3
31
2
1851
1
2
1
2
1
1
921
2
1
1
2760
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
// This file contains a modified version of the enable_if library from BOOST. |
|
20 |
// See the appropriate copyright notice below. |
|
21 |
|
|
22 |
// Boost enable_if library |
|
23 |
|
|
24 |
// Copyright 2003 (c) The Trustees of Indiana University. |
|
25 |
|
|
26 |
// Use, modification, and distribution is subject to the Boost Software |
|
27 |
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
|
28 |
// http://www.boost.org/LICENSE_1_0.txt) |
|
29 |
|
|
30 |
// Authors: Jaakko Jarvi (jajarvi at osl.iu.edu) |
|
31 |
// Jeremiah Willcock (jewillco at osl.iu.edu) |
|
32 |
// Andrew Lumsdaine (lums at osl.iu.edu) |
|
33 |
|
|
34 |
|
|
35 |
#ifndef LEMON_BITS_ENABLE_IF_H |
|
36 |
#define LEMON_BITS_ENABLE_IF_H |
|
37 |
|
|
38 |
///\file |
|
39 |
///\brief Miscellaneous basic utilities |
|
40 |
|
|
41 |
namespace lemon |
|
42 |
{ |
|
43 |
|
|
44 |
/// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
45 |
|
|
46 |
/// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
47 |
/// |
|
48 |
///\sa False |
|
49 |
struct True { |
|
50 |
///\e |
|
51 |
static const bool value = true; |
|
52 |
}; |
|
53 |
|
|
54 |
/// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
55 |
|
|
56 |
/// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
57 |
/// |
|
58 |
///\sa True |
|
59 |
struct False { |
|
60 |
///\e |
|
61 |
static const bool value = false; |
|
62 |
}; |
|
63 |
|
|
64 |
|
|
65 |
|
|
66 |
template <typename T> |
|
67 |
struct Wrap { |
|
68 |
const T &value; |
|
69 |
Wrap(const T &t) : value(t) {} |
|
70 |
}; |
|
71 |
|
|
72 |
/**************** dummy class to avoid ambiguity ****************/ |
|
73 |
|
|
74 |
template<int T> struct dummy { dummy(int) {} }; |
|
75 |
|
|
76 |
/**************** enable_if from BOOST ****************/ |
|
77 |
|
|
78 |
template <typename Type, typename T = void> |
|
79 |
struct exists { |
|
80 |
typedef T type; |
|
81 |
}; |
|
82 |
|
|
83 |
|
|
84 |
template <bool B, class T = void> |
|
85 |
struct enable_if_c { |
|
86 |
typedef T type; |
|
87 |
}; |
|
88 |
|
|
89 |
template <class T> |
|
90 |
struct enable_if_c<false, T> {}; |
|
91 |
|
|
92 |
template <class Cond, class T = void> |
|
93 |
struct enable_if : public enable_if_c<Cond::value, T> {}; |
|
94 |
|
|
95 |
template <bool B, class T> |
|
96 |
struct lazy_enable_if_c { |
|
97 |
typedef typename T::type type; |
|
98 |
}; |
|
99 |
|
|
100 |
template <class T> |
|
101 |
struct lazy_enable_if_c<false, T> {}; |
|
102 |
|
|
103 |
template <class Cond, class T> |
|
104 |
struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {}; |
|
105 |
|
|
106 |
|
|
107 |
template <bool B, class T = void> |
|
108 |
struct disable_if_c { |
|
109 |
typedef T type; |
|
110 |
}; |
|
111 |
|
|
112 |
template <class T> |
|
113 |
struct disable_if_c<true, T> {}; |
|
114 |
|
|
115 |
template <class Cond, class T = void> |
|
116 |
struct disable_if : public disable_if_c<Cond::value, T> {}; |
|
117 |
|
|
118 |
template <bool B, class T> |
|
119 |
struct lazy_disable_if_c { |
|
120 |
typedef typename T::type type; |
|
121 |
}; |
|
122 |
|
|
123 |
template <class T> |
|
124 |
struct lazy_disable_if_c<true, T> {}; |
|
125 |
|
|
126 |
template <class Cond, class T> |
|
127 |
struct lazy_disable_if : public lazy_disable_if_c<Cond::value, T> {}; |
|
128 |
|
|
129 |
} // namespace lemon |
|
130 |
|
|
131 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_CORE_H |
|
20 |
#define LEMON_CORE_H |
|
21 |
|
|
22 |
#include <vector> |
|
23 |
#include <algorithm> |
|
24 |
|
|
25 |
#include <lemon/bits/enable_if.h> |
|
26 |
#include <lemon/bits/traits.h> |
|
27 |
|
|
28 |
///\file |
|
29 |
///\brief LEMON core utilities. |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \brief Dummy type to make it easier to create invalid iterators. |
|
34 |
/// |
|
35 |
/// Dummy type to make it easier to create invalid iterators. |
|
36 |
/// See \ref INVALID for the usage. |
|
37 |
struct Invalid { |
|
38 |
public: |
|
39 |
bool operator==(Invalid) { return true; } |
|
40 |
bool operator!=(Invalid) { return false; } |
|
41 |
bool operator< (Invalid) { return false; } |
|
42 |
}; |
|
43 |
|
|
44 |
/// \brief Invalid iterators. |
|
45 |
/// |
|
46 |
/// \ref Invalid is a global type that converts to each iterator |
|
47 |
/// in such a way that the value of the target iterator will be invalid. |
|
48 |
#ifdef LEMON_ONLY_TEMPLATES |
|
49 |
const Invalid INVALID = Invalid(); |
|
50 |
#else |
|
51 |
extern const Invalid INVALID; |
|
52 |
#endif |
|
53 |
|
|
54 |
/// \addtogroup gutils |
|
55 |
/// @{ |
|
56 |
|
|
57 |
///Creates convenience typedefs for the digraph types and iterators |
|
58 |
|
|
59 |
///This \c \#define creates convenience typedefs for the following types |
|
60 |
///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
|
61 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
|
62 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
|
63 |
/// |
|
64 |
///\note If the graph type is a dependent type, ie. the graph type depend |
|
65 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
|
66 |
///macro. |
|
67 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
|
68 |
typedef Digraph::Node Node; \ |
|
69 |
typedef Digraph::NodeIt NodeIt; \ |
|
70 |
typedef Digraph::Arc Arc; \ |
|
71 |
typedef Digraph::ArcIt ArcIt; \ |
|
72 |
typedef Digraph::InArcIt InArcIt; \ |
|
73 |
typedef Digraph::OutArcIt OutArcIt; \ |
|
74 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
|
75 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
|
76 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
|
77 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
|
78 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
|
79 |
typedef Digraph::ArcMap<double> DoubleArcMap |
|
80 |
|
|
81 |
///Creates convenience typedefs for the digraph types and iterators |
|
82 |
|
|
83 |
///\see DIGRAPH_TYPEDEFS |
|
84 |
/// |
|
85 |
///\note Use this macro, if the graph type is a dependent type, |
|
86 |
///ie. the graph type depend on a template parameter. |
|
87 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
|
88 |
typedef typename Digraph::Node Node; \ |
|
89 |
typedef typename Digraph::NodeIt NodeIt; \ |
|
90 |
typedef typename Digraph::Arc Arc; \ |
|
91 |
typedef typename Digraph::ArcIt ArcIt; \ |
|
92 |
typedef typename Digraph::InArcIt InArcIt; \ |
|
93 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
|
94 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
|
95 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
|
96 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
|
97 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
|
98 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
|
99 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
|
100 |
|
|
101 |
///Creates convenience typedefs for the graph types and iterators |
|
102 |
|
|
103 |
///This \c \#define creates the same convenience typedefs as defined |
|
104 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
|
105 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
|
106 |
///\c DoubleEdgeMap. |
|
107 |
/// |
|
108 |
///\note If the graph type is a dependent type, ie. the graph type depend |
|
109 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
|
110 |
///macro. |
|
111 |
#define GRAPH_TYPEDEFS(Graph) \ |
|
112 |
DIGRAPH_TYPEDEFS(Graph); \ |
|
113 |
typedef Graph::Edge Edge; \ |
|
114 |
typedef Graph::EdgeIt EdgeIt; \ |
|
115 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
|
116 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
|
117 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
|
118 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
|
119 |
|
|
120 |
///Creates convenience typedefs for the graph types and iterators |
|
121 |
|
|
122 |
///\see GRAPH_TYPEDEFS |
|
123 |
/// |
|
124 |
///\note Use this macro, if the graph type is a dependent type, |
|
125 |
///ie. the graph type depend on a template parameter. |
|
126 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
|
127 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
|
128 |
typedef typename Graph::Edge Edge; \ |
|
129 |
typedef typename Graph::EdgeIt EdgeIt; \ |
|
130 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
|
131 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
|
132 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
|
133 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
|
134 |
|
|
135 |
/// \brief Function to count the items in the graph. |
|
136 |
/// |
|
137 |
/// This function counts the items (nodes, arcs etc) in the graph. |
|
138 |
/// The complexity of the function is O(n) because |
|
139 |
/// it iterates on all of the items. |
|
140 |
template <typename Graph, typename Item> |
|
141 |
inline int countItems(const Graph& g) { |
|
142 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
|
143 |
int num = 0; |
|
144 |
for (ItemIt it(g); it != INVALID; ++it) { |
|
145 |
++num; |
|
146 |
} |
|
147 |
return num; |
|
148 |
} |
|
149 |
|
|
150 |
// Node counting: |
|
151 |
|
|
152 |
namespace _core_bits { |
|
153 |
|
|
154 |
template <typename Graph, typename Enable = void> |
|
155 |
struct CountNodesSelector { |
|
156 |
static int count(const Graph &g) { |
|
157 |
return countItems<Graph, typename Graph::Node>(g); |
|
158 |
} |
|
159 |
}; |
|
160 |
|
|
161 |
template <typename Graph> |
|
162 |
struct CountNodesSelector< |
|
163 |
Graph, typename |
|
164 |
enable_if<typename Graph::NodeNumTag, void>::type> |
|
165 |
{ |
|
166 |
static int count(const Graph &g) { |
|
167 |
return g.nodeNum(); |
|
168 |
} |
|
169 |
}; |
|
170 |
} |
|
171 |
|
|
172 |
/// \brief Function to count the nodes in the graph. |
|
173 |
/// |
|
174 |
/// This function counts the nodes in the graph. |
|
175 |
/// The complexity of the function is O(n) but for some |
|
176 |
/// graph structures it is specialized to run in O(1). |
|
177 |
/// |
|
178 |
/// If the graph contains a \e nodeNum() member function and a |
|
179 |
/// \e NodeNumTag tag then this function calls directly the member |
|
180 |
/// function to query the cardinality of the node set. |
|
181 |
template <typename Graph> |
|
182 |
inline int countNodes(const Graph& g) { |
|
183 |
return _core_bits::CountNodesSelector<Graph>::count(g); |
|
184 |
} |
|
185 |
|
|
186 |
// Arc counting: |
|
187 |
|
|
188 |
namespace _core_bits { |
|
189 |
|
|
190 |
template <typename Graph, typename Enable = void> |
|
191 |
struct CountArcsSelector { |
|
192 |
static int count(const Graph &g) { |
|
193 |
return countItems<Graph, typename Graph::Arc>(g); |
|
194 |
} |
|
195 |
}; |
|
196 |
|
|
197 |
template <typename Graph> |
|
198 |
struct CountArcsSelector< |
|
199 |
Graph, |
|
200 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
|
201 |
{ |
|
202 |
static int count(const Graph &g) { |
|
203 |
return g.arcNum(); |
|
204 |
} |
|
205 |
}; |
|
206 |
} |
|
207 |
|
|
208 |
/// \brief Function to count the arcs in the graph. |
|
209 |
/// |
|
210 |
/// This function counts the arcs in the graph. |
|
211 |
/// The complexity of the function is O(e) but for some |
|
212 |
/// graph structures it is specialized to run in O(1). |
|
213 |
/// |
|
214 |
/// If the graph contains a \e arcNum() member function and a |
|
215 |
/// \e EdgeNumTag tag then this function calls directly the member |
|
216 |
/// function to query the cardinality of the arc set. |
|
217 |
template <typename Graph> |
|
218 |
inline int countArcs(const Graph& g) { |
|
219 |
return _core_bits::CountArcsSelector<Graph>::count(g); |
|
220 |
} |
|
221 |
|
|
222 |
// Edge counting: |
|
223 |
namespace _core_bits { |
|
224 |
|
|
225 |
template <typename Graph, typename Enable = void> |
|
226 |
struct CountEdgesSelector { |
|
227 |
static int count(const Graph &g) { |
|
228 |
return countItems<Graph, typename Graph::Edge>(g); |
|
229 |
} |
|
230 |
}; |
|
231 |
|
|
232 |
template <typename Graph> |
|
233 |
struct CountEdgesSelector< |
|
234 |
Graph, |
|
235 |
typename enable_if<typename Graph::EdgeNumTag, void>::type> |
|
236 |
{ |
|
237 |
static int count(const Graph &g) { |
|
238 |
return g.edgeNum(); |
|
239 |
} |
|
240 |
}; |
|
241 |
} |
|
242 |
|
|
243 |
/// \brief Function to count the edges in the graph. |
|
244 |
/// |
|
245 |
/// This function counts the edges in the graph. |
|
246 |
/// The complexity of the function is O(m) but for some |
|
247 |
/// graph structures it is specialized to run in O(1). |
|
248 |
/// |
|
249 |
/// If the graph contains a \e edgeNum() member function and a |
|
250 |
/// \e EdgeNumTag tag then this function calls directly the member |
|
251 |
/// function to query the cardinality of the edge set. |
|
252 |
template <typename Graph> |
|
253 |
inline int countEdges(const Graph& g) { |
|
254 |
return _core_bits::CountEdgesSelector<Graph>::count(g); |
|
255 |
|
|
256 |
} |
|
257 |
|
|
258 |
|
|
259 |
template <typename Graph, typename DegIt> |
|
260 |
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
|
261 |
int num = 0; |
|
262 |
for (DegIt it(_g, _n); it != INVALID; ++it) { |
|
263 |
++num; |
|
264 |
} |
|
265 |
return num; |
|
266 |
} |
|
267 |
|
|
268 |
/// \brief Function to count the number of the out-arcs from node \c n. |
|
269 |
/// |
|
270 |
/// This function counts the number of the out-arcs from node \c n |
|
271 |
/// in the graph. |
|
272 |
template <typename Graph> |
|
273 |
inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) { |
|
274 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n); |
|
275 |
} |
|
276 |
|
|
277 |
/// \brief Function to count the number of the in-arcs to node \c n. |
|
278 |
/// |
|
279 |
/// This function counts the number of the in-arcs to node \c n |
|
280 |
/// in the graph. |
|
281 |
template <typename Graph> |
|
282 |
inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) { |
|
283 |
return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n); |
|
284 |
} |
|
285 |
|
|
286 |
/// \brief Function to count the number of the inc-edges to node \c n. |
|
287 |
/// |
|
288 |
/// This function counts the number of the inc-edges to node \c n |
|
289 |
/// in the graph. |
|
290 |
template <typename Graph> |
|
291 |
inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) { |
|
292 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n); |
|
293 |
} |
|
294 |
|
|
295 |
namespace _core_bits { |
|
296 |
|
|
297 |
template <typename Digraph, typename Item, typename RefMap> |
|
298 |
class MapCopyBase { |
|
299 |
public: |
|
300 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
|
301 |
|
|
302 |
virtual ~MapCopyBase() {} |
|
303 |
}; |
|
304 |
|
|
305 |
template <typename Digraph, typename Item, typename RefMap, |
|
306 |
typename ToMap, typename FromMap> |
|
307 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
308 |
public: |
|
309 |
|
|
310 |
MapCopy(ToMap& tmap, const FromMap& map) |
|
311 |
: _tmap(tmap), _map(map) {} |
|
312 |
|
|
313 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
|
314 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
|
315 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
|
316 |
_tmap.set(refMap[it], _map[it]); |
|
317 |
} |
|
318 |
} |
|
319 |
|
|
320 |
private: |
|
321 |
ToMap& _tmap; |
|
322 |
const FromMap& _map; |
|
323 |
}; |
|
324 |
|
|
325 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
|
326 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
327 |
public: |
|
328 |
|
|
329 |
ItemCopy(It& it, const Item& item) : _it(it), _item(item) {} |
|
330 |
|
|
331 |
virtual void copy(const Digraph&, const RefMap& refMap) { |
|
332 |
_it = refMap[_item]; |
|
333 |
} |
|
334 |
|
|
335 |
private: |
|
336 |
It& _it; |
|
337 |
Item _item; |
|
338 |
}; |
|
339 |
|
|
340 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
|
341 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
342 |
public: |
|
343 |
|
|
344 |
RefCopy(Ref& map) : _map(map) {} |
|
345 |
|
|
346 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
|
347 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
|
348 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
