0
4
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 |
///Instantiates a |
|
52 |
///Instantiates a PredMap. |
|
53 | 53 |
|
54 |
///This function instantiates a |
|
54 |
///This function instantiates a PredMap. |
|
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 |
/// |
|
56 |
///PredMap. |
|
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 |
///Instantiates a |
|
67 |
///Instantiates a ProcessedMap. |
|
68 | 68 |
|
69 |
///This function instantiates a |
|
69 |
///This function instantiates a ProcessedMap. |
|
70 | 70 |
///\param g is the digraph, to which |
71 |
///we would like to define the |
|
71 |
///we would like to define the ProcessedMap |
|
72 | 72 |
#ifdef DOXYGEN |
73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 74 |
#else |
75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 76 |
#endif |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 | 83 |
///The type of the map that indicates which nodes are reached. |
84 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
85 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 |
///Instantiates a |
|
86 |
///Instantiates a ReachedMap. |
|
87 | 87 |
|
88 |
///This function instantiates a |
|
88 |
///This function instantiates a ReachedMap. |
|
89 | 89 |
///\param g is the digraph, to which |
90 |
///we would like to define the |
|
90 |
///we would like to define the ReachedMap. |
|
91 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 92 |
{ |
93 | 93 |
return new ReachedMap(g); |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
///The type of the map that stores the distances of the nodes. |
97 | 97 |
|
98 | 98 |
///The type of the map that stores the distances of the nodes. |
99 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
100 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 |
///Instantiates a |
|
101 |
///Instantiates a DistMap. |
|
102 | 102 |
|
103 |
///This function instantiates a |
|
103 |
///This function instantiates a DistMap. |
|
104 | 104 |
///\param g is the digraph, to which we would like to define the |
105 |
/// |
|
105 |
///DistMap. |
|
106 | 106 |
static DistMap *createDistMap(const Digraph &g) |
107 | 107 |
{ |
108 | 108 |
return new DistMap(g); |
109 | 109 |
} |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
///%BFS algorithm class. |
113 | 113 |
|
114 | 114 |
///\ingroup search |
115 | 115 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 116 |
/// |
117 | 117 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 119 |
///used easier. |
120 | 120 |
/// |
121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 122 |
///The default value is \ref ListDigraph. The value of GR is not used |
123 | 123 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
124 | 124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
125 | 125 |
///The default traits class is |
126 | 126 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
127 | 127 |
///See \ref BfsDefaultTraits for the documentation of |
128 | 128 |
///a Bfs traits class. |
129 | 129 |
#ifdef DOXYGEN |
130 | 130 |
template <typename GR, |
131 | 131 |
typename TR> |
132 | 132 |
#else |
133 | 133 |
template <typename GR=ListDigraph, |
134 | 134 |
typename TR=BfsDefaultTraits<GR> > |
135 | 135 |
#endif |
136 | 136 |
class Bfs { |
137 | 137 |
public: |
138 | 138 |
|
139 | 139 |
///The type of the digraph the algorithm runs on. |
140 | 140 |
typedef typename TR::Digraph Digraph; |
141 | 141 |
|
142 | 142 |
///\brief The type of the map that stores the predecessor arcs of the |
143 | 143 |
///shortest paths. |
144 | 144 |
typedef typename TR::PredMap PredMap; |
145 | 145 |
///The type of the map that stores the distances of the nodes. |
146 | 146 |
typedef typename TR::DistMap DistMap; |
147 | 147 |
///The type of the map that indicates which nodes are reached. |
148 | 148 |
typedef typename TR::ReachedMap ReachedMap; |
149 | 149 |
///The type of the map that indicates which nodes are processed. |
150 | 150 |
typedef typename TR::ProcessedMap ProcessedMap; |
151 | 151 |
///The type of the paths. |
152 | 152 |
typedef PredMapPath<Digraph, PredMap> Path; |
153 | 153 |
|
154 | 154 |
///The traits class. |
155 | 155 |
typedef TR Traits; |
156 | 156 |
|
157 | 157 |
private: |
158 | 158 |
|
159 | 159 |
typedef typename Digraph::Node Node; |
160 | 160 |
typedef typename Digraph::NodeIt NodeIt; |
161 | 161 |
typedef typename Digraph::Arc Arc; |
162 | 162 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 163 |
|
164 | 164 |
//Pointer to the underlying digraph. |
165 | 165 |
const Digraph *G; |
166 | 166 |
//Pointer to the map of predecessor arcs. |
167 | 167 |
PredMap *_pred; |
168 | 168 |
//Indicates if _pred is locally allocated (true) or not. |
169 | 169 |
bool local_pred; |
170 | 170 |
//Pointer to the map of distances. |
171 | 171 |
DistMap *_dist; |
172 | 172 |
//Indicates if _dist is locally allocated (true) or not. |
173 | 173 |
bool local_dist; |
174 | 174 |
//Pointer to the map of reached status of the nodes. |
175 | 175 |
ReachedMap *_reached; |
176 | 176 |
//Indicates if _reached is locally allocated (true) or not. |
177 | 177 |
bool local_reached; |
178 | 178 |
//Pointer to the map of processed status of the nodes. |
179 | 179 |
ProcessedMap *_processed; |
180 | 180 |
//Indicates if _processed is locally allocated (true) or not. |
181 | 181 |
bool local_processed; |
182 | 182 |
|
183 | 183 |
std::vector<typename Digraph::Node> _queue; |
184 | 184 |
int _queue_head,_queue_tail,_queue_next_dist; |
185 | 185 |
int _curr_dist; |
186 | 186 |
|
187 | 187 |
//Creates the maps if necessary. |
188 | 188 |
void create_maps() |
189 | 189 |
{ |
190 | 190 |
if(!_pred) { |
191 | 191 |
local_pred = true; |
192 | 192 |
_pred = Traits::createPredMap(*G); |
193 | 193 |
} |
194 | 194 |
if(!_dist) { |
195 | 195 |
local_dist = true; |
196 | 196 |
_dist = Traits::createDistMap(*G); |
197 | 197 |
} |
198 | 198 |
if(!_reached) { |
199 | 199 |
local_reached = true; |
200 | 200 |
_reached = Traits::createReachedMap(*G); |
201 | 201 |
} |
202 | 202 |
if(!_processed) { |
203 | 203 |
local_processed = true; |
204 | 204 |
_processed = Traits::createProcessedMap(*G); |
205 | 205 |
} |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
protected: |
209 | 209 |
|
210 | 210 |
Bfs() {} |
211 | 211 |
|
212 | 212 |
public: |
213 | 213 |
|
214 | 214 |
typedef Bfs Create; |
215 | 215 |
|
216 | 216 |
///\name Named template parameters |
217 | 217 |
|
218 | 218 |
///@{ |
219 | 219 |
|
220 | 220 |
template <class T> |
221 | 221 |
struct SetPredMapTraits : public Traits { |
222 | 222 |
typedef T PredMap; |
223 | 223 |
static PredMap *createPredMap(const Digraph &) |
224 | 224 |
{ |
225 | 225 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
226 | 226 |
return 0; // ignore warnings |
227 | 227 |
} |
228 | 228 |
}; |
229 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
230 |
/// |
|
230 |
///PredMap type. |
|
231 | 231 |
/// |
232 | 232 |
///\ref named-templ-param "Named parameter" for setting |
233 |
/// |
|
233 |
///PredMap type. |
|
234 | 234 |
template <class T> |
235 | 235 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
236 | 236 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <class T> |
240 | 240 |
struct SetDistMapTraits : public Traits { |
241 | 241 |
typedef T DistMap; |
242 | 242 |
static DistMap *createDistMap(const Digraph &) |
243 | 243 |
{ |
244 | 244 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
245 | 245 |
return 0; // ignore warnings |
246 | 246 |
} |
247 | 247 |
}; |
248 | 248 |
///\brief \ref named-templ-param "Named parameter" for setting |
249 |
/// |
|
249 |
///DistMap type. |
|
250 | 250 |
/// |
251 | 251 |
///\ref named-templ-param "Named parameter" for setting |
252 |
/// |
|
252 |
///DistMap type. |
|
253 | 253 |
template <class T> |
254 | 254 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
255 | 255 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
256 | 256 |
}; |
257 | 257 |
|
258 | 258 |
template <class T> |
259 | 259 |
struct SetReachedMapTraits : public Traits { |
260 | 260 |
typedef T ReachedMap; |
261 | 261 |
static ReachedMap *createReachedMap(const Digraph &) |
262 | 262 |
{ |
263 | 263 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
264 | 264 |
return 0; // ignore warnings |
265 | 265 |
} |
266 | 266 |
}; |
267 | 267 |
///\brief \ref named-templ-param "Named parameter" for setting |
268 |
/// |
|
268 |
///ReachedMap type. |
|
269 | 269 |
/// |
270 | 270 |
///\ref named-templ-param "Named parameter" for setting |
271 |
/// |
|
271 |
///ReachedMap type. |
|
272 | 272 |
template <class T> |
273 | 273 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
274 | 274 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
275 | 275 |
}; |
276 | 276 |
|
277 | 277 |
template <class T> |
278 | 278 |
struct SetProcessedMapTraits : public Traits { |
279 | 279 |
typedef T ProcessedMap; |
280 | 280 |
static ProcessedMap *createProcessedMap(const Digraph &) |
281 | 281 |
{ |
282 | 282 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
283 | 283 |
return 0; // ignore warnings |
284 | 284 |
} |
285 | 285 |
}; |
286 | 286 |
///\brief \ref named-templ-param "Named parameter" for setting |
287 |
/// |
|
287 |
///ProcessedMap type. |
|
288 | 288 |
/// |
289 | 289 |
///\ref named-templ-param "Named parameter" for setting |
290 |
/// |
|
290 |
///ProcessedMap type. |
|
291 | 291 |
template <class T> |
292 | 292 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
293 | 293 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
294 | 294 |
}; |
295 | 295 |
|
296 | 296 |
struct SetStandardProcessedMapTraits : public Traits { |
297 | 297 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
298 | 298 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
299 | 299 |
{ |
300 | 300 |
return new ProcessedMap(g); |
301 | 301 |
return 0; // ignore warnings |
302 | 302 |
} |
303 | 303 |
}; |
304 | 304 |
///\brief \ref named-templ-param "Named parameter" for setting |
305 |
/// |
|
305 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
|
306 | 306 |
/// |
307 | 307 |
///\ref named-templ-param "Named parameter" for setting |
308 |
/// |
|
308 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
|
309 | 309 |
///If you don't set it explicitly, it will be automatically allocated. |
310 | 310 |
struct SetStandardProcessedMap : |
311 | 311 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
312 | 312 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
313 | 313 |
}; |
314 | 314 |
|
315 | 315 |
///@} |
316 | 316 |
|
317 | 317 |
public: |
318 | 318 |
|
319 | 319 |
///Constructor. |
320 | 320 |
|
321 | 321 |
///Constructor. |
322 | 322 |
///\param g The digraph the algorithm runs on. |
323 | 323 |
Bfs(const Digraph &g) : |
324 | 324 |
G(&g), |
325 | 325 |
_pred(NULL), local_pred(false), |
326 | 326 |
_dist(NULL), local_dist(false), |
327 | 327 |
_reached(NULL), local_reached(false), |
328 | 328 |
_processed(NULL), local_processed(false) |
329 | 329 |
{ } |
330 | 330 |
|
331 | 331 |
///Destructor. |
332 | 332 |
~Bfs() |
333 | 333 |
{ |
334 | 334 |
if(local_pred) delete _pred; |
335 | 335 |
if(local_dist) delete _dist; |
336 | 336 |
if(local_reached) delete _reached; |
337 | 337 |
if(local_processed) delete _processed; |
338 | 338 |
} |
339 | 339 |
|
340 | 340 |
///Sets the map that stores the predecessor arcs. |
341 | 341 |
|
342 | 342 |
///Sets the map that stores the predecessor arcs. |
343 | 343 |
///If you don't use this function before calling \ref run(), |
344 | 344 |
///it will allocate one. The destructor deallocates this |
345 | 345 |
///automatically allocated map, of course. |
346 | 346 |
///\return <tt> (*this) </tt> |
347 | 347 |
Bfs &predMap(PredMap &m) |
348 | 348 |
{ |
349 | 349 |
if(local_pred) { |
350 | 350 |
delete _pred; |
351 | 351 |
local_pred=false; |
352 | 352 |
} |
353 | 353 |
_pred = &m; |
354 | 354 |
return *this; |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
///Sets the map that indicates which nodes are reached. |
358 | 358 |
|
359 | 359 |
///Sets the map that indicates which nodes are reached. |
360 | 360 |
///If you don't use this function before calling \ref run(), |
361 | 361 |
///it will allocate one. The destructor deallocates this |
362 | 362 |
///automatically allocated map, of course. |
363 | 363 |
///\return <tt> (*this) </tt> |
364 | 364 |
Bfs &reachedMap(ReachedMap &m) |
365 | 365 |
{ |
366 | 366 |
if(local_reached) { |
367 | 367 |
delete _reached; |
368 | 368 |
local_reached=false; |
369 | 369 |
} |
370 | 370 |
_reached = &m; |
371 | 371 |
return *this; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 | 375 |
|
376 | 376 |
///Sets the map that indicates which nodes are processed. |
377 | 377 |
///If you don't use this function before calling \ref run(), |
378 | 378 |
///it will allocate one. The destructor deallocates this |
379 | 379 |
///automatically allocated map, of course. |
380 | 380 |
///\return <tt> (*this) </tt> |
381 | 381 |
Bfs &processedMap(ProcessedMap &m) |
382 | 382 |
{ |
383 | 383 |
if(local_processed) { |
384 | 384 |
delete _processed; |
385 | 385 |
local_processed=false; |
386 | 386 |
} |
387 | 387 |
_processed = &m; |
388 | 388 |
return *this; |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
///Sets the map that stores the distances of the nodes. |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
394 | 394 |
///the algorithm. |
395 | 395 |
///If you don't use this function before calling \ref run(), |
396 | 396 |
///it will allocate one. The destructor deallocates this |
397 | 397 |
///automatically allocated map, of course. |
398 | 398 |
///\return <tt> (*this) </tt> |
399 | 399 |
Bfs &distMap(DistMap &m) |
400 | 400 |
{ |
401 | 401 |
if(local_dist) { |
402 | 402 |
delete _dist; |
403 | 403 |
local_dist=false; |
404 | 404 |
} |
... | ... |
@@ -742,629 +742,629 @@ |
742 | 742 |
|
743 | 743 |
///Returns the shortest path to a node. |
744 | 744 |
/// |
745 | 745 |
///\warning \c t should be reachable from the root(s). |
746 | 746 |
/// |
747 | 747 |
///\pre Either \ref run() or \ref start() must be called before |
748 | 748 |
///using this function. |
749 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
750 | 750 |
|
751 | 751 |
///The distance of a node from the root(s). |
752 | 752 |
|
753 | 753 |
///Returns the distance of a node from the root(s). |
754 | 754 |
/// |
755 | 755 |
///\warning If node \c v is not reachable from the root(s), then |
756 | 756 |
///the return value of this function is undefined. |
757 | 757 |
/// |
758 | 758 |
///\pre Either \ref run() or \ref start() must be called before |
759 | 759 |
///using this function. |
760 | 760 |
int dist(Node v) const { return (*_dist)[v]; } |
761 | 761 |
|
762 | 762 |
///Returns the 'previous arc' of the shortest path tree for a node. |
763 | 763 |
|
764 | 764 |
///This function returns the 'previous arc' of the shortest path |
765 | 765 |
///tree for the node \c v, i.e. it returns the last arc of a |
766 | 766 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
767 | 767 |
///is not reachable from the root(s) or if \c v is a root. |
768 | 768 |
/// |
769 | 769 |
///The shortest path tree used here is equal to the shortest path |
770 | 770 |
///tree used in \ref predNode(). |
771 | 771 |
/// |
772 | 772 |
///\pre Either \ref run() or \ref start() must be called before |
773 | 773 |
///using this function. |
774 | 774 |
Arc predArc(Node v) const { return (*_pred)[v];} |
775 | 775 |
|
776 | 776 |
///Returns the 'previous node' of the shortest path tree for a node. |
777 | 777 |
|
778 | 778 |
///This function returns the 'previous node' of the shortest path |
779 | 779 |
///tree for the node \c v, i.e. it returns the last but one node |
780 | 780 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
781 | 781 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
782 | 782 |
/// |
783 | 783 |
///The shortest path tree used here is equal to the shortest path |
784 | 784 |
///tree used in \ref predArc(). |
785 | 785 |
/// |
786 | 786 |
///\pre Either \ref run() or \ref start() must be called before |
787 | 787 |
///using this function. |
788 | 788 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
789 | 789 |
G->source((*_pred)[v]); } |
790 | 790 |
|
791 | 791 |
///\brief Returns a const reference to the node map that stores the |
792 | 792 |
/// distances of the nodes. |
793 | 793 |
/// |
794 | 794 |
///Returns a const reference to the node map that stores the distances |
795 | 795 |
///of the nodes calculated by the algorithm. |
796 | 796 |
/// |
797 | 797 |
///\pre Either \ref run() or \ref init() |
798 | 798 |
///must be called before using this function. |
799 | 799 |
const DistMap &distMap() const { return *_dist;} |
800 | 800 |
|
801 | 801 |
///\brief Returns a const reference to the node map that stores the |
802 | 802 |
///predecessor arcs. |
803 | 803 |
/// |
804 | 804 |
///Returns a const reference to the node map that stores the predecessor |
805 | 805 |
///arcs, which form the shortest path tree. |
806 | 806 |
/// |
807 | 807 |
///\pre Either \ref run() or \ref init() |
808 | 808 |
///must be called before using this function. |
809 | 809 |
const PredMap &predMap() const { return *_pred;} |
810 | 810 |
|
811 | 811 |
///Checks if a node is reachable from the root(s). |
812 | 812 |
|
813 | 813 |
///Returns \c true if \c v is reachable from the root(s). |
814 | 814 |
///\pre Either \ref run() or \ref start() |
815 | 815 |
///must be called before using this function. |
816 | 816 |
bool reached(Node v) const { return (*_reached)[v]; } |
817 | 817 |
|
818 | 818 |
///@} |
819 | 819 |
}; |
820 | 820 |
|
821 | 821 |
///Default traits class of bfs() function. |
822 | 822 |
|
823 | 823 |
///Default traits class of bfs() function. |
824 | 824 |
///\tparam GR Digraph type. |
825 | 825 |
template<class GR> |
826 | 826 |
struct BfsWizardDefaultTraits |
827 | 827 |
{ |
828 | 828 |
///The type of the digraph the algorithm runs on. |
829 | 829 |
typedef GR Digraph; |
830 | 830 |
|
831 | 831 |
///\brief The type of the map that stores the predecessor |
832 | 832 |
///arcs of the shortest paths. |
833 | 833 |
/// |
834 | 834 |
///The type of the map that stores the predecessor |
835 | 835 |
///arcs of the shortest paths. |
836 | 836 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
837 | 837 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 |
///Instantiates a |
|
838 |
///Instantiates a PredMap. |
|
839 | 839 |
|
840 |
///This function instantiates a |
|
840 |
///This function instantiates a PredMap. |
|
841 | 841 |
///\param g is the digraph, to which we would like to define the |
842 |
/// |
|
842 |
///PredMap. |
|
843 | 843 |
static PredMap *createPredMap(const Digraph &g) |
844 | 844 |
{ |
845 | 845 |
return new PredMap(g); |
846 | 846 |
} |
847 | 847 |
|
848 | 848 |
///The type of the map that indicates which nodes are processed. |
849 | 849 |
|
850 | 850 |
///The type of the map that indicates which nodes are processed. |
851 | 851 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
852 | 852 |
///By default it is a NullMap. |
853 | 853 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 |
///Instantiates a |
|
854 |
///Instantiates a ProcessedMap. |
|
855 | 855 |
|
856 |
///This function instantiates a |
|
856 |
///This function instantiates a ProcessedMap. |
|
857 | 857 |
///\param g is the digraph, to which |
858 |
///we would like to define the |
|
858 |
///we would like to define the ProcessedMap. |
|
859 | 859 |
#ifdef DOXYGEN |
860 | 860 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
861 | 861 |
#else |
862 | 862 |
static ProcessedMap *createProcessedMap(const Digraph &) |
863 | 863 |
#endif |
864 | 864 |
{ |
865 | 865 |
return new ProcessedMap(); |
866 | 866 |
} |
867 | 867 |
|
868 | 868 |
///The type of the map that indicates which nodes are reached. |
869 | 869 |
|
870 | 870 |
///The type of the map that indicates which nodes are reached. |
871 | 871 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
872 | 872 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 |
///Instantiates a |
|
873 |
///Instantiates a ReachedMap. |
|
874 | 874 |
|
875 |
///This function instantiates a |
|
875 |
///This function instantiates a ReachedMap. |
|
876 | 876 |
///\param g is the digraph, to which |
877 |
///we would like to define the |
|
877 |
///we would like to define the ReachedMap. |
|
878 | 878 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 879 |
{ |
880 | 880 |
return new ReachedMap(g); |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
///The type of the map that stores the distances of the nodes. |
884 | 884 |
|
885 | 885 |
///The type of the map that stores the distances of the nodes. |
886 | 886 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
887 | 887 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 |
///Instantiates a |
|
888 |
///Instantiates a DistMap. |
|
889 | 889 |
|
890 |
///This function instantiates a |
|
890 |
///This function instantiates a DistMap. |
|
891 | 891 |
///\param g is the digraph, to which we would like to define |
892 |
///the |
|
892 |
///the DistMap |
|
893 | 893 |
static DistMap *createDistMap(const Digraph &g) |
894 | 894 |
{ |
895 | 895 |
return new DistMap(g); |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
///The type of the shortest paths. |
899 | 899 |
|
900 | 900 |
///The type of the shortest paths. |
901 | 901 |
///It must meet the \ref concepts::Path "Path" concept. |
902 | 902 |
typedef lemon::Path<Digraph> Path; |
903 | 903 |
}; |
904 | 904 |
|
905 |
/// Default traits class used by |
|
905 |
/// Default traits class used by BfsWizard |
|
906 | 906 |
|
907 | 907 |
/// To make it easier to use Bfs algorithm |
908 | 908 |
/// we have created a wizard class. |
909 | 909 |
/// This \ref BfsWizard class needs default traits, |
910 | 910 |
/// as well as the \ref Bfs class. |
911 | 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
912 | 912 |
/// \ref BfsWizard class. |
913 | 913 |
template<class GR> |
914 | 914 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 915 |
{ |
916 | 916 |
|
917 | 917 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 918 |
protected: |
919 | 919 |
//The type of the nodes in the digraph. |
920 | 920 |
typedef typename Base::Digraph::Node Node; |
921 | 921 |
|
922 | 922 |
//Pointer to the digraph the algorithm runs on. |
923 | 923 |
void *_g; |
924 | 924 |
//Pointer to the map of reached nodes. |
925 | 925 |
void *_reached; |
926 | 926 |
//Pointer to the map of processed nodes. |
927 | 927 |
void *_processed; |
928 | 928 |
//Pointer to the map of predecessors arcs. |
929 | 929 |
void *_pred; |
930 | 930 |
//Pointer to the map of distances. |
931 | 931 |
void *_dist; |
932 | 932 |
//Pointer to the shortest path to the target node. |
933 | 933 |
void *_path; |
934 | 934 |
//Pointer to the distance of the target node. |
935 | 935 |
int *_di; |
936 | 936 |
|
937 | 937 |
public: |
938 | 938 |
/// Constructor. |
939 | 939 |
|
940 | 940 |
/// This constructor does not require parameters, therefore it initiates |
941 | 941 |
/// all of the attributes to \c 0. |
942 | 942 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 943 |
_dist(0), _path(0), _di(0) {} |
944 | 944 |
|
945 | 945 |
/// Constructor. |
946 | 946 |
|
947 | 947 |
/// This constructor requires one parameter, |
948 | 948 |
/// others are initiated to \c 0. |
949 | 949 |
/// \param g The digraph the algorithm runs on. |
950 | 950 |
BfsWizardBase(const GR &g) : |
951 | 951 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 952 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 953 |
|
954 | 954 |
}; |
955 | 955 |
|
956 | 956 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 957 |
|
958 | 958 |
/// This auxiliary class is created to implement the |
959 | 959 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 960 |
/// It does not have own \ref run() method, it uses the functions |
961 | 961 |
/// and features of the plain \ref Bfs. |
962 | 962 |
/// |
963 | 963 |
/// This class should only be used through the \ref bfs() function, |
964 | 964 |
/// which makes it easier to use the algorithm. |
965 | 965 |
template<class TR> |
966 | 966 |
class BfsWizard : public TR |
967 | 967 |
{ |
968 | 968 |
typedef TR Base; |
969 | 969 |
|
970 | 970 |
///The type of the digraph the algorithm runs on. |
971 | 971 |
typedef typename TR::Digraph Digraph; |
972 | 972 |
|
973 | 973 |
typedef typename Digraph::Node Node; |
974 | 974 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 975 |
typedef typename Digraph::Arc Arc; |
976 | 976 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 977 |
|
978 | 978 |
///\brief The type of the map that stores the predecessor |
979 | 979 |
///arcs of the shortest paths. |
980 | 980 |
typedef typename TR::PredMap PredMap; |
981 | 981 |
///\brief The type of the map that stores the distances of the nodes. |
982 | 982 |
typedef typename TR::DistMap DistMap; |
983 | 983 |
///\brief The type of the map that indicates which nodes are reached. |
984 | 984 |
typedef typename TR::ReachedMap ReachedMap; |
985 | 985 |
///\brief The type of the map that indicates which nodes are processed. |
986 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 | 987 |
///The type of the shortest paths |
988 | 988 |
typedef typename TR::Path Path; |
989 | 989 |
|
990 | 990 |
public: |
991 | 991 |
|
992 | 992 |
/// Constructor. |
993 | 993 |
BfsWizard() : TR() {} |
994 | 994 |
|
995 | 995 |
/// Constructor that requires parameters. |
996 | 996 |
|
997 | 997 |
/// Constructor that requires parameters. |
998 | 998 |
/// These parameters will be the default values for the traits class. |
999 | 999 |
/// \param g The digraph the algorithm runs on. |
1000 | 1000 |
BfsWizard(const Digraph &g) : |
1001 | 1001 |
TR(g) {} |
1002 | 1002 |
|
1003 | 1003 |
///Copy constructor |
1004 | 1004 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 1005 |
|
1006 | 1006 |
~BfsWizard() {} |
1007 | 1007 |
|
1008 | 1008 |
///Runs BFS algorithm from the given source node. |
1009 | 1009 |
|
1010 | 1010 |
///This method runs BFS algorithm from node \c s |
1011 | 1011 |
///in order to compute the shortest path to each node. |
1012 | 1012 |
void run(Node s) |
1013 | 1013 |
{ |
1014 | 1014 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1015 | 1015 |
if (Base::_pred) |
1016 | 1016 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1017 | 1017 |
