 | 195 |
{ |
196 | 196 |
std::vector<int> indices; |
197 | 197 |
std::vector<int> rowlist; |
198 | 198 |
std::vector<Value> values; |
199 | 199 |
|
200 | 200 |
for(ExprIterator it=b; it!=e; ++it) { |
201 | 201 |
indices.push_back(it->first); |
202 | 202 |
values.push_back(it->second); |
203 | 203 |
rowlist.push_back(i); |
204 | 204 |
} |
205 | 205 |
|
206 | 206 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
207 | 207 |
&rowlist.front(), &indices.front(), &values.front()); |
208 | 208 |
} |
209 | 209 |
|
210 | 210 |
void CplexBase::_getRowCoeffs(int i, InsertIterator b) const { |
211 | 211 |
int tmp1, tmp2, tmp3, length; |
212 | 212 |
CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i); |
213 | 213 |
|
214 | 214 |
length = -length; |
215 | 215 |
std::vector<int> indices(length); |
216 | 216 |
std::vector<double> values(length); |
217 | 217 |
|
218 | 218 |
CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, |
219 | 219 |
&indices.front(), &values.front(), |
220 | 220 |
length, &tmp3, i, i); |
221 | 221 |
|
222 | 222 |
for (int i = 0; i < length; ++i) { |
223 | 223 |
*b = std::make_pair(indices[i], values[i]); |
224 | 224 |
++b; |
225 | 225 |
} |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) { |
229 | 229 |
std::vector<int> indices; |
230 | 230 |
std::vector<int> collist; |
231 | 231 |
std::vector<Value> values; |
232 | 232 |
|
233 | 233 |
for(ExprIterator it=b; it!=e; ++it) { |
234 | 234 |
indices.push_back(it->first); |
235 | 235 |
values.push_back(it->second); |
236 | 236 |
collist.push_back(i); |
237 | 237 |
} |
238 | 238 |
|
239 | 239 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
240 | 240 |
&indices.front(), &collist.front(), &values.front()); |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
void CplexBase::_getColCoeffs(int i, InsertIterator b) const { |
244 | 244 |
|
245 | 245 |
int tmp1, tmp2, tmp3, length; |
246 | 246 |
CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i); |
247 | 247 |
|
248 | 248 |
length = -length; |
249 | 249 |
std::vector<int> indices(length); |
250 | 250 |
std::vector<double> values(length); |
251 | 251 |
|
252 | 252 |
CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, |
253 | 253 |
&indices.front(), &values.front(), |
254 | 254 |
length, &tmp3, i, i); |
255 | 255 |
|
256 | 256 |
for (int i = 0; i < length; ++i) { |
257 | 257 |
*b = std::make_pair(indices[i], values[i]); |
258 | 258 |
++b; |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
} |
262 | 262 |
|
263 | 263 |
void CplexBase::_setCoeff(int row, int col, Value value) { |
264 | 264 |
CPXchgcoef(cplexEnv(), _prob, row, col, value); |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
CplexBase::Value CplexBase::_getCoeff(int row, int col) const { |
268 | 268 |
CplexBase::Value value; |
269 | 269 |
CPXgetcoef(cplexEnv(), _prob, row, col, &value); |
270 | 270 |
return value; |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
void CplexBase::_setColLowerBound(int i, Value value) { |
274 | 274 |
const char s = 'L'; |
275 | 275 |
CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value); |
276 | 276 |
} |
277 | 277 |
|
278 | 278 |
CplexBase::Value CplexBase::_getColLowerBound(int i) const { |
279 | 279 |
CplexBase::Value res; |
280 | 280 |
CPXgetlb(cplexEnv(), _prob, &res, i, i); |
281 | 281 |
return res <= -CPX_INFBOUND ? -INF : res; |
282 | 282 |
} |
283 | 283 |
|
284 | 284 |
void CplexBase::_setColUpperBound(int i, Value value) |
285 | 285 |
{ |
286 | 286 |
const char s = 'U'; |
287 | 287 |
CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value); |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
CplexBase::Value CplexBase::_getColUpperBound(int i) const { |
291 | 291 |
CplexBase::Value res; |
292 | 292 |
CPXgetub(cplexEnv(), _prob, &res, i, i); |
293 | 293 |
return res >= CPX_INFBOUND ? INF : res; |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
CplexBase::Value CplexBase::_getRowLowerBound(int i) const { |
297 | 297 |
char s; |
298 | 298 |
CPXgetsense(cplexEnv(), _prob, &s, i, i); |
299 | 299 |
CplexBase::Value res; |
300 | 300 |
|
301 | 301 |
switch (s) { |
302 | 302 |
case 'G': |
303 | 303 |
case 'R': |
304 | 304 |
case 'E': |
305 | 305 |
CPXgetrhs(cplexEnv(), _prob, &res, i, i); |
306 | 306 |
return res <= -CPX_INFBOUND ? -INF : res; |
307 | 307 |
default: |
308 | 308 |
return -INF; |
309 | 309 |
} |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
CplexBase::Value CplexBase::_getRowUpperBound(int i) const { |
313 | 313 |
char s; |
314 | 314 |
CPXgetsense(cplexEnv(), _prob, &s, i, i); |
315 | 315 |
CplexBase::Value res; |
316 | 316 |
|
317 | 317 |
switch (s) { |
318 | 318 |
case 'L': |
319 | 319 |
case 'E': |
320 | 320 |
CPXgetrhs(cplexEnv(), _prob, &res, i, i); |
321 | 321 |
return res >= CPX_INFBOUND ? INF : res; |
322 | 322 |
case 'R': |
323 | 323 |
CPXgetrhs(cplexEnv(), _prob, &res, i, i); |
324 | 324 |
{ |
325 | 325 |
double rng; |
326 | 326 |
CPXgetrngval(cplexEnv(), _prob, &rng, i, i); |
327 | 327 |
res += rng; |
328 | 328 |
} |
329 | 329 |
return res >= CPX_INFBOUND ? INF : res; |
330 | 330 |
default: |
331 | 331 |
return INF; |
332 | 332 |
} |
333 | 333 |
} |
334 | 334 |
|
335 | 335 |
//This is easier to implement |
336 | 336 |
void CplexBase::_set_row_bounds(int i, Value lb, Value ub) { |
337 | 337 |
if (lb == -INF) { |
338 | 338 |
const char s = 'L'; |
339 | 339 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
340 | 340 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub); |
341 | 341 |
} else if (ub == INF) { |
342 | 342 |
const char s = 'G'; |
343 | 343 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
344 | 344 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb); |
345 | 345 |
} else if (lb == ub){ |
346 | 346 |
const char s = 'E'; |
347 | 347 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
348 | 348 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb); |
349 | 349 |
} else { |
350 | 350 |
const char s = 'R'; |
351 | 351 |
CPXchgsense(cplexEnv(), _prob, 1, &i, &s); |
352 | 352 |
CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb); |
353 | 353 |
double len = ub - lb; |
354 | 354 |
CPXchgrngval(cplexEnv(), _prob, 1, &i, &len); |
355 | 355 |
} |
356 | 356 |
} |
357 | 357 |
|
358 | 358 |
void CplexBase::_setRowLowerBound(int i, Value lb) |
359 | 359 |
{ |
360 | 360 |
LEMON_ASSERT(lb != INF, "Invalid bound"); |
361 | 361 |
_set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i)); |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
void CplexBase::_setRowUpperBound(int i, Value ub) |
365 | 365 |
{ |
366 | 366 |
|
367 | 367 |
LEMON_ASSERT(ub != -INF, "Invalid bound"); |
368 | 368 |
_set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub); |
369 | 369 |
} |
370 | 370 |
|
371 | 371 |
void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e) |
372 | 372 |
{ |
373 | 373 |
std::vector<int> indices; |
374 | 374 |
std::vector<Value> values; |
375 | 375 |
for(ExprIterator it=b; it!=e; ++it) { |
376 | 376 |
indices.push_back(it->first); |
377 | 377 |
values.push_back(it->second); |
378 | 378 |
} |
379 | 379 |
CPXchgobj(cplexEnv(), _prob, values.size(), |
380 | 380 |
&indices.front(), &values.front()); |
381 | 381 |
|
382 | 382 |
} |
383 | 383 |
|
384 | 384 |
void CplexBase::_getObjCoeffs(InsertIterator b) const |
385 | 385 |
{ |
386 | 386 |
int num = CPXgetnumcols(cplexEnv(), _prob); |
387 | 387 |
std::vector<Value> x(num); |
388 | 388 |
|
389 | 389 |
CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1); |
390 | 390 |
for (int i = 0; i < num; ++i) { |
391 | 391 |
if (x[i] != 0.0) { |
392 | 392 |
*b = std::make_pair(i, x[i]); |
393 | 393 |
++b; |
394 | 394 |
} |
395 | 395 |
} |
396 | 396 |
} |
397 | 397 |
|
398 | 398 |
void CplexBase::_setObjCoeff(int i, Value obj_coef) |
399 | 399 |
{ |
400 | 400 |
CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef); |
401 | 401 |
} |
402 | 402 |
|
403 | 403 |
CplexBase::Value CplexBase::_getObjCoeff(int i) const |
404 | 404 |
{ |
405 | 405 |
Value x; |
406 | 406 |
CPXgetobj(cplexEnv(), _prob, &x, i, i); |
407 | 407 |
return x; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
void CplexBase::_setSense(CplexBase::Sense sense) { |
411 | 411 |
switch (sense) { |
412 | 412 |
case MIN: |
413 | 413 |
CPXchgobjsen(cplexEnv(), _prob, CPX_MIN); |
414 | 414 |
break; |
415 | 415 |
case MAX: |
416 | 416 |
CPXchgobjsen(cplexEnv(), _prob, CPX_MAX); |
417 | 417 |
break; |
418 | 418 |
} |
419 | 419 |
} |
420 | 420 |
|
421 | 421 |
CplexBase::Sense CplexBase::_getSense() const { |
422 | 422 |
switch (CPXgetobjsen(cplexEnv(), _prob)) { |
423 | 423 |
case CPX_MIN: |
424 | 424 |
return MIN; |
425 | 425 |
case CPX_MAX: |
426 | 426 |
return MAX; |
427 | 427 |
default: |
428 | 428 |
LEMON_ASSERT(false, "Invalid sense"); |
429 | 429 |
return CplexBase::Sense(); |
430 | 430 |
} |
431 | 431 |
} |
432 | 432 |
|
433 | 433 |
void CplexBase::_clear() { |
434 | 434 |
CPXfreeprob(cplexEnv(),&_prob); |
435 | 435 |
int status; |
436 | 436 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
437 | 437 |
rows.clear(); |
438 | 438 |
cols.clear(); |
439 | 439 |
} |
440 | 440 |
|
441 | 441 |
// CplexLp members |
442 | 442 |
|
443 | 443 |
CplexLp::CplexLp() |
444 | 444 |
: LpBase(), CplexBase(), LpSolver() {} |
445 | 445 |
|
446 | 446 |
CplexLp::CplexLp(const CplexEnv& env) |
447 | 447 |
: LpBase(), CplexBase(env), LpSolver() {} |
448 | 448 |
|
449 | 449 |
CplexLp::CplexLp(const CplexLp& other) |
450 | 450 |
: LpBase(), CplexBase(other), LpSolver() {} |
451 | 451 |
|
452 | 452 |
CplexLp::~CplexLp() {} |
453 | 453 |
|
454 |
CplexLp* CplexLp::_newSolver() const { return new CplexLp; } |
|
455 |
CplexLp* CplexLp::_cloneSolver() const {return new CplexLp(*this); } |
|
454 |
CplexLp* CplexLp::newSolver() const { return new CplexLp; } |
|
455 |
CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); } |
|
456 | 456 |
|
457 | 457 |
const char* CplexLp::_solverName() const { return "CplexLp"; } |
458 | 458 |
|
459 | 459 |
void CplexLp::_clear_temporals() { |
460 | 460 |
_col_status.clear(); |
461 | 461 |
_row_status.clear(); |
462 | 462 |
_primal_ray.clear(); |
463 | 463 |
_dual_ray.clear(); |
464 | 464 |
} |
465 | 465 |
|
466 | 466 |
// The routine returns zero unless an error occurred during the |
467 | 467 |
// optimization. Examples of errors include exhausting available |
468 | 468 |
// memory (CPXERR_NO_MEMORY) or encountering invalid data in the |
469 | 469 |
// CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a |
470 | 470 |
// user-specified CPLEX limit, or proving the model infeasible or |
471 | 471 |
// unbounded, are not considered errors. Note that a zero return |
472 | 472 |
// value does not necessarily mean that a solution exists. Use query |
473 | 473 |
// routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain |
474 | 474 |
// further information about the status of the optimization. |
475 | 475 |
CplexLp::SolveExitStatus CplexLp::convertStatus(int status) { |
476 | 476 |
#if CPX_VERSION >= 800 |
477 | 477 |
if (status == 0) { |
478 | 478 |
switch (CPXgetstat(cplexEnv(), _prob)) { |
479 | 479 |
case CPX_STAT_OPTIMAL: |
480 | 480 |
case CPX_STAT_INFEASIBLE: |
481 | 481 |
case CPX_STAT_UNBOUNDED: |
482 | 482 |
return SOLVED; |
483 | 483 |
default: |
484 | 484 |
return UNSOLVED; |
485 | 485 |
} |
486 | 486 |
} else { |
487 | 487 |
return UNSOLVED; |
488 | 488 |
} |
489 | 489 |
#else |
490 | 490 |
if (status == 0) { |
491 | 491 |
//We want to exclude some cases |
492 | 492 |
switch (CPXgetstat(cplexEnv(), _prob)) { |
493 | 493 |
case CPX_OBJ_LIM: |
494 | 494 |
case CPX_IT_LIM_FEAS: |
495 | 495 |
case CPX_IT_LIM_INFEAS: |
496 | 496 |
case CPX_TIME_LIM_FEAS: |
497 | 497 |
case CPX_TIME_LIM_INFEAS: |
498 | 498 |
return UNSOLVED; |
499 | 499 |
default: |
500 | 500 |
return SOLVED; |
501 | 501 |
} |
502 | 502 |
} else { |
503 | 503 |
return UNSOLVED; |
504 | 504 |
} |
505 | 505 |
#endif |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
CplexLp::SolveExitStatus CplexLp::_solve() { |
509 | 509 |
_clear_temporals(); |
510 | 510 |
return convertStatus(CPXlpopt(cplexEnv(), _prob)); |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
CplexLp::SolveExitStatus CplexLp::solvePrimal() { |
514 | 514 |
_clear_temporals(); |
515 | 515 |
return convertStatus(CPXprimopt(cplexEnv(), _prob)); |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
CplexLp::SolveExitStatus CplexLp::solveDual() { |
519 | 519 |
_clear_temporals(); |
520 | 520 |
return convertStatus(CPXdualopt(cplexEnv(), _prob)); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
CplexLp::SolveExitStatus CplexLp::solveBarrier() { |
524 | 524 |
_clear_temporals(); |
525 | 525 |
return convertStatus(CPXbaropt(cplexEnv(), _prob)); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
CplexLp::Value CplexLp::_getPrimal(int i) const { |
529 | 529 |
Value x; |
530 | 530 |
CPXgetx(cplexEnv(), _prob, &x, i, i); |
531 | 531 |
return x; |
532 | 532 |
} |
533 | 533 |
|
534 | 534 |
CplexLp::Value CplexLp::_getDual(int i) const { |
535 | 535 |
Value y; |
536 | 536 |
CPXgetpi(cplexEnv(), _prob, &y, i, i); |
537 | 537 |
return y; |
538 | 538 |
} |
539 | 539 |
|
540 | 540 |
CplexLp::Value CplexLp::_getPrimalValue() const { |
541 | 541 |
Value objval; |
542 | 542 |
CPXgetobjval(cplexEnv(), _prob, &objval); |
543 | 543 |
return objval; |
544 | 544 |
} |
545 | 545 |
|
546 | 546 |
CplexLp::VarStatus CplexLp::_getColStatus(int i) const { |
547 | 547 |
if (_col_status.empty()) { |
548 | 548 |
_col_status.resize(CPXgetnumcols(cplexEnv(), _prob)); |
549 | 549 |
CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0); |
550 | 550 |
} |
551 | 551 |
switch (_col_status[i]) { |
552 | 552 |
case CPX_BASIC: |
553 | 553 |
return BASIC; |
554 | 554 |
case CPX_FREE_SUPER: |
555 | 555 |
return FREE; |
556 | 556 |
case CPX_AT_LOWER: |
557 | 557 |
return LOWER; |
558 | 558 |
case CPX_AT_UPPER: |
559 | 559 |
return UPPER; |
560 | 560 |
default: |
561 | 561 |
LEMON_ASSERT(false, "Wrong column status"); |
562 | 562 |
return CplexLp::VarStatus(); |
563 | 563 |
} |
564 | 564 |
} |
565 | 565 |
|
566 | 566 |
CplexLp::VarStatus CplexLp::_getRowStatus(int i) const { |
567 | 567 |
if (_row_status.empty()) { |
568 | 568 |
_row_status.resize(CPXgetnumrows(cplexEnv(), _prob)); |
569 | 569 |
CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front()); |
570 | 570 |
} |
571 | 571 |
switch (_row_status[i]) { |
572 | 572 |
case CPX_BASIC: |
573 | 573 |
return BASIC; |
574 | 574 |
case CPX_AT_LOWER: |
575 | 575 |
{ |
576 | 576 |
char s; |
577 | 577 |
CPXgetsense(cplexEnv(), _prob, &s, i, i); |
578 | 578 |
return s != 'L' ? LOWER : UPPER; |
579 | 579 |
} |
580 | 580 |
case CPX_AT_UPPER: |
581 | 581 |
return UPPER; |
582 | 582 |
default: |
583 | 583 |
LEMON_ASSERT(false, "Wrong row status"); |
584 | 584 |
return CplexLp::VarStatus(); |
585 | 585 |
} |
586 | 586 |
} |
587 | 587 |
|
588 | 588 |
CplexLp::Value CplexLp::_getPrimalRay(int i) const { |
589 | 589 |
if (_primal_ray.empty()) { |
590 | 590 |
_primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob)); |
591 | 591 |
CPXgetray(cplexEnv(), _prob, &_primal_ray.front()); |
592 | 592 |
} |
593 | 593 |
return _primal_ray[i]; |
594 | 594 |
} |
595 | 595 |
|
596 | 596 |
CplexLp::Value CplexLp::_getDualRay(int i) const { |
597 | 597 |
if (_dual_ray.empty()) { |
598 | 598 |
|
599 | 599 |
} |
600 | 600 |
return _dual_ray[i]; |
601 | 601 |
} |
602 | 602 |
|
603 | 603 |
//7.5-os cplex statusai (Vigyazat: a 9.0-asei masok!) |
604 | 604 |
// This table lists the statuses, returned by the CPXgetstat() |
605 | 605 |
// routine, for solutions to LP problems or mixed integer problems. If |
606 | 606 |
// no solution exists, the return value is zero. |
607 | 607 |
|
608 | 608 |
// For Simplex, Barrier |
609 | 609 |
// 1 CPX_OPTIMAL |
610 | 610 |
// Optimal solution found |
611 | 611 |
// 2 CPX_INFEASIBLE |
612 | 612 |
// Problem infeasible |
613 | 613 |
// 3 CPX_UNBOUNDED |
614 | 614 |
// Problem unbounded |
615 | 615 |
// 4 CPX_OBJ_LIM |
616 | 616 |
// Objective limit exceeded in Phase II |
617 | 617 |
// 5 CPX_IT_LIM_FEAS |
618 | 618 |
// Iteration limit exceeded in Phase II |
619 | 619 |
// 6 CPX_IT_LIM_INFEAS |
620 | 620 |
// Iteration limit exceeded in Phase I |
621 | 621 |
// 7 CPX_TIME_LIM_FEAS |
622 | 622 |
// Time limit exceeded in Phase II |
623 | 623 |
// 8 CPX_TIME_LIM_INFEAS |
624 | 624 |
// Time limit exceeded in Phase I |
625 | 625 |
// 9 CPX_NUM_BEST_FEAS |
626 | 626 |
// Problem non-optimal, singularities in Phase II |
627 | 627 |
// 10 CPX_NUM_BEST_INFEAS |
628 | 628 |
// Problem non-optimal, singularities in Phase I |
629 | 629 |
// 11 CPX_OPTIMAL_INFEAS |
630 | 630 |
// Optimal solution found, unscaled infeasibilities |
631 | 631 |
// 12 CPX_ABORT_FEAS |
632 | 632 |
// Aborted in Phase II |
633 | 633 |
// 13 CPX_ABORT_INFEAS |
634 | 634 |
// Aborted in Phase I |
635 | 635 |
// 14 CPX_ABORT_DUAL_INFEAS |
636 | 636 |
// Aborted in barrier, dual infeasible |
637 | 637 |
// 15 CPX_ABORT_PRIM_INFEAS |
638 | 638 |
// Aborted in barrier, primal infeasible |
639 | 639 |
// 16 CPX_ABORT_PRIM_DUAL_INFEAS |
640 | 640 |
// Aborted in barrier, primal and dual infeasible |
641 | 641 |
// 17 CPX_ABORT_PRIM_DUAL_FEAS |
642 | 642 |
// Aborted in barrier, primal and dual feasible |
643 | 643 |
// 18 CPX_ABORT_CROSSOVER |
644 | 644 |
// Aborted in crossover |
645 | 645 |
// 19 CPX_INForUNBD |
646 | 646 |
// Infeasible or unbounded |
647 | 647 |
// 20 CPX_PIVOT |
648 | 648 |
// User pivot used |
649 | 649 |
// |
650 | 650 |
// Ezeket hova tegyem: |
651 | 651 |
// ??case CPX_ABORT_DUAL_INFEAS |
652 | 652 |
// ??case CPX_ABORT_CROSSOVER |
653 | 653 |
// ??case CPX_INForUNBD |
654 | 654 |
// ??case CPX_PIVOT |
655 | 655 |
|
656 | 656 |
//Some more interesting stuff: |
657 | 657 |
|
658 | 658 |
// CPX_PARAM_PROBMETHOD 1062 int LPMETHOD |
659 | 659 |
// 0 Automatic |
660 | 660 |
// 1 Primal Simplex |
661 | 661 |
// 2 Dual Simplex |
662 | 662 |
// 3 Network Simplex |
663 | 663 |
// 4 Standard Barrier |
664 | 664 |
// Default: 0 |
665 | 665 |
// Description: Method for linear optimization. |
666 | 666 |
// Determines which algorithm is used when CPXlpopt() (or "optimize" |
667 | 667 |
// in the Interactive Optimizer) is called. Currently the behavior of |
668 | 668 |
// the "Automatic" setting is that CPLEX simply invokes the dual |
669 | 669 |
// simplex method, but this capability may be expanded in the future |
670 | 670 |
// so that CPLEX chooses the method based on problem characteristics |
671 | 671 |
#if CPX_VERSION < 900 |
672 | 672 |
void statusSwitch(CPXENVptr cplexEnv(),int& stat){ |
673 | 673 |
int lpmethod; |
674 | 674 |
CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod); |
675 | 675 |
if (lpmethod==2){ |
676 | 676 |
if (stat==CPX_UNBOUNDED){ |
677 | 677 |
stat=CPX_INFEASIBLE; |
678 | 678 |
} |
679 | 679 |
else{ |
680 | 680 |
if (stat==CPX_INFEASIBLE) |
681 | 681 |
stat=CPX_UNBOUNDED; |
682 | 682 |
} |
683 | 683 |
} |
684 | 684 |
} |
685 | 685 |
#else |
686 | 686 |
void statusSwitch(CPXENVptr,int&){} |
687 | 687 |
#endif |
688 | 688 |
|
689 | 689 |
CplexLp::ProblemType CplexLp::_getPrimalType() const { |
690 | 690 |
// Unboundedness not treated well: the following is from cplex 9.0 doc |
691 | 691 |
// About Unboundedness |
692 | 692 |
|
693 | 693 |
// The treatment of models that are unbounded involves a few |
694 | 694 |
// subtleties. Specifically, a declaration of unboundedness means that |
695 | 695 |
// ILOG CPLEX has determined that the model has an unbounded |
696 | 696 |
// ray. Given any feasible solution x with objective z, a multiple of |
697 | 697 |
// the unbounded ray can be added to x to give a feasible solution |
698 | 698 |
// with objective z-1 (or z+1 for maximization models). Thus, if a |
699 | 699 |
// feasible solution exists, then the optimal objective is |
700 | 700 |
// unbounded. Note that ILOG CPLEX has not necessarily concluded that |
701 | 701 |
// a feasible solution exists. Users can call the routine CPXsolninfo |
702 | 702 |
// to determine whether ILOG CPLEX has also concluded that the model |
703 | 703 |
// has a feasible solution. |
704 | 704 |
|
705 | 705 |
int stat = CPXgetstat(cplexEnv(), _prob); |
706 | 706 |
#if CPX_VERSION >= 800 |
707 | 707 |
switch (stat) |
708 | 708 |
{ |
709 | 709 |
case CPX_STAT_OPTIMAL: |
710 | 710 |
return OPTIMAL; |
711 | 711 |
case CPX_STAT_UNBOUNDED: |
712 | 712 |
return UNBOUNDED; |
713 | 713 |
case CPX_STAT_INFEASIBLE: |
714 | 714 |
return INFEASIBLE; |
715 | 715 |
default: |
716 | 716 |
return UNDEFINED; |
717 | 717 |
} |
718 | 718 |
#else |
719 | 719 |
statusSwitch(cplexEnv(),stat); |
720 | 720 |
//CPXgetstat(cplexEnv(), _prob); |
721 | 721 |
//printf("A primal status: %d, CPX_OPTIMAL=%d \n",stat,CPX_OPTIMAL); |
722 | 722 |
switch (stat) { |
723 | 723 |
case 0: |
724 | 724 |
return UNDEFINED; //Undefined |
725 | 725 |
case CPX_OPTIMAL://Optimal |
726 | 726 |
return OPTIMAL; |
727 | 727 |
case CPX_UNBOUNDED://Unbounded |
728 | 728 |
return INFEASIBLE;//In case of dual simplex |
729 | 729 |
//return UNBOUNDED; |
730 | 730 |
case CPX_INFEASIBLE://Infeasible |
731 | 731 |
// case CPX_IT_LIM_INFEAS: |
732 | 732 |
// case CPX_TIME_LIM_INFEAS: |
733 | 733 |
// case CPX_NUM_BEST_INFEAS: |
734 | 734 |
// case CPX_OPTIMAL_INFEAS: |
735 | 735 |
// case CPX_ABORT_INFEAS: |
736 | 736 |
// case CPX_ABORT_PRIM_INFEAS: |
737 | 737 |
// case CPX_ABORT_PRIM_DUAL_INFEAS: |
738 | 738 |
return UNBOUNDED;//In case of dual simplex |
739 | 739 |
//return INFEASIBLE; |
740 | 740 |
// case CPX_OBJ_LIM: |
741 | 741 |
// case CPX_IT_LIM_FEAS: |
742 | 742 |
// case CPX_TIME_LIM_FEAS: |
743 | 743 |
// case CPX_NUM_BEST_FEAS: |
744 | 744 |
// case CPX_ABORT_FEAS: |
745 | 745 |
// case CPX_ABORT_PRIM_DUAL_FEAS: |
746 | 746 |
// return FEASIBLE; |
747 | 747 |
default: |
748 | 748 |
return UNDEFINED; //Everything else comes here |
749 | 749 |
//FIXME error |
750 | 750 |
} |
751 | 751 |
#endif |
752 | 752 |
} |
753 | 753 |
|
754 | 754 |
//9.0-as cplex verzio statusai |
755 | 755 |
// CPX_STAT_ABORT_DUAL_OBJ_LIM |
756 | 756 |
// CPX_STAT_ABORT_IT_LIM |
757 | 757 |
// CPX_STAT_ABORT_OBJ_LIM |
758 | 758 |
// CPX_STAT_ABORT_PRIM_OBJ_LIM |
759 | 759 |
// CPX_STAT_ABORT_TIME_LIM |
760 | 760 |
// CPX_STAT_ABORT_USER |
761 | 761 |
// CPX_STAT_FEASIBLE_RELAXED |
762 | 762 |
// CPX_STAT_INFEASIBLE |
763 | 763 |
// CPX_STAT_INForUNBD |
764 | 764 |
// CPX_STAT_NUM_BEST |
765 | 765 |
// CPX_STAT_OPTIMAL |
766 | 766 |
// CPX_STAT_OPTIMAL_FACE_UNBOUNDED |
767 | 767 |
// CPX_STAT_OPTIMAL_INFEAS |
768 | 768 |
// CPX_STAT_OPTIMAL_RELAXED |
769 | 769 |
// CPX_STAT_UNBOUNDED |
770 | 770 |
|
771 | 771 |
CplexLp::ProblemType CplexLp::_getDualType() const { |
772 | 772 |
int stat = CPXgetstat(cplexEnv(), _prob); |
773 | 773 |
#if CPX_VERSION >= 800 |
774 | 774 |
switch (stat) { |
775 | 775 |
case CPX_STAT_OPTIMAL: |
776 | 776 |
return OPTIMAL; |
777 | 777 |
case CPX_STAT_UNBOUNDED: |
778 | 778 |
return INFEASIBLE; |
779 | 779 |
default: |
780 | 780 |
return UNDEFINED; |
781 | 781 |
} |
782 | 782 |
#else |
783 | 783 |
statusSwitch(cplexEnv(),stat); |
784 | 784 |
switch (stat) { |
785 | 785 |
case 0: |
786 | 786 |
return UNDEFINED; //Undefined |
787 | 787 |
case CPX_OPTIMAL://Optimal |
788 | 788 |
return OPTIMAL; |
789 | 789 |
case CPX_UNBOUNDED: |
790 | 790 |
return INFEASIBLE; |
791 | 791 |
default: |
792 | 792 |
return UNDEFINED; //Everything else comes here |
793 | 793 |
//FIXME error |
794 | 794 |
} |
795 | 795 |
#endif |
796 | 796 |
} |
797 | 797 |
|
798 | 798 |
// CplexMip members |
799 | 799 |
|
800 | 800 |
CplexMip::CplexMip() |
801 | 801 |
: LpBase(), CplexBase(), MipSolver() { |
802 | 802 |
|
803 | 803 |
#if CPX_VERSION < 800 |
804 | 804 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MIP); |
805 | 805 |
#else |
806 | 806 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MILP); |
807 | 807 |
#endif |
808 | 808 |
} |
809 | 809 |
|
810 | 810 |
CplexMip::CplexMip(const CplexEnv& env) |
811 | 811 |
: LpBase(), CplexBase(env), MipSolver() { |
812 | 812 |
|
813 | 813 |
#if CPX_VERSION < 800 |
814 | 814 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MIP); |
815 | 815 |
#else |
816 | 816 |
CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MILP); |
817 | 817 |
#endif |
818 | 818 |
|
819 | 819 |
} |
820 | 820 |
|
821 | 821 |
CplexMip::CplexMip(const CplexMip& other) |
822 | 822 |
: LpBase(), CplexBase(other), MipSolver() {} |
823 | 823 |
|
824 | 824 |
CplexMip::~CplexMip() {} |
825 | 825 |
|
826 |
CplexMip* CplexMip::_newSolver() const { return new CplexMip; } |
|
827 |
CplexMip* CplexMip::_cloneSolver() const {return new CplexMip(*this); } |
|
826 |
CplexMip* CplexMip::newSolver() const { return new CplexMip; } |
|
827 |
CplexMip* CplexMip::cloneSolver() const {return new CplexMip(*this); } |
|
828 | 828 |
|
829 | 829 |
const char* CplexMip::_solverName() const { return "CplexMip"; } |
830 | 830 |
|
831 | 831 |
void CplexMip::_setColType(int i, CplexMip::ColTypes col_type) { |
832 | 832 |
|
833 | 833 |
// Note If a variable is to be changed to binary, a call to CPXchgbds |
834 | 834 |
// should also be made to change the bounds to 0 and 1. |
835 | 835 |
|
836 | 836 |
switch (col_type){ |
837 | 837 |
case INTEGER: { |
838 | 838 |
const char t = 'I'; |
839 | 839 |
CPXchgctype (cplexEnv(), _prob, 1, &i, &t); |
840 | 840 |
} break; |
841 | 841 |
case REAL: { |
842 | 842 |
const char t = 'C'; |
843 | 843 |
CPXchgctype (cplexEnv(), _prob, 1, &i, &t); |
844 | 844 |
} break; |
845 | 845 |
default: |
846 | 846 |
break; |
847 | 847 |
} |
848 | 848 |
} |
849 | 849 |
|
850 | 850 |
CplexMip::ColTypes CplexMip::_getColType(int i) const { |
851 | 851 |
char t; |
852 | 852 |
CPXgetctype (cplexEnv(), _prob, &t, i, i); |
853 | 853 |
switch (t) { |
854 | 854 |
case 'I': |
855 | 855 |
return INTEGER; |
856 | 856 |