|
349 |
_map.set(it, refMap[it]); |
|
350 |
} |
|
351 |
} |
|
352 |
|
|
353 |
private: |
|
354 |
Ref& _map; |
|
355 |
}; |
|
356 |
|
|
357 |
template <typename Digraph, typename Item, typename RefMap, |
|
358 |
typename CrossRef> |
|
359 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
360 |
public: |
|
361 |
|
|
362 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
|
363 |
|
|
364 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
|
365 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
|
366 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
|
367 |
_cmap.set(refMap[it], it); |
|
368 |
} |
|
369 |
} |
|
370 |
|
|
371 |
private: |
|
372 |
CrossRef& _cmap; |
|
373 |
}; |
|
374 |
|
|
375 |
template <typename Digraph, typename Enable = void> |
|
376 |
struct DigraphCopySelector { |
|
377 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
|
378 |
static void copy(Digraph &to, const From& from, |
|
379 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
|
380 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
|
381 |
nodeRefMap[it] = to.addNode(); |
|
382 |
} |
|
383 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
|
384 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
|
385 |
nodeRefMap[from.target(it)]); |
|
386 |
} |
|
387 |
} |
|
388 |
}; |
|
389 |
|
|
390 |
template <typename Digraph> |
|
391 |
struct DigraphCopySelector< |
|
392 |
Digraph, |
|
393 |
typename enable_if<typename Digraph::BuildTag, void>::type> |
|
394 |
{ |
|
395 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
|
396 |
static void copy(Digraph &to, const From& from, |
|
397 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
|
398 |
to.build(from, nodeRefMap, arcRefMap); |
|
399 |
} |
|
400 |
}; |
|
401 |
|
|
402 |
template <typename Graph, typename Enable = void> |
|
403 |
struct GraphCopySelector { |
|
404 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
|
405 |
static void copy(Graph &to, const From& from, |
|
406 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
|
407 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
|
408 |
nodeRefMap[it] = to.addNode(); |
|
409 |
} |
|
410 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
|
411 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
|
412 |
nodeRefMap[from.v(it)]); |
|
413 |
} |
|
414 |
} |
|
415 |
}; |
|
416 |
|
|
417 |
template <typename Graph> |
|
418 |
struct GraphCopySelector< |
|
419 |
Graph, |
|
420 |
typename enable_if<typename Graph::BuildTag, void>::type> |
|
421 |
{ |
|
422 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
|
423 |
static void copy(Graph &to, const From& from, |
|
424 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
|
425 |
to.build(from, nodeRefMap, edgeRefMap); |
|
426 |
} |
|
427 |
}; |
|
428 |
|
|
429 |
} |
|
430 |
|
|
431 |
/// \brief Class to copy a digraph. |
|
432 |
/// |
|
433 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
|
434 |
/// simplest way of using it is through the \c copyDigraph() function. |
|
435 |
/// |
|
436 |
/// This class not just make a copy of a graph, but it can create |
|
437 |
/// references and cross references between the nodes and arcs of |
|
438 |
/// the two graphs, it can copy maps for use with the newly created |
|
439 |
/// graph and copy nodes and arcs. |
|
440 |
/// |
|
441 |
/// To make a copy from a graph, first an instance of DigraphCopy |
|
442 |
/// should be created, then the data belongs to the graph should |
|
443 |
/// assigned to copy. In the end, the \c run() member should be |
|
444 |
/// called. |
|
445 |
/// |
|
446 |
/// The next code copies a graph with several data: |
|
447 |
///\code |
|
448 |
/// DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph); |
|
449 |
/// // create a reference for the nodes |
|
450 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
|
451 |
/// dc.nodeRef(nr); |
|
452 |
/// // create a cross reference (inverse) for the arcs |
|
453 |
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
|
454 |
/// dc.arcCrossRef(acr); |
|
455 |
/// // copy an arc map |
|
456 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
|
457 |
/// NewGraph::ArcMap<double> namap(new_graph); |
|
458 |
/// dc.arcMap(namap, oamap); |
|
459 |
/// // copy a node |
|
460 |
/// OrigGraph::Node on; |
|
461 |
/// NewGraph::Node nn; |
|
462 |
/// dc.node(nn, on); |
|
463 |
/// // Executions of copy |
|
464 |
/// dc.run(); |
|
465 |
///\endcode |
|
466 |
template <typename To, typename From> |
|
467 |
class DigraphCopy { |
|
468 |
private: |
|
469 |
|
|
470 |
typedef typename From::Node Node; |
|
471 |
typedef typename From::NodeIt NodeIt; |
|
472 |
typedef typename From::Arc Arc; |
|
473 |
typedef typename From::ArcIt ArcIt; |
|
474 |
|
|
475 |
typedef typename To::Node TNode; |
|
476 |
typedef typename To::Arc TArc; |
|
477 |
|
|
478 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
|
479 |
typedef typename From::template ArcMap<TArc> ArcRefMap; |
|
480 |
|
|
481 |
|
|
482 |
public: |
|
483 |
|
|
484 |
|
|
485 |
/// \brief Constructor for the DigraphCopy. |
|
486 |
/// |
|
487 |
/// It copies the content of the \c _from digraph into the |
|
488 |
/// \c _to digraph. |
|
489 |
DigraphCopy(To& to, const From& from) |
|
490 |
: _from(from), _to(to) {} |
|
491 |
|
|
492 |
/// \brief Destructor of the DigraphCopy |
|
493 |
/// |
|
494 |
/// Destructor of the DigraphCopy |
|
495 |
~DigraphCopy() { |
|
496 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
497 |
delete _node_maps[i]; |
|
498 |
} |
|
499 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
500 |
delete _arc_maps[i]; |
|
501 |
} |
|
502 |
|
|
503 |
} |
|
504 |
|
|
505 |
/// \brief Copies the node references into the given map. |
|
506 |
/// |
|
507 |
/// Copies the node references into the given map. The parameter |
|
508 |
/// should be a map, which key type is the Node type of the source |
|
509 |
/// graph, while the value type is the Node type of the |
|
510 |
/// destination graph. |
|
511 |
template <typename NodeRef> |
|
512 |
DigraphCopy& nodeRef(NodeRef& map) { |
|
513 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
|
514 |
NodeRefMap, NodeRef>(map)); |
|
515 |
return *this; |
|
516 |
} |
|
517 |
|
|
518 |
/// \brief Copies the node cross references into the given map. |
|
519 |
/// |
|
520 |
/// Copies the node cross references (reverse references) into |
|
521 |
/// the given map. The parameter should be a map, which key type |
|
522 |
/// is the Node type of the destination graph, while the value type is |
|
523 |
/// the Node type of the source graph. |
|
524 |
template <typename NodeCrossRef> |
|
525 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) { |
|
526 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
|
527 |
NodeRefMap, NodeCrossRef>(map)); |
|
528 |
return *this; |
|
529 |
} |
|
530 |
|
|
531 |
/// \brief Make copy of the given map. |
|
532 |
/// |
|
533 |
/// Makes copy of the given map for the newly created digraph. |
|
534 |
/// The new map's key type is the destination graph's node type, |
|
535 |
/// and the copied map's key type is the source graph's node type. |
|
536 |
template <typename ToMap, typename FromMap> |
|
537 |
DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
|
538 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
|
539 |
NodeRefMap, ToMap, FromMap>(tmap, map)); |
|
540 |
return *this; |
|
541 |
} |
|
542 |
|
|
543 |
/// \brief Make a copy of the given node. |
|
544 |
/// |
|
545 |
/// Make a copy of the given node. |
|
546 |
DigraphCopy& node(TNode& tnode, const Node& snode) { |
|
547 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
|
548 |
NodeRefMap, TNode>(tnode, snode)); |
|
549 |
return *this; |
|
550 |
} |
|
551 |
|
|
552 |
/// \brief Copies the arc references into the given map. |
|
553 |
/// |
|
554 |
/// Copies the arc references into the given map. |
|
555 |
template <typename ArcRef> |
|
556 |
DigraphCopy& arcRef(ArcRef& map) { |
|
557 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
|
558 |
ArcRefMap, ArcRef>(map)); |
|
559 |
return *this; |
|
560 |
} |
|
561 |
|
|
562 |
/// \brief Copies the arc cross references into the given map. |
|
563 |
/// |
|
564 |
/// Copies the arc cross references (reverse references) into |
|
565 |
/// the given map. |
|
566 |
template <typename ArcCrossRef> |
|
567 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) { |
|
568 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
|
569 |
ArcRefMap, ArcCrossRef>(map)); |
|
570 |
return *this; |
|
571 |
} |
|
572 |
|
|
573 |
/// \brief Make copy of the given map. |
|
574 |
/// |
|
575 |
/// Makes copy of the given map for the newly created digraph. |
|
576 |
/// The new map's key type is the to digraph's arc type, |
|
577 |
/// and the copied map's key type is the from digraph's arc |
|
578 |
/// type. |
|
579 |
template <typename ToMap, typename FromMap> |
|
580 |
DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) { |
|
581 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
|
582 |
ArcRefMap, ToMap, FromMap>(tmap, map)); |
|
583 |
return *this; |
|
584 |
} |
|
585 |
|
|
586 |
/// \brief Make a copy of the given arc. |
|
587 |
/// |
|
588 |
/// Make a copy of the given arc. |
|
589 |
DigraphCopy& arc(TArc& tarc, const Arc& sarc) { |
|
590 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
|
591 |
ArcRefMap, TArc>(tarc, sarc)); |
|
592 |
return *this; |
|
593 |
} |
|
594 |
|
|
595 |
/// \brief Executes the copies. |
|
596 |
/// |
|
597 |
/// Executes the copies. |
|
598 |
void run() { |
|
599 |
NodeRefMap nodeRefMap(_from); |
|
600 |
ArcRefMap arcRefMap(_from); |
|
601 |
_core_bits::DigraphCopySelector<To>:: |
|
602 |
copy(_to, _from, nodeRefMap, arcRefMap); |
|
603 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
604 |
_node_maps[i]->copy(_from, nodeRefMap); |
|
605 |
} |
|
606 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
607 |
_arc_maps[i]->copy(_from, arcRefMap); |
|
608 |
} |
|
609 |
} |
|
610 |
|
|
611 |
protected: |
|
612 |
|
|
613 |
|
|
614 |
const From& _from; |
|
615 |
To& _to; |
|
616 |
|
|
617 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
|
618 |
_node_maps; |
|
619 |
|
|
620 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
|
621 |
_arc_maps; |
|
622 |
|
|
623 |
}; |
|
624 |
|
|
625 |
/// \brief Copy a digraph to another digraph. |
|
626 |
/// |
|
627 |
/// Copy a digraph to another digraph. The complete usage of the |
|
628 |
/// function is detailed in the DigraphCopy class, but a short |
|
629 |
/// example shows a basic work: |
|
630 |
///\code |
|
631 |
/// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); |
|
632 |
///\endcode |
|
633 |
/// |
|
634 |
/// After the copy the \c nr map will contain the mapping from the |
|
635 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and |
|
636 |
/// \c ecr will contain the mapping from the arcs of the \c to digraph |
|
637 |
/// to the arcs of the \c from digraph. |
|
638 |
/// |
|
639 |
/// \see DigraphCopy |
|
640 |
template <typename To, typename From> |
|
641 |
DigraphCopy<To, From> copyDigraph(To& to, const From& from) { |
|
642 |
return DigraphCopy<To, From>(to, from); |
|
643 |
} |
|
644 |
|
|
645 |
/// \brief Class to copy a graph. |
|
646 |
/// |
|
647 |
/// Class to copy a graph to another graph (duplicate a graph). The |
|
648 |
/// simplest way of using it is through the \c copyGraph() function. |
|
649 |
/// |
|
650 |
/// This class not just make a copy of a graph, but it can create |
|
651 |
/// references and cross references between the nodes, edges and arcs of |
|
652 |
/// the two graphs, it can copy maps for use with the newly created |
|
653 |
/// graph and copy nodes, edges and arcs. |
|
654 |
/// |
|
655 |
/// To make a copy from a graph, first an instance of GraphCopy |
|
656 |
/// should be created, then the data belongs to the graph should |
|
657 |
/// assigned to copy. In the end, the \c run() member should be |
|
658 |
/// called. |
|
659 |
/// |
|
660 |
/// The next code copies a graph with several data: |
|
661 |
///\code |
|
662 |
/// GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph); |
|
663 |
/// // create a reference for the nodes |
|
664 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
|
665 |
/// dc.nodeRef(nr); |
|
666 |
/// // create a cross reference (inverse) for the edges |
|
667 |
/// NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph); |
|
668 |
/// dc.edgeCrossRef(ecr); |
|
669 |
/// // copy an arc map |
|
670 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
|
671 |
/// NewGraph::ArcMap<double> namap(new_graph); |
|
672 |
/// dc.arcMap(namap, oamap); |
|
673 |
/// // copy a node |
|
674 |
/// OrigGraph::Node on; |
|
675 |
/// NewGraph::Node nn; |
|
676 |
/// dc.node(nn, on); |
|
677 |
/// // Executions of copy |
|
678 |
/// dc.run(); |
|
679 |
///\endcode |
|
680 |
template <typename To, typename From> |
|
681 |
class GraphCopy { |
|
682 |
private: |
|
683 |
|
|
684 |
typedef typename From::Node Node; |
|
685 |
typedef typename From::NodeIt NodeIt; |
|
686 |
typedef typename From::Arc Arc; |
|
687 |
typedef typename From::ArcIt ArcIt; |
|
688 |
typedef typename From::Edge Edge; |
|
689 |
typedef typename From::EdgeIt EdgeIt; |
|
690 |
|
|
691 |
typedef typename To::Node TNode; |
|
692 |
typedef typename To::Arc TArc; |
|
693 |
typedef typename To::Edge TEdge; |
|
694 |
|
|
695 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
|
696 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
|
697 |
|
|
698 |
struct ArcRefMap { |
|
699 |
ArcRefMap(const To& to, const From& from, |
|
700 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
|
701 |
: _to(to), _from(from), |
|
702 |
_edge_ref(edge_ref), _node_ref(node_ref) {} |
|
703 |
|
|
704 |
typedef typename From::Arc Key; |
|
705 |
typedef typename To::Arc Value; |
|
706 |
|
|
707 |
Value operator[](const Key& key) const { |
|
708 |
bool forward = _from.u(key) != _from.v(key) ? |
|
709 |
_node_ref[_from.source(key)] == |
|
710 |
_to.source(_to.direct(_edge_ref[key], true)) : |
|
711 |
_from.direction(key); |
|
712 |
return _to.direct(_edge_ref[key], forward); |
|
713 |
} |
|
714 |
|
|
715 |
const To& _to; |
|
716 |
const From& _from; |
|
717 |
const EdgeRefMap& _edge_ref; |
|
718 |
const NodeRefMap& _node_ref; |
|
719 |
}; |
|
720 |
|
|
721 |
|
|
722 |
public: |
|
723 |
|
|
724 |
|
|
725 |
/// \brief Constructor for the GraphCopy. |
|
726 |
/// |
|
727 |
/// It copies the content of the \c _from graph into the |
|
728 |
/// \c _to graph. |
|
729 |
GraphCopy(To& to, const From& from) |
|
730 |
: _from(from), _to(to) {} |
|
731 |
|
|
732 |
/// \brief Destructor of the GraphCopy |
|
733 |
/// |
|
734 |
/// Destructor of the GraphCopy |
|
735 |
~GraphCopy() { |
|
736 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
737 |
delete _node_maps[i]; |
|
738 |
} |
|
739 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
740 |
delete _arc_maps[i]; |
|
741 |
} |
|
742 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
|
743 |
delete _edge_maps[i]; |
|
744 |
} |
|
745 |
|
|
746 |
} |
|
747 |
|
|
748 |
/// \brief Copies the node references into the given map. |
|
749 |
/// |
|
750 |
/// Copies the node references into the given map. |
|
751 |
template <typename NodeRef> |
|
752 |
GraphCopy& nodeRef(NodeRef& map) { |
|
753 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
|
754 |
NodeRefMap, NodeRef>(map)); |
|
755 |
return *this; |
|
756 |
} |
|
757 |
|
|
758 |
/// \brief Copies the node cross references into the given map. |
|
759 |
/// |
|
760 |
/// Copies the node cross references (reverse references) into |
|
761 |
/// the given map. |
|
762 |
template <typename NodeCrossRef> |
|
763 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
|
764 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
|
765 |
NodeRefMap, NodeCrossRef>(map)); |
|
766 |
return *this; |
|
767 |
} |
|
768 |
|
|
769 |
/// \brief Make copy of the given map. |
|
770 |
/// |
|
771 |
/// Makes copy of the given map for the newly created graph. |
|
772 |
/// The new map's key type is the to graph's node type, |
|
773 |