if (Base::_dist) |
1018 | 1018 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1019 | 1019 |
if (Base::_reached) |
1020 | 1020 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1021 | 1021 |
if (Base::_processed) |
1022 | 1022 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1023 | 1023 |
if (s!=INVALID) |
1024 | 1024 |
alg.run(s); |
1025 | 1025 |
else |
1026 | 1026 |
alg.run(); |
1027 | 1027 |
} |
1028 | 1028 |
|
1029 | 1029 |
///Finds the shortest path between \c s and \c t. |
1030 | 1030 |
|
1031 | 1031 |
///This method runs BFS algorithm from node \c s |
1032 | 1032 |
///in order to compute the shortest path to node \c t |
1033 | 1033 |
///(it stops searching when \c t is processed). |
1034 | 1034 |
/// |
1035 | 1035 |
///\return \c true if \c t is reachable form \c s. |
1036 | 1036 |
bool run(Node s, Node t) |
1037 | 1037 |
{ |
1038 | 1038 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1039 | 1039 |
if (Base::_pred) |
1040 | 1040 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1041 | 1041 |
if (Base::_dist) |
1042 | 1042 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1043 | 1043 |
if (Base::_reached) |
1044 | 1044 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1045 | 1045 |
if (Base::_processed) |
1046 | 1046 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1047 |
alg.run(s,t); |
1048 | 1048 |
if (Base::_path) |
1049 | 1049 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1050 |
if (Base::_di) |
1051 | 1051 |
*Base::_di = alg.dist(t); |
1052 | 1052 |
return alg.reached(t); |
1053 | 1053 |
} |
1054 | 1054 |
|
1055 | 1055 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1056 |
|
1057 | 1057 |
///This method runs BFS algorithm in order to compute |
1058 | 1058 |
///the shortest path to each node. |
1059 | 1059 |
void run() |
1060 | 1060 |
{ |
1061 | 1061 |
run(INVALID); |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
template<class T> |
1065 | 1065 |
struct SetPredMapBase : public Base { |
1066 | 1066 |
typedef T PredMap; |
1067 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1069 |
}; |
1070 | 1070 |
///\brief \ref named-func-param "Named parameter" |
1071 |
///for setting |
|
1071 |
///for setting PredMap object. |
|
1072 | 1072 |
/// |
1073 | 1073 |
///\ref named-func-param "Named parameter" |
1074 |
///for setting |
|
1074 |
///for setting PredMap object. |
|
1075 | 1075 |
template<class T> |
1076 | 1076 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1077 |
{ |
1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1080 |
} |
1081 | 1081 |
|
1082 | 1082 |
template<class T> |
1083 | 1083 |
struct SetReachedMapBase : public Base { |
1084 | 1084 |
typedef T ReachedMap; |
1085 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1087 |
}; |
1088 | 1088 |
///\brief \ref named-func-param "Named parameter" |
1089 |
///for setting |
|
1089 |
///for setting ReachedMap object. |
|
1090 | 1090 |
/// |
1091 | 1091 |
/// \ref named-func-param "Named parameter" |
1092 |
///for setting |
|
1092 |
///for setting ReachedMap object. |
|
1093 | 1093 |
template<class T> |
1094 | 1094 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1095 |
{ |
1096 | 1096 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1097 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1098 |
} |
1099 | 1099 |
|
1100 | 1100 |
template<class T> |
1101 | 1101 |
struct SetDistMapBase : public Base { |
1102 | 1102 |
typedef T DistMap; |
1103 | 1103 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1104 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1105 |
}; |
1106 | 1106 |
///\brief \ref named-func-param "Named parameter" |
1107 |
///for setting |
|
1107 |
///for setting DistMap object. |
|
1108 | 1108 |
/// |
1109 | 1109 |
/// \ref named-func-param "Named parameter" |
1110 |
///for setting |
|
1110 |
///for setting DistMap object. |
|
1111 | 1111 |
template<class T> |
1112 | 1112 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1113 |
{ |
1114 | 1114 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1115 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1116 |
} |
1117 | 1117 |
|
1118 | 1118 |
template<class T> |
1119 | 1119 |
struct SetProcessedMapBase : public Base { |
1120 | 1120 |
typedef T ProcessedMap; |
1121 | 1121 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1122 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1123 |
}; |
1124 | 1124 |
///\brief \ref named-func-param "Named parameter" |
1125 |
///for setting |
|
1125 |
///for setting ProcessedMap object. |
|
1126 | 1126 |
/// |
1127 | 1127 |
/// \ref named-func-param "Named parameter" |
1128 |
///for setting |
|
1128 |
///for setting ProcessedMap object. |
|
1129 | 1129 |
template<class T> |
1130 | 1130 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1131 |
{ |
1132 | 1132 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1133 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1134 |
} |
1135 | 1135 |
|
1136 | 1136 |
template<class T> |
1137 | 1137 |
struct SetPathBase : public Base { |
1138 | 1138 |
typedef T Path; |
1139 | 1139 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1140 |
}; |
1141 | 1141 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1142 |
///for getting the shortest path to the target node. |
1143 | 1143 |
/// |
1144 | 1144 |
///\ref named-func-param "Named parameter" |
1145 | 1145 |
///for getting the shortest path to the target node. |
1146 | 1146 |
template<class T> |
1147 | 1147 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1148 |
{ |
1149 | 1149 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1150 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1151 |
} |
1152 | 1152 |
|
1153 | 1153 |
///\brief \ref named-func-param "Named parameter" |
1154 | 1154 |
///for getting the distance of the target node. |
1155 | 1155 |
/// |
1156 | 1156 |
///\ref named-func-param "Named parameter" |
1157 | 1157 |
///for getting the distance of the target node. |
1158 | 1158 |
BfsWizard dist(const int &d) |
1159 | 1159 |
{ |
1160 | 1160 |
Base::_di=const_cast<int*>(&d); |
1161 | 1161 |
return *this; |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
}; |
1165 | 1165 |
|
1166 | 1166 |
///Function-type interface for BFS algorithm. |
1167 | 1167 |
|
1168 | 1168 |
/// \ingroup search |
1169 | 1169 |
///Function-type interface for BFS algorithm. |
1170 | 1170 |
/// |
1171 | 1171 |
///This function also has several \ref named-func-param "named parameters", |
1172 | 1172 |
///they are declared as the members of class \ref BfsWizard. |
1173 | 1173 |
///The following examples show how to use these parameters. |
1174 | 1174 |
///\code |
1175 | 1175 |
/// // Compute shortest path from node s to each node |
1176 | 1176 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1177 | 1177 |
/// |
1178 | 1178 |
/// // Compute shortest path from s to t |
1179 | 1179 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1180 | 1180 |
///\endcode |
1181 | 1181 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1182 | 1182 |
///to the end of the parameter list. |
1183 | 1183 |
///\sa BfsWizard |
1184 | 1184 |
///\sa Bfs |
1185 | 1185 |
template<class GR> |
1186 | 1186 |
BfsWizard<BfsWizardBase<GR> > |
1187 | 1187 |
bfs(const GR &digraph) |
1188 | 1188 |
{ |
1189 | 1189 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1190 | 1190 |
} |
1191 | 1191 |
|
1192 | 1192 |
#ifdef DOXYGEN |
1193 | 1193 |
/// \brief Visitor class for BFS. |
1194 | 1194 |
/// |
1195 | 1195 |
/// This class defines the interface of the BfsVisit events, and |
1196 | 1196 |
/// it could be the base of a real visitor class. |
1197 | 1197 |
template <typename _Digraph> |
1198 | 1198 |
struct BfsVisitor { |
1199 | 1199 |
typedef _Digraph Digraph; |
1200 | 1200 |
typedef typename Digraph::Arc Arc; |
1201 | 1201 |
typedef typename Digraph::Node Node; |
1202 | 1202 |
/// \brief Called for the source node(s) of the BFS. |
1203 | 1203 |
/// |
1204 | 1204 |
/// This function is called for the source node(s) of the BFS. |
1205 | 1205 |
void start(const Node& node) {} |
1206 | 1206 |
/// \brief Called when a node is reached first time. |
1207 | 1207 |
/// |
1208 | 1208 |
/// This function is called when a node is reached first time. |
1209 | 1209 |
void reach(const Node& node) {} |
1210 | 1210 |
/// \brief Called when a node is processed. |
1211 | 1211 |
/// |
1212 | 1212 |
/// This function is called when a node is processed. |
1213 | 1213 |
void process(const Node& node) {} |
1214 | 1214 |
/// \brief Called when an arc reaches a new node. |
1215 | 1215 |
/// |
1216 | 1216 |
/// This function is called when the BFS finds an arc whose target node |
1217 | 1217 |
/// is not reached yet. |
1218 | 1218 |
void discover(const Arc& arc) {} |
1219 | 1219 |
/// \brief Called when an arc is examined but its target node is |
1220 | 1220 |
/// already discovered. |
1221 | 1221 |
/// |
1222 | 1222 |
/// This function is called when an arc is examined but its target node is |
1223 | 1223 |
/// already discovered. |
1224 | 1224 |
void examine(const Arc& arc) {} |
1225 | 1225 |
}; |
1226 | 1226 |
#else |
1227 | 1227 |
template <typename _Digraph> |
1228 | 1228 |
struct BfsVisitor { |
1229 | 1229 |
typedef _Digraph Digraph; |
1230 | 1230 |
typedef typename Digraph::Arc Arc; |
1231 | 1231 |
typedef typename Digraph::Node Node; |
1232 | 1232 |
void start(const Node&) {} |
1233 | 1233 |
void reach(const Node&) {} |
1234 | 1234 |
void process(const Node&) {} |
1235 | 1235 |
void discover(const Arc&) {} |
1236 | 1236 |
void examine(const Arc&) {} |
1237 | 1237 |
|
1238 | 1238 |
template <typename _Visitor> |
1239 | 1239 |
struct Constraints { |
1240 | 1240 |
void constraints() { |
1241 | 1241 |
Arc arc; |
1242 | 1242 |
Node node; |
1243 | 1243 |
visitor.start(node); |
1244 | 1244 |
visitor.reach(node); |
1245 | 1245 |
visitor.process(node); |
1246 | 1246 |
visitor.discover(arc); |
1247 | 1247 |
visitor.examine(arc); |
1248 | 1248 |
} |
1249 | 1249 |
_Visitor& visitor; |
1250 | 1250 |
}; |
1251 | 1251 |
}; |
1252 | 1252 |
#endif |
1253 | 1253 |
|
1254 | 1254 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1255 |
/// |
1256 | 1256 |
/// Default traits class of BfsVisit class. |
1257 | 1257 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1258 | 1258 |
template<class _Digraph> |
1259 | 1259 |
struct BfsVisitDefaultTraits { |
1260 | 1260 |
|
1261 | 1261 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1262 |
typedef _Digraph Digraph; |
1263 | 1263 |
|
1264 | 1264 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1265 |
/// |
1266 | 1266 |
/// The type of the map that indicates which nodes are reached. |
1267 | 1267 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1268 | 1268 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1269 |
|
1270 |
/// \brief Instantiates a |
|
1270 |
/// \brief Instantiates a ReachedMap. |
|
1271 | 1271 |
/// |
1272 |
/// This function instantiates a |
|
1272 |
/// This function instantiates a ReachedMap. |
|
1273 | 1273 |
/// \param digraph is the digraph, to which |
1274 |
/// we would like to define the |
|
1274 |
/// we would like to define the ReachedMap. |
|
1275 | 1275 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1276 |
return new ReachedMap(digraph); |
1277 | 1277 |
} |
1278 | 1278 |
|
1279 | 1279 |
}; |
1280 | 1280 |
|
1281 | 1281 |
/// \ingroup search |
1282 | 1282 |
/// |
1283 | 1283 |
/// \brief %BFS algorithm class with visitor interface. |
1284 | 1284 |
/// |
1285 | 1285 |
/// This class provides an efficient implementation of the %BFS algorithm |
1286 | 1286 |
/// with visitor interface. |
1287 | 1287 |
/// |
1288 | 1288 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1289 | 1289 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1290 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1291 |
/// |
1292 | 1292 |
/// This interface of the BFS algorithm should be used in special cases |
1293 | 1293 |
/// when extra actions have to be performed in connection with certain |
1294 | 1294 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1295 | 1295 |
/// instead. |
1296 | 1296 |
/// |
1297 | 1297 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1298 | 1298 |
/// The default value is |
1299 | 1299 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1300 | 1300 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
1301 | 1301 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1302 | 1302 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
1303 | 1303 |
/// does not observe the BFS events. If you want to observe the BFS |
1304 | 1304 |
/// events, you should implement your own visitor class. |
1305 | 1305 |
/// \tparam _Traits Traits class to set various data types used by the |
1306 | 1306 |
/// algorithm. The default traits class is |
1307 | 1307 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1308 | 1308 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1309 | 1309 |
/// a BFS visit traits class. |
1310 | 1310 |
#ifdef DOXYGEN |
1311 | 1311 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1312 | 1312 |
#else |
1313 | 1313 |
template <typename _Digraph = ListDigraph, |
1314 | 1314 |
typename _Visitor = BfsVisitor<_Digraph>, |
1315 | 1315 |
typename _Traits = BfsVisitDefaultTraits<_Digraph> > |
1316 | 1316 |
#endif |
1317 | 1317 |
class BfsVisit { |
1318 | 1318 |
public: |
1319 | 1319 |
|
1320 | 1320 |
///The traits class. |
1321 | 1321 |
typedef _Traits Traits; |
1322 | 1322 |
|
1323 | 1323 |
///The type of the digraph the algorithm runs on. |
1324 | 1324 |
typedef typename Traits::Digraph Digraph; |
1325 | 1325 |
|
1326 | 1326 |
///The visitor type used by the algorithm. |
1327 | 1327 |
typedef _Visitor Visitor; |
1328 | 1328 |
|
1329 | 1329 |
///The type of the map that indicates which nodes are reached. |
1330 | 1330 |
typedef typename Traits::ReachedMap ReachedMap; |
1331 | 1331 |
|
1332 | 1332 |
private: |
1333 | 1333 |
|
1334 | 1334 |
typedef typename Digraph::Node Node; |
1335 | 1335 |
typedef typename Digraph::NodeIt NodeIt; |
1336 | 1336 |
typedef typename Digraph::Arc Arc; |
1337 | 1337 |
typedef typename Digraph::OutArcIt OutArcIt; |
1338 | 1338 |
|
1339 | 1339 |
//Pointer to the underlying digraph. |
1340 | 1340 |
const Digraph *_digraph; |
1341 | 1341 |
//Pointer to the visitor object. |
1342 | 1342 |
Visitor *_visitor; |
1343 | 1343 |
//Pointer to the map of reached status of the nodes. |
1344 | 1344 |
ReachedMap *_reached; |
1345 | 1345 |
//Indicates if _reached is locally allocated (true) or not. |
1346 | 1346 |
bool local_reached; |
1347 | 1347 |
|
1348 | 1348 |
std::vector<typename Digraph::Node> _list; |
1349 | 1349 |
int _list_front, _list_back; |
1350 | 1350 |
|
1351 | 1351 |
//Creates the maps if necessary. |
1352 | 1352 |
void create_maps() { |
1353 | 1353 |
if(!_reached) { |
1354 | 1354 |
local_reached = true; |
1355 | 1355 |
_reached = Traits::createReachedMap(*_digraph); |
1356 | 1356 |
} |
1357 | 1357 |
} |
1358 | 1358 |
|
1359 | 1359 |
protected: |
1360 | 1360 |
|
1361 | 1361 |
BfsVisit() {} |
1362 | 1362 |
|
1363 | 1363 |
public: |
1364 | 1364 |
|
1365 | 1365 |
typedef BfsVisit Create; |
1366 | 1366 |
|
1367 | 1367 |
/// \name Named template parameters |
1368 | 1368 |
|
1369 | 1369 |
///@{ |
1370 | 1370 |
template <class T> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/assert.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
///Default traits class of Dfs class. |
37 | 37 |
|
38 | 38 |
///Default traits class of Dfs class. |
39 | 39 |
///\tparam GR Digraph type. |
40 | 40 |
template<class GR> |
41 | 41 |
struct DfsDefaultTraits |
42 | 42 |
{ |
43 | 43 |
///The type of the digraph the algorithm runs on. |
44 | 44 |
typedef GR Digraph; |
45 | 45 |
|
46 | 46 |
///\brief The type of the map that stores the predecessor |
47 | 47 |
///arcs of the %DFS paths. |
48 | 48 |
/// |
49 | 49 |
///The type of the map that stores the predecessor |
50 | 50 |
///arcs of the %DFS paths. |
51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
52 | 52 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
53 |
///Instantiates a |
|
53 |
///Instantiates a PredMap. |
|
54 | 54 |
|
55 |
///This function instantiates a |
|
55 |
///This function instantiates a PredMap. |
|
56 | 56 |
///\param g is the digraph, to which we would like to define the |
57 |
/// |
|
57 |
///PredMap. |
|
58 | 58 |
static PredMap *createPredMap(const Digraph &g) |
59 | 59 |
{ |
60 | 60 |
return new PredMap(g); |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
///The type of the map that indicates which nodes are processed. |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 |
///Instantiates a |
|
68 |
///Instantiates a ProcessedMap. |
|
69 | 69 |
|
70 |
///This function instantiates a |
|
70 |
///This function instantiates a ProcessedMap. |
|
71 | 71 |
///\param g is the digraph, to which |
72 |
///we would like to define the |
|
72 |
///we would like to define the ProcessedMap |
|
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 |
///Instantiates a |
|
87 |
///Instantiates a ReachedMap. |
|
88 | 88 |
|
89 |
///This function instantiates a |
|
89 |
///This function instantiates a ReachedMap. |
|
90 | 90 |
///\param g is the digraph, to which |
91 |
///we would like to define the |
|
91 |
///we would like to define the ReachedMap. |
|
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 |
///Instantiates a |
|
102 |
///Instantiates a DistMap. |
|
103 | 103 |
|
104 |
///This function instantiates a |
|
104 |
///This function instantiates a DistMap. |
|
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 |
/// |
|
106 |
///DistMap. |
|
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%DFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default value is \ref ListDigraph. The value of GR is not used |
124 | 124 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
125 | 125 |
///\tparam TR Traits class to set various data types used by the algorithm. |
126 | 126 |
///The default traits class is |
127 | 127 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
128 | 128 |
///See \ref DfsDefaultTraits for the documentation of |
129 | 129 |
///a Dfs traits class. |
130 | 130 |
#ifdef DOXYGEN |
131 | 131 |
template <typename GR, |
132 | 132 |
typename TR> |
133 | 133 |
#else |
134 | 134 |
template <typename GR=ListDigraph, |
135 | 135 |
typename TR=DfsDefaultTraits<GR> > |
136 | 136 |
#endif |
137 | 137 |
class Dfs { |
138 | 138 |
public: |
139 | 139 |
|
140 | 140 |
///The type of the digraph the algorithm runs on. |
141 | 141 |
typedef typename TR::Digraph Digraph; |
142 | 142 |
|
143 | 143 |
///\brief The type of the map that stores the predecessor arcs of the |
144 | 144 |
///DFS paths. |
145 | 145 |
typedef typename TR::PredMap PredMap; |
146 | 146 |
///The type of the map that stores the distances of the nodes. |
147 | 147 |
typedef typename TR::DistMap DistMap; |
148 | 148 |
///The type of the map that indicates which nodes are reached. |
149 | 149 |
typedef typename TR::ReachedMap ReachedMap; |
150 | 150 |
///The type of the map that indicates which nodes are processed. |
151 | 151 |
typedef typename TR::ProcessedMap ProcessedMap; |
152 | 152 |
///The type of the paths. |
153 | 153 |
typedef PredMapPath<Digraph, PredMap> Path; |
154 | 154 |
|
155 | 155 |
///The traits class. |
156 | 156 |
typedef TR Traits; |
157 | 157 |
|
158 | 158 |
private: |
159 | 159 |
|
160 | 160 |
typedef typename Digraph::Node Node; |
161 | 161 |
typedef typename Digraph::NodeIt NodeIt; |
162 | 162 |
typedef typename Digraph::Arc Arc; |
163 | 163 |
typedef typename Digraph::OutArcIt OutArcIt; |
164 | 164 |
|
165 | 165 |
//Pointer to the underlying digraph. |
166 | 166 |
const Digraph *G; |
167 | 167 |
//Pointer to the map of predecessor arcs. |
168 | 168 |
PredMap *_pred; |
169 | 169 |
//Indicates if _pred is locally allocated (true) or not. |
170 | 170 |
bool local_pred; |
171 | 171 |
//Pointer to the map of distances. |
172 | 172 |
DistMap *_dist; |
173 | 173 |
//Indicates if _dist is locally allocated (true) or not. |
174 | 174 |
bool local_dist; |
175 | 175 |
//Pointer to the map of reached status of the nodes. |
176 | 176 |
ReachedMap *_reached; |
177 | 177 |
//Indicates if _reached is locally allocated (true) or not. |
178 | 178 |
bool local_reached; |
179 | 179 |
//Pointer to the map of processed status of the nodes. |
180 | 180 |
ProcessedMap *_processed; |
181 | 181 |
//Indicates if _processed is locally allocated (true) or not. |
182 | 182 |
bool local_processed; |
183 | 183 |
|
184 | 184 |
std::vector<typename Digraph::OutArcIt> _stack; |
185 | 185 |
int _stack_head; |
186 | 186 |
|
187 | 187 |
//Creates the maps if necessary. |
188 | 188 |
void create_maps() |
189 | 189 |
{ |
190 | 190 |
if(!_pred) { |
191 | 191 |
local_pred = true; |
192 | 192 |
_pred = Traits::createPredMap(*G); |
193 | 193 |
} |
194 | 194 |
if(!_dist) { |
195 | 195 |
local_dist = true; |
196 | 196 |
_dist = Traits::createDistMap(*G); |
197 | 197 |
} |
198 | 198 |
if(!_reached) { |
199 | 199 |
local_reached = true; |
200 | 200 |
_reached = Traits::createReachedMap(*G); |
201 | 201 |
} |
202 | 202 |
if(!_processed) { |
203 | 203 |
local_processed = true; |
204 | 204 |
_processed = Traits::createProcessedMap(*G); |
205 | 205 |
} |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
protected: |
209 | 209 |
|
210 | 210 |
Dfs() {} |
211 | 211 |
|
212 | 212 |
public: |
213 | 213 |
|
214 | 214 |
typedef Dfs Create; |
215 | 215 |
|
216 | 216 |
///\name Named template parameters |
217 | 217 |
|
218 | 218 |
///@{ |
219 | 219 |
|
220 | 220 |
template <class T> |
221 | 221 |
struct SetPredMapTraits : public Traits { |
222 | 222 |
typedef T PredMap; |
223 | 223 |
static PredMap *createPredMap(const Digraph &) |
224 | 224 |
{ |
225 | 225 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
226 | 226 |
return 0; // ignore warnings |
227 | 227 |
} |
228 | 228 |
}; |
229 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
230 |
/// |
|
230 |
///PredMap type. |
|
231 | 231 |
/// |
232 | 232 |
///\ref named-templ-param "Named parameter" for setting |
233 |
/// |
|
233 |
///PredMap type. |
|
234 | 234 |
template <class T> |
235 | 235 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
236 | 236 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <class T> |
240 | 240 |
struct SetDistMapTraits : public Traits { |
241 | 241 |
typedef T DistMap; |
242 | 242 |
static DistMap *createDistMap(const Digraph &) |
243 | 243 |
{ |
244 | 244 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
245 | 245 |
return 0; // ignore warnings |
246 | 246 |
} |
247 | 247 |
}; |
248 | 248 |
///\brief \ref named-templ-param "Named parameter" for setting |
249 |
/// |
|
249 |
///DistMap type. |
|
250 | 250 |
/// |
251 | 251 |
///\ref named-templ-param "Named parameter" for setting |
252 |
/// |
|
252 |
///DistMap type. |
|
253 | 253 |
template <class T> |
254 | 254 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
255 | 255 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
256 | 256 |
}; |
257 | 257 |
|
258 | 258 |
template <class T> |
259 | 259 |
struct SetReachedMapTraits : public Traits { |
260 | 260 |
typedef T ReachedMap; |
261 | 261 |
static ReachedMap *createReachedMap(const Digraph &) |
262 | 262 |
{ |
263 | 263 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
264 | 264 |
return 0; // ignore warnings |
265 | 265 |
} |
266 | 266 |
}; |
267 | 267 |
///\brief \ref named-templ-param "Named parameter" for setting |
268 |
/// |
|
268 |
///ReachedMap type. |
|
269 | 269 |
/// |
270 | 270 |
///\ref named-templ-param "Named parameter" for setting |
271 |
/// |
|
271 |
///ReachedMap type. |
|
272 | 272 |
template <class T> |
273 | 273 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
274 | 274 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
275 | 275 |
}; |
276 | 276 |
|
277 | 277 |
template <class T> |
278 | 278 |
struct SetProcessedMapTraits : public Traits { |
279 | 279 |
typedef T ProcessedMap; |
280 | 280 |
static ProcessedMap *createProcessedMap(const Digraph &) |
281 | 281 |
{ |
282 | 282 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
283 | 283 |
return 0; // ignore warnings |
284 | 284 |
} |
285 | 285 |
}; |
286 | 286 |
///\brief \ref named-templ-param "Named parameter" for setting |
287 |
/// |
|
287 |
///ProcessedMap type. |
|
288 | 288 |
/// |
289 | 289 |
///\ref named-templ-param "Named parameter" for setting |
290 |
/// |
|
290 |
///ProcessedMap type. |
|
291 | 291 |
template <class T> |
292 | 292 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
293 | 293 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
294 | 294 |
}; |
295 | 295 |
|
296 | 296 |
struct SetStandardProcessedMapTraits : public Traits { |
297 | 297 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
298 | 298 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
299 | 299 |
{ |
300 | 300 |
return new ProcessedMap(g); |
301 | 301 |
} |
302 | 302 |
}; |
303 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
304 |
/// |
|
304 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
|
305 | 305 |
/// |
306 | 306 |
///\ref named-templ-param "Named parameter" for setting |
307 |
/// |
|
307 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
|
308 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
309 | 309 |
struct SetStandardProcessedMap : |
310 | 310 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
311 | 311 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
///@} |
315 | 315 |
|
316 | 316 |
public: |
317 | 317 |
|
318 | 318 |
///Constructor. |
319 | 319 |
|
320 | 320 |
///Constructor. |
321 | 321 |
///\param g The digraph the algorithm runs on. |
322 | 322 |
Dfs(const Digraph &g) : |
323 | 323 |
G(&g), |
324 | 324 |
_pred(NULL), local_pred(false), |
325 | 325 |
_dist(NULL), local_dist(false), |
326 | 326 |
_reached(NULL), local_reached(false), |
327 | 327 |
_processed(NULL), local_processed(false) |
328 | 328 |
{ } |
329 | 329 |
|
330 | 330 |
///Destructor. |
331 | 331 |
~Dfs() |
332 | 332 |
{ |
333 | 333 |
if(local_pred) delete _pred; |
334 | 334 |
if(local_dist) delete _dist; |
335 | 335 |
if(local_reached) delete _reached; |
336 | 336 |
if(local_processed) delete _processed; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
///Sets the map that stores the predecessor arcs. |
340 | 340 |
|
341 | 341 |
///Sets the map that stores the predecessor arcs. |
342 | 342 |
///If you don't use this function before calling \ref run(), |
343 | 343 |