case 'C': |
857 | 857 |
return REAL; |
858 | 858 |
default: |
859 | 859 |
LEMON_ASSERT(false, "Invalid column type"); |
860 | 860 |
return ColTypes(); |
861 | 861 |
} |
862 | 862 |
|
863 | 863 |
} |
864 | 864 |
|
865 | 865 |
CplexMip::SolveExitStatus CplexMip::_solve() { |
866 | 866 |
int status; |
867 | 867 |
status = CPXmipopt (cplexEnv(), _prob); |
868 | 868 |
if (status==0) |
869 | 869 |
return SOLVED; |
870 | 870 |
else |
871 | 871 |
return UNSOLVED; |
872 | 872 |
|
873 | 873 |
} |
874 | 874 |
|
875 | 875 |
|
876 | 876 |
CplexMip::ProblemType CplexMip::_getType() const { |
877 | 877 |
|
878 | 878 |
int stat = CPXgetstat(cplexEnv(), _prob); |
879 | 879 |
|
880 | 880 |
//Fortunately, MIP statuses did not change for cplex 8.0 |
881 | 881 |
switch (stat) { |
882 | 882 |
case CPXMIP_OPTIMAL: |
883 | 883 |
// Optimal integer solution has been found. |
884 | 884 |
case CPXMIP_OPTIMAL_TOL: |
885 | 885 |
// Optimal soluton with the tolerance defined by epgap or epagap has |
886 | 886 |
// been found. |
887 | 887 |
return OPTIMAL; |
888 | 888 |
//This also exists in later issues |
889 | 889 |
// case CPXMIP_UNBOUNDED: |
890 | 890 |
//return UNBOUNDED; |
891 | 891 |
case CPXMIP_INFEASIBLE: |
892 | 892 |
return INFEASIBLE; |
893 | 893 |
default: |
894 | 894 |
return UNDEFINED; |
895 | 895 |
} |
896 | 896 |
//Unboundedness not treated well: the following is from cplex 9.0 doc |
897 | 897 |
// About Unboundedness |
898 | 898 |
|
899 | 899 |
// The treatment of models that are unbounded involves a few |
900 | 900 |
// subtleties. Specifically, a declaration of unboundedness means that |
901 | 901 |
// ILOG CPLEX has determined that the model has an unbounded |
902 | 902 |
// ray. Given any feasible solution x with objective z, a multiple of |
903 | 903 |
// the unbounded ray can be added to x to give a feasible solution |
904 | 904 |
// with objective z-1 (or z+1 for maximization models). Thus, if a |
905 | 905 |
// feasible solution exists, then the optimal objective is |
906 | 906 |
// unbounded. Note that ILOG CPLEX has not necessarily concluded that |
907 | 907 |
// a feasible solution exists. Users can call the routine CPXsolninfo |
908 | 908 |
// to determine whether ILOG CPLEX has also concluded that the model |
909 | 909 |
// has a feasible solution. |
910 | 910 |
} |
911 | 911 |
|
912 | 912 |
CplexMip::Value CplexMip::_getSol(int i) const { |
913 | 913 |
Value x; |
914 | 914 |
CPXgetmipx(cplexEnv(), _prob, &x, i, i); |
915 | 915 |
return x; |
916 | 916 |
} |
917 | 917 |
|
918 | 918 |
CplexMip::Value CplexMip::_getSolValue() const { |
919 | 919 |
Value objval; |
920 | 920 |
CPXgetmipobjval(cplexEnv(), _prob, &objval); |
921 | 921 |
return objval; |
922 | 922 |
} |
923 | 923 |
|
924 | 924 |
} //namespace lemon |
925 | 925 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CPLEX_H |
20 | 20 |
#define LEMON_CPLEX_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-CPLEX lp solver interface. |
24 | 24 |
|
25 | 25 |
#include <lemon/lp_base.h> |
26 | 26 |
|
27 | 27 |
struct cpxenv; |
28 | 28 |
struct cpxlp; |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Reference counted wrapper around cpxenv pointer |
33 | 33 |
/// |
34 | 34 |
/// The cplex uses environment object which is responsible for |
35 | 35 |
/// checking the proper license usage. This class provides a simple |
36 | 36 |
/// interface for share the environment object between different |
37 | 37 |
/// problems. |
38 | 38 |
class CplexEnv { |
39 | 39 |
friend class CplexBase; |
40 | 40 |
private: |
41 | 41 |
cpxenv* _env; |
42 | 42 |
mutable int* _cnt; |
43 | 43 |
|
44 | 44 |
public: |
45 | 45 |
|
46 | 46 |
/// \brief This exception is thrown when the license check is not |
47 | 47 |
/// sufficient |
48 | 48 |
class LicenseError : public Exception { |
49 | 49 |
friend class CplexEnv; |
50 | 50 |
private: |
51 | 51 |
|
52 | 52 |
LicenseError(int status); |
53 | 53 |
char _message[510]; |
54 | 54 |
|
55 | 55 |
public: |
56 | 56 |
|
57 | 57 |
/// The short error message |
58 | 58 |
virtual const char* what() const throw() { |
59 | 59 |
return _message; |
60 | 60 |
} |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
/// Constructor |
64 | 64 |
CplexEnv(); |
65 | 65 |
/// Shallow copy constructor |
66 | 66 |
CplexEnv(const CplexEnv&); |
67 | 67 |
/// Shallow assignement |
68 | 68 |
CplexEnv& operator=(const CplexEnv&); |
69 | 69 |
/// Destructor |
70 | 70 |
virtual ~CplexEnv(); |
71 | 71 |
|
72 | 72 |
protected: |
73 | 73 |
|
74 | 74 |
cpxenv* cplexEnv() { return _env; } |
75 | 75 |
const cpxenv* cplexEnv() const { return _env; } |
76 | 76 |
}; |
77 | 77 |
|
78 | 78 |
/// \brief Base interface for the CPLEX LP and MIP solver |
79 | 79 |
/// |
80 | 80 |
/// This class implements the common interface of the CPLEX LP and |
81 | 81 |
/// MIP solvers. |
82 | 82 |
/// \ingroup lp_group |
83 | 83 |
class CplexBase : virtual public LpBase { |
84 | 84 |
protected: |
85 | 85 |
|
86 | 86 |
CplexEnv _env; |
87 | 87 |
cpxlp* _prob; |
88 | 88 |
|
89 | 89 |
CplexBase(); |
90 | 90 |
CplexBase(const CplexEnv&); |
91 | 91 |
CplexBase(const CplexBase &); |
92 | 92 |
virtual ~CplexBase(); |
93 | 93 |
|
94 | 94 |
virtual int _addCol(); |
95 | 95 |
virtual int _addRow(); |
96 | 96 |
|
97 | 97 |
virtual void _eraseCol(int i); |
98 | 98 |
virtual void _eraseRow(int i); |
99 | 99 |
|
100 | 100 |
virtual void _eraseColId(int i); |
101 | 101 |
virtual void _eraseRowId(int i); |
102 | 102 |
|
103 | 103 |
virtual void _getColName(int col, std::string& name) const; |
104 | 104 |
virtual void _setColName(int col, const std::string& name); |
105 | 105 |
virtual int _colByName(const std::string& name) const; |
106 | 106 |
|
107 | 107 |
virtual void _getRowName(int row, std::string& name) const; |
108 | 108 |
virtual void _setRowName(int row, const std::string& name); |
109 | 109 |
virtual int _rowByName(const std::string& name) const; |
110 | 110 |
|
111 | 111 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
112 | 112 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
113 | 113 |
|
114 | 114 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
115 | 115 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
116 | 116 |
|
117 | 117 |
virtual void _setCoeff(int row, int col, Value value); |
118 | 118 |
virtual Value _getCoeff(int row, int col) const; |
119 | 119 |
|
120 | 120 |
virtual void _setColLowerBound(int i, Value value); |
121 | 121 |
virtual Value _getColLowerBound(int i) const; |
122 | 122 |
|
123 | 123 |
virtual void _setColUpperBound(int i, Value value); |
124 | 124 |
virtual Value _getColUpperBound(int i) const; |
125 | 125 |
|
126 | 126 |
private: |
127 | 127 |
void _set_row_bounds(int i, Value lb, Value ub); |
128 | 128 |
protected: |
129 | 129 |
|
130 | 130 |
virtual void _setRowLowerBound(int i, Value value); |
131 | 131 |
virtual Value _getRowLowerBound(int i) const; |
132 | 132 |
|
133 | 133 |
virtual void _setRowUpperBound(int i, Value value); |
134 | 134 |
virtual Value _getRowUpperBound(int i) const; |
135 | 135 |
|
136 | 136 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
137 | 137 |
virtual void _getObjCoeffs(InsertIterator b) const; |
138 | 138 |
|
139 | 139 |
virtual void _setObjCoeff(int i, Value obj_coef); |
140 | 140 |
virtual Value _getObjCoeff(int i) const; |
141 | 141 |
|
142 | 142 |
virtual void _setSense(Sense sense); |
143 | 143 |
virtual Sense _getSense() const; |
144 | 144 |
|
145 | 145 |
virtual void _clear(); |
146 | 146 |
|
147 | 147 |
public: |
148 | 148 |
|
149 | 149 |
/// Returns the used \c CplexEnv instance |
150 | 150 |
const CplexEnv& env() const { return _env; } |
151 | 151 |
/// |
152 | 152 |
const cpxenv* cplexEnv() const { return _env.cplexEnv(); } |
153 | 153 |
|
154 | 154 |
cpxlp* cplexLp() { return _prob; } |
155 | 155 |
const cpxlp* cplexLp() const { return _prob; } |
156 | 156 |
|
157 | 157 |
}; |
158 | 158 |
|
159 | 159 |
/// \brief Interface for the CPLEX LP solver |
160 | 160 |
/// |
161 | 161 |
/// This class implements an interface for the CPLEX LP solver. |
162 | 162 |
///\ingroup lp_group |
163 |
class CplexLp : public |
|
163 |
class CplexLp : public LpSolver, public CplexBase { |
|
164 | 164 |
public: |
165 | 165 |
/// \e |
166 | 166 |
CplexLp(); |
167 | 167 |
/// \e |
168 | 168 |
CplexLp(const CplexEnv&); |
169 | 169 |
/// \e |
170 | 170 |
CplexLp(const CplexLp&); |
171 | 171 |
/// \e |
172 | 172 |
virtual ~CplexLp(); |
173 | 173 |
|
174 |
/// \e |
|
175 |
virtual CplexLp* cloneSolver() const; |
|
176 |
/// \e |
|
177 |
virtual CplexLp* newSolver() const; |
|
178 |
|
|
174 | 179 |
private: |
175 | 180 |
|
176 | 181 |
// these values cannot retrieved element by element |
177 | 182 |
mutable std::vector<int> _col_status; |
178 | 183 |
mutable std::vector<int> _row_status; |
179 | 184 |
|
180 | 185 |
mutable std::vector<Value> _primal_ray; |
181 | 186 |
mutable std::vector<Value> _dual_ray; |
182 | 187 |
|
183 | 188 |
void _clear_temporals(); |
184 | 189 |
|
185 | 190 |
SolveExitStatus convertStatus(int status); |
186 | 191 |
|
187 | 192 |
protected: |
188 | 193 |
|
189 |
virtual CplexLp* _cloneSolver() const; |
|
190 |
virtual CplexLp* _newSolver() const; |
|
191 |
|
|
192 | 194 |
virtual const char* _solverName() const; |
193 | 195 |
|
194 | 196 |
virtual SolveExitStatus _solve(); |
195 | 197 |
virtual Value _getPrimal(int i) const; |
196 | 198 |
virtual Value _getDual(int i) const; |
197 | 199 |
virtual Value _getPrimalValue() const; |
198 | 200 |
|
199 | 201 |
virtual VarStatus _getColStatus(int i) const; |
200 | 202 |
virtual VarStatus _getRowStatus(int i) const; |
201 | 203 |
|
202 | 204 |
virtual Value _getPrimalRay(int i) const; |
203 | 205 |
virtual Value _getDualRay(int i) const; |
204 | 206 |
|
205 | 207 |
virtual ProblemType _getPrimalType() const; |
206 | 208 |
virtual ProblemType _getDualType() const; |
207 | 209 |
|
208 | 210 |
public: |
209 | 211 |
|
210 | 212 |
/// Solve with primal simplex method |
211 | 213 |
SolveExitStatus solvePrimal(); |
212 | 214 |
|
213 | 215 |
/// Solve with dual simplex method |
214 | 216 |
SolveExitStatus solveDual(); |
215 | 217 |
|
216 | 218 |
/// Solve with barrier method |
217 | 219 |
SolveExitStatus solveBarrier(); |
218 | 220 |
|
219 | 221 |
}; |
220 | 222 |
|
221 | 223 |
/// \brief Interface for the CPLEX MIP solver |
222 | 224 |
/// |
223 | 225 |
/// This class implements an interface for the CPLEX MIP solver. |
224 | 226 |
///\ingroup lp_group |
225 |
class CplexMip : public |
|
227 |
class CplexMip : public MipSolver, public CplexBase { |
|
226 | 228 |
public: |
227 | 229 |
/// \e |
228 | 230 |
CplexMip(); |
229 | 231 |
/// \e |
230 | 232 |
CplexMip(const CplexEnv&); |
231 | 233 |
/// \e |
232 | 234 |
CplexMip(const CplexMip&); |
233 | 235 |
/// \e |
234 | 236 |
virtual ~CplexMip(); |
235 | 237 |
|
236 | 238 |
protected: |
237 | 239 |
|
238 | 240 |
virtual CplexMip* _cloneSolver() const; |
239 | 241 |
virtual CplexMip* _newSolver() const; |
240 | 242 |
|
241 | 243 |
virtual const char* _solverName() const; |
242 | 244 |
|
243 | 245 |
virtual ColTypes _getColType(int col) const; |
244 | 246 |
virtual void _setColType(int col, ColTypes col_type); |
245 | 247 |
|
246 | 248 |
virtual SolveExitStatus _solve(); |
247 | 249 |
virtual ProblemType _getType() const; |
248 | 250 |
virtual Value _getSol(int i) const; |
249 | 251 |
virtual Value _getSolValue() const; |
250 | 252 |
|
251 | 253 |
}; |
252 | 254 |
|
253 | 255 |
} //END OF NAMESPACE LEMON |
254 | 256 |
|
255 | 257 |
#endif //LEMON_CPLEX_H |
256 | 258 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Implementation of the LEMON GLPK LP and MIP solver interface. |
21 | 21 |
|
22 | 22 |
#include <lemon/glpk.h> |
23 | 23 |
#include <glpk.h> |
24 | 24 |
|
25 | 25 |
#include <lemon/assert.h> |
26 | 26 |
|
27 | 27 |
namespace lemon { |
28 | 28 |
|
29 | 29 |
// GlpkBase members |
30 | 30 |
|
31 | 31 |
GlpkBase::GlpkBase() : LpBase() { |
32 | 32 |
lp = glp_create_prob(); |
33 | 33 |
glp_create_index(lp); |
34 | 34 |
} |
35 | 35 |
|
36 | 36 |
GlpkBase::GlpkBase(const GlpkBase &other) : LpBase() { |
37 | 37 |
lp = glp_create_prob(); |
38 | 38 |
glp_copy_prob(lp, other.lp, GLP_ON); |
39 | 39 |
glp_create_index(lp); |
40 | 40 |
rows = other.rows; |
41 | 41 |
cols = other.cols; |
42 | 42 |
} |
43 | 43 |
|
44 | 44 |
GlpkBase::~GlpkBase() { |
45 | 45 |
glp_delete_prob(lp); |
46 | 46 |
} |
47 | 47 |
|
48 | 48 |
int GlpkBase::_addCol() { |
49 | 49 |
int i = glp_add_cols(lp, 1); |
50 | 50 |
glp_set_col_bnds(lp, i, GLP_FR, 0.0, 0.0); |
51 | 51 |
return i; |
52 | 52 |
} |
53 | 53 |
|
54 | 54 |
int GlpkBase::_addRow() { |
55 | 55 |
int i = glp_add_rows(lp, 1); |
56 | 56 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
57 | 57 |
return i; |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
void GlpkBase::_eraseCol(int i) { |
61 | 61 |
int ca[2]; |
62 | 62 |
ca[1] = i; |
63 | 63 |
glp_del_cols(lp, 1, ca); |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
void GlpkBase::_eraseRow(int i) { |
67 | 67 |
int ra[2]; |
68 | 68 |
ra[1] = i; |
69 | 69 |
glp_del_rows(lp, 1, ra); |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
void GlpkBase::_eraseColId(int i) { |
73 | 73 |
cols.eraseIndex(i); |
74 | 74 |
cols.shiftIndices(i); |
75 | 75 |
} |
76 | 76 |
|
77 | 77 |
void GlpkBase::_eraseRowId(int i) { |
78 | 78 |
rows.eraseIndex(i); |
79 | 79 |
rows.shiftIndices(i); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
void GlpkBase::_getColName(int c, std::string& name) const { |
83 | 83 |
const char *str = glp_get_col_name(lp, c); |
84 | 84 |
if (str) name = str; |
85 | 85 |
else name.clear(); |
86 | 86 |
} |
87 | 87 |
|
88 | 88 |
void GlpkBase::_setColName(int c, const std::string & name) { |
89 | 89 |
glp_set_col_name(lp, c, const_cast<char*>(name.c_str())); |
90 | 90 |
|
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
int GlpkBase::_colByName(const std::string& name) const { |
94 | 94 |
int k = glp_find_col(lp, const_cast<char*>(name.c_str())); |
95 | 95 |
return k > 0 ? k : -1; |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
void GlpkBase::_getRowName(int r, std::string& name) const { |
99 | 99 |
const char *str = glp_get_row_name(lp, r); |
100 | 100 |
if (str) name = str; |
101 | 101 |
else name.clear(); |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
void GlpkBase::_setRowName(int r, const std::string & name) { |
105 | 105 |
glp_set_row_name(lp, r, const_cast<char*>(name.c_str())); |
106 | 106 |
|
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
int GlpkBase::_rowByName(const std::string& name) const { |
110 | 110 |
int k = glp_find_row(lp, const_cast<char*>(name.c_str())); |
111 | 111 |
return k > 0 ? k : -1; |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
void GlpkBase::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) { |
115 | 115 |
std::vector<int> indexes; |
116 | 116 |
std::vector<Value> values; |
117 | 117 |
|
118 | 118 |
indexes.push_back(0); |
119 | 119 |
values.push_back(0); |
120 | 120 |
|
121 | 121 |
for(ExprIterator it = b; it != e; ++it) { |
122 | 122 |
indexes.push_back(it->first); |
123 | 123 |
values.push_back(it->second); |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
glp_set_mat_row(lp, i, values.size() - 1, |
127 | 127 |
&indexes.front(), &values.front()); |
128 | 128 |
} |
129 | 129 |
|
130 | 130 |
void GlpkBase::_getRowCoeffs(int ix, InsertIterator b) const { |
131 | 131 |
int length = glp_get_mat_row(lp, ix, 0, 0); |
132 | 132 |
|
133 | 133 |
std::vector<int> indexes(length + 1); |
134 | 134 |
std::vector<Value> values(length + 1); |
135 | 135 |
|
136 | 136 |
glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); |
137 | 137 |
|
138 | 138 |
for (int i = 1; i <= length; ++i) { |
139 | 139 |
*b = std::make_pair(indexes[i], values[i]); |
140 | 140 |
++b; |
141 | 141 |
} |
142 | 142 |
} |
143 | 143 |
|
144 | 144 |
void GlpkBase::_setColCoeffs(int ix, ExprIterator b, |
145 | 145 |
ExprIterator e) { |
146 | 146 |
|
147 | 147 |
std::vector<int> indexes; |
148 | 148 |
std::vector<Value> values; |
149 | 149 |
|
150 | 150 |
indexes.push_back(0); |
151 | 151 |
values.push_back(0); |
152 | 152 |
|
153 | 153 |
for(ExprIterator it = b; it != e; ++it) { |
154 | 154 |
indexes.push_back(it->first); |
155 | 155 |
values.push_back(it->second); |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
glp_set_mat_col(lp, ix, values.size() - 1, |
159 | 159 |
&indexes.front(), &values.front()); |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
void GlpkBase::_getColCoeffs(int ix, InsertIterator b) const { |
163 | 163 |
int length = glp_get_mat_col(lp, ix, 0, 0); |
164 | 164 |
|
165 | 165 |
std::vector<int> indexes(length + 1); |
166 | 166 |
std::vector<Value> values(length + 1); |
167 | 167 |
|
168 | 168 |
glp_get_mat_col(lp, ix, &indexes.front(), &values.front()); |
169 | 169 |
|
170 | 170 |
for (int i = 1; i <= length; ++i) { |
171 | 171 |
*b = std::make_pair(indexes[i], values[i]); |
172 | 172 |
++b; |
173 | 173 |
} |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
void GlpkBase::_setCoeff(int ix, int jx, Value value) { |
177 | 177 |
|
178 | 178 |
if (glp_get_num_cols(lp) < glp_get_num_rows(lp)) { |
179 | 179 |
|
180 | 180 |
int length = glp_get_mat_row(lp, ix, 0, 0); |
181 | 181 |
|
182 | 182 |
std::vector<int> indexes(length + 2); |
183 | 183 |
std::vector<Value> values(length + 2); |
184 | 184 |
|
185 | 185 |
glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); |
186 | 186 |
|
187 | 187 |
//The following code does not suppose that the elements of the |
188 | 188 |
//array indexes are sorted |
189 | 189 |
bool found = false; |
190 | 190 |
for (int i = 1; i <= length; ++i) { |
191 | 191 |
if (indexes[i] == jx) { |
192 | 192 |
found = true; |
193 | 193 |
values[i] = value; |
194 | 194 |
break; |
195 | 195 |
} |
196 | 196 |
} |
197 | 197 |
if (!found) { |
198 | 198 |
++length; |
199 | 199 |
indexes[length] = jx; |
200 | 200 |
values[length] = value; |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
glp_set_mat_row(lp, ix, length, &indexes.front(), &values.front()); |
204 | 204 |
|
205 | 205 |
} else { |
206 | 206 |
|
207 | 207 |
int length = glp_get_mat_col(lp, jx, 0, 0); |
208 | 208 |
|
209 | 209 |
std::vector<int> indexes(length + 2); |
210 | 210 |
std::vector<Value> values(length + 2); |
211 | 211 |
|
212 | 212 |
glp_get_mat_col(lp, jx, &indexes.front(), &values.front()); |
213 | 213 |
|
214 | 214 |
//The following code does not suppose that the elements of the |
215 | 215 |
//array indexes are sorted |
216 | 216 |
bool found = false; |
217 | 217 |
for (int i = 1; i <= length; ++i) { |
218 | 218 |
if (indexes[i] == ix) { |
219 | 219 |
found = true; |
220 | 220 |
values[i] = value; |
221 | 221 |
break; |
222 | 222 |
} |
223 | 223 |
} |
224 | 224 |
if (!found) { |
225 | 225 |
++length; |
226 | 226 |
indexes[length] = ix; |
227 | 227 |
values[length] = value; |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
glp_set_mat_col(lp, jx, length, &indexes.front(), &values.front()); |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
GlpkBase::Value GlpkBase::_getCoeff(int ix, int jx) const { |
236 | 236 |
|
237 | 237 |
int length = glp_get_mat_row(lp, ix, 0, 0); |
238 | 238 |
|
239 | 239 |
std::vector<int> indexes(length + 1); |
240 | 240 |
std::vector<Value> values(length + 1); |
241 | 241 |
|
242 | 242 |
glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); |
243 | 243 |
|
244 | 244 |
for (int i = 1; i <= length; ++i) { |
245 | 245 |
if (indexes[i] == jx) { |
246 | 246 |
return values[i]; |
247 | 247 |
} |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
return 0; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
void GlpkBase::_setColLowerBound(int i, Value lo) { |
254 | 254 |
LEMON_ASSERT(lo != INF, "Invalid bound"); |
255 | 255 |
|
256 | 256 |
int b = glp_get_col_type(lp, i); |
257 | 257 |
double up = glp_get_col_ub(lp, i); |
258 | 258 |
if (lo == -INF) { |
259 | 259 |
switch (b) { |
260 | 260 |
case GLP_FR: |
261 | 261 |
case GLP_LO: |
262 | 262 |
glp_set_col_bnds(lp, i, GLP_FR, lo, up); |
263 | 263 |
break; |
264 | 264 |
case GLP_UP: |
265 | 265 |
break; |
266 | 266 |
case GLP_DB: |
267 | 267 |
case GLP_FX: |
268 | 268 |
glp_set_col_bnds(lp, i, GLP_UP, lo, up); |
269 | 269 |
break; |
270 | 270 |
default: |
271 | 271 |
break; |
272 | 272 |
} |
273 | 273 |
} else { |
274 | 274 |
switch (b) { |
275 | 275 |
case GLP_FR: |
276 | 276 |
case GLP_LO: |
277 | 277 |
glp_set_col_bnds(lp, i, GLP_LO, lo, up); |
278 | 278 |
break; |
279 | 279 |
case GLP_UP: |
280 | 280 |
case GLP_DB: |
281 | 281 |
case GLP_FX: |
282 | 282 |
if (lo == up) |
283 | 283 |
glp_set_col_bnds(lp, i, GLP_FX, lo, up); |
284 | 284 |
else |
285 | 285 |
glp_set_col_bnds(lp, i, GLP_DB, lo, up); |
286 | 286 |
break; |
287 | 287 |
default: |
288 | 288 |
break; |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
GlpkBase::Value GlpkBase::_getColLowerBound(int i) const { |
294 | 294 |
int b = glp_get_col_type(lp, i); |
295 | 295 |
switch (b) { |
296 | 296 |
case GLP_LO: |
297 | 297 |
case GLP_DB: |
298 | 298 |
case GLP_FX: |
299 | 299 |
return glp_get_col_lb(lp, i); |
300 | 300 |
default: |
301 | 301 |
return -INF; |
302 | 302 |
} |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
void GlpkBase::_setColUpperBound(int i, Value up) { |
306 | 306 |
LEMON_ASSERT(up != -INF, "Invalid bound"); |
307 | 307 |
|
308 | 308 |
int b = glp_get_col_type(lp, i); |
309 | 309 |
double lo = glp_get_col_lb(lp, i); |
310 | 310 |
if (up == INF) { |
311 | 311 |
switch (b) { |
312 | 312 |
case GLP_FR: |
313 | 313 |
case GLP_LO: |
314 | 314 |
break; |
315 | 315 |
case GLP_UP: |
316 | 316 |
glp_set_col_bnds(lp, i, GLP_FR, lo, up); |
317 | 317 |
break; |
318 | 318 |
case GLP_DB: |
319 | 319 |
case GLP_FX: |
320 | 320 |
glp_set_col_bnds(lp, i, GLP_LO, lo, up); |
321 | 321 |
break; |
322 | 322 |
default: |
323 | 323 |
break; |
324 | 324 |
} |
325 | 325 |
} else { |
326 | 326 |
switch (b) { |
327 | 327 |
case GLP_FR: |
328 | 328 |
glp_set_col_bnds(lp, i, GLP_UP, lo, up); |
329 | 329 |
break; |
330 | 330 |
case GLP_UP: |
331 | 331 |
glp_set_col_bnds(lp, i, GLP_UP, lo, up); |
332 | 332 |
break; |
333 | 333 |
case GLP_LO: |
334 | 334 |
case GLP_DB: |
335 | 335 |
case GLP_FX: |
336 | 336 |
if (lo == up) |
337 | 337 |
glp_set_col_bnds(lp, i, GLP_FX, lo, up); |
338 | 338 |
else |
339 | 339 |
glp_set_col_bnds(lp, i, GLP_DB, lo, up); |
340 | 340 |
break; |
341 | 341 |
default: |
342 | 342 |
break; |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
GlpkBase::Value GlpkBase::_getColUpperBound(int i) const { |
349 | 349 |
int b = glp_get_col_type(lp, i); |
350 | 350 |
switch (b) { |
351 | 351 |
case GLP_UP: |
352 | 352 |
case GLP_DB: |
353 | 353 |
case GLP_FX: |
354 | 354 |
return glp_get_col_ub(lp, i); |
355 | 355 |
default: |
356 | 356 |
return INF; |
357 | 357 |
} |
358 | 358 |
} |
359 | 359 |
|
360 | 360 |
void GlpkBase::_setRowLowerBound(int i, Value lo) { |
361 | 361 |
LEMON_ASSERT(lo != INF, "Invalid bound"); |
362 | 362 |
|
363 | 363 |
int b = glp_get_row_type(lp, i); |
364 | 364 |
double up = glp_get_row_ub(lp, i); |
365 | 365 |
if (lo == -INF) { |
366 | 366 |
switch (b) { |
367 | 367 |
case GLP_FR: |
368 | 368 |
case GLP_LO: |
369 | 369 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
370 | 370 |
break; |
371 | 371 |
case GLP_UP: |
372 | 372 |
break; |
373 | 373 |
case GLP_DB: |
374 | 374 |
case GLP_FX: |
375 | 375 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
376 | 376 |
break; |
377 | 377 |
default: |
378 | 378 |
break; |
379 | 379 |
} |
380 | 380 |
} else { |
381 | 381 |
switch (b) { |
382 | 382 |
case GLP_FR: |
383 | 383 |
case GLP_LO: |
384 | 384 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
385 | 385 |
break; |
386 | 386 |
case GLP_UP: |
387 | 387 |
case GLP_DB: |
388 | 388 |
case GLP_FX: |
389 | 389 |
if (lo == up) |
390 | 390 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
391 | 391 |
else |
392 | 392 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
393 | 393 |
break; |
394 | 394 |
default: |
395 | 395 |
break; |
396 | 396 |
} |
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
GlpkBase::Value GlpkBase::_getRowLowerBound(int i) const { |
402 | 402 |
int b = glp_get_row_type(lp, i); |
403 | 403 |
switch (b) { |
404 | 404 |
case GLP_LO: |
405 | 405 |
case GLP_DB: |
406 | 406 |
case GLP_FX: |
407 | 407 |
return glp_get_row_lb(lp, i); |
408 | 408 |
default: |
409 | 409 |
return -INF; |
410 | 410 |
} |
411 | 411 |
} |
412 | 412 |
|
413 | 413 |
void GlpkBase::_setRowUpperBound(int i, Value up) { |
414 | 414 |
LEMON_ASSERT(up != -INF, "Invalid bound"); |
415 | 415 |
|
416 | 416 |
int b = glp_get_row_type(lp, i); |
417 | 417 |
double lo = glp_get_row_lb(lp, i); |
418 | 418 |
if (up == INF) { |
419 | 419 |
switch (b) { |
420 | 420 |
case GLP_FR: |
421 | 421 |
case GLP_LO: |
422 | 422 |
break; |
423 | 423 |
case GLP_UP: |
424 | 424 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
425 | 425 |
break; |
426 | 426 |
case GLP_DB: |
427 | 427 |
case GLP_FX: |
428 | 428 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
429 | 429 |
break; |
430 | 430 |
default: |
431 | 431 |
break; |
432 | 432 |
} |
433 | 433 |
} else { |
434 | 434 |
switch (b) { |
435 | 435 |
case GLP_FR: |
436 | 436 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
437 | 437 |
break; |
438 | 438 |
case GLP_UP: |
439 | 439 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
440 | 440 |
break; |
441 | 441 |
case GLP_LO: |
442 | 442 |
case GLP_DB: |
443 | 443 |
case GLP_FX: |
444 | 444 |
if (lo == up) |
445 | 445 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
446 | 446 |
else |
447 | 447 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
448 | 448 |
break; |
449 | 449 |
default: |
450 | 450 |
break; |
451 | 451 |
} |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