/// and the copied map's key type is the from graph's node |
|
774 |
/// type. |
|
775 |
template <typename ToMap, typename FromMap> |
|
776 |
GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
|
777 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
|
778 |
NodeRefMap, ToMap, FromMap>(tmap, map)); |
|
779 |
return *this; |
|
780 |
} |
|
781 |
|
|
782 |
/// \brief Make a copy of the given node. |
|
783 |
/// |
|
784 |
/// Make a copy of the given node. |
|
785 |
GraphCopy& node(TNode& tnode, const Node& snode) { |
|
786 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
|
787 |
NodeRefMap, TNode>(tnode, snode)); |
|
788 |
return *this; |
|
789 |
} |
|
790 |
|
|
791 |
/// \brief Copies the arc references into the given map. |
|
792 |
/// |
|
793 |
/// Copies the arc references into the given map. |
|
794 |
template <typename ArcRef> |
|
795 |
GraphCopy& arcRef(ArcRef& map) { |
|
796 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
|
797 |
ArcRefMap, ArcRef>(map)); |
|
798 |
return *this; |
|
799 |
} |
|
800 |
|
|
801 |
/// \brief Copies the arc cross references into the given map. |
|
802 |
/// |
|
803 |
/// Copies the arc cross references (reverse references) into |
|
804 |
/// the given map. |
|
805 |
template <typename ArcCrossRef> |
|
806 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
|
807 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
|
808 |
ArcRefMap, ArcCrossRef>(map)); |
|
809 |
return *this; |
|
810 |
} |
|
811 |
|
|
812 |
/// \brief Make copy of the given map. |
|
813 |
/// |
|
814 |
/// Makes copy of the given map for the newly created graph. |
|
815 |
/// The new map's key type is the to graph's arc type, |
|
816 |
/// and the copied map's key type is the from graph's arc |
|
817 |
/// type. |
|
818 |
template <typename ToMap, typename FromMap> |
|
819 |
GraphCopy& arcMap(ToMap& tmap, const FromMap& map) { |
|
820 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
|
821 |
ArcRefMap, ToMap, FromMap>(tmap, map)); |
|
822 |
return *this; |
|
823 |
} |
|
824 |
|
|
825 |
/// \brief Make a copy of the given arc. |
|
826 |
/// |
|
827 |
/// Make a copy of the given arc. |
|
828 |
GraphCopy& arc(TArc& tarc, const Arc& sarc) { |
|
829 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
|
830 |
ArcRefMap, TArc>(tarc, sarc)); |
|
831 |
return *this; |
|
832 |
} |
|
833 |
|
|
834 |
/// \brief Copies the edge references into the given map. |
|
835 |
/// |
|
836 |
/// Copies the edge references into the given map. |
|
837 |
template <typename EdgeRef> |
|
838 |
GraphCopy& edgeRef(EdgeRef& map) { |
|
839 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
|
840 |
EdgeRefMap, EdgeRef>(map)); |
|
841 |
return *this; |
|
842 |
} |
|
843 |
|
|
844 |
/// \brief Copies the edge cross references into the given map. |
|
845 |
/// |
|
846 |
/// Copies the edge cross references (reverse |
|
847 |
/// references) into the given map. |
|
848 |
template <typename EdgeCrossRef> |
|
849 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
|
850 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
|
851 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
|
852 |
return *this; |
|
853 |
} |
|
854 |
|
|
855 |
/// \brief Make copy of the given map. |
|
856 |
/// |
|
857 |
/// Makes copy of the given map for the newly created graph. |
|
858 |
/// The new map's key type is the to graph's edge type, |
|
859 |
/// and the copied map's key type is the from graph's edge |
|
860 |
/// type. |
|
861 |
template <typename ToMap, typename FromMap> |
|
862 |
GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { |
|
863 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
|
864 |
EdgeRefMap, ToMap, FromMap>(tmap, map)); |
|
865 |
return *this; |
|
866 |
} |
|
867 |
|
|
868 |
/// \brief Make a copy of the given edge. |
|
869 |
/// |
|
870 |
/// Make a copy of the given edge. |
|
871 |
GraphCopy& edge(TEdge& tedge, const Edge& sedge) { |
|
872 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
|
873 |
EdgeRefMap, TEdge>(tedge, sedge)); |
|
874 |
return *this; |
|
875 |
} |
|
876 |
|
|
877 |
/// \brief Executes the copies. |
|
878 |
/// |
|
879 |
/// Executes the copies. |
|
880 |
void run() { |
|
881 |
NodeRefMap nodeRefMap(_from); |
|
882 |
EdgeRefMap edgeRefMap(_from); |
|
883 |
ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap); |
|
884 |
_core_bits::GraphCopySelector<To>:: |
|
885 |
copy(_to, _from, nodeRefMap, edgeRefMap); |
|
886 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
887 |
_node_maps[i]->copy(_from, nodeRefMap); |
|
888 |
} |
|
889 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
|
890 |
_edge_maps[i]->copy(_from, edgeRefMap); |
|
891 |
} |
|
892 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
893 |
_arc_maps[i]->copy(_from, arcRefMap); |
|
894 |
} |
|
895 |
} |
|
896 |
|
|
897 |
private: |
|
898 |
|
|
899 |
const From& _from; |
|
900 |
To& _to; |
|
901 |
|
|
902 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
|
903 |
_node_maps; |
|
904 |
|
|
905 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
|
906 |
_arc_maps; |
|
907 |
|
|
908 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
|
909 |
_edge_maps; |
|
910 |
|
|
911 |
}; |
|
912 |
|
|
913 |
/// \brief Copy a graph to another graph. |
|
914 |
/// |
|
915 |
/// Copy a graph to another graph. The complete usage of the |
|
916 |
/// function is detailed in the GraphCopy class, but a short |
|
917 |
/// example shows a basic work: |
|
918 |
///\code |
|
919 |
/// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); |
|
920 |
///\endcode |
|
921 |
/// |
|
922 |
/// After the copy the \c nr map will contain the mapping from the |
|
923 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
|
924 |
/// \c ecr will contain the mapping from the arcs of the \c to graph |
|
925 |
/// to the arcs of the \c from graph. |
|
926 |
/// |
|
927 |
/// \see GraphCopy |
|
928 |
template <typename To, typename From> |
|
929 |
GraphCopy<To, From> |
|
930 |
copyGraph(To& to, const From& from) { |
|
931 |
return GraphCopy<To, From>(to, from); |
|
932 |
} |
|
933 |
|
|
934 |
namespace _core_bits { |
|
935 |
|
|
936 |
template <typename Graph, typename Enable = void> |
|
937 |
struct FindArcSelector { |
|
938 |
typedef typename Graph::Node Node; |
|
939 |
typedef typename Graph::Arc Arc; |
|
940 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
|
941 |
if (e == INVALID) { |
|
942 |
g.firstOut(e, u); |
|
943 |
} else { |
|
944 |
g.nextOut(e); |
|
945 |
} |
|
946 |
while (e != INVALID && g.target(e) != v) { |
|
947 |
g.nextOut(e); |
|
948 |
} |
|
949 |
return e; |
|
950 |
} |
|
951 |
}; |
|
952 |
|
|
953 |
template <typename Graph> |
|
954 |
struct FindArcSelector< |
|
955 |
Graph, |
|
956 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
|
957 |
{ |
|
958 |
typedef typename Graph::Node Node; |
|
959 |
typedef typename Graph::Arc Arc; |
|
960 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
|
961 |
return g.findArc(u, v, prev); |
|
962 |
} |
|
963 |
}; |
|
964 |
} |
|
965 |
|
|
966 |
/// \brief Finds an arc between two nodes of a graph. |
|
967 |
/// |
|
968 |
/// Finds an arc from node \c u to node \c v in graph \c g. |
|
969 |
/// |
|
970 |
/// If \c prev is \ref INVALID (this is the default value), then |
|
971 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
|
972 |
/// the next arc from \c u to \c v after \c prev. |
|
973 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
|
974 |
/// |
|
975 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
|
976 |
///\code |
|
977 |
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) { |
|
978 |
/// ... |
|
979 |
/// } |
|
980 |
///\endcode |
|
981 |
/// |
|
982 |
///\sa ArcLookUp |
|
983 |
///\sa AllArcLookUp |
|
984 |
///\sa DynArcLookUp |
|
985 |
///\sa ConArcIt |
|
986 |
template <typename Graph> |
|
987 |
inline typename Graph::Arc |
|
988 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
|
989 |
typename Graph::Arc prev = INVALID) { |
|
990 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
|
991 |
} |
|
992 |
|
|
993 |
/// \brief Iterator for iterating on arcs connected the same nodes. |
|
994 |
/// |
|
995 |
/// Iterator for iterating on arcs connected the same nodes. It is |
|
996 |
/// higher level interface for the findArc() function. You can |
|
997 |
/// use it the following way: |
|
998 |
///\code |
|
999 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
|
1000 |
/// ... |
|
1001 |
/// } |
|
1002 |
///\endcode |
|
1003 |
/// |
|
1004 |
///\sa findArc() |
|
1005 |
///\sa ArcLookUp |
|
1006 |
///\sa AllArcLookUp |
|
1007 |
///\sa DynArcLookUp |
|
1008 |
template <typename _Graph> |
|
1009 |
class ConArcIt : public _Graph::Arc { |
|
1010 |
public: |
|
1011 |
|
|
1012 |
typedef _Graph Graph; |
|
1013 |
typedef typename Graph::Arc Parent; |
|
1014 |
|
|
1015 |
typedef typename Graph::Arc Arc; |
|
1016 |
typedef typename Graph::Node Node; |
|
1017 |
|
|
1018 |
/// \brief Constructor. |
|
1019 |
/// |
|
1020 |
/// Construct a new ConArcIt iterating on the arcs which |
|
1021 |
/// connects the \c u and \c v node. |
|
1022 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
|
1023 |
Parent::operator=(findArc(_graph, u, v)); |
|
1024 |
} |
|
1025 |
|
|
1026 |
/// \brief Constructor. |
|
1027 |
/// |
|
1028 |
/// Construct a new ConArcIt which continues the iterating from |
|
1029 |
/// the \c e arc. |
|
1030 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
|
1031 |
|
|
1032 |
/// \brief Increment operator. |
|
1033 |
/// |
|
1034 |
/// It increments the iterator and gives back the next arc. |
|
1035 |
ConArcIt& operator++() { |
|
1036 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
|
1037 |
_graph.target(*this), *this)); |
|
1038 |
return *this; |
|
1039 |
} |
|
1040 |
private: |
|
1041 |
const Graph& _graph; |
|
1042 |
}; |
|
1043 |
|
|
1044 |
namespace _core_bits { |
|
1045 |
|
|
1046 |
template <typename Graph, typename Enable = void> |
|
1047 |
struct FindEdgeSelector { |
|
1048 |
typedef typename Graph::Node Node; |
|
1049 |
typedef typename Graph::Edge Edge; |
|
1050 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
|
1051 |
bool b; |
|
1052 |
if (u != v) { |
|
1053 |
if (e == INVALID) { |
|
1054 |
g.firstInc(e, b, u); |
|
1055 |
} else { |
|
1056 |
b = g.u(e) == u; |
|
1057 |
g.nextInc(e, b); |
|
1058 |
} |
|
1059 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
|
1060 |
g.nextInc(e, b); |
|
1061 |
} |
|
1062 |
} else { |
|
1063 |
if (e == INVALID) { |
|
1064 |
g.firstInc(e, b, u); |
|
1065 |
} else { |
|
1066 |
b = true; |
|
1067 |
g.nextInc(e, b); |
|
1068 |
} |
|
1069 |
while (e != INVALID && (!b || g.v(e) != v)) { |
|
1070 |
g.nextInc(e, b); |
|
1071 |
} |
|
1072 |
} |
|
1073 |
return e; |
|
1074 |
} |
|
1075 |
}; |
|
1076 |
|
|
1077 |
template <typename Graph> |
|
1078 |
struct FindEdgeSelector< |
|
1079 |
Graph, |
|
1080 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
|
1081 |
{ |
|
1082 |
typedef typename Graph::Node Node; |
|
1083 |
typedef typename Graph::Edge Edge; |
|
1084 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
|
1085 |
return g.findEdge(u, v, prev); |
|
1086 |
} |
|
1087 |
}; |
|
1088 |
} |
|
1089 |
|
|
1090 |
/// \brief Finds an edge between two nodes of a graph. |
|
1091 |
/// |
|
1092 |
/// Finds an edge from node \c u to node \c v in graph \c g. |
|
1093 |
/// If the node \c u and node \c v is equal then each loop edge |
|
1094 |
/// will be enumerated once. |
|
1095 |
/// |
|
1096 |
/// If \c prev is \ref INVALID (this is the default value), then |
|
1097 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
|
1098 |
/// the next arc from \c u to \c v after \c prev. |
|
1099 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
|
1100 |
/// |
|
1101 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
|
1102 |
///\code |
|
1103 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; |
|
1104 |
/// e = findEdge(g,u,v,e)) { |
|
1105 |
/// ... |
|
1106 |
/// } |
|
1107 |
///\endcode |
|
1108 |
/// |
|
1109 |
///\sa ConEdgeIt |
|
1110 |
|
|
1111 |
template <typename Graph> |
|
1112 |
inline typename Graph::Edge |
|
1113 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
|
1114 |
typename Graph::Edge p = INVALID) { |
|
1115 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
|
1116 |
} |
|
1117 |
|
|
1118 |
/// \brief Iterator for iterating on edges connected the same nodes. |
|
1119 |
/// |
|
1120 |
/// Iterator for iterating on edges connected the same nodes. It is |
|
1121 |
/// higher level interface for the findEdge() function. You can |
|
1122 |
/// use it the following way: |
|
1123 |
///\code |
|
1124 |
/// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
|
1125 |
/// ... |
|
1126 |
/// } |
|
1127 |
///\endcode |
|
1128 |
/// |
|
1129 |
///\sa findEdge() |
|
1130 |
template <typename _Graph> |
|
1131 |
class ConEdgeIt : public _Graph::Edge { |
|
1132 |
public: |
|
1133 |
|
|
1134 |
typedef _Graph Graph; |
|
1135 |
typedef typename Graph::Edge Parent; |
|
1136 |
|
|
1137 |
typedef typename Graph::Edge Edge; |
|
1138 |
typedef typename Graph::Node Node; |
|
1139 |
|
|
1140 |
/// \brief Constructor. |
|
1141 |
/// |
|
1142 |
/// Construct a new ConEdgeIt iterating on the edges which |
|
1143 |
/// connects the \c u and \c v node. |
|
1144 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { |
|
1145 |
Parent::operator=(findEdge(_graph, u, v)); |
|
1146 |
} |
|
1147 |
|
|
1148 |
/// \brief Constructor. |
|
1149 |
/// |
|
1150 |
/// Construct a new ConEdgeIt which continues the iterating from |
|
1151 |
/// the \c e edge. |
|
1152 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
|
1153 |
|
|
1154 |
/// \brief Increment operator. |
|
1155 |
/// |
|
1156 |
/// It increments the iterator and gives back the next edge. |
|
1157 |
ConEdgeIt& operator++() { |
|
1158 |
Parent::operator=(findEdge(_graph, _graph.u(*this), |
|
1159 |
_graph.v(*this), *this)); |
|
1160 |
return *this; |
|
1161 |
} |
|
1162 |
private: |
|
1163 |
const Graph& _graph; |
|
1164 |
}; |
|
1165 |
|
|
1166 |
|
|
1167 |
///Dynamic arc look up between given endpoints. |
|
1168 |
|
|
1169 |
///Using this class, you can find an arc in a digraph from a given |
|
1170 |
///source to a given target in amortized time <em>O(log d)</em>, |
|
1171 |
///where <em>d</em> is the out-degree of the source node. |
|
1172 |
/// |
|
1173 |
///It is possible to find \e all parallel arcs between two nodes with |
|
1174 |
///the \c findFirst() and \c findNext() members. |
|
1175 |
/// |
|
1176 |
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your |
|
1177 |
///digraph is not changed so frequently. |
|
1178 |
/// |
|
1179 |
///This class uses a self-adjusting binary search tree, Sleator's |
|
1180 |
///and Tarjan's Splay tree for guarantee the logarithmic amortized |
|
1181 |
///time bound for arc lookups. This class also guarantees the |
|
1182 |
///optimal time bound in a constant factor for any distribution of |
|
1183 |
///queries. |
|
1184 |
/// |
|
1185 |
///\tparam G The type of the underlying digraph. |
|
1186 |
/// |
|
1187 |
///\sa ArcLookUp |
|
1188 |
///\sa AllArcLookUp |
|
1189 |
template<class G> |
|
1190 |
class DynArcLookUp |
|
1191 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
|
1192 |
{ |
|
1193 |
public: |
|
1194 |
typedef typename ItemSetTraits<G, typename G::Arc> |
|
1195 |
::ItemNotifier::ObserverBase Parent; |
|
1196 |
|
|
1197 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
|
1198 |
typedef G Digraph; |
|
1199 |
|
|
1200 |
protected: |
|
1201 |
|
|
1202 |
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type { |
|
1203 |
public: |
|
1204 |
|
|
1205 |
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent; |
|
1206 |
|
|
1207 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
|
1208 |
|
|
1209 |
virtual void add(const Node& node) { |
|
1210 |
Parent::add(node); |
|
1211 |
Parent::set(node, INVALID); |
|
1212 |
} |
|
1213 |
|
|
1214 |
virtual void add(const std::vector<Node>& nodes) { |
|
1215 |
Parent::add(nodes); |
|
1216 |
for (int i = 0; i < int(nodes.size()); ++i) { |
|
1217 |
Parent::set(nodes[i], INVALID); |
|
1218 |
} |
|
1219 |
} |