///it will allocate one. The destructor deallocates this |
344 | 344 |
///automatically allocated map, of course. |
345 | 345 |
///\return <tt> (*this) </tt> |
346 | 346 |
Dfs &predMap(PredMap &m) |
347 | 347 |
{ |
348 | 348 |
if(local_pred) { |
349 | 349 |
delete _pred; |
350 | 350 |
local_pred=false; |
351 | 351 |
} |
352 | 352 |
_pred = &m; |
353 | 353 |
return *this; |
354 | 354 |
} |
355 | 355 |
|
356 | 356 |
///Sets the map that indicates which nodes are reached. |
357 | 357 |
|
358 | 358 |
///Sets the map that indicates which nodes are reached. |
359 | 359 |
///If you don't use this function before calling \ref run(), |
360 | 360 |
///it will allocate one. The destructor deallocates this |
361 | 361 |
///automatically allocated map, of course. |
362 | 362 |
///\return <tt> (*this) </tt> |
363 | 363 |
Dfs &reachedMap(ReachedMap &m) |
364 | 364 |
{ |
365 | 365 |
if(local_reached) { |
366 | 366 |
delete _reached; |
367 | 367 |
local_reached=false; |
368 | 368 |
} |
369 | 369 |
_reached = &m; |
370 | 370 |
return *this; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
///Sets the map that indicates which nodes are processed. |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
///If you don't use this function before calling \ref run(), |
377 | 377 |
///it will allocate one. The destructor deallocates this |
378 | 378 |
///automatically allocated map, of course. |
379 | 379 |
///\return <tt> (*this) </tt> |
380 | 380 |
Dfs &processedMap(ProcessedMap &m) |
381 | 381 |
{ |
382 | 382 |
if(local_processed) { |
383 | 383 |
delete _processed; |
384 | 384 |
local_processed=false; |
385 | 385 |
} |
386 | 386 |
_processed = &m; |
387 | 387 |
return *this; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
///Sets the map that stores the distances of the nodes. |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 393 |
///the algorithm. |
394 | 394 |
///If you don't use this function before calling \ref run(), |
395 | 395 |
///it will allocate one. The destructor deallocates this |
396 | 396 |
///automatically allocated map, of course. |
397 | 397 |
///\return <tt> (*this) </tt> |
398 | 398 |
Dfs &distMap(DistMap &m) |
399 | 399 |
{ |
400 | 400 |
if(local_dist) { |
401 | 401 |
delete _dist; |
402 | 402 |
local_dist=false; |
403 | 403 |
} |
... | ... |
@@ -675,642 +675,642 @@ |
675 | 675 |
|
676 | 676 |
///Returns the DFS path to a node. |
677 | 677 |
/// |
678 | 678 |
///\warning \c t should be reachable from the root. |
679 | 679 |
/// |
680 | 680 |
///\pre Either \ref run() or \ref start() must be called before |
681 | 681 |
///using this function. |
682 | 682 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
683 | 683 |
|
684 | 684 |
///The distance of a node from the root. |
685 | 685 |
|
686 | 686 |
///Returns the distance of a node from the root. |
687 | 687 |
/// |
688 | 688 |
///\warning If node \c v is not reachable from the root, then |
689 | 689 |
///the return value of this function is undefined. |
690 | 690 |
/// |
691 | 691 |
///\pre Either \ref run() or \ref start() must be called before |
692 | 692 |
///using this function. |
693 | 693 |
int dist(Node v) const { return (*_dist)[v]; } |
694 | 694 |
|
695 | 695 |
///Returns the 'previous arc' of the %DFS tree for a node. |
696 | 696 |
|
697 | 697 |
///This function returns the 'previous arc' of the %DFS tree for the |
698 | 698 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
699 | 699 |
///root to \c v. It is \c INVALID |
700 | 700 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
701 | 701 |
/// |
702 | 702 |
///The %DFS tree used here is equal to the %DFS tree used in |
703 | 703 |
///\ref predNode(). |
704 | 704 |
/// |
705 | 705 |
///\pre Either \ref run() or \ref start() must be called before using |
706 | 706 |
///this function. |
707 | 707 |
Arc predArc(Node v) const { return (*_pred)[v];} |
708 | 708 |
|
709 | 709 |
///Returns the 'previous node' of the %DFS tree. |
710 | 710 |
|
711 | 711 |
///This function returns the 'previous node' of the %DFS |
712 | 712 |
///tree for the node \c v, i.e. it returns the last but one node |
713 | 713 |
///from a %DFS path from the root to \c v. It is \c INVALID |
714 | 714 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
715 | 715 |
/// |
716 | 716 |
///The %DFS tree used here is equal to the %DFS tree used in |
717 | 717 |
///\ref predArc(). |
718 | 718 |
/// |
719 | 719 |
///\pre Either \ref run() or \ref start() must be called before |
720 | 720 |
///using this function. |
721 | 721 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
722 | 722 |
G->source((*_pred)[v]); } |
723 | 723 |
|
724 | 724 |
///\brief Returns a const reference to the node map that stores the |
725 | 725 |
///distances of the nodes. |
726 | 726 |
/// |
727 | 727 |
///Returns a const reference to the node map that stores the |
728 | 728 |
///distances of the nodes calculated by the algorithm. |
729 | 729 |
/// |
730 | 730 |
///\pre Either \ref run() or \ref init() |
731 | 731 |
///must be called before using this function. |
732 | 732 |
const DistMap &distMap() const { return *_dist;} |
733 | 733 |
|
734 | 734 |
///\brief Returns a const reference to the node map that stores the |
735 | 735 |
///predecessor arcs. |
736 | 736 |
/// |
737 | 737 |
///Returns a const reference to the node map that stores the predecessor |
738 | 738 |
///arcs, which form the DFS tree. |
739 | 739 |
/// |
740 | 740 |
///\pre Either \ref run() or \ref init() |
741 | 741 |
///must be called before using this function. |
742 | 742 |
const PredMap &predMap() const { return *_pred;} |
743 | 743 |
|
744 | 744 |
///Checks if a node is reachable from the root(s). |
745 | 745 |
|
746 | 746 |
///Returns \c true if \c v is reachable from the root(s). |
747 | 747 |
///\pre Either \ref run() or \ref start() |
748 | 748 |
///must be called before using this function. |
749 | 749 |
bool reached(Node v) const { return (*_reached)[v]; } |
750 | 750 |
|
751 | 751 |
///@} |
752 | 752 |
}; |
753 | 753 |
|
754 | 754 |
///Default traits class of dfs() function. |
755 | 755 |
|
756 | 756 |
///Default traits class of dfs() function. |
757 | 757 |
///\tparam GR Digraph type. |
758 | 758 |
template<class GR> |
759 | 759 |
struct DfsWizardDefaultTraits |
760 | 760 |
{ |
761 | 761 |
///The type of the digraph the algorithm runs on. |
762 | 762 |
typedef GR Digraph; |
763 | 763 |
|
764 | 764 |
///\brief The type of the map that stores the predecessor |
765 | 765 |
///arcs of the %DFS paths. |
766 | 766 |
/// |
767 | 767 |
///The type of the map that stores the predecessor |
768 | 768 |
///arcs of the %DFS paths. |
769 | 769 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
770 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
771 |
///Instantiates a |
|
771 |
///Instantiates a PredMap. |
|
772 | 772 |
|
773 |
///This function instantiates a |
|
773 |
///This function instantiates a PredMap. |
|
774 | 774 |
///\param g is the digraph, to which we would like to define the |
775 |
/// |
|
775 |
///PredMap. |
|
776 | 776 |
static PredMap *createPredMap(const Digraph &g) |
777 | 777 |
{ |
778 | 778 |
return new PredMap(g); |
779 | 779 |
} |
780 | 780 |
|
781 | 781 |
///The type of the map that indicates which nodes are processed. |
782 | 782 |
|
783 | 783 |
///The type of the map that indicates which nodes are processed. |
784 | 784 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
785 | 785 |
///By default it is a NullMap. |
786 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
787 |
///Instantiates a |
|
787 |
///Instantiates a ProcessedMap. |
|
788 | 788 |
|
789 |
///This function instantiates a |
|
789 |
///This function instantiates a ProcessedMap. |
|
790 | 790 |
///\param g is the digraph, to which |
791 |
///we would like to define the |
|
791 |
///we would like to define the ProcessedMap. |
|
792 | 792 |
#ifdef DOXYGEN |
793 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
794 | 794 |
#else |
795 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
796 | 796 |
#endif |
797 | 797 |
{ |
798 | 798 |
return new ProcessedMap(); |
799 | 799 |
} |
800 | 800 |
|
801 | 801 |
///The type of the map that indicates which nodes are reached. |
802 | 802 |
|
803 | 803 |
///The type of the map that indicates which nodes are reached. |
804 | 804 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
805 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
806 |
///Instantiates a |
|
806 |
///Instantiates a ReachedMap. |
|
807 | 807 |
|
808 |
///This function instantiates a |
|
808 |
///This function instantiates a ReachedMap. |
|
809 | 809 |
///\param g is the digraph, to which |
810 |
///we would like to define the |
|
810 |
///we would like to define the ReachedMap. |
|
811 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
812 | 812 |
{ |
813 | 813 |
return new ReachedMap(g); |
814 | 814 |
} |
815 | 815 |
|
816 | 816 |
///The type of the map that stores the distances of the nodes. |
817 | 817 |
|
818 | 818 |
///The type of the map that stores the distances of the nodes. |
819 | 819 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
820 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
821 |
///Instantiates a |
|
821 |
///Instantiates a DistMap. |
|
822 | 822 |
|
823 |
///This function instantiates a |
|
823 |
///This function instantiates a DistMap. |
|
824 | 824 |
///\param g is the digraph, to which we would like to define |
825 |
///the |
|
825 |
///the DistMap |
|
826 | 826 |
static DistMap *createDistMap(const Digraph &g) |
827 | 827 |
{ |
828 | 828 |
return new DistMap(g); |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
///The type of the DFS paths. |
832 | 832 |
|
833 | 833 |
///The type of the DFS paths. |
834 | 834 |
///It must meet the \ref concepts::Path "Path" concept. |
835 | 835 |
typedef lemon::Path<Digraph> Path; |
836 | 836 |
}; |
837 | 837 |
|
838 | 838 |
/// Default traits class used by \ref DfsWizard |
839 | 839 |
|
840 | 840 |
/// To make it easier to use Dfs algorithm |
841 | 841 |
/// we have created a wizard class. |
842 | 842 |
/// This \ref DfsWizard class needs default traits, |
843 | 843 |
/// as well as the \ref Dfs class. |
844 | 844 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
845 | 845 |
/// \ref DfsWizard class. |
846 | 846 |
template<class GR> |
847 | 847 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
848 | 848 |
{ |
849 | 849 |
|
850 | 850 |
typedef DfsWizardDefaultTraits<GR> Base; |
851 | 851 |
protected: |
852 | 852 |
//The type of the nodes in the digraph. |
853 | 853 |
typedef typename Base::Digraph::Node Node; |
854 | 854 |
|
855 | 855 |
//Pointer to the digraph the algorithm runs on. |
856 | 856 |
void *_g; |
857 | 857 |
//Pointer to the map of reached nodes. |
858 | 858 |
void *_reached; |
859 | 859 |
//Pointer to the map of processed nodes. |
860 | 860 |
void *_processed; |
861 | 861 |
//Pointer to the map of predecessors arcs. |
862 | 862 |
void *_pred; |
863 | 863 |
//Pointer to the map of distances. |
864 | 864 |
void *_dist; |
865 | 865 |
//Pointer to the DFS path to the target node. |
866 | 866 |
void *_path; |
867 | 867 |
//Pointer to the distance of the target node. |
868 | 868 |
int *_di; |
869 | 869 |
|
870 | 870 |
public: |
871 | 871 |
/// Constructor. |
872 | 872 |
|
873 | 873 |
/// This constructor does not require parameters, therefore it initiates |
874 | 874 |
/// all of the attributes to \c 0. |
875 | 875 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
876 | 876 |
_dist(0), _path(0), _di(0) {} |
877 | 877 |
|
878 | 878 |
/// Constructor. |
879 | 879 |
|
880 | 880 |
/// This constructor requires one parameter, |
881 | 881 |
/// others are initiated to \c 0. |
882 | 882 |
/// \param g The digraph the algorithm runs on. |
883 | 883 |
DfsWizardBase(const GR &g) : |
884 | 884 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
885 | 885 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
886 | 886 |
|
887 | 887 |
}; |
888 | 888 |
|
889 | 889 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
890 | 890 |
|
891 | 891 |
/// This auxiliary class is created to implement the |
892 | 892 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
893 | 893 |
/// It does not have own \ref run() method, it uses the functions |
894 | 894 |
/// and features of the plain \ref Dfs. |
895 | 895 |
/// |
896 | 896 |
/// This class should only be used through the \ref dfs() function, |
897 | 897 |
/// which makes it easier to use the algorithm. |
898 | 898 |
template<class TR> |
899 | 899 |
class DfsWizard : public TR |
900 | 900 |
{ |
901 | 901 |
typedef TR Base; |
902 | 902 |
|
903 | 903 |
///The type of the digraph the algorithm runs on. |
904 | 904 |
typedef typename TR::Digraph Digraph; |
905 | 905 |
|
906 | 906 |
typedef typename Digraph::Node Node; |
907 | 907 |
typedef typename Digraph::NodeIt NodeIt; |
908 | 908 |
typedef typename Digraph::Arc Arc; |
909 | 909 |
typedef typename Digraph::OutArcIt OutArcIt; |
910 | 910 |
|
911 | 911 |
///\brief The type of the map that stores the predecessor |
912 | 912 |
///arcs of the DFS paths. |
913 | 913 |
typedef typename TR::PredMap PredMap; |
914 | 914 |
///\brief The type of the map that stores the distances of the nodes. |
915 | 915 |
typedef typename TR::DistMap DistMap; |
916 | 916 |
///\brief The type of the map that indicates which nodes are reached. |
917 | 917 |
typedef typename TR::ReachedMap ReachedMap; |
918 | 918 |
///\brief The type of the map that indicates which nodes are processed. |
919 | 919 |
typedef typename TR::ProcessedMap ProcessedMap; |
920 | 920 |
///The type of the DFS paths |
921 | 921 |
typedef typename TR::Path Path; |
922 | 922 |
|
923 | 923 |
public: |
924 | 924 |
|
925 | 925 |
/// Constructor. |
926 | 926 |
DfsWizard() : TR() {} |
927 | 927 |
|
928 | 928 |
/// Constructor that requires parameters. |
929 | 929 |
|
930 | 930 |
/// Constructor that requires parameters. |
931 | 931 |
/// These parameters will be the default values for the traits class. |
932 | 932 |
/// \param g The digraph the algorithm runs on. |
933 | 933 |
DfsWizard(const Digraph &g) : |
934 | 934 |
TR(g) {} |
935 | 935 |
|
936 | 936 |
///Copy constructor |
937 | 937 |
DfsWizard(const TR &b) : TR(b) {} |
938 | 938 |
|
939 | 939 |
~DfsWizard() {} |
940 | 940 |
|
941 | 941 |
///Runs DFS algorithm from the given source node. |
942 | 942 |
|
943 | 943 |
///This method runs DFS algorithm from node \c s |
944 | 944 |
///in order to compute the DFS path to each node. |
945 | 945 |
void run(Node s) |
946 | 946 |
{ |
947 | 947 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
948 | 948 |
if (Base::_pred) |
949 | 949 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
950 | 950 |
if (Base::_dist) |
951 | 951 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
952 | 952 |
if (Base::_reached) |
953 | 953 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
954 | 954 |
if (Base::_processed) |
955 | 955 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
956 | 956 |
if (s!=INVALID) |
957 | 957 |
alg.run(s); |
958 | 958 |
else |
959 | 959 |
alg.run(); |
960 | 960 |
} |
961 | 961 |
|
962 | 962 |
///Finds the DFS path between \c s and \c t. |
963 | 963 |
|
964 | 964 |
///This method runs DFS algorithm from node \c s |
965 | 965 |
///in order to compute the DFS path to node \c t |
966 | 966 |
///(it stops searching when \c t is processed). |
967 | 967 |
/// |
968 | 968 |
///\return \c true if \c t is reachable form \c s. |
969 | 969 |
bool run(Node s, Node t) |
970 | 970 |
{ |
971 | 971 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
972 | 972 |
if (Base::_pred) |
973 | 973 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
974 | 974 |
if (Base::_dist) |
975 | 975 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
976 | 976 |
if (Base::_reached) |
977 | 977 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
978 | 978 |
if (Base::_processed) |
979 | 979 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
980 | 980 |
alg.run(s,t); |
981 | 981 |
if (Base::_path) |
982 | 982 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
983 | 983 |
if (Base::_di) |
984 | 984 |
*Base::_di = alg.dist(t); |
985 | 985 |
return alg.reached(t); |
986 | 986 |
} |
987 | 987 |
|
988 | 988 |
///Runs DFS algorithm to visit all nodes in the digraph. |
989 | 989 |
|
990 | 990 |
///This method runs DFS algorithm in order to compute |
991 | 991 |
///the DFS path to each node. |
992 | 992 |
void run() |
993 | 993 |
{ |
994 | 994 |
run(INVALID); |
995 | 995 |
} |
996 | 996 |
|
997 | 997 |
template<class T> |
998 | 998 |
struct SetPredMapBase : public Base { |
999 | 999 |
typedef T PredMap; |
1000 | 1000 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1001 | 1001 |
SetPredMapBase(const TR &b) : TR(b) {} |
1002 | 1002 |
}; |
1003 | 1003 |
///\brief \ref named-func-param "Named parameter" |
1004 |
///for setting |
|
1004 |
///for setting PredMap object. |
|
1005 | 1005 |
/// |
1006 | 1006 |
///\ref named-func-param "Named parameter" |
1007 |
///for setting |
|
1007 |
///for setting PredMap object. |
|
1008 | 1008 |
template<class T> |
1009 | 1009 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1010 | 1010 |
{ |
1011 | 1011 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1012 | 1012 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1013 | 1013 |
} |
1014 | 1014 |
|
1015 | 1015 |
template<class T> |
1016 | 1016 |
struct SetReachedMapBase : public Base { |
1017 | 1017 |
typedef T ReachedMap; |
1018 | 1018 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1019 | 1019 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1020 | 1020 |
}; |
1021 | 1021 |
///\brief \ref named-func-param "Named parameter" |
1022 |
///for setting |
|
1022 |
///for setting ReachedMap object. |
|
1023 | 1023 |
/// |
1024 | 1024 |
/// \ref named-func-param "Named parameter" |
1025 |
///for setting |
|
1025 |
///for setting ReachedMap object. |
|
1026 | 1026 |
template<class T> |
1027 | 1027 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1028 | 1028 |
{ |
1029 | 1029 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1030 | 1030 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1031 | 1031 |
} |
1032 | 1032 |
|
1033 | 1033 |
template<class T> |
1034 | 1034 |
struct SetDistMapBase : public Base { |
1035 | 1035 |
typedef T DistMap; |
1036 | 1036 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1037 | 1037 |
SetDistMapBase(const TR &b) : TR(b) {} |
1038 | 1038 |
}; |
1039 | 1039 |
///\brief \ref named-func-param "Named parameter" |
1040 |
///for setting |
|
1040 |
///for setting DistMap object. |
|
1041 | 1041 |
/// |
1042 | 1042 |
/// \ref named-func-param "Named parameter" |
1043 |
///for setting |
|
1043 |
///for setting DistMap object. |
|
1044 | 1044 |
template<class T> |
1045 | 1045 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1046 | 1046 |
{ |
1047 | 1047 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1048 | 1048 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1049 | 1049 |
} |
1050 | 1050 |
|
1051 | 1051 |
template<class T> |
1052 | 1052 |
struct SetProcessedMapBase : public Base { |
1053 | 1053 |
typedef T ProcessedMap; |
1054 | 1054 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1055 | 1055 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1056 | 1056 |
}; |
1057 | 1057 |
///\brief \ref named-func-param "Named parameter" |
1058 |
///for setting |
|
1058 |
///for setting ProcessedMap object. |
|
1059 | 1059 |
/// |
1060 | 1060 |
/// \ref named-func-param "Named parameter" |
1061 |
///for setting |
|
1061 |
///for setting ProcessedMap object. |
|
1062 | 1062 |
template<class T> |
1063 | 1063 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1064 | 1064 |
{ |
1065 | 1065 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1066 | 1066 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
template<class T> |
1070 | 1070 |
struct SetPathBase : public Base { |
1071 | 1071 |
typedef T Path; |
1072 | 1072 |
SetPathBase(const TR &b) : TR(b) {} |
1073 | 1073 |
}; |
1074 | 1074 |
///\brief \ref named-func-param "Named parameter" |
1075 | 1075 |
///for getting the DFS path to the target node. |
1076 | 1076 |
/// |
1077 | 1077 |
///\ref named-func-param "Named parameter" |
1078 | 1078 |
///for getting the DFS path to the target node. |
1079 | 1079 |
template<class T> |
1080 | 1080 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1081 | 1081 |
{ |
1082 | 1082 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1083 | 1083 |
return DfsWizard<SetPathBase<T> >(*this); |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
///\brief \ref named-func-param "Named parameter" |
1087 | 1087 |
///for getting the distance of the target node. |
1088 | 1088 |
/// |
1089 | 1089 |
///\ref named-func-param "Named parameter" |
1090 | 1090 |
///for getting the distance of the target node. |
1091 | 1091 |
DfsWizard dist(const int &d) |
1092 | 1092 |
{ |
1093 | 1093 |
Base::_di=const_cast<int*>(&d); |
1094 | 1094 |
return *this; |
1095 | 1095 |
} |
1096 | 1096 |
|
1097 | 1097 |
}; |
1098 | 1098 |
|
1099 | 1099 |
///Function-type interface for DFS algorithm. |
1100 | 1100 |
|
1101 | 1101 |
///\ingroup search |
1102 | 1102 |
///Function-type interface for DFS algorithm. |
1103 | 1103 |
/// |
1104 | 1104 |
///This function also has several \ref named-func-param "named parameters", |
1105 | 1105 |
///they are declared as the members of class \ref DfsWizard. |
1106 | 1106 |
///The following examples show how to use these parameters. |
1107 | 1107 |
///\code |
1108 | 1108 |
/// // Compute the DFS tree |
1109 | 1109 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1110 | 1110 |
/// |
1111 | 1111 |
/// // Compute the DFS path from s to t |
1112 | 1112 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1113 | 1113 |
///\endcode |
1114 | 1114 |
|
1115 | 1115 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1116 | 1116 |
///to the end of the parameter list. |
1117 | 1117 |
///\sa DfsWizard |
1118 | 1118 |
///\sa Dfs |
1119 | 1119 |
template<class GR> |
1120 | 1120 |
DfsWizard<DfsWizardBase<GR> > |
1121 | 1121 |
dfs(const GR &digraph) |
1122 | 1122 |
{ |
1123 | 1123 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1124 | 1124 |
} |
1125 | 1125 |
|
1126 | 1126 |
#ifdef DOXYGEN |
1127 | 1127 |
/// \brief Visitor class for DFS. |
1128 | 1128 |
/// |
1129 | 1129 |
/// This class defines the interface of the DfsVisit events, and |
1130 | 1130 |
/// it could be the base of a real visitor class. |
1131 | 1131 |
template <typename _Digraph> |
1132 | 1132 |
struct DfsVisitor { |
1133 | 1133 |
typedef _Digraph Digraph; |
1134 | 1134 |
typedef typename Digraph::Arc Arc; |
1135 | 1135 |
typedef typename Digraph::Node Node; |
1136 | 1136 |
/// \brief Called for the source node of the DFS. |
1137 | 1137 |
/// |
1138 | 1138 |
/// This function is called for the source node of the DFS. |
1139 | 1139 |
void start(const Node& node) {} |
1140 | 1140 |
/// \brief Called when the source node is leaved. |
1141 | 1141 |
/// |
1142 | 1142 |
/// This function is called when the source node is leaved. |
1143 | 1143 |
void stop(const Node& node) {} |
1144 | 1144 |
/// \brief Called when a node is reached first time. |
1145 | 1145 |
/// |
1146 | 1146 |
/// This function is called when a node is reached first time. |
1147 | 1147 |
void reach(const Node& node) {} |
1148 | 1148 |
/// \brief Called when an arc reaches a new node. |
1149 | 1149 |
/// |
1150 | 1150 |
/// This function is called when the DFS finds an arc whose target node |
1151 | 1151 |
/// is not reached yet. |
1152 | 1152 |
void discover(const Arc& arc) {} |
1153 | 1153 |
/// \brief Called when an arc is examined but its target node is |
1154 | 1154 |
/// already discovered. |
1155 | 1155 |
/// |
1156 | 1156 |
/// This function is called when an arc is examined but its target node is |
1157 | 1157 |
/// already discovered. |
1158 | 1158 |
void examine(const Arc& arc) {} |
1159 | 1159 |
/// \brief Called when the DFS steps back from a node. |
1160 | 1160 |
/// |
1161 | 1161 |
/// This function is called when the DFS steps back from a node. |
1162 | 1162 |
void leave(const Node& node) {} |
1163 | 1163 |
/// \brief Called when the DFS steps back on an arc. |
1164 | 1164 |
/// |
1165 | 1165 |
/// This function is called when the DFS steps back on an arc. |
1166 | 1166 |
void backtrack(const Arc& arc) {} |
1167 | 1167 |
}; |
1168 | 1168 |
#else |
1169 | 1169 |
template <typename _Digraph> |
1170 | 1170 |
struct DfsVisitor { |
1171 | 1171 |
typedef _Digraph Digraph; |
1172 | 1172 |
typedef typename Digraph::Arc Arc; |
1173 | 1173 |
typedef typename Digraph::Node Node; |
1174 | 1174 |
void start(const Node&) {} |
1175 | 1175 |
void stop(const Node&) {} |
1176 | 1176 |
void reach(const Node&) {} |
1177 | 1177 |
void discover(const Arc&) {} |
1178 | 1178 |
void examine(const Arc&) {} |
1179 | 1179 |
void leave(const Node&) {} |
1180 | 1180 |
void backtrack(const Arc&) {} |
1181 | 1181 |
|
1182 | 1182 |
template <typename _Visitor> |
1183 | 1183 |
struct Constraints { |
1184 | 1184 |
void constraints() { |
1185 | 1185 |
Arc arc; |
1186 | 1186 |
Node node; |
1187 | 1187 |
visitor.start(node); |
1188 | 1188 |
visitor.stop(arc); |
1189 | 1189 |
visitor.reach(node); |
1190 | 1190 |
visitor.discover(arc); |
1191 | 1191 |
visitor.examine(arc); |
1192 | 1192 |
visitor.leave(node); |
1193 | 1193 |
visitor.backtrack(arc); |
1194 | 1194 |
} |
1195 | 1195 |
_Visitor& visitor; |
1196 | 1196 |
}; |
1197 | 1197 |
}; |
1198 | 1198 |
#endif |
1199 | 1199 |
|
1200 | 1200 |
/// \brief Default traits class of DfsVisit class. |
1201 | 1201 |
/// |
1202 | 1202 |
/// Default traits class of DfsVisit class. |
1203 | 1203 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1204 | 1204 |
template<class _Digraph> |
1205 | 1205 |
struct DfsVisitDefaultTraits { |
1206 | 1206 |
|
1207 | 1207 |
/// \brief The type of the digraph the algorithm runs on. |
1208 | 1208 |
typedef _Digraph Digraph; |
1209 | 1209 |
|
1210 | 1210 |
/// \brief The type of the map that indicates which nodes are reached. |
1211 | 1211 |
/// |
1212 | 1212 |
/// The type of the map that indicates which nodes are reached. |
1213 | 1213 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1214 | 1214 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1215 | 1215 |
|
1216 |
/// \brief Instantiates a |
|
1216 |
/// \brief Instantiates a ReachedMap. |
|
1217 | 1217 |
/// |
1218 |
/// This function instantiates a |
