... | ... |
@@ -567,30 +567,36 @@ |
567 | 567 |
/// |
568 | 568 |
/// The preflow algorithm consists of two phases, this method runs |
569 | 569 |
/// the first phase. After the first phase the maximum flow value |
570 | 570 |
/// and a minimum value cut can already be computed, although a |
571 | 571 |
/// maximum flow is not yet obtained. So after calling this method |
572 | 572 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
573 | 573 |
/// minCut() returns a minimum cut. |
574 | 574 |
/// \pre One of the \ref init() functions must be called before |
575 | 575 |
/// using this function. |
576 | 576 |
void startFirstPhase() { |
577 | 577 |
_phase = true; |
578 | 578 |
|
579 |
Node n = _level->highestActive(); |
|
580 |
int level = _level->highestActiveLevel(); |
|
581 |
while ( |
|
579 |
while (true) { |
|
582 | 580 |
int num = _node_num; |
583 | 581 |
|
584 |
|
|
582 |
Node n = INVALID; |
|
583 |
int level = -1; |
|
584 |
|
|
585 |
while (num > 0) { |
|
586 |
n = _level->highestActive(); |
|
587 |
if (n == INVALID) goto first_phase_done; |
|
588 |
level = _level->highestActiveLevel(); |
|
589 |
--num; |
|
590 |
|
|
585 | 591 |
Value excess = (*_excess)[n]; |
586 | 592 |
int new_level = _level->maxLevel(); |
587 | 593 |
|
588 | 594 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
589 | 595 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
590 | 596 |
if (!_tolerance.positive(rem)) continue; |
591 | 597 |
Node v = _graph.target(e); |
592 | 598 |
if ((*_level)[v] < level) { |
593 | 599 |
if (!_level->active(v) && v != _target) { |
594 | 600 |
_level->activate(v); |
595 | 601 |
} |
596 | 602 |
if (!_tolerance.less(rem, excess)) { |
... | ... |
@@ -638,32 +644,40 @@ |
638 | 644 |
if (excess != 0) { |
639 | 645 |
if (new_level + 1 < _level->maxLevel()) { |
640 | 646 |
_level->liftHighestActive(new_level + 1); |
641 | 647 |
} else { |
642 | 648 |
_level->liftHighestActiveToTop(); |
643 | 649 |
} |
644 | 650 |
if (_level->emptyLevel(level)) { |
645 | 651 |
_level->liftToTop(level); |
646 | 652 |
} |
647 | 653 |
} else { |
648 | 654 |
_level->deactivate(n); |
649 | 655 |
} |
650 |
|
|
651 |
n = _level->highestActive(); |
|
652 |
level = _level->highestActiveLevel(); |
|
653 |
--num; |
|
654 | 656 |
} |
655 | 657 |
|
656 | 658 |
num = _node_num * 20; |
657 |
while (num > 0 |
|
659 |
while (num > 0) { |
|
660 |
while (level >= 0 && _level->activeFree(level)) { |
|
661 |
--level; |
|
662 |
} |
|
663 |
if (level == -1) { |
|
664 |
n = _level->highestActive(); |
|
665 |
level = _level->highestActiveLevel(); |
|
666 |
if (n == INVALID) goto first_phase_done; |
|
667 |
} else { |
|
668 |
n = _level->activeOn(level); |
|
669 |
} |
|
670 |
--num; |
|
671 |
|
|
658 | 672 |
Value excess = (*_excess)[n]; |
659 | 673 |
int new_level = _level->maxLevel(); |
660 | 674 |
|
661 | 675 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
662 | 676 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
663 | 677 |
if (!_tolerance.positive(rem)) continue; |
664 | 678 |
Node v = _graph.target(e); |
665 | 679 |
if ((*_level)[v] < level) { |
666 | 680 |
if (!_level->active(v) && v != _target) { |
667 | 681 |
_level->activate(v); |
668 | 682 |
} |
669 | 683 |
if (!_tolerance.less(rem, excess)) { |
... | ... |
@@ -711,37 +725,27 @@ |
711 | 725 |
if (excess != 0) { |
712 | 726 |
if (new_level + 1 < _level->maxLevel()) { |
713 | 727 |
_level->liftActiveOn(level, new_level + 1); |
714 | 728 |
} else { |
715 | 729 |
_level->liftActiveToTop(level); |
716 | 730 |
} |
717 | 731 |
if (_level->emptyLevel(level)) { |
718 | 732 |
_level->liftToTop(level); |
719 | 733 |
} |
720 | 734 |
} else { |
721 | 735 |
_level->deactivate(n); |
722 | 736 |
} |
723 |
|
|
724 |
while (level >= 0 && _level->activeFree(level)) { |
|
725 |
--level; |
|
726 |
} |
|
727 |
if (level == -1) { |
|
728 |
n = _level->highestActive(); |
|
729 |
level = _level->highestActiveLevel(); |
|
730 |
} else { |
|
731 |
n = _level->activeOn(level); |
|
732 |
} |
|
733 |
--num; |
|
734 | 737 |
} |
735 | 738 |
} |
739 |
first_phase_done:; |
|
736 | 740 |
} |
737 | 741 |
|
738 | 742 |
/// \brief Starts the second phase of the preflow algorithm. |
739 | 743 |
/// |
740 | 744 |
/// The preflow algorithm consists of two phases, this method runs |
741 | 745 |
/// the second phase. After calling one of the \ref init() functions |
742 | 746 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
743 | 747 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
744 | 748 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
745 | 749 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
746 | 750 |
/// must be called before using this function. |
747 | 751 |
void startSecondPhase() { |
0 comments (0 inline)