|
1220 |
|
|
1221 |
virtual void build() { |
|
1222 |
Parent::build(); |
|
1223 |
Node it; |
|
1224 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
1225 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
1226 |
Parent::set(it, INVALID); |
|
1227 |
} |
|
1228 |
} |
|
1229 |
}; |
|
1230 |
|
|
1231 |
const Digraph &_g; |
|
1232 |
AutoNodeMap _head; |
|
1233 |
typename Digraph::template ArcMap<Arc> _parent; |
|
1234 |
typename Digraph::template ArcMap<Arc> _left; |
|
1235 |
typename Digraph::template ArcMap<Arc> _right; |
|
1236 |
|
|
1237 |
class ArcLess { |
|
1238 |
const Digraph &g; |
|
1239 |
public: |
|
1240 |
ArcLess(const Digraph &_g) : g(_g) {} |
|
1241 |
bool operator()(Arc a,Arc b) const |
|
1242 |
{ |
|
1243 |
return g.target(a)<g.target(b); |
|
1244 |
} |
|
1245 |
}; |
|
1246 |
|
|
1247 |
public: |
|
1248 |
|
|
1249 |
///Constructor |
|
1250 |
|
|
1251 |
///Constructor. |
|
1252 |
/// |
|
1253 |
///It builds up the search database. |
|
1254 |
DynArcLookUp(const Digraph &g) |
|
1255 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
|
1256 |
{ |
|
1257 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
|
1258 |
refresh(); |
|
1259 |
} |
|
1260 |
|
|
1261 |
protected: |
|
1262 |
|
|
1263 |
virtual void add(const Arc& arc) { |
|
1264 |
insert(arc); |
|
1265 |
} |
|
1266 |
|
|
1267 |
virtual void add(const std::vector<Arc>& arcs) { |
|
1268 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
1269 |
insert(arcs[i]); |
|
1270 |
} |
|
1271 |
} |
|
1272 |
|
|
1273 |
virtual void erase(const Arc& arc) { |
|
1274 |
remove(arc); |
|
1275 |
} |
|
1276 |
|
|
1277 |
virtual void erase(const std::vector<Arc>& arcs) { |
|
1278 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
1279 |
remove(arcs[i]); |
|
1280 |
} |
|
1281 |
} |
|
1282 |
|
|
1283 |
virtual void build() { |
|
1284 |
refresh(); |
|
1285 |
} |
|
1286 |
|
|
1287 |
virtual void clear() { |
|
1288 |
for(NodeIt n(_g);n!=INVALID;++n) { |
|
1289 |
_head.set(n, INVALID); |
|
1290 |
} |
|
1291 |
} |
|
1292 |
|
|
1293 |
void insert(Arc arc) { |
|
1294 |
Node s = _g.source(arc); |
|
1295 |
Node t = _g.target(arc); |
|
1296 |
_left.set(arc, INVALID); |
|
1297 |
_right.set(arc, INVALID); |
|
1298 |
|
|
1299 |
Arc e = _head[s]; |
|
1300 |
if (e == INVALID) { |
|
1301 |
_head.set(s, arc); |
|
1302 |
_parent.set(arc, INVALID); |
|
1303 |
return; |
|
1304 |
} |
|
1305 |
while (true) { |
|
1306 |
if (t < _g.target(e)) { |
|
1307 |
if (_left[e] == INVALID) { |
|
1308 |
_left.set(e, arc); |
|
1309 |
_parent.set(arc, e); |
|
1310 |
splay(arc); |
|
1311 |
return; |
|
1312 |
} else { |
|
1313 |
e = _left[e]; |
|
1314 |
} |
|
1315 |
} else { |
|
1316 |
if (_right[e] == INVALID) { |
|
1317 |
_right.set(e, arc); |
|
1318 |
_parent.set(arc, e); |
|
1319 |
splay(arc); |
|
1320 |
return; |
|
1321 |
} else { |
|
1322 |
e = _right[e]; |
|
1323 |
} |
|
1324 |
} |
|
1325 |
} |
|
1326 |
} |
|
1327 |
|
|
1328 |
void remove(Arc arc) { |
|
1329 |
if (_left[arc] == INVALID) { |
|
1330 |
if (_right[arc] != INVALID) { |
|
1331 |
_parent.set(_right[arc], _parent[arc]); |
|
1332 |
} |
|
1333 |
if (_parent[arc] != INVALID) { |
|
1334 |
if (_left[_parent[arc]] == arc) { |
|
1335 |
_left.set(_parent[arc], _right[arc]); |
|
1336 |
} else { |
|
1337 |
_right.set(_parent[arc], _right[arc]); |
|
1338 |
} |
|
1339 |
} else { |
|
1340 |
_head.set(_g.source(arc), _right[arc]); |
|
1341 |
} |
|
1342 |
} else if (_right[arc] == INVALID) { |
|
1343 |
_parent.set(_left[arc], _parent[arc]); |
|
1344 |
if (_parent[arc] != INVALID) { |
|
1345 |
if (_left[_parent[arc]] == arc) { |
|
1346 |
_left.set(_parent[arc], _left[arc]); |
|
1347 |
} else { |
|
1348 |
_right.set(_parent[arc], _left[arc]); |
|
1349 |
} |
|
1350 |
} else { |
|
1351 |
_head.set(_g.source(arc), _left[arc]); |
|
1352 |
} |
|
1353 |
} else { |
|
1354 |
Arc e = _left[arc]; |
|
1355 |
if (_right[e] != INVALID) { |
|
1356 |
e = _right[e]; |
|
1357 |
while (_right[e] != INVALID) { |
|
1358 |
e = _right[e]; |
|
1359 |
} |
|
1360 |
Arc s = _parent[e]; |
|
1361 |
_right.set(_parent[e], _left[e]); |
|
1362 |
if (_left[e] != INVALID) { |
|
1363 |
_parent.set(_left[e], _parent[e]); |
|
1364 |
} |
|
1365 |
|
|
1366 |
_left.set(e, _left[arc]); |
|
1367 |
_parent.set(_left[arc], e); |
|
1368 |
_right.set(e, _right[arc]); |
|
1369 |
_parent.set(_right[arc], e); |
|
1370 |
|
|
1371 |
_parent.set(e, _parent[arc]); |
|
1372 |
if (_parent[arc] != INVALID) { |
|
1373 |
if (_left[_parent[arc]] == arc) { |
|
1374 |
_left.set(_parent[arc], e); |
|
1375 |
} else { |
|
1376 |
_right.set(_parent[arc], e); |
|
1377 |
} |
|
1378 |
} |
|
1379 |
splay(s); |
|
1380 |
} else { |
|
1381 |
_right.set(e, _right[arc]); |
|
1382 |
_parent.set(_right[arc], e); |
|
1383 |
|
|
1384 |
if (_parent[arc] != INVALID) { |
|
1385 |
if (_left[_parent[arc]] == arc) { |
|
1386 |
_left.set(_parent[arc], e); |
|
1387 |
} else { |
|
1388 |
_right.set(_parent[arc], e); |
|
1389 |
} |
|
1390 |
} else { |
|
1391 |
_head.set(_g.source(arc), e); |
|
1392 |
} |
|
1393 |
} |
|
1394 |
} |
|
1395 |
} |
|
1396 |
|
|
1397 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
|
1398 |
{ |
|
1399 |
int m=(a+b)/2; |
|
1400 |
Arc me=v[m]; |
|
1401 |
if (a < m) { |
|
1402 |
Arc left = refreshRec(v,a,m-1); |
|
1403 |
_left.set(me, left); |
|
1404 |
_parent.set(left, me); |
|
1405 |
} else { |
|
1406 |
_left.set(me, INVALID); |
|
1407 |
} |
|
1408 |
if (m < b) { |
|
1409 |
Arc right = refreshRec(v,m+1,b); |
|
1410 |
_right.set(me, right); |
|
1411 |
_parent.set(right, me); |
|
1412 |
} else { |
|
1413 |
_right.set(me, INVALID); |
|
1414 |
} |
|
1415 |
return me; |
|
1416 |
} |
|
1417 |
|
|
1418 |
void refresh() { |
|
1419 |
for(NodeIt n(_g);n!=INVALID;++n) { |
|
1420 |
std::vector<Arc> v; |
|
1421 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
|
1422 |
if(v.size()) { |
|
1423 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
|
1424 |
Arc head = refreshRec(v,0,v.size()-1); |
|
1425 |
_head.set(n, head); |
|
1426 |
_parent.set(head, INVALID); |
|
1427 |
} |
|
1428 |
else _head.set(n, INVALID); |
|
1429 |
} |
|
1430 |
} |
|
1431 |
|
|
1432 |
void zig(Arc v) { |
|
1433 |
Arc w = _parent[v]; |
|
1434 |
_parent.set(v, _parent[w]); |
|
1435 |
_parent.set(w, v); |
|
1436 |
_left.set(w, _right[v]); |
|
1437 |
_right.set(v, w); |
|
1438 |
if (_parent[v] != INVALID) { |
|
1439 |
if (_right[_parent[v]] == w) { |
|
1440 |
_right.set(_parent[v], v); |
|
1441 |
} else { |
|
1442 |
_left.set(_parent[v], v); |
|
1443 |
} |
|
1444 |
} |
|
1445 |
if (_left[w] != INVALID){ |
|
1446 |
_parent.set(_left[w], w); |
|
1447 |
} |
|
1448 |
} |
|
1449 |
|
|
1450 |
void zag(Arc v) { |
|
1451 |
Arc w = _parent[v]; |
|
1452 |
_parent.set(v, _parent[w]); |
|
1453 |
_parent.set(w, v); |
|
1454 |
_right.set(w, _left[v]); |
|
1455 |
_left.set(v, w); |
|
1456 |
if (_parent[v] != INVALID){ |
|
1457 |
if (_left[_parent[v]] == w) { |
|
1458 |
_left.set(_parent[v], v); |
|
1459 |
} else { |
|
1460 |
_right.set(_parent[v], v); |
|
1461 |
} |
|
1462 |
} |
|
1463 |
if (_right[w] != INVALID){ |
|
1464 |
_parent.set(_right[w], w); |
|
1465 |
} |
|
1466 |
} |
|
1467 |
|
|
1468 |
void splay(Arc v) { |
|
1469 |
while (_parent[v] != INVALID) { |
|
1470 |
if (v == _left[_parent[v]]) { |
|
1471 |
if (_parent[_parent[v]] == INVALID) { |
|
1472 |
zig(v); |
|
1473 |
} else { |
|
1474 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
|
1475 |
zig(_parent[v]); |
|
1476 |
zig(v); |
|
1477 |
} else { |
|
1478 |
zig(v); |
|
1479 |
zag(v); |
|
1480 |
} |
|
1481 |
} |
|
1482 |
} else { |
|
1483 |
if (_parent[_parent[v]] == INVALID) { |
|
1484 |
zag(v); |
|
1485 |
} else { |
|
1486 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
|
1487 |
zag(v); |
|
1488 |
zig(v); |
|
1489 |
} else { |
|
1490 |
zag(_parent[v]); |
|
1491 |
zag(v); |
|
1492 |
} |
|
1493 |
} |
|
1494 |
} |
|
1495 |
} |
|
1496 |
_head[_g.source(v)] = v; |
|
1497 |
} |
|
1498 |
|
|
1499 |
|
|
1500 |
public: |
|
1501 |
|
|
1502 |
///Find an arc between two nodes. |
|
1503 |
|
|
1504 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
|
1505 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
|
1506 |
///\param s The source node |
|
1507 |
///\param t The target node |
|
1508 |
///\return An arc from \c s to \c t if there exists, |
|
1509 |
///\ref INVALID otherwise. |
|
1510 |
Arc operator()(Node s, Node t) const |
|
1511 |
{ |
|
1512 |
Arc a = _head[s]; |
|
1513 |
while (true) { |
|
1514 |
if (_g.target(a) == t) { |
|
1515 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1516 |
return a; |
|
1517 |
} else if (t < _g.target(a)) { |
|
1518 |
if (_left[a] == INVALID) { |
|
1519 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1520 |
return INVALID; |
|
1521 |
} else { |
|
1522 |
a = _left[a]; |
|
1523 |
} |
|
1524 |
} else { |
|
1525 |
if (_right[a] == INVALID) { |
|
1526 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1527 |
return INVALID; |
|
1528 |
} else { |
|
1529 |
a = _right[a]; |
|
1530 |
} |
|
1531 |
} |
|
1532 |
} |
|
1533 |
} |
|
1534 |
|
|
1535 |
///Find the first arc between two nodes. |
|
1536 |
|
|
1537 |
///Find the first arc between two nodes in time |
|
1538 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
|
1539 |
/// outgoing arcs of \c s. |
|
1540 |
///\param s The source node |
|
1541 |
///\param t The target node |
|
1542 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
|
1543 |
/// otherwise. |
|
1544 |
Arc findFirst(Node s, Node t) const |
|
1545 |
{ |
|
1546 |
Arc a = _head[s]; |
|
1547 |
Arc r = INVALID; |
|
1548 |
while (true) { |
|
1549 |
if (_g.target(a) < t) { |
|
1550 |
if (_right[a] == INVALID) { |
|
1551 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1552 |
return r; |
|
1553 |
} else { |
|
1554 |
a = _right[a]; |
|
1555 |
} |
|
1556 |
} else { |
|
1557 |
if (_g.target(a) == t) { |
|
1558 |
r = a; |
|
1559 |
} |
|
1560 |
if (_left[a] == INVALID) { |
|
1561 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1562 |
return r; |
|
1563 |
} else { |
|
1564 |
a = _left[a]; |
|
1565 |
} |
|
1566 |
} |
|
1567 |
} |
|
1568 |
} |
|
1569 |
|
|
1570 |
///Find the next arc between two nodes. |
|
1571 |
|
|
1572 |
///Find the next arc between two nodes in time |
|
1573 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
|
1574 |
/// outgoing arcs of \c s. |
|
1575 |
///\param s The source node |
|
1576 |
///\param t The target node |
|
1577 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
|
1578 |
/// otherwise. |
|
1579 |
|
|
1580 |
///\note If \c e is not the result of the previous \c findFirst() |
|
1581 |
///operation then the amorized time bound can not be guaranteed. |
|
1582 |
#ifdef DOXYGEN |
|
1583 |
Arc findNext(Node s, Node t, Arc a) const |
|
1584 |
#else |
|
1585 |
Arc findNext(Node, Node t, Arc a) const |
|
1586 |
#endif |
|
1587 |
{ |
|
1588 |
if (_right[a] != INVALID) { |
|
1589 |
a = _right[a]; |
|
1590 |
while (_left[a] != INVALID) { |
|
1591 |
a = _left[a]; |
|
1592 |
} |
|
1593 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1594 |
} else { |
|
1595 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
|
1596 |
a = _parent[a]; |
|
1597 |
} |
|
1598 |
if (_parent[a] == INVALID) { |
|
1599 |
return INVALID; |
|
1600 |
} else { |
|
1601 |
a = _parent[a]; |
|
1602 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
1603 |
} |
|
1604 |
} |
|
1605 |
if (_g.target(a) == t) return a; |
|
1606 |
else return INVALID; |
|
1607 |
} |
|
1608 |
|
|
1609 |
}; |
|
1610 |
|
|
1611 |
///Fast arc look up between given endpoints. |
|
1612 |
|
|
1613 |
///Using this class, you can find an arc in a digraph from a given |
|
1614 |
///source to a given target in time <em>O(log d)</em>, |
|
1615 |
///where <em>d</em> is the out-degree of the source node. |
|
1616 |
/// |
|
1617 |
///It is not possible to find \e all parallel arcs between two nodes. |
|
1618 |
///Use \ref AllArcLookUp for this purpose. |
|
1619 |
/// |
|
1620 |
///\warning This class is static, so you should refresh() (or at least |
|
1621 |
///refresh(Node)) this data structure |
|
1622 |
///whenever the digraph changes. This is a time consuming (superlinearly |
|
1623 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
|
1624 |
/// |
|
1625 |
///\tparam G The type of the underlying digraph. |
|
1626 |
/// |
|
1627 |
///\sa DynArcLookUp |
|
1628 |
///\sa AllArcLookUp |
|
1629 |
template<class G> |
|
1630 |
class ArcLookUp |
|
1631 |
{ |
|
1632 |
public: |
|
1633 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
|
1634 |
typedef G Digraph; |
|
1635 |
|
|
1636 |
protected: |
|
1637 |
const Digraph &_g; |
|
1638 |
typename Digraph::template NodeMap<Arc> _head; |
|
1639 |
typename Digraph::template ArcMap<Arc> _left; |
|
1640 |
typename Digraph::template ArcMap<Arc> _right; |
|
1641 |
|
|
1642 |
class ArcLess { |
|
1643 |
const Digraph &g; |
|
1644 |
public: |
|
1645 |
ArcLess(const Digraph &_g) : g(_g) {} |
|
1646 |
bool operator()(Arc a,Arc b) const |
|
1647 |
{ |
|
1648 |
return g.target(a)<g.target(b); |
|
1649 |
} |
|
1650 |
}; |
|
1651 |
|
|
1652 |
public: |
|
1653 |
|
|
1654 |
///Constructor |
|
1655 |
|
|
1656 |
///Constructor. |
|
1657 |
/// |
|
1658 |
///It builds up the search database, which remains valid until the digraph |
|
1659 |
///changes. |
|
1660 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
|
1661 |
|
|
1662 |
private: |
|
1663 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
|
1664 |
{ |
|
1665 |
int m=(a+b)/2; |
|
1666 |
Arc me=v[m]; |
|
1667 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
|
1668 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
|
1669 |
return me; |
|
1670 |
} |
|
1671 |
public: |
|
1672 |
///Refresh the data structure at a node. |
|
1673 |
|
|
1674 |
///Build up the search database of node \c n. |
|
1675 |
/// |
|
1676 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
|
1677 |
///the number of the outgoing arcs of \c n. |
|
1678 |
void refresh(Node n) |
|
1679 |
{ |
|
1680 |
std::vector<Arc> v; |
|
1681 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
|
1682 |
if(v.size()) { |
|
1683 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
|
1684 |
_head[n]=refreshRec(v,0,v.size()-1); |
|
1685 |
} |
|
1686 |
else _head[n]=INVALID; |
|
1687 |
} |
|
1688 |
///Refresh the full data structure. |
|
1689 |
|
|
1690 |
///Build up the full search database. In fact, it simply calls |
|
1691 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
|
1692 |
/// |
|
1693 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
|
1694 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
|
1695 |
///out-degree of the digraph. |
|
1696 |
|
|
1697 |
void refresh() |
|
1698 |
{ |
|
1699 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
|
1700 |
} |
|
1701 |
|
|
1702 |
///Find an arc between two nodes. |
|
1703 |
|
|
1704 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
|
1705 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
|
1706 |
///\param s The source node |
|
1707 |
///\param t The target node |
|
1708 |
///\return An arc from \c s to \c t if there exists, |
|
1709 |
///\ref INVALID otherwise. |
|
1710 |
/// |
|
1711 |
///\warning If you change the digraph, refresh() must be called before using |
|
1712 |
///this operator. If you change the outgoing arcs of |
|
1713 |
///a single node \c n, then |
|
1714 |
///\ref refresh(Node) "refresh(n)" is enough. |
|
1715 |
/// |
|
1716 |
Arc operator()(Node s, Node t) const |
|
1717 |
{ |
|
1718 |
Arc e; |
|
1719 |
for(e=_head[s]; |
|
1720 |
e!=INVALID&&_g.target(e)!=t; |
|
1721 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
|
1722 |
return e; |
|
1723 |
} |
|
1724 |
|
|
1725 |
}; |
|
1726 |
|
|
1727 |
///Fast look up of all arcs between given endpoints. |
|
1728 |
|
|
1729 |
///This class is the same as \ref ArcLookUp, with the addition |
|
1730 |
///that it makes it possible to find all arcs between given endpoints. |
|
1731 |
/// |
|
1732 |
///\warning This class is static, so you should refresh() (or at least |
|
1733 |
///refresh(Node)) this data structure |
|
1734 |
///whenever the digraph changes. This is a time consuming (superlinearly |
|