|
1218 |
/// This function instantiates a ReachedMap. |
|
1219 | 1219 |
/// \param digraph is the digraph, to which |
1220 |
/// we would like to define the |
|
1220 |
/// we would like to define the ReachedMap. |
|
1221 | 1221 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1222 | 1222 |
return new ReachedMap(digraph); |
1223 | 1223 |
} |
1224 | 1224 |
|
1225 | 1225 |
}; |
1226 | 1226 |
|
1227 | 1227 |
/// \ingroup search |
1228 | 1228 |
/// |
1229 | 1229 |
/// \brief %DFS algorithm class with visitor interface. |
1230 | 1230 |
/// |
1231 | 1231 |
/// This class provides an efficient implementation of the %DFS algorithm |
1232 | 1232 |
/// with visitor interface. |
1233 | 1233 |
/// |
1234 | 1234 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1235 | 1235 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1236 | 1236 |
/// the member functions of the \c Visitor class on every DFS event. |
1237 | 1237 |
/// |
1238 | 1238 |
/// This interface of the DFS algorithm should be used in special cases |
1239 | 1239 |
/// when extra actions have to be performed in connection with certain |
1240 | 1240 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1241 | 1241 |
/// instead. |
1242 | 1242 |
/// |
1243 | 1243 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1244 | 1244 |
/// The default value is |
1245 | 1245 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1246 | 1246 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
1247 | 1247 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1248 | 1248 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
1249 | 1249 |
/// does not observe the DFS events. If you want to observe the DFS |
1250 | 1250 |
/// events, you should implement your own visitor class. |
1251 | 1251 |
/// \tparam _Traits Traits class to set various data types used by the |
1252 | 1252 |
/// algorithm. The default traits class is |
1253 | 1253 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1254 | 1254 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1255 | 1255 |
/// a DFS visit traits class. |
1256 | 1256 |
#ifdef DOXYGEN |
1257 | 1257 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1258 | 1258 |
#else |
1259 | 1259 |
template <typename _Digraph = ListDigraph, |
1260 | 1260 |
typename _Visitor = DfsVisitor<_Digraph>, |
1261 | 1261 |
typename _Traits = DfsVisitDefaultTraits<_Digraph> > |
1262 | 1262 |
#endif |
1263 | 1263 |
class DfsVisit { |
1264 | 1264 |
public: |
1265 | 1265 |
|
1266 | 1266 |
///The traits class. |
1267 | 1267 |
typedef _Traits Traits; |
1268 | 1268 |
|
1269 | 1269 |
///The type of the digraph the algorithm runs on. |
1270 | 1270 |
typedef typename Traits::Digraph Digraph; |
1271 | 1271 |
|
1272 | 1272 |
///The visitor type used by the algorithm. |
1273 | 1273 |
typedef _Visitor Visitor; |
1274 | 1274 |
|
1275 | 1275 |
///The type of the map that indicates which nodes are reached. |
1276 | 1276 |
typedef typename Traits::ReachedMap ReachedMap; |
1277 | 1277 |
|
1278 | 1278 |
private: |
1279 | 1279 |
|
1280 | 1280 |
typedef typename Digraph::Node Node; |
1281 | 1281 |
typedef typename Digraph::NodeIt NodeIt; |
1282 | 1282 |
typedef typename Digraph::Arc Arc; |
1283 | 1283 |
typedef typename Digraph::OutArcIt OutArcIt; |
1284 | 1284 |
|
1285 | 1285 |
//Pointer to the underlying digraph. |
1286 | 1286 |
const Digraph *_digraph; |
1287 | 1287 |
//Pointer to the visitor object. |
1288 | 1288 |
Visitor *_visitor; |
1289 | 1289 |
//Pointer to the map of reached status of the nodes. |
1290 | 1290 |
ReachedMap *_reached; |
1291 | 1291 |
//Indicates if _reached is locally allocated (true) or not. |
1292 | 1292 |
bool local_reached; |
1293 | 1293 |
|
1294 | 1294 |
std::vector<typename Digraph::Arc> _stack; |
1295 | 1295 |
int _stack_head; |
1296 | 1296 |
|
1297 | 1297 |
//Creates the maps if necessary. |
1298 | 1298 |
void create_maps() { |
1299 | 1299 |
if(!_reached) { |
1300 | 1300 |
local_reached = true; |
1301 | 1301 |
_reached = Traits::createReachedMap(*_digraph); |
1302 | 1302 |
} |
1303 | 1303 |
} |
1304 | 1304 |
|
1305 | 1305 |
protected: |
1306 | 1306 |
|
1307 | 1307 |
DfsVisit() {} |
1308 | 1308 |
|
1309 | 1309 |
public: |
1310 | 1310 |
|
1311 | 1311 |
typedef DfsVisit Create; |
1312 | 1312 |
|
1313 | 1313 |
/// \name Named template parameters |
1314 | 1314 |
|
1315 | 1315 |
///@{ |
1316 | 1316 |
template <class T> |
... | ... |
@@ -46,442 +46,442 @@ |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value is less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 | 57 |
/// \brief Widest path operation traits for the Dijkstra algorithm class. |
58 | 58 |
/// |
59 | 59 |
/// This operation traits class defines all computational operations and |
60 | 60 |
/// constants which are used in the Dijkstra algorithm for widest path |
61 | 61 |
/// computation. |
62 | 62 |
/// |
63 | 63 |
/// \see DijkstraDefaultOperationTraits |
64 | 64 |
template <typename Value> |
65 | 65 |
struct DijkstraWidestPathOperationTraits { |
66 | 66 |
/// \brief Gives back the maximum value of the type. |
67 | 67 |
static Value zero() { |
68 | 68 |
return std::numeric_limits<Value>::max(); |
69 | 69 |
} |
70 | 70 |
/// \brief Gives back the minimum of the given two elements. |
71 | 71 |
static Value plus(const Value& left, const Value& right) { |
72 | 72 |
return std::min(left, right); |
73 | 73 |
} |
74 | 74 |
/// \brief Gives back true only if the first value is less than the second. |
75 | 75 |
static bool less(const Value& left, const Value& right) { |
76 | 76 |
return left < right; |
77 | 77 |
} |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
///Default traits class of Dijkstra class. |
81 | 81 |
|
82 | 82 |
///Default traits class of Dijkstra class. |
83 | 83 |
///\tparam GR The type of the digraph. |
84 | 84 |
///\tparam LM The type of the length map. |
85 | 85 |
template<class GR, class LM> |
86 | 86 |
struct DijkstraDefaultTraits |
87 | 87 |
{ |
88 | 88 |
///The type of the digraph the algorithm runs on. |
89 | 89 |
typedef GR Digraph; |
90 | 90 |
|
91 | 91 |
///The type of the map that stores the arc lengths. |
92 | 92 |
|
93 | 93 |
///The type of the map that stores the arc lengths. |
94 | 94 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
95 | 95 |
typedef LM LengthMap; |
96 | 96 |
///The type of the length of the arcs. |
97 | 97 |
typedef typename LM::Value Value; |
98 | 98 |
|
99 | 99 |
/// Operation traits for Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
/// This class defines the operations that are used in the algorithm. |
102 | 102 |
/// \see DijkstraDefaultOperationTraits |
103 | 103 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
104 | 104 |
|
105 | 105 |
/// The cross reference type used by the heap. |
106 | 106 |
|
107 | 107 |
/// The cross reference type used by the heap. |
108 | 108 |
/// Usually it is \c Digraph::NodeMap<int>. |
109 | 109 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
110 | 110 |
///Instantiates a \ref HeapCrossRef. |
111 | 111 |
|
112 | 112 |
///This function instantiates a \ref HeapCrossRef. |
113 | 113 |
/// \param g is the digraph, to which we would like to define the |
114 | 114 |
/// \ref HeapCrossRef. |
115 | 115 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
116 | 116 |
{ |
117 | 117 |
return new HeapCrossRef(g); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
///The heap type used by the Dijkstra algorithm. |
121 | 121 |
|
122 | 122 |
///The heap type used by the Dijkstra algorithm. |
123 | 123 |
/// |
124 | 124 |
///\sa BinHeap |
125 | 125 |
///\sa Dijkstra |
126 | 126 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
127 | 127 |
///Instantiates a \ref Heap. |
128 | 128 |
|
129 | 129 |
///This function instantiates a \ref Heap. |
130 | 130 |
static Heap *createHeap(HeapCrossRef& r) |
131 | 131 |
{ |
132 | 132 |
return new Heap(r); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
///\brief The type of the map that stores the predecessor |
136 | 136 |
///arcs of the shortest paths. |
137 | 137 |
/// |
138 | 138 |
///The type of the map that stores the predecessor |
139 | 139 |
///arcs of the shortest paths. |
140 | 140 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
141 | 141 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
142 |
///Instantiates a |
|
142 |
///Instantiates a PredMap. |
|
143 | 143 |
|
144 |
///This function instantiates a |
|
144 |
///This function instantiates a PredMap. |
|
145 | 145 |
///\param g is the digraph, to which we would like to define the |
146 |
/// |
|
146 |
///PredMap. |
|
147 | 147 |
static PredMap *createPredMap(const Digraph &g) |
148 | 148 |
{ |
149 | 149 |
return new PredMap(g); |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
///The type of the map that indicates which nodes are processed. |
153 | 153 |
|
154 | 154 |
///The type of the map that indicates which nodes are processed. |
155 | 155 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
156 | 156 |
///By default it is a NullMap. |
157 | 157 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
158 |
///Instantiates a |
|
158 |
///Instantiates a ProcessedMap. |
|
159 | 159 |
|
160 |
///This function instantiates a |
|
160 |
///This function instantiates a ProcessedMap. |
|
161 | 161 |
///\param g is the digraph, to which |
162 |
///we would like to define the |
|
162 |
///we would like to define the ProcessedMap |
|
163 | 163 |
#ifdef DOXYGEN |
164 | 164 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
165 | 165 |
#else |
166 | 166 |
static ProcessedMap *createProcessedMap(const Digraph &) |
167 | 167 |
#endif |
168 | 168 |
{ |
169 | 169 |
return new ProcessedMap(); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
///The type of the map that stores the distances of the nodes. |
173 | 173 |
|
174 | 174 |
///The type of the map that stores the distances of the nodes. |
175 | 175 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
176 | 176 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
177 |
///Instantiates a |
|
177 |
///Instantiates a DistMap. |
|
178 | 178 |
|
179 |
///This function instantiates a |
|
179 |
///This function instantiates a DistMap. |
|
180 | 180 |
///\param g is the digraph, to which we would like to define |
181 |
///the |
|
181 |
///the DistMap |
|
182 | 182 |
static DistMap *createDistMap(const Digraph &g) |
183 | 183 |
{ |
184 | 184 |
return new DistMap(g); |
185 | 185 |
} |
186 | 186 |
}; |
187 | 187 |
|
188 | 188 |
///%Dijkstra algorithm class. |
189 | 189 |
|
190 | 190 |
/// \ingroup shortest_path |
191 | 191 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
192 | 192 |
/// |
193 | 193 |
///The arc lengths are passed to the algorithm using a |
194 | 194 |
///\ref concepts::ReadMap "ReadMap", |
195 | 195 |
///so it is easy to change it to any kind of length. |
196 | 196 |
///The type of the length is determined by the |
197 | 197 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
198 | 198 |
///It is also possible to change the underlying priority heap. |
199 | 199 |
/// |
200 | 200 |
///There is also a \ref dijkstra() "function-type interface" for the |
201 | 201 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
202 | 202 |
///it can be used easier. |
203 | 203 |
/// |
204 | 204 |
///\tparam GR The type of the digraph the algorithm runs on. |
205 | 205 |
///The default value is \ref ListDigraph. |
206 | 206 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
207 | 207 |
///passed to \ref DijkstraDefaultTraits. |
208 | 208 |
///\tparam LM A readable arc map that determines the lengths of the |
209 | 209 |
///arcs. It is read once for each arc, so the map may involve in |
210 | 210 |
///relatively time consuming process to compute the arc lengths if |
211 | 211 |
///it is necessary. The default map type is \ref |
212 | 212 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
213 | 213 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
214 | 214 |
///passed to \ref DijkstraDefaultTraits. |
215 | 215 |
///\tparam TR Traits class to set various data types used by the algorithm. |
216 | 216 |
///The default traits class is \ref DijkstraDefaultTraits |
217 | 217 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
218 | 218 |
///for the documentation of a Dijkstra traits class. |
219 | 219 |
#ifdef DOXYGEN |
220 | 220 |
template <typename GR, typename LM, typename TR> |
221 | 221 |
#else |
222 | 222 |
template <typename GR=ListDigraph, |
223 | 223 |
typename LM=typename GR::template ArcMap<int>, |
224 | 224 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
225 | 225 |
#endif |
226 | 226 |
class Dijkstra { |
227 | 227 |
public: |
228 | 228 |
|
229 | 229 |
///The type of the digraph the algorithm runs on. |
230 | 230 |
typedef typename TR::Digraph Digraph; |
231 | 231 |
|
232 | 232 |
///The type of the length of the arcs. |
233 | 233 |
typedef typename TR::LengthMap::Value Value; |
234 | 234 |
///The type of the map that stores the arc lengths. |
235 | 235 |
typedef typename TR::LengthMap LengthMap; |
236 | 236 |
///\brief The type of the map that stores the predecessor arcs of the |
237 | 237 |
///shortest paths. |
238 | 238 |
typedef typename TR::PredMap PredMap; |
239 | 239 |
///The type of the map that stores the distances of the nodes. |
240 | 240 |
typedef typename TR::DistMap DistMap; |
241 | 241 |
///The type of the map that indicates which nodes are processed. |
242 | 242 |
typedef typename TR::ProcessedMap ProcessedMap; |
243 | 243 |
///The type of the paths. |
244 | 244 |
typedef PredMapPath<Digraph, PredMap> Path; |
245 | 245 |
///The cross reference type used for the current heap. |
246 | 246 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
247 | 247 |
///The heap type used by the algorithm. |
248 | 248 |
typedef typename TR::Heap Heap; |
249 | 249 |
///The operation traits class. |
250 | 250 |
typedef typename TR::OperationTraits OperationTraits; |
251 | 251 |
|
252 | 252 |
///The traits class. |
253 | 253 |
typedef TR Traits; |
254 | 254 |
|
255 | 255 |
private: |
256 | 256 |
|
257 | 257 |
typedef typename Digraph::Node Node; |
258 | 258 |
typedef typename Digraph::NodeIt NodeIt; |
259 | 259 |
typedef typename Digraph::Arc Arc; |
260 | 260 |
typedef typename Digraph::OutArcIt OutArcIt; |
261 | 261 |
|
262 | 262 |
//Pointer to the underlying digraph. |
263 | 263 |
const Digraph *G; |
264 | 264 |
//Pointer to the length map. |
265 | 265 |
const LengthMap *length; |
266 | 266 |
//Pointer to the map of predecessors arcs. |
267 | 267 |
PredMap *_pred; |
268 | 268 |
//Indicates if _pred is locally allocated (true) or not. |
269 | 269 |
bool local_pred; |
270 | 270 |
//Pointer to the map of distances. |
271 | 271 |
DistMap *_dist; |
272 | 272 |
//Indicates if _dist is locally allocated (true) or not. |
273 | 273 |
bool local_dist; |
274 | 274 |
//Pointer to the map of processed status of the nodes. |
275 | 275 |
ProcessedMap *_processed; |
276 | 276 |
//Indicates if _processed is locally allocated (true) or not. |
277 | 277 |
bool local_processed; |
278 | 278 |
//Pointer to the heap cross references. |
279 | 279 |
HeapCrossRef *_heap_cross_ref; |
280 | 280 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
281 | 281 |
bool local_heap_cross_ref; |
282 | 282 |
//Pointer to the heap. |
283 | 283 |
Heap *_heap; |
284 | 284 |
//Indicates if _heap is locally allocated (true) or not. |
285 | 285 |
bool local_heap; |
286 | 286 |
|
287 | 287 |
//Creates the maps if necessary. |
288 | 288 |
void create_maps() |
289 | 289 |
{ |
290 | 290 |
if(!_pred) { |
291 | 291 |
local_pred = true; |
292 | 292 |
_pred = Traits::createPredMap(*G); |
293 | 293 |
} |
294 | 294 |
if(!_dist) { |
295 | 295 |
local_dist = true; |
296 | 296 |
_dist = Traits::createDistMap(*G); |
297 | 297 |
} |
298 | 298 |
if(!_processed) { |
299 | 299 |
local_processed = true; |
300 | 300 |
_processed = Traits::createProcessedMap(*G); |
301 | 301 |
} |
302 | 302 |
if (!_heap_cross_ref) { |
303 | 303 |
local_heap_cross_ref = true; |
304 | 304 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
305 | 305 |
} |
306 | 306 |
if (!_heap) { |
307 | 307 |
local_heap = true; |
308 | 308 |
_heap = Traits::createHeap(*_heap_cross_ref); |
309 | 309 |
} |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
public: |
313 | 313 |
|
314 | 314 |
typedef Dijkstra Create; |
315 | 315 |
|
316 | 316 |
///\name Named template parameters |
317 | 317 |
|
318 | 318 |
///@{ |
319 | 319 |
|
320 | 320 |
template <class T> |
321 | 321 |
struct SetPredMapTraits : public Traits { |
322 | 322 |
typedef T PredMap; |
323 | 323 |
static PredMap *createPredMap(const Digraph &) |
324 | 324 |
{ |
325 | 325 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
326 | 326 |
return 0; // ignore warnings |
327 | 327 |
} |
328 | 328 |
}; |
329 | 329 |
///\brief \ref named-templ-param "Named parameter" for setting |
330 |
/// |
|
330 |
///PredMap type. |
|
331 | 331 |
/// |
332 | 332 |
///\ref named-templ-param "Named parameter" for setting |
333 |
/// |
|
333 |
///PredMap type. |
|
334 | 334 |
template <class T> |
335 | 335 |
struct SetPredMap |
336 | 336 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
337 | 337 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
338 | 338 |
}; |
339 | 339 |
|
340 | 340 |
template <class T> |
341 | 341 |
struct SetDistMapTraits : public Traits { |
342 | 342 |
typedef T DistMap; |
343 | 343 |
static DistMap *createDistMap(const Digraph &) |
344 | 344 |
{ |
345 | 345 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
346 | 346 |
return 0; // ignore warnings |
347 | 347 |
} |
348 | 348 |
}; |
349 | 349 |
///\brief \ref named-templ-param "Named parameter" for setting |
350 |
/// |
|
350 |
///DistMap type. |
|
351 | 351 |
/// |
352 | 352 |
///\ref named-templ-param "Named parameter" for setting |
353 |
/// |
|
353 |
///DistMap type. |
|
354 | 354 |
template <class T> |
355 | 355 |
struct SetDistMap |
356 | 356 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
357 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
template <class T> |
361 | 361 |
struct SetProcessedMapTraits : public Traits { |
362 | 362 |
typedef T ProcessedMap; |
363 | 363 |
static ProcessedMap *createProcessedMap(const Digraph &) |
364 | 364 |
{ |
365 | 365 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
366 | 366 |
return 0; // ignore warnings |
367 | 367 |
} |
368 | 368 |
}; |
369 | 369 |
///\brief \ref named-templ-param "Named parameter" for setting |
370 |
/// |
|
370 |
///ProcessedMap type. |
|
371 | 371 |
/// |
372 | 372 |
///\ref named-templ-param "Named parameter" for setting |
373 |
/// |
|
373 |
///ProcessedMap type. |
|
374 | 374 |
template <class T> |
375 | 375 |
struct SetProcessedMap |
376 | 376 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
377 | 377 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
378 | 378 |
}; |
379 | 379 |
|
380 | 380 |
struct SetStandardProcessedMapTraits : public Traits { |
381 | 381 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
382 | 382 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
383 | 383 |
{ |
384 | 384 |
return new ProcessedMap(g); |
385 | 385 |
} |
386 | 386 |
}; |
387 | 387 |
///\brief \ref named-templ-param "Named parameter" for setting |
388 |
/// |
|
388 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
|
389 | 389 |
/// |
390 | 390 |
///\ref named-templ-param "Named parameter" for setting |
391 |
/// |
|
391 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
|
392 | 392 |
///If you don't set it explicitly, it will be automatically allocated. |
393 | 393 |
struct SetStandardProcessedMap |
394 | 394 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
395 | 395 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
396 | 396 |
Create; |
397 | 397 |
}; |
398 | 398 |
|
399 | 399 |
template <class H, class CR> |
400 | 400 |
struct SetHeapTraits : public Traits { |
401 | 401 |
typedef CR HeapCrossRef; |
402 | 402 |
typedef H Heap; |
403 | 403 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
404 | 404 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
405 | 405 |
return 0; // ignore warnings |
406 | 406 |
} |
407 | 407 |
static Heap *createHeap(HeapCrossRef &) |
408 | 408 |
{ |
409 | 409 |
LEMON_ASSERT(false, "Heap is not initialized"); |
410 | 410 |
return 0; // ignore warnings |
411 | 411 |
} |
412 | 412 |
}; |
413 | 413 |
///\brief \ref named-templ-param "Named parameter" for setting |
414 | 414 |
///heap and cross reference type |
415 | 415 |
/// |
416 | 416 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
417 | 417 |
///reference type. |
418 | 418 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
419 | 419 |
struct SetHeap |
420 | 420 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
421 | 421 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
422 | 422 |
}; |
423 | 423 |
|
424 | 424 |
template <class H, class CR> |
425 | 425 |
struct SetStandardHeapTraits : public Traits { |
426 | 426 |
typedef CR HeapCrossRef; |
427 | 427 |
typedef H Heap; |
428 | 428 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
429 | 429 |
return new HeapCrossRef(G); |
430 | 430 |
} |
431 | 431 |
static Heap *createHeap(HeapCrossRef &R) |
432 | 432 |
{ |
433 | 433 |
return new Heap(R); |
434 | 434 |
} |
435 | 435 |
}; |
436 | 436 |
///\brief \ref named-templ-param "Named parameter" for setting |
437 | 437 |
///heap and cross reference type with automatic allocation |
438 | 438 |
/// |
439 | 439 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
440 | 440 |
///reference type. It can allocate the heap and the cross reference |
441 | 441 |
///object if the cross reference's constructor waits for the digraph as |
442 | 442 |
///parameter and the heap's constructor waits for the cross reference. |
443 | 443 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
444 | 444 |
struct SetStandardHeap |
445 | 445 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
446 | 446 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
447 | 447 |
Create; |
448 | 448 |
}; |
449 | 449 |
|
450 | 450 |
template <class T> |
451 | 451 |
struct SetOperationTraitsTraits : public Traits { |
452 | 452 |
typedef T OperationTraits; |
453 | 453 |
}; |
454 | 454 |
|
455 | 455 |
/// \brief \ref named-templ-param "Named parameter" for setting |
456 | 456 |
///\ref OperationTraits type |
457 | 457 |
/// |
458 | 458 |
///\ref named-templ-param "Named parameter" for setting |
459 | 459 |
///\ref OperationTraits type. |
460 | 460 |
template <class T> |
461 | 461 |
struct SetOperationTraits |
462 | 462 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
463 | 463 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
464 | 464 |
Create; |
465 | 465 |
}; |
466 | 466 |
|
467 | 467 |
///@} |
468 | 468 |
|
469 | 469 |
protected: |
470 | 470 |
|
471 | 471 |
Dijkstra() {} |
472 | 472 |
|
473 | 473 |
public: |
474 | 474 |
|
475 | 475 |
///Constructor. |
476 | 476 |
|
477 | 477 |
///Constructor. |
478 | 478 |
///\param _g The digraph the algorithm runs on. |
479 | 479 |
///\param _length The length map used by the algorithm. |
480 | 480 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
481 | 481 |
G(&_g), length(&_length), |
482 | 482 |
_pred(NULL), local_pred(false), |
483 | 483 |
_dist(NULL), local_dist(false), |
484 | 484 |
_processed(NULL), local_processed(false), |
485 | 485 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
486 | 486 |
_heap(NULL), local_heap(false) |
487 | 487 |
{ } |
... | ... |
@@ -893,414 +893,414 @@ |
893 | 893 |
///Checks if a node is reachable from the root(s). |
894 | 894 |
|
895 | 895 |
///Returns \c true if \c v is reachable from the root(s). |
896 | 896 |
///\pre Either \ref run() or \ref start() |
897 | 897 |
///must be called before using this function. |
898 | 898 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
899 | 899 |
Heap::PRE_HEAP; } |
900 | 900 |
|
901 | 901 |
///Checks if a node is processed. |
902 | 902 |
|
903 | 903 |
///Returns \c true if \c v is processed, i.e. the shortest |
904 | 904 |
///path to \c v has already found. |
905 | 905 |
///\pre Either \ref run() or \ref init() |
906 | 906 |
///must be called before using this function. |
907 | 907 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
908 | 908 |
Heap::POST_HEAP; } |
909 | 909 |
|
910 | 910 |
///The current distance of a node from the root(s). |
911 | 911 |
|
912 | 912 |
///Returns the current distance of a node from the root(s). |
913 | 913 |
///It may be decreased in the following processes. |
914 | 914 |
///\pre Either \ref run() or \ref init() |
915 | 915 |
///must be called before using this function and |
916 | 916 |
///node \c v must be reached but not necessarily processed. |
917 | 917 |
Value currentDist(Node v) const { |
918 | 918 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
919 | 919 |
} |
920 | 920 |
|
921 | 921 |
///@} |
922 | 922 |
}; |
923 | 923 |
|
924 | 924 |
|
925 | 925 |
///Default traits class of dijkstra() function. |
926 | 926 |
|
927 | 927 |
///Default traits class of dijkstra() function. |
928 | 928 |
///\tparam GR The type of the digraph. |
929 | 929 |
///\tparam LM The type of the length map. |
930 | 930 |
template<class GR, class LM> |
931 | 931 |
struct DijkstraWizardDefaultTraits |
932 | 932 |
{ |
933 | 933 |
///The type of the digraph the algorithm runs on. |
934 | 934 |
typedef GR Digraph; |
935 | 935 |
///The type of the map that stores the arc lengths. |
936 | 936 |
|
937 | 937 |
///The type of the map that stores the arc lengths. |
938 | 938 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
939 | 939 |
typedef LM LengthMap; |
940 | 940 |
///The type of the length of the arcs. |
941 | 941 |
typedef typename LM::Value Value; |
942 | 942 |
|
943 | 943 |
/// Operation traits for Dijkstra algorithm. |
944 | 944 |
|
945 | 945 |
/// This class defines the operations that are used in the algorithm. |
946 | 946 |
/// \see DijkstraDefaultOperationTraits |
947 | 947 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
948 | 948 |
|
949 | 949 |
/// The cross reference type used by the heap. |
950 | 950 |
|
951 | 951 |
/// The cross reference type used by the heap. |
952 | 952 |
/// Usually it is \c Digraph::NodeMap<int>. |
953 | 953 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
954 | 954 |
///Instantiates a \ref HeapCrossRef. |
955 | 955 |
|
956 | 956 |
///This function instantiates a \ref HeapCrossRef. |
957 | 957 |
/// \param g is the digraph, to which we would like to define the |