GlpkBase::Value GlpkBase::_getRowUpperBound(int i) const { |
456 | 456 |
int b = glp_get_row_type(lp, i); |
457 | 457 |
switch (b) { |
458 | 458 |
case GLP_UP: |
459 | 459 |
case GLP_DB: |
460 | 460 |
case GLP_FX: |
461 | 461 |
return glp_get_row_ub(lp, i); |
462 | 462 |
default: |
463 | 463 |
return INF; |
464 | 464 |
} |
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
void GlpkBase::_setObjCoeffs(ExprIterator b, ExprIterator e) { |
468 | 468 |
for (int i = 1; i <= glp_get_num_cols(lp); ++i) { |
469 | 469 |
glp_set_obj_coef(lp, i, 0.0); |
470 | 470 |
} |
471 | 471 |
for (ExprIterator it = b; it != e; ++it) { |
472 | 472 |
glp_set_obj_coef(lp, it->first, it->second); |
473 | 473 |
} |
474 | 474 |
} |
475 | 475 |
|
476 | 476 |
void GlpkBase::_getObjCoeffs(InsertIterator b) const { |
477 | 477 |
for (int i = 1; i <= glp_get_num_cols(lp); ++i) { |
478 | 478 |
Value val = glp_get_obj_coef(lp, i); |
479 | 479 |
if (val != 0.0) { |
480 | 480 |
*b = std::make_pair(i, val); |
481 | 481 |
++b; |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
} |
485 | 485 |
|
486 | 486 |
void GlpkBase::_setObjCoeff(int i, Value obj_coef) { |
487 | 487 |
//i = 0 means the constant term (shift) |
488 | 488 |
glp_set_obj_coef(lp, i, obj_coef); |
489 | 489 |
} |
490 | 490 |
|
491 | 491 |
GlpkBase::Value GlpkBase::_getObjCoeff(int i) const { |
492 | 492 |
//i = 0 means the constant term (shift) |
493 | 493 |
return glp_get_obj_coef(lp, i); |
494 | 494 |
} |
495 | 495 |
|
496 | 496 |
void GlpkBase::_setSense(GlpkBase::Sense sense) { |
497 | 497 |
switch (sense) { |
498 | 498 |
case MIN: |
499 | 499 |
glp_set_obj_dir(lp, GLP_MIN); |
500 | 500 |
break; |
501 | 501 |
case MAX: |
502 | 502 |
glp_set_obj_dir(lp, GLP_MAX); |
503 | 503 |
break; |
504 | 504 |
} |
505 | 505 |
} |
506 | 506 |
|
507 | 507 |
GlpkBase::Sense GlpkBase::_getSense() const { |
508 | 508 |
switch(glp_get_obj_dir(lp)) { |
509 | 509 |
case GLP_MIN: |
510 | 510 |
return MIN; |
511 | 511 |
case GLP_MAX: |
512 | 512 |
return MAX; |
513 | 513 |
default: |
514 | 514 |
LEMON_ASSERT(false, "Wrong sense"); |
515 | 515 |
return GlpkBase::Sense(); |
516 | 516 |
} |
517 | 517 |
} |
518 | 518 |
|
519 | 519 |
void GlpkBase::_clear() { |
520 | 520 |
glp_erase_prob(lp); |
521 | 521 |
rows.clear(); |
522 | 522 |
cols.clear(); |
523 | 523 |
} |
524 | 524 |
|
525 | 525 |
// GlpkLp members |
526 | 526 |
|
527 | 527 |
GlpkLp::GlpkLp() |
528 | 528 |
: LpBase(), GlpkBase(), LpSolver() { |
529 | 529 |
messageLevel(MESSAGE_NO_OUTPUT); |
530 | 530 |
} |
531 | 531 |
|
532 | 532 |
GlpkLp::GlpkLp(const GlpkLp& other) |
533 | 533 |
: LpBase(other), GlpkBase(other), LpSolver(other) { |
534 | 534 |
messageLevel(MESSAGE_NO_OUTPUT); |
535 | 535 |
} |
536 | 536 |
|
537 |
GlpkLp* GlpkLp::_newSolver() const { return new GlpkLp; } |
|
538 |
GlpkLp* GlpkLp::_cloneSolver() const { return new GlpkLp(*this); } |
|
537 |
GlpkLp* GlpkLp::newSolver() const { return new GlpkLp; } |
|
538 |
GlpkLp* GlpkLp::cloneSolver() const { return new GlpkLp(*this); } |
|
539 | 539 |
|
540 | 540 |
const char* GlpkLp::_solverName() const { return "GlpkLp"; } |
541 | 541 |
|
542 | 542 |
void GlpkLp::_clear_temporals() { |
543 | 543 |
_primal_ray.clear(); |
544 | 544 |
_dual_ray.clear(); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
GlpkLp::SolveExitStatus GlpkLp::_solve() { |
548 | 548 |
return solvePrimal(); |
549 | 549 |
} |
550 | 550 |
|
551 | 551 |
GlpkLp::SolveExitStatus GlpkLp::solvePrimal() { |
552 | 552 |
_clear_temporals(); |
553 | 553 |
|
554 | 554 |
glp_smcp smcp; |
555 | 555 |
glp_init_smcp(&smcp); |
556 | 556 |
|
557 | 557 |
switch (_message_level) { |
558 | 558 |
case MESSAGE_NO_OUTPUT: |
559 | 559 |
smcp.msg_lev = GLP_MSG_OFF; |
560 | 560 |
break; |
561 | 561 |
case MESSAGE_ERROR_MESSAGE: |
562 | 562 |
smcp.msg_lev = GLP_MSG_ERR; |
563 | 563 |
break; |
564 | 564 |
case MESSAGE_NORMAL_OUTPUT: |
565 | 565 |
smcp.msg_lev = GLP_MSG_ON; |
566 | 566 |
break; |
567 | 567 |
case MESSAGE_FULL_OUTPUT: |
568 | 568 |
smcp.msg_lev = GLP_MSG_ALL; |
569 | 569 |
break; |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; |
573 | 573 |
return SOLVED; |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
GlpkLp::SolveExitStatus GlpkLp::solveDual() { |
577 | 577 |
_clear_temporals(); |
578 | 578 |
|
579 | 579 |
glp_smcp smcp; |
580 | 580 |
glp_init_smcp(&smcp); |
581 | 581 |
|
582 | 582 |
switch (_message_level) { |
583 | 583 |
case MESSAGE_NO_OUTPUT: |
584 | 584 |
smcp.msg_lev = GLP_MSG_OFF; |
585 | 585 |
break; |
586 | 586 |
case MESSAGE_ERROR_MESSAGE: |
587 | 587 |
smcp.msg_lev = GLP_MSG_ERR; |
588 | 588 |
break; |
589 | 589 |
case MESSAGE_NORMAL_OUTPUT: |
590 | 590 |
smcp.msg_lev = GLP_MSG_ON; |
591 | 591 |
break; |
592 | 592 |
case MESSAGE_FULL_OUTPUT: |
593 | 593 |
smcp.msg_lev = GLP_MSG_ALL; |
594 | 594 |
break; |
595 | 595 |
} |
596 | 596 |
smcp.meth = GLP_DUAL; |
597 | 597 |
|
598 | 598 |
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; |
599 | 599 |
return SOLVED; |
600 | 600 |
} |
601 | 601 |
|
602 | 602 |
GlpkLp::Value GlpkLp::_getPrimal(int i) const { |
603 | 603 |
return glp_get_col_prim(lp, i); |
604 | 604 |
} |
605 | 605 |
|
606 | 606 |
GlpkLp::Value GlpkLp::_getDual(int i) const { |
607 | 607 |
return glp_get_row_dual(lp, i); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
GlpkLp::Value GlpkLp::_getPrimalValue() const { |
611 | 611 |
return glp_get_obj_val(lp); |
612 | 612 |
} |
613 | 613 |
|
614 | 614 |
GlpkLp::VarStatus GlpkLp::_getColStatus(int i) const { |
615 | 615 |
switch (glp_get_col_stat(lp, i)) { |
616 | 616 |
case GLP_BS: |
617 | 617 |
return BASIC; |
618 | 618 |
case GLP_UP: |
619 | 619 |
return UPPER; |
620 | 620 |
case GLP_LO: |
621 | 621 |
return LOWER; |
622 | 622 |
case GLP_NF: |
623 | 623 |
return FREE; |
624 | 624 |
case GLP_NS: |
625 | 625 |
return FIXED; |
626 | 626 |
default: |
627 | 627 |
LEMON_ASSERT(false, "Wrong column status"); |
628 | 628 |
return GlpkLp::VarStatus(); |
629 | 629 |
} |
630 | 630 |
} |
631 | 631 |
|
632 | 632 |
GlpkLp::VarStatus GlpkLp::_getRowStatus(int i) const { |
633 | 633 |
switch (glp_get_row_stat(lp, i)) { |
634 | 634 |
case GLP_BS: |
635 | 635 |
return BASIC; |
636 | 636 |
case GLP_UP: |
637 | 637 |
return UPPER; |
638 | 638 |
case GLP_LO: |
639 | 639 |
return LOWER; |
640 | 640 |
case GLP_NF: |
641 | 641 |
return FREE; |
642 | 642 |
case GLP_NS: |
643 | 643 |
return FIXED; |
644 | 644 |
default: |
645 | 645 |
LEMON_ASSERT(false, "Wrong row status"); |
646 | 646 |
return GlpkLp::VarStatus(); |
647 | 647 |
} |
648 | 648 |
} |
649 | 649 |
|
650 | 650 |
GlpkLp::Value GlpkLp::_getPrimalRay(int i) const { |
651 | 651 |
if (_primal_ray.empty()) { |
652 | 652 |
int row_num = glp_get_num_rows(lp); |
653 | 653 |
int col_num = glp_get_num_cols(lp); |
654 | 654 |
|
655 | 655 |
_primal_ray.resize(col_num + 1, 0.0); |
656 | 656 |
|
657 | 657 |
int index = glp_get_unbnd_ray(lp); |
658 | 658 |
if (index != 0) { |
659 | 659 |
// The primal ray is found in primal simplex second phase |
660 | 660 |
LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) : |
661 | 661 |
glp_get_col_stat(lp, index - row_num)) != GLP_BS, |
662 | 662 |
"Wrong primal ray"); |
663 | 663 |
|
664 | 664 |
bool negate = glp_get_obj_dir(lp) == GLP_MAX; |
665 | 665 |
|
666 | 666 |
if (index > row_num) { |
667 | 667 |
_primal_ray[index - row_num] = 1.0; |
668 | 668 |
if (glp_get_col_dual(lp, index - row_num) > 0) { |
669 | 669 |
negate = !negate; |
670 | 670 |
} |
671 | 671 |
} else { |
672 | 672 |
if (glp_get_row_dual(lp, index) > 0) { |
673 | 673 |
negate = !negate; |
674 | 674 |
} |
675 | 675 |
} |
676 | 676 |
|
677 | 677 |
std::vector<int> ray_indexes(row_num + 1); |
678 | 678 |
std::vector<Value> ray_values(row_num + 1); |
679 | 679 |
int ray_length = glp_eval_tab_col(lp, index, &ray_indexes.front(), |
680 | 680 |
&ray_values.front()); |
681 | 681 |
|
682 | 682 |
for (int i = 1; i <= ray_length; ++i) { |
683 | 683 |
if (ray_indexes[i] > row_num) { |
684 | 684 |
_primal_ray[ray_indexes[i] - row_num] = ray_values[i]; |
685 | 685 |
} |
686 | 686 |
} |
687 | 687 |
|
688 | 688 |
if (negate) { |
689 | 689 |
for (int i = 1; i <= col_num; ++i) { |
690 | 690 |
_primal_ray[i] = - _primal_ray[i]; |
691 | 691 |
} |
692 | 692 |
} |
693 | 693 |
} else { |
694 | 694 |
for (int i = 1; i <= col_num; ++i) { |
695 | 695 |
_primal_ray[i] = glp_get_col_prim(lp, i); |
696 | 696 |
} |
697 | 697 |
} |
698 | 698 |
} |
699 | 699 |
return _primal_ray[i]; |
700 | 700 |
} |
701 | 701 |
|
702 | 702 |
GlpkLp::Value GlpkLp::_getDualRay(int i) const { |
703 | 703 |
if (_dual_ray.empty()) { |
704 | 704 |
int row_num = glp_get_num_rows(lp); |
705 | 705 |
|
706 | 706 |
_dual_ray.resize(row_num + 1, 0.0); |
707 | 707 |
|
708 | 708 |
int index = glp_get_unbnd_ray(lp); |
709 | 709 |
if (index != 0) { |
710 | 710 |
// The dual ray is found in dual simplex second phase |
711 | 711 |
LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) : |
712 | 712 |
glp_get_col_stat(lp, index - row_num)) == GLP_BS, |
713 | 713 |
|
714 | 714 |
"Wrong dual ray"); |
715 | 715 |
|
716 | 716 |
int idx; |
717 | 717 |
bool negate = false; |
718 | 718 |
|
719 | 719 |
if (index > row_num) { |
720 | 720 |
idx = glp_get_col_bind(lp, index - row_num); |
721 | 721 |
if (glp_get_col_prim(lp, index - row_num) > |
722 | 722 |
glp_get_col_ub(lp, index - row_num)) { |
723 | 723 |
negate = true; |
724 | 724 |
} |
725 | 725 |
} else { |
726 | 726 |
idx = glp_get_row_bind(lp, index); |
727 | 727 |
if (glp_get_row_prim(lp, index) > glp_get_row_ub(lp, index)) { |
728 | 728 |
negate = true; |
729 | 729 |
} |
730 | 730 |
} |
731 | 731 |
|
732 | 732 |
_dual_ray[idx] = negate ? - 1.0 : 1.0; |
733 | 733 |
|
734 | 734 |
glp_btran(lp, &_dual_ray.front()); |
735 | 735 |
} else { |
736 | 736 |
double eps = 1e-7; |
737 | 737 |
// The dual ray is found in primal simplex first phase |
738 | 738 |
// We assume that the glpk minimizes the slack to get feasible solution |
739 | 739 |
for (int i = 1; i <= row_num; ++i) { |
740 | 740 |
int index = glp_get_bhead(lp, i); |
741 | 741 |
if (index <= row_num) { |
742 | 742 |
double res = glp_get_row_prim(lp, index); |
743 | 743 |
if (res > glp_get_row_ub(lp, index) + eps) { |
744 | 744 |
_dual_ray[i] = -1; |
745 | 745 |
} else if (res < glp_get_row_lb(lp, index) - eps) { |
746 | 746 |
_dual_ray[i] = 1; |
747 | 747 |
} else { |
748 | 748 |
_dual_ray[i] = 0; |
749 | 749 |
} |
750 | 750 |
_dual_ray[i] *= glp_get_rii(lp, index); |
751 | 751 |
} else { |
752 | 752 |
double res = glp_get_col_prim(lp, index - row_num); |
753 | 753 |
if (res > glp_get_col_ub(lp, index - row_num) + eps) { |
754 | 754 |
_dual_ray[i] = -1; |
755 | 755 |
} else if (res < glp_get_col_lb(lp, index - row_num) - eps) { |
756 | 756 |
_dual_ray[i] = 1; |
757 | 757 |
} else { |
758 | 758 |
_dual_ray[i] = 0; |
759 | 759 |
} |
760 | 760 |
_dual_ray[i] /= glp_get_sjj(lp, index - row_num); |
761 | 761 |
} |
762 | 762 |
} |
763 | 763 |
|
764 | 764 |
glp_btran(lp, &_dual_ray.front()); |
765 | 765 |
|
766 | 766 |
for (int i = 1; i <= row_num; ++i) { |
767 | 767 |
_dual_ray[i] /= glp_get_rii(lp, i); |
768 | 768 |
} |
769 | 769 |
} |
770 | 770 |
} |
771 | 771 |
return _dual_ray[i]; |
772 | 772 |
} |
773 | 773 |
|
774 | 774 |
GlpkLp::ProblemType GlpkLp::_getPrimalType() const { |
775 | 775 |
if (glp_get_status(lp) == GLP_OPT) |
776 | 776 |
return OPTIMAL; |
777 | 777 |
switch (glp_get_prim_stat(lp)) { |
778 | 778 |
case GLP_UNDEF: |
779 | 779 |
return UNDEFINED; |
780 | 780 |
case GLP_FEAS: |
781 | 781 |
case GLP_INFEAS: |
782 | 782 |
if (glp_get_dual_stat(lp) == GLP_NOFEAS) { |
783 | 783 |
return UNBOUNDED; |
784 | 784 |
} else { |
785 | 785 |
return UNDEFINED; |
786 | 786 |
} |
787 | 787 |
case GLP_NOFEAS: |
788 | 788 |
return INFEASIBLE; |
789 | 789 |
default: |
790 | 790 |
LEMON_ASSERT(false, "Wrong primal type"); |
791 | 791 |
return GlpkLp::ProblemType(); |
792 | 792 |
} |
793 | 793 |
} |
794 | 794 |
|
795 | 795 |
GlpkLp::ProblemType GlpkLp::_getDualType() const { |
796 | 796 |
if (glp_get_status(lp) == GLP_OPT) |
797 | 797 |
return OPTIMAL; |
798 | 798 |
switch (glp_get_dual_stat(lp)) { |
799 | 799 |
case GLP_UNDEF: |
800 | 800 |
return UNDEFINED; |
801 | 801 |
case GLP_FEAS: |
802 | 802 |
case GLP_INFEAS: |
803 | 803 |
if (glp_get_prim_stat(lp) == GLP_NOFEAS) { |
804 | 804 |
return UNBOUNDED; |
805 | 805 |
} else { |
806 | 806 |
return UNDEFINED; |
807 | 807 |
} |
808 | 808 |
case GLP_NOFEAS: |
809 | 809 |
return INFEASIBLE; |
810 | 810 |
default: |
811 | 811 |
LEMON_ASSERT(false, "Wrong primal type"); |
812 | 812 |
return GlpkLp::ProblemType(); |
813 | 813 |
} |
814 | 814 |
} |
815 | 815 |
|
816 | 816 |
void GlpkLp::presolver(bool b) { |
817 | 817 |
lpx_set_int_parm(lp, LPX_K_PRESOL, b ? 1 : 0); |
818 | 818 |
} |
819 | 819 |
|
820 | 820 |
void GlpkLp::messageLevel(MessageLevel m) { |
821 | 821 |
_message_level = m; |
822 | 822 |
} |
823 | 823 |
|
824 | 824 |
// GlpkMip members |
825 | 825 |
|
826 | 826 |
GlpkMip::GlpkMip() |
827 | 827 |
: LpBase(), GlpkBase(), MipSolver() { |
828 | 828 |
messageLevel(MESSAGE_NO_OUTPUT); |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
GlpkMip::GlpkMip(const GlpkMip& other) |
832 | 832 |
: LpBase(), GlpkBase(other), MipSolver() { |
833 | 833 |
messageLevel(MESSAGE_NO_OUTPUT); |
834 | 834 |
} |
835 | 835 |
|
836 | 836 |
void GlpkMip::_setColType(int i, GlpkMip::ColTypes col_type) { |
837 | 837 |
switch (col_type) { |
838 | 838 |
case INTEGER: |
839 | 839 |
glp_set_col_kind(lp, i, GLP_IV); |
840 | 840 |
break; |
841 | 841 |
case REAL: |
842 | 842 |
glp_set_col_kind(lp, i, GLP_CV); |
843 | 843 |
break; |
844 | 844 |
} |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
GlpkMip::ColTypes GlpkMip::_getColType(int i) const { |
848 | 848 |
switch (glp_get_col_kind(lp, i)) { |
849 | 849 |
case GLP_IV: |
850 | 850 |
case GLP_BV: |
851 | 851 |
return INTEGER; |
852 | 852 |
default: |
853 | 853 |
return REAL; |
854 | 854 |
} |
855 | 855 |
|
856 | 856 |
} |
857 | 857 |
|
858 | 858 |
GlpkMip::SolveExitStatus GlpkMip::_solve() { |
859 | 859 |
glp_smcp smcp; |
860 | 860 |
glp_init_smcp(&smcp); |
861 | 861 |
|
862 | 862 |
switch (_message_level) { |
863 | 863 |
case MESSAGE_NO_OUTPUT: |
864 | 864 |
smcp.msg_lev = GLP_MSG_OFF; |
865 | 865 |
break; |
866 | 866 |
case MESSAGE_ERROR_MESSAGE: |
867 | 867 |
smcp.msg_lev = GLP_MSG_ERR; |
868 | 868 |
break; |
869 | 869 |
case MESSAGE_NORMAL_OUTPUT: |
870 | 870 |
smcp.msg_lev = GLP_MSG_ON; |
871 | 871 |
break; |
872 | 872 |
case MESSAGE_FULL_OUTPUT: |
873 | 873 |
smcp.msg_lev = GLP_MSG_ALL; |
874 | 874 |
break; |
875 | 875 |
} |
876 | 876 |
smcp.meth = GLP_DUAL; |
877 | 877 |
|
878 | 878 |
if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; |
879 | 879 |
if (glp_get_status(lp) != GLP_OPT) return SOLVED; |
880 | 880 |
|
881 | 881 |
glp_iocp iocp; |
882 | 882 |
glp_init_iocp(&iocp); |
883 | 883 |
|
884 | 884 |
switch (_message_level) { |
885 | 885 |
case MESSAGE_NO_OUTPUT: |
886 | 886 |
iocp.msg_lev = GLP_MSG_OFF; |
887 | 887 |
break; |
888 | 888 |
case MESSAGE_ERROR_MESSAGE: |
889 | 889 |
iocp.msg_lev = GLP_MSG_ERR; |
890 | 890 |
break; |
891 | 891 |
case MESSAGE_NORMAL_OUTPUT: |
892 | 892 |
iocp.msg_lev = GLP_MSG_ON; |
893 | 893 |
break; |
894 | 894 |
case MESSAGE_FULL_OUTPUT: |
895 | 895 |
iocp.msg_lev = GLP_MSG_ALL; |
896 | 896 |
break; |
897 | 897 |
} |
898 | 898 |
|
899 | 899 |
if (glp_intopt(lp, &iocp) != 0) return UNSOLVED; |
900 | 900 |
return SOLVED; |
901 | 901 |
} |
902 | 902 |
|
903 | 903 |
|
904 | 904 |
GlpkMip::ProblemType GlpkMip::_getType() const { |
905 | 905 |
switch (glp_get_status(lp)) { |
906 | 906 |
case GLP_OPT: |
907 | 907 |
switch (glp_mip_status(lp)) { |
908 | 908 |
case GLP_UNDEF: |
909 | 909 |
return UNDEFINED; |
910 | 910 |
case GLP_NOFEAS: |
911 | 911 |
return INFEASIBLE; |
912 | 912 |
case GLP_FEAS: |
913 | 913 |
return FEASIBLE; |
914 | 914 |
case GLP_OPT: |
915 | 915 |
return OPTIMAL; |
916 | 916 |
default: |
917 | 917 |
LEMON_ASSERT(false, "Wrong problem type."); |
918 | 918 |
return GlpkMip::ProblemType(); |
919 | 919 |
} |
920 | 920 |
case GLP_NOFEAS: |
921 | 921 |
return INFEASIBLE; |
922 | 922 |
case GLP_INFEAS: |
923 | 923 |
case GLP_FEAS: |
924 | 924 |
if (glp_get_dual_stat(lp) == GLP_NOFEAS) { |
925 | 925 |
return UNBOUNDED; |
926 | 926 |
} else { |
927 | 927 |
return UNDEFINED; |
928 | 928 |
} |
929 | 929 |
default: |
930 | 930 |
LEMON_ASSERT(false, "Wrong problem type."); |
931 | 931 |
return GlpkMip::ProblemType(); |
932 | 932 |
} |
933 | 933 |
} |
934 | 934 |
|
935 | 935 |
GlpkMip::Value GlpkMip::_getSol(int i) const { |
936 | 936 |
return glp_mip_col_val(lp, i); |
937 | 937 |
} |
938 | 938 |
|
939 | 939 |
GlpkMip::Value GlpkMip::_getSolValue() const { |
940 | 940 |
return glp_mip_obj_val(lp); |
941 | 941 |
} |
942 | 942 |
|
943 |
GlpkMip* GlpkMip::_newSolver() const { return new GlpkMip; } |
|
944 |
GlpkMip* GlpkMip::_cloneSolver() const {return new GlpkMip(*this); } |
|
943 |
GlpkMip* GlpkMip::newSolver() const { return new GlpkMip; } |
|
944 |
GlpkMip* GlpkMip::cloneSolver() const {return new GlpkMip(*this); } |
|
945 | 945 |
|
946 | 946 |
const char* GlpkMip::_solverName() const { return "GlpkMip"; } |
947 | 947 |
|
948 | 948 |
void GlpkMip::messageLevel(MessageLevel m) { |
949 | 949 |
_message_level = m; |
950 | 950 |
} |
951 | 951 |
|
952 | 952 |
} //END OF NAMESPACE LEMON |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GLPK_H |
20 | 20 |
#define LEMON_GLPK_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
24 | 24 |
///\ingroup lp_group |
25 | 25 |
|
26 | 26 |
#include <lemon/lp_base.h> |
27 | 27 |
|
28 | 28 |
// forward declaration |
29 | 29 |
#ifndef _GLP_PROB |
30 | 30 |
#define _GLP_PROB |
31 | 31 |
typedef struct { double _prob; } glp_prob; |
32 | 32 |
/* LP/MIP problem object */ |
33 | 33 |
#endif |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
|
38 | 38 |
/// \brief Base interface for the GLPK LP and MIP solver |
39 | 39 |
/// |
40 | 40 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
41 | 41 |
/// \ingroup lp_group |
42 | 42 |
class GlpkBase : virtual public LpBase { |
43 | 43 |
protected: |
44 | 44 |
|
45 | 45 |
typedef glp_prob LPX; |
46 | 46 |
glp_prob* lp; |
47 | 47 |
|
48 | 48 |
GlpkBase(); |
49 | 49 |
GlpkBase(const GlpkBase&); |
50 | 50 |
virtual ~GlpkBase(); |
51 | 51 |
|
52 | 52 |
protected: |
53 | 53 |
|
54 | 54 |
virtual int _addCol(); |
55 | 55 |
virtual int _addRow(); |
56 | 56 |
|
57 | 57 |
virtual void _eraseCol(int i); |
58 | 58 |
virtual void _eraseRow(int i); |
59 | 59 |
|
60 | 60 |
virtual void _eraseColId(int i); |
61 | 61 |
virtual void _eraseRowId(int i); |
62 | 62 |
|
63 | 63 |
virtual void _getColName(int col, std::string& name) const; |
64 | 64 |
virtual void _setColName(int col, const std::string& name); |
65 | 65 |
virtual int _colByName(const std::string& name) const; |
66 | 66 |
|
67 | 67 |
virtual void _getRowName(int row, std::string& name) const; |
68 | 68 |
virtual void _setRowName(int row, const std::string& name); |
69 | 69 |
virtual int _rowByName(const std::string& name) const; |
70 | 70 |
|
71 | 71 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
72 | 72 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
73 | 73 |
|
74 | 74 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
75 | 75 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
76 | 76 |
|
77 | 77 |
virtual void _setCoeff(int row, int col, Value value); |
78 | 78 |
virtual Value _getCoeff(int row, int col) const; |
79 | 79 |
|
80 | 80 |
virtual void _setColLowerBound(int i, Value value); |
81 | 81 |
virtual Value _getColLowerBound(int i) const; |
82 | 82 |
|
83 | 83 |
virtual void _setColUpperBound(int i, Value value); |
84 | 84 |
virtual Value _getColUpperBound(int i) const; |
85 | 85 |
|
86 | 86 |
virtual void _setRowLowerBound(int i, Value value); |
87 | 87 |
virtual Value _getRowLowerBound(int i) const; |
88 | 88 |
|
89 | 89 |
virtual void _setRowUpperBound(int i, Value value); |
90 | 90 |
virtual Value _getRowUpperBound(int i) const; |
91 | 91 |
|
92 | 92 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
93 | 93 |
virtual void _getObjCoeffs(InsertIterator b) const; |
94 | 94 |
|
95 | 95 |
virtual void _setObjCoeff(int i, Value obj_coef); |
96 | 96 |
virtual Value _getObjCoeff(int i) const; |
97 | 97 |
|
98 | 98 |
virtual void _setSense(Sense); |
99 | 99 |
virtual Sense _getSense() const; |
100 | 100 |
|
101 | 101 |
virtual void _clear(); |
102 | 102 |
|
103 | 103 |
public: |
104 | 104 |
|
105 | 105 |
///Pointer to the underlying GLPK data structure. |
106 | 106 |
LPX *lpx() {return lp;} |
107 | 107 |
///Const pointer to the underlying GLPK data structure. |
108 | 108 |
const LPX *lpx() const {return lp;} |
109 | 109 |
|
110 | 110 |
///Returns the constraint identifier understood by GLPK. |
111 | 111 |
int lpxRow(Row r) const { return rows(id(r)); } |
112 | 112 |
|
113 | 113 |
///Returns the variable identifier understood by GLPK. |
114 | 114 |
int lpxCol(Col c) const { return cols(id(c)); } |
115 | 115 |
|
116 | 116 |
}; |
117 | 117 |
|
118 | 118 |
/// \brief Interface for the GLPK LP solver |
119 | 119 |
/// |
120 | 120 |
/// This class implements an interface for the GLPK LP solver. |
121 | 121 |
///\ingroup lp_group |
122 |
class GlpkLp : public |
|
122 |
class GlpkLp : public LpSolver, public GlpkBase { |
|
123 | 123 |
public: |
124 | 124 |
|
125 | 125 |
///\e |
126 | 126 |
GlpkLp(); |
127 | 127 |
///\e |
128 | 128 |
GlpkLp(const GlpkLp&); |
129 | 129 |
|
130 |
///\e |
|
131 |
virtual GlpkLp* cloneSolver() const; |
|
132 |
///\e |
|
133 |
virtual GlpkLp* newSolver() const; |
|
134 |
|
|
130 | 135 |
private: |
131 | 136 |
|
132 | 137 |
mutable std::vector<double> _primal_ray; |
133 | 138 |
mutable std::vector<double> _dual_ray; |
134 | 139 |
|
135 | 140 |
void _clear_temporals(); |
136 | 141 |
|
137 | 142 |
protected: |
138 | 143 |
|
139 |
virtual GlpkLp* _cloneSolver() const; |
|
140 |
virtual GlpkLp* _newSolver() const; |
|
141 |
|
|
142 | 144 |
virtual const char* _solverName() const; |
143 | 145 |
|
144 | 146 |
virtual SolveExitStatus _solve(); |
145 | 147 |
virtual Value _getPrimal(int i) const; |
146 | 148 |
virtual Value _getDual(int i) const; |
147 | 149 |
|
148 | 150 |
virtual Value _getPrimalValue() const; |
149 | 151 |
|
150 | 152 |
virtual VarStatus _getColStatus(int i) const; |
151 | 153 |
virtual VarStatus _getRowStatus(int i) const; |
152 | 154 |
|
153 | 155 |
virtual Value _getPrimalRay(int i) const; |
154 | 156 |
virtual Value _getDualRay(int i) const; |
155 | 157 |
|
156 | 158 |
///\todo It should be clarified |
157 | 159 |
/// |
158 | 160 |
virtual ProblemType _getPrimalType() const; |
159 | 161 |
virtual ProblemType _getDualType() const; |
160 | 162 |
|
161 | 163 |
public: |
162 | 164 |
|
163 | 165 |
///Solve with primal simplex |
164 | 166 |
SolveExitStatus solvePrimal(); |
165 | 167 |
|
166 | 168 |
///Solve with dual simplex |
167 | 169 |
SolveExitStatus solveDual(); |
168 | 170 |
|
169 | 171 |
///Turns on or off the presolver |
170 | 172 |
|
171 | 173 |
///Turns on (\c b is \c true) or off (\c b is \c false) the presolver |
172 | 174 |
/// |
173 | 175 |
///The presolver is off by default. |
174 | 176 |
void presolver(bool b); |
175 | 177 |
|
176 | 178 |
///Enum for \c messageLevel() parameter |
177 | 179 |
enum MessageLevel { |
178 | 180 |
/// no output (default value) |
179 | 181 |
MESSAGE_NO_OUTPUT = 0, |
180 | 182 |
/// error messages only |
181 | 183 |
MESSAGE_ERROR_MESSAGE = 1, |
182 | 184 |
/// normal output |
183 | 185 |
MESSAGE_NORMAL_OUTPUT = 2, |
184 | 186 |
/// full output (includes informational messages) |
185 | 187 |
MESSAGE_FULL_OUTPUT = 3 |
186 | 188 |
}; |
187 | 189 |
|
188 | 190 |
private: |
189 | 191 |
|
190 | 192 |
MessageLevel _message_level; |
191 | 193 |
|
192 | 194 |
public: |
193 | 195 |
|
194 | 196 |
///Set the verbosity of the messages |
195 | 197 |
|
196 | 198 |
///Set the verbosity of the messages |
197 | 199 |
/// |
198 | 200 |
///\param m is the level of the messages output by the solver routines. |
199 | 201 |
void messageLevel(MessageLevel m); |
200 | 202 |
}; |
201 | 203 |
|
202 | 204 |
/// \brief Interface for the GLPK MIP solver |
203 | 205 |
/// |
204 | 206 |
/// This class implements an interface for the GLPK MIP solver. |
205 | 207 |
///\ingroup lp_group |
206 |
class GlpkMip : public |
|
208 |
class GlpkMip : public MipSolver, public GlpkBase { |
|
207 | 209 |
public: |
208 | 210 |
|
209 | 211 |
///\e |
210 | 212 |
GlpkMip(); |
211 | 213 |
///\e |
212 | 214 |
GlpkMip(const GlpkMip&); |
213 | 215 |
|
216 |
virtual GlpkMip* cloneSolver() const; |
|
217 |
virtual GlpkMip* newSolver() const; |
|
218 |
|
|
214 | 219 |
protected: |
215 | 220 |
|
216 |
virtual GlpkMip* _cloneSolver() const; |
|
217 |
virtual GlpkMip* _newSolver() const; |
|
218 |
|
|
219 | 221 |
virtual const char* _solverName() const; |
220 | 222 |
|
221 | 223 |
virtual ColTypes _getColType(int col) const; |
222 | 224 |
virtual void _setColType(int col, ColTypes col_type); |
223 | 225 |
|
224 | 226 |
virtual SolveExitStatus _solve(); |
225 | 227 |
virtual ProblemType _getType() const; |
226 | 228 |
virtual Value _getSol(int i) const; |
227 | 229 |
virtual Value _getSolValue() const; |
228 | 230 |
|
229 | 231 |
///Enum for \c messageLevel() parameter |
230 | 232 |
enum MessageLevel { |
231 | 233 |
/// no output (default value) |
232 | 234 |
MESSAGE_NO_OUTPUT = 0, |
233 | 235 |
/// error messages only |
234 | 236 |
MESSAGE_ERROR_MESSAGE = 1, |
235 | 237 |
/// normal output |
236 | 238 |
MESSAGE_NORMAL_OUTPUT = 2, |
237 | 239 |
/// full output (includes informational messages) |
238 | 240 |
MESSAGE_FULL_OUTPUT = 3 |
239 | 241 |
}; |
240 | 242 |
|
241 | 243 |
private: |
242 | 244 |
|
243 | 245 |
MessageLevel _message_level; |
244 | 246 |
|
245 | 247 |
public: |
246 | 248 |
|
247 | 249 |