1735 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
|
1736 |
/// |
|
1737 |
///\tparam G The type of the underlying digraph. |
|
1738 |
/// |
|
1739 |
///\sa DynArcLookUp |
|
1740 |
///\sa ArcLookUp |
|
1741 |
template<class G> |
|
1742 |
class AllArcLookUp : public ArcLookUp<G> |
|
1743 |
{ |
|
1744 |
using ArcLookUp<G>::_g; |
|
1745 |
using ArcLookUp<G>::_right; |
|
1746 |
using ArcLookUp<G>::_left; |
|
1747 |
using ArcLookUp<G>::_head; |
|
1748 |
|
|
1749 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
|
1750 |
typedef G Digraph; |
|
1751 |
|
|
1752 |
typename Digraph::template ArcMap<Arc> _next; |
|
1753 |
|
|
1754 |
Arc refreshNext(Arc head,Arc next=INVALID) |
|
1755 |
{ |
|
1756 |
if(head==INVALID) return next; |
|
1757 |
else { |
|
1758 |
next=refreshNext(_right[head],next); |
|
1759 |
// _next[head]=next; |
|
1760 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
|
1761 |
? next : INVALID; |
|
1762 |
return refreshNext(_left[head],head); |
|
1763 |
} |
|
1764 |
} |
|
1765 |
|
|
1766 |
void refreshNext() |
|
1767 |
{ |
|
1768 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
|
1769 |
} |
|
1770 |
|
|
1771 |
public: |
|
1772 |
///Constructor |
|
1773 |
|
|
1774 |
///Constructor. |
|
1775 |
/// |
|
1776 |
///It builds up the search database, which remains valid until the digraph |
|
1777 |
///changes. |
|
1778 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
|
1779 |
|
|
1780 |
///Refresh the data structure at a node. |
|
1781 |
|
|
1782 |
///Build up the search database of node \c n. |
|
1783 |
/// |
|
1784 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
|
1785 |
///the number of the outgoing arcs of \c n. |
|
1786 |
|
|
1787 |
void refresh(Node n) |
|
1788 |
{ |
|
1789 |
ArcLookUp<G>::refresh(n); |
|
1790 |
refreshNext(_head[n]); |
|
1791 |
} |
|
1792 |
|
|
1793 |
///Refresh the full data structure. |
|
1794 |
|
|
1795 |
///Build up the full search database. In fact, it simply calls |
|
1796 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
|
1797 |
/// |
|
1798 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
|
1799 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
|
1800 |
///out-degree of the digraph. |
|
1801 |
|
|
1802 |
void refresh() |
|
1803 |
{ |
|
1804 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
|
1805 |
} |
|
1806 |
|
|
1807 |
///Find an arc between two nodes. |
|
1808 |
|
|
1809 |
///Find an arc between two nodes. |
|
1810 |
///\param s The source node |
|
1811 |
///\param t The target node |
|
1812 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
|
1813 |
///not given, the operator finds the first appropriate arc. |
|
1814 |
///\return An arc from \c s to \c t after \c prev or |
|
1815 |
///\ref INVALID if there is no more. |
|
1816 |
/// |
|
1817 |
///For example, you can count the number of arcs from \c u to \c v in the |
|
1818 |
///following way. |
|
1819 |
///\code |
|
1820 |
///AllArcLookUp<ListDigraph> ae(g); |
|
1821 |
///... |
|
1822 |
///int n=0; |
|
1823 |
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; |
|
1824 |
///\endcode |
|
1825 |
/// |
|
1826 |
///Finding the first arc take <em>O(</em>log<em>d)</em> time, where |
|
1827 |
/// <em>d</em> is the number of outgoing arcs of \c s. Then, the |
|
1828 |
///consecutive arcs are found in constant time. |
|
1829 |
/// |
|
1830 |
///\warning If you change the digraph, refresh() must be called before using |
|
1831 |
///this operator. If you change the outgoing arcs of |
|
1832 |
///a single node \c n, then |
|
1833 |
///\ref refresh(Node) "refresh(n)" is enough. |
|
1834 |
/// |
|
1835 |
#ifdef DOXYGEN |
|
1836 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
|
1837 |
#else |
|
1838 |
using ArcLookUp<G>::operator() ; |
|
1839 |
Arc operator()(Node s, Node t, Arc prev) const |
|
1840 |
{ |
|
1841 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
|
1842 |
} |
|
1843 |
#endif |
|
1844 |
|
|
1845 |
}; |
|
1846 |
|
|
1847 |
/// @} |
|
1848 |
|
|
1849 |
} //namespace lemon |
|
1850 |
|
|
1851 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup demos |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Demo of the graph drawing function \ref graphToEps() |
22 | 22 |
/// |
23 | 23 |
/// This demo program shows examples how to use the function \ref |
24 | 24 |
/// graphToEps(). It takes no input but simply creates seven |
25 | 25 |
/// <tt>.eps</tt> files demonstrating the capability of \ref |
26 | 26 |
/// graphToEps(), and showing how to draw directed graphs, |
27 | 27 |
/// how to handle parallel egdes, how to change the properties (like |
28 | 28 |
/// color, shape, size, title etc.) of nodes and arcs individually |
29 | 29 |
/// using appropriate \ref maps-page "graph maps". |
30 | 30 |
/// |
31 | 31 |
/// \include graph_to_eps_demo.cc |
32 | 32 |
|
33 | 33 |
#include<lemon/list_graph.h> |
34 |
#include<lemon/graph_utils.h> |
|
35 | 34 |
#include<lemon/graph_to_eps.h> |
36 | 35 |
#include<lemon/math.h> |
37 | 36 |
|
38 | 37 |
using namespace std; |
39 | 38 |
using namespace lemon; |
40 | 39 |
|
41 | 40 |
int main() |
42 | 41 |
{ |
43 | 42 |
Palette palette; |
44 | 43 |
Palette paletteW(true); |
45 | 44 |
|
46 | 45 |
// Create a small digraph |
47 | 46 |
ListDigraph g; |
48 | 47 |
typedef ListDigraph::Node Node; |
49 | 48 |
typedef ListDigraph::NodeIt NodeIt; |
50 | 49 |
typedef ListDigraph::Arc Arc; |
51 | 50 |
typedef dim2::Point<int> Point; |
52 | 51 |
|
53 | 52 |
Node n1=g.addNode(); |
54 | 53 |
Node n2=g.addNode(); |
55 | 54 |
Node n3=g.addNode(); |
56 | 55 |
Node n4=g.addNode(); |
57 | 56 |
Node n5=g.addNode(); |
58 | 57 |
|
59 | 58 |
ListDigraph::NodeMap<Point> coords(g); |
60 | 59 |
ListDigraph::NodeMap<double> sizes(g); |
61 | 60 |
ListDigraph::NodeMap<int> colors(g); |
62 | 61 |
ListDigraph::NodeMap<int> shapes(g); |
63 | 62 |
ListDigraph::ArcMap<int> acolors(g); |
64 | 63 |
ListDigraph::ArcMap<int> widths(g); |
65 | 64 |
|
66 | 65 |
coords[n1]=Point(50,50); sizes[n1]=1; colors[n1]=1; shapes[n1]=0; |
67 | 66 |
coords[n2]=Point(50,70); sizes[n2]=2; colors[n2]=2; shapes[n2]=2; |
68 | 67 |
coords[n3]=Point(70,70); sizes[n3]=1; colors[n3]=3; shapes[n3]=0; |
69 | 68 |
coords[n4]=Point(70,50); sizes[n4]=2; colors[n4]=4; shapes[n4]=1; |
70 | 69 |
coords[n5]=Point(85,60); sizes[n5]=3; colors[n5]=5; shapes[n5]=2; |
71 | 70 |
|
72 | 71 |
Arc a; |
73 | 72 |
|
74 | 73 |
a=g.addArc(n1,n2); acolors[a]=0; widths[a]=1; |
75 | 74 |
a=g.addArc(n2,n3); acolors[a]=0; widths[a]=1; |
76 | 75 |
a=g.addArc(n3,n5); acolors[a]=0; widths[a]=3; |
77 | 76 |
a=g.addArc(n5,n4); acolors[a]=0; widths[a]=1; |
78 | 77 |
a=g.addArc(n4,n1); acolors[a]=0; widths[a]=1; |
79 | 78 |
a=g.addArc(n2,n4); acolors[a]=1; widths[a]=2; |
80 | 79 |
a=g.addArc(n3,n4); acolors[a]=2; widths[a]=1; |
81 | 80 |
|
82 | 81 |
IdMap<ListDigraph,Node> id(g); |
83 | 82 |
|
84 | 83 |
// Create .eps files showing the digraph with different options |
85 | 84 |
cout << "Create 'graph_to_eps_demo_out_1_pure.eps'" << endl; |
86 | 85 |
graphToEps(g,"graph_to_eps_demo_out_1_pure.eps"). |
87 | 86 |
coords(coords). |
88 | 87 |
title("Sample .eps figure"). |
89 | 88 |
copyright("(C) 2003-2008 LEMON Project"). |
90 | 89 |
run(); |
91 | 90 |
|
92 | 91 |
cout << "Create 'graph_to_eps_demo_out_2.eps'" << endl; |
93 | 92 |
graphToEps(g,"graph_to_eps_demo_out_2.eps"). |
94 | 93 |
coords(coords). |
95 | 94 |
title("Sample .eps figure"). |
96 | 95 |
copyright("(C) 2003-2008 LEMON Project"). |
97 | 96 |
absoluteNodeSizes().absoluteArcWidths(). |
98 | 97 |
nodeScale(2).nodeSizes(sizes). |
99 | 98 |
nodeShapes(shapes). |
100 | 99 |
nodeColors(composeMap(palette,colors)). |
101 | 100 |
arcColors(composeMap(palette,acolors)). |
102 | 101 |
arcWidthScale(.4).arcWidths(widths). |
103 | 102 |
nodeTexts(id).nodeTextSize(3). |
104 | 103 |
run(); |
105 | 104 |
|
106 | 105 |
cout << "Create 'graph_to_eps_demo_out_3_arr.eps'" << endl; |
107 | 106 |
graphToEps(g,"graph_to_eps_demo_out_3_arr.eps"). |
108 | 107 |
title("Sample .eps figure (with arrowheads)"). |
109 | 108 |
copyright("(C) 2003-2008 LEMON Project"). |
110 | 109 |
absoluteNodeSizes().absoluteArcWidths(). |
111 | 110 |
nodeColors(composeMap(palette,colors)). |
112 | 111 |
coords(coords). |
113 | 112 |
nodeScale(2).nodeSizes(sizes). |
114 | 113 |
nodeShapes(shapes). |
115 | 114 |
arcColors(composeMap(palette,acolors)). |
116 | 115 |
arcWidthScale(.4).arcWidths(widths). |
117 | 116 |
nodeTexts(id).nodeTextSize(3). |
118 | 117 |
drawArrows().arrowWidth(2).arrowLength(2). |
119 | 118 |
run(); |
120 | 119 |
|
121 | 120 |
// Add more arcs to the digraph |
122 | 121 |
a=g.addArc(n1,n4); acolors[a]=2; widths[a]=1; |
123 | 122 |
a=g.addArc(n4,n1); acolors[a]=1; widths[a]=2; |
124 | 123 |
|
125 | 124 |
a=g.addArc(n1,n2); acolors[a]=1; widths[a]=1; |
126 | 125 |
a=g.addArc(n1,n2); acolors[a]=2; widths[a]=1; |
127 | 126 |
a=g.addArc(n1,n2); acolors[a]=3; widths[a]=1; |
128 | 127 |
a=g.addArc(n1,n2); acolors[a]=4; widths[a]=1; |
129 | 128 |
a=g.addArc(n1,n2); acolors[a]=5; widths[a]=1; |
130 | 129 |
a=g.addArc(n1,n2); acolors[a]=6; widths[a]=1; |
131 | 130 |
a=g.addArc(n1,n2); acolors[a]=7; widths[a]=1; |
132 | 131 |
|
133 | 132 |
cout << "Create 'graph_to_eps_demo_out_4_par.eps'" << endl; |
134 | 133 |
graphToEps(g,"graph_to_eps_demo_out_4_par.eps"). |
135 | 134 |
title("Sample .eps figure (parallel arcs)"). |
136 | 135 |
copyright("(C) 2003-2008 LEMON Project"). |
137 | 136 |
absoluteNodeSizes().absoluteArcWidths(). |
138 | 137 |
nodeShapes(shapes). |
139 | 138 |
coords(coords). |
140 | 139 |
nodeScale(2).nodeSizes(sizes). |
141 | 140 |
nodeColors(composeMap(palette,colors)). |
142 | 141 |
arcColors(composeMap(palette,acolors)). |
143 | 142 |
arcWidthScale(.4).arcWidths(widths). |
144 | 143 |
nodeTexts(id).nodeTextSize(3). |
145 | 144 |
enableParallel().parArcDist(1.5). |
146 | 145 |
run(); |
147 | 146 |
|
148 | 147 |
cout << "Create 'graph_to_eps_demo_out_5_par_arr.eps'" << endl; |
149 | 148 |
graphToEps(g,"graph_to_eps_demo_out_5_par_arr.eps"). |
150 | 149 |
title("Sample .eps figure (parallel arcs and arrowheads)"). |
151 | 150 |
copyright("(C) 2003-2008 LEMON Project"). |
152 | 151 |
absoluteNodeSizes().absoluteArcWidths(). |
153 | 152 |
nodeScale(2).nodeSizes(sizes). |
154 | 153 |
coords(coords). |
155 | 154 |
nodeShapes(shapes). |
156 | 155 |
nodeColors(composeMap(palette,colors)). |
157 | 156 |
arcColors(composeMap(palette,acolors)). |
158 | 157 |
arcWidthScale(.3).arcWidths(widths). |
159 | 158 |
nodeTexts(id).nodeTextSize(3). |
160 | 159 |
enableParallel().parArcDist(1). |
161 | 160 |
drawArrows().arrowWidth(1).arrowLength(1). |
162 | 161 |
run(); |
163 | 162 |
|
164 | 163 |
cout << "Create 'graph_to_eps_demo_out_6_par_arr_a4.eps'" << endl; |
165 | 164 |
graphToEps(g,"graph_to_eps_demo_out_6_par_arr_a4.eps"). |
166 | 165 |
title("Sample .eps figure (fits to A4)"). |
167 | 166 |
copyright("(C) 2003-2008 LEMON Project"). |
168 | 167 |
scaleToA4(). |
169 | 168 |
absoluteNodeSizes().absoluteArcWidths(). |
170 | 169 |
nodeScale(2).nodeSizes(sizes). |
171 | 170 |
coords(coords). |
172 | 171 |
nodeShapes(shapes). |
173 | 172 |
nodeColors(composeMap(palette,colors)). |
174 | 173 |
arcColors(composeMap(palette,acolors)). |
175 | 174 |
arcWidthScale(.3).arcWidths(widths). |
176 | 175 |
nodeTexts(id).nodeTextSize(3). |
177 | 176 |
enableParallel().parArcDist(1). |
178 | 177 |
drawArrows().arrowWidth(1).arrowLength(1). |
179 | 178 |
run(); |
180 | 179 |
|
181 | 180 |
// Create an .eps file showing the colors of a default Palette |
182 | 181 |
ListDigraph h; |
183 | 182 |
ListDigraph::NodeMap<int> hcolors(h); |
184 | 183 |
ListDigraph::NodeMap<Point> hcoords(h); |
185 | 184 |
|
186 | 185 |
int cols=int(sqrt(double(palette.size()))); |
187 | 186 |
for(int i=0;i<int(paletteW.size());i++) { |
188 | 187 |
Node n=h.addNode(); |
189 | 188 |
hcoords[n]=Point(1+i%cols,1+i/cols); |
190 | 189 |
hcolors[n]=i; |
191 | 190 |
} |
192 | 191 |
|
193 | 192 |
cout << "Create 'graph_to_eps_demo_out_7_colors.eps'" << endl; |
194 | 193 |
graphToEps(h,"graph_to_eps_demo_out_7_colors.eps"). |
195 | 194 |
scale(60). |
196 | 195 |
title("Sample .eps figure (Palette demo)"). |
197 | 196 |
copyright("(C) 2003-2008 LEMON Project"). |
198 | 197 |
coords(hcoords). |
199 | 198 |
absoluteNodeSizes().absoluteArcWidths(). |
200 | 199 |
nodeScale(.45). |
201 | 200 |
distantColorNodeTexts(). |
202 | 201 |
nodeTexts(hcolors).nodeTextSize(.6). |
203 | 202 |
nodeColors(composeMap(paletteW,hcolors)). |
204 | 203 |
run(); |
205 | 204 |
|
206 | 205 |
return 0; |
207 | 206 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt |
4 | 4 |
|
5 | 5 |
pkgconfig_DATA += lemon/lemon.pc |
6 | 6 |
|
7 | 7 |
lib_LTLIBRARIES += lemon/libemon.la |
8 | 8 |
|
9 | 9 |
lemon_libemon_la_SOURCES = \ |
10 | 10 |
lemon/arg_parser.cc \ |
11 | 11 |
lemon/base.cc \ |
12 | 12 |
lemon/color.cc \ |
13 | 13 |
lemon/random.cc |
14 | 14 |
|
15 | 15 |
|
16 | 16 |
lemon_libemon_la_CXXFLAGS = $(GLPK_CFLAGS) $(CPLEX_CFLAGS) $(SOPLEX_CXXFLAGS) |
17 | 17 |
lemon_libemon_la_LDFLAGS = $(GLPK_LIBS) $(CPLEX_LIBS) $(SOPLEX_LIBS) |
18 | 18 |
|
19 | 19 |
lemon_HEADERS += \ |
20 | 20 |
lemon/arg_parser.h \ |
21 | 21 |
lemon/assert.h \ |
22 | 22 |
lemon/bfs.h \ |
23 | 23 |
lemon/bin_heap.h \ |
24 | 24 |
lemon/color.h \ |
25 | 25 |
lemon/concept_check.h \ |
26 | 26 |
lemon/counter.h \ |
27 |
lemon/core.h \ |
|
27 | 28 |
lemon/dfs.h \ |
28 | 29 |
lemon/dijkstra.h \ |
29 | 30 |
lemon/dim2.h \ |
30 | 31 |
lemon/error.h \ |
31 | 32 |
lemon/graph_to_eps.h \ |
32 |
lemon/graph_utils.h \ |
|
33 | 33 |
lemon/kruskal.h \ |
34 | 34 |
lemon/lgf_reader.h \ |
35 | 35 |
lemon/lgf_writer.h \ |
36 | 36 |
lemon/list_graph.h \ |
37 | 37 |
lemon/maps.h \ |
38 | 38 |
lemon/math.h \ |
39 | 39 |
lemon/path.h \ |
40 | 40 |
lemon/random.h \ |
41 | 41 |
lemon/smart_graph.h \ |
42 | 42 |
lemon/time_measure.h \ |
43 | 43 |
lemon/tolerance.h \ |
44 | 44 |
lemon/unionfind.h |
45 | 45 |
|
46 | 46 |
bits_HEADERS += \ |
47 | 47 |
lemon/bits/alteration_notifier.h \ |
48 | 48 |
lemon/bits/array_map.h \ |
49 | 49 |
lemon/bits/base_extender.h \ |
50 | 50 |
lemon/bits/bezier.h \ |
51 | 51 |
lemon/bits/default_map.h \ |
52 |
lemon/bits/enable_if.h \ |
|
52 | 53 |
lemon/bits/graph_extender.h \ |
53 |
lemon/bits/invalid.h \ |
|
54 | 54 |
lemon/bits/map_extender.h \ |
55 | 55 |
lemon/bits/path_dump.h \ |
56 | 56 |
lemon/bits/traits.h \ |
57 |
lemon/bits/utility.h \ |
|
58 | 57 |
lemon/bits/vector_map.h |
59 | 58 |
|
60 | 59 |
concept_HEADERS += \ |
61 | 60 |
lemon/concepts/digraph.h \ |
62 | 61 |
lemon/concepts/graph.h \ |
63 | 62 |
lemon/concepts/graph_components.h \ |
64 | 63 |
lemon/concepts/heap.h \ |
65 | 64 |
lemon/concepts/maps.h \ |
66 | 65 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/tolerance.h> |
23 |
#include<lemon/ |
|
23 |
#include<lemon/core.h> |
|
24 | 24 |
namespace lemon { |
25 | 25 |
|
26 | 26 |
float Tolerance<float>::def_epsilon = 1e-4; |
27 | 27 |
double Tolerance<double>::def_epsilon = 1e-10; |
28 | 28 |
long double Tolerance<long double>::def_epsilon = 1e-14; |
29 | 29 |
|
30 | 30 |
#ifndef LEMON_ONLY_TEMPLATES |
31 | 31 |
const Invalid INVALID = Invalid(); |
32 | 32 |
#endif |
33 | 33 |
|
34 | 34 |
} //namespace lemon |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Bfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 |
#include <lemon/graph_utils.h> |
|
28 | 27 |
#include <lemon/bits/path_dump.h> |
29 |
#include <lemon/ |
|
28 |
#include <lemon/core.h> |
|
30 | 29 |
#include <lemon/error.h> |
31 | 30 |
#include <lemon/maps.h> |
32 | 31 |
|
33 | 32 |
namespace lemon { |
34 | 33 |
|
35 | 34 |
|
36 | 35 |
|
37 | 36 |
///Default traits class of Bfs class. |
38 | 37 |
|
39 | 38 |
///Default traits class of Bfs class. |
40 | 39 |
///\tparam GR Digraph type. |
41 | 40 |
template<class GR> |
42 | 41 |
struct BfsDefaultTraits |
43 | 42 |
{ |
44 | 43 |
///The digraph type the algorithm runs on. |
45 | 44 |
typedef GR Digraph; |
46 | 45 |
///\brief The type of the map that stores the last |
47 | 46 |
///arcs of the shortest paths. |
48 | 47 |
/// |
49 | 48 |
///The type of the map that stores the last |
50 | 49 |
///arcs of the shortest paths. |