958 | 958 |
/// HeapCrossRef. |
959 | 959 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
960 | 960 |
{ |
961 | 961 |
return new HeapCrossRef(g); |
962 | 962 |
} |
963 | 963 |
|
964 | 964 |
///The heap type used by the Dijkstra algorithm. |
965 | 965 |
|
966 | 966 |
///The heap type used by the Dijkstra algorithm. |
967 | 967 |
/// |
968 | 968 |
///\sa BinHeap |
969 | 969 |
///\sa Dijkstra |
970 | 970 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
971 | 971 |
std::less<Value> > Heap; |
972 | 972 |
|
973 | 973 |
///Instantiates a \ref Heap. |
974 | 974 |
|
975 | 975 |
///This function instantiates a \ref Heap. |
976 | 976 |
/// \param r is the HeapCrossRef which is used. |
977 | 977 |
static Heap *createHeap(HeapCrossRef& r) |
978 | 978 |
{ |
979 | 979 |
return new Heap(r); |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
///\brief The type of the map that stores the predecessor |
983 | 983 |
///arcs of the shortest paths. |
984 | 984 |
/// |
985 | 985 |
///The type of the map that stores the predecessor |
986 | 986 |
///arcs of the shortest paths. |
987 | 987 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
988 | 988 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
989 |
///Instantiates a |
|
989 |
///Instantiates a PredMap. |
|
990 | 990 |
|
991 |
///This function instantiates a |
|
991 |
///This function instantiates a PredMap. |
|
992 | 992 |
///\param g is the digraph, to which we would like to define the |
993 |
/// |
|
993 |
///PredMap. |
|
994 | 994 |
static PredMap *createPredMap(const Digraph &g) |
995 | 995 |
{ |
996 | 996 |
return new PredMap(g); |
997 | 997 |
} |
998 | 998 |
|
999 | 999 |
///The type of the map that indicates which nodes are processed. |
1000 | 1000 |
|
1001 | 1001 |
///The type of the map that indicates which nodes are processed. |
1002 | 1002 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1003 | 1003 |
///By default it is a NullMap. |
1004 | 1004 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1005 |
///Instantiates a |
|
1005 |
///Instantiates a ProcessedMap. |
|
1006 | 1006 |
|
1007 |
///This function instantiates a |
|
1007 |
///This function instantiates a ProcessedMap. |
|
1008 | 1008 |
///\param g is the digraph, to which |
1009 |
///we would like to define the |
|
1009 |
///we would like to define the ProcessedMap. |
|
1010 | 1010 |
#ifdef DOXYGEN |
1011 | 1011 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1012 | 1012 |
#else |
1013 | 1013 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1014 | 1014 |
#endif |
1015 | 1015 |
{ |
1016 | 1016 |
return new ProcessedMap(); |
1017 | 1017 |
} |
1018 | 1018 |
|
1019 | 1019 |
///The type of the map that stores the distances of the nodes. |
1020 | 1020 |
|
1021 | 1021 |
///The type of the map that stores the distances of the nodes. |
1022 | 1022 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1023 | 1023 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
1024 |
///Instantiates a |
|
1024 |
///Instantiates a DistMap. |
|
1025 | 1025 |
|
1026 |
///This function instantiates a |
|
1026 |
///This function instantiates a DistMap. |
|
1027 | 1027 |
///\param g is the digraph, to which we would like to define |
1028 |
///the |
|
1028 |
///the DistMap |
|
1029 | 1029 |
static DistMap *createDistMap(const Digraph &g) |
1030 | 1030 |
{ |
1031 | 1031 |
return new DistMap(g); |
1032 | 1032 |
} |
1033 | 1033 |
|
1034 | 1034 |
///The type of the shortest paths. |
1035 | 1035 |
|
1036 | 1036 |
///The type of the shortest paths. |
1037 | 1037 |
///It must meet the \ref concepts::Path "Path" concept. |
1038 | 1038 |
typedef lemon::Path<Digraph> Path; |
1039 | 1039 |
}; |
1040 | 1040 |
|
1041 | 1041 |
/// Default traits class used by \ref DijkstraWizard |
1042 | 1042 |
|
1043 | 1043 |
/// To make it easier to use Dijkstra algorithm |
1044 | 1044 |
/// we have created a wizard class. |
1045 | 1045 |
/// This \ref DijkstraWizard class needs default traits, |
1046 | 1046 |
/// as well as the \ref Dijkstra class. |
1047 | 1047 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
1048 | 1048 |
/// \ref DijkstraWizard class. |
1049 | 1049 |
template<class GR,class LM> |
1050 | 1050 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1051 | 1051 |
{ |
1052 | 1052 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1053 | 1053 |
protected: |
1054 | 1054 |
//The type of the nodes in the digraph. |
1055 | 1055 |
typedef typename Base::Digraph::Node Node; |
1056 | 1056 |
|
1057 | 1057 |
//Pointer to the digraph the algorithm runs on. |
1058 | 1058 |
void *_g; |
1059 | 1059 |
//Pointer to the length map. |
1060 | 1060 |
void *_length; |
1061 | 1061 |
//Pointer to the map of processed nodes. |
1062 | 1062 |
void *_processed; |
1063 | 1063 |
//Pointer to the map of predecessors arcs. |
1064 | 1064 |
void *_pred; |
1065 | 1065 |
//Pointer to the map of distances. |
1066 | 1066 |
void *_dist; |
1067 | 1067 |
//Pointer to the shortest path to the target node. |
1068 | 1068 |
void *_path; |
1069 | 1069 |
//Pointer to the distance of the target node. |
1070 | 1070 |
void *_di; |
1071 | 1071 |
|
1072 | 1072 |
public: |
1073 | 1073 |
/// Constructor. |
1074 | 1074 |
|
1075 | 1075 |
/// This constructor does not require parameters, therefore it initiates |
1076 | 1076 |
/// all of the attributes to \c 0. |
1077 | 1077 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1078 | 1078 |
_dist(0), _path(0), _di(0) {} |
1079 | 1079 |
|
1080 | 1080 |
/// Constructor. |
1081 | 1081 |
|
1082 | 1082 |
/// This constructor requires two parameters, |
1083 | 1083 |
/// others are initiated to \c 0. |
1084 | 1084 |
/// \param g The digraph the algorithm runs on. |
1085 | 1085 |
/// \param l The length map. |
1086 | 1086 |
DijkstraWizardBase(const GR &g,const LM &l) : |
1087 | 1087 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1088 | 1088 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1089 | 1089 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1090 | 1090 |
|
1091 | 1091 |
}; |
1092 | 1092 |
|
1093 | 1093 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1094 | 1094 |
|
1095 | 1095 |
/// This auxiliary class is created to implement the |
1096 | 1096 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1097 | 1097 |
/// It does not have own \ref run() method, it uses the functions |
1098 | 1098 |
/// and features of the plain \ref Dijkstra. |
1099 | 1099 |
/// |
1100 | 1100 |
/// This class should only be used through the \ref dijkstra() function, |
1101 | 1101 |
/// which makes it easier to use the algorithm. |
1102 | 1102 |
template<class TR> |
1103 | 1103 |
class DijkstraWizard : public TR |
1104 | 1104 |
{ |
1105 | 1105 |
typedef TR Base; |
1106 | 1106 |
|
1107 | 1107 |
///The type of the digraph the algorithm runs on. |
1108 | 1108 |
typedef typename TR::Digraph Digraph; |
1109 | 1109 |
|
1110 | 1110 |
typedef typename Digraph::Node Node; |
1111 | 1111 |
typedef typename Digraph::NodeIt NodeIt; |
1112 | 1112 |
typedef typename Digraph::Arc Arc; |
1113 | 1113 |
typedef typename Digraph::OutArcIt OutArcIt; |
1114 | 1114 |
|
1115 | 1115 |
///The type of the map that stores the arc lengths. |
1116 | 1116 |
typedef typename TR::LengthMap LengthMap; |
1117 | 1117 |
///The type of the length of the arcs. |
1118 | 1118 |
typedef typename LengthMap::Value Value; |
1119 | 1119 |
///\brief The type of the map that stores the predecessor |
1120 | 1120 |
///arcs of the shortest paths. |
1121 | 1121 |
typedef typename TR::PredMap PredMap; |
1122 | 1122 |
///The type of the map that stores the distances of the nodes. |
1123 | 1123 |
typedef typename TR::DistMap DistMap; |
1124 | 1124 |
///The type of the map that indicates which nodes are processed. |
1125 | 1125 |
typedef typename TR::ProcessedMap ProcessedMap; |
1126 | 1126 |
///The type of the shortest paths |
1127 | 1127 |
typedef typename TR::Path Path; |
1128 | 1128 |
///The heap type used by the dijkstra algorithm. |
1129 | 1129 |
typedef typename TR::Heap Heap; |
1130 | 1130 |
|
1131 | 1131 |
public: |
1132 | 1132 |
|
1133 | 1133 |
/// Constructor. |
1134 | 1134 |
DijkstraWizard() : TR() {} |
1135 | 1135 |
|
1136 | 1136 |
/// Constructor that requires parameters. |
1137 | 1137 |
|
1138 | 1138 |
/// Constructor that requires parameters. |
1139 | 1139 |
/// These parameters will be the default values for the traits class. |
1140 | 1140 |
/// \param g The digraph the algorithm runs on. |
1141 | 1141 |
/// \param l The length map. |
1142 | 1142 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1143 | 1143 |
TR(g,l) {} |
1144 | 1144 |
|
1145 | 1145 |
///Copy constructor |
1146 | 1146 |
DijkstraWizard(const TR &b) : TR(b) {} |
1147 | 1147 |
|
1148 | 1148 |
~DijkstraWizard() {} |
1149 | 1149 |
|
1150 | 1150 |
///Runs Dijkstra algorithm from the given source node. |
1151 | 1151 |
|
1152 | 1152 |
///This method runs %Dijkstra algorithm from the given source node |
1153 | 1153 |
///in order to compute the shortest path to each node. |
1154 | 1154 |
void run(Node s) |
1155 | 1155 |
{ |
1156 | 1156 |
Dijkstra<Digraph,LengthMap,TR> |
1157 | 1157 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1158 | 1158 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1159 | 1159 |
if (Base::_pred) |
1160 | 1160 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1161 | 1161 |
if (Base::_dist) |
1162 | 1162 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1163 | 1163 |
if (Base::_processed) |
1164 | 1164 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1165 | 1165 |
dijk.run(s); |
1166 | 1166 |
} |
1167 | 1167 |
|
1168 | 1168 |
///Finds the shortest path between \c s and \c t. |
1169 | 1169 |
|
1170 | 1170 |
///This method runs the %Dijkstra algorithm from node \c s |
1171 | 1171 |
///in order to compute the shortest path to node \c t |
1172 | 1172 |
///(it stops searching when \c t is processed). |
1173 | 1173 |
/// |
1174 | 1174 |
///\return \c true if \c t is reachable form \c s. |
1175 | 1175 |
bool run(Node s, Node t) |
1176 | 1176 |
{ |
1177 | 1177 |
Dijkstra<Digraph,LengthMap,TR> |
1178 | 1178 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1179 | 1179 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1180 | 1180 |
if (Base::_pred) |
1181 | 1181 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1182 | 1182 |
if (Base::_dist) |
1183 | 1183 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1184 | 1184 |
if (Base::_processed) |
1185 | 1185 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1186 | 1186 |
dijk.run(s,t); |
1187 | 1187 |
if (Base::_path) |
1188 | 1188 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1189 | 1189 |
if (Base::_di) |
1190 | 1190 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1191 | 1191 |
return dijk.reached(t); |
1192 | 1192 |
} |
1193 | 1193 |
|
1194 | 1194 |
template<class T> |
1195 | 1195 |
struct SetPredMapBase : public Base { |
1196 | 1196 |
typedef T PredMap; |
1197 | 1197 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1198 | 1198 |
SetPredMapBase(const TR &b) : TR(b) {} |
1199 | 1199 |
}; |
1200 | 1200 |
///\brief \ref named-func-param "Named parameter" |
1201 |
///for setting |
|
1201 |
///for setting PredMap object. |
|
1202 | 1202 |
/// |
1203 | 1203 |
///\ref named-func-param "Named parameter" |
1204 |
///for setting |
|
1204 |
///for setting PredMap object. |
|
1205 | 1205 |
template<class T> |
1206 | 1206 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1207 | 1207 |
{ |
1208 | 1208 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1209 | 1209 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1210 | 1210 |
} |
1211 | 1211 |
|
1212 | 1212 |
template<class T> |
1213 | 1213 |
struct SetDistMapBase : public Base { |
1214 | 1214 |
typedef T DistMap; |
1215 | 1215 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1216 | 1216 |
SetDistMapBase(const TR &b) : TR(b) {} |
1217 | 1217 |
}; |
1218 | 1218 |
///\brief \ref named-func-param "Named parameter" |
1219 |
///for setting |
|
1219 |
///for setting DistMap object. |
|
1220 | 1220 |
/// |
1221 | 1221 |
///\ref named-func-param "Named parameter" |
1222 |
///for setting |
|
1222 |
///for setting DistMap object. |
|
1223 | 1223 |
template<class T> |
1224 | 1224 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1225 | 1225 |
{ |
1226 | 1226 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1227 | 1227 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1228 | 1228 |
} |
1229 | 1229 |
|
1230 | 1230 |
template<class T> |
1231 | 1231 |
struct SetProcessedMapBase : public Base { |
1232 | 1232 |
typedef T ProcessedMap; |
1233 | 1233 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1234 | 1234 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1235 | 1235 |
}; |
1236 | 1236 |
///\brief \ref named-func-param "Named parameter" |
1237 |
///for setting |
|
1237 |
///for setting ProcessedMap object. |
|
1238 | 1238 |
/// |
1239 | 1239 |
/// \ref named-func-param "Named parameter" |
1240 |
///for setting |
|
1240 |
///for setting ProcessedMap object. |
|
1241 | 1241 |
template<class T> |
1242 | 1242 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1243 | 1243 |
{ |
1244 | 1244 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1245 | 1245 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1246 | 1246 |
} |
1247 | 1247 |
|
1248 | 1248 |
template<class T> |
1249 | 1249 |
struct SetPathBase : public Base { |
1250 | 1250 |
typedef T Path; |
1251 | 1251 |
SetPathBase(const TR &b) : TR(b) {} |
1252 | 1252 |
}; |
1253 | 1253 |
///\brief \ref named-func-param "Named parameter" |
1254 | 1254 |
///for getting the shortest path to the target node. |
1255 | 1255 |
/// |
1256 | 1256 |
///\ref named-func-param "Named parameter" |
1257 | 1257 |
///for getting the shortest path to the target node. |
1258 | 1258 |
template<class T> |
1259 | 1259 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1260 | 1260 |
{ |
1261 | 1261 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1262 | 1262 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1263 | 1263 |
} |
1264 | 1264 |
|
1265 | 1265 |
///\brief \ref named-func-param "Named parameter" |
1266 | 1266 |
///for getting the distance of the target node. |
1267 | 1267 |
/// |
1268 | 1268 |
///\ref named-func-param "Named parameter" |
1269 | 1269 |
///for getting the distance of the target node. |
1270 | 1270 |
DijkstraWizard dist(const Value &d) |
1271 | 1271 |
{ |
1272 | 1272 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1273 | 1273 |
return *this; |
1274 | 1274 |
} |
1275 | 1275 |
|
1276 | 1276 |
}; |
1277 | 1277 |
|
1278 | 1278 |
///Function-type interface for Dijkstra algorithm. |
1279 | 1279 |
|
1280 | 1280 |
/// \ingroup shortest_path |
1281 | 1281 |
///Function-type interface for Dijkstra algorithm. |
1282 | 1282 |
/// |
1283 | 1283 |
///This function also has several \ref named-func-param "named parameters", |
1284 | 1284 |
///they are declared as the members of class \ref DijkstraWizard. |
1285 | 1285 |
///The following examples show how to use these parameters. |
1286 | 1286 |
///\code |
1287 | 1287 |
/// // Compute shortest path from node s to each node |
1288 | 1288 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1289 | 1289 |
/// |
1290 | 1290 |
/// // Compute shortest path from s to t |
1291 | 1291 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1292 | 1292 |
///\endcode |
1293 | 1293 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
1294 | 1294 |
///to the end of the parameter list. |
1295 | 1295 |
///\sa DijkstraWizard |
1296 | 1296 |
///\sa Dijkstra |
1297 | 1297 |
template<class GR, class LM> |
1298 | 1298 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1299 | 1299 |
dijkstra(const GR &digraph, const LM &length) |
1300 | 1300 |
{ |
1301 | 1301 |
return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length); |
1302 | 1302 |
} |
1303 | 1303 |
|
1304 | 1304 |
} //END OF NAMESPACE LEMON |
1305 | 1305 |
|
1306 | 1306 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
|
28 | 28 |
///\file |
29 | 29 |
///\ingroup maps |
30 | 30 |
///\brief Miscellaneous property maps |
31 | 31 |
|
32 | 32 |
#include <map> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup maps |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// Base class of maps. |
40 | 40 |
|
41 | 41 |
/// Base class of maps. It provides the necessary type definitions |
42 | 42 |
/// required by the map %concepts. |
43 | 43 |
template<typename K, typename V> |
44 | 44 |
class MapBase { |
45 | 45 |
public: |
46 | 46 |
/// \biref The key type of the map. |
47 | 47 |
typedef K Key; |
48 | 48 |
/// \brief The value type of the map. |
49 | 49 |
/// (The type of objects associated with the keys). |
50 | 50 |
typedef V Value; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
|
54 | 54 |
/// Null map. (a.k.a. DoNothingMap) |
55 | 55 |
|
56 | 56 |
/// This map can be used if you have to provide a map only for |
57 | 57 |
/// its type definitions, or if you have to provide a writable map, |
58 | 58 |
/// but data written to it is not required (i.e. it will be sent to |
59 | 59 |
/// <tt>/dev/null</tt>). |
60 | 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
61 | 61 |
/// |
62 | 62 |
/// \sa ConstMap |
63 | 63 |
template<typename K, typename V> |
64 | 64 |
class NullMap : public MapBase<K, V> { |
65 | 65 |
public: |
66 | 66 |
typedef MapBase<K, V> Parent; |
67 | 67 |
typedef typename Parent::Key Key; |
68 | 68 |
typedef typename Parent::Value Value; |
69 | 69 |
|
70 | 70 |
/// Gives back a default constructed element. |
71 | 71 |
Value operator[](const Key&) const { return Value(); } |
72 | 72 |
/// Absorbs the value. |
73 | 73 |
void set(const Key&, const Value&) {} |
74 | 74 |
}; |
75 | 75 |
|
76 |
/// Returns a \ref NullMap class |
|
77 |
|
|
78 |
/// |
|
76 |
/// Returns a \c NullMap class |
|
77 |
|
|
78 |
/// This function just returns a \c NullMap class. |
|
79 | 79 |
/// \relates NullMap |
80 | 80 |
template <typename K, typename V> |
81 | 81 |
NullMap<K, V> nullMap() { |
82 | 82 |
return NullMap<K, V>(); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 |
/// In other aspects it is equivalent to \ |
|
91 |
/// In other aspects it is equivalent to \c NullMap. |
|
92 | 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
95 | 95 |
/// The simplest way of using this map is through the constMap() |
96 | 96 |
/// function. |
97 | 97 |
/// |
98 | 98 |
/// \sa NullMap |
99 | 99 |
/// \sa IdentityMap |
100 | 100 |
template<typename K, typename V> |
101 | 101 |
class ConstMap : public MapBase<K, V> { |
102 | 102 |
private: |
103 | 103 |
V _value; |
104 | 104 |
public: |
105 | 105 |
typedef MapBase<K, V> Parent; |
106 | 106 |
typedef typename Parent::Key Key; |
107 | 107 |
typedef typename Parent::Value Value; |
108 | 108 |
|
109 | 109 |
/// Default constructor |
110 | 110 |
|
111 | 111 |
/// Default constructor. |
112 | 112 |
/// The value of the map will be default constructed. |
113 | 113 |
ConstMap() {} |
114 | 114 |
|
115 | 115 |
/// Constructor with specified initial value |
116 | 116 |
|
117 | 117 |
/// Constructor with specified initial value. |
118 | 118 |
/// \param v The initial value of the map. |
119 | 119 |
ConstMap(const Value &v) : _value(v) {} |
120 | 120 |
|
121 | 121 |
/// Gives back the specified value. |
122 | 122 |
Value operator[](const Key&) const { return _value; } |
123 | 123 |
|
124 | 124 |
/// Absorbs the value. |
125 | 125 |
void set(const Key&, const Value&) {} |
126 | 126 |
|
127 | 127 |
/// Sets the value that is assigned to each key. |
128 | 128 |
void setAll(const Value &v) { |
129 | 129 |
_value = v; |
130 | 130 |
} |
131 | 131 |
|
132 | 132 |
template<typename V1> |
133 | 133 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
134 | 134 |
}; |
135 | 135 |
|
136 |
/// Returns a \ref ConstMap class |
|
137 |
|
|
138 |
/// |
|
136 |
/// Returns a \c ConstMap class |
|
137 |
|
|
138 |
/// This function just returns a \c ConstMap class. |
|
139 | 139 |
/// \relates ConstMap |
140 | 140 |
template<typename K, typename V> |
141 | 141 |
inline ConstMap<K, V> constMap(const V &v) { |
142 | 142 |
return ConstMap<K, V>(v); |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
template<typename K, typename V> |
146 | 146 |
inline ConstMap<K, V> constMap() { |
147 | 147 |
return ConstMap<K, V>(); |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
template<typename T, T v> |
152 | 152 |
struct Const {}; |
153 | 153 |
|
154 | 154 |
/// Constant map with inlined constant value. |
155 | 155 |
|
156 | 156 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
157 | 157 |
/// value to each key. |
158 | 158 |
/// |
159 |
/// In other aspects it is equivalent to \ |
|
159 |
/// In other aspects it is equivalent to \c NullMap. |
|
160 | 160 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
161 | 161 |
/// concept, but it absorbs the data written to it. |
162 | 162 |
/// |
163 | 163 |
/// The simplest way of using this map is through the constMap() |
164 | 164 |
/// function. |
165 | 165 |
/// |
166 | 166 |
/// \sa NullMap |
167 | 167 |
/// \sa IdentityMap |
168 | 168 |
template<typename K, typename V, V v> |
169 | 169 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
170 | 170 |
public: |
171 | 171 |
typedef MapBase<K, V> Parent; |
172 | 172 |
typedef typename Parent::Key Key; |
173 | 173 |
typedef typename Parent::Value Value; |
174 | 174 |
|
175 | 175 |
/// Constructor. |
176 | 176 |
ConstMap() {} |
177 | 177 |
|
178 | 178 |
/// Gives back the specified value. |
179 | 179 |
Value operator[](const Key&) const { return v; } |
180 | 180 |
|
181 | 181 |
/// Absorbs the value. |
182 | 182 |
void set(const Key&, const Value&) {} |
183 | 183 |
}; |
184 | 184 |
|
185 |
/// Returns a \ref ConstMap class with inlined constant value |
|
186 |
|
|
187 |
/// |
|
185 |
/// Returns a \c ConstMap class with inlined constant value |
|
186 |
|
|
187 |
/// This function just returns a \c ConstMap class with inlined |
|
188 | 188 |
/// constant value. |
189 | 189 |
/// \relates ConstMap |
190 | 190 |
template<typename K, typename V, V v> |
191 | 191 |
inline ConstMap<K, Const<V, v> > constMap() { |
192 | 192 |
return ConstMap<K, Const<V, v> >(); |
193 | 193 |
} |
194 | 194 |
|
195 | 195 |
|
196 | 196 |
/// Identity map. |
197 | 197 |
|
198 | 198 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
199 | 199 |
/// key as value without any modification. |
200 | 200 |
/// |
201 | 201 |
/// \sa ConstMap |
202 | 202 |
template <typename T> |
203 | 203 |
class IdentityMap : public MapBase<T, T> { |
204 | 204 |
public: |
205 | 205 |
typedef MapBase<T, T> Parent; |
206 | 206 |
typedef typename Parent::Key Key; |
207 | 207 |
typedef typename Parent::Value Value; |
208 | 208 |
|
209 | 209 |
/// Gives back the given value without any modification. |
210 | 210 |
Value operator[](const Key &k) const { |
211 | 211 |
return k; |
212 | 212 |
} |
213 | 213 |
}; |
214 | 214 |
|
215 |
/// Returns an \ref IdentityMap class |
|
216 |
|
|
217 |
/// |
|
215 |
/// Returns an \c IdentityMap class |
|
216 |
|
|
217 |
/// This function just returns an \c IdentityMap class. |
|
218 | 218 |
/// \relates IdentityMap |
219 | 219 |
template<typename T> |
220 | 220 |
inline IdentityMap<T> identityMap() { |
221 | 221 |
return IdentityMap<T>(); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
|
225 | 225 |
/// \brief Map for storing values for integer keys from the range |
226 | 226 |
/// <tt>[0..size-1]</tt>. |
227 | 227 |
/// |
228 | 228 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
229 | 229 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
230 | 230 |
/// It can be used with some data structures, for example |
231 |
/// \ |
|
231 |
/// \c UnionFind, \c BinHeap, when the used items are small |
|
232 | 232 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
233 | 233 |
/// "ReferenceMap" concept. |
234 | 234 |
/// |
235 | 235 |
/// The simplest way of using this map is through the rangeMap() |
236 | 236 |
/// function. |
237 | 237 |
template <typename V> |
238 | 238 |
class RangeMap : public MapBase<int, V> { |
239 | 239 |
template <typename V1> |
240 | 240 |
friend class RangeMap; |
241 | 241 |
private: |
242 | 242 |
|
243 | 243 |
typedef std::vector<V> Vector; |
244 | 244 |
Vector _vector; |
245 | 245 |
|
246 | 246 |
public: |
247 | 247 |
|
248 | 248 |
typedef MapBase<int, V> Parent; |
249 | 249 |
/// Key type |
250 | 250 |
typedef typename Parent::Key Key; |
251 | 251 |
/// Value type |
252 | 252 |
typedef typename Parent::Value Value; |
253 | 253 |
/// Reference type |
254 | 254 |
typedef typename Vector::reference Reference; |
255 | 255 |
/// Const reference type |
256 | 256 |
typedef typename Vector::const_reference ConstReference; |
257 | 257 |
|
258 | 258 |
typedef True ReferenceMapTag; |
259 | 259 |
|
260 | 260 |
public: |
261 | 261 |
|
262 | 262 |
/// Constructor with specified default value. |
263 | 263 |
RangeMap(int size = 0, const Value &value = Value()) |
264 | 264 |
: _vector(size, value) {} |
265 | 265 |
|
266 | 266 |
/// Constructs the map from an appropriate \c std::vector. |
267 | 267 |
template <typename V1> |
268 | 268 |
RangeMap(const std::vector<V1>& vector) |
269 | 269 |
: _vector(vector.begin(), vector.end()) {} |
270 | 270 |
|
271 |
/// Constructs the map from another \ |
|
271 |
/// Constructs the map from another \c RangeMap. |
|
272 | 272 |
template <typename V1> |
273 | 273 |
RangeMap(const RangeMap<V1> &c) |
274 | 274 |
: _vector(c._vector.begin(), c._vector.end()) {} |
275 | 275 |
|
276 | 276 |
/// Returns the size of the map. |
277 | 277 |
int size() { |
278 | 278 |
return _vector.size(); |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
/// Resizes the map. |
282 | 282 |
|
283 | 283 |
/// Resizes the underlying \c std::vector container, so changes the |
284 | 284 |
/// keyset of the map. |
285 | 285 |
/// \param size The new size of the map. The new keyset will be the |
286 | 286 |
/// range <tt>[0..size-1]</tt>. |
287 | 287 |
/// \param value The default value to assign to the new keys. |
288 | 288 |
void resize(int size, const Value &value = Value()) { |
289 | 289 |
_vector.resize(size, value); |
290 | 290 |
} |
291 | 291 |
|
292 | 292 |
private: |
293 | 293 |
|
294 | 294 |
RangeMap& operator=(const RangeMap&); |
295 | 295 |
|
296 | 296 |
public: |
297 | 297 |
|
298 | 298 |
///\e |
299 | 299 |
Reference operator[](const Key &k) { |
300 | 300 |
return _vector[k]; |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