///Set the verbosity of the messages |
248 | 250 |
|
249 | 251 |
///Set the verbosity of the messages |
250 | 252 |
/// |
251 | 253 |
///\param m is the level of the messages output by the solver routines. |
252 | 254 |
void messageLevel(MessageLevel m); |
253 | 255 |
}; |
254 | 256 |
|
255 | 257 |
|
256 | 258 |
} //END OF NAMESPACE LEMON |
257 | 259 |
|
258 | 260 |
#endif //LEMON_GLPK_H |
259 | 261 |
... | ... |
@@ -153,1928 +153,1917 @@ |
153 | 153 |
{ |
154 | 154 |
_solver->cols.firstItem(_id); |
155 | 155 |
} |
156 | 156 |
/// Invalid constructor \& conversion |
157 | 157 |
|
158 | 158 |
/// Initialize the iterator to be invalid. |
159 | 159 |
/// \sa Invalid for more details. |
160 | 160 |
ColIt(const Invalid&) : Col(INVALID) {} |
161 | 161 |
/// Next column |
162 | 162 |
|
163 | 163 |
/// Assign the iterator to the next column. |
164 | 164 |
/// |
165 | 165 |
ColIt &operator++() |
166 | 166 |
{ |
167 | 167 |
_solver->cols.nextItem(_id); |
168 | 168 |
return *this; |
169 | 169 |
} |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
/// \brief Returns the ID of the column. |
173 | 173 |
static int id(const Col& col) { return col._id; } |
174 | 174 |
/// \brief Returns the column with the given ID. |
175 | 175 |
/// |
176 | 176 |
/// \pre The argument should be a valid column ID in the LP problem. |
177 | 177 |
static Col colFromId(int id) { return Col(id); } |
178 | 178 |
|
179 | 179 |
///Refer to a row of the LP. |
180 | 180 |
|
181 | 181 |
///This type is used to refer to a row of the LP. |
182 | 182 |
/// |
183 | 183 |
///Its value remains valid and correct even after the addition or erase of |
184 | 184 |
///other rows. |
185 | 185 |
/// |
186 | 186 |
///\note This class is similar to other Item types in LEMON, like |
187 | 187 |
///Node and Arc types in digraph. |
188 | 188 |
class Row { |
189 | 189 |
friend class LpBase; |
190 | 190 |
protected: |
191 | 191 |
int _id; |
192 | 192 |
explicit Row(int id) : _id(id) {} |
193 | 193 |
public: |
194 | 194 |
typedef Value ExprValue; |
195 | 195 |
typedef True LpRow; |
196 | 196 |
/// Default constructor |
197 | 197 |
|
198 | 198 |
/// \warning The default constructor sets the Row to an |
199 | 199 |
/// undefined value. |
200 | 200 |
Row() {} |
201 | 201 |
/// Invalid constructor \& conversion. |
202 | 202 |
|
203 | 203 |
/// This constructor initializes the Row to be invalid. |
204 | 204 |
/// \sa Invalid for more details. |
205 | 205 |
Row(const Invalid&) : _id(-1) {} |
206 | 206 |
/// Equality operator |
207 | 207 |
|
208 | 208 |
/// Two \ref Row "Row"s are equal if and only if they point to |
209 | 209 |
/// the same LP row or both are invalid. |
210 | 210 |
bool operator==(Row r) const {return _id == r._id;} |
211 | 211 |
/// Inequality operator |
212 | 212 |
|
213 | 213 |
/// \sa operator==(Row r) |
214 | 214 |
/// |
215 | 215 |
bool operator!=(Row r) const {return _id != r._id;} |
216 | 216 |
/// Artificial ordering operator. |
217 | 217 |
|
218 | 218 |
/// To allow the use of this object in std::map or similar |
219 | 219 |
/// associative container we require this. |
220 | 220 |
/// |
221 | 221 |
/// \note This operator only have to define some strict ordering of |
222 | 222 |
/// the items; this order has nothing to do with the iteration |
223 | 223 |
/// ordering of the items. |
224 | 224 |
bool operator<(Row r) const {return _id < r._id;} |
225 | 225 |
}; |
226 | 226 |
|
227 | 227 |
///Iterator for iterate over the rows of an LP problem |
228 | 228 |
|
229 | 229 |
/// Its usage is quite simple, for example you can count the number |
230 | 230 |
/// of rows in an LP \c lp: |
231 | 231 |
///\code |
232 | 232 |
/// int count=0; |
233 | 233 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
234 | 234 |
///\endcode |
235 | 235 |
class RowIt : public Row { |
236 | 236 |
const LpBase *_solver; |
237 | 237 |
public: |
238 | 238 |
/// Default constructor |
239 | 239 |
|
240 | 240 |
/// \warning The default constructor sets the iterator |
241 | 241 |
/// to an undefined value. |
242 | 242 |
RowIt() {} |
243 | 243 |
/// Sets the iterator to the first Row |
244 | 244 |
|
245 | 245 |
/// Sets the iterator to the first Row. |
246 | 246 |
/// |
247 | 247 |
RowIt(const LpBase &solver) : _solver(&solver) |
248 | 248 |
{ |
249 | 249 |
_solver->rows.firstItem(_id); |
250 | 250 |
} |
251 | 251 |
/// Invalid constructor \& conversion |
252 | 252 |
|
253 | 253 |
/// Initialize the iterator to be invalid. |
254 | 254 |
/// \sa Invalid for more details. |
255 | 255 |
RowIt(const Invalid&) : Row(INVALID) {} |
256 | 256 |
/// Next row |
257 | 257 |
|
258 | 258 |
/// Assign the iterator to the next row. |
259 | 259 |
/// |
260 | 260 |
RowIt &operator++() |
261 | 261 |
{ |
262 | 262 |
_solver->rows.nextItem(_id); |
263 | 263 |
return *this; |
264 | 264 |
} |
265 | 265 |
}; |
266 | 266 |
|
267 | 267 |
/// \brief Returns the ID of the row. |
268 | 268 |
static int id(const Row& row) { return row._id; } |
269 | 269 |
/// \brief Returns the row with the given ID. |
270 | 270 |
/// |
271 | 271 |
/// \pre The argument should be a valid row ID in the LP problem. |
272 | 272 |
static Row rowFromId(int id) { return Row(id); } |
273 | 273 |
|
274 | 274 |
public: |
275 | 275 |
|
276 | 276 |
///Linear expression of variables and a constant component |
277 | 277 |
|
278 | 278 |
///This data structure stores a linear expression of the variables |
279 | 279 |
///(\ref Col "Col"s) and also has a constant component. |
280 | 280 |
/// |
281 | 281 |
///There are several ways to access and modify the contents of this |
282 | 282 |
///container. |
283 | 283 |
///\code |
284 | 284 |
///e[v]=5; |
285 | 285 |
///e[v]+=12; |
286 | 286 |
///e.erase(v); |
287 | 287 |
///\endcode |
288 | 288 |
///or you can also iterate through its elements. |
289 | 289 |
///\code |
290 | 290 |
///double s=0; |
291 | 291 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
292 | 292 |
/// s+=*i * primal(i); |
293 | 293 |
///\endcode |
294 | 294 |
///(This code computes the primal value of the expression). |
295 | 295 |
///- Numbers (<tt>double</tt>'s) |
296 | 296 |
///and variables (\ref Col "Col"s) directly convert to an |
297 | 297 |
///\ref Expr and the usual linear operations are defined, so |
298 | 298 |
///\code |
299 | 299 |
///v+w |
300 | 300 |
///2*v-3.12*(v-w/2)+2 |
301 | 301 |
///v*2.1+(3*v+(v*12+w+6)*3)/2 |
302 | 302 |
///\endcode |
303 | 303 |
///are valid expressions. |
304 | 304 |
///The usual assignment operations are also defined. |
305 | 305 |
///\code |
306 | 306 |
///e=v+w; |
307 | 307 |
///e+=2*v-3.12*(v-w/2)+2; |
308 | 308 |
///e*=3.4; |
309 | 309 |
///e/=5; |
310 | 310 |
///\endcode |
311 | 311 |
///- The constant member can be set and read by dereference |
312 | 312 |
/// operator (unary *) |
313 | 313 |
/// |
314 | 314 |
///\code |
315 | 315 |
///*e=12; |
316 | 316 |
///double c=*e; |
317 | 317 |
///\endcode |
318 | 318 |
/// |
319 | 319 |
///\sa Constr |
320 | 320 |
class Expr { |
321 | 321 |
friend class LpBase; |
322 | 322 |
public: |
323 | 323 |
/// The key type of the expression |
324 | 324 |
typedef LpBase::Col Key; |
325 | 325 |
/// The value type of the expression |
326 | 326 |
typedef LpBase::Value Value; |
327 | 327 |
|
328 | 328 |
protected: |
329 | 329 |
Value const_comp; |
330 | 330 |
std::map<int, Value> comps; |
331 | 331 |
|
332 | 332 |
public: |
333 | 333 |
typedef True SolverExpr; |
334 | 334 |
/// Default constructor |
335 | 335 |
|
336 | 336 |
/// Construct an empty expression, the coefficients and |
337 | 337 |
/// the constant component are initialized to zero. |
338 | 338 |
Expr() : const_comp(0) {} |
339 | 339 |
/// Construct an expression from a column |
340 | 340 |
|
341 | 341 |
/// Construct an expression, which has a term with \c c variable |
342 | 342 |
/// and 1.0 coefficient. |
343 | 343 |
Expr(const Col &c) : const_comp(0) { |
344 | 344 |
typedef std::map<int, Value>::value_type pair_type; |
345 | 345 |
comps.insert(pair_type(id(c), 1)); |
346 | 346 |
} |
347 | 347 |
/// Construct an expression from a constant |
348 | 348 |
|
349 | 349 |
/// Construct an expression, which's constant component is \c v. |
350 | 350 |
/// |
351 | 351 |
Expr(const Value &v) : const_comp(v) {} |
352 | 352 |
/// Returns the coefficient of the column |
353 | 353 |
Value operator[](const Col& c) const { |
354 | 354 |
std::map<int, Value>::const_iterator it=comps.find(id(c)); |
355 | 355 |
if (it != comps.end()) { |
356 | 356 |
return it->second; |
357 | 357 |
} else { |
358 | 358 |
return 0; |
359 | 359 |
} |
360 | 360 |
} |
361 | 361 |
/// Returns the coefficient of the column |
362 | 362 |
Value& operator[](const Col& c) { |
363 | 363 |
return comps[id(c)]; |
364 | 364 |
} |
365 | 365 |
/// Sets the coefficient of the column |
366 | 366 |
void set(const Col &c, const Value &v) { |
367 | 367 |
if (v != 0.0) { |
368 | 368 |
typedef std::map<int, Value>::value_type pair_type; |
369 | 369 |
comps.insert(pair_type(id(c), v)); |
370 | 370 |
} else { |
371 | 371 |
comps.erase(id(c)); |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
/// Returns the constant component of the expression |
375 | 375 |
Value& operator*() { return const_comp; } |
376 | 376 |
/// Returns the constant component of the expression |
377 | 377 |
const Value& operator*() const { return const_comp; } |
378 | 378 |
/// \brief Removes the coefficients which's absolute value does |
379 | 379 |
/// not exceed \c epsilon. It also sets to zero the constant |
380 | 380 |
/// component, if it does not exceed epsilon in absolute value. |
381 | 381 |
void simplify(Value epsilon = 0.0) { |
382 | 382 |
std::map<int, Value>::iterator it=comps.begin(); |
383 | 383 |
while (it != comps.end()) { |
384 | 384 |
std::map<int, Value>::iterator jt=it; |
385 | 385 |
++jt; |
386 | 386 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
387 | 387 |
it=jt; |
388 | 388 |
} |
389 | 389 |
if (std::fabs(const_comp) <= epsilon) const_comp = 0; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
void simplify(Value epsilon = 0.0) const { |
393 | 393 |
const_cast<Expr*>(this)->simplify(epsilon); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
///Sets all coefficients and the constant component to 0. |
397 | 397 |
void clear() { |
398 | 398 |
comps.clear(); |
399 | 399 |
const_comp=0; |
400 | 400 |
} |
401 | 401 |
|
402 | 402 |
///Compound assignment |
403 | 403 |
Expr &operator+=(const Expr &e) { |
404 | 404 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
405 | 405 |
it!=e.comps.end(); ++it) |
406 | 406 |
comps[it->first]+=it->second; |
407 | 407 |
const_comp+=e.const_comp; |
408 | 408 |
return *this; |
409 | 409 |
} |
410 | 410 |
///Compound assignment |
411 | 411 |
Expr &operator-=(const Expr &e) { |
412 | 412 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
413 | 413 |
it!=e.comps.end(); ++it) |
414 | 414 |
comps[it->first]-=it->second; |
415 | 415 |
const_comp-=e.const_comp; |
416 | 416 |
return *this; |
417 | 417 |
} |
418 | 418 |
///Multiply with a constant |
419 | 419 |
Expr &operator*=(const Value &v) { |
420 | 420 |
for (std::map<int, Value>::iterator it=comps.begin(); |
421 | 421 |
it!=comps.end(); ++it) |
422 | 422 |
it->second*=v; |
423 | 423 |
const_comp*=v; |
424 | 424 |
return *this; |
425 | 425 |
} |
426 | 426 |
///Division with a constant |
427 | 427 |
Expr &operator/=(const Value &c) { |
428 | 428 |
for (std::map<int, Value>::iterator it=comps.begin(); |
429 | 429 |
it!=comps.end(); ++it) |
430 | 430 |
it->second/=c; |
431 | 431 |
const_comp/=c; |
432 | 432 |
return *this; |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
///Iterator over the expression |
436 | 436 |
|
437 | 437 |
///The iterator iterates over the terms of the expression. |
438 | 438 |
/// |
439 | 439 |
///\code |
440 | 440 |
///double s=0; |
441 | 441 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
442 | 442 |
/// s+= *i * primal(i); |
443 | 443 |
///\endcode |
444 | 444 |
class CoeffIt { |
445 | 445 |
private: |
446 | 446 |
|
447 | 447 |
std::map<int, Value>::iterator _it, _end; |
448 | 448 |
|
449 | 449 |
public: |
450 | 450 |
|
451 | 451 |
/// Sets the iterator to the first term |
452 | 452 |
|
453 | 453 |
/// Sets the iterator to the first term of the expression. |
454 | 454 |
/// |
455 | 455 |
CoeffIt(Expr& e) |
456 | 456 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
457 | 457 |
|
458 | 458 |
/// Convert the iterator to the column of the term |
459 | 459 |
operator Col() const { |
460 | 460 |
return colFromId(_it->first); |
461 | 461 |
} |
462 | 462 |
|
463 | 463 |
/// Returns the coefficient of the term |
464 | 464 |
Value& operator*() { return _it->second; } |
465 | 465 |
|
466 | 466 |
/// Returns the coefficient of the term |
467 | 467 |
const Value& operator*() const { return _it->second; } |
468 | 468 |
/// Next term |
469 | 469 |
|
470 | 470 |
/// Assign the iterator to the next term. |
471 | 471 |
/// |
472 | 472 |
CoeffIt& operator++() { ++_it; return *this; } |
473 | 473 |
|
474 | 474 |
/// Equality operator |
475 | 475 |
bool operator==(Invalid) const { return _it == _end; } |
476 | 476 |
/// Inequality operator |
477 | 477 |
bool operator!=(Invalid) const { return _it != _end; } |
478 | 478 |
}; |
479 | 479 |
|
480 | 480 |
/// Const iterator over the expression |
481 | 481 |
|
482 | 482 |
///The iterator iterates over the terms of the expression. |
483 | 483 |
/// |
484 | 484 |
///\code |
485 | 485 |
///double s=0; |
486 | 486 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
487 | 487 |
/// s+=*i * primal(i); |
488 | 488 |
///\endcode |
489 | 489 |
class ConstCoeffIt { |
490 | 490 |
private: |
491 | 491 |
|
492 | 492 |
std::map<int, Value>::const_iterator _it, _end; |
493 | 493 |
|
494 | 494 |
public: |
495 | 495 |
|
496 | 496 |
/// Sets the iterator to the first term |
497 | 497 |
|
498 | 498 |
/// Sets the iterator to the first term of the expression. |
499 | 499 |
/// |
500 | 500 |
ConstCoeffIt(const Expr& e) |
501 | 501 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
502 | 502 |
|
503 | 503 |
/// Convert the iterator to the column of the term |
504 | 504 |
operator Col() const { |
505 | 505 |
return colFromId(_it->first); |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
/// Returns the coefficient of the term |
509 | 509 |
const Value& operator*() const { return _it->second; } |
510 | 510 |
|
511 | 511 |
/// Next term |
512 | 512 |
|
513 | 513 |
/// Assign the iterator to the next term. |
514 | 514 |
/// |
515 | 515 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
516 | 516 |
|
517 | 517 |
/// Equality operator |
518 | 518 |
bool operator==(Invalid) const { return _it == _end; } |
519 | 519 |
/// Inequality operator |
520 | 520 |
bool operator!=(Invalid) const { return _it != _end; } |
521 | 521 |
}; |
522 | 522 |
|
523 | 523 |
}; |
524 | 524 |
|
525 | 525 |
///Linear constraint |
526 | 526 |
|
527 | 527 |
///This data stucture represents a linear constraint in the LP. |
528 | 528 |
///Basically it is a linear expression with a lower or an upper bound |
529 | 529 |
///(or both). These parts of the constraint can be obtained by the member |
530 | 530 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
531 | 531 |
///respectively. |
532 | 532 |
///There are two ways to construct a constraint. |
533 | 533 |
///- You can set the linear expression and the bounds directly |
534 | 534 |
/// by the functions above. |
535 | 535 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
536 | 536 |
/// are defined between expressions, or even between constraints whenever |
537 | 537 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
538 | 538 |
/// \c s and \c t are numbers, then the followings are valid expressions |
539 | 539 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
540 | 540 |
/// it makes sense. |
541 | 541 |
///\code |
542 | 542 |
/// e<=s |
543 | 543 |
/// e<=f |
544 | 544 |
/// e==f |
545 | 545 |
/// s<=e<=t |
546 | 546 |
/// e>=t |
547 | 547 |
///\endcode |
548 | 548 |
///\warning The validity of a constraint is checked only at run |
549 | 549 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
550 | 550 |
///compile, but will fail an assertion. |
551 | 551 |
class Constr |
552 | 552 |
{ |
553 | 553 |
public: |
554 | 554 |
typedef LpBase::Expr Expr; |
555 | 555 |
typedef Expr::Key Key; |
556 | 556 |
typedef Expr::Value Value; |
557 | 557 |
|
558 | 558 |
protected: |
559 | 559 |
Expr _expr; |
560 | 560 |
Value _lb,_ub; |
561 | 561 |
public: |
562 | 562 |
///\e |
563 | 563 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {} |
564 | 564 |
///\e |
565 | 565 |
Constr(Value lb, const Expr &e, Value ub) : |
566 | 566 |
_expr(e), _lb(lb), _ub(ub) {} |
567 | 567 |
Constr(const Expr &e) : |
568 | 568 |
_expr(e), _lb(NaN), _ub(NaN) {} |
569 | 569 |
///\e |
570 | 570 |
void clear() |
571 | 571 |
{ |
572 | 572 |
_expr.clear(); |
573 | 573 |
_lb=_ub=NaN; |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
///Reference to the linear expression |
577 | 577 |
Expr &expr() { return _expr; } |
578 | 578 |
///Cont reference to the linear expression |
579 | 579 |
const Expr &expr() const { return _expr; } |
580 | 580 |
///Reference to the lower bound. |
581 | 581 |
|
582 | 582 |
///\return |
583 | 583 |
///- \ref INF "INF": the constraint is lower unbounded. |
584 | 584 |
///- \ref NaN "NaN": lower bound has not been set. |
585 | 585 |
///- finite number: the lower bound |
586 | 586 |
Value &lowerBound() { return _lb; } |
587 | 587 |
///The const version of \ref lowerBound() |
588 | 588 |
const Value &lowerBound() const { return _lb; } |
589 | 589 |
///Reference to the upper bound. |
590 | 590 |
|
591 | 591 |
///\return |
592 | 592 |
///- \ref INF "INF": the constraint is upper unbounded. |
593 | 593 |
///- \ref NaN "NaN": upper bound has not been set. |
594 | 594 |
///- finite number: the upper bound |
595 | 595 |
Value &upperBound() { return _ub; } |
596 | 596 |
///The const version of \ref upperBound() |
597 | 597 |
const Value &upperBound() const { return _ub; } |
598 | 598 |
///Is the constraint lower bounded? |
599 | 599 |
bool lowerBounded() const { |
600 | 600 |
return _lb != -INF && !isNaN(_lb); |
601 | 601 |
} |
602 | 602 |
///Is the constraint upper bounded? |
603 | 603 |
bool upperBounded() const { |
604 | 604 |
return _ub != INF && !isNaN(_ub); |
605 | 605 |
} |
606 | 606 |
|
607 | 607 |
}; |
608 | 608 |
|
609 | 609 |
///Linear expression of rows |
610 | 610 |
|
611 | 611 |
///This data structure represents a column of the matrix, |
612 | 612 |
///thas is it strores a linear expression of the dual variables |
613 | 613 |
///(\ref Row "Row"s). |
614 | 614 |
/// |
615 | 615 |
///There are several ways to access and modify the contents of this |
616 | 616 |
///container. |
617 | 617 |
///\code |
618 | 618 |
///e[v]=5; |
619 | 619 |
///e[v]+=12; |
620 | 620 |
///e.erase(v); |
621 | 621 |
///\endcode |
622 | 622 |
///or you can also iterate through its elements. |
623 | 623 |
///\code |
624 | 624 |
///double s=0; |
625 | 625 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
626 | 626 |
/// s+=*i; |
627 | 627 |
///\endcode |
628 | 628 |
///(This code computes the sum of all coefficients). |
629 | 629 |
///- Numbers (<tt>double</tt>'s) |
630 | 630 |
///and variables (\ref Row "Row"s) directly convert to an |
631 | 631 |
///\ref DualExpr and the usual linear operations are defined, so |
632 | 632 |
///\code |
633 | 633 |
///v+w |
634 | 634 |
///2*v-3.12*(v-w/2) |
635 | 635 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
636 | 636 |
///\endcode |
637 | 637 |
///are valid \ref DualExpr dual expressions. |
638 | 638 |
///The usual assignment operations are also defined. |
639 | 639 |
///\code |
640 | 640 |
///e=v+w; |
641 | 641 |
///e+=2*v-3.12*(v-w/2); |
642 | 642 |
///e*=3.4; |
643 | 643 |
///e/=5; |
644 | 644 |
///\endcode |
645 | 645 |
/// |
646 | 646 |
///\sa Expr |
647 | 647 |
class DualExpr { |
648 | 648 |
friend class LpBase; |
649 | 649 |
public: |
650 | 650 |
/// The key type of the expression |
651 | 651 |
typedef LpBase::Row Key; |
652 | 652 |
/// The value type of the expression |
653 | 653 |
typedef LpBase::Value Value; |
654 | 654 |
|
655 | 655 |
protected: |
656 | 656 |
std::map<int, Value> comps; |
657 | 657 |
|
658 | 658 |
public: |
659 | 659 |
typedef True SolverExpr; |
660 | 660 |
/// Default constructor |
661 | 661 |
|
662 | 662 |
/// Construct an empty expression, the coefficients are |
663 | 663 |
/// initialized to zero. |
664 | 664 |
DualExpr() {} |
665 | 665 |
/// Construct an expression from a row |
666 | 666 |
|
667 | 667 |
/// Construct an expression, which has a term with \c r dual |
668 | 668 |
/// variable and 1.0 coefficient. |
669 | 669 |
DualExpr(const Row &r) { |
670 | 670 |
typedef std::map<int, Value>::value_type pair_type; |
671 | 671 |
comps.insert(pair_type(id(r), 1)); |
672 | 672 |
} |
673 | 673 |
/// Returns the coefficient of the row |
674 | 674 |
Value operator[](const Row& r) const { |
675 | 675 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
676 | 676 |
if (it != comps.end()) { |
677 | 677 |
return it->second; |
678 | 678 |
} else { |
679 | 679 |
return 0; |
680 | 680 |
} |
681 | 681 |
} |
682 | 682 |
/// Returns the coefficient of the row |
683 | 683 |
Value& operator[](const Row& r) { |
684 | 684 |
return comps[id(r)]; |
685 | 685 |
} |
686 | 686 |
/// Sets the coefficient of the row |
687 | 687 |
void set(const Row &r, const Value &v) { |
688 | 688 |
if (v != 0.0) { |
689 | 689 |
typedef std::map<int, Value>::value_type pair_type; |
690 | 690 |
comps.insert(pair_type(id(r), v)); |
691 | 691 |
} else { |
692 | 692 |
comps.erase(id(r)); |
693 | 693 |
} |
694 | 694 |
} |
695 | 695 |
/// \brief Removes the coefficients which's absolute value does |
696 | 696 |
/// not exceed \c epsilon. |
697 | 697 |
void simplify(Value epsilon = 0.0) { |
698 | 698 |
std::map<int, Value>::iterator it=comps.begin(); |
699 | 699 |
while (it != comps.end()) { |
700 | 700 |
std::map<int, Value>::iterator jt=it; |
701 | 701 |
++jt; |
702 | 702 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
703 | 703 |
it=jt; |
704 | 704 |
} |
705 | 705 |
} |
706 | 706 |
|
707 | 707 |
void simplify(Value epsilon = 0.0) const { |
708 | 708 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
709 | 709 |
} |
710 | 710 |
|
711 | 711 |
///Sets all coefficients to 0. |
712 | 712 |
void clear() { |
713 | 713 |
comps.clear(); |
714 | 714 |
} |
715 | 715 |
///Compound assignment |
716 | 716 |
DualExpr &operator+=(const DualExpr &e) { |
717 | 717 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
718 | 718 |
it!=e.comps.end(); ++it) |
719 | 719 |
comps[it->first]+=it->second; |
720 | 720 |
return *this; |
721 | 721 |
} |
722 | 722 |
///Compound assignment |
723 | 723 |
DualExpr &operator-=(const DualExpr &e) { |
724 | 724 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
725 | 725 |
it!=e.comps.end(); ++it) |
726 | 726 |
comps[it->first]-=it->second; |
727 | 727 |
return *this; |
728 | 728 |
} |
729 | 729 |
///Multiply with a constant |
730 | 730 |
DualExpr &operator*=(const Value &v) { |
731 | 731 |
for (std::map<int, Value>::iterator it=comps.begin(); |
732 | 732 |
it!=comps.end(); ++it) |
733 | 733 |
it->second*=v; |
734 | 734 |
return *this; |
735 | 735 |
} |
736 | 736 |
///Division with a constant |
737 | 737 |
DualExpr &operator/=(const Value &v) { |
738 | 738 |
for (std::map<int, Value>::iterator it=comps.begin(); |
739 | 739 |
it!=comps.end(); ++it) |
740 | 740 |
it->second/=v; |
741 | 741 |
return *this; |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
///Iterator over the expression |
745 | 745 |
|
746 | 746 |
///The iterator iterates over the terms of the expression. |
747 | 747 |
/// |
748 | 748 |
///\code |
749 | 749 |
///double s=0; |
750 | 750 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
751 | 751 |
/// s+= *i * dual(i); |
752 | 752 |
///\endcode |
753 | 753 |
class CoeffIt { |
754 | 754 |
private: |
755 | 755 |
|
756 | 756 |
std::map<int, Value>::iterator _it, _end; |
757 | 757 |
|
758 | 758 |
public: |
759 | 759 |
|
760 | 760 |
/// Sets the iterator to the first term |
761 | 761 |
|
762 | 762 |
/// Sets the iterator to the first term of the expression. |
763 | 763 |
/// |
764 | 764 |
CoeffIt(DualExpr& e) |
765 | 765 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
766 | 766 |
|
767 | 767 |
/// Convert the iterator to the row of the term |
768 | 768 |
operator Row() const { |
769 | 769 |
return rowFromId(_it->first); |
770 | 770 |
} |
771 | 771 |
|
772 | 772 |
/// Returns the coefficient of the term |
773 | 773 |
Value& operator*() { return _it->second; } |
774 | 774 |
|
775 | 775 |
/// Returns the coefficient of the term |
776 | 776 |
const Value& operator*() const { return _it->second; } |
777 | 777 |
|
778 | 778 |
/// Next term |
779 | 779 |
|
780 | 780 |
/// Assign the iterator to the next term. |
781 | 781 |
/// |
782 | 782 |
CoeffIt& operator++() { ++_it; return *this; } |
783 | 783 |
|
784 | 784 |
/// Equality operator |
785 | 785 |
bool operator==(Invalid) const { return _it == _end; } |
786 | 786 |
/// Inequality operator |
787 | 787 |
bool operator!=(Invalid) const { return _it != _end; } |
788 | 788 |
}; |
789 | 789 |
|
790 | 790 |
///Iterator over the expression |
791 | 791 |
|
792 | 792 |
///The iterator iterates over the terms of the expression. |
793 | 793 |
/// |
794 | 794 |
///\code |
795 | 795 |
///double s=0; |
796 | 796 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
797 | 797 |
/// s+= *i * dual(i); |
798 | 798 |
///\endcode |
799 | 799 |
class ConstCoeffIt { |
800 | 800 |
private: |
801 | 801 |
|
802 | 802 |
std::map<int, Value>::const_iterator _it, _end; |
803 | 803 |
|
804 | 804 |
public: |
805 | 805 |
|
806 | 806 |
/// Sets the iterator to the first term |
807 | 807 |
|
808 | 808 |