51 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
52 | 51 |
/// |
53 | 52 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
54 | 53 |
///Instantiates a PredMap. |
55 | 54 |
|
56 | 55 |
///This function instantiates a \ref PredMap. |
57 | 56 |
///\param G is the digraph, to which we would like to define the PredMap. |
58 | 57 |
///\todo The digraph alone may be insufficient to initialize |
59 | 58 |
static PredMap *createPredMap(const GR &G) |
60 | 59 |
{ |
61 | 60 |
return new PredMap(G); |
62 | 61 |
} |
63 | 62 |
///The type of the map that indicates which nodes are processed. |
64 | 63 |
|
65 | 64 |
///The type of the map that indicates which nodes are processed. |
66 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
67 | 66 |
///\todo named parameter to set this type, function to read and write. |
68 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
69 | 68 |
///Instantiates a ProcessedMap. |
70 | 69 |
|
71 | 70 |
///This function instantiates a \ref ProcessedMap. |
72 | 71 |
///\param g is the digraph, to which |
73 | 72 |
///we would like to define the \ref ProcessedMap |
74 | 73 |
#ifdef DOXYGEN |
75 | 74 |
static ProcessedMap *createProcessedMap(const GR &g) |
76 | 75 |
#else |
77 | 76 |
static ProcessedMap *createProcessedMap(const GR &) |
78 | 77 |
#endif |
79 | 78 |
{ |
80 | 79 |
return new ProcessedMap(); |
81 | 80 |
} |
82 | 81 |
///The type of the map that indicates which nodes are reached. |
83 | 82 |
|
84 | 83 |
///The type of the map that indicates which nodes are reached. |
85 | 84 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
86 | 85 |
///\todo named parameter to set this type, function to read and write. |
87 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
88 | 87 |
///Instantiates a ReachedMap. |
89 | 88 |
|
90 | 89 |
///This function instantiates a \ref ReachedMap. |
91 | 90 |
///\param G is the digraph, to which |
92 | 91 |
///we would like to define the \ref ReachedMap. |
93 | 92 |
static ReachedMap *createReachedMap(const GR &G) |
94 | 93 |
{ |
95 | 94 |
return new ReachedMap(G); |
96 | 95 |
} |
97 | 96 |
///The type of the map that stores the dists of the nodes. |
98 | 97 |
|
99 | 98 |
///The type of the map that stores the dists of the nodes. |
100 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 100 |
/// |
102 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
103 | 102 |
///Instantiates a DistMap. |
104 | 103 |
|
105 | 104 |
///This function instantiates a \ref DistMap. |
106 | 105 |
///\param G is the digraph, to which we would like to define |
107 | 106 |
///the \ref DistMap |
108 | 107 |
static DistMap *createDistMap(const GR &G) |
109 | 108 |
{ |
110 | 109 |
return new DistMap(G); |
111 | 110 |
} |
112 | 111 |
}; |
113 | 112 |
|
114 | 113 |
///%BFS algorithm class. |
115 | 114 |
|
116 | 115 |
///\ingroup search |
117 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
118 | 117 |
/// |
119 | 118 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
120 | 119 |
///\ref ListDigraph. The value of GR is not used directly by Bfs, it |
121 | 120 |
///is only passed to \ref BfsDefaultTraits. |
122 | 121 |
///\tparam TR Traits class to set various data types used by the algorithm. |
123 | 122 |
///The default traits class is |
124 | 123 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
125 | 124 |
///See \ref BfsDefaultTraits for the documentation of |
126 | 125 |
///a Bfs traits class. |
127 | 126 |
|
128 | 127 |
#ifdef DOXYGEN |
129 | 128 |
template <typename GR, |
130 | 129 |
typename TR> |
131 | 130 |
#else |
132 | 131 |
template <typename GR=ListDigraph, |
133 | 132 |
typename TR=BfsDefaultTraits<GR> > |
134 | 133 |
#endif |
135 | 134 |
class Bfs { |
136 | 135 |
public: |
137 | 136 |
/** |
138 | 137 |
* \brief \ref Exception for uninitialized parameters. |
139 | 138 |
* |
140 | 139 |
* This error represents problems in the initialization |
141 | 140 |
* of the parameters of the algorithms. |
142 | 141 |
*/ |
143 | 142 |
class UninitializedParameter : public lemon::UninitializedParameter { |
144 | 143 |
public: |
145 | 144 |
virtual const char* what() const throw() { |
146 | 145 |
return "lemon::Bfs::UninitializedParameter"; |
147 | 146 |
} |
148 | 147 |
}; |
149 | 148 |
|
150 | 149 |
typedef TR Traits; |
151 | 150 |
///The type of the underlying digraph. |
152 | 151 |
typedef typename TR::Digraph Digraph; |
153 | 152 |
|
154 | 153 |
///\brief The type of the map that stores the last |
155 | 154 |
///arcs of the shortest paths. |
156 | 155 |
typedef typename TR::PredMap PredMap; |
157 | 156 |
///The type of the map indicating which nodes are reached. |
158 | 157 |
typedef typename TR::ReachedMap ReachedMap; |
159 | 158 |
///The type of the map indicating which nodes are processed. |
160 | 159 |
typedef typename TR::ProcessedMap ProcessedMap; |
161 | 160 |
///The type of the map that stores the dists of the nodes. |
162 | 161 |
typedef typename TR::DistMap DistMap; |
163 | 162 |
private: |
164 | 163 |
|
165 | 164 |
typedef typename Digraph::Node Node; |
166 | 165 |
typedef typename Digraph::NodeIt NodeIt; |
167 | 166 |
typedef typename Digraph::Arc Arc; |
168 | 167 |
typedef typename Digraph::OutArcIt OutArcIt; |
169 | 168 |
|
170 | 169 |
/// Pointer to the underlying digraph. |
171 | 170 |
const Digraph *G; |
172 | 171 |
///Pointer to the map of predecessors arcs. |
173 | 172 |
PredMap *_pred; |
174 | 173 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
175 | 174 |
bool local_pred; |
176 | 175 |
///Pointer to the map of distances. |
177 | 176 |
DistMap *_dist; |
178 | 177 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
179 | 178 |
bool local_dist; |
180 | 179 |
///Pointer to the map of reached status of the nodes. |
181 | 180 |
ReachedMap *_reached; |
182 | 181 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
183 | 182 |
bool local_reached; |
184 | 183 |
///Pointer to the map of processed status of the nodes. |
185 | 184 |
ProcessedMap *_processed; |
186 | 185 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
187 | 186 |
bool local_processed; |
188 | 187 |
|
189 | 188 |
std::vector<typename Digraph::Node> _queue; |
190 | 189 |
int _queue_head,_queue_tail,_queue_next_dist; |
191 | 190 |
int _curr_dist; |
192 | 191 |
|
193 | 192 |
///Creates the maps if necessary. |
194 | 193 |
|
195 | 194 |
///\todo Better memory allocation (instead of new). |
196 | 195 |
void create_maps() |
197 | 196 |
{ |
198 | 197 |
if(!_pred) { |
199 | 198 |
local_pred = true; |
200 | 199 |
_pred = Traits::createPredMap(*G); |
201 | 200 |
} |
202 | 201 |
if(!_dist) { |
203 | 202 |
local_dist = true; |
204 | 203 |
_dist = Traits::createDistMap(*G); |
205 | 204 |
} |
206 | 205 |
if(!_reached) { |
207 | 206 |
local_reached = true; |
208 | 207 |
_reached = Traits::createReachedMap(*G); |
209 | 208 |
} |
210 | 209 |
if(!_processed) { |
211 | 210 |
local_processed = true; |
212 | 211 |
_processed = Traits::createProcessedMap(*G); |
213 | 212 |
} |
214 | 213 |
} |
215 | 214 |
|
216 | 215 |
protected: |
217 | 216 |
|
218 | 217 |
Bfs() {} |
219 | 218 |
|
220 | 219 |
public: |
221 | 220 |
|
222 | 221 |
typedef Bfs Create; |
223 | 222 |
|
224 | 223 |
///\name Named template parameters |
225 | 224 |
|
226 | 225 |
///@{ |
227 | 226 |
|
228 | 227 |
template <class T> |
229 | 228 |
struct DefPredMapTraits : public Traits { |
230 | 229 |
typedef T PredMap; |
231 | 230 |
static PredMap *createPredMap(const Digraph &) |
232 | 231 |
{ |
233 | 232 |
throw UninitializedParameter(); |
234 | 233 |
} |
235 | 234 |
}; |
236 | 235 |
///\brief \ref named-templ-param "Named parameter" for setting |
237 | 236 |
///PredMap type |
238 | 237 |
/// |
239 | 238 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
240 | 239 |
/// |
241 | 240 |
template <class T> |
242 | 241 |
struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { |
243 | 242 |
typedef Bfs< Digraph, DefPredMapTraits<T> > Create; |
244 | 243 |
}; |
245 | 244 |
|
246 | 245 |
template <class T> |
247 | 246 |
struct DefDistMapTraits : public Traits { |
248 | 247 |
typedef T DistMap; |
249 | 248 |
static DistMap *createDistMap(const Digraph &) |
250 | 249 |
{ |
251 | 250 |
throw UninitializedParameter(); |
252 | 251 |
} |
253 | 252 |
}; |
254 | 253 |
///\brief \ref named-templ-param "Named parameter" for setting |
255 | 254 |
///DistMap type |
256 | 255 |
/// |
257 | 256 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
258 | 257 |
/// |
259 | 258 |
template <class T> |
260 | 259 |
struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { |
261 | 260 |
typedef Bfs< Digraph, DefDistMapTraits<T> > Create; |
262 | 261 |
}; |
263 | 262 |
|
264 | 263 |
template <class T> |
265 | 264 |
struct DefReachedMapTraits : public Traits { |
266 | 265 |
typedef T ReachedMap; |
267 | 266 |
static ReachedMap *createReachedMap(const Digraph &) |
268 | 267 |
{ |
269 | 268 |
throw UninitializedParameter(); |
270 | 269 |
} |
271 | 270 |
}; |
272 | 271 |
///\brief \ref named-templ-param "Named parameter" for setting |
273 | 272 |
///ReachedMap type |
274 | 273 |
/// |
275 | 274 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type |
276 | 275 |
/// |
277 | 276 |
template <class T> |
278 | 277 |
struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { |
279 | 278 |
typedef Bfs< Digraph, DefReachedMapTraits<T> > Create; |
280 | 279 |
}; |
281 | 280 |
|
282 | 281 |
template <class T> |
283 | 282 |
struct DefProcessedMapTraits : public Traits { |
284 | 283 |
typedef T ProcessedMap; |
285 | 284 |
static ProcessedMap *createProcessedMap(const Digraph &) |
286 | 285 |
{ |
287 | 286 |
throw UninitializedParameter(); |
288 | 287 |
} |
289 | 288 |
}; |
290 | 289 |
///\brief \ref named-templ-param "Named parameter" for setting |
291 | 290 |
///ProcessedMap type |
292 | 291 |
/// |
293 | 292 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
294 | 293 |
/// |
295 | 294 |
template <class T> |
296 | 295 |
struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > { |
297 | 296 |
typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create; |
298 | 297 |
}; |
299 | 298 |
|
300 | 299 |
struct DefDigraphProcessedMapTraits : public Traits { |
301 | 300 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
302 | 301 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
303 | 302 |
{ |
304 | 303 |
return new ProcessedMap(G); |
305 | 304 |
} |
306 | 305 |
}; |
307 | 306 |
///\brief \ref named-templ-param "Named parameter" |
308 | 307 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
309 | 308 |
/// |
310 | 309 |
///\ref named-templ-param "Named parameter" |
311 | 310 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
312 | 311 |
///If you don't set it explicitly, it will be automatically allocated. |
313 | 312 |
template <class T> |
314 | 313 |
struct DefProcessedMapToBeDefaultMap : |
315 | 314 |
public Bfs< Digraph, DefDigraphProcessedMapTraits> { |
316 | 315 |
typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create; |
317 | 316 |
}; |
318 | 317 |
|
319 | 318 |
///@} |
320 | 319 |
|
321 | 320 |
public: |
322 | 321 |
|
323 | 322 |
///Constructor. |
324 | 323 |
|
325 | 324 |
///\param _G the digraph the algorithm will run on. |
326 | 325 |
/// |
327 | 326 |
Bfs(const Digraph& _G) : |
328 | 327 |
G(&_G), |
329 | 328 |
_pred(NULL), local_pred(false), |
330 | 329 |
_dist(NULL), local_dist(false), |
331 | 330 |
_reached(NULL), local_reached(false), |
332 | 331 |
_processed(NULL), local_processed(false) |
333 | 332 |
{ } |
334 | 333 |
|
335 | 334 |
///Destructor. |
336 | 335 |
~Bfs() |
337 | 336 |
{ |
338 | 337 |
if(local_pred) delete _pred; |
339 | 338 |
if(local_dist) delete _dist; |
340 | 339 |
if(local_reached) delete _reached; |
341 | 340 |
if(local_processed) delete _processed; |
342 | 341 |
} |
343 | 342 |
|
344 | 343 |
///Sets the map storing the predecessor arcs. |
345 | 344 |
|
346 | 345 |
///Sets the map storing the predecessor arcs. |
347 | 346 |
///If you don't use this function before calling \ref run(), |
348 | 347 |
///it will allocate one. The destructor deallocates this |
349 | 348 |
///automatically allocated map, of course. |
350 | 349 |
///\return <tt> (*this) </tt> |
351 | 350 |
Bfs &predMap(PredMap &m) |
352 | 351 |
{ |
353 | 352 |
if(local_pred) { |
354 | 353 |
delete _pred; |
355 | 354 |
local_pred=false; |
356 | 355 |
} |
357 | 356 |
_pred = &m; |
358 | 357 |
return *this; |
359 | 358 |
} |
360 | 359 |
|
361 | 360 |
///Sets the map indicating the reached nodes. |
362 | 361 |
|
363 | 362 |
///Sets the map indicating the reached nodes. |
364 | 363 |
///If you don't use this function before calling \ref run(), |
365 | 364 |
///it will allocate one. The destructor deallocates this |
366 | 365 |
///automatically allocated map, of course. |
367 | 366 |
///\return <tt> (*this) </tt> |
368 | 367 |
Bfs &reachedMap(ReachedMap &m) |
369 | 368 |
{ |
370 | 369 |
if(local_reached) { |
371 | 370 |
delete _reached; |
372 | 371 |
local_reached=false; |
373 | 372 |
} |
374 | 373 |
_reached = &m; |
375 | 374 |
return *this; |
376 | 375 |
} |
377 | 376 |
|
378 | 377 |
///Sets the map indicating the processed nodes. |
379 | 378 |
|
380 | 379 |
///Sets the map indicating the processed nodes. |
381 | 380 |
///If you don't use this function before calling \ref run(), |
382 | 381 |
///it will allocate one. The destructor deallocates this |
383 | 382 |
///automatically allocated map, of course. |
384 | 383 |
///\return <tt> (*this) </tt> |
385 | 384 |
Bfs &processedMap(ProcessedMap &m) |
386 | 385 |
{ |
387 | 386 |
if(local_processed) { |
388 | 387 |
delete _processed; |
389 | 388 |
local_processed=false; |
390 | 389 |
} |
391 | 390 |
_processed = &m; |
392 | 391 |
return *this; |
393 | 392 |
} |
394 | 393 |
|
395 | 394 |
///Sets the map storing the distances calculated by the algorithm. |
396 | 395 |
|
397 | 396 |
///Sets the map storing the distances calculated by the algorithm. |
398 | 397 |
///If you don't use this function before calling \ref run(), |
399 | 398 |
///it will allocate one. The destructor deallocates this |
400 | 399 |
///automatically allocated map, of course. |
401 | 400 |
///\return <tt> (*this) </tt> |
402 | 401 |
Bfs &distMap(DistMap &m) |
403 | 402 |
{ |
404 | 403 |
if(local_dist) { |
405 | 404 |
delete _dist; |
406 | 405 |
local_dist=false; |
407 | 406 |
} |
408 | 407 |
_dist = &m; |
409 | 408 |
return *this; |
410 | 409 |
} |
411 | 410 |
|
412 | 411 |
public: |
413 | 412 |
///\name Execution control |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H |
20 | 20 |
#define LEMON_BITS_ALTERATION_NOTIFIER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
|
25 |
#include <lemon/ |
|
25 |
#include <lemon/core.h> |
|
26 | 26 |
|
27 | 27 |
///\ingroup graphbits |
28 | 28 |
///\file |
29 | 29 |
///\brief Observer notifier for graph alteration observers. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
/// \ingroup graphbits |
34 | 34 |
/// |
35 | 35 |
/// \brief Notifier class to notify observes about alterations in |
36 | 36 |
/// a container. |
37 | 37 |
/// |
38 | 38 |
/// The simple graph's can be refered as two containers, one node container |
39 | 39 |
/// and one edge container. But they are not standard containers they |
40 | 40 |
/// does not store values directly they are just key continars for more |
41 | 41 |
/// value containers which are the node and edge maps. |
42 | 42 |
/// |
43 | 43 |
/// The graph's node and edge sets can be changed as we add or erase |
44 | 44 |
/// nodes and edges in the graph. Lemon would like to handle easily |
45 | 45 |
/// that the node and edge maps should contain values for all nodes or |
46 | 46 |
/// edges. If we want to check on every indicing if the map contains |
47 | 47 |
/// the current indicing key that cause a drawback in the performance |
48 | 48 |
/// in the library. We use another solution we notify all maps about |
49 | 49 |
/// an alteration in the graph, which cause only drawback on the |
50 | 50 |
/// alteration of the graph. |
51 | 51 |
/// |
52 | 52 |
/// This class provides an interface to the container. The \e first() and \e |
53 | 53 |
/// next() member functions make possible to iterate on the keys of the |