///\e |
304 | 304 |
ConstReference operator[](const Key &k) const { |
305 | 305 |
return _vector[k]; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
///\e |
309 | 309 |
void set(const Key &k, const Value &v) { |
310 | 310 |
_vector[k] = v; |
311 | 311 |
} |
312 | 312 |
}; |
313 | 313 |
|
314 |
/// Returns a \ref RangeMap class |
|
315 |
|
|
316 |
/// |
|
314 |
/// Returns a \c RangeMap class |
|
315 |
|
|
316 |
/// This function just returns a \c RangeMap class. |
|
317 | 317 |
/// \relates RangeMap |
318 | 318 |
template<typename V> |
319 | 319 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
320 | 320 |
return RangeMap<V>(size, value); |
321 | 321 |
} |
322 | 322 |
|
323 |
/// \brief Returns a \ |
|
323 |
/// \brief Returns a \c RangeMap class created from an appropriate |
|
324 | 324 |
/// \c std::vector |
325 | 325 |
|
326 |
/// This function just returns a \ |
|
326 |
/// This function just returns a \c RangeMap class created from an |
|
327 | 327 |
/// appropriate \c std::vector. |
328 | 328 |
/// \relates RangeMap |
329 | 329 |
template<typename V> |
330 | 330 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
331 | 331 |
return RangeMap<V>(vector); |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
|
335 | 335 |
/// Map type based on \c std::map |
336 | 336 |
|
337 | 337 |
/// This map is essentially a wrapper for \c std::map with addition |
338 | 338 |
/// that you can specify a default value for the keys that are not |
339 | 339 |
/// stored actually. This value can be different from the default |
340 | 340 |
/// contructed value (i.e. \c %Value()). |
341 | 341 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
342 | 342 |
/// concept. |
343 | 343 |
/// |
344 | 344 |
/// This map is useful if a default value should be assigned to most of |
345 | 345 |
/// the keys and different values should be assigned only to a few |
346 | 346 |
/// keys (i.e. the map is "sparse"). |
347 | 347 |
/// The name of this type also refers to this important usage. |
348 | 348 |
/// |
349 | 349 |
/// Apart form that this map can be used in many other cases since it |
350 | 350 |
/// is based on \c std::map, which is a general associative container. |
351 | 351 |
/// However keep in mind that it is usually not as efficient as other |
352 | 352 |
/// maps. |
353 | 353 |
/// |
354 | 354 |
/// The simplest way of using this map is through the sparseMap() |
355 | 355 |
/// function. |
356 | 356 |
template <typename K, typename V, typename Compare = std::less<K> > |
357 | 357 |
class SparseMap : public MapBase<K, V> { |
358 | 358 |
template <typename K1, typename V1, typename C1> |
359 | 359 |
friend class SparseMap; |
360 | 360 |
public: |
361 | 361 |
|
362 | 362 |
typedef MapBase<K, V> Parent; |
363 | 363 |
/// Key type |
364 | 364 |
typedef typename Parent::Key Key; |
365 | 365 |
/// Value type |
366 | 366 |
typedef typename Parent::Value Value; |
367 | 367 |
/// Reference type |
368 | 368 |
typedef Value& Reference; |
369 | 369 |
/// Const reference type |
370 | 370 |
typedef const Value& ConstReference; |
371 | 371 |
|
372 | 372 |
typedef True ReferenceMapTag; |
373 | 373 |
|
374 | 374 |
private: |
375 | 375 |
|
376 | 376 |
typedef std::map<K, V, Compare> Map; |
377 | 377 |
Map _map; |
378 | 378 |
Value _value; |
379 | 379 |
|
380 | 380 |
public: |
381 | 381 |
|
382 | 382 |
/// \brief Constructor with specified default value. |
383 | 383 |
SparseMap(const Value &value = Value()) : _value(value) {} |
384 | 384 |
/// \brief Constructs the map from an appropriate \c std::map, and |
385 | 385 |
/// explicitly specifies a default value. |
386 | 386 |
template <typename V1, typename Comp1> |
387 | 387 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
388 | 388 |
const Value &value = Value()) |
389 | 389 |
: _map(map.begin(), map.end()), _value(value) {} |
390 | 390 |
|
391 |
/// \brief Constructs the map from another \ |
|
391 |
/// \brief Constructs the map from another \c SparseMap. |
|
392 | 392 |
template<typename V1, typename Comp1> |
393 | 393 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
394 | 394 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
395 | 395 |
|
396 | 396 |
private: |
397 | 397 |
|
398 | 398 |
SparseMap& operator=(const SparseMap&); |
399 | 399 |
|
400 | 400 |
public: |
401 | 401 |
|
402 | 402 |
///\e |
403 | 403 |
Reference operator[](const Key &k) { |
404 | 404 |
typename Map::iterator it = _map.lower_bound(k); |
405 | 405 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
406 | 406 |
return it->second; |
407 | 407 |
else |
408 | 408 |
return _map.insert(it, std::make_pair(k, _value))->second; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
///\e |
412 | 412 |
ConstReference operator[](const Key &k) const { |
413 | 413 |
typename Map::const_iterator it = _map.find(k); |
414 | 414 |
if (it != _map.end()) |
415 | 415 |
return it->second; |
416 | 416 |
else |
417 | 417 |
return _value; |
418 | 418 |
} |
419 | 419 |
|
420 | 420 |
///\e |
421 | 421 |
void set(const Key &k, const Value &v) { |
422 | 422 |
typename Map::iterator it = _map.lower_bound(k); |
423 | 423 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
424 | 424 |
it->second = v; |
425 | 425 |
else |
426 | 426 |
_map.insert(it, std::make_pair(k, v)); |
427 | 427 |
} |
428 | 428 |
|
429 | 429 |
///\e |
430 | 430 |
void setAll(const Value &v) { |
431 | 431 |
_value = v; |
432 | 432 |
_map.clear(); |
433 | 433 |
} |
434 | 434 |
}; |
435 | 435 |
|
436 |
/// Returns a \ref SparseMap class |
|
437 |
|
|
438 |
/// |
|
436 |
/// Returns a \c SparseMap class |
|
437 |
|
|
438 |
/// This function just returns a \c SparseMap class with specified |
|
439 | 439 |
/// default value. |
440 | 440 |
/// \relates SparseMap |
441 | 441 |
template<typename K, typename V, typename Compare> |
442 | 442 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
443 | 443 |
return SparseMap<K, V, Compare>(value); |
444 | 444 |
} |
445 | 445 |
|
446 | 446 |
template<typename K, typename V> |
447 | 447 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
448 | 448 |
return SparseMap<K, V, std::less<K> >(value); |
449 | 449 |
} |
450 | 450 |
|
451 |
/// \brief Returns a \ |
|
451 |
/// \brief Returns a \c SparseMap class created from an appropriate |
|
452 | 452 |
/// \c std::map |
453 | 453 |
|
454 |
/// This function just returns a \ |
|
454 |
/// This function just returns a \c SparseMap class created from an |
|
455 | 455 |
/// appropriate \c std::map. |
456 | 456 |
/// \relates SparseMap |
457 | 457 |
template<typename K, typename V, typename Compare> |
458 | 458 |
inline SparseMap<K, V, Compare> |
459 | 459 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
460 | 460 |
{ |
461 | 461 |
return SparseMap<K, V, Compare>(map, value); |
462 | 462 |
} |
463 | 463 |
|
464 | 464 |
/// @} |
465 | 465 |
|
466 | 466 |
/// \addtogroup map_adaptors |
467 | 467 |
/// @{ |
468 | 468 |
|
469 | 469 |
/// Composition of two maps |
470 | 470 |
|
471 | 471 |
/// This \ref concepts::ReadMap "read-only map" returns the |
472 | 472 |
/// composition of two given maps. That is to say, if \c m1 is of |
473 | 473 |
/// type \c M1 and \c m2 is of \c M2, then for |
474 | 474 |
/// \code |
475 | 475 |
/// ComposeMap<M1, M2> cm(m1,m2); |
476 | 476 |
/// \endcode |
477 | 477 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
478 | 478 |
/// |
479 | 479 |
/// The \c Key type of the map is inherited from \c M2 and the |
480 | 480 |
/// \c Value type is from \c M1. |
481 | 481 |
/// \c M2::Value must be convertible to \c M1::Key. |
482 | 482 |
/// |
483 | 483 |
/// The simplest way of using this map is through the composeMap() |
484 | 484 |
/// function. |
485 | 485 |
/// |
486 | 486 |
/// \sa CombineMap |
487 | 487 |
template <typename M1, typename M2> |
488 | 488 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
489 | 489 |
const M1 &_m1; |
490 | 490 |
const M2 &_m2; |
491 | 491 |
public: |
492 | 492 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
493 | 493 |
typedef typename Parent::Key Key; |
494 | 494 |
typedef typename Parent::Value Value; |
495 | 495 |
|
496 | 496 |
/// Constructor |
497 | 497 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
498 | 498 |
|
499 | 499 |
/// \e |
500 | 500 |
typename MapTraits<M1>::ConstReturnValue |
501 | 501 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
502 | 502 |
}; |
503 | 503 |
|
504 |
/// Returns a \ref ComposeMap class |
|
505 |
|
|
506 |
/// |
|
504 |
/// Returns a \c ComposeMap class |
|
505 |
|
|
506 |
/// This function just returns a \c ComposeMap class. |
|
507 | 507 |
/// |
508 | 508 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
509 | 509 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
510 | 510 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
511 | 511 |
/// |
512 | 512 |
/// \relates ComposeMap |
513 | 513 |
template <typename M1, typename M2> |
514 | 514 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
515 | 515 |
return ComposeMap<M1, M2>(m1, m2); |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
|
519 | 519 |
/// Combination of two maps using an STL (binary) functor. |
520 | 520 |
|
521 | 521 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
522 | 522 |
/// binary functor and returns the combination of the two given maps |
523 | 523 |
/// using the functor. |
524 | 524 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
525 | 525 |
/// and \c f is of \c F, then for |
526 | 526 |
/// \code |
527 | 527 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
528 | 528 |
/// \endcode |
529 | 529 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
530 | 530 |
/// |
531 | 531 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
532 | 532 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
533 | 533 |
/// \c M2::Value and \c M1::Value must be convertible to the |
534 | 534 |
/// corresponding input parameter of \c F and the return type of \c F |
535 | 535 |
/// must be convertible to \c V. |
536 | 536 |
/// |
537 | 537 |
/// The simplest way of using this map is through the combineMap() |
538 | 538 |
/// function. |
539 | 539 |
/// |
540 | 540 |
/// \sa ComposeMap |
541 | 541 |
template<typename M1, typename M2, typename F, |
542 | 542 |
typename V = typename F::result_type> |
543 | 543 |
class CombineMap : public MapBase<typename M1::Key, V> { |
544 | 544 |
const M1 &_m1; |
545 | 545 |
const M2 &_m2; |
546 | 546 |
F _f; |
547 | 547 |
public: |
548 | 548 |
typedef MapBase<typename M1::Key, V> Parent; |
549 | 549 |
typedef typename Parent::Key Key; |
550 | 550 |
typedef typename Parent::Value Value; |
551 | 551 |
|
552 | 552 |
/// Constructor |
553 | 553 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
554 | 554 |
: _m1(m1), _m2(m2), _f(f) {} |
555 | 555 |
/// \e |
556 | 556 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
557 | 557 |
}; |
558 | 558 |
|
559 |
/// Returns a \ref CombineMap class |
|
560 |
|
|
561 |
/// |
|
559 |
/// Returns a \c CombineMap class |
|
560 |
|
|
561 |
/// This function just returns a \c CombineMap class. |
|
562 | 562 |
/// |
563 | 563 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
564 | 564 |
/// values, then |
565 | 565 |
/// \code |
566 | 566 |
/// combineMap(m1,m2,std::plus<double>()) |
567 | 567 |
/// \endcode |
568 | 568 |
/// is equivalent to |
569 | 569 |
/// \code |
570 | 570 |
/// addMap(m1,m2) |
571 | 571 |
/// \endcode |
572 | 572 |
/// |
573 | 573 |
/// This function is specialized for adaptable binary function |
574 | 574 |
/// classes and C++ functions. |
575 | 575 |
/// |
576 | 576 |
/// \relates CombineMap |
577 | 577 |
template<typename M1, typename M2, typename F, typename V> |
578 | 578 |
inline CombineMap<M1, M2, F, V> |
579 | 579 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
580 | 580 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
template<typename M1, typename M2, typename F> |
584 | 584 |
inline CombineMap<M1, M2, F, typename F::result_type> |
585 | 585 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
586 | 586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
587 | 587 |
} |
588 | 588 |
|
589 | 589 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
590 | 590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
591 | 591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
592 | 592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
|
596 | 596 |
/// Converts an STL style (unary) functor to a map |
597 | 597 |
|
598 | 598 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
599 | 599 |
/// of a given functor. Actually, it just wraps the functor and |
600 | 600 |
/// provides the \c Key and \c Value typedefs. |
601 | 601 |
/// |
602 | 602 |
/// Template parameters \c K and \c V will become its \c Key and |
603 | 603 |
/// \c Value. In most cases they have to be given explicitly because |
604 | 604 |
/// a functor typically does not provide \c argument_type and |
605 | 605 |
/// \c result_type typedefs. |
606 | 606 |
/// Parameter \c F is the type of the used functor. |
607 | 607 |
/// |
608 | 608 |
/// The simplest way of using this map is through the functorToMap() |
609 | 609 |
/// function. |
610 | 610 |
/// |
611 | 611 |
/// \sa MapToFunctor |
612 | 612 |
template<typename F, |
613 | 613 |
typename K = typename F::argument_type, |
614 | 614 |
typename V = typename F::result_type> |
615 | 615 |
class FunctorToMap : public MapBase<K, V> { |
616 | 616 |
F _f; |
617 | 617 |
public: |
618 | 618 |
typedef MapBase<K, V> Parent; |
619 | 619 |
typedef typename Parent::Key Key; |
620 | 620 |
typedef typename Parent::Value Value; |
621 | 621 |
|
622 | 622 |
/// Constructor |
623 | 623 |
FunctorToMap(const F &f = F()) : _f(f) {} |
624 | 624 |
/// \e |
625 | 625 |
Value operator[](const Key &k) const { return _f(k); } |
626 | 626 |
}; |
627 | 627 |
|
628 |
/// Returns a \ref FunctorToMap class |
|
629 |
|
|
630 |
/// |
|
628 |
/// Returns a \c FunctorToMap class |
|
629 |
|
|
630 |
/// This function just returns a \c FunctorToMap class. |
|
631 | 631 |
/// |
632 | 632 |
/// This function is specialized for adaptable binary function |
633 | 633 |
/// classes and C++ functions. |
634 | 634 |
/// |
635 | 635 |
/// \relates FunctorToMap |
636 | 636 |
template<typename K, typename V, typename F> |
637 | 637 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
638 | 638 |
return FunctorToMap<F, K, V>(f); |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
template <typename F> |
642 | 642 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
643 | 643 |
functorToMap(const F &f) |
644 | 644 |
{ |
645 | 645 |
return FunctorToMap<F, typename F::argument_type, |
646 | 646 |
typename F::result_type>(f); |
647 | 647 |
} |
648 | 648 |
|
649 | 649 |
template <typename K, typename V> |
650 | 650 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
651 | 651 |
return FunctorToMap<V (*)(K), K, V>(f); |
652 | 652 |
} |
653 | 653 |
|
654 | 654 |
|
655 | 655 |
/// Converts a map to an STL style (unary) functor |
656 | 656 |
|
657 | 657 |
/// This class converts a map to an STL style (unary) functor. |
658 | 658 |
/// That is it provides an <tt>operator()</tt> to read its values. |
659 | 659 |
/// |
660 | 660 |
/// For the sake of convenience it also works as a usual |
661 | 661 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
662 | 662 |
/// and the \c Key and \c Value typedefs also exist. |
663 | 663 |
/// |
664 | 664 |
/// The simplest way of using this map is through the mapToFunctor() |
665 | 665 |
/// function. |
666 | 666 |
/// |
667 | 667 |
///\sa FunctorToMap |
668 | 668 |
template <typename M> |
669 | 669 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
670 | 670 |
const M &_m; |
671 | 671 |
public: |
672 | 672 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
673 | 673 |
typedef typename Parent::Key Key; |
674 | 674 |
typedef typename Parent::Value Value; |
675 | 675 |
|
676 | 676 |
typedef typename Parent::Key argument_type; |
677 | 677 |
typedef typename Parent::Value result_type; |
678 | 678 |
|
679 | 679 |
/// Constructor |
680 | 680 |
MapToFunctor(const M &m) : _m(m) {} |
681 | 681 |
/// \e |
682 | 682 |
Value operator()(const Key &k) const { return _m[k]; } |
683 | 683 |
/// \e |
684 | 684 |
Value operator[](const Key &k) const { return _m[k]; } |
685 | 685 |
}; |
686 | 686 |
|
687 |
/// Returns a \ref MapToFunctor class |
|
688 |
|
|
689 |
/// |
|
687 |
/// Returns a \c MapToFunctor class |
|
688 |
|
|
689 |
/// This function just returns a \c MapToFunctor class. |
|
690 | 690 |
/// \relates MapToFunctor |
691 | 691 |
template<typename M> |
692 | 692 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
693 | 693 |
return MapToFunctor<M>(m); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
|
697 | 697 |
/// \brief Map adaptor to convert the \c Value type of a map to |
698 | 698 |
/// another type using the default conversion. |
699 | 699 |
|
700 | 700 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
701 | 701 |
/// "readable map" to another type using the default conversion. |
702 | 702 |
/// The \c Key type of it is inherited from \c M and the \c Value |
703 | 703 |
/// type is \c V. |
704 | 704 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
705 | 705 |
/// |
706 | 706 |
/// The simplest way of using this map is through the convertMap() |
707 | 707 |
/// function. |
708 | 708 |
template <typename M, typename V> |
709 | 709 |
class ConvertMap : public MapBase<typename M::Key, V> { |
710 | 710 |
const M &_m; |
711 | 711 |
public: |
712 | 712 |
typedef MapBase<typename M::Key, V> Parent; |
713 | 713 |
typedef typename Parent::Key Key; |
714 | 714 |
typedef typename Parent::Value Value; |
715 | 715 |
|
716 | 716 |
/// Constructor |
717 | 717 |
|
718 | 718 |
/// Constructor. |
719 | 719 |
/// \param m The underlying map. |
720 | 720 |
ConvertMap(const M &m) : _m(m) {} |
721 | 721 |
|
722 | 722 |
/// \e |
723 | 723 |
Value operator[](const Key &k) const { return _m[k]; } |
724 | 724 |
}; |
725 | 725 |
|
726 |
/// Returns a \ref ConvertMap class |
|
727 |
|
|
728 |
/// |
|
726 |
/// Returns a \c ConvertMap class |
|
727 |
|
|
728 |
/// This function just returns a \c ConvertMap class. |
|
729 | 729 |
/// \relates ConvertMap |
730 | 730 |
template<typename V, typename M> |
731 | 731 |
inline ConvertMap<M, V> convertMap(const M &map) { |
732 | 732 |
return ConvertMap<M, V>(map); |
733 | 733 |
} |
734 | 734 |
|
735 | 735 |
|
736 | 736 |
/// Applies all map setting operations to two maps |
737 | 737 |
|
738 | 738 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
739 | 739 |
/// and each write request will be passed to both of them. |
740 | 740 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
741 | 741 |
/// operations will return the corresponding values of \c M1. |
742 | 742 |
/// |
743 | 743 |
/// The \c Key and \c Value types are inherited from \c M1. |
744 | 744 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
745 | 745 |
/// of \c M1. |
746 | 746 |
/// |
747 | 747 |
/// The simplest way of using this map is through the forkMap() |
748 | 748 |
/// function. |
749 | 749 |
template<typename M1, typename M2> |
750 | 750 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
751 | 751 |
M1 &_m1; |
752 | 752 |
M2 &_m2; |
753 | 753 |
public: |
754 | 754 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
755 | 755 |
typedef typename Parent::Key Key; |
756 | 756 |
typedef typename Parent::Value Value; |
757 | 757 |
|
758 | 758 |
/// Constructor |
759 | 759 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
760 | 760 |
/// Returns the value associated with the given key in the first map. |
761 | 761 |
Value operator[](const Key &k) const { return _m1[k]; } |
762 | 762 |
/// Sets the value associated with the given key in both maps. |
763 | 763 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
764 | 764 |
}; |
765 | 765 |
|
766 |
/// Returns a \ref ForkMap class |
|
767 |
|
|
768 |
/// |
|
766 |
/// Returns a \c ForkMap class |
|
767 |
|
|
768 |
/// This function just returns a \c ForkMap class. |
|
769 | 769 |
/// \relates ForkMap |
770 | 770 |
template <typename M1, typename M2> |
771 | 771 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
772 | 772 |
return ForkMap<M1,M2>(m1,m2); |
773 | 773 |
} |
774 | 774 |
|
775 | 775 |
|
776 | 776 |
/// Sum of two maps |
777 | 777 |
|
778 | 778 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
779 | 779 |
/// of the values of the two given maps. |
780 | 780 |
/// Its \c Key and \c Value types are inherited from \c M1. |
781 | 781 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
782 | 782 |
/// \c M1. |
783 | 783 |
/// |
784 | 784 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
785 | 785 |
/// \code |
786 | 786 |
/// AddMap<M1,M2> am(m1,m2); |
787 | 787 |
/// \endcode |
788 | 788 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
789 | 789 |
/// |
790 | 790 |
/// The simplest way of using this map is through the addMap() |
791 | 791 |
/// function. |
792 | 792 |
/// |
793 | 793 |
/// \sa SubMap, MulMap, DivMap |
794 | 794 |
/// \sa ShiftMap, ShiftWriteMap |
795 | 795 |
template<typename M1, typename M2> |
796 | 796 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
797 | 797 |
const M1 &_m1; |
798 | 798 |
const M2 &_m2; |
799 | 799 |
public: |
800 | 800 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
801 | 801 |
typedef typename Parent::Key Key; |
802 | 802 |
typedef typename Parent::Value Value; |
803 | 803 |
|
804 | 804 |
/// Constructor |
805 | 805 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
806 | 806 |
/// \e |
807 | 807 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
808 | 808 |
}; |
809 | 809 |
|
810 |
/// Returns an \ref AddMap class |
|
811 |
|
|
812 |
/// |
|
810 |
/// Returns an \c AddMap class |
|
811 |
|
|
812 |
/// This function just returns an \c AddMap class. |
|
813 | 813 |
/// |
814 | 814 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
815 | 815 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
816 | 816 |
/// <tt>m1[x]+m2[x]</tt>. |
817 | 817 |
/// |
818 | 818 |
/// \relates AddMap |
819 | 819 |
template<typename M1, typename M2> |
820 | 820 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
821 | 821 |
return AddMap<M1, M2>(m1,m2); |
822 | 822 |
} |
823 | 823 |
|
824 | 824 |
|
825 | 825 |
/// Difference of two maps |
826 | 826 |
|
827 | 827 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
828 | 828 |
/// of the values of the two given maps. |
829 | 829 |
/// Its \c Key and \c Value types are inherited from \c M1. |
830 | 830 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
831 | 831 |
/// \c M1. |
832 | 832 |
/// |
833 | 833 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
834 | 834 |
/// \code |
835 | 835 |
/// SubMap<M1,M2> sm(m1,m2); |
836 | 836 |
/// \endcode |
837 | 837 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
838 | 838 |
/// |
839 | 839 |
/// The simplest way of using this map is through the subMap() |
840 | 840 |
/// function. |
841 | 841 |
/// |
842 | 842 |
/// \sa AddMap, MulMap, DivMap |
843 | 843 |
template<typename M1, typename M2> |
844 | 844 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
845 | 845 |
const M1 &_m1; |
846 | 846 |
const M2 &_m2; |
847 | 847 |
public: |
848 | 848 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
849 | 849 |
typedef typename Parent::Key Key; |
850 | 850 |
typedef typename Parent::Value Value; |
851 | 851 |
|
852 | 852 |
/// Constructor |
853 | 853 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
854 | 854 |
/// \e |
855 | 855 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
856 | 856 |
}; |
857 | 857 |
|
858 |
/// Returns a \ref SubMap class |
|
859 |
|
|
860 |
/// |
|
858 |
/// Returns a \c SubMap class |
|
859 |
|
|
860 |
/// This function just returns a \c SubMap class. |
|
861 | 861 |
/// |
862 | 862 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
863 | 863 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
864 | 864 |
/// <tt>m1[x]-m2[x]</tt>. |
865 | 865 |
/// |
866 | 866 |
/// \relates SubMap |
867 | 867 |
template<typename M1, typename M2> |
868 | 868 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
869 | 869 |
return SubMap<M1, M2>(m1,m2); |
870 | 870 |
} |
871 | 871 |
|
872 | 872 |
|
873 | 873 |
/// Product of two maps |
874 | 874 |
|
875 | 875 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
876 | 876 |
/// of the values of the two given maps. |
877 | 877 |
/// Its \c Key and \c Value types are inherited from \c M1. |
878 | 878 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
879 | 879 |
/// \c M1. |
880 | 880 |
/// |
881 | 881 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
882 | 882 |
/// \code |
883 | 883 |
/// MulMap<M1,M2> mm(m1,m2); |
884 | 884 |
/// \endcode |
885 | 885 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
886 | 886 |
/// |
887 | 887 |
/// The simplest way of using this map is through the mulMap() |
888 | 888 |
/// function. |
889 | 889 |
/// |
890 | 890 |
/// \sa AddMap, SubMap, DivMap |
891 | 891 |
/// \sa ScaleMap, ScaleWriteMap |
892 | 892 |
template<typename M1, typename M2> |
893 | 893 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
894 | 894 |
const M1 &_m1; |
895 | 895 |
const M2 &_m2; |
896 | 896 |
public: |
897 | 897 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
898 | 898 |
typedef typename Parent::Key Key; |
899 | 899 |
typedef typename Parent::Value Value; |
900 | 900 |
|
901 | 901 |
/// Constructor |
902 | 902 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
903 | 903 |
/// \e |
904 | 904 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
905 | 905 |
}; |
906 | 906 |
|
907 |
/// Returns a \ref MulMap class |
|
908 |
|
|
909 |
/// |
|
907 |
/// Returns a \c MulMap class |
|
908 |
|
|
909 |
/// This function just returns a \c MulMap class. |
|
910 | 910 |
/// |
911 | 911 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
912 | 912 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
913 | 913 |
/// <tt>m1[x]*m2[x]</tt>. |
914 | 914 |
/// |
915 | 915 |
/// \relates MulMap |
916 | 916 |
template<typename M1, typename M2> |
917 | 917 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
918 | 918 |
return MulMap<M1, M2>(m1,m2); |
919 | 919 |
} |
920 | 920 |
|
921 | 921 |
|
922 | 922 |
/// Quotient of two maps |
923 | 923 |
|
924 | 924 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
925 | 925 |
/// of the values of the two given maps. |