/// Sets the iterator to the first term of the expression. |
809 | 809 |
/// |
810 | 810 |
ConstCoeffIt(const DualExpr& e) |
811 | 811 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
812 | 812 |
|
813 | 813 |
/// Convert the iterator to the row of the term |
814 | 814 |
operator Row() const { |
815 | 815 |
return rowFromId(_it->first); |
816 | 816 |
} |
817 | 817 |
|
818 | 818 |
/// Returns the coefficient of the term |
819 | 819 |
const Value& operator*() const { return _it->second; } |
820 | 820 |
|
821 | 821 |
/// Next term |
822 | 822 |
|
823 | 823 |
/// Assign the iterator to the next term. |
824 | 824 |
/// |
825 | 825 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
826 | 826 |
|
827 | 827 |
/// Equality operator |
828 | 828 |
bool operator==(Invalid) const { return _it == _end; } |
829 | 829 |
/// Inequality operator |
830 | 830 |
bool operator!=(Invalid) const { return _it != _end; } |
831 | 831 |
}; |
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
|
835 | 835 |
protected: |
836 | 836 |
|
837 | 837 |
class InsertIterator { |
838 | 838 |
private: |
839 | 839 |
|
840 | 840 |
std::map<int, Value>& _host; |
841 | 841 |
const _solver_bits::VarIndex& _index; |
842 | 842 |
|
843 | 843 |
public: |
844 | 844 |
|
845 | 845 |
typedef std::output_iterator_tag iterator_category; |
846 | 846 |
typedef void difference_type; |
847 | 847 |
typedef void value_type; |
848 | 848 |
typedef void reference; |
849 | 849 |
typedef void pointer; |
850 | 850 |
|
851 | 851 |
InsertIterator(std::map<int, Value>& host, |
852 | 852 |
const _solver_bits::VarIndex& index) |
853 | 853 |
: _host(host), _index(index) {} |
854 | 854 |
|
855 | 855 |
InsertIterator& operator=(const std::pair<int, Value>& value) { |
856 | 856 |
typedef std::map<int, Value>::value_type pair_type; |
857 | 857 |
_host.insert(pair_type(_index[value.first], value.second)); |
858 | 858 |
return *this; |
859 | 859 |
} |
860 | 860 |
|
861 | 861 |
InsertIterator& operator*() { return *this; } |
862 | 862 |
InsertIterator& operator++() { return *this; } |
863 | 863 |
InsertIterator operator++(int) { return *this; } |
864 | 864 |
|
865 | 865 |
}; |
866 | 866 |
|
867 | 867 |
class ExprIterator { |
868 | 868 |
private: |
869 | 869 |
std::map<int, Value>::const_iterator _host_it; |
870 | 870 |
const _solver_bits::VarIndex& _index; |
871 | 871 |
public: |
872 | 872 |
|
873 | 873 |
typedef std::bidirectional_iterator_tag iterator_category; |
874 | 874 |
typedef std::ptrdiff_t difference_type; |
875 | 875 |
typedef const std::pair<int, Value> value_type; |
876 | 876 |
typedef value_type reference; |
877 | 877 |
|
878 | 878 |
class pointer { |
879 | 879 |
public: |
880 | 880 |
pointer(value_type& _value) : value(_value) {} |
881 | 881 |
value_type* operator->() { return &value; } |
882 | 882 |
private: |
883 | 883 |
value_type value; |
884 | 884 |
}; |
885 | 885 |
|
886 | 886 |
ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
887 | 887 |
const _solver_bits::VarIndex& index) |
888 | 888 |
: _host_it(host_it), _index(index) {} |
889 | 889 |
|
890 | 890 |
reference operator*() { |
891 | 891 |
return std::make_pair(_index(_host_it->first), _host_it->second); |
892 | 892 |
} |
893 | 893 |
|
894 | 894 |
pointer operator->() { |
895 | 895 |
return pointer(operator*()); |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
ExprIterator& operator++() { ++_host_it; return *this; } |
899 | 899 |
ExprIterator operator++(int) { |
900 | 900 |
ExprIterator tmp(*this); ++_host_it; return tmp; |
901 | 901 |
} |
902 | 902 |
|
903 | 903 |
ExprIterator& operator--() { --_host_it; return *this; } |
904 | 904 |
ExprIterator operator--(int) { |
905 | 905 |
ExprIterator tmp(*this); --_host_it; return tmp; |
906 | 906 |
} |
907 | 907 |
|
908 | 908 |
bool operator==(const ExprIterator& it) const { |
909 | 909 |
return _host_it == it._host_it; |
910 | 910 |
} |
911 | 911 |
|
912 | 912 |
bool operator!=(const ExprIterator& it) const { |
913 | 913 |
return _host_it != it._host_it; |
914 | 914 |
} |
915 | 915 |
|
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
protected: |
919 | 919 |
|
920 | 920 |
//Abstract virtual functions |
921 |
virtual LpBase* _newSolver() const = 0; |
|
922 |
virtual LpBase* _cloneSolver() const = 0; |
|
923 | 921 |
|
924 | 922 |
virtual int _addColId(int col) { return cols.addIndex(col); } |
925 | 923 |
virtual int _addRowId(int row) { return rows.addIndex(row); } |
926 | 924 |
|
927 | 925 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); } |
928 | 926 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); } |
929 | 927 |
|
930 | 928 |
virtual int _addCol() = 0; |
931 | 929 |
virtual int _addRow() = 0; |
932 | 930 |
|
933 | 931 |
virtual void _eraseCol(int col) = 0; |
934 | 932 |
virtual void _eraseRow(int row) = 0; |
935 | 933 |
|
936 | 934 |
virtual void _getColName(int col, std::string& name) const = 0; |
937 | 935 |
virtual void _setColName(int col, const std::string& name) = 0; |
938 | 936 |
virtual int _colByName(const std::string& name) const = 0; |
939 | 937 |
|
940 | 938 |
virtual void _getRowName(int row, std::string& name) const = 0; |
941 | 939 |
virtual void _setRowName(int row, const std::string& name) = 0; |
942 | 940 |
virtual int _rowByName(const std::string& name) const = 0; |
943 | 941 |
|
944 | 942 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
945 | 943 |
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
946 | 944 |
|
947 | 945 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
948 | 946 |
virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
949 | 947 |
|
950 | 948 |
virtual void _setCoeff(int row, int col, Value value) = 0; |
951 | 949 |
virtual Value _getCoeff(int row, int col) const = 0; |
952 | 950 |
|
953 | 951 |
virtual void _setColLowerBound(int i, Value value) = 0; |
954 | 952 |
virtual Value _getColLowerBound(int i) const = 0; |
955 | 953 |
|
956 | 954 |
virtual void _setColUpperBound(int i, Value value) = 0; |
957 | 955 |
virtual Value _getColUpperBound(int i) const = 0; |
958 | 956 |
|
959 | 957 |
virtual void _setRowLowerBound(int i, Value value) = 0; |
960 | 958 |
virtual Value _getRowLowerBound(int i) const = 0; |
961 | 959 |
|
962 | 960 |
virtual void _setRowUpperBound(int i, Value value) = 0; |
963 | 961 |
virtual Value _getRowUpperBound(int i) const = 0; |
964 | 962 |
|
965 | 963 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
966 | 964 |
virtual void _getObjCoeffs(InsertIterator b) const = 0; |
967 | 965 |
|
968 | 966 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
969 | 967 |
virtual Value _getObjCoeff(int i) const = 0; |
970 | 968 |
|
971 | 969 |
virtual void _setSense(Sense) = 0; |
972 | 970 |
virtual Sense _getSense() const = 0; |
973 | 971 |
|
974 | 972 |
virtual void _clear() = 0; |
975 | 973 |
|
976 | 974 |
virtual const char* _solverName() const = 0; |
977 | 975 |
|
978 | 976 |
//Own protected stuff |
979 | 977 |
|
980 | 978 |
//Constant component of the objective function |
981 | 979 |
Value obj_const_comp; |
982 | 980 |
|
983 | 981 |
LpBase() : rows(), cols(), obj_const_comp(0) {} |
984 | 982 |
|
985 | 983 |
public: |
986 | 984 |
|
987 | 985 |
/// Virtual destructor |
988 | 986 |
virtual ~LpBase() {} |
989 | 987 |
|
990 |
///Creates a new LP problem |
|
991 |
LpBase* newSolver() {return _newSolver();} |
|
992 |
///Makes a copy of the LP problem |
|
993 |
LpBase* cloneSolver() {return _cloneSolver();} |
|
994 |
|
|
995 | 988 |
///Gives back the name of the solver. |
996 | 989 |
const char* solverName() const {return _solverName();} |
997 | 990 |
|
998 | 991 |
///\name Build up and modify the LP |
999 | 992 |
|
1000 | 993 |
///@{ |
1001 | 994 |
|
1002 | 995 |
///Add a new empty column (i.e a new variable) to the LP |
1003 | 996 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;} |
1004 | 997 |
|
1005 | 998 |
///\brief Adds several new columns (i.e variables) at once |
1006 | 999 |
/// |
1007 | 1000 |
///This magic function takes a container as its argument and fills |
1008 | 1001 |
///its elements with new columns (i.e. variables) |
1009 | 1002 |
///\param t can be |
1010 | 1003 |
///- a standard STL compatible iterable container with |
1011 | 1004 |
///\ref Col as its \c values_type like |
1012 | 1005 |
///\code |
1013 | 1006 |
///std::vector<LpBase::Col> |
1014 | 1007 |
///std::list<LpBase::Col> |
1015 | 1008 |
///\endcode |
1016 | 1009 |
///- a standard STL compatible iterable container with |
1017 | 1010 |
///\ref Col as its \c mapped_type like |
1018 | 1011 |
///\code |
1019 | 1012 |
///std::map<AnyType,LpBase::Col> |
1020 | 1013 |
///\endcode |
1021 | 1014 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
1022 | 1015 |
///\code |
1023 | 1016 |
///ListGraph::NodeMap<LpBase::Col> |
1024 | 1017 |
///ListGraph::ArcMap<LpBase::Col> |
1025 | 1018 |
///\endcode |
1026 | 1019 |
///\return The number of the created column. |
1027 | 1020 |
#ifdef DOXYGEN |
1028 | 1021 |
template<class T> |
1029 | 1022 |
int addColSet(T &t) { return 0;} |
1030 | 1023 |
#else |
1031 | 1024 |
template<class T> |
1032 | 1025 |
typename enable_if<typename T::value_type::LpCol,int>::type |
1033 | 1026 |
addColSet(T &t,dummy<0> = 0) { |
1034 | 1027 |
int s=0; |
1035 | 1028 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} |
1036 | 1029 |
return s; |
1037 | 1030 |
} |
1038 | 1031 |
template<class T> |
1039 | 1032 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1040 | 1033 |
int>::type |
1041 | 1034 |
addColSet(T &t,dummy<1> = 1) { |
1042 | 1035 |
int s=0; |
1043 | 1036 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1044 | 1037 |
i->second=addCol(); |
1045 | 1038 |
s++; |
1046 | 1039 |
} |
1047 | 1040 |
return s; |
1048 | 1041 |
} |
1049 | 1042 |
template<class T> |
1050 | 1043 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1051 | 1044 |
int>::type |
1052 | 1045 |
addColSet(T &t,dummy<2> = 2) { |
1053 | 1046 |
int s=0; |
1054 | 1047 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
1055 | 1048 |
{ |
1056 | 1049 |
i.set(addCol()); |
1057 | 1050 |
s++; |
1058 | 1051 |
} |
1059 | 1052 |
return s; |
1060 | 1053 |
} |
1061 | 1054 |
#endif |
1062 | 1055 |
|
1063 | 1056 |
///Set a column (i.e a dual constraint) of the LP |
1064 | 1057 |
|
1065 | 1058 |
///\param c is the column to be modified |
1066 | 1059 |
///\param e is a dual linear expression (see \ref DualExpr) |
1067 | 1060 |
///a better one. |
1068 | 1061 |
void col(Col c, const DualExpr &e) { |
1069 | 1062 |
e.simplify(); |
1070 | 1063 |
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
1071 | 1064 |
ExprIterator(e.comps.end(), rows)); |
1072 | 1065 |
} |
1073 | 1066 |
|
1074 | 1067 |
///Get a column (i.e a dual constraint) of the LP |
1075 | 1068 |
|
1076 | 1069 |
///\param c is the column to get |
1077 | 1070 |
///\return the dual expression associated to the column |
1078 | 1071 |
DualExpr col(Col c) const { |
1079 | 1072 |
DualExpr e; |
1080 | 1073 |
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
1081 | 1074 |
return e; |
1082 | 1075 |
} |
1083 | 1076 |
|
1084 | 1077 |
///Add a new column to the LP |
1085 | 1078 |
|
1086 | 1079 |
///\param e is a dual linear expression (see \ref DualExpr) |
1087 | 1080 |
///\param o is the corresponding component of the objective |
1088 | 1081 |
///function. It is 0 by default. |
1089 | 1082 |
///\return The created column. |
1090 | 1083 |
Col addCol(const DualExpr &e, Value o = 0) { |
1091 | 1084 |
Col c=addCol(); |
1092 | 1085 |
col(c,e); |
1093 | 1086 |
objCoeff(c,o); |
1094 | 1087 |
return c; |
1095 | 1088 |
} |
1096 | 1089 |
|
1097 | 1090 |
///Add a new empty row (i.e a new constraint) to the LP |
1098 | 1091 |
|
1099 | 1092 |
///This function adds a new empty row (i.e a new constraint) to the LP. |
1100 | 1093 |
///\return The created row |
1101 | 1094 |
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;} |
1102 | 1095 |
|
1103 | 1096 |
///\brief Add several new rows (i.e constraints) at once |
1104 | 1097 |
/// |
1105 | 1098 |
///This magic function takes a container as its argument and fills |
1106 | 1099 |
///its elements with new row (i.e. variables) |
1107 | 1100 |
///\param t can be |
1108 | 1101 |
///- a standard STL compatible iterable container with |
1109 | 1102 |
///\ref Row as its \c values_type like |
1110 | 1103 |
///\code |
1111 | 1104 |
///std::vector<LpBase::Row> |
1112 | 1105 |
///std::list<LpBase::Row> |
1113 | 1106 |
///\endcode |
1114 | 1107 |
///- a standard STL compatible iterable container with |
1115 | 1108 |
///\ref Row as its \c mapped_type like |
1116 | 1109 |
///\code |
1117 | 1110 |
///std::map<AnyType,LpBase::Row> |
1118 | 1111 |
///\endcode |
1119 | 1112 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
1120 | 1113 |
///\code |
1121 | 1114 |
///ListGraph::NodeMap<LpBase::Row> |
1122 | 1115 |
///ListGraph::ArcMap<LpBase::Row> |
1123 | 1116 |
///\endcode |
1124 | 1117 |
///\return The number of rows created. |
1125 | 1118 |
#ifdef DOXYGEN |
1126 | 1119 |
template<class T> |
1127 | 1120 |
int addRowSet(T &t) { return 0;} |
1128 | 1121 |
#else |
1129 | 1122 |
template<class T> |
1130 | 1123 |
typename enable_if<typename T::value_type::LpRow,int>::type |
1131 | 1124 |
addRowSet(T &t, dummy<0> = 0) { |
1132 | 1125 |
int s=0; |
1133 | 1126 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} |
1134 | 1127 |
return s; |
1135 | 1128 |
} |
1136 | 1129 |
template<class T> |
1137 | 1130 |
typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
1138 | 1131 |
addRowSet(T &t, dummy<1> = 1) { |
1139 | 1132 |
int s=0; |
1140 | 1133 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1141 | 1134 |
i->second=addRow(); |
1142 | 1135 |
s++; |
1143 | 1136 |
} |
1144 | 1137 |
return s; |
1145 | 1138 |
} |
1146 | 1139 |
template<class T> |
1147 | 1140 |
typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
1148 | 1141 |
addRowSet(T &t, dummy<2> = 2) { |
1149 | 1142 |
int s=0; |
1150 | 1143 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
1151 | 1144 |
{ |
1152 | 1145 |
i.set(addRow()); |
1153 | 1146 |
s++; |
1154 | 1147 |
} |
1155 | 1148 |
return s; |
1156 | 1149 |
} |
1157 | 1150 |
#endif |
1158 | 1151 |
|
1159 | 1152 |
///Set a row (i.e a constraint) of the LP |
1160 | 1153 |
|
1161 | 1154 |
///\param r is the row to be modified |
1162 | 1155 |
///\param l is lower bound (-\ref INF means no bound) |
1163 | 1156 |
///\param e is a linear expression (see \ref Expr) |
1164 | 1157 |
///\param u is the upper bound (\ref INF means no bound) |
1165 | 1158 |
void row(Row r, Value l, const Expr &e, Value u) { |
1166 | 1159 |
e.simplify(); |
1167 | 1160 |
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
1168 | 1161 |
ExprIterator(e.comps.end(), cols)); |
1169 | 1162 |
_setRowLowerBound(rows(id(r)),l - *e); |
1170 | 1163 |
_setRowUpperBound(rows(id(r)),u - *e); |
1171 | 1164 |
} |
1172 | 1165 |
|
1173 | 1166 |
///Set a row (i.e a constraint) of the LP |
1174 | 1167 |
|
1175 | 1168 |
///\param r is the row to be modified |
1176 | 1169 |
///\param c is a linear expression (see \ref Constr) |
1177 | 1170 |
void row(Row r, const Constr &c) { |
1178 | 1171 |
row(r, c.lowerBounded()?c.lowerBound():-INF, |
1179 | 1172 |
c.expr(), c.upperBounded()?c.upperBound():INF); |
1180 | 1173 |
} |
1181 | 1174 |
|
1182 | 1175 |
|
1183 | 1176 |
///Get a row (i.e a constraint) of the LP |
1184 | 1177 |
|
1185 | 1178 |
///\param r is the row to get |
1186 | 1179 |
///\return the expression associated to the row |
1187 | 1180 |
Expr row(Row r) const { |
1188 | 1181 |
Expr e; |
1189 | 1182 |
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
1190 | 1183 |
return e; |
1191 | 1184 |
} |
1192 | 1185 |
|
1193 | 1186 |
///Add a new row (i.e a new constraint) to the LP |
1194 | 1187 |
|
1195 | 1188 |
///\param l is the lower bound (-\ref INF means no bound) |
1196 | 1189 |
///\param e is a linear expression (see \ref Expr) |
1197 | 1190 |
///\param u is the upper bound (\ref INF means no bound) |
1198 | 1191 |
///\return The created row. |
1199 | 1192 |
Row addRow(Value l,const Expr &e, Value u) { |
1200 | 1193 |
Row r=addRow(); |
1201 | 1194 |
row(r,l,e,u); |
1202 | 1195 |
return r; |
1203 | 1196 |
} |
1204 | 1197 |
|
1205 | 1198 |
///Add a new row (i.e a new constraint) to the LP |
1206 | 1199 |
|
1207 | 1200 |
///\param c is a linear expression (see \ref Constr) |
1208 | 1201 |
///\return The created row. |
1209 | 1202 |
Row addRow(const Constr &c) { |
1210 | 1203 |
Row r=addRow(); |
1211 | 1204 |
row(r,c); |
1212 | 1205 |
return r; |
1213 | 1206 |
} |
1214 | 1207 |
///Erase a column (i.e a variable) from the LP |
1215 | 1208 |
|
1216 | 1209 |
///\param c is the column to be deleted |
1217 | 1210 |
void erase(Col c) { |
1218 | 1211 |
_eraseCol(cols(id(c))); |
1219 | 1212 |
_eraseColId(cols(id(c))); |
1220 | 1213 |
} |
1221 | 1214 |
///Erase a row (i.e a constraint) from the LP |
1222 | 1215 |
|
1223 | 1216 |
///\param r is the row to be deleted |
1224 | 1217 |
void erase(Row r) { |
1225 | 1218 |
_eraseRow(rows(id(r))); |
1226 | 1219 |
_eraseRowId(rows(id(r))); |
1227 | 1220 |
} |
1228 | 1221 |
|
1229 | 1222 |
/// Get the name of a column |
1230 | 1223 |
|
1231 | 1224 |
///\param c is the coresponding column |
1232 | 1225 |
///\return The name of the colunm |
1233 | 1226 |
std::string colName(Col c) const { |
1234 | 1227 |
std::string name; |
1235 | 1228 |
_getColName(cols(id(c)), name); |
1236 | 1229 |
return name; |
1237 | 1230 |
} |
1238 | 1231 |
|
1239 | 1232 |
/// Set the name of a column |
1240 | 1233 |
|
1241 | 1234 |
///\param c is the coresponding column |
1242 | 1235 |
///\param name The name to be given |
1243 | 1236 |
void colName(Col c, const std::string& name) { |
1244 | 1237 |
_setColName(cols(id(c)), name); |
1245 | 1238 |
} |
1246 | 1239 |
|
1247 | 1240 |
/// Get the column by its name |
1248 | 1241 |
|
1249 | 1242 |
///\param name The name of the column |
1250 | 1243 |
///\return the proper column or \c INVALID |
1251 | 1244 |
Col colByName(const std::string& name) const { |
1252 | 1245 |
int k = _colByName(name); |
1253 | 1246 |
return k != -1 ? Col(cols[k]) : Col(INVALID); |
1254 | 1247 |
} |
1255 | 1248 |
|
1256 | 1249 |
/// Get the name of a row |
1257 | 1250 |
|
1258 | 1251 |
///\param r is the coresponding row |
1259 | 1252 |
///\return The name of the row |
1260 | 1253 |
std::string rowName(Row r) const { |
1261 | 1254 |
std::string name; |
1262 | 1255 |
_getRowName(rows(id(r)), name); |
1263 | 1256 |
return name; |
1264 | 1257 |
} |
1265 | 1258 |
|
1266 | 1259 |
/// Set the name of a row |
1267 | 1260 |
|
1268 | 1261 |
///\param r is the coresponding row |
1269 | 1262 |
///\param name The name to be given |
1270 | 1263 |
void rowName(Row r, const std::string& name) { |
1271 | 1264 |
_setRowName(rows(id(r)), name); |
1272 | 1265 |
} |
1273 | 1266 |
|
1274 | 1267 |
/// Get the row by its name |
1275 | 1268 |
|
1276 | 1269 |
///\param name The name of the row |
1277 | 1270 |
///\return the proper row or \c INVALID |
1278 | 1271 |
Row rowByName(const std::string& name) const { |
1279 | 1272 |
int k = _rowByName(name); |
1280 | 1273 |
return k != -1 ? Row(rows[k]) : Row(INVALID); |
1281 | 1274 |
} |
1282 | 1275 |
|
1283 | 1276 |
/// Set an element of the coefficient matrix of the LP |
1284 | 1277 |
|
1285 | 1278 |
///\param r is the row of the element to be modified |
1286 | 1279 |
///\param c is the column of the element to be modified |
1287 | 1280 |
///\param val is the new value of the coefficient |
1288 | 1281 |
void coeff(Row r, Col c, Value val) { |
1289 | 1282 |
_setCoeff(rows(id(r)),cols(id(c)), val); |
1290 | 1283 |
} |
1291 | 1284 |
|
1292 | 1285 |
/// Get an element of the coefficient matrix of the LP |
1293 | 1286 |
|
1294 | 1287 |
///\param r is the row of the element |
1295 | 1288 |
///\param c is the column of the element |
1296 | 1289 |
///\return the corresponding coefficient |
1297 | 1290 |
Value coeff(Row r, Col c) const { |
1298 | 1291 |
return _getCoeff(rows(id(r)),cols(id(c))); |
1299 | 1292 |
} |
1300 | 1293 |
|
1301 | 1294 |
/// Set the lower bound of a column (i.e a variable) |
1302 | 1295 |
|
1303 | 1296 |
/// The lower bound of a variable (column) has to be given by an |
1304 | 1297 |
/// extended number of type Value, i.e. a finite number of type |
1305 | 1298 |
/// Value or -\ref INF. |
1306 | 1299 |
void colLowerBound(Col c, Value value) { |
1307 | 1300 |
_setColLowerBound(cols(id(c)),value); |
1308 | 1301 |
} |
1309 | 1302 |
|
1310 | 1303 |
/// Get the lower bound of a column (i.e a variable) |
1311 | 1304 |
|
1312 | 1305 |
/// This function returns the lower bound for column (variable) \c c |
1313 | 1306 |
/// (this might be -\ref INF as well). |
1314 | 1307 |
///\return The lower bound for column \c c |
1315 | 1308 |
Value colLowerBound(Col c) const { |
1316 | 1309 |
return _getColLowerBound(cols(id(c))); |
1317 | 1310 |
} |
1318 | 1311 |
|
1319 | 1312 |
///\brief Set the lower bound of several columns |
1320 | 1313 |
///(i.e variables) at once |
1321 | 1314 |
/// |
1322 | 1315 |
///This magic function takes a container as its argument |
1323 | 1316 |
///and applies the function on all of its elements. |
1324 | 1317 |
///The lower bound of a variable (column) has to be given by an |
1325 | 1318 |
///extended number of type Value, i.e. a finite number of type |
1326 | 1319 |
///Value or -\ref INF. |
1327 | 1320 |
#ifdef DOXYGEN |
1328 | 1321 |
template<class T> |
1329 | 1322 |
void colLowerBound(T &t, Value value) { return 0;} |
1330 | 1323 |
#else |
1331 | 1324 |
template<class T> |
1332 | 1325 |
typename enable_if<typename T::value_type::LpCol,void>::type |
1333 | 1326 |
colLowerBound(T &t, Value value,dummy<0> = 0) { |
1334 | 1327 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1335 | 1328 |
colLowerBound(*i, value); |
1336 | 1329 |
} |
1337 | 1330 |
} |
1338 | 1331 |
template<class T> |
1339 | 1332 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1340 | 1333 |
void>::type |
1341 | 1334 |
colLowerBound(T &t, Value value,dummy<1> = 1) { |
1342 | 1335 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1343 | 1336 |
colLowerBound(i->second, value); |
1344 | 1337 |
} |
1345 | 1338 |
} |
1346 | 1339 |
template<class T> |
1347 | 1340 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1348 | 1341 |
void>::type |
1349 | 1342 |
colLowerBound(T &t, Value value,dummy<2> = 2) { |
1350 | 1343 |
for(typename T::MapIt i(t); i!=INVALID; ++i){ |
1351 | 1344 |
colLowerBound(*i, value); |
1352 | 1345 |
} |
1353 | 1346 |
} |
1354 | 1347 |
#endif |
1355 | 1348 |
|
1356 | 1349 |
/// Set the upper bound of a column (i.e a variable) |
1357 | 1350 |
|
1358 | 1351 |
/// The upper bound of a variable (column) has to be given by an |
1359 | 1352 |
/// extended number of type Value, i.e. a finite number of type |
1360 | 1353 |
/// Value or \ref INF. |
1361 | 1354 |
void colUpperBound(Col c, Value value) { |
1362 | 1355 |
_setColUpperBound(cols(id(c)),value); |
1363 | 1356 |
}; |
1364 | 1357 |
|
1365 | 1358 |
/// Get the upper bound of a column (i.e a variable) |
1366 | 1359 |
|
1367 | 1360 |
/// This function returns the upper bound for column (variable) \c c |
1368 | 1361 |
/// (this might be \ref INF as well). |
1369 | 1362 |
/// \return The upper bound for column \c c |
1370 | 1363 |
Value colUpperBound(Col c) const { |
1371 | 1364 |
return _getColUpperBound(cols(id(c))); |
1372 | 1365 |
} |
1373 | 1366 |
|
1374 | 1367 |
///\brief Set the upper bound of several columns |
1375 | 1368 |
///(i.e variables) at once |
1376 | 1369 |
/// |
1377 | 1370 |
///This magic function takes a container as its argument |
1378 | 1371 |
///and applies the function on all of its elements. |
1379 | 1372 |
///The upper bound of a variable (column) has to be given by an |
1380 | 1373 |
///extended number of type Value, i.e. a finite number of type |
1381 | 1374 |
///Value or \ref INF. |
1382 | 1375 |
#ifdef DOXYGEN |
1383 | 1376 |
template<class T> |
1384 | 1377 |
void colUpperBound(T &t, Value value) { return 0;} |
1385 | 1378 |
#else |
1386 | 1379 |
template<class T1> |
1387 | 1380 |
typename enable_if<typename T1::value_type::LpCol,void>::type |
1388 | 1381 |
colUpperBound(T1 &t, Value value,dummy<0> = 0) { |
1389 | 1382 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) { |
1390 | 1383 |
colUpperBound(*i, value); |
1391 | 1384 |
} |
1392 | 1385 |
} |
1393 | 1386 |
template<class T1> |
1394 | 1387 |
typename enable_if<typename T1::value_type::second_type::LpCol, |
1395 | 1388 |
void>::type |
1396 | 1389 |
colUpperBound(T1 &t, Value value,dummy<1> = 1) { |
1397 | 1390 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) { |
1398 | 1391 |
colUpperBound(i->second, value); |
1399 | 1392 |
} |
1400 | 1393 |
} |
1401 | 1394 |
template<class T1> |
1402 | 1395 |
typename enable_if<typename T1::MapIt::Value::LpCol, |
1403 | 1396 |
void>::type |
1404 | 1397 |
colUpperBound(T1 &t, Value value,dummy<2> = 2) { |
1405 | 1398 |
for(typename T1::MapIt i(t); i!=INVALID; ++i){ |
1406 | 1399 |
colUpperBound(*i, value); |
1407 | 1400 |
} |
1408 | 1401 |
} |
1409 | 1402 |
#endif |
1410 | 1403 |
|
1411 | 1404 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
1412 | 1405 |
|
1413 | 1406 |
/// The lower and the upper bounds of |
1414 | 1407 |
/// a variable (column) have to be given by an |
1415 | 1408 |
/// extended number of type Value, i.e. a finite number of type |
1416 | 1409 |
/// Value, -\ref INF or \ref INF. |
1417 | 1410 |
void colBounds(Col c, Value lower, Value upper) { |
1418 | 1411 |
_setColLowerBound(cols(id(c)),lower); |
1419 | 1412 |
_setColUpperBound(cols(id(c)),upper); |
1420 | 1413 |
} |
1421 | 1414 |
|
1422 | 1415 |
///\brief Set the lower and the upper bound of several columns |
1423 | 1416 |
///(i.e variables) at once |
1424 | 1417 |
/// |
1425 | 1418 |
///This magic function takes a container as its argument |
1426 | 1419 |