54 | 54 |
/// container. The \e id() function returns an integer id for each key. |
55 | 55 |
/// The \e maxId() function gives back an upper bound of the ids. |
56 | 56 |
/// |
57 | 57 |
/// For the proper functonality of this class, we should notify it |
58 | 58 |
/// about each alteration in the container. The alterations have four type |
59 | 59 |
/// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
60 | 60 |
/// \e erase() signals that only one or few items added or erased to or |
61 | 61 |
/// from the graph. If all items are erased from the graph or from an empty |
62 | 62 |
/// graph a new graph is builded then it can be signaled with the |
63 | 63 |
/// clear() and build() members. Important rule that if we erase items |
64 | 64 |
/// from graph we should first signal the alteration and after that erase |
65 | 65 |
/// them from the container, on the other way on item addition we should |
66 | 66 |
/// first extend the container and just after that signal the alteration. |
67 | 67 |
/// |
68 | 68 |
/// The alteration can be observed with a class inherited from the |
69 | 69 |
/// \e ObserverBase nested class. The signals can be handled with |
70 | 70 |
/// overriding the virtual functions defined in the base class. The |
71 | 71 |
/// observer base can be attached to the notifier with the |
72 | 72 |
/// \e attach() member and can be detached with detach() function. The |
73 | 73 |
/// alteration handlers should not call any function which signals |
74 | 74 |
/// an other alteration in the same notifier and should not |
75 | 75 |
/// detach any observer from the notifier. |
76 | 76 |
/// |
77 | 77 |
/// Alteration observers try to be exception safe. If an \e add() or |
78 | 78 |
/// a \e clear() function throws an exception then the remaining |
79 | 79 |
/// observeres will not be notified and the fulfilled additions will |
80 | 80 |
/// be rolled back by calling the \e erase() or \e clear() |
81 | 81 |
/// functions. Thence the \e erase() and \e clear() should not throw |
82 | 82 |
/// exception. Actullay, it can be throw only |
83 | 83 |
/// \ref AlterationObserver::ImmediateDetach ImmediateDetach |
84 | 84 |
/// exception which detach the observer from the notifier. |
85 | 85 |
/// |
86 | 86 |
/// There are some place when the alteration observing is not completly |
87 | 87 |
/// reliable. If we want to carry out the node degree in the graph |
88 | 88 |
/// as in the \ref InDegMap and we use the reverseEdge that cause |
89 | 89 |
/// unreliable functionality. Because the alteration observing signals |
90 | 90 |
/// only erasing and adding but not the reversing it will stores bad |
91 | 91 |
/// degrees. The sub graph adaptors cannot signal the alterations because |
92 | 92 |
/// just a setting in the filter map can modify the graph and this cannot |
93 | 93 |
/// be watched in any way. |
94 | 94 |
/// |
95 | 95 |
/// \param _Container The container which is observed. |
96 | 96 |
/// \param _Item The item type which is obserbved. |
97 | 97 |
|
98 | 98 |
template <typename _Container, typename _Item> |
99 | 99 |
class AlterationNotifier { |
100 | 100 |
public: |
101 | 101 |
|
102 | 102 |
typedef True Notifier; |
103 | 103 |
|
104 | 104 |
typedef _Container Container; |
105 | 105 |
typedef _Item Item; |
106 | 106 |
|
107 | 107 |
/// \brief Exception which can be called from \e clear() and |
108 | 108 |
/// \e erase(). |
109 | 109 |
/// |
110 | 110 |
/// From the \e clear() and \e erase() function only this |
111 | 111 |
/// exception is allowed to throw. The exception immediatly |
112 | 112 |
/// detaches the current observer from the notifier. Because the |
113 | 113 |
/// \e clear() and \e erase() should not throw other exceptions |
114 | 114 |
/// it can be used to invalidate the observer. |
115 | 115 |
struct ImmediateDetach {}; |
116 | 116 |
|
117 | 117 |
/// \brief ObserverBase is the base class for the observers. |
118 | 118 |
/// |
119 | 119 |
/// ObserverBase is the abstract base class for the observers. |
120 | 120 |
/// It will be notified about an item was inserted into or |
121 | 121 |
/// erased from the graph. |
122 | 122 |
/// |
123 | 123 |
/// The observer interface contains some pure virtual functions |
124 | 124 |
/// to override. The add() and erase() functions are |
125 | 125 |
/// to notify the oberver when one item is added or |
126 | 126 |
/// erased. |
127 | 127 |
/// |
128 | 128 |
/// The build() and clear() members are to notify the observer |
129 | 129 |
/// about the container is built from an empty container or |
130 | 130 |
/// is cleared to an empty container. |
131 | 131 |
|
132 | 132 |
class ObserverBase { |
133 | 133 |
protected: |
134 | 134 |
typedef AlterationNotifier Notifier; |
135 | 135 |
|
136 | 136 |
friend class AlterationNotifier; |
137 | 137 |
|
138 | 138 |
/// \brief Default constructor. |
139 | 139 |
/// |
140 | 140 |
/// Default constructor for ObserverBase. |
141 | 141 |
/// |
142 | 142 |
ObserverBase() : _notifier(0) {} |
143 | 143 |
|
144 | 144 |
/// \brief Constructor which attach the observer into notifier. |
145 | 145 |
/// |
146 | 146 |
/// Constructor which attach the observer into notifier. |
147 | 147 |
ObserverBase(AlterationNotifier& nf) { |
148 | 148 |
attach(nf); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
/// \brief Constructor which attach the obserever to the same notifier. |
152 | 152 |
/// |
153 | 153 |
/// Constructor which attach the obserever to the same notifier as |
154 | 154 |
/// the other observer is attached to. |
155 | 155 |
ObserverBase(const ObserverBase& copy) { |
156 | 156 |
if (copy.attached()) { |
157 | 157 |
attach(*copy.notifier()); |
158 | 158 |
} |
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
/// \brief Destructor |
162 | 162 |
virtual ~ObserverBase() { |
163 | 163 |
if (attached()) { |
164 | 164 |
detach(); |
165 | 165 |
} |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
/// \brief Attaches the observer into an AlterationNotifier. |
169 | 169 |
/// |
170 | 170 |
/// This member attaches the observer into an AlterationNotifier. |
171 | 171 |
/// |
172 | 172 |
void attach(AlterationNotifier& nf) { |
173 | 173 |
nf.attach(*this); |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
/// \brief Detaches the observer into an AlterationNotifier. |
177 | 177 |
/// |
178 | 178 |
/// This member detaches the observer from an AlterationNotifier. |
179 | 179 |
/// |
180 | 180 |
void detach() { |
181 | 181 |
_notifier->detach(*this); |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
/// \brief Gives back a pointer to the notifier which the map |
185 | 185 |
/// attached into. |
186 | 186 |
/// |
187 | 187 |
/// This function gives back a pointer to the notifier which the map |
188 | 188 |
/// attached into. |
189 | 189 |
/// |
190 | 190 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); } |
191 | 191 |
|
192 | 192 |
/// Gives back true when the observer is attached into a notifier. |
193 | 193 |
bool attached() const { return _notifier != 0; } |
194 | 194 |
|
195 | 195 |
private: |
196 | 196 |
|
197 | 197 |
ObserverBase& operator=(const ObserverBase& copy); |
198 | 198 |
|
199 | 199 |
protected: |
200 | 200 |
|
201 | 201 |
Notifier* _notifier; |
202 | 202 |
typename std::list<ObserverBase*>::iterator _index; |
203 | 203 |
|
204 | 204 |
/// \brief The member function to notificate the observer about an |
205 | 205 |
/// item is added to the container. |
206 | 206 |
/// |
207 | 207 |
/// The add() member function notificates the observer about an item |
208 | 208 |
/// is added to the container. It have to be overrided in the |
209 | 209 |
/// subclasses. |
210 | 210 |
virtual void add(const Item&) = 0; |
211 | 211 |
|
212 | 212 |
/// \brief The member function to notificate the observer about |
213 | 213 |
/// more item is added to the container. |
214 | 214 |
/// |
215 | 215 |
/// The add() member function notificates the observer about more item |
216 | 216 |
/// is added to the container. It have to be overrided in the |
217 | 217 |
/// subclasses. |
218 | 218 |
virtual void add(const std::vector<Item>& items) = 0; |
219 | 219 |
|
220 | 220 |
/// \brief The member function to notificate the observer about an |
221 | 221 |
/// item is erased from the container. |
222 | 222 |
/// |
223 | 223 |
/// The erase() member function notificates the observer about an |
224 | 224 |
/// item is erased from the container. It have to be overrided in |
225 | 225 |
/// the subclasses. |
226 | 226 |
virtual void erase(const Item&) = 0; |
227 | 227 |
|
228 | 228 |
/// \brief The member function to notificate the observer about |
229 | 229 |
/// more item is erased from the container. |
230 | 230 |
/// |
231 | 231 |
/// The erase() member function notificates the observer about more item |
232 | 232 |
/// is erased from the container. It have to be overrided in the |
233 | 233 |
/// subclasses. |
234 | 234 |
virtual void erase(const std::vector<Item>& items) = 0; |
235 | 235 |
|
236 | 236 |
/// \brief The member function to notificate the observer about the |
237 | 237 |
/// container is built. |
238 | 238 |
/// |
239 | 239 |
/// The build() member function notificates the observer about the |
240 | 240 |
/// container is built from an empty container. It have to be |
241 | 241 |
/// overrided in the subclasses. |
242 | 242 |
|
243 | 243 |
virtual void build() = 0; |
244 | 244 |
|
245 | 245 |
/// \brief The member function to notificate the observer about all |
246 | 246 |
/// items are erased from the container. |
247 | 247 |
/// |
248 | 248 |
/// The clear() member function notificates the observer about all |
249 | 249 |
/// items are erased from the container. It have to be overrided in |
250 | 250 |
/// the subclasses. |
251 | 251 |
virtual void clear() = 0; |
252 | 252 |
|
253 | 253 |
}; |
254 | 254 |
|
255 | 255 |
protected: |
256 | 256 |
|
257 | 257 |
const Container* container; |
258 | 258 |
|
259 | 259 |
typedef std::list<ObserverBase*> Observers; |
260 | 260 |
Observers _observers; |
261 | 261 |
|
262 | 262 |
|
263 | 263 |
public: |
264 | 264 |
|
265 | 265 |
/// \brief Default constructor. |
266 | 266 |
/// |
267 | 267 |
/// The default constructor of the AlterationNotifier. |
268 | 268 |
/// It creates an empty notifier. |
269 | 269 |
AlterationNotifier() |
270 | 270 |
: container(0) {} |
271 | 271 |
|
272 | 272 |
/// \brief Constructor. |
273 | 273 |
/// |
274 | 274 |
/// Constructor with the observed container parameter. |
275 | 275 |
AlterationNotifier(const Container& _container) |
276 | 276 |
: container(&_container) {} |
277 | 277 |
|
278 | 278 |
/// \brief Copy Constructor of the AlterationNotifier. |
279 | 279 |
/// |
280 | 280 |
/// Copy constructor of the AlterationNotifier. |
281 | 281 |
/// It creates only an empty notifier because the copiable |
282 | 282 |
/// notifier's observers have to be registered still into that notifier. |
283 | 283 |
AlterationNotifier(const AlterationNotifier& _notifier) |
284 | 284 |
: container(_notifier.container) {} |
285 | 285 |
|
286 | 286 |
/// \brief Destructor. |
287 | 287 |
/// |
288 | 288 |
/// Destructor of the AlterationNotifier. |
289 | 289 |
/// |
290 | 290 |
~AlterationNotifier() { |
291 | 291 |
typename Observers::iterator it; |
292 | 292 |
for (it = _observers.begin(); it != _observers.end(); ++it) { |
293 | 293 |
(*it)->_notifier = 0; |
294 | 294 |
} |
295 | 295 |
} |
296 | 296 |
|
297 | 297 |
/// \brief Sets the container. |
298 | 298 |
/// |
299 | 299 |
/// Sets the container. |
300 | 300 |
void setContainer(const Container& _container) { |
301 | 301 |
container = &_container; |
302 | 302 |
} |
303 | 303 |
|
304 | 304 |
protected: |
305 | 305 |
|
306 | 306 |
AlterationNotifier& operator=(const AlterationNotifier&); |
307 | 307 |
|
308 | 308 |
public: |
309 | 309 |
|
310 | 310 |
|
311 | 311 |
|
312 | 312 |
/// \brief First item in the container. |
313 | 313 |
/// |
314 | 314 |
/// Returns the first item in the container. It is |
315 | 315 |
/// for start the iteration on the container. |
316 | 316 |
void first(Item& item) const { |
317 | 317 |
container->first(item); |
318 | 318 |
} |
319 | 319 |
|
320 | 320 |
/// \brief Next item in the container. |
321 | 321 |
/// |
322 | 322 |
/// Returns the next item in the container. It is |
323 | 323 |
/// for iterate on the container. |
324 | 324 |
void next(Item& item) const { |
325 | 325 |
container->next(item); |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
/// \brief Returns the id of the item. |
329 | 329 |
/// |
330 | 330 |
/// Returns the id of the item provided by the container. |
331 | 331 |
int id(const Item& item) const { |
332 | 332 |
return container->id(item); |
333 | 333 |
} |
334 | 334 |
|
335 | 335 |
/// \brief Returns the maximum id of the container. |
336 | 336 |
/// |
337 | 337 |
/// Returns the maximum id of the container. |
338 | 338 |
int maxId() const { |
339 | 339 |
return container->maxId(Item()); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
protected: |
343 | 343 |
|
344 | 344 |
void attach(ObserverBase& observer) { |
345 | 345 |
observer._index = _observers.insert(_observers.begin(), &observer); |
346 | 346 |
observer._notifier = this; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
void detach(ObserverBase& observer) { |
350 | 350 |
_observers.erase(observer._index); |
351 | 351 |
observer._index = _observers.end(); |
352 | 352 |
observer._notifier = 0; |
353 | 353 |
} |
354 | 354 |
|
355 | 355 |
public: |
356 | 356 |
|
357 | 357 |
/// \brief Notifies all the registed observers about an item added to |
358 | 358 |
/// the container. |
359 | 359 |
/// |
360 | 360 |
/// It notifies all the registed observers about an item added to |
361 | 361 |
/// the container. |
362 | 362 |
/// |
363 | 363 |
void add(const Item& item) { |
364 | 364 |
typename Observers::reverse_iterator it; |
365 | 365 |
try { |
366 | 366 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
367 | 367 |
(*it)->add(item); |
368 | 368 |
} |
369 | 369 |
} catch (...) { |
370 | 370 |
typename Observers::iterator jt; |
371 | 371 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
372 | 372 |
(*jt)->erase(item); |
373 | 373 |
} |
374 | 374 |
throw; |
375 | 375 |
} |
376 | 376 |
} |
377 | 377 |
|
378 | 378 |
/// \brief Notifies all the registed observers about more item added to |
379 | 379 |
/// the container. |
380 | 380 |
/// |
381 | 381 |
/// It notifies all the registed observers about more item added to |
382 | 382 |
/// the container. |
383 | 383 |
/// |
384 | 384 |
void add(const std::vector<Item>& items) { |
385 | 385 |
typename Observers::reverse_iterator it; |
386 | 386 |
try { |
387 | 387 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
388 | 388 |
(*it)->add(items); |
389 | 389 |
} |
390 | 390 |
} catch (...) { |
391 | 391 |
typename Observers::iterator jt; |
392 | 392 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
393 | 393 |
(*jt)->erase(items); |
394 | 394 |
} |
395 | 395 |
throw; |
396 | 396 |
} |
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Notifies all the registed observers about an item erased from |
400 | 400 |
/// the container. |
401 | 401 |
/// |
402 | 402 |
/// It notifies all the registed observers about an item erased from |
403 | 403 |
/// the container. |
404 | 404 |
/// |
405 | 405 |
void erase(const Item& item) throw() { |
406 | 406 |
typename Observers::iterator it = _observers.begin(); |
407 | 407 |
while (it != _observers.end()) { |
408 | 408 |
try { |
409 | 409 |
(*it)->erase(item); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_BASE_EXTENDER_H |
21 | 21 |
|
22 |
#include <lemon/ |
|
22 |
#include <lemon/core.h> |
|
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/map_extender.h> |
26 | 26 |
#include <lemon/bits/default_map.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/maps.h> |
30 | 30 |
|
31 | 31 |
///\ingroup digraphbits |
32 | 32 |
///\file |
33 | 33 |
///\brief Extenders for the digraph types |
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \ingroup digraphbits |
37 | 37 |
/// |
38 | 38 |
/// \brief BaseDigraph to BaseGraph extender |