926 | 926 |
/// Its \c Key and \c Value types are inherited from \c M1. |
927 | 927 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
928 | 928 |
/// \c M1. |
929 | 929 |
/// |
930 | 930 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
931 | 931 |
/// \code |
932 | 932 |
/// DivMap<M1,M2> dm(m1,m2); |
933 | 933 |
/// \endcode |
934 | 934 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
935 | 935 |
/// |
936 | 936 |
/// The simplest way of using this map is through the divMap() |
937 | 937 |
/// function. |
938 | 938 |
/// |
939 | 939 |
/// \sa AddMap, SubMap, MulMap |
940 | 940 |
template<typename M1, typename M2> |
941 | 941 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
942 | 942 |
const M1 &_m1; |
943 | 943 |
const M2 &_m2; |
944 | 944 |
public: |
945 | 945 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
946 | 946 |
typedef typename Parent::Key Key; |
947 | 947 |
typedef typename Parent::Value Value; |
948 | 948 |
|
949 | 949 |
/// Constructor |
950 | 950 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
951 | 951 |
/// \e |
952 | 952 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
953 | 953 |
}; |
954 | 954 |
|
955 |
/// Returns a \ref DivMap class |
|
956 |
|
|
957 |
/// |
|
955 |
/// Returns a \c DivMap class |
|
956 |
|
|
957 |
/// This function just returns a \c DivMap class. |
|
958 | 958 |
/// |
959 | 959 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
960 | 960 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
961 | 961 |
/// <tt>m1[x]/m2[x]</tt>. |
962 | 962 |
/// |
963 | 963 |
/// \relates DivMap |
964 | 964 |
template<typename M1, typename M2> |
965 | 965 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
966 | 966 |
return DivMap<M1, M2>(m1,m2); |
967 | 967 |
} |
968 | 968 |
|
969 | 969 |
|
970 | 970 |
/// Shifts a map with a constant. |
971 | 971 |
|
972 | 972 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
973 | 973 |
/// the given map and a constant value (i.e. it shifts the map with |
974 | 974 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
975 | 975 |
/// |
976 | 976 |
/// Actually, |
977 | 977 |
/// \code |
978 | 978 |
/// ShiftMap<M> sh(m,v); |
979 | 979 |
/// \endcode |
980 | 980 |
/// is equivalent to |
981 | 981 |
/// \code |
982 | 982 |
/// ConstMap<M::Key, M::Value> cm(v); |
983 | 983 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
984 | 984 |
/// \endcode |
985 | 985 |
/// |
986 | 986 |
/// The simplest way of using this map is through the shiftMap() |
987 | 987 |
/// function. |
988 | 988 |
/// |
989 | 989 |
/// \sa ShiftWriteMap |
990 | 990 |
template<typename M, typename C = typename M::Value> |
991 | 991 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
992 | 992 |
const M &_m; |
993 | 993 |
C _v; |
994 | 994 |
public: |
995 | 995 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
996 | 996 |
typedef typename Parent::Key Key; |
997 | 997 |
typedef typename Parent::Value Value; |
998 | 998 |
|
999 | 999 |
/// Constructor |
1000 | 1000 |
|
1001 | 1001 |
/// Constructor. |
1002 | 1002 |
/// \param m The undelying map. |
1003 | 1003 |
/// \param v The constant value. |
1004 | 1004 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
1005 | 1005 |
/// \e |
1006 | 1006 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1007 | 1007 |
}; |
1008 | 1008 |
|
1009 | 1009 |
/// Shifts a map with a constant (read-write version). |
1010 | 1010 |
|
1011 | 1011 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
1012 | 1012 |
/// of the given map and a constant value (i.e. it shifts the map with |
1013 | 1013 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
1014 | 1014 |
/// It makes also possible to write the map. |
1015 | 1015 |
/// |
1016 | 1016 |
/// The simplest way of using this map is through the shiftWriteMap() |
1017 | 1017 |
/// function. |
1018 | 1018 |
/// |
1019 | 1019 |
/// \sa ShiftMap |
1020 | 1020 |
template<typename M, typename C = typename M::Value> |
1021 | 1021 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1022 | 1022 |
M &_m; |
1023 | 1023 |
C _v; |
1024 | 1024 |
public: |
1025 | 1025 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1026 | 1026 |
typedef typename Parent::Key Key; |
1027 | 1027 |
typedef typename Parent::Value Value; |
1028 | 1028 |
|
1029 | 1029 |
/// Constructor |
1030 | 1030 |
|
1031 | 1031 |
/// Constructor. |
1032 | 1032 |
/// \param m The undelying map. |
1033 | 1033 |
/// \param v The constant value. |
1034 | 1034 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1035 | 1035 |
/// \e |
1036 | 1036 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1037 | 1037 |
/// \e |
1038 | 1038 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
1039 | 1039 |
}; |
1040 | 1040 |
|
1041 |
/// Returns a \ref ShiftMap class |
|
1042 |
|
|
1043 |
/// |
|
1041 |
/// Returns a \c ShiftMap class |
|
1042 |
|
|
1043 |
/// This function just returns a \c ShiftMap class. |
|
1044 | 1044 |
/// |
1045 | 1045 |
/// For example, if \c m is a map with \c double values and \c v is |
1046 | 1046 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
1047 | 1047 |
/// <tt>m[x]+v</tt>. |
1048 | 1048 |
/// |
1049 | 1049 |
/// \relates ShiftMap |
1050 | 1050 |
template<typename M, typename C> |
1051 | 1051 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
1052 | 1052 |
return ShiftMap<M, C>(m,v); |
1053 | 1053 |
} |
1054 | 1054 |
|
1055 |
/// Returns a \ref ShiftWriteMap class |
|
1056 |
|
|
1057 |
/// |
|
1055 |
/// Returns a \c ShiftWriteMap class |
|
1056 |
|
|
1057 |
/// This function just returns a \c ShiftWriteMap class. |
|
1058 | 1058 |
/// |
1059 | 1059 |
/// For example, if \c m is a map with \c double values and \c v is |
1060 | 1060 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
1061 | 1061 |
/// <tt>m[x]+v</tt>. |
1062 | 1062 |
/// Moreover it makes also possible to write the map. |
1063 | 1063 |
/// |
1064 | 1064 |
/// \relates ShiftWriteMap |
1065 | 1065 |
template<typename M, typename C> |
1066 | 1066 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
1067 | 1067 |
return ShiftWriteMap<M, C>(m,v); |
1068 | 1068 |
} |
1069 | 1069 |
|
1070 | 1070 |
|
1071 | 1071 |
/// Scales a map with a constant. |
1072 | 1072 |
|
1073 | 1073 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
1074 | 1074 |
/// the given map multiplied from the left side with a constant value. |
1075 | 1075 |
/// Its \c Key and \c Value are inherited from \c M. |
1076 | 1076 |
/// |
1077 | 1077 |
/// Actually, |
1078 | 1078 |
/// \code |
1079 | 1079 |
/// ScaleMap<M> sc(m,v); |
1080 | 1080 |
/// \endcode |
1081 | 1081 |
/// is equivalent to |
1082 | 1082 |
/// \code |
1083 | 1083 |
/// ConstMap<M::Key, M::Value> cm(v); |
1084 | 1084 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
1085 | 1085 |
/// \endcode |
1086 | 1086 |
/// |
1087 | 1087 |
/// The simplest way of using this map is through the scaleMap() |
1088 | 1088 |
/// function. |
1089 | 1089 |
/// |
1090 | 1090 |
/// \sa ScaleWriteMap |
1091 | 1091 |
template<typename M, typename C = typename M::Value> |
1092 | 1092 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
1093 | 1093 |
const M &_m; |
1094 | 1094 |
C _v; |
1095 | 1095 |
public: |
1096 | 1096 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1097 | 1097 |
typedef typename Parent::Key Key; |
1098 | 1098 |
typedef typename Parent::Value Value; |
1099 | 1099 |
|
1100 | 1100 |
/// Constructor |
1101 | 1101 |
|
1102 | 1102 |
/// Constructor. |
1103 | 1103 |
/// \param m The undelying map. |
1104 | 1104 |
/// \param v The constant value. |
1105 | 1105 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
1106 | 1106 |
/// \e |
1107 | 1107 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1108 | 1108 |
}; |
1109 | 1109 |
|
1110 | 1110 |
/// Scales a map with a constant (read-write version). |
1111 | 1111 |
|
1112 | 1112 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
1113 | 1113 |
/// the given map multiplied from the left side with a constant value. |
1114 | 1114 |
/// Its \c Key and \c Value are inherited from \c M. |
1115 | 1115 |
/// It can also be used as write map if the \c / operator is defined |
1116 | 1116 |
/// between \c Value and \c C and the given multiplier is not zero. |
1117 | 1117 |
/// |
1118 | 1118 |
/// The simplest way of using this map is through the scaleWriteMap() |
1119 | 1119 |
/// function. |
1120 | 1120 |
/// |
1121 | 1121 |
/// \sa ScaleMap |
1122 | 1122 |
template<typename M, typename C = typename M::Value> |
1123 | 1123 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1124 | 1124 |
M &_m; |
1125 | 1125 |
C _v; |
1126 | 1126 |
public: |
1127 | 1127 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1128 | 1128 |
typedef typename Parent::Key Key; |
1129 | 1129 |
typedef typename Parent::Value Value; |
1130 | 1130 |
|
1131 | 1131 |
/// Constructor |
1132 | 1132 |
|
1133 | 1133 |
/// Constructor. |
1134 | 1134 |
/// \param m The undelying map. |
1135 | 1135 |
/// \param v The constant value. |
1136 | 1136 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1137 | 1137 |
/// \e |
1138 | 1138 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1139 | 1139 |
/// \e |
1140 | 1140 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
1141 | 1141 |
}; |
1142 | 1142 |
|
1143 |
/// Returns a \ref ScaleMap class |
|
1144 |
|
|
1145 |
/// |
|
1143 |
/// Returns a \c ScaleMap class |
|
1144 |
|
|
1145 |
/// This function just returns a \c ScaleMap class. |
|
1146 | 1146 |
/// |
1147 | 1147 |
/// For example, if \c m is a map with \c double values and \c v is |
1148 | 1148 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
1149 | 1149 |
/// <tt>v*m[x]</tt>. |
1150 | 1150 |
/// |
1151 | 1151 |
/// \relates ScaleMap |
1152 | 1152 |
template<typename M, typename C> |
1153 | 1153 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
1154 | 1154 |
return ScaleMap<M, C>(m,v); |
1155 | 1155 |
} |
1156 | 1156 |
|
1157 |
/// Returns a \ref ScaleWriteMap class |
|
1158 |
|
|
1159 |
/// |
|
1157 |
/// Returns a \c ScaleWriteMap class |
|
1158 |
|
|
1159 |
/// This function just returns a \c ScaleWriteMap class. |
|
1160 | 1160 |
/// |
1161 | 1161 |
/// For example, if \c m is a map with \c double values and \c v is |
1162 | 1162 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
1163 | 1163 |
/// <tt>v*m[x]</tt>. |
1164 | 1164 |
/// Moreover it makes also possible to write the map. |
1165 | 1165 |
/// |
1166 | 1166 |
/// \relates ScaleWriteMap |
1167 | 1167 |
template<typename M, typename C> |
1168 | 1168 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
1169 | 1169 |
return ScaleWriteMap<M, C>(m,v); |
1170 | 1170 |
} |
1171 | 1171 |
|
1172 | 1172 |
|
1173 | 1173 |
/// Negative of a map |
1174 | 1174 |
|
1175 | 1175 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
1176 | 1176 |
/// of the values of the given map (using the unary \c - operator). |
1177 | 1177 |
/// Its \c Key and \c Value are inherited from \c M. |
1178 | 1178 |
/// |
1179 | 1179 |
/// If M::Value is \c int, \c double etc., then |
1180 | 1180 |
/// \code |
1181 | 1181 |
/// NegMap<M> neg(m); |
1182 | 1182 |
/// \endcode |
1183 | 1183 |
/// is equivalent to |
1184 | 1184 |
/// \code |
1185 | 1185 |
/// ScaleMap<M> neg(m,-1); |
1186 | 1186 |
/// \endcode |
1187 | 1187 |
/// |
1188 | 1188 |
/// The simplest way of using this map is through the negMap() |
1189 | 1189 |
/// function. |
1190 | 1190 |
/// |
1191 | 1191 |
/// \sa NegWriteMap |
1192 | 1192 |
template<typename M> |
1193 | 1193 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
1194 | 1194 |
const M& _m; |
1195 | 1195 |
public: |
1196 | 1196 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1197 | 1197 |
typedef typename Parent::Key Key; |
1198 | 1198 |
typedef typename Parent::Value Value; |
1199 | 1199 |
|
1200 | 1200 |
/// Constructor |
1201 | 1201 |
NegMap(const M &m) : _m(m) {} |
1202 | 1202 |
/// \e |
1203 | 1203 |
Value operator[](const Key &k) const { return -_m[k]; } |
1204 | 1204 |
}; |
1205 | 1205 |
|
1206 | 1206 |
/// Negative of a map (read-write version) |
1207 | 1207 |
|
1208 | 1208 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1209 | 1209 |
/// negative of the values of the given map (using the unary \c - |
1210 | 1210 |
/// operator). |
1211 | 1211 |
/// Its \c Key and \c Value are inherited from \c M. |
1212 | 1212 |
/// It makes also possible to write the map. |
1213 | 1213 |
/// |
1214 | 1214 |
/// If M::Value is \c int, \c double etc., then |
1215 | 1215 |
/// \code |
1216 | 1216 |
/// NegWriteMap<M> neg(m); |
1217 | 1217 |
/// \endcode |
1218 | 1218 |
/// is equivalent to |
1219 | 1219 |
/// \code |
1220 | 1220 |
/// ScaleWriteMap<M> neg(m,-1); |
1221 | 1221 |
/// \endcode |
1222 | 1222 |
/// |
1223 | 1223 |
/// The simplest way of using this map is through the negWriteMap() |
1224 | 1224 |
/// function. |
1225 | 1225 |
/// |
1226 | 1226 |
/// \sa NegMap |
1227 | 1227 |
template<typename M> |
1228 | 1228 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1229 | 1229 |
M &_m; |
1230 | 1230 |
public: |
1231 | 1231 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1232 | 1232 |
typedef typename Parent::Key Key; |
1233 | 1233 |
typedef typename Parent::Value Value; |
1234 | 1234 |
|
1235 | 1235 |
/// Constructor |
1236 | 1236 |
NegWriteMap(M &m) : _m(m) {} |
1237 | 1237 |
/// \e |
1238 | 1238 |
Value operator[](const Key &k) const { return -_m[k]; } |
1239 | 1239 |
/// \e |
1240 | 1240 |
void set(const Key &k, const Value &v) { _m.set(k, -v); } |
1241 | 1241 |
}; |
1242 | 1242 |
|
1243 |
/// Returns a \ref NegMap class |
|
1244 |
|
|
1245 |
/// |
|
1243 |
/// Returns a \c NegMap class |
|
1244 |
|
|
1245 |
/// This function just returns a \c NegMap class. |
|
1246 | 1246 |
/// |
1247 | 1247 |
/// For example, if \c m is a map with \c double values, then |
1248 | 1248 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1249 | 1249 |
/// |
1250 | 1250 |
/// \relates NegMap |
1251 | 1251 |
template <typename M> |
1252 | 1252 |
inline NegMap<M> negMap(const M &m) { |
1253 | 1253 |
return NegMap<M>(m); |
1254 | 1254 |
} |
1255 | 1255 |
|
1256 |
/// Returns a \ref NegWriteMap class |
|
1257 |
|
|
1258 |
/// |
|
1256 |
/// Returns a \c NegWriteMap class |
|
1257 |
|
|
1258 |
/// This function just returns a \c NegWriteMap class. |
|
1259 | 1259 |
/// |
1260 | 1260 |
/// For example, if \c m is a map with \c double values, then |
1261 | 1261 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1262 | 1262 |
/// Moreover it makes also possible to write the map. |
1263 | 1263 |
/// |
1264 | 1264 |
/// \relates NegWriteMap |
1265 | 1265 |
template <typename M> |
1266 | 1266 |
inline NegWriteMap<M> negWriteMap(M &m) { |
1267 | 1267 |
return NegWriteMap<M>(m); |
1268 | 1268 |
} |
1269 | 1269 |
|
1270 | 1270 |
|
1271 | 1271 |
/// Absolute value of a map |
1272 | 1272 |
|
1273 | 1273 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
1274 | 1274 |
/// value of the values of the given map. |
1275 | 1275 |
/// Its \c Key and \c Value are inherited from \c M. |
1276 | 1276 |
/// \c Value must be comparable to \c 0 and the unary \c - |
1277 | 1277 |
/// operator must be defined for it, of course. |
1278 | 1278 |
/// |
1279 | 1279 |
/// The simplest way of using this map is through the absMap() |
1280 | 1280 |
/// function. |
1281 | 1281 |
template<typename M> |
1282 | 1282 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1283 | 1283 |
const M &_m; |
1284 | 1284 |
public: |
1285 | 1285 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1286 | 1286 |
typedef typename Parent::Key Key; |
1287 | 1287 |
typedef typename Parent::Value Value; |
1288 | 1288 |
|
1289 | 1289 |
/// Constructor |
1290 | 1290 |
AbsMap(const M &m) : _m(m) {} |
1291 | 1291 |
/// \e |
1292 | 1292 |
Value operator[](const Key &k) const { |
1293 | 1293 |
Value tmp = _m[k]; |
1294 | 1294 |
return tmp >= 0 ? tmp : -tmp; |
1295 | 1295 |
} |
1296 | 1296 |
|
1297 | 1297 |
}; |
1298 | 1298 |
|
1299 |
/// Returns an \ref AbsMap class |
|
1300 |
|
|
1301 |
/// |
|
1299 |
/// Returns an \c AbsMap class |
|
1300 |
|
|
1301 |
/// This function just returns an \c AbsMap class. |
|
1302 | 1302 |
/// |
1303 | 1303 |
/// For example, if \c m is a map with \c double values, then |
1304 | 1304 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
1305 | 1305 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
1306 | 1306 |
/// negative. |
1307 | 1307 |
/// |
1308 | 1308 |
/// \relates AbsMap |
1309 | 1309 |
template<typename M> |
1310 | 1310 |
inline AbsMap<M> absMap(const M &m) { |
1311 | 1311 |
return AbsMap<M>(m); |
1312 | 1312 |
} |
1313 | 1313 |
|
1314 | 1314 |
/// @} |
1315 | 1315 |
|
1316 | 1316 |
// Logical maps and map adaptors: |
1317 | 1317 |
|
1318 | 1318 |
/// \addtogroup maps |
1319 | 1319 |
/// @{ |
1320 | 1320 |
|
1321 | 1321 |
/// Constant \c true map. |
1322 | 1322 |
|
1323 | 1323 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1324 | 1324 |
/// each key. |
1325 | 1325 |
/// |
1326 | 1326 |
/// Note that |
1327 | 1327 |
/// \code |
1328 | 1328 |
/// TrueMap<K> tm; |
1329 | 1329 |
/// \endcode |
1330 | 1330 |
/// is equivalent to |
1331 | 1331 |
/// \code |
1332 | 1332 |
/// ConstMap<K,bool> tm(true); |
1333 | 1333 |
/// \endcode |
1334 | 1334 |
/// |
1335 | 1335 |
/// \sa FalseMap |
1336 | 1336 |
/// \sa ConstMap |
1337 | 1337 |
template <typename K> |
1338 | 1338 |
class TrueMap : public MapBase<K, bool> { |
1339 | 1339 |
public: |
1340 | 1340 |
typedef MapBase<K, bool> Parent; |
1341 | 1341 |
typedef typename Parent::Key Key; |
1342 | 1342 |
typedef typename Parent::Value Value; |
1343 | 1343 |
|
1344 | 1344 |
/// Gives back \c true. |
1345 | 1345 |
Value operator[](const Key&) const { return true; } |
1346 | 1346 |
}; |
1347 | 1347 |
|
1348 |
/// Returns a \ref TrueMap class |
|
1349 |
|
|
1350 |
/// |
|
1348 |
/// Returns a \c TrueMap class |
|
1349 |
|
|
1350 |
/// This function just returns a \c TrueMap class. |
|
1351 | 1351 |
/// \relates TrueMap |
1352 | 1352 |
template<typename K> |
1353 | 1353 |
inline TrueMap<K> trueMap() { |
1354 | 1354 |
return TrueMap<K>(); |
1355 | 1355 |
} |
1356 | 1356 |
|
1357 | 1357 |
|
1358 | 1358 |
/// Constant \c false map. |
1359 | 1359 |
|
1360 | 1360 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
1361 | 1361 |
/// each key. |
1362 | 1362 |
/// |
1363 | 1363 |
/// Note that |
1364 | 1364 |
/// \code |
1365 | 1365 |
/// FalseMap<K> fm; |
1366 | 1366 |
/// \endcode |
1367 | 1367 |
/// is equivalent to |
1368 | 1368 |
/// \code |
1369 | 1369 |
/// ConstMap<K,bool> fm(false); |
1370 | 1370 |
/// \endcode |
1371 | 1371 |
/// |
1372 | 1372 |
/// \sa TrueMap |
1373 | 1373 |
/// \sa ConstMap |
1374 | 1374 |
template <typename K> |
1375 | 1375 |
class FalseMap : public MapBase<K, bool> { |
1376 | 1376 |
public: |
1377 | 1377 |
typedef MapBase<K, bool> Parent; |
1378 | 1378 |
typedef typename Parent::Key Key; |
1379 | 1379 |
typedef typename Parent::Value Value; |
1380 | 1380 |
|
1381 | 1381 |
/// Gives back \c false. |
1382 | 1382 |
Value operator[](const Key&) const { return false; } |
1383 | 1383 |
}; |
1384 | 1384 |
|
1385 |
/// Returns a \ref FalseMap class |
|
1386 |
|
|
1387 |
/// |
|
1385 |
/// Returns a \c FalseMap class |
|
1386 |
|
|
1387 |
/// This function just returns a \c FalseMap class. |
|
1388 | 1388 |
/// \relates FalseMap |
1389 | 1389 |
template<typename K> |
1390 | 1390 |
inline FalseMap<K> falseMap() { |
1391 | 1391 |
return FalseMap<K>(); |
1392 | 1392 |
} |
1393 | 1393 |
|
1394 | 1394 |
/// @} |
1395 | 1395 |
|
1396 | 1396 |
/// \addtogroup map_adaptors |
1397 | 1397 |
/// @{ |
1398 | 1398 |
|
1399 | 1399 |
/// Logical 'and' of two maps |
1400 | 1400 |
|
1401 | 1401 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1402 | 1402 |
/// 'and' of the values of the two given maps. |
1403 | 1403 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1404 | 1404 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1405 | 1405 |
/// |
1406 | 1406 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1407 | 1407 |
/// \code |
1408 | 1408 |
/// AndMap<M1,M2> am(m1,m2); |
1409 | 1409 |
/// \endcode |
1410 | 1410 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
1411 | 1411 |
/// |
1412 | 1412 |
/// The simplest way of using this map is through the andMap() |
1413 | 1413 |
/// function. |
1414 | 1414 |
/// |
1415 | 1415 |
/// \sa OrMap |
1416 | 1416 |
/// \sa NotMap, NotWriteMap |
1417 | 1417 |
template<typename M1, typename M2> |
1418 | 1418 |
class AndMap : public MapBase<typename M1::Key, bool> { |
1419 | 1419 |
const M1 &_m1; |
1420 | 1420 |
const M2 &_m2; |
1421 | 1421 |
public: |
1422 | 1422 |
typedef MapBase<typename M1::Key, bool> Parent; |
1423 | 1423 |
typedef typename Parent::Key Key; |
1424 | 1424 |
typedef typename Parent::Value Value; |
1425 | 1425 |
|
1426 | 1426 |
/// Constructor |
1427 | 1427 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1428 | 1428 |
/// \e |
1429 | 1429 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
1430 | 1430 |
}; |
1431 | 1431 |
|
1432 |
/// Returns an \ref AndMap class |
|
1433 |
|
|
1434 |
/// |
|
1432 |
/// Returns an \c AndMap class |
|
1433 |
|
|
1434 |
/// This function just returns an \c AndMap class. |
|
1435 | 1435 |
/// |
1436 | 1436 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1437 | 1437 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1438 | 1438 |
/// <tt>m1[x]&&m2[x]</tt>. |
1439 | 1439 |
/// |
1440 | 1440 |
/// \relates AndMap |
1441 | 1441 |
template<typename M1, typename M2> |
1442 | 1442 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1443 | 1443 |
return AndMap<M1, M2>(m1,m2); |
1444 | 1444 |
} |
1445 | 1445 |
|
1446 | 1446 |
|
1447 | 1447 |
/// Logical 'or' of two maps |
1448 | 1448 |
|
1449 | 1449 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1450 | 1450 |
/// 'or' of the values of the two given maps. |
1451 | 1451 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1452 | 1452 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1453 | 1453 |
/// |
1454 | 1454 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1455 | 1455 |
/// \code |
1456 | 1456 |
/// OrMap<M1,M2> om(m1,m2); |
1457 | 1457 |
/// \endcode |
1458 | 1458 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1459 | 1459 |
/// |
1460 | 1460 |
/// The simplest way of using this map is through the orMap() |
1461 | 1461 |
/// function. |
1462 | 1462 |
/// |
1463 | 1463 |
/// \sa AndMap |
1464 | 1464 |
/// \sa NotMap, NotWriteMap |
1465 | 1465 |
template<typename M1, typename M2> |
1466 | 1466 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1467 | 1467 |
const M1 &_m1; |
1468 | 1468 |
const M2 &_m2; |
1469 | 1469 |
public: |
1470 | 1470 |
typedef MapBase<typename M1::Key, bool> Parent; |
1471 | 1471 |
typedef typename Parent::Key Key; |
1472 | 1472 |
typedef typename Parent::Value Value; |
1473 | 1473 |
|
1474 | 1474 |
/// Constructor |
1475 | 1475 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1476 | 1476 |
/// \e |
1477 | 1477 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1478 | 1478 |
}; |
1479 | 1479 |
|
1480 |
/// Returns an \ref OrMap class |
|
1481 |
|
|
1482 |
/// |
|
1480 |
/// Returns an \c OrMap class |
|
1481 |
|
|
1482 |
/// This function just returns an \c OrMap class. |
|
1483 | 1483 |
/// |
1484 | 1484 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1485 | 1485 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1486 | 1486 |
/// <tt>m1[x]||m2[x]</tt>. |
1487 | 1487 |
/// |
1488 | 1488 |
/// \relates OrMap |
1489 | 1489 |
template<typename M1, typename M2> |
1490 | 1490 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1491 | 1491 |
return OrMap<M1, M2>(m1,m2); |
1492 | 1492 |
} |
1493 | 1493 |
|
1494 | 1494 |
|
1495 | 1495 |
/// Logical 'not' of a map |
1496 | 1496 |
|
1497 | 1497 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1498 | 1498 |
/// negation of the values of the given map. |
1499 | 1499 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1500 | 1500 |
/// |
1501 | 1501 |
/// The simplest way of using this map is through the notMap() |
1502 | 1502 |
/// function. |
1503 | 1503 |
/// |
1504 | 1504 |
/// \sa NotWriteMap |
1505 | 1505 |
template <typename M> |
1506 | 1506 |
class NotMap : public MapBase<typename M::Key, bool> { |
1507 | 1507 |
const M &_m; |
1508 | 1508 |
public: |
1509 | 1509 |
typedef MapBase<typename M::Key, bool> Parent; |
1510 | 1510 |
typedef typename Parent::Key Key; |
1511 | 1511 |
typedef typename Parent::Value Value; |
1512 | 1512 |
|
1513 | 1513 |
/// Constructor |
1514 | 1514 |
NotMap(const M &m) : _m(m) {} |
1515 | 1515 |
/// \e |
1516 | 1516 |
Value operator[](const Key &k) const { return !_m[k]; } |
1517 | 1517 |
}; |
1518 | 1518 |
|
1519 | 1519 |
/// Logical 'not' of a map (read-write version) |
1520 | 1520 |
|
1521 | 1521 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1522 | 1522 |
/// logical negation of the values of the given map. |
1523 | 1523 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1524 | 1524 |
/// It makes also possible to write the map. When a value is set, |
1525 | 1525 |
/// the opposite value is set to the original map. |
1526 | 1526 |
/// |
1527 | 1527 |
/// The simplest way of using this map is through the notWriteMap() |
1528 | 1528 |
/// function. |
1529 | 1529 |
/// |
1530 | 1530 |
/// \sa NotMap |
1531 | 1531 |
template <typename M> |
1532 | 1532 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1533 | 1533 |
M &_m; |
1534 | 1534 |
public: |
1535 | 1535 |
typedef MapBase<typename M::Key, bool> Parent; |
1536 | 1536 |
typedef typename Parent::Key Key; |
1537 | 1537 |
typedef typename Parent::Value Value; |
1538 | 1538 |
|
1539 | 1539 |
/// Constructor |
1540 | 1540 |
NotWriteMap(M &m) : _m(m) {} |
1541 | 1541 |
/// \e |
1542 | 1542 |
Value operator[](const Key &k) const { return !_m[k]; } |
1543 | 1543 |
/// \e |
1544 | 1544 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1545 | 1545 |
}; |
1546 | 1546 |
|
1547 |
/// Returns a \ref NotMap class |
|
1548 |
|
|
1549 |
/// |
|
1547 |
/// Returns a \c NotMap class |
|
1548 |
|
|
1549 |
/// This function just returns a \c NotMap class. |
|
1550 | 1550 |
/// |
1551 | 1551 |
/// For example, if \c m is a map with \c bool values, then |
1552 | 1552 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1553 | 1553 |
/// |
1554 | 1554 |
/// \relates NotMap |
1555 | 1555 |
template <typename M> |
1556 | 1556 |
inline NotMap<M> notMap(const M &m) { |
1557 | 1557 |