///and applies the function on all of its elements. |
1427 | 1420 |
/// The lower and the upper bounds of |
1428 | 1421 |
/// a variable (column) have to be given by an |
1429 | 1422 |
/// extended number of type Value, i.e. a finite number of type |
1430 | 1423 |
/// Value, -\ref INF or \ref INF. |
1431 | 1424 |
#ifdef DOXYGEN |
1432 | 1425 |
template<class T> |
1433 | 1426 |
void colBounds(T &t, Value lower, Value upper) { return 0;} |
1434 | 1427 |
#else |
1435 | 1428 |
template<class T2> |
1436 | 1429 |
typename enable_if<typename T2::value_type::LpCol,void>::type |
1437 | 1430 |
colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) { |
1438 | 1431 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) { |
1439 | 1432 |
colBounds(*i, lower, upper); |
1440 | 1433 |
} |
1441 | 1434 |
} |
1442 | 1435 |
template<class T2> |
1443 | 1436 |
typename enable_if<typename T2::value_type::second_type::LpCol, void>::type |
1444 | 1437 |
colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) { |
1445 | 1438 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) { |
1446 | 1439 |
colBounds(i->second, lower, upper); |
1447 | 1440 |
} |
1448 | 1441 |
} |
1449 | 1442 |
template<class T2> |
1450 | 1443 |
typename enable_if<typename T2::MapIt::Value::LpCol, void>::type |
1451 | 1444 |
colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) { |
1452 | 1445 |
for(typename T2::MapIt i(t); i!=INVALID; ++i){ |
1453 | 1446 |
colBounds(*i, lower, upper); |
1454 | 1447 |
} |
1455 | 1448 |
} |
1456 | 1449 |
#endif |
1457 | 1450 |
|
1458 | 1451 |
/// Set the lower bound of a row (i.e a constraint) |
1459 | 1452 |
|
1460 | 1453 |
/// The lower bound of a constraint (row) has to be given by an |
1461 | 1454 |
/// extended number of type Value, i.e. a finite number of type |
1462 | 1455 |
/// Value or -\ref INF. |
1463 | 1456 |
void rowLowerBound(Row r, Value value) { |
1464 | 1457 |
_setRowLowerBound(rows(id(r)),value); |
1465 | 1458 |
} |
1466 | 1459 |
|
1467 | 1460 |
/// Get the lower bound of a row (i.e a constraint) |
1468 | 1461 |
|
1469 | 1462 |
/// This function returns the lower bound for row (constraint) \c c |
1470 | 1463 |
/// (this might be -\ref INF as well). |
1471 | 1464 |
///\return The lower bound for row \c r |
1472 | 1465 |
Value rowLowerBound(Row r) const { |
1473 | 1466 |
return _getRowLowerBound(rows(id(r))); |
1474 | 1467 |
} |
1475 | 1468 |
|
1476 | 1469 |
/// Set the upper bound of a row (i.e a constraint) |
1477 | 1470 |
|
1478 | 1471 |
/// The upper bound of a constraint (row) has to be given by an |
1479 | 1472 |
/// extended number of type Value, i.e. a finite number of type |
1480 | 1473 |
/// Value or -\ref INF. |
1481 | 1474 |
void rowUpperBound(Row r, Value value) { |
1482 | 1475 |
_setRowUpperBound(rows(id(r)),value); |
1483 | 1476 |
} |
1484 | 1477 |
|
1485 | 1478 |
/// Get the upper bound of a row (i.e a constraint) |
1486 | 1479 |
|
1487 | 1480 |
/// This function returns the upper bound for row (constraint) \c c |
1488 | 1481 |
/// (this might be -\ref INF as well). |
1489 | 1482 |
///\return The upper bound for row \c r |
1490 | 1483 |
Value rowUpperBound(Row r) const { |
1491 | 1484 |
return _getRowUpperBound(rows(id(r))); |
1492 | 1485 |
} |
1493 | 1486 |
|
1494 | 1487 |
///Set an element of the objective function |
1495 | 1488 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); }; |
1496 | 1489 |
|
1497 | 1490 |
///Get an element of the objective function |
1498 | 1491 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); }; |
1499 | 1492 |
|
1500 | 1493 |
///Set the objective function |
1501 | 1494 |
|
1502 | 1495 |
///\param e is a linear expression of type \ref Expr. |
1503 | 1496 |
/// |
1504 | 1497 |
void obj(const Expr& e) { |
1505 | 1498 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
1506 | 1499 |
ExprIterator(e.comps.end(), cols)); |
1507 | 1500 |
obj_const_comp = *e; |
1508 | 1501 |
} |
1509 | 1502 |
|
1510 | 1503 |
///Get the objective function |
1511 | 1504 |
|
1512 | 1505 |
///\return the objective function as a linear expression of type |
1513 | 1506 |
///Expr. |
1514 | 1507 |
Expr obj() const { |
1515 | 1508 |
Expr e; |
1516 | 1509 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
1517 | 1510 |
*e = obj_const_comp; |
1518 | 1511 |
return e; |
1519 | 1512 |
} |
1520 | 1513 |
|
1521 | 1514 |
|
1522 | 1515 |
///Set the direction of optimization |
1523 | 1516 |
void sense(Sense sense) { _setSense(sense); } |
1524 | 1517 |
|
1525 | 1518 |
///Query the direction of the optimization |
1526 | 1519 |
Sense sense() const {return _getSense(); } |
1527 | 1520 |
|
1528 | 1521 |
///Set the sense to maximization |
1529 | 1522 |
void max() { _setSense(MAX); } |
1530 | 1523 |
|
1531 | 1524 |
///Set the sense to maximization |
1532 | 1525 |
void min() { _setSense(MIN); } |
1533 | 1526 |
|
1534 | 1527 |
///Clears the problem |
1535 | 1528 |
void clear() { _clear(); } |
1536 | 1529 |
|
1537 | 1530 |
///@} |
1538 | 1531 |
|
1539 | 1532 |
}; |
1540 | 1533 |
|
1541 | 1534 |
/// Addition |
1542 | 1535 |
|
1543 | 1536 |
///\relates LpBase::Expr |
1544 | 1537 |
/// |
1545 | 1538 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) { |
1546 | 1539 |
LpBase::Expr tmp(a); |
1547 | 1540 |
tmp+=b; |
1548 | 1541 |
return tmp; |
1549 | 1542 |
} |
1550 | 1543 |
///Substraction |
1551 | 1544 |
|
1552 | 1545 |
///\relates LpBase::Expr |
1553 | 1546 |
/// |
1554 | 1547 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) { |
1555 | 1548 |
LpBase::Expr tmp(a); |
1556 | 1549 |
tmp-=b; |
1557 | 1550 |
return tmp; |
1558 | 1551 |
} |
1559 | 1552 |
///Multiply with constant |
1560 | 1553 |
|
1561 | 1554 |
///\relates LpBase::Expr |
1562 | 1555 |
/// |
1563 | 1556 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) { |
1564 | 1557 |
LpBase::Expr tmp(a); |
1565 | 1558 |
tmp*=b; |
1566 | 1559 |
return tmp; |
1567 | 1560 |
} |
1568 | 1561 |
|
1569 | 1562 |
///Multiply with constant |
1570 | 1563 |
|
1571 | 1564 |
///\relates LpBase::Expr |
1572 | 1565 |
/// |
1573 | 1566 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) { |
1574 | 1567 |
LpBase::Expr tmp(b); |
1575 | 1568 |
tmp*=a; |
1576 | 1569 |
return tmp; |
1577 | 1570 |
} |
1578 | 1571 |
///Divide with constant |
1579 | 1572 |
|
1580 | 1573 |
///\relates LpBase::Expr |
1581 | 1574 |
/// |
1582 | 1575 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) { |
1583 | 1576 |
LpBase::Expr tmp(a); |
1584 | 1577 |
tmp/=b; |
1585 | 1578 |
return tmp; |
1586 | 1579 |
} |
1587 | 1580 |
|
1588 | 1581 |
///Create constraint |
1589 | 1582 |
|
1590 | 1583 |
///\relates LpBase::Constr |
1591 | 1584 |
/// |
1592 | 1585 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
1593 | 1586 |
const LpBase::Expr &f) { |
1594 | 1587 |
return LpBase::Constr(0, f - e, LpBase::INF); |
1595 | 1588 |
} |
1596 | 1589 |
|
1597 | 1590 |
///Create constraint |
1598 | 1591 |
|
1599 | 1592 |
///\relates LpBase::Constr |
1600 | 1593 |
/// |
1601 | 1594 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
1602 | 1595 |
const LpBase::Expr &f) { |
1603 | 1596 |
return LpBase::Constr(e, f, LpBase::NaN); |
1604 | 1597 |
} |
1605 | 1598 |
|
1606 | 1599 |
///Create constraint |
1607 | 1600 |
|
1608 | 1601 |
///\relates LpBase::Constr |
1609 | 1602 |
/// |
1610 | 1603 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
1611 | 1604 |
const LpBase::Value &f) { |
1612 | 1605 |
return LpBase::Constr(- LpBase::INF, e, f); |
1613 | 1606 |
} |
1614 | 1607 |
|
1615 | 1608 |
///Create constraint |
1616 | 1609 |
|
1617 | 1610 |
///\relates LpBase::Constr |
1618 | 1611 |
/// |
1619 | 1612 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
1620 | 1613 |
const LpBase::Expr &f) { |
1621 | 1614 |
return LpBase::Constr(0, e - f, LpBase::INF); |
1622 | 1615 |
} |
1623 | 1616 |
|
1624 | 1617 |
|
1625 | 1618 |
///Create constraint |
1626 | 1619 |
|
1627 | 1620 |
///\relates LpBase::Constr |
1628 | 1621 |
/// |
1629 | 1622 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
1630 | 1623 |
const LpBase::Expr &f) { |
1631 | 1624 |
return LpBase::Constr(LpBase::NaN, f, e); |
1632 | 1625 |
} |
1633 | 1626 |
|
1634 | 1627 |
|
1635 | 1628 |
///Create constraint |
1636 | 1629 |
|
1637 | 1630 |
///\relates LpBase::Constr |
1638 | 1631 |
/// |
1639 | 1632 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
1640 | 1633 |
const LpBase::Value &f) { |
1641 | 1634 |
return LpBase::Constr(f, e, LpBase::INF); |
1642 | 1635 |
} |
1643 | 1636 |
|
1644 | 1637 |
///Create constraint |
1645 | 1638 |
|
1646 | 1639 |
///\relates LpBase::Constr |
1647 | 1640 |
/// |
1648 | 1641 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
1649 | 1642 |
const LpBase::Value &f) { |
1650 | 1643 |
return LpBase::Constr(f, e, f); |
1651 | 1644 |
} |
1652 | 1645 |
|
1653 | 1646 |
///Create constraint |
1654 | 1647 |
|
1655 | 1648 |
///\relates LpBase::Constr |
1656 | 1649 |
/// |
1657 | 1650 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
1658 | 1651 |
const LpBase::Expr &f) { |
1659 | 1652 |
return LpBase::Constr(0, f - e, 0); |
1660 | 1653 |
} |
1661 | 1654 |
|
1662 | 1655 |
///Create constraint |
1663 | 1656 |
|
1664 | 1657 |
///\relates LpBase::Constr |
1665 | 1658 |
/// |
1666 | 1659 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
1667 | 1660 |
const LpBase::Constr &c) { |
1668 | 1661 |
LpBase::Constr tmp(c); |
1669 | 1662 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
1670 | 1663 |
tmp.lowerBound()=n; |
1671 | 1664 |
return tmp; |
1672 | 1665 |
} |
1673 | 1666 |
///Create constraint |
1674 | 1667 |
|
1675 | 1668 |
///\relates LpBase::Constr |
1676 | 1669 |
/// |
1677 | 1670 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
1678 | 1671 |
const LpBase::Value &n) |
1679 | 1672 |
{ |
1680 | 1673 |
LpBase::Constr tmp(c); |
1681 | 1674 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
1682 | 1675 |
tmp.upperBound()=n; |
1683 | 1676 |
return tmp; |
1684 | 1677 |
} |
1685 | 1678 |
|
1686 | 1679 |
///Create constraint |
1687 | 1680 |
|
1688 | 1681 |
///\relates LpBase::Constr |
1689 | 1682 |
/// |
1690 | 1683 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
1691 | 1684 |
const LpBase::Constr &c) { |
1692 | 1685 |
LpBase::Constr tmp(c); |
1693 | 1686 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
1694 | 1687 |
tmp.upperBound()=n; |
1695 | 1688 |
return tmp; |
1696 | 1689 |
} |
1697 | 1690 |
///Create constraint |
1698 | 1691 |
|
1699 | 1692 |
///\relates LpBase::Constr |
1700 | 1693 |
/// |
1701 | 1694 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
1702 | 1695 |
const LpBase::Value &n) |
1703 | 1696 |
{ |
1704 | 1697 |
LpBase::Constr tmp(c); |
1705 | 1698 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
1706 | 1699 |
tmp.lowerBound()=n; |
1707 | 1700 |
return tmp; |
1708 | 1701 |
} |
1709 | 1702 |
|
1710 | 1703 |
///Addition |
1711 | 1704 |
|
1712 | 1705 |
///\relates LpBase::DualExpr |
1713 | 1706 |
/// |
1714 | 1707 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
1715 | 1708 |
const LpBase::DualExpr &b) { |
1716 | 1709 |
LpBase::DualExpr tmp(a); |
1717 | 1710 |
tmp+=b; |
1718 | 1711 |
return tmp; |
1719 | 1712 |
} |
1720 | 1713 |
///Substraction |
1721 | 1714 |
|
1722 | 1715 |
///\relates LpBase::DualExpr |
1723 | 1716 |
/// |
1724 | 1717 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
1725 | 1718 |
const LpBase::DualExpr &b) { |
1726 | 1719 |
LpBase::DualExpr tmp(a); |
1727 | 1720 |
tmp-=b; |
1728 | 1721 |
return tmp; |
1729 | 1722 |
} |
1730 | 1723 |
///Multiply with constant |
1731 | 1724 |
|
1732 | 1725 |
///\relates LpBase::DualExpr |
1733 | 1726 |
/// |
1734 | 1727 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
1735 | 1728 |
const LpBase::Value &b) { |
1736 | 1729 |
LpBase::DualExpr tmp(a); |
1737 | 1730 |
tmp*=b; |
1738 | 1731 |
return tmp; |
1739 | 1732 |
} |
1740 | 1733 |
|
1741 | 1734 |
///Multiply with constant |
1742 | 1735 |
|
1743 | 1736 |
///\relates LpBase::DualExpr |
1744 | 1737 |
/// |
1745 | 1738 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
1746 | 1739 |
const LpBase::DualExpr &b) { |
1747 | 1740 |
LpBase::DualExpr tmp(b); |
1748 | 1741 |
tmp*=a; |
1749 | 1742 |
return tmp; |
1750 | 1743 |
} |
1751 | 1744 |
///Divide with constant |
1752 | 1745 |
|
1753 | 1746 |
///\relates LpBase::DualExpr |
1754 | 1747 |
/// |
1755 | 1748 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
1756 | 1749 |
const LpBase::Value &b) { |
1757 | 1750 |
LpBase::DualExpr tmp(a); |
1758 | 1751 |
tmp/=b; |
1759 | 1752 |
return tmp; |
1760 | 1753 |
} |
1761 | 1754 |
|
1762 | 1755 |
/// \ingroup lp_group |
1763 | 1756 |
/// |
1764 | 1757 |
/// \brief Common base class for LP solvers |
1765 | 1758 |
/// |
1766 | 1759 |
/// This class is an abstract base class for LP solvers. This class |
1767 | 1760 |
/// provides a full interface for set and modify an LP problem, |
1768 | 1761 |
/// solve it and retrieve the solution. You can use one of the |
1769 | 1762 |
/// descendants as a concrete implementation, or the \c Lp |
1770 | 1763 |
/// default LP solver. However, if you would like to handle LP |
1771 | 1764 |
/// solvers as reference or pointer in a generic way, you can use |
1772 | 1765 |
/// this class directly. |
1773 | 1766 |
class LpSolver : virtual public LpBase { |
1774 | 1767 |
public: |
1775 | 1768 |
|
1776 | 1769 |
/// The problem types for primal and dual problems |
1777 | 1770 |
enum ProblemType { |
1778 | 1771 |
///Feasible solution hasn't been found (but may exist). |
1779 | 1772 |
UNDEFINED = 0, |
1780 | 1773 |
///The problem has no feasible solution |
1781 | 1774 |
INFEASIBLE = 1, |
1782 | 1775 |
///Feasible solution found |
1783 | 1776 |
FEASIBLE = 2, |
1784 | 1777 |
///Optimal solution exists and found |
1785 | 1778 |
OPTIMAL = 3, |
1786 | 1779 |
///The cost function is unbounded |
1787 | 1780 |
UNBOUNDED = 4 |
1788 | 1781 |
}; |
1789 | 1782 |
|
1790 | 1783 |
///The basis status of variables |
1791 | 1784 |
enum VarStatus { |
1792 | 1785 |
/// The variable is in the basis |
1793 | 1786 |
BASIC, |
1794 | 1787 |
/// The variable is free, but not basic |
1795 | 1788 |
FREE, |
1796 | 1789 |
/// The variable has active lower bound |
1797 | 1790 |
LOWER, |
1798 | 1791 |
/// The variable has active upper bound |
1799 | 1792 |
UPPER, |
1800 | 1793 |
/// The variable is non-basic and fixed |
1801 | 1794 |
FIXED |
1802 | 1795 |
}; |
1803 | 1796 |
|
1804 | 1797 |
protected: |
1805 | 1798 |
|
1806 | 1799 |
virtual SolveExitStatus _solve() = 0; |
1807 | 1800 |
|
1808 | 1801 |
virtual Value _getPrimal(int i) const = 0; |
1809 | 1802 |
virtual Value _getDual(int i) const = 0; |
1810 | 1803 |
|
1811 | 1804 |
virtual Value _getPrimalRay(int i) const = 0; |
1812 | 1805 |
virtual Value _getDualRay(int i) const = 0; |
1813 | 1806 |
|
1814 | 1807 |
virtual Value _getPrimalValue() const = 0; |
1815 | 1808 |
|
1816 | 1809 |
virtual VarStatus _getColStatus(int i) const = 0; |
1817 | 1810 |
virtual VarStatus _getRowStatus(int i) const = 0; |
1818 | 1811 |
|
1819 | 1812 |
virtual ProblemType _getPrimalType() const = 0; |
1820 | 1813 |
virtual ProblemType _getDualType() const = 0; |
1821 | 1814 |
|
1822 | 1815 |
public: |
1823 | 1816 |
|
1817 |
///Allocate a new LP problem instance |
|
1818 |
virtual LpSolver* newSolver() const = 0; |
|
1819 |
///Make a copy of the LP problem |
|
1820 |
virtual LpSolver* cloneSolver() const = 0; |
|
1821 |
|
|
1824 | 1822 |
///\name Solve the LP |
1825 | 1823 |
|
1826 | 1824 |
///@{ |
1827 | 1825 |
|
1828 | 1826 |
///\e Solve the LP problem at hand |
1829 | 1827 |
/// |
1830 | 1828 |
///\return The result of the optimization procedure. Possible |
1831 | 1829 |
///values and their meanings can be found in the documentation of |
1832 | 1830 |
///\ref SolveExitStatus. |
1833 | 1831 |
SolveExitStatus solve() { return _solve(); } |
1834 | 1832 |
|
1835 | 1833 |
///@} |
1836 | 1834 |
|
1837 | 1835 |
///\name Obtain the solution |
1838 | 1836 |
|
1839 | 1837 |
///@{ |
1840 | 1838 |
|
1841 | 1839 |
/// The type of the primal problem |
1842 | 1840 |
ProblemType primalType() const { |
1843 | 1841 |
return _getPrimalType(); |
1844 | 1842 |
} |
1845 | 1843 |
|
1846 | 1844 |
/// The type of the dual problem |
1847 | 1845 |
ProblemType dualType() const { |
1848 | 1846 |
return _getDualType(); |
1849 | 1847 |
} |
1850 | 1848 |
|
1851 | 1849 |
/// Return the primal value of the column |
1852 | 1850 |
|
1853 | 1851 |
/// Return the primal value of the column. |
1854 | 1852 |
/// \pre The problem is solved. |
1855 | 1853 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); } |
1856 | 1854 |
|
1857 | 1855 |
/// Return the primal value of the expression |
1858 | 1856 |
|
1859 | 1857 |
/// Return the primal value of the expression, i.e. the dot |
1860 | 1858 |
/// product of the primal solution and the expression. |
1861 | 1859 |
/// \pre The problem is solved. |
1862 | 1860 |
Value primal(const Expr& e) const { |
1863 | 1861 |
double res = *e; |
1864 | 1862 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
1865 | 1863 |
res += *c * primal(c); |
1866 | 1864 |
} |
1867 | 1865 |
return res; |
1868 | 1866 |
} |
1869 | 1867 |
/// Returns a component of the primal ray |
1870 | 1868 |
|
1871 | 1869 |
/// The primal ray is solution of the modified primal problem, |
1872 | 1870 |
/// where we change each finite bound to 0, and we looking for a |
1873 | 1871 |
/// negative objective value in case of minimization, and positive |
1874 | 1872 |
/// objective value for maximization. If there is such solution, |
1875 | 1873 |
/// that proofs the unsolvability of the dual problem, and if a |
1876 | 1874 |
/// feasible primal solution exists, then the unboundness of |
1877 | 1875 |
/// primal problem. |
1878 | 1876 |
/// |
1879 | 1877 |
/// \pre The problem is solved and the dual problem is infeasible. |
1880 | 1878 |
/// \note Some solvers does not provide primal ray calculation |
1881 | 1879 |
/// functions. |
1882 | 1880 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } |
1883 | 1881 |
|
1884 | 1882 |
/// Return the dual value of the row |
1885 | 1883 |
|
1886 | 1884 |
/// Return the dual value of the row. |
1887 | 1885 |
/// \pre The problem is solved. |
1888 | 1886 |
Value dual(Row r) const { return _getDual(rows(id(r))); } |
1889 | 1887 |
|
1890 | 1888 |
/// Return the dual value of the dual expression |
1891 | 1889 |
|
1892 | 1890 |
/// Return the dual value of the dual expression, i.e. the dot |
1893 | 1891 |
/// product of the dual solution and the dual expression. |
1894 | 1892 |
/// \pre The problem is solved. |
1895 | 1893 |
Value dual(const DualExpr& e) const { |
1896 | 1894 |
double res = 0.0; |
1897 | 1895 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { |
1898 | 1896 |
res += *r * dual(r); |
1899 | 1897 |
} |
1900 | 1898 |
return res; |
1901 | 1899 |
} |
1902 | 1900 |
|
1903 | 1901 |
/// Returns a component of the dual ray |
1904 | 1902 |
|
1905 | 1903 |
/// The dual ray is solution of the modified primal problem, where |
1906 | 1904 |
/// we change each finite bound to 0 (i.e. the objective function |
1907 | 1905 |
/// coefficients in the primal problem), and we looking for a |
1908 | 1906 |
/// ositive objective value. If there is such solution, that |
1909 | 1907 |
/// proofs the unsolvability of the primal problem, and if a |
1910 | 1908 |
/// feasible dual solution exists, then the unboundness of |
1911 | 1909 |
/// dual problem. |
1912 | 1910 |
/// |
1913 | 1911 |
/// \pre The problem is solved and the primal problem is infeasible. |
1914 | 1912 |
/// \note Some solvers does not provide dual ray calculation |
1915 | 1913 |
/// functions. |
1916 | 1914 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } |
1917 | 1915 |
|
1918 | 1916 |
/// Return the basis status of the column |
1919 | 1917 |
|
1920 | 1918 |
/// \see VarStatus |
1921 | 1919 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } |
1922 | 1920 |
|
1923 | 1921 |
/// Return the basis status of the row |
1924 | 1922 |
|
1925 | 1923 |
/// \see VarStatus |
1926 | 1924 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } |
1927 | 1925 |
|
1928 | 1926 |
///The value of the objective function |
1929 | 1927 |
|
1930 | 1928 |
///\return |
1931 | 1929 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
1932 | 1930 |
/// of the primal problem, depending on whether we minimize or maximize. |
1933 | 1931 |
///- \ref NaN if no primal solution is found. |
1934 | 1932 |
///- The (finite) objective value if an optimal solution is found. |
1935 | 1933 |
Value primal() const { return _getPrimalValue()+obj_const_comp;} |
1936 | 1934 |
///@} |
1937 | 1935 |
|
1938 |
LpSolver* newSolver() {return _newSolver();} |
|
1939 |
LpSolver* cloneSolver() {return _cloneSolver();} |
|
1940 |
|
|
1941 | 1936 |
protected: |
1942 | 1937 |
|
1943 |
virtual LpSolver* _newSolver() const = 0; |
|
1944 |
virtual LpSolver* _cloneSolver() const = 0; |
|
1945 | 1938 |
}; |
1946 | 1939 |
|
1947 | 1940 |
|
1948 | 1941 |
/// \ingroup lp_group |
1949 | 1942 |
/// |
1950 | 1943 |
/// \brief Common base class for MIP solvers |
1951 | 1944 |
/// |
1952 | 1945 |
/// This class is an abstract base class for MIP solvers. This class |
1953 | 1946 |
/// provides a full interface for set and modify an MIP problem, |
1954 | 1947 |
/// solve it and retrieve the solution. You can use one of the |
1955 | 1948 |
/// descendants as a concrete implementation, or the \c Lp |
1956 | 1949 |
/// default MIP solver. However, if you would like to handle MIP |
1957 | 1950 |
/// solvers as reference or pointer in a generic way, you can use |
1958 | 1951 |
/// this class directly. |
1959 | 1952 |
class MipSolver : virtual public LpBase { |
1960 | 1953 |
public: |
1961 | 1954 |
|
1962 | 1955 |
/// The problem types for MIP problems |
1963 | 1956 |
enum ProblemType { |
1964 | 1957 |
///Feasible solution hasn't been found (but may exist). |
1965 | 1958 |
UNDEFINED = 0, |
1966 | 1959 |
///The problem has no feasible solution |
1967 | 1960 |
INFEASIBLE = 1, |
1968 | 1961 |
///Feasible solution found |
1969 | 1962 |
FEASIBLE = 2, |
1970 | 1963 |
///Optimal solution exists and found |
1971 | 1964 |
OPTIMAL = 3, |
1972 | 1965 |
///The cost function is unbounded |
1973 | 1966 |
/// |
1974 | 1967 |
///The Mip or at least the relaxed problem is unbounded |
1975 | 1968 |
UNBOUNDED = 4 |
1976 | 1969 |
}; |
1977 | 1970 |
|
1971 |
///Allocate a new MIP problem instance |
|
1972 |
virtual MipSolver* newSolver() const = 0; |
|
1973 |
///Make a copy of the MIP problem |
|
1974 |
virtual MipSolver* cloneSolver() const = 0; |
|
1975 |
|
|
1978 | 1976 |
///\name Solve the MIP |
1979 | 1977 |
|
1980 | 1978 |
///@{ |
1981 | 1979 |
|
1982 | 1980 |
/// Solve the MIP problem at hand |
1983 | 1981 |
/// |
1984 | 1982 |
///\return The result of the optimization procedure. Possible |
1985 | 1983 |
///values and their meanings can be found in the documentation of |
1986 | 1984 |
///\ref SolveExitStatus. |
1987 | 1985 |
SolveExitStatus solve() { return _solve(); } |
1988 | 1986 |
|
1989 | 1987 |
///@} |
1990 | 1988 |
|
1991 | 1989 |
///\name Setting column type |
1992 | 1990 |
///@{ |
1993 | 1991 |
|
1994 | 1992 |
///Possible variable (column) types (e.g. real, integer, binary etc.) |
1995 | 1993 |
enum ColTypes { |
1996 | 1994 |
///Continuous variable (default) |
1997 | 1995 |
REAL = 0, |
1998 | 1996 |
///Integer variable |
1999 | 1997 |
INTEGER = 1 |
2000 | 1998 |
}; |
2001 | 1999 |
|
2002 | 2000 |
///Sets the type of the given column to the given type |
2003 | 2001 |
|
2004 | 2002 |
///Sets the type of the given column to the given type. |
2005 | 2003 |
/// |
2006 | 2004 |
void colType(Col c, ColTypes col_type) { |
2007 | 2005 |
_setColType(cols(id(c)),col_type); |
2008 | 2006 |
} |
2009 | 2007 |
|
2010 | 2008 |
///Gives back the type of the column. |
2011 | 2009 |
|
2012 | 2010 |
///Gives back the type of the column. |
2013 | 2011 |
/// |
2014 | 2012 |
ColTypes colType(Col c) const { |
2015 | 2013 |
return _getColType(cols(id(c))); |
2016 | 2014 |
} |
2017 | 2015 |
///@} |
2018 | 2016 |
|
2019 | 2017 |
///\name Obtain the solution |
2020 | 2018 |
|
2021 | 2019 |
///@{ |
2022 | 2020 |
|
2023 | 2021 |
/// The type of the MIP problem |
2024 | 2022 |
ProblemType type() const { |
2025 | 2023 |
return _getType(); |
2026 | 2024 |
} |
2027 | 2025 |
|
2028 | 2026 |
/// Return the value of the row in the solution |
2029 | 2027 |
|
2030 | 2028 |
/// Return the value of the row in the solution. |
2031 | 2029 |
/// \pre The problem is solved. |
2032 | 2030 |
Value sol(Col c) const { return _getSol(cols(id(c))); } |
2033 | 2031 |
|
2034 | 2032 |
/// Return the value of the expression in the solution |
2035 | 2033 |
|
2036 | 2034 |
/// Return the value of the expression in the solution, i.e. the |
2037 | 2035 |
/// dot product of the solution and the expression. |
2038 | 2036 |
/// \pre The problem is solved. |
2039 | 2037 |
Value sol(const Expr& e) const { |
2040 | 2038 |
double res = *e; |
2041 | 2039 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
2042 | 2040 |
res += *c * sol(c); |
2043 | 2041 |
} |
2044 | 2042 |
return res; |
2045 | 2043 |
} |
2046 | 2044 |
///The value of the objective function |
2047 | 2045 |
|
2048 | 2046 |
///\return |
2049 | 2047 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
2050 | 2048 |
/// of the problem, depending on whether we minimize or maximize. |
2051 | 2049 |
///- \ref NaN if no primal solution is found. |
2052 | 2050 |
///- The (finite) objective value if an optimal solution is found. |
2053 | 2051 |
Value solValue() const { return _getSolValue()+obj_const_comp;} |
2054 | 2052 |
///@} |
2055 | 2053 |
|
2056 | 2054 |
protected: |
2057 | 2055 |
|
2058 | 2056 |
virtual SolveExitStatus _solve() = 0; |
2059 | 2057 |
virtual ColTypes _getColType(int col) const = 0; |
2060 | 2058 |
virtual void _setColType(int col, ColTypes col_type) = 0; |
2061 | 2059 |