39 | 39 |
template <typename Base> |
40 | 40 |
class UndirDigraphExtender : public Base { |
41 | 41 |
|
42 | 42 |
public: |
43 | 43 |
|
44 | 44 |
typedef Base Parent; |
45 | 45 |
typedef typename Parent::Arc Edge; |
46 | 46 |
typedef typename Parent::Node Node; |
47 | 47 |
|
48 | 48 |
typedef True UndirectedTag; |
49 | 49 |
|
50 | 50 |
class Arc : public Edge { |
51 | 51 |
friend class UndirDigraphExtender; |
52 | 52 |
|
53 | 53 |
protected: |
54 | 54 |
bool forward; |
55 | 55 |
|
56 | 56 |
Arc(const Edge &ue, bool _forward) : |
57 | 57 |
Edge(ue), forward(_forward) {} |
58 | 58 |
|
59 | 59 |
public: |
60 | 60 |
Arc() {} |
61 | 61 |
|
62 | 62 |
/// Invalid arc constructor |
63 | 63 |
Arc(Invalid i) : Edge(i), forward(true) {} |
64 | 64 |
|
65 | 65 |
bool operator==(const Arc &that) const { |
66 | 66 |
return forward==that.forward && Edge(*this)==Edge(that); |
67 | 67 |
} |
68 | 68 |
bool operator!=(const Arc &that) const { |
69 | 69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
70 | 70 |
} |
71 | 71 |
bool operator<(const Arc &that) const { |
72 | 72 |
return forward<that.forward || |
73 | 73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
|
78 | 78 |
|
79 | 79 |
using Parent::source; |
80 | 80 |
|
81 | 81 |
/// Source of the given Arc. |
82 | 82 |
Node source(const Arc &e) const { |
83 | 83 |
return e.forward ? Parent::source(e) : Parent::target(e); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
using Parent::target; |
87 | 87 |
|
88 | 88 |
/// Target of the given Arc. |
89 | 89 |
Node target(const Arc &e) const { |
90 | 90 |
return e.forward ? Parent::target(e) : Parent::source(e); |
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
/// \brief Directed arc from an edge. |
94 | 94 |
/// |
95 | 95 |
/// Returns a directed arc corresponding to the specified Edge. |
96 | 96 |
/// If the given bool is true the given edge and the |
97 | 97 |
/// returned arc have the same source node. |
98 | 98 |
static Arc direct(const Edge &ue, bool d) { |
99 | 99 |
return Arc(ue, d); |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
/// Returns whether the given directed arc is same orientation as the |
103 | 103 |
/// corresponding edge. |
104 | 104 |
/// |
105 | 105 |
/// \todo reference to the corresponding point of the undirected digraph |
106 | 106 |
/// concept. "What does the direction of an edge mean?" |
107 | 107 |
static bool direction(const Arc &e) { return e.forward; } |
108 | 108 |
|
109 | 109 |
|
110 | 110 |
using Parent::first; |
111 | 111 |
using Parent::next; |
112 | 112 |
|
113 | 113 |
void first(Arc &e) const { |
114 | 114 |
Parent::first(e); |
115 | 115 |
e.forward=true; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
void next(Arc &e) const { |
119 | 119 |
if( e.forward ) { |
120 | 120 |
e.forward = false; |
121 | 121 |
} |
122 | 122 |
else { |
123 | 123 |
Parent::next(e); |
124 | 124 |
e.forward = true; |
125 | 125 |
} |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
void firstOut(Arc &e, const Node &n) const { |
129 | 129 |
Parent::firstIn(e,n); |
130 | 130 |
if( Edge(e) != INVALID ) { |
131 | 131 |
e.forward = false; |
132 | 132 |
} |
133 | 133 |
else { |
134 | 134 |
Parent::firstOut(e,n); |
135 | 135 |
e.forward = true; |
136 | 136 |
} |
137 | 137 |
} |
138 | 138 |
void nextOut(Arc &e) const { |
139 | 139 |
if( ! e.forward ) { |
140 | 140 |
Node n = Parent::target(e); |
141 | 141 |
Parent::nextIn(e); |
142 | 142 |
if( Edge(e) == INVALID ) { |
143 | 143 |
Parent::firstOut(e, n); |
144 | 144 |
e.forward = true; |
145 | 145 |
} |
146 | 146 |
} |
147 | 147 |
else { |
148 | 148 |
Parent::nextOut(e); |
149 | 149 |
} |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
void firstIn(Arc &e, const Node &n) const { |
153 | 153 |
Parent::firstOut(e,n); |
154 | 154 |
if( Edge(e) != INVALID ) { |
155 | 155 |
e.forward = false; |
156 | 156 |
} |
157 | 157 |
else { |
158 | 158 |
Parent::firstIn(e,n); |
159 | 159 |
e.forward = true; |
160 | 160 |
} |
161 | 161 |
} |
162 | 162 |
void nextIn(Arc &e) const { |
163 | 163 |
if( ! e.forward ) { |
164 | 164 |
Node n = Parent::source(e); |
165 | 165 |
Parent::nextOut(e); |
166 | 166 |
if( Edge(e) == INVALID ) { |
167 | 167 |
Parent::firstIn(e, n); |
168 | 168 |
e.forward = true; |
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
else { |
172 | 172 |
Parent::nextIn(e); |
173 | 173 |
} |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
177 | 177 |
d = true; |
178 | 178 |
Parent::firstOut(e, n); |
179 | 179 |
if (e != INVALID) return; |
180 | 180 |
d = false; |
181 | 181 |
Parent::firstIn(e, n); |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
void nextInc(Edge &e, bool &d) const { |
185 | 185 |
if (d) { |
186 | 186 |
Node s = Parent::source(e); |
187 | 187 |
Parent::nextOut(e); |
188 | 188 |
if (e != INVALID) return; |
189 | 189 |
d = false; |
190 | 190 |
Parent::firstIn(e, s); |
191 | 191 |
} else { |
192 | 192 |
Parent::nextIn(e); |
193 | 193 |
} |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
Node nodeFromId(int ix) const { |
197 | 197 |
return Parent::nodeFromId(ix); |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
Arc arcFromId(int ix) const { |
201 | 201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
Edge edgeFromId(int ix) const { |
205 | 205 |
return Parent::arcFromId(ix); |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
int id(const Node &n) const { |
209 | 209 |
return Parent::id(n); |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
int id(const Edge &e) const { |
213 | 213 |
return Parent::id(e); |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
int id(const Arc &e) const { |
217 | 217 |
return 2 * Parent::id(e) + int(e.forward); |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
int maxNodeId() const { |
221 | 221 |
return Parent::maxNodeId(); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
int maxArcId() const { |
225 | 225 |
return 2 * Parent::maxArcId() + 1; |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
int maxEdgeId() const { |
229 | 229 |
return Parent::maxArcId(); |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
|
233 | 233 |
int arcNum() const { |
234 | 234 |
return 2 * Parent::arcNum(); |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
int edgeNum() const { |
238 | 238 |
return Parent::arcNum(); |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
242 | 242 |
if (p == INVALID) { |
243 | 243 |
Edge arc = Parent::findArc(s, t); |
244 | 244 |
if (arc != INVALID) return direct(arc, true); |
245 | 245 |
arc = Parent::findArc(t, s); |
246 | 246 |
if (arc != INVALID) return direct(arc, false); |
247 | 247 |
} else if (direction(p)) { |
248 | 248 |
Edge arc = Parent::findArc(s, t, p); |
249 | 249 |
if (arc != INVALID) return direct(arc, true); |
250 | 250 |
arc = Parent::findArc(t, s); |
251 | 251 |
if (arc != INVALID) return direct(arc, false); |
252 | 252 |
} else { |
253 | 253 |
Edge arc = Parent::findArc(t, s, p); |
254 | 254 |
if (arc != INVALID) return direct(arc, false); |
255 | 255 |
} |
256 | 256 |
return INVALID; |
257 | 257 |
} |
258 | 258 |
|
259 | 259 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
260 | 260 |
if (s != t) { |
261 | 261 |
if (p == INVALID) { |
262 | 262 |
Edge arc = Parent::findArc(s, t); |
263 | 263 |
if (arc != INVALID) return arc; |
264 | 264 |
arc = Parent::findArc(t, s); |
265 | 265 |
if (arc != INVALID) return arc; |
266 | 266 |
} else if (Parent::s(p) == s) { |
267 | 267 |
Edge arc = Parent::findArc(s, t, p); |
268 | 268 |
if (arc != INVALID) return arc; |
269 | 269 |
arc = Parent::findArc(t, s); |
270 | 270 |
if (arc != INVALID) return arc; |
271 | 271 |
} else { |
272 | 272 |
Edge arc = Parent::findArc(t, s, p); |
273 | 273 |
if (arc != INVALID) return arc; |
274 | 274 |
} |
275 | 275 |
} else { |
276 | 276 |
return Parent::findArc(s, t, p); |
277 | 277 |
} |
278 | 278 |
return INVALID; |
279 | 279 |
} |
280 | 280 |
}; |
281 | 281 |
|
282 | 282 |
template <typename Base> |
283 | 283 |
class BidirBpGraphExtender : public Base { |
284 | 284 |
public: |
285 | 285 |
typedef Base Parent; |
286 | 286 |
typedef BidirBpGraphExtender Digraph; |
287 | 287 |
|
288 | 288 |
typedef typename Parent::Node Node; |
289 | 289 |
typedef typename Parent::Edge Edge; |
290 | 290 |
|
291 | 291 |
|
292 | 292 |
using Parent::first; |
293 | 293 |
using Parent::next; |
294 | 294 |
|
295 | 295 |
using Parent::id; |
296 | 296 |
|
297 | 297 |
class Red : public Node { |
298 | 298 |
friend class BidirBpGraphExtender; |
299 | 299 |
public: |
300 | 300 |
Red() {} |
301 | 301 |
Red(const Node& node) : Node(node) { |
302 | 302 |
LEMON_ASSERT(Parent::red(node) || node == INVALID, |
303 | 303 |
typename Parent::NodeSetError()); |
304 | 304 |
} |
305 | 305 |
Red& operator=(const Node& node) { |
306 | 306 |
LEMON_ASSERT(Parent::red(node) || node == INVALID, |
307 | 307 |
typename Parent::NodeSetError()); |
308 | 308 |
Node::operator=(node); |
309 | 309 |
return *this; |
310 | 310 |
} |
311 | 311 |
Red(Invalid) : Node(INVALID) {} |
312 | 312 |
Red& operator=(Invalid) { |
313 | 313 |
Node::operator=(INVALID); |
314 | 314 |
return *this; |
315 | 315 |
} |
316 | 316 |
}; |
317 | 317 |
|
318 | 318 |
void first(Red& node) const { |
319 | 319 |
Parent::firstRed(static_cast<Node&>(node)); |
320 | 320 |
} |
321 | 321 |
void next(Red& node) const { |
322 | 322 |
Parent::nextRed(static_cast<Node&>(node)); |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
int id(const Red& node) const { |
326 | 326 |
return Parent::redId(node); |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
class Blue : public Node { |
330 | 330 |
friend class BidirBpGraphExtender; |
331 | 331 |
public: |
332 | 332 |
Blue() {} |
333 | 333 |
Blue(const Node& node) : Node(node) { |
334 | 334 |
LEMON_ASSERT(Parent::blue(node) || node == INVALID, |
335 | 335 |
typename Parent::NodeSetError()); |
336 | 336 |
} |
337 | 337 |
Blue& operator=(const Node& node) { |
338 | 338 |
LEMON_ASSERT(Parent::blue(node) || node == INVALID, |
339 | 339 |
typename Parent::NodeSetError()); |
340 | 340 |
Node::operator=(node); |
341 | 341 |
return *this; |
342 | 342 |
} |
343 | 343 |
Blue(Invalid) : Node(INVALID) {} |
344 | 344 |
Blue& operator=(Invalid) { |
345 | 345 |
Node::operator=(INVALID); |
346 | 346 |
return *this; |
347 | 347 |
} |
348 | 348 |
}; |
349 | 349 |
|
350 | 350 |
void first(Blue& node) const { |
351 | 351 |
Parent::firstBlue(static_cast<Node&>(node)); |
352 | 352 |
} |
353 | 353 |
void next(Blue& node) const { |
354 | 354 |
Parent::nextBlue(static_cast<Node&>(node)); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
int id(const Blue& node) const { |
358 | 358 |
return Parent::redId(node); |
359 | 359 |
} |
360 | 360 |
|
361 | 361 |
Node source(const Edge& arc) const { |
362 | 362 |
return red(arc); |
363 | 363 |
} |
364 | 364 |
Node target(const Edge& arc) const { |
365 | 365 |
return blue(arc); |
366 | 366 |
} |
367 | 367 |
|
368 | 368 |
void firstInc(Edge& arc, bool& dir, const Node& node) const { |
369 | 369 |
if (Parent::red(node)) { |
370 | 370 |
Parent::firstFromRed(arc, node); |
371 | 371 |
dir = true; |
372 | 372 |
} else { |
373 | 373 |
Parent::firstFromBlue(arc, node); |
374 | 374 |
dir = static_cast<Edge&>(arc) == INVALID; |
375 | 375 |
} |
376 | 376 |
} |
377 | 377 |
void nextInc(Edge& arc, bool& dir) const { |
378 | 378 |
if (dir) { |
379 | 379 |
Parent::nextFromRed(arc); |
380 | 380 |
} else { |
381 | 381 |
Parent::nextFromBlue(arc); |
382 | 382 |
if (arc == INVALID) dir = true; |
383 | 383 |
} |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
class Arc : public Edge { |
387 | 387 |
friend class BidirBpGraphExtender; |
388 | 388 |
protected: |
389 | 389 |
bool forward; |
390 | 390 |
|
391 | 391 |
Arc(const Edge& arc, bool _forward) |
392 | 392 |
: Edge(arc), forward(_forward) {} |
393 | 393 |
|
394 | 394 |
public: |
395 | 395 |
Arc() {} |
396 | 396 |
Arc (Invalid) : Edge(INVALID), forward(true) {} |
397 | 397 |
bool operator==(const Arc& i) const { |
398 | 398 |
return Edge::operator==(i) && forward == i.forward; |
399 | 399 |
} |
400 | 400 |
bool operator!=(const Arc& i) const { |
401 | 401 |
return Edge::operator!=(i) || forward != i.forward; |
402 | 402 |
} |
403 | 403 |
bool operator<(const Arc& i) const { |
404 | 404 |
return Edge::operator<(i) || |
405 | 405 |
(!(i.forward<forward) && Edge(*this)<Edge(i)); |
406 | 406 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_GRAPH_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_GRAPH_EXTENDER_H |
21 | 21 |
|
22 |
#include <lemon/bits/invalid.h> |
|
23 |
#include <lemon/bits/utility.h> |
|
22 |
#include <lemon/core.h> |
|
24 | 23 |
|
25 | 24 |
#include <lemon/bits/map_extender.h> |
26 | 25 |
#include <lemon/bits/default_map.h> |
27 | 26 |
|
28 | 27 |
#include <lemon/concept_check.h> |
29 | 28 |
#include <lemon/concepts/maps.h> |
30 | 29 |
|
31 | 30 |
///\ingroup graphbits |
32 | 31 |
///\file |
33 | 32 |
///\brief Extenders for the digraph types |
34 | 33 |
namespace lemon { |
35 | 34 |
|
36 | 35 |
/// \ingroup graphbits |
37 | 36 |
/// |
38 | 37 |
/// \brief Extender for the Digraphs |
39 | 38 |
template <typename Base> |
40 | 39 |
class DigraphExtender : public Base { |
41 | 40 |
public: |
42 | 41 |
|
43 | 42 |
typedef Base Parent; |
44 | 43 |
typedef DigraphExtender Digraph; |
45 | 44 |
|
46 | 45 |
// Base extensions |
47 | 46 |
|
48 | 47 |
typedef typename Parent::Node Node; |
49 | 48 |
typedef typename Parent::Arc Arc; |
50 | 49 |
|
51 | 50 |
int maxId(Node) const { |
52 | 51 |
return Parent::maxNodeId(); |
53 | 52 |
} |
54 | 53 |
|
55 | 54 |
int maxId(Arc) const { |
56 | 55 |
return Parent::maxArcId(); |
57 | 56 |
} |
58 | 57 |
|
59 | 58 |
Node fromId(int id, Node) const { |
60 | 59 |
return Parent::nodeFromId(id); |
61 | 60 |
} |
62 | 61 |
|
63 | 62 |
Arc fromId(int id, Arc) const { |
64 | 63 |
return Parent::arcFromId(id); |
65 | 64 |
} |
66 | 65 |
|
67 | 66 |
Node oppositeNode(const Node &node, const Arc &arc) const { |
68 | 67 |
if (node == Parent::source(arc)) |
69 | 68 |
return Parent::target(arc); |
70 | 69 |
else if(node == Parent::target(arc)) |
71 | 70 |
return Parent::source(arc); |
72 | 71 |
else |
73 | 72 |
return INVALID; |
74 | 73 |
} |
75 | 74 |
|
76 | 75 |
// Alterable extension |
77 | 76 |
|
78 | 77 |
typedef AlterationNotifier<DigraphExtender, Node> NodeNotifier; |
79 | 78 |
typedef AlterationNotifier<DigraphExtender, Arc> ArcNotifier; |
80 | 79 |
|
81 | 80 |
|
82 | 81 |
protected: |
83 | 82 |
|
84 | 83 |
mutable NodeNotifier node_notifier; |
85 | 84 |
mutable ArcNotifier arc_notifier; |
86 | 85 |
|
87 | 86 |
public: |
88 | 87 |
|
89 | 88 |
NodeNotifier& notifier(Node) const { |
90 | 89 |
return node_notifier; |
91 | 90 |
} |
92 | 91 |
|
93 | 92 |
ArcNotifier& notifier(Arc) const { |
94 | 93 |
return arc_notifier; |
95 | 94 |
} |
96 | 95 |
|
97 | 96 |
class NodeIt : public Node { |
98 | 97 |
const Digraph* _digraph; |
99 | 98 |
public: |
100 | 99 |
|
101 | 100 |
NodeIt() {} |
102 | 101 |
|
103 | 102 |
NodeIt(Invalid i) : Node(i) { } |
104 | 103 |
|
105 | 104 |
explicit NodeIt(const Digraph& digraph) : _digraph(&digraph) { |
106 | 105 |
_digraph->first(static_cast<Node&>(*this)); |
107 | 106 |
} |
108 | 107 |
|
109 | 108 |
NodeIt(const Digraph& digraph, const Node& node) |
110 | 109 |
: Node(node), _digraph(&digraph) {} |
111 | 110 |
|
112 | 111 |
NodeIt& operator++() { |
113 | 112 |
_digraph->next(*this); |
114 | 113 |
return *this; |
115 | 114 |
} |
116 | 115 |
|
117 | 116 |
}; |
118 | 117 |
|
119 | 118 |
|
120 | 119 |
class ArcIt : public Arc { |
121 | 120 |
const Digraph* _digraph; |
122 | 121 |
public: |
123 | 122 |
|
124 | 123 |
ArcIt() { } |
125 | 124 |
|
126 | 125 |
ArcIt(Invalid i) : Arc(i) { } |
127 | 126 |
|
128 | 127 |
explicit ArcIt(const Digraph& digraph) : _digraph(&digraph) { |
129 | 128 |
_digraph->first(static_cast<Arc&>(*this)); |
130 | 129 |
} |
131 | 130 |
|
132 | 131 |
ArcIt(const Digraph& digraph, const Arc& arc) : |
133 | 132 |
Arc(arc), _digraph(&digraph) { } |
134 | 133 |
|
135 | 134 |
ArcIt& operator++() { |
136 | 135 |
_digraph->next(*this); |
137 | 136 |
return *this; |
138 | 137 |
} |
139 | 138