return NotMap<M>(m); |
1558 | 1558 |
} |
1559 | 1559 |
|
1560 |
/// Returns a \ref NotWriteMap class |
|
1561 |
|
|
1562 |
/// |
|
1560 |
/// Returns a \c NotWriteMap class |
|
1561 |
|
|
1562 |
/// This function just returns a \c NotWriteMap class. |
|
1563 | 1563 |
/// |
1564 | 1564 |
/// For example, if \c m is a map with \c bool values, then |
1565 | 1565 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1566 | 1566 |
/// Moreover it makes also possible to write the map. |
1567 | 1567 |
/// |
1568 | 1568 |
/// \relates NotWriteMap |
1569 | 1569 |
template <typename M> |
1570 | 1570 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1571 | 1571 |
return NotWriteMap<M>(m); |
1572 | 1572 |
} |
1573 | 1573 |
|
1574 | 1574 |
|
1575 | 1575 |
/// Combination of two maps using the \c == operator |
1576 | 1576 |
|
1577 | 1577 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1578 | 1578 |
/// the keys for which the corresponding values of the two maps are |
1579 | 1579 |
/// equal. |
1580 | 1580 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1581 | 1581 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1582 | 1582 |
/// |
1583 | 1583 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1584 | 1584 |
/// \code |
1585 | 1585 |
/// EqualMap<M1,M2> em(m1,m2); |
1586 | 1586 |
/// \endcode |
1587 | 1587 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1588 | 1588 |
/// |
1589 | 1589 |
/// The simplest way of using this map is through the equalMap() |
1590 | 1590 |
/// function. |
1591 | 1591 |
/// |
1592 | 1592 |
/// \sa LessMap |
1593 | 1593 |
template<typename M1, typename M2> |
1594 | 1594 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1595 | 1595 |
const M1 &_m1; |
1596 | 1596 |
const M2 &_m2; |
1597 | 1597 |
public: |
1598 | 1598 |
typedef MapBase<typename M1::Key, bool> Parent; |
1599 | 1599 |
typedef typename Parent::Key Key; |
1600 | 1600 |
typedef typename Parent::Value Value; |
1601 | 1601 |
|
1602 | 1602 |
/// Constructor |
1603 | 1603 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1604 | 1604 |
/// \e |
1605 | 1605 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1606 | 1606 |
}; |
1607 | 1607 |
|
1608 |
/// Returns an \ref EqualMap class |
|
1609 |
|
|
1610 |
/// |
|
1608 |
/// Returns an \c EqualMap class |
|
1609 |
|
|
1610 |
/// This function just returns an \c EqualMap class. |
|
1611 | 1611 |
/// |
1612 | 1612 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1613 | 1613 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1614 | 1614 |
/// <tt>m1[x]==m2[x]</tt>. |
1615 | 1615 |
/// |
1616 | 1616 |
/// \relates EqualMap |
1617 | 1617 |
template<typename M1, typename M2> |
1618 | 1618 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1619 | 1619 |
return EqualMap<M1, M2>(m1,m2); |
1620 | 1620 |
} |
1621 | 1621 |
|
1622 | 1622 |
|
1623 | 1623 |
/// Combination of two maps using the \c < operator |
1624 | 1624 |
|
1625 | 1625 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1626 | 1626 |
/// the keys for which the corresponding value of the first map is |
1627 | 1627 |
/// less then the value of the second map. |
1628 | 1628 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1629 | 1629 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1630 | 1630 |
/// |
1631 | 1631 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1632 | 1632 |
/// \code |
1633 | 1633 |
/// LessMap<M1,M2> lm(m1,m2); |
1634 | 1634 |
/// \endcode |
1635 | 1635 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1636 | 1636 |
/// |
1637 | 1637 |
/// The simplest way of using this map is through the lessMap() |
1638 | 1638 |
/// function. |
1639 | 1639 |
/// |
1640 | 1640 |
/// \sa EqualMap |
1641 | 1641 |
template<typename M1, typename M2> |
1642 | 1642 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1643 | 1643 |
const M1 &_m1; |
1644 | 1644 |
const M2 &_m2; |
1645 | 1645 |
public: |
1646 | 1646 |
typedef MapBase<typename M1::Key, bool> Parent; |
1647 | 1647 |
typedef typename Parent::Key Key; |
1648 | 1648 |
typedef typename Parent::Value Value; |
1649 | 1649 |
|
1650 | 1650 |
/// Constructor |
1651 | 1651 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1652 | 1652 |
/// \e |
1653 | 1653 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1654 | 1654 |
}; |
1655 | 1655 |
|
1656 |
/// Returns an \ref LessMap class |
|
1657 |
|
|
1658 |
/// |
|
1656 |
/// Returns an \c LessMap class |
|
1657 |
|
|
1658 |
/// This function just returns an \c LessMap class. |
|
1659 | 1659 |
/// |
1660 | 1660 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1661 | 1661 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1662 | 1662 |
/// <tt>m1[x]<m2[x]</tt>. |
1663 | 1663 |
/// |
1664 | 1664 |
/// \relates LessMap |
1665 | 1665 |
template<typename M1, typename M2> |
1666 | 1666 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1667 | 1667 |
return LessMap<M1, M2>(m1,m2); |
1668 | 1668 |
} |
1669 | 1669 |
|
1670 | 1670 |
namespace _maps_bits { |
1671 | 1671 |
|
1672 | 1672 |
template <typename _Iterator, typename Enable = void> |
1673 | 1673 |
struct IteratorTraits { |
1674 | 1674 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1675 | 1675 |
}; |
1676 | 1676 |
|
1677 | 1677 |
template <typename _Iterator> |
1678 | 1678 |
struct IteratorTraits<_Iterator, |
1679 | 1679 |
typename exists<typename _Iterator::container_type>::type> |
1680 | 1680 |
{ |
1681 | 1681 |
typedef typename _Iterator::container_type::value_type Value; |
1682 | 1682 |
}; |
1683 | 1683 |
|
1684 | 1684 |
} |
1685 | 1685 |
|
1686 | 1686 |
/// \brief Writable bool map for logging each \c true assigned element |
1687 | 1687 |
/// |
1688 | 1688 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1689 | 1689 |
/// each \c true assigned element, i.e it copies subsequently each |
1690 | 1690 |
/// keys set to \c true to the given iterator. |
1691 | 1691 |
/// The most important usage of it is storing certain nodes or arcs |
1692 | 1692 |
/// that were marked \c true by an algorithm. |
1693 | 1693 |
/// |
1694 | 1694 |
/// There are several algorithms that provide solutions through bool |
1695 | 1695 |
/// maps and most of them assign \c true at most once for each key. |
1696 | 1696 |
/// In these cases it is a natural request to store each \c true |
1697 | 1697 |
/// assigned elements (in order of the assignment), which can be |
1698 | 1698 |
/// easily done with LoggerBoolMap. |
1699 | 1699 |
/// |
1700 | 1700 |
/// The simplest way of using this map is through the loggerBoolMap() |
1701 | 1701 |
/// function. |
1702 | 1702 |
/// |
1703 | 1703 |
/// \tparam It The type of the iterator. |
1704 | 1704 |
/// \tparam Ke The key type of the map. The default value set |
1705 | 1705 |
/// according to the iterator type should work in most cases. |
1706 | 1706 |
/// |
1707 | 1707 |
/// \note The container of the iterator must contain enough space |
1708 | 1708 |
/// for the elements or the iterator should be an inserter iterator. |
1709 | 1709 |
#ifdef DOXYGEN |
1710 | 1710 |
template <typename It, typename Ke> |
1711 | 1711 |
#else |
1712 | 1712 |
template <typename It, |
1713 | 1713 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
1714 | 1714 |
#endif |
1715 | 1715 |
class LoggerBoolMap { |
1716 | 1716 |
public: |
1717 | 1717 |
typedef It Iterator; |
1718 | 1718 |
|
1719 | 1719 |
typedef Ke Key; |
1720 | 1720 |
typedef bool Value; |
1721 | 1721 |
|
1722 | 1722 |
/// Constructor |
1723 | 1723 |
LoggerBoolMap(Iterator it) |
1724 | 1724 |
: _begin(it), _end(it) {} |
1725 | 1725 |
|
1726 | 1726 |
/// Gives back the given iterator set for the first key |
1727 | 1727 |
Iterator begin() const { |
1728 | 1728 |
return _begin; |
1729 | 1729 |
} |
1730 | 1730 |
|
1731 | 1731 |
/// Gives back the the 'after the last' iterator |
1732 | 1732 |
Iterator end() const { |
1733 | 1733 |
return _end; |
1734 | 1734 |
} |
1735 | 1735 |
|
1736 | 1736 |
/// The set function of the map |
1737 | 1737 |
void set(const Key& key, Value value) { |
1738 | 1738 |
if (value) { |
1739 | 1739 |
*_end++ = key; |
1740 | 1740 |
} |
1741 | 1741 |
} |
1742 | 1742 |
|
1743 | 1743 |
private: |
1744 | 1744 |
Iterator _begin; |
1745 | 1745 |
Iterator _end; |
1746 | 1746 |
}; |
1747 | 1747 |
|
1748 |
/// Returns a \ref LoggerBoolMap class |
|
1749 |
|
|
1750 |
/// |
|
1748 |
/// Returns a \c LoggerBoolMap class |
|
1749 |
|
|
1750 |
/// This function just returns a \c LoggerBoolMap class. |
|
1751 | 1751 |
/// |
1752 | 1752 |
/// The most important usage of it is storing certain nodes or arcs |
1753 | 1753 |
/// that were marked \c true by an algorithm. |
1754 | 1754 |
/// For example it makes easier to store the nodes in the processing |
1755 | 1755 |
/// order of Dfs algorithm, as the following examples show. |
1756 | 1756 |
/// \code |
1757 | 1757 |
/// std::vector<Node> v; |
1758 | 1758 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1759 | 1759 |
/// \endcode |
1760 | 1760 |
/// \code |
1761 | 1761 |
/// std::vector<Node> v(countNodes(g)); |
1762 | 1762 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1763 | 1763 |
/// \endcode |
1764 | 1764 |
/// |
1765 | 1765 |
/// \note The container of the iterator must contain enough space |
1766 | 1766 |
/// for the elements or the iterator should be an inserter iterator. |
1767 | 1767 |
/// |
1768 | 1768 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1769 | 1769 |
/// it cannot be used when a readable map is needed, for example as |
1770 |
/// \c ReachedMap for \ |
|
1770 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
|
1771 | 1771 |
/// |
1772 | 1772 |
/// \relates LoggerBoolMap |
1773 | 1773 |
template<typename Iterator> |
1774 | 1774 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1775 | 1775 |
return LoggerBoolMap<Iterator>(it); |
1776 | 1776 |
} |
1777 | 1777 |
|
1778 | 1778 |
/// Provides an immutable and unique id for each item in the graph. |
1779 | 1779 |
|
1780 | 1780 |
/// The IdMap class provides a unique and immutable id for each item of the |
1781 | 1781 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
1782 | 1782 |
/// different items (nodes) get different ids <li>\b immutable: the id of an |
1783 | 1783 |
/// item (node) does not change (even if you delete other nodes). </ul> |
1784 | 1784 |
/// Through this map you get access (i.e. can read) the inner id values of |
1785 | 1785 |
/// the items stored in the graph. This map can be inverted with its member |
1786 | 1786 |
/// class \c InverseMap or with the \c operator() member. |
1787 | 1787 |
/// |
1788 | 1788 |
template <typename _Graph, typename _Item> |
1789 | 1789 |
class IdMap { |
1790 | 1790 |
public: |
1791 | 1791 |
typedef _Graph Graph; |
1792 | 1792 |
typedef int Value; |
1793 | 1793 |
typedef _Item Item; |
1794 | 1794 |
typedef _Item Key; |
1795 | 1795 |
|
1796 | 1796 |
/// \brief Constructor. |
1797 | 1797 |
/// |
1798 | 1798 |
/// Constructor of the map. |
1799 | 1799 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1800 | 1800 |
|
1801 | 1801 |
/// \brief Gives back the \e id of the item. |
1802 | 1802 |
/// |
1803 | 1803 |
/// Gives back the immutable and unique \e id of the item. |
1804 | 1804 |
int operator[](const Item& item) const { return _graph->id(item);} |
1805 | 1805 |
|
1806 | 1806 |
/// \brief Gives back the item by its id. |
1807 | 1807 |
/// |
1808 | 1808 |
/// Gives back the item by its id. |
1809 | 1809 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1810 | 1810 |
|
1811 | 1811 |
private: |
1812 | 1812 |
const Graph* _graph; |
1813 | 1813 |
|
1814 | 1814 |
public: |
1815 | 1815 |
|
1816 | 1816 |
/// \brief The class represents the inverse of its owner (IdMap). |
1817 | 1817 |
/// |
1818 | 1818 |
/// The class represents the inverse of its owner (IdMap). |
1819 | 1819 |
/// \see inverse() |
1820 | 1820 |
class InverseMap { |
1821 | 1821 |
public: |
1822 | 1822 |
|
1823 | 1823 |
/// \brief Constructor. |
1824 | 1824 |
/// |
1825 | 1825 |
/// Constructor for creating an id-to-item map. |
1826 | 1826 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1827 | 1827 |
|
1828 | 1828 |
/// \brief Constructor. |
1829 | 1829 |
/// |
1830 | 1830 |
/// Constructor for creating an id-to-item map. |
1831 | 1831 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1832 | 1832 |
|
1833 | 1833 |
/// \brief Gives back the given item from its id. |
1834 | 1834 |
/// |
1835 | 1835 |
/// Gives back the given item from its id. |
1836 | 1836 |
/// |
1837 | 1837 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1838 | 1838 |
|
1839 | 1839 |
private: |
1840 | 1840 |
const Graph* _graph; |
1841 | 1841 |
}; |
1842 | 1842 |
|
1843 | 1843 |
/// \brief Gives back the inverse of the map. |
1844 | 1844 |
/// |
1845 | 1845 |
/// Gives back the inverse of the IdMap. |
1846 | 1846 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1847 | 1847 |
|
1848 | 1848 |
}; |
1849 | 1849 |
|
1850 | 1850 |
|
1851 | 1851 |
/// \brief General invertable graph-map type. |
1852 | 1852 |
|
1853 | 1853 |
/// This type provides simple invertable graph-maps. |
1854 | 1854 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
1855 | 1855 |
/// and if a key is set to a new value then store it |
1856 | 1856 |
/// in the inverse map. |
1857 | 1857 |
/// |
1858 | 1858 |
/// The values of the map can be accessed |
1859 | 1859 |
/// with stl compatible forward iterator. |
1860 | 1860 |
/// |
1861 | 1861 |
/// \tparam _Graph The graph type. |
1862 | 1862 |
/// \tparam _Item The item type of the graph. |
1863 | 1863 |
/// \tparam _Value The value type of the map. |
1864 | 1864 |
/// |
1865 | 1865 |
/// \see IterableValueMap |
1866 | 1866 |
template <typename _Graph, typename _Item, typename _Value> |
... | ... |
@@ -2189,312 +2189,312 @@ |
2189 | 2189 |
} |
2190 | 2190 |
|
2191 | 2191 |
/// \brief Gives back the \e descriptor of the item. |
2192 | 2192 |
/// |
2193 | 2193 |
/// Gives back the mutable and unique \e descriptor of the map. |
2194 | 2194 |
int operator[](const Item& item) const { |
2195 | 2195 |
return Map::operator[](item); |
2196 | 2196 |
} |
2197 | 2197 |
|
2198 | 2198 |
/// \brief Gives back the item by its descriptor. |
2199 | 2199 |
/// |
2200 | 2200 |
/// Gives back th item by its descriptor. |
2201 | 2201 |
Item operator()(int id) const { |
2202 | 2202 |
return _inv_map[id]; |
2203 | 2203 |
} |
2204 | 2204 |
|
2205 | 2205 |
private: |
2206 | 2206 |
|
2207 | 2207 |
typedef std::vector<Item> Container; |
2208 | 2208 |
Container _inv_map; |
2209 | 2209 |
|
2210 | 2210 |
public: |
2211 | 2211 |
/// \brief The inverse map type of DescriptorMap. |
2212 | 2212 |
/// |
2213 | 2213 |
/// The inverse map type of DescriptorMap. |
2214 | 2214 |
class InverseMap { |
2215 | 2215 |
public: |
2216 | 2216 |
/// \brief Constructor of the InverseMap. |
2217 | 2217 |
/// |
2218 | 2218 |
/// Constructor of the InverseMap. |
2219 | 2219 |
explicit InverseMap(const DescriptorMap& inverted) |
2220 | 2220 |
: _inverted(inverted) {} |
2221 | 2221 |
|
2222 | 2222 |
|
2223 | 2223 |
/// The value type of the InverseMap. |
2224 | 2224 |
typedef typename DescriptorMap::Key Value; |
2225 | 2225 |
/// The key type of the InverseMap. |
2226 | 2226 |
typedef typename DescriptorMap::Value Key; |
2227 | 2227 |
|
2228 | 2228 |
/// \brief Subscript operator. |
2229 | 2229 |
/// |
2230 | 2230 |
/// Subscript operator. It gives back the item |
2231 | 2231 |
/// that the descriptor belongs to currently. |
2232 | 2232 |
Value operator[](const Key& key) const { |
2233 | 2233 |
return _inverted(key); |
2234 | 2234 |
} |
2235 | 2235 |
|
2236 | 2236 |
/// \brief Size of the map. |
2237 | 2237 |
/// |
2238 | 2238 |
/// Returns the size of the map. |
2239 | 2239 |
unsigned int size() const { |
2240 | 2240 |
return _inverted.size(); |
2241 | 2241 |
} |
2242 | 2242 |
|
2243 | 2243 |
private: |
2244 | 2244 |
const DescriptorMap& _inverted; |
2245 | 2245 |
}; |
2246 | 2246 |
|
2247 | 2247 |
/// \brief Gives back the inverse of the map. |
2248 | 2248 |
/// |
2249 | 2249 |
/// Gives back the inverse of the map. |
2250 | 2250 |
const InverseMap inverse() const { |
2251 | 2251 |
return InverseMap(*this); |
2252 | 2252 |
} |
2253 | 2253 |
}; |
2254 | 2254 |
|
2255 | 2255 |
/// \brief Returns the source of the given arc. |
2256 | 2256 |
/// |
2257 | 2257 |
/// The SourceMap gives back the source Node of the given arc. |
2258 | 2258 |
/// \see TargetMap |
2259 | 2259 |
template <typename Digraph> |
2260 | 2260 |
class SourceMap { |
2261 | 2261 |
public: |
2262 | 2262 |
|
2263 | 2263 |
typedef typename Digraph::Node Value; |
2264 | 2264 |
typedef typename Digraph::Arc Key; |
2265 | 2265 |
|
2266 | 2266 |
/// \brief Constructor |
2267 | 2267 |
/// |
2268 | 2268 |
/// Constructor |
2269 | 2269 |
/// \param _digraph The digraph that the map belongs to. |
2270 | 2270 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
2271 | 2271 |
|
2272 | 2272 |
/// \brief The subscript operator. |
2273 | 2273 |
/// |
2274 | 2274 |
/// The subscript operator. |
2275 | 2275 |
/// \param arc The arc |
2276 | 2276 |
/// \return The source of the arc |
2277 | 2277 |
Value operator[](const Key& arc) const { |
2278 | 2278 |
return _digraph.source(arc); |
2279 | 2279 |
} |
2280 | 2280 |
|
2281 | 2281 |
private: |
2282 | 2282 |
const Digraph& _digraph; |
2283 | 2283 |
}; |
2284 | 2284 |
|
2285 |
/// \brief Returns a \ |
|
2285 |
/// \brief Returns a \c SourceMap class. |
|
2286 | 2286 |
/// |
2287 |
/// This function just returns an \ |
|
2287 |
/// This function just returns an \c SourceMap class. |
|
2288 | 2288 |
/// \relates SourceMap |
2289 | 2289 |
template <typename Digraph> |
2290 | 2290 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
2291 | 2291 |
return SourceMap<Digraph>(digraph); |
2292 | 2292 |
} |
2293 | 2293 |
|
2294 | 2294 |
/// \brief Returns the target of the given arc. |
2295 | 2295 |
/// |
2296 | 2296 |
/// The TargetMap gives back the target Node of the given arc. |
2297 | 2297 |
/// \see SourceMap |
2298 | 2298 |
template <typename Digraph> |
2299 | 2299 |
class TargetMap { |
2300 | 2300 |
public: |
2301 | 2301 |
|
2302 | 2302 |
typedef typename Digraph::Node Value; |
2303 | 2303 |
typedef typename Digraph::Arc Key; |
2304 | 2304 |
|
2305 | 2305 |
/// \brief Constructor |
2306 | 2306 |
/// |
2307 | 2307 |
/// Constructor |
2308 | 2308 |
/// \param _digraph The digraph that the map belongs to. |
2309 | 2309 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
2310 | 2310 |
|
2311 | 2311 |
/// \brief The subscript operator. |
2312 | 2312 |
/// |
2313 | 2313 |
/// The subscript operator. |
2314 | 2314 |
/// \param e The arc |
2315 | 2315 |
/// \return The target of the arc |
2316 | 2316 |
Value operator[](const Key& e) const { |
2317 | 2317 |
return _digraph.target(e); |
2318 | 2318 |
} |
2319 | 2319 |
|
2320 | 2320 |
private: |
2321 | 2321 |
const Digraph& _digraph; |
2322 | 2322 |
}; |
2323 | 2323 |
|
2324 |
/// \brief Returns a \ |
|
2324 |
/// \brief Returns a \c TargetMap class. |
|
2325 | 2325 |
/// |
2326 |
/// This function just returns a \ |
|
2326 |
/// This function just returns a \c TargetMap class. |
|
2327 | 2327 |
/// \relates TargetMap |
2328 | 2328 |
template <typename Digraph> |
2329 | 2329 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
2330 | 2330 |
return TargetMap<Digraph>(digraph); |
2331 | 2331 |
} |
2332 | 2332 |
|
2333 | 2333 |
/// \brief Returns the "forward" directed arc view of an edge. |
2334 | 2334 |
/// |
2335 | 2335 |
/// Returns the "forward" directed arc view of an edge. |
2336 | 2336 |
/// \see BackwardMap |
2337 | 2337 |
template <typename Graph> |
2338 | 2338 |
class ForwardMap { |
2339 | 2339 |
public: |
2340 | 2340 |
|
2341 | 2341 |
typedef typename Graph::Arc Value; |
2342 | 2342 |
typedef typename Graph::Edge Key; |
2343 | 2343 |
|
2344 | 2344 |
/// \brief Constructor |
2345 | 2345 |
/// |
2346 | 2346 |
/// Constructor |
2347 | 2347 |
/// \param _graph The graph that the map belongs to. |
2348 | 2348 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
2349 | 2349 |
|
2350 | 2350 |
/// \brief The subscript operator. |
2351 | 2351 |
/// |
2352 | 2352 |
/// The subscript operator. |
2353 | 2353 |
/// \param key An edge |
2354 | 2354 |
/// \return The "forward" directed arc view of edge |
2355 | 2355 |
Value operator[](const Key& key) const { |
2356 | 2356 |
return _graph.direct(key, true); |
2357 | 2357 |
} |
2358 | 2358 |
|
2359 | 2359 |
private: |
2360 | 2360 |
const Graph& _graph; |
2361 | 2361 |
}; |
2362 | 2362 |
|
2363 |
/// \brief Returns a \ |
|
2363 |
/// \brief Returns a \c ForwardMap class. |
|
2364 | 2364 |
/// |
2365 |
/// This function just returns an \ |
|
2365 |
/// This function just returns an \c ForwardMap class. |
|
2366 | 2366 |
/// \relates ForwardMap |
2367 | 2367 |
template <typename Graph> |
2368 | 2368 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
2369 | 2369 |
return ForwardMap<Graph>(graph); |
2370 | 2370 |
} |
2371 | 2371 |
|
2372 | 2372 |
/// \brief Returns the "backward" directed arc view of an edge. |
2373 | 2373 |
/// |
2374 | 2374 |
/// Returns the "backward" directed arc view of an edge. |
2375 | 2375 |
/// \see ForwardMap |
2376 | 2376 |
template <typename Graph> |
2377 | 2377 |
class BackwardMap { |
2378 | 2378 |
public: |
2379 | 2379 |
|
2380 | 2380 |
typedef typename Graph::Arc Value; |
2381 | 2381 |
typedef typename Graph::Edge Key; |
2382 | 2382 |
|
2383 | 2383 |
/// \brief Constructor |
2384 | 2384 |
/// |
2385 | 2385 |
/// Constructor |
2386 | 2386 |
/// \param _graph The graph that the map belongs to. |
2387 | 2387 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
2388 | 2388 |
|
2389 | 2389 |
/// \brief The subscript operator. |
2390 | 2390 |
/// |
2391 | 2391 |
/// The subscript operator. |
2392 | 2392 |
/// \param key An edge |
2393 | 2393 |
/// \return The "backward" directed arc view of edge |
2394 | 2394 |
Value operator[](const Key& key) const { |
2395 | 2395 |
return _graph.direct(key, false); |
2396 | 2396 |
} |
2397 | 2397 |
|
2398 | 2398 |
private: |
2399 | 2399 |
const Graph& _graph; |
2400 | 2400 |
}; |
2401 | 2401 |
|
2402 |
/// \brief Returns a \ref BackwardMap class |
|
2403 |
|
|
2404 |
/// |
|
2402 |
/// \brief Returns a \c BackwardMap class |
|
2403 |
|
|
2404 |
/// This function just returns a \c BackwardMap class. |
|
2405 | 2405 |
/// \relates BackwardMap |
2406 | 2406 |
template <typename Graph> |
2407 | 2407 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
2408 | 2408 |
return BackwardMap<Graph>(graph); |
2409 | 2409 |
} |
2410 | 2410 |
|
2411 | 2411 |
/// \brief Potential difference map |
2412 | 2412 |
/// |
2413 | 2413 |
/// If there is an potential map on the nodes then we |
2414 | 2414 |
/// can get an arc map as we get the substraction of the |
2415 | 2415 |
/// values of the target and source. |
2416 | 2416 |
template <typename Digraph, typename NodeMap> |
2417 | 2417 |
class PotentialDifferenceMap { |
2418 | 2418 |
public: |
2419 | 2419 |
typedef typename Digraph::Arc Key; |
2420 | 2420 |
typedef typename NodeMap::Value Value; |
2421 | 2421 |
|
2422 | 2422 |
/// \brief Constructor |
2423 | 2423 |
/// |
2424 | 2424 |
/// Contructor of the map |
2425 | 2425 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
2426 | 2426 |
const NodeMap& potential) |
2427 | 2427 |
: _digraph(digraph), _potential(potential) {} |
2428 | 2428 |
|
2429 | 2429 |
/// \brief Const subscription operator |
2430 | 2430 |
/// |
2431 | 2431 |
/// Const subscription operator |
2432 | 2432 |
Value operator[](const Key& arc) const { |
2433 | 2433 |
return _potential[_digraph.target(arc)] - |
2434 | 2434 |
_potential[_digraph.source(arc)]; |
2435 | 2435 |
} |
2436 | 2436 |
|
2437 | 2437 |
private: |
2438 | 2438 |
const Digraph& _digraph; |
2439 | 2439 |
const NodeMap& _potential; |
2440 | 2440 |
}; |
2441 | 2441 |
|
2442 | 2442 |
/// \brief Returns a PotentialDifferenceMap. |
2443 | 2443 |
/// |
2444 | 2444 |
/// This function just returns a PotentialDifferenceMap. |
2445 | 2445 |
/// \relates PotentialDifferenceMap |
2446 | 2446 |
template <typename Digraph, typename NodeMap> |
2447 | 2447 |
PotentialDifferenceMap<Digraph, NodeMap> |
2448 | 2448 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) { |
2449 | 2449 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential); |
2450 | 2450 |
} |
2451 | 2451 |
|
2452 | 2452 |
/// \brief Map of the node in-degrees. |
2453 | 2453 |
/// |
2454 | 2454 |
/// This map returns the in-degree of a node. Once it is constructed, |
2455 | 2455 |
/// the degrees are stored in a standard NodeMap, so each query is done |
2456 | 2456 |
/// in constant time. On the other hand, the values are updated automatically |
2457 | 2457 |
/// whenever the digraph changes. |
2458 | 2458 |
/// |
2459 | 2459 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
2460 | 2460 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap |
2461 | 2461 |
/// is not guarantied if these additional features are used. For example |
2462 | 2462 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
2463 | 2463 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2464 | 2464 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2465 | 2465 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2466 | 2466 |
/// |
2467 | 2467 |
/// \sa OutDegMap |
2468 | 2468 |
|
2469 | 2469 |
template <typename _Digraph> |
2470 | 2470 |
class InDegMap |
2471 | 2471 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
2472 | 2472 |
::ItemNotifier::ObserverBase { |
2473 | 2473 |
|
2474 | 2474 |
public: |
2475 | 2475 |
|
2476 | 2476 |
typedef _Digraph Digraph; |
2477 | 2477 |
typedef int Value; |
2478 | 2478 |
typedef typename Digraph::Node Key; |
2479 | 2479 |
|
2480 | 2480 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2481 | 2481 |
::ItemNotifier::ObserverBase Parent; |
2482 | 2482 |
|
2483 | 2483 |
private: |
2484 | 2484 |
|
2485 | 2485 |
class AutoNodeMap |
2486 | 2486 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2487 | 2487 |
public: |
2488 | 2488 |
|
2489 | 2489 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2490 | 2490 |
template Map<int>::Type Parent; |
2491 | 2491 |
|
2492 | 2492 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2493 | 2493 |
|
2494 | 2494 |
virtual void add(const Key& key) { |
2495 | 2495 |
Parent::add(key); |
2496 | 2496 |
Parent::set(key, 0); |
2497 | 2497 |
} |
2498 | 2498 |
|
2499 | 2499 |
virtual void add(const std::vector<Key>& keys) { |
2500 | 2500 |
Parent::add(keys); |
0 comments (0 inline)