virtual ProblemType _getType() const = 0; |
2062 | 2060 |
virtual Value _getSol(int i) const = 0; |
2063 | 2061 |
virtual Value _getSolValue() const = 0; |
2064 | 2062 |
|
2065 |
public: |
|
2066 |
|
|
2067 |
MipSolver* newSolver() {return _newSolver();} |
|
2068 |
MipSolver* cloneSolver() {return _cloneSolver();} |
|
2069 |
|
|
2070 |
protected: |
|
2071 |
|
|
2072 |
virtual MipSolver* _newSolver() const = 0; |
|
2073 |
virtual MipSolver* _cloneSolver() const = 0; |
|
2074 | 2063 |
}; |
2075 | 2064 |
|
2076 | 2065 |
|
2077 | 2066 |
|
2078 | 2067 |
} //namespace lemon |
2079 | 2068 |
|
2080 | 2069 |
#endif //LEMON_LP_BASE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/lp_skeleton.h> |
20 | 20 |
|
21 | 21 |
///\file |
22 | 22 |
///\brief A skeleton file to implement LP solver interfaces |
23 | 23 |
namespace lemon { |
24 | 24 |
|
25 | 25 |
int SkeletonSolverBase::_addCol() |
26 | 26 |
{ |
27 | 27 |
return ++col_num; |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
int SkeletonSolverBase::_addRow() |
31 | 31 |
{ |
32 | 32 |
return ++row_num; |
33 | 33 |
} |
34 | 34 |
|
35 | 35 |
void SkeletonSolverBase::_eraseCol(int) {} |
36 | 36 |
void SkeletonSolverBase::_eraseRow(int) {} |
37 | 37 |
|
38 | 38 |
void SkeletonSolverBase::_getColName(int, std::string &) const {} |
39 | 39 |
void SkeletonSolverBase::_setColName(int, const std::string &) {} |
40 | 40 |
int SkeletonSolverBase::_colByName(const std::string&) const { return -1; } |
41 | 41 |
|
42 | 42 |
void SkeletonSolverBase::_getRowName(int, std::string &) const {} |
43 | 43 |
void SkeletonSolverBase::_setRowName(int, const std::string &) {} |
44 | 44 |
int SkeletonSolverBase::_rowByName(const std::string&) const { return -1; } |
45 | 45 |
|
46 | 46 |
void SkeletonSolverBase::_setRowCoeffs(int, ExprIterator, ExprIterator) {} |
47 | 47 |
void SkeletonSolverBase::_getRowCoeffs(int, InsertIterator) const {} |
48 | 48 |
|
49 | 49 |
void SkeletonSolverBase::_setColCoeffs(int, ExprIterator, ExprIterator) {} |
50 | 50 |
void SkeletonSolverBase::_getColCoeffs(int, InsertIterator) const {} |
51 | 51 |
|
52 | 52 |
void SkeletonSolverBase::_setCoeff(int, int, Value) {} |
53 | 53 |
SkeletonSolverBase::Value SkeletonSolverBase::_getCoeff(int, int) const |
54 | 54 |
{ return 0; } |
55 | 55 |
|
56 | 56 |
void SkeletonSolverBase::_setColLowerBound(int, Value) {} |
57 | 57 |
SkeletonSolverBase::Value SkeletonSolverBase::_getColLowerBound(int) const |
58 | 58 |
{ return 0; } |
59 | 59 |
|
60 | 60 |
void SkeletonSolverBase::_setColUpperBound(int, Value) {} |
61 | 61 |
SkeletonSolverBase::Value SkeletonSolverBase::_getColUpperBound(int) const |
62 | 62 |
{ return 0; } |
63 | 63 |
|
64 | 64 |
void SkeletonSolverBase::_setRowLowerBound(int, Value) {} |
65 | 65 |
SkeletonSolverBase::Value SkeletonSolverBase::_getRowLowerBound(int) const |
66 | 66 |
{ return 0; } |
67 | 67 |
|
68 | 68 |
void SkeletonSolverBase::_setRowUpperBound(int, Value) {} |
69 | 69 |
SkeletonSolverBase::Value SkeletonSolverBase::_getRowUpperBound(int) const |
70 | 70 |
{ return 0; } |
71 | 71 |
|
72 | 72 |
void SkeletonSolverBase::_setObjCoeffs(ExprIterator, ExprIterator) {} |
73 | 73 |
void SkeletonSolverBase::_getObjCoeffs(InsertIterator) const {}; |
74 | 74 |
|
75 | 75 |
void SkeletonSolverBase::_setObjCoeff(int, Value) {} |
76 | 76 |
SkeletonSolverBase::Value SkeletonSolverBase::_getObjCoeff(int) const |
77 | 77 |
{ return 0; } |
78 | 78 |
|
79 | 79 |
void SkeletonSolverBase::_setSense(Sense) {} |
80 | 80 |
SkeletonSolverBase::Sense SkeletonSolverBase::_getSense() const |
81 | 81 |
{ return MIN; } |
82 | 82 |
|
83 | 83 |
void SkeletonSolverBase::_clear() { |
84 | 84 |
row_num = col_num = 0; |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
LpSkeleton::SolveExitStatus LpSkeleton::_solve() { return SOLVED; } |
88 | 88 |
|
89 | 89 |
LpSkeleton::Value LpSkeleton::_getPrimal(int) const { return 0; } |
90 | 90 |
LpSkeleton::Value LpSkeleton::_getDual(int) const { return 0; } |
91 | 91 |
LpSkeleton::Value LpSkeleton::_getPrimalValue() const { return 0; } |
92 | 92 |
|
93 | 93 |
LpSkeleton::Value LpSkeleton::_getPrimalRay(int) const { return 0; } |
94 | 94 |
LpSkeleton::Value LpSkeleton::_getDualRay(int) const { return 0; } |
95 | 95 |
|
96 | 96 |
LpSkeleton::ProblemType LpSkeleton::_getPrimalType() const |
97 | 97 |
{ return UNDEFINED; } |
98 | 98 |
|
99 | 99 |
LpSkeleton::ProblemType LpSkeleton::_getDualType() const |
100 | 100 |
{ return UNDEFINED; } |
101 | 101 |
|
102 | 102 |
LpSkeleton::VarStatus LpSkeleton::_getColStatus(int) const |
103 | 103 |
{ return BASIC; } |
104 | 104 |
|
105 | 105 |
LpSkeleton::VarStatus LpSkeleton::_getRowStatus(int) const |
106 | 106 |
{ return BASIC; } |
107 | 107 |
|
108 |
LpSkeleton* LpSkeleton:: |
|
108 |
LpSkeleton* LpSkeleton::newSolver() const |
|
109 | 109 |
{ return static_cast<LpSkeleton*>(0); } |
110 | 110 |
|
111 |
LpSkeleton* LpSkeleton:: |
|
111 |
LpSkeleton* LpSkeleton::cloneSolver() const |
|
112 | 112 |
{ return static_cast<LpSkeleton*>(0); } |
113 | 113 |
|
114 | 114 |
const char* LpSkeleton::_solverName() const { return "LpSkeleton"; } |
115 | 115 |
|
116 | 116 |
MipSkeleton::SolveExitStatus MipSkeleton::_solve() |
117 | 117 |
{ return SOLVED; } |
118 | 118 |
|
119 | 119 |
MipSkeleton::Value MipSkeleton::_getSol(int) const { return 0; } |
120 | 120 |
MipSkeleton::Value MipSkeleton::_getSolValue() const { return 0; } |
121 | 121 |
|
122 | 122 |
MipSkeleton::ProblemType MipSkeleton::_getType() const |
123 | 123 |
{ return UNDEFINED; } |
124 | 124 |
|
125 |
MipSkeleton* MipSkeleton:: |
|
125 |
MipSkeleton* MipSkeleton::newSolver() const |
|
126 | 126 |
{ return static_cast<MipSkeleton*>(0); } |
127 | 127 |
|
128 |
MipSkeleton* MipSkeleton:: |
|
128 |
MipSkeleton* MipSkeleton::cloneSolver() const |
|
129 | 129 |
{ return static_cast<MipSkeleton*>(0); } |
130 | 130 |
|
131 | 131 |
const char* MipSkeleton::_solverName() const { return "MipSkeleton"; } |
132 | 132 |
|
133 | 133 |
} //namespace lemon |
134 | 134 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_SKELETON_H |
20 | 20 |
#define LEMON_LP_SKELETON_H |
21 | 21 |
|
22 | 22 |
#include <lemon/lp_base.h> |
23 | 23 |
|
24 | 24 |
///\file |
25 |
///\brief |
|
25 |
///\brief Skeleton file to implement LP/MIP solver interfaces |
|
26 |
/// |
|
27 |
///The classes in this file do nothing, but they can serve as skeletons when |
|
28 |
///implementing an interface to new solvers. |
|
26 | 29 |
namespace lemon { |
27 | 30 |
|
28 |
///A skeleton class to implement LP solver |
|
31 |
///A skeleton class to implement LP/MIP solver base interface |
|
32 |
|
|
33 |
///This class does nothing, but it can serve as a skeleton when |
|
34 |
///implementing an interface to new solvers. |
|
29 | 35 |
class SkeletonSolverBase : public virtual LpBase { |
30 | 36 |
int col_num,row_num; |
31 | 37 |
|
32 | 38 |
protected: |
33 | 39 |
|
34 | 40 |
SkeletonSolverBase() |
35 | 41 |
: col_num(-1), row_num(-1) {} |
36 | 42 |
|
37 | 43 |
/// \e |
38 | 44 |
virtual int _addCol(); |
39 | 45 |
/// \e |
40 | 46 |
virtual int _addRow(); |
41 | 47 |
/// \e |
42 | 48 |
virtual void _eraseCol(int i); |
43 | 49 |
/// \e |
44 | 50 |
virtual void _eraseRow(int i); |
45 | 51 |
|
46 | 52 |
/// \e |
47 | 53 |
virtual void _getColName(int col, std::string& name) const; |
48 | 54 |
/// \e |
49 | 55 |
virtual void _setColName(int col, const std::string& name); |
50 | 56 |
/// \e |
51 | 57 |
virtual int _colByName(const std::string& name) const; |
52 | 58 |
|
53 | 59 |
/// \e |
54 | 60 |
virtual void _getRowName(int row, std::string& name) const; |
55 | 61 |
/// \e |
56 | 62 |
virtual void _setRowName(int row, const std::string& name); |
57 | 63 |
/// \e |
58 | 64 |
virtual int _rowByName(const std::string& name) const; |
59 | 65 |
|
60 | 66 |
/// \e |
61 | 67 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
62 | 68 |
/// \e |
63 | 69 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
64 | 70 |
/// \e |
65 | 71 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
66 | 72 |
/// \e |
67 | 73 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
68 | 74 |
|
69 | 75 |
/// Set one element of the coefficient matrix |
70 | 76 |
virtual void _setCoeff(int row, int col, Value value); |
71 | 77 |
|
72 | 78 |
/// Get one element of the coefficient matrix |
73 | 79 |
virtual Value _getCoeff(int row, int col) const; |
74 | 80 |
|
75 | 81 |
/// The lower bound of a variable (column) have to be given by an |
76 | 82 |
/// extended number of type Value, i.e. a finite number of type |
77 | 83 |
/// Value or -\ref INF. |
78 | 84 |
virtual void _setColLowerBound(int i, Value value); |
79 | 85 |
/// \e |
80 | 86 |
|
81 | 87 |
/// The lower bound of a variable (column) is an |
82 | 88 |
/// extended number of type Value, i.e. a finite number of type |
83 | 89 |
/// Value or -\ref INF. |
84 | 90 |
virtual Value _getColLowerBound(int i) const; |
85 | 91 |
|
86 | 92 |
/// The upper bound of a variable (column) have to be given by an |
87 | 93 |
/// extended number of type Value, i.e. a finite number of type |
88 | 94 |
/// Value or \ref INF. |
89 | 95 |
virtual void _setColUpperBound(int i, Value value); |
90 | 96 |
/// \e |
91 | 97 |
|
92 | 98 |
/// The upper bound of a variable (column) is an |
93 | 99 |
/// extended number of type Value, i.e. a finite number of type |
94 | 100 |
/// Value or \ref INF. |
95 | 101 |
virtual Value _getColUpperBound(int i) const; |
96 | 102 |
|
97 | 103 |
/// The lower bound of a constraint (row) have to be given by an |
98 | 104 |
/// extended number of type Value, i.e. a finite number of type |
99 | 105 |
/// Value or -\ref INF. |
100 | 106 |
virtual void _setRowLowerBound(int i, Value value); |
101 | 107 |
/// \e |
102 | 108 |
|
103 | 109 |
/// The lower bound of a constraint (row) is an |
104 | 110 |
/// extended number of type Value, i.e. a finite number of type |
105 | 111 |
/// Value or -\ref INF. |
106 | 112 |
virtual Value _getRowLowerBound(int i) const; |
107 | 113 |
|
108 | 114 |
/// The upper bound of a constraint (row) have to be given by an |
109 | 115 |
/// extended number of type Value, i.e. a finite number of type |
110 | 116 |
/// Value or \ref INF. |
111 | 117 |
virtual void _setRowUpperBound(int i, Value value); |
112 | 118 |
/// \e |
113 | 119 |
|
114 | 120 |
/// The upper bound of a constraint (row) is an |
115 | 121 |
/// extended number of type Value, i.e. a finite number of type |
116 | 122 |
/// Value or \ref INF. |
117 | 123 |
virtual Value _getRowUpperBound(int i) const; |
118 | 124 |
|
119 | 125 |
/// \e |
120 | 126 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
121 | 127 |
/// \e |
122 | 128 |
virtual void _getObjCoeffs(InsertIterator b) const; |
123 | 129 |
|
124 | 130 |
/// \e |
125 | 131 |
virtual void _setObjCoeff(int i, Value obj_coef); |
126 | 132 |
/// \e |
127 | 133 |
virtual Value _getObjCoeff(int i) const; |
128 | 134 |
|
129 | 135 |
///\e |
130 | 136 |
virtual void _setSense(Sense); |
131 | 137 |
///\e |
132 | 138 |
virtual Sense _getSense() const; |
133 | 139 |
|
134 | 140 |
///\e |
135 | 141 |
virtual void _clear(); |
136 | 142 |
|
137 | 143 |
}; |
138 | 144 |
|
139 |
/// \brief |
|
145 |
/// \brief Skeleton class for an LP solver interface |
|
140 | 146 |
/// |
141 |
/// |
|
147 |
///This class does nothing, but it can serve as a skeleton when |
|
148 |
///implementing an interface to new solvers. |
|
149 |
|
|
142 | 150 |
///\ingroup lp_group |
143 |
class LpSkeleton : public |
|
151 |
class LpSkeleton : public LpSolver, public SkeletonSolverBase { |
|
144 | 152 |
public: |
145 |
LpSkeleton() : SkeletonSolverBase(), LpSolver() {} |
|
146 |
|
|
153 |
///\e |
|
154 |
LpSkeleton() : LpSolver(), SkeletonSolverBase() {} |
|
155 |
///\e |
|
156 |
virtual LpSkeleton* newSolver() const; |
|
157 |
///\e |
|
158 |
virtual LpSkeleton* cloneSolver() const; |
|
147 | 159 |
protected: |
148 | 160 |
|
149 | 161 |
///\e |
150 | 162 |
virtual SolveExitStatus _solve(); |
151 | 163 |
|
152 | 164 |
///\e |
153 | 165 |
virtual Value _getPrimal(int i) const; |
154 | 166 |
///\e |
155 | 167 |
virtual Value _getDual(int i) const; |
156 | 168 |
|
157 | 169 |
///\e |
158 | 170 |
virtual Value _getPrimalValue() const; |
159 | 171 |
|
160 | 172 |
///\e |
161 | 173 |
virtual Value _getPrimalRay(int i) const; |
162 | 174 |
///\e |
163 | 175 |
virtual Value _getDualRay(int i) const; |
164 | 176 |
|
165 | 177 |
///\e |
166 | 178 |
virtual ProblemType _getPrimalType() const; |
167 | 179 |
///\e |
168 | 180 |
virtual ProblemType _getDualType() const; |
169 | 181 |
|
170 | 182 |
///\e |
171 | 183 |
virtual VarStatus _getColStatus(int i) const; |
172 | 184 |
///\e |
173 | 185 |
virtual VarStatus _getRowStatus(int i) const; |
174 | 186 |
|
175 | 187 |
///\e |
176 |
virtual LpSkeleton* _newSolver() const; |
|
177 |
///\e |
|
178 |
virtual LpSkeleton* _cloneSolver() const; |
|
179 |
///\e |
|
180 | 188 |
virtual const char* _solverName() const; |
181 | 189 |
|
182 | 190 |
}; |
183 | 191 |
|
184 |
/// \brief |
|
192 |
/// \brief Skeleton class for a MIP solver interface |
|
185 | 193 |
/// |
186 |
/// |
|
194 |
///This class does nothing, but it can serve as a skeleton when |
|
195 |
///implementing an interface to new solvers. |
|
187 | 196 |
///\ingroup lp_group |
188 |
class MipSkeleton : public |
|
197 |
class MipSkeleton : public MipSolver, public SkeletonSolverBase { |
|
189 | 198 |
public: |
190 |
|
|
199 |
///\e |
|
200 |
MipSkeleton() : MipSolver(), SkeletonSolverBase() {} |
|
201 |
///\e |
|
202 |
virtual MipSkeleton* newSolver() const; |
|
203 |
///\e |
|
204 |
virtual MipSkeleton* cloneSolver() const; |
|
191 | 205 |
|
192 | 206 |
protected: |
193 | 207 |
///\e |
194 | 208 |
|
195 | 209 |
///\bug Wrong interface |
196 | 210 |
/// |
197 | 211 |
virtual SolveExitStatus _solve(); |
198 | 212 |
|
199 | 213 |
///\e |
200 | 214 |
|
201 | 215 |
///\bug Wrong interface |
202 | 216 |
/// |
203 | 217 |
virtual Value _getSol(int i) const; |
204 | 218 |
|
205 | 219 |
///\e |
206 | 220 |
|
207 | 221 |
///\bug Wrong interface |
208 | 222 |
/// |
209 | 223 |
virtual Value _getSolValue() const; |
210 | 224 |
|
211 | 225 |
///\e |
212 | 226 |
|
213 | 227 |
///\bug Wrong interface |
214 | 228 |
/// |
215 | 229 |
virtual ProblemType _getType() const; |
216 | 230 |
|
217 | 231 |
///\e |
218 |
virtual MipSkeleton* _newSolver() const; |
|
219 |
|
|
220 |
///\e |
|
221 |
virtual MipSkeleton* _cloneSolver() const; |
|
222 |
///\e |
|
223 | 232 |
virtual const char* _solverName() const; |
224 |
|
|
225 | 233 |
}; |
226 | 234 |
|
227 | 235 |
} //namespace lemon |
228 | 236 |
|
229 | 237 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <lemon/soplex.h> |
21 | 21 |
|
22 | 22 |
#include <soplex.h> |
23 | 23 |
|
24 | 24 |
|
25 | 25 |
///\file |
26 | 26 |
///\brief Implementation of the LEMON-SOPLEX lp solver interface. |
27 | 27 |
namespace lemon { |
28 | 28 |
|
29 | 29 |
SoplexLp::SoplexLp() { |
30 | 30 |
soplex = new soplex::SoPlex; |
31 | 31 |
} |
32 | 32 |
|
33 | 33 |
SoplexLp::~SoplexLp() { |
34 | 34 |
delete soplex; |
35 | 35 |
} |
36 | 36 |
|
37 | 37 |
SoplexLp::SoplexLp(const SoplexLp& lp) { |
38 | 38 |
rows = lp.rows; |
39 | 39 |
cols = lp.cols; |
40 | 40 |
|
41 | 41 |
soplex = new soplex::SoPlex; |
42 | 42 |
(*static_cast<soplex::SPxLP*>(soplex)) = *(lp.soplex); |
43 | 43 |
|
44 | 44 |
_col_names = lp._col_names; |
45 | 45 |
_col_names_ref = lp._col_names_ref; |
46 | 46 |
|
47 | 47 |
_row_names = lp._row_names; |
48 | 48 |
_row_names_ref = lp._row_names_ref; |
49 | 49 |
|
50 | 50 |
} |
51 | 51 |
|
52 | 52 |
void SoplexLp::_clear_temporals() { |
53 | 53 |
_primal_values.clear(); |
54 | 54 |
_dual_values.clear(); |
55 | 55 |
} |
56 | 56 |
|
57 |
SoplexLp* SoplexLp:: |
|
57 |
SoplexLp* SoplexLp::newSolver() const { |
|
58 | 58 |
SoplexLp* newlp = new SoplexLp(); |
59 | 59 |
return newlp; |
60 | 60 |
} |
61 | 61 |
|
62 |
SoplexLp* SoplexLp:: |
|
62 |
SoplexLp* SoplexLp::cloneSolver() const { |
|
63 | 63 |
SoplexLp* newlp = new SoplexLp(*this); |
64 | 64 |
return newlp; |
65 | 65 |
} |
66 | 66 |
|
67 | 67 |
const char* SoplexLp::_solverName() const { return "SoplexLp"; } |
68 | 68 |
|
69 | 69 |
int SoplexLp::_addCol() { |
70 | 70 |
soplex::LPCol c; |
71 | 71 |
c.setLower(-soplex::infinity); |
72 | 72 |
c.setUpper(soplex::infinity); |
73 | 73 |
soplex->addCol(c); |
74 | 74 |
|
75 | 75 |
_col_names.push_back(std::string()); |
76 | 76 |
|
77 | 77 |
return soplex->nCols() - 1; |
78 | 78 |
} |
79 | 79 |
|
80 | 80 |
int SoplexLp::_addRow() { |
81 | 81 |
soplex::LPRow r; |
82 | 82 |
r.setLhs(-soplex::infinity); |
83 | 83 |
r.setRhs(soplex::infinity); |
84 | 84 |
soplex->addRow(r); |
85 | 85 |
|
86 | 86 |
_row_names.push_back(std::string()); |
87 | 87 |
|
88 | 88 |
return soplex->nRows() - 1; |
89 | 89 |
} |
90 | 90 |
|
91 | 91 |
|
92 | 92 |
void SoplexLp::_eraseCol(int i) { |
93 | 93 |
soplex->removeCol(i); |
94 | 94 |
_col_names_ref.erase(_col_names[i]); |
95 | 95 |
_col_names[i] = _col_names.back(); |
96 | 96 |
_col_names_ref[_col_names.back()] = i; |
97 | 97 |
_col_names.pop_back(); |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
void SoplexLp::_eraseRow(int i) { |
101 | 101 |
soplex->removeRow(i); |
102 | 102 |
_row_names_ref.erase(_row_names[i]); |
103 | 103 |
_row_names[i] = _row_names.back(); |
104 | 104 |
_row_names_ref[_row_names.back()] = i; |
105 | 105 |
_row_names.pop_back(); |
106 | 106 |
} |
107 | 107 |
|
108 | 108 |
void SoplexLp::_eraseColId(int i) { |
109 | 109 |
cols.eraseIndex(i); |
110 | 110 |
cols.relocateIndex(i, cols.maxIndex()); |
111 | 111 |
} |
112 | 112 |
void SoplexLp::_eraseRowId(int i) { |
113 | 113 |
rows.eraseIndex(i); |
114 | 114 |
rows.relocateIndex(i, rows.maxIndex()); |
115 | 115 |
} |
116 | 116 |
|
117 | 117 |
void SoplexLp::_getColName(int c, std::string &name) const { |
118 | 118 |
name = _col_names[c]; |
119 | 119 |
} |
120 | 120 |
|
121 | 121 |
void SoplexLp::_setColName(int c, const std::string &name) { |
122 | 122 |
_col_names_ref.erase(_col_names[c]); |
123 | 123 |
_col_names[c] = name; |
124 | 124 |
if (!name.empty()) { |
125 | 125 |
_col_names_ref.insert(std::make_pair(name, c)); |
126 | 126 |
} |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
int SoplexLp::_colByName(const std::string& name) const { |
130 | 130 |
std::map<std::string, int>::const_iterator it = |
131 | 131 |
_col_names_ref.find(name); |
132 | 132 |
if (it != _col_names_ref.end()) { |
133 | 133 |
return it->second; |
134 | 134 |
} else { |
135 | 135 |
return -1; |
136 | 136 |
} |
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
void SoplexLp::_getRowName(int r, std::string &name) const { |
140 | 140 |
name = _row_names[r]; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
void SoplexLp::_setRowName(int r, const std::string &name) { |
144 | 144 |
_row_names_ref.erase(_row_names[r]); |
145 | 145 |
_row_names[r] = name; |
146 | 146 |
if (!name.empty()) { |
147 | 147 |
_row_names_ref.insert(std::make_pair(name, r)); |
148 | 148 |
} |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
int SoplexLp::_rowByName(const std::string& name) const { |
152 | 152 |
std::map<std::string, int>::const_iterator it = |
153 | 153 |
_row_names_ref.find(name); |
154 | 154 |
if (it != _row_names_ref.end()) { |
155 | 155 |
return it->second; |
156 | 156 |
} else { |
157 | 157 |
return -1; |
158 | 158 |
} |
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
|
162 | 162 |
void SoplexLp::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) { |
163 | 163 |
for (int j = 0; j < soplex->nCols(); ++j) { |
164 | 164 |
soplex->changeElement(i, j, 0.0); |
165 | 165 |
} |
166 | 166 |
for(ExprIterator it = b; it != e; ++it) { |
167 | 167 |
soplex->changeElement(i, it->first, it->second); |
168 | 168 |
} |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
void SoplexLp::_getRowCoeffs(int i, InsertIterator b) const { |
172 | 172 |
const soplex::SVector& vec = soplex->rowVector(i); |
173 | 173 |
for (int k = 0; k < vec.size(); ++k) { |
174 | 174 |
*b = std::make_pair(vec.index(k), vec.value(k)); |
175 | 175 |
++b; |
176 | 176 |
} |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
void SoplexLp::_setColCoeffs(int j, ExprIterator b, ExprIterator e) { |
180 | 180 |
for (int i = 0; i < soplex->nRows(); ++i) { |
181 | 181 |
soplex->changeElement(i, j, 0.0); |
182 | 182 |
} |
183 | 183 |
for(ExprIterator it = b; it != e; ++it) { |
184 | 184 |
soplex->changeElement(it->first, j, it->second); |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
void SoplexLp::_getColCoeffs(int i, InsertIterator b) const { |
189 | 189 |
const soplex::SVector& vec = soplex->colVector(i); |
190 | 190 |
for (int k = 0; k < vec.size(); ++k) { |
191 | 191 |
*b = std::make_pair(vec.index(k), vec.value(k)); |
192 | 192 |
++b; |
193 | 193 |
} |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
void SoplexLp::_setCoeff(int i, int j, Value value) { |
197 | 197 |
soplex->changeElement(i, j, value); |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
SoplexLp::Value SoplexLp::_getCoeff(int i, int j) const { |
201 | 201 |
return soplex->rowVector(i)[j]; |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
void SoplexLp::_setColLowerBound(int i, Value value) { |
205 | 205 |
LEMON_ASSERT(value != INF, "Invalid bound"); |
206 | 206 |
soplex->changeLower(i, value != -INF ? value : -soplex::infinity); |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
SoplexLp::Value SoplexLp::_getColLowerBound(int i) const { |
210 | 210 |
double value = soplex->lower(i); |
211 | 211 |
return value != -soplex::infinity ? value : -INF; |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
void SoplexLp::_setColUpperBound(int i, Value value) { |
215 | 215 |
LEMON_ASSERT(value != -INF, "Invalid bound"); |
216 | 216 |
soplex->changeUpper(i, value != INF ? value : soplex::infinity); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
SoplexLp::Value SoplexLp::_getColUpperBound(int i) const { |
220 | 220 |
double value = soplex->upper(i); |
221 | 221 |
return value != soplex::infinity ? value : INF; |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
void SoplexLp::_setRowLowerBound(int i, Value lb) { |
225 | 225 |
LEMON_ASSERT(lb != INF, "Invalid bound"); |
226 | 226 |
soplex->changeRange(i, lb != -INF ? lb : -soplex::infinity, soplex->rhs(i)); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
SoplexLp::Value SoplexLp::_getRowLowerBound(int i) const { |
230 | 230 |
double res = soplex->lhs(i); |
231 | 231 |
return res == -soplex::infinity ? -INF : res; |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
void SoplexLp::_setRowUpperBound(int i, Value ub) { |
235 | 235 |
LEMON_ASSERT(ub != -INF, "Invalid bound"); |
236 | 236 |
soplex->changeRange(i, soplex->lhs(i), ub != INF ? ub : soplex::infinity); |
237 | 237 |
} |
238 | 238 |
|
239 | 239 |
SoplexLp::Value SoplexLp::_getRowUpperBound(int i) const { |
240 | 240 |
double res = soplex->rhs(i); |
241 | 241 |
return res == soplex::infinity ? INF : res; |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
void SoplexLp::_setObjCoeffs(ExprIterator b, ExprIterator e) { |
245 | 245 |
for (int j = 0; j < soplex->nCols(); ++j) { |
246 | 246 |
soplex->changeObj(j, 0.0); |
247 | 247 |
} |
248 | 248 |
for (ExprIterator it = b; it != e; ++it) { |
249 | 249 |
soplex->changeObj(it->first, it->second); |
250 | 250 |
} |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
void SoplexLp::_getObjCoeffs(InsertIterator b) const { |
254 | 254 |
for (int j = 0; j < soplex->nCols(); ++j) { |
255 | 255 |
Value coef = soplex->obj(j); |
256 | 256 |
if (coef != 0.0) { |
257 | 257 |
*b = std::make_pair(j, coef); |
258 | 258 |
++b; |
259 | 259 |
} |
260 | 260 |
} |
261 | 261 |
} |
262 | 262 |
|
263 | 263 |
void SoplexLp::_setObjCoeff(int i, Value obj_coef) { |
264 | 264 |
soplex->changeObj(i, obj_coef); |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
SoplexLp::Value SoplexLp::_getObjCoeff(int i) const { |
268 | 268 |
return soplex->obj(i); |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
SoplexLp::SolveExitStatus SoplexLp::_solve() { |
272 | 272 |
|
273 | 273 |
_clear_temporals(); |
274 | 274 |
|
275 | 275 |
soplex::SPxSolver::Status status = soplex->solve(); |
276 | 276 |
|
277 | 277 |
switch (status) { |
278 | 278 |
case soplex::SPxSolver::OPTIMAL: |
279 | 279 |
case soplex::SPxSolver::INFEASIBLE: |
280 | 280 |
case soplex::SPxSolver::UNBOUNDED: |
281 | 281 |
return SOLVED; |
282 | 282 |
default: |
283 | 283 |
return UNSOLVED; |
284 | 284 |
} |
285 | 285 |
} |
286 | 286 |
|
287 | 287 |
SoplexLp::Value SoplexLp::_getPrimal(int i) const { |
288 | 288 |
if (_primal_values.empty()) { |
289 | 289 |
_primal_values.resize(soplex->nCols()); |
290 | 290 |
soplex::Vector pv(_primal_values.size(), &_primal_values.front()); |
291 | 291 |
soplex->getPrimal(pv); |
292 | 292 |
} |
293 | 293 |
return _primal_values[i]; |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
SoplexLp::Value SoplexLp::_getDual(int i) const { |
297 | 297 |
if (_dual_values.empty()) { |
298 | 298 |
_dual_values.resize(soplex->nRows()); |
299 | 299 |
soplex::Vector dv(_dual_values.size(), &_dual_values.front()); |
300 | 300 |
soplex->getDual(dv); |
301 | 301 |
} |
302 | 302 |
return _dual_values[i]; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
SoplexLp::Value SoplexLp::_getPrimalValue() const { |
306 | 306 |
return soplex->objValue(); |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
SoplexLp::VarStatus SoplexLp::_getColStatus(int i) const { |
310 | 310 |
switch (soplex->getBasisColStatus(i)) { |
311 | 311 |
case soplex::SPxSolver::BASIC: |
312 | 312 |
return BASIC; |
313 | 313 |
case soplex::SPxSolver::ON_UPPER: |
314 | 314 |
return UPPER; |
315 | 315 |
case soplex::SPxSolver::ON_LOWER: |
316 | 316 |
return LOWER; |
317 | 317 |
case soplex::SPxSolver::FIXED: |
318 | 318 |
return FIXED; |
319 | 319 |
case soplex::SPxSolver::ZERO: |
320 | 320 |
return FREE; |
321 | 321 |
default: |
322 | 322 |
LEMON_ASSERT(false, "Wrong column status"); |
323 | 323 |
return VarStatus(); |
324 | 324 |
} |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
SoplexLp::VarStatus SoplexLp::_getRowStatus(int i) const { |
328 | 328 |
switch (soplex->getBasisRowStatus(i)) { |
329 | 329 |
case soplex::SPxSolver::BASIC: |
330 | 330 |
return BASIC; |
331 | 331 |
case soplex::SPxSolver::ON_UPPER: |
332 | 332 |
return UPPER; |
333 | 333 |
case soplex::SPxSolver::ON_LOWER: |
334 | 334 |
return LOWER; |
335 | 335 |
case soplex::SPxSolver::FIXED: |
336 | 336 |
return FIXED; |
337 | 337 |
case soplex::SPxSolver::ZERO: |
338 | 338 |
return FREE; |
339 | 339 |
default: |
340 | 340 |
LEMON_ASSERT(false, "Wrong row status"); |
341 | 341 |
return VarStatus(); |
342 | 342 |
} |
343 | 343 |
} |
344 | 344 |
|
345 | 345 |
SoplexLp::Value SoplexLp::_getPrimalRay(int i) const { |
346 | 346 |
if (_primal_ray.empty()) { |
347 | 347 |
_primal_ray.resize(soplex->nCols()); |
348 | 348 |
soplex::Vector pv(_primal_ray.size(), &_primal_ray.front()); |
349 | 349 |
soplex->getDualfarkas(pv); |
350 | 350 |
} |
351 | 351 |
return _primal_ray[i]; |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
SoplexLp::Value SoplexLp::_getDualRay(int i) const { |
355 | 355 |
if (_dual_ray.empty()) { |
356 | 356 |
_dual_ray.resize(soplex->nRows()); |
357 | 357 |
soplex::Vector dv(_dual_ray.size(), &_dual_ray.front()); |
358 | 358 |
soplex->getDualfarkas(dv); |
359 | 359 |
} |
360 | 360 |
return _dual_ray[i]; |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
SoplexLp::ProblemType SoplexLp::_getPrimalType() const { |
364 | 364 |
switch (soplex->status()) { |
365 | 365 |
case soplex::SPxSolver::OPTIMAL: |
366 | 366 |
return OPTIMAL; |
367 | 367 |
case soplex::SPxSolver::UNBOUNDED: |
368 | 368 |
return UNBOUNDED; |
369 | 369 |
case soplex::SPxSolver::INFEASIBLE: |
370 | 370 |
return INFEASIBLE; |
371 | 371 |
default: |
372 | 372 |
return UNDEFINED; |
373 | 373 |
} |
374 | 374 |
} |
375 | 375 |
|
376 | 376 |
SoplexLp::ProblemType SoplexLp::_getDualType() const { |
377 | 377 |
switch (soplex->status()) { |
378 | 378 |
case soplex::SPxSolver::OPTIMAL: |
379 | 379 |
return OPTIMAL; |
380 | 380 |
case soplex::SPxSolver::UNBOUNDED: |
381 | 381 |
return UNBOUNDED; |
382 | 382 |
case soplex::SPxSolver::INFEASIBLE: |
383 | 383 |
return INFEASIBLE; |
384 | 384 |
default: |
385 | 385 |
return UNDEFINED; |
386 | 386 |
} |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
void SoplexLp::_setSense(Sense sense) { |
390 | 390 |
switch (sense) { |
391 | 391 |
case MIN: |
392 | 392 |
soplex->changeSense(soplex::SPxSolver::MINIMIZE); |
393 | 393 |
break; |
394 | 394 |
case MAX: |
395 | 395 |
soplex->changeSense(soplex::SPxSolver::MAXIMIZE); |
396 | 396 |
} |
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
SoplexLp::Sense SoplexLp::_getSense() const { |
400 | 400 |
switch (soplex->spxSense()) { |
401 | 401 |
case soplex::SPxSolver::MAXIMIZE: |
402 | 402 |
return MAX; |
403 | 403 |
case soplex::SPxSolver::MINIMIZE: |
404 | 404 |
return MIN; |
405 | 405 |
default: |
406 | 406 |
LEMON_ASSERT(false, "Wrong sense."); |
407 | 407 |
return SoplexLp::Sense(); |
408 | 408 |
} |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
void SoplexLp::_clear() { |
412 | 412 |
soplex->clear(); |
413 | 413 |
_col_names.clear(); |
414 | 414 |
_col_names_ref.clear(); |
415 | 415 |
_row_names.clear(); |
416 | 416 |
_row_names_ref.clear(); |
417 | 417 |
cols.clear(); |
418 | 418 |
rows.clear(); |
419 | 419 |
_clear_temporals(); |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
} //namespace lemon |
423 | 423 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SOPLEX_H |
20 | 20 |
#define LEMON_SOPLEX_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-SOPLEX lp solver interface. |
24 | 24 |
|
25 | 25 |
#include <vector> |
26 | 26 |
#include <string> |
27 | 27 |
|
28 | 28 |
#include <lemon/lp_base.h> |
29 | 29 |
|
30 | 30 |
// Forward declaration |
31 | 31 |
namespace soplex { |
32 | 32 |
class SoPlex; |
33 | 33 |
} |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup lp_group |
38 | 38 |
/// |
39 | 39 |
/// \brief Interface for the SOPLEX solver |
40 | 40 |
/// |
41 | 41 |
/// This class implements an interface for the SoPlex LP solver. |
42 | 42 |
/// The SoPlex library is an object oriented lp solver library |
43 | 43 |
/// developed at the Konrad-Zuse-Zentrum f�r Informationstechnik |
44 | 44 |
/// Berlin (ZIB). You can find detailed information about it at the |
45 | 45 |
/// <tt>http://soplex.zib.de</tt> address. |
46 | 46 |
class SoplexLp : public LpSolver { |
47 | 47 |
private: |
48 | 48 |
|
49 | 49 |
soplex::SoPlex* soplex; |
50 | 50 |
|
51 | 51 |
std::vector<std::string> _col_names; |
52 | 52 |
std::map<std::string, int> _col_names_ref; |
53 | 53 |
|
54 | 54 |
std::vector<std::string> _row_names; |
55 | 55 |
std::map<std::string, int> _row_names_ref; |
56 | 56 |
|
57 | 57 |
private: |
58 | 58 |
|
59 | 59 |
// these values cannot be retrieved element by element |
60 | 60 |
mutable std::vector<Value> _primal_values; |
61 | 61 |
mutable std::vector<Value> _dual_values; |
62 | 62 |
|
63 | 63 |
mutable std::vector<Value> _primal_ray; |
64 | 64 |
mutable std::vector<Value> _dual_ray; |
65 | 65 |
|
66 | 66 |
void _clear_temporals(); |
67 | 67 |
|
68 | 68 |
public: |
69 | 69 |
|
70 | 70 |
/// \e |
71 | 71 |
SoplexLp(); |
72 | 72 |
/// \e |
73 | 73 |
SoplexLp(const SoplexLp&); |
74 | 74 |
/// \e |
75 | 75 |
~SoplexLp(); |
76 |
/// \e |
|
77 |
virtual SoplexLp* newSolver() const; |
|
78 |
/// \e |
|
79 |
virtual SoplexLp* cloneSolver() const; |
|
76 | 80 |
|
77 | 81 |
protected: |
78 | 82 |
|
79 |
virtual SoplexLp* _newSolver() const; |
|
80 |
virtual SoplexLp* _cloneSolver() const; |
|
81 |
|
|
82 | 83 |
virtual const char* _solverName() const; |
83 | 84 |
|
84 | 85 |
virtual int _addCol(); |
85 | 86 |
virtual int _addRow(); |
86 | 87 |
|
87 | 88 |
virtual void _eraseCol(int i); |
88 | 89 |
virtual void _eraseRow(int i); |
89 | 90 |
|
90 | 91 |
virtual void _eraseColId(int i); |
91 | 92 |
virtual void _eraseRowId(int i); |
92 | 93 |
|
93 | 94 |
virtual void _getColName(int col, std::string& name) const; |
94 | 95 |
virtual void _setColName(int col, const std::string& name); |
95 | 96 |
virtual int _colByName(const std::string& name) const; |
96 | 97 |
|
97 | 98 |
virtual void _getRowName(int row, std::string& name) const; |
98 | 99 |
virtual void _setRowName(int row, const std::string& name); |
99 | 100 |
virtual int _rowByName(const std::string& name) const; |
100 | 101 |
|
101 | 102 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
102 | 103 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
103 | 104 |
|
104 | 105 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
105 | 106 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
106 | 107 |
|
107 | 108 |
virtual void _setCoeff(int row, int col, Value value); |
108 | 109 |
virtual Value _getCoeff(int row, int col) const; |
109 | 110 |
|
110 | 111 |
virtual void _setColLowerBound(int i, Value value); |
111 | 112 |
virtual Value _getColLowerBound(int i) const; |
112 | 113 |
virtual void _setColUpperBound(int i, Value value); |
113 | 114 |
virtual Value _getColUpperBound(int i) const; |
114 | 115 |
|
115 | 116 |
virtual void _setRowLowerBound(int i, Value value); |
116 | 117 |
virtual Value _getRowLowerBound(int i) const; |
117 | 118 |
virtual void _setRowUpperBound(int i, Value value); |
118 | 119 |
virtual Value _getRowUpperBound(int i) const; |
119 | 120 |
|
120 | 121 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
121 | 122 |
virtual void _getObjCoeffs(InsertIterator b) const; |
122 | 123 |
|
123 | 124 |
virtual void _setObjCoeff(int i, Value obj_coef); |
124 | 125 |
virtual Value _getObjCoeff(int i) const; |
125 | 126 |
|
126 | 127 |
virtual void _setSense(Sense sense); |
127 | 128 |
virtual Sense _getSense() const; |
128 | 129 |
|
129 | 130 |
virtual SolveExitStatus _solve(); |
130 | 131 |
virtual Value _getPrimal(int i) const; |
131 | 132 |
virtual Value _getDual(int i) const; |
132 | 133 |
|
133 | 134 |
virtual Value _getPrimalValue() const; |
134 | 135 |
|
135 | 136 |
virtual Value _getPrimalRay(int i) const; |
136 | 137 |
virtual Value _getDualRay(int i) const; |
137 | 138 |
|
138 | 139 |
virtual VarStatus _getColStatus(int i) const; |
139 | 140 |
virtual VarStatus _getRowStatus(int i) const; |
140 | 141 |
|
141 | 142 |
virtual ProblemType _getPrimalType() const; |
142 | 143 |
virtual ProblemType _getDualType() const; |
143 | 144 |
|
144 | 145 |
virtual void _clear(); |
145 | 146 |
|
146 | 147 |
}; |
147 | 148 |
|
148 | 149 |
} //END OF NAMESPACE LEMON |
149 | 150 |
|
150 | 151 |
#endif //LEMON_SOPLEX_H |
151 | 152 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <sstream> |
20 | 20 |
#include <lemon/lp_skeleton.h> |
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
|
24 | 24 |
#ifdef HAVE_CONFIG_H |
25 | 25 |
#include <lemon/config.h> |
26 | 26 |
#endif |
27 | 27 |
|
28 | 28 |
#ifdef HAVE_GLPK |
29 | 29 |
#include <lemon/glpk.h> |
30 | 30 |
#endif |
31 | 31 |
|
32 | 32 |
#ifdef HAVE_CPLEX |
33 | 33 |
#include <lemon/cplex.h> |
34 | 34 |
#endif |
35 | 35 |
|
36 | 36 |
#ifdef HAVE_SOPLEX |
37 | 37 |
#include <lemon/soplex.h> |
38 | 38 |
#endif |
39 | 39 |
|
40 | 40 |
#ifdef HAVE_CLP |
41 | 41 |
#include <lemon/clp.h> |
42 | 42 |
#endif |
43 | 43 |
|
44 | 44 |
using namespace lemon; |
45 | 45 |
|
46 | 46 |
void lpTest(LpSolver& lp) |
47 | 47 |
{ |
48 | 48 |
|
49 | 49 |
typedef LpSolver LP; |
50 | 50 |
|
51 | 51 |
std::vector<LP::Col> x(10); |
52 | 52 |
// for(int i=0;i<10;i++) x.push_back(lp.addCol()); |
53 | 53 |
lp.addColSet(x); |
54 | 54 |
lp.colLowerBound(x,1); |
55 | 55 |
lp.colUpperBound(x,1); |
56 | 56 |
lp.colBounds(x,1,2); |
57 | 57 |
|
58 | 58 |
std::vector<LP::Col> y(10); |
59 | 59 |
lp.addColSet(y); |
60 | 60 |
|
61 | 61 |
lp.colLowerBound(y,1); |
62 | 62 |
lp.colUpperBound(y,1); |
63 | 63 |
lp.colBounds(y,1,2); |
64 | 64 |
|
65 | 65 |
std::map<int,LP::Col> z; |
66 | 66 |
|
67 | 67 |
z.insert(std::make_pair(12,INVALID)); |
68 | 68 |
z.insert(std::make_pair(2,INVALID)); |
69 | 69 |
z.insert(std::make_pair(7,INVALID)); |
70 | 70 |
z.insert(std::make_pair(5,INVALID)); |
71 | 71 |
|
72 | 72 |
lp.addColSet(z); |
73 | 73 |
|
74 | 74 |
lp.colLowerBound(z,1); |
75 | 75 |
lp.colUpperBound(z,1); |
76 | 76 |
lp.colBounds(z,1,2); |
77 | 77 |
|
78 | 78 |
{ |
79 | 79 |
LP::Expr e,f,g; |
80 | 80 |
LP::Col p1,p2,p3,p4,p5; |
81 | 81 |
LP::Constr c; |
82 | 82 |
|
83 | 83 |
p1=lp.addCol(); |
84 | 84 |
p2=lp.addCol(); |
85 | 85 |
p3=lp.addCol(); |
86 | 86 |
p4=lp.addCol(); |
87 | 87 |
p5=lp.addCol(); |
88 | 88 |
|
89 | 89 |
e[p1]=2; |
90 | 90 |
*e=12; |
91 | 91 |
e[p1]+=2; |
92 | 92 |
*e+=12; |
93 | 93 |
e[p1]-=2; |
94 | 94 |
*e-=12; |
95 | 95 |
|
96 | 96 |
e=2; |
97 | 97 |
e=2.2; |
98 | 98 |
e=p1; |
99 | 99 |
e=f; |
100 | 100 |
|
101 | 101 |
e+=2; |
102 | 102 |
e+=2.2; |
103 | 103 |
e+=p1; |
104 | 104 |
e+=f; |
105 | 105 |
|
106 | 106 |
e-=2; |
107 | 107 |
e-=2.2; |
108 | 108 |
e-=p1; |
109 | 109 |
e-=f; |
110 | 110 |
|
111 | 111 |
e*=2; |
112 | 112 |
e*=2.2; |
113 | 113 |
e/=2; |
114 | 114 |
e/=2.2; |
115 | 115 |
|
116 | 116 |
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+ |
117 | 117 |
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+ |
118 | 118 |
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+ |
119 | 119 |
2.2*f+f*2.2+f/2.2+ |
120 | 120 |
2*f+f*2+f/2+ |
121 | 121 |
2.2*p1+p1*2.2+p1/2.2+ |
122 | 122 |
2*p1+p1*2+p1/2 |
123 | 123 |
); |
124 | 124 |
|
125 | 125 |
|
126 | 126 |
c = (e <= f ); |
127 | 127 |
c = (e <= 2.2); |
128 | 128 |
c = (e <= 2 ); |
129 | 129 |
c = (e <= p1 ); |
130 | 130 |
c = (2.2<= f ); |
131 | 131 |
c = (2 <= f ); |
132 | 132 |
c = (p1 <= f ); |
133 | 133 |
c = (p1 <= p2 ); |
134 | 134 |
c = (p1 <= 2.2); |
135 | 135 |
c = (p1 <= 2 ); |
136 | 136 |
c = (2.2<= p2 ); |
137 | 137 |
c = (2 <= p2 ); |
138 | 138 |
|
139 | 139 |
c = (e >= f ); |
140 | 140 |
c = (e >= 2.2); |
141 | 141 |
c = (e >= 2 ); |
142 | 142 |
c = (e >= p1 ); |
143 | 143 |
c = (2.2>= f ); |
144 | 144 |
c = (2 >= f ); |
145 | 145 |
c = (p1 >= f ); |
146 | 146 |
c = (p1 >= p2 ); |
147 | 147 |
c = (p1 >= 2.2); |
148 | 148 |
c = (p1 >= 2 ); |
149 | 149 |
c = (2.2>= p2 ); |
150 | 150 |
c = (2 >= p2 ); |
151 | 151 |
|
152 | 152 |
c = (e == f ); |
153 | 153 |
c = (e == 2.2); |
154 | 154 |
c = (e == 2 ); |
155 | 155 |
c = (e == p1 ); |
156 | 156 |
c = (2.2== f ); |
157 | 157 |
c = (2 == f ); |
158 | 158 |
c = (p1 == f ); |
159 | 159 |
//c = (p1 == p2 ); |
160 | 160 |
c = (p1 == 2.2); |
161 | 161 |
c = (p1 == 2 ); |
162 | 162 |
c = (2.2== p2 ); |
163 | 163 |
c = (2 == p2 ); |
164 | 164 |
|
165 | 165 |
c = ((2 <= e) <= 3); |
166 | 166 |
c = ((2 <= p1) <= 3); |
167 | 167 |
|
168 | 168 |
c = ((2 >= e) >= 3); |
169 | 169 |
c = ((2 >= p1) >= 3); |
170 | 170 |
|
171 | 171 |
e[x[3]]=2; |
172 | 172 |
e[x[3]]=4; |
173 | 173 |
e[x[3]]=1; |
174 | 174 |
*e=12; |
175 | 175 |
|
176 | 176 |
lp.addRow(-LP::INF,e,23); |
177 | 177 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23); |
178 | 178 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23); |
179 | 179 |
|
180 | 180 |
lp.addRow(x[1]+x[3]<=x[5]-3); |
181 | 181 |
lp.addRow((-7<=x[1]+x[3]-12)<=3); |
182 | 182 |
lp.addRow(x[1]<=x[5]); |
183 | 183 |
|
184 | 184 |
std::ostringstream buf; |
185 | 185 |
|
186 | 186 |
|
187 | 187 |
e=((p1+p2)+(p1-0.99*p2)); |
188 | 188 |
//e.prettyPrint(std::cout); |
189 | 189 |
//(e<=2).prettyPrint(std::cout); |
190 | 190 |
double tolerance=0.001; |
191 | 191 |
e.simplify(tolerance); |
192 | 192 |
buf << "Coeff. of p2 should be 0.01"; |
193 | 193 |
check(e[p2]>0, buf.str()); |
194 | 194 |
|
195 | 195 |
tolerance=0.02; |
196 | 196 |
e.simplify(tolerance); |
197 | 197 |
buf << "Coeff. of p2 should be 0"; |
198 | 198 |
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str()); |
199 | 199 |
|
200 |
//Test for clone/new |
|
201 |
LP* lpnew = lp.newSolver(); |
|
202 |
LP* lpclone = lp.cloneSolver(); |
|
203 |
delete lpnew; |
|
204 |
delete lpclone; |
|
200 | 205 |
|
201 | 206 |
} |
202 | 207 |
|
203 | 208 |
{ |
204 | 209 |
LP::DualExpr e,f,g; |
205 | 210 |
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID, |
206 | 211 |
p4 = INVALID, p5 = INVALID; |
207 | 212 |
|
208 | 213 |
e[p1]=2; |
209 | 214 |
e[p1]+=2; |
210 | 215 |
e[p1]-=2; |
211 | 216 |
|
212 | 217 |
e=p1; |
213 | 218 |
e=f; |
214 | 219 |
|
215 | 220 |
e+=p1; |
216 | 221 |
e+=f; |
217 | 222 |
|
218 | 223 |
e-=p1; |
219 | 224 |
e-=f; |
220 | 225 |
|
221 | 226 |
e*=2; |
222 | 227 |
e*=2.2; |
223 | 228 |
e/=2; |
224 | 229 |
e/=2.2; |
225 | 230 |
|
226 | 231 |
e=((p1+p2)+(p1-p2)+ |
227 | 232 |
(p1+f)+(f+p1)+(f+g)+ |
228 | 233 |
(p1-f)+(f-p1)+(f-g)+ |
229 | 234 |
2.2*f+f*2.2+f/2.2+ |
230 | 235 |
2*f+f*2+f/2+ |
231 | 236 |
2.2*p1+p1*2.2+p1/2.2+ |
232 | 237 |
2*p1+p1*2+p1/2 |
233 | 238 |
); |
234 | 239 |
} |
235 | 240 |
|
236 | 241 |
} |
237 | 242 |
|
238 | 243 |
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat, |
239 | 244 |
double exp_opt) { |
240 | 245 |
using std::string; |
241 | 246 |
lp.solve(); |
242 | 247 |
|
243 | 248 |
std::ostringstream buf; |
244 | 249 |
buf << "PrimalType should be: " << int(stat) << int(lp.primalType()); |
245 | 250 |
|
246 | 251 |
check(lp.primalType()==stat, buf.str()); |
247 | 252 |
|
248 | 253 |
if (stat == LpSolver::OPTIMAL) { |
249 | 254 |
std::ostringstream sbuf; |
250 |
sbuf << "Wrong optimal value |
|
255 |
sbuf << "Wrong optimal value (" << lp.primal() <<") with " |
|
256 |
<< lp.solverName() <<"\n the right optimum is " << exp_opt; |
|
251 | 257 |
check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str()); |
252 | 258 |
} |
253 | 259 |
} |
254 | 260 |
|
255 | 261 |
void aTest(LpSolver & lp) |
256 | 262 |
{ |
257 | 263 |
typedef LpSolver LP; |
258 | 264 |
|
259 | 265 |
//The following example is very simple |
260 | 266 |
|
261 | 267 |
typedef LpSolver::Row Row; |
262 | 268 |
typedef LpSolver::Col Col; |
263 | 269 |
|
264 | 270 |
|
265 | 271 |
Col x1 = lp.addCol(); |
266 | 272 |
Col x2 = lp.addCol(); |
267 | 273 |
|
268 | 274 |
|
269 | 275 |
//Constraints |
270 | 276 |
Row upright=lp.addRow(x1+2*x2 <=1); |
271 | 277 |
lp.addRow(x1+x2 >=-1); |
272 | 278 |
lp.addRow(x1-x2 <=1); |
273 | 279 |
lp.addRow(x1-x2 >=-1); |
274 | 280 |
//Nonnegativity of the variables |
275 | 281 |
lp.colLowerBound(x1, 0); |
276 | 282 |
lp.colLowerBound(x2, 0); |
277 | 283 |
//Objective function |
278 | 284 |
lp.obj(x1+x2); |
279 | 285 |
|
280 | 286 |
lp.sense(lp.MAX); |
281 | 287 |
|
282 | 288 |
//Testing the problem retrieving routines |
283 | 289 |
check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
284 | 290 |
check(lp.sense() == lp.MAX,"This is a maximization!"); |
285 | 291 |
check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!"); |
286 | 292 |
check(lp.colLowerBound(x1)==0, |
287 | 293 |
"The lower bound for variable x1 should be 0."); |
288 | 294 |
check(lp.colUpperBound(x1)==LpSolver::INF, |
289 | 295 |
"The upper bound for variable x1 should be infty."); |
290 | 296 |
check(lp.rowLowerBound(upright) == -LpSolver::INF, |
291 | 297 |
"The lower bound for the first row should be -infty."); |
292 | 298 |
check(lp.rowUpperBound(upright)==1, |
293 | 299 |
"The upper bound for the first row should be 1."); |
294 | 300 |
LpSolver::Expr e = lp.row(upright); |
295 | 301 |
check(e[x1] == 1, "The first coefficient should 1."); |
296 | 302 |
check(e[x2] == 2, "The second coefficient should 1."); |
297 | 303 |
|
298 | 304 |
lp.row(upright, x1+x2 <=1); |
299 | 305 |
e = lp.row(upright); |
300 | 306 |
check(e[x1] == 1, "The first coefficient should 1."); |
301 | 307 |
check(e[x2] == 1, "The second coefficient should 1."); |
302 | 308 |
|
303 | 309 |
LpSolver::DualExpr de = lp.col(x1); |
304 | 310 |
check( de[upright] == 1, "The first coefficient should 1."); |
305 | 311 |
|
306 | 312 |
LpSolver* clp = lp.cloneSolver(); |
307 | 313 |
|
308 | 314 |
//Testing the problem retrieving routines |
309 | 315 |
check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
310 | 316 |
check(clp->sense() == clp->MAX,"This is a maximization!"); |
311 | 317 |
check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!"); |
312 | 318 |
// std::cout<<lp.colLowerBound(x1)<<std::endl; |
313 | 319 |
check(clp->colLowerBound(x1)==0, |
314 | 320 |
"The lower bound for variable x1 should be 0."); |
315 | 321 |
check(clp->colUpperBound(x1)==LpSolver::INF, |
316 | 322 |
"The upper bound for variable x1 should be infty."); |
317 | 323 |
|
318 | 324 |
check(lp.rowLowerBound(upright)==-LpSolver::INF, |
319 | 325 |
"The lower bound for the first row should be -infty."); |
320 | 326 |
check(lp.rowUpperBound(upright)==1, |
321 | 327 |
"The upper bound for the first row should be 1."); |
322 | 328 |
e = clp->row(upright); |
323 | 329 |
check(e[x1] == 1, "The first coefficient should 1."); |
324 | 330 |
check(e[x2] == 1, "The second coefficient should 1."); |
325 | 331 |
|
326 | 332 |
de = clp->col(x1); |
327 | 333 |
check(de[upright] == 1, "The first coefficient should 1."); |
328 | 334 |
|
329 | 335 |
delete clp; |
330 | 336 |
|
331 | 337 |
//Maximization of x1+x2 |
332 | 338 |
//over the triangle with vertices (0,0) (0,1) (1,0) |
333 | 339 |
double expected_opt=1; |
334 | 340 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
335 | 341 |
|
336 | 342 |
//Minimization |
337 | 343 |
lp.sense(lp.MIN); |
338 | 344 |
expected_opt=0; |
339 | 345 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
340 | 346 |
|
341 | 347 |
//Vertex (-1,0) instead of (0,0) |
342 | 348 |
lp.colLowerBound(x1, -LpSolver::INF); |
343 | 349 |
expected_opt=-1; |
344 | 350 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
345 | 351 |
|
346 | 352 |
//Erase one constraint and return to maximization |
347 | 353 |
lp.erase(upright); |
348 | 354 |
lp.sense(lp.MAX); |
349 | 355 |
expected_opt=LpSolver::INF; |
350 | 356 |
solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt); |
351 | 357 |
|
352 | 358 |
//Infeasibilty |
353 | 359 |
lp.addRow(x1+x2 <=-2); |
354 | 360 |
solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt); |
355 | 361 |
|
356 | 362 |
} |
357 | 363 |
|
364 |
template<class LP> |
|
365 |
void cloneTest() |
|
366 |
{ |
|
367 |
//Test for clone/new |
|
368 |
|
|
369 |
LP* lp = new LP(); |
|
370 |
LP* lpnew = lp->newSolver(); |
|
371 |
LP* lpclone = lp->cloneSolver(); |
|
372 |
delete lp; |
|
373 |
delete lpnew; |
|
374 |
delete lpclone; |
|
375 |
} |
|
376 |
|
|
358 | 377 |
int main() |
359 | 378 |
{ |
360 | 379 |
LpSkeleton lp_skel; |
361 | 380 |
lpTest(lp_skel); |
362 | 381 |
|
363 | 382 |
#ifdef HAVE_GLPK |
364 | 383 |
{ |
365 | 384 |
GlpkLp lp_glpk1,lp_glpk2; |
366 | 385 |
lpTest(lp_glpk1); |
367 | 386 |
aTest(lp_glpk2); |
387 |
cloneTest<GlpkLp>(); |
|
368 | 388 |
} |
369 | 389 |
#endif |
370 | 390 |
|
371 | 391 |
#ifdef HAVE_CPLEX |
372 | 392 |
try { |
373 | 393 |
CplexLp lp_cplex1,lp_cplex2; |
374 | 394 |
lpTest(lp_cplex1); |
375 | 395 |
aTest(lp_cplex2); |
376 | 396 |
} catch (CplexEnv::LicenseError& error) { |
377 | 397 |
#ifdef LEMON_FORCE_CPLEX_CHECK |
378 | 398 |
check(false, error.what()); |
379 | 399 |
#else |
380 | 400 |
std::cerr << error.what() << std::endl; |
381 | 401 |
std::cerr << "Cplex license check failed, lp check skipped" << std::endl; |
382 | 402 |
#endif |
383 | 403 |
} |
404 |
cloneTest<CplexLp>(); |
|
384 | 405 |
#endif |
385 | 406 |
|
386 | 407 |
#ifdef HAVE_SOPLEX |
387 | 408 |
{ |
388 | 409 |
SoplexLp lp_soplex1,lp_soplex2; |
389 | 410 |
lpTest(lp_soplex1); |
390 | 411 |
aTest(lp_soplex2); |
412 |
cloneTest<SoplexLp>(); |
|
391 | 413 |
} |
392 | 414 |
#endif |
393 | 415 |
|
394 | 416 |
#ifdef HAVE_CLP |
395 | 417 |
{ |
396 | 418 |
ClpLp lp_clp1,lp_clp2; |
397 | 419 |
lpTest(lp_clp1); |
398 | 420 |
aTest(lp_clp2); |
421 |
cloneTest<ClpLp>(); |
|
399 | 422 |
} |
400 | 423 |
#endif |
401 | 424 |
|
402 | 425 |
return 0; |
403 | 426 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include "test_tools.h" |
20 | 20 |
|
21 | 21 |
|
22 | 22 |
#ifdef HAVE_CONFIG_H |
23 | 23 |
#include <lemon/config.h> |
24 | 24 |
#endif |
25 | 25 |
|
26 | 26 |
#ifdef HAVE_CPLEX |
27 | 27 |
#include <lemon/cplex.h> |
28 | 28 |
#endif |
29 | 29 |
|
30 | 30 |
#ifdef HAVE_GLPK |
31 | 31 |
#include <lemon/glpk.h> |
32 | 32 |
#endif |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
using namespace lemon; |
36 | 36 |
|
37 | 37 |
void solveAndCheck(MipSolver& mip, MipSolver::ProblemType stat, |
38 | 38 |
double exp_opt) { |
39 | 39 |
using std::string; |
40 | 40 |
|
41 | 41 |
mip.solve(); |
42 | 42 |
//int decimal,sign; |
43 | 43 |
std::ostringstream buf; |
44 | 44 |
buf << "Type should be: " << int(stat)<<" and it is "<<int(mip.type()); |
45 | 45 |
|
46 | 46 |
|
47 | 47 |
// itoa(stat,buf1, 10); |
48 | 48 |
check(mip.type()==stat, buf.str()); |
49 | 49 |
|
50 | 50 |
if (stat == MipSolver::OPTIMAL) { |
51 | 51 |
std::ostringstream sbuf; |
52 | 52 |
buf << "Wrong optimal value: the right optimum is " << exp_opt; |
53 | 53 |
check(std::abs(mip.solValue()-exp_opt) < 1e-3, sbuf.str()); |
54 | 54 |
//+ecvt(exp_opt,2) |
55 | 55 |
} |
56 | 56 |
} |
57 | 57 |
|
58 | 58 |
void aTest(MipSolver& mip) |
59 | 59 |
{ |
60 | 60 |
//The following example is very simple |
61 | 61 |
|
62 | 62 |
|
63 | 63 |
typedef MipSolver::Row Row; |
64 | 64 |
typedef MipSolver::Col Col; |
65 | 65 |
|
66 | 66 |
|
67 | 67 |
|
68 | 68 |
Col x1 = mip.addCol(); |
69 | 69 |
Col x2 = mip.addCol(); |
70 | 70 |
|
71 | 71 |
|
72 | 72 |
//Objective function |
73 | 73 |
mip.obj(x1); |
74 | 74 |
|
75 | 75 |
mip.max(); |
76 | 76 |
|
77 | 77 |
|
78 | 78 |
//Unconstrained optimization |
79 | 79 |
mip.solve(); |
80 | 80 |
//Check it out! |
81 | 81 |
|
82 | 82 |
//Constraints |
83 | 83 |
mip.addRow(2*x1+x2 <=2); |
84 | 84 |
mip.addRow(x1-2*x2 <=0); |
85 | 85 |
|
86 | 86 |
//Nonnegativity of the variable x1 |
87 | 87 |
mip.colLowerBound(x1, 0); |
88 | 88 |
|
89 | 89 |
//Maximization of x1 |
90 | 90 |
//over the triangle with vertices (0,0),(4/5,2/5),(0,2) |
91 | 91 |
double expected_opt=4.0/5.0; |
92 | 92 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
93 | 93 |
|
94 | 94 |
//Restrict x2 to integer |
95 | 95 |
mip.colType(x2,MipSolver::INTEGER); |
96 | 96 |
expected_opt=1.0/2.0; |
97 | 97 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
//Restrict both to integer |
101 | 101 |
mip.colType(x1,MipSolver::INTEGER); |
102 | 102 |
expected_opt=0; |
103 | 103 |
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt); |
104 | 104 |
|
105 | 105 |
|
106 | 106 |
|
107 | 107 |
} |
108 | 108 |
|
109 |
template<class MIP> |
|
110 |
void cloneTest() |
|
111 |
{ |
|
112 |
|
|
113 |
MIP* mip = new MIP(); |
|
114 |
MIP* mipnew = mip->newSolver(); |
|
115 |
MIP* mipclone = mip->cloneSolver(); |
|
116 |
delete mip; |
|
117 |
delete mipnew; |
|
118 |
delete mipclone; |
|
119 |
} |
|
109 | 120 |
|
110 | 121 |
int main() |
111 | 122 |
{ |
112 | 123 |
|
113 | 124 |
#ifdef HAVE_GLPK |
114 | 125 |
{ |
115 | 126 |
GlpkMip mip1; |
116 | 127 |
aTest(mip1); |
128 |
cloneTest<GlpkMip>(); |
|
117 | 129 |
} |
118 | 130 |
#endif |
119 | 131 |
|
120 | 132 |
#ifdef HAVE_CPLEX |
121 | 133 |
try { |
122 | 134 |
CplexMip mip2; |
123 | 135 |
aTest(mip2); |
124 | 136 |
} catch (CplexEnv::LicenseError& error) { |
125 | 137 |
#ifdef LEMON_FORCE_CPLEX_CHECK |
126 | 138 |
check(false, error.what()); |
127 | 139 |
#else |
128 | 140 |
std::cerr << error.what() << std::endl; |
129 | 141 |
std::cerr << "Cplex license check failed, lp check skipped" << std::endl; |
130 | 142 |
#endif |
131 | 143 |
} |
144 |
cloneTest<CplexMip>(); |
|
132 | 145 |
#endif |
133 | 146 |
|
134 | 147 |
return 0; |
135 | 148 |
|
136 | 149 |
} |
0 comments (0 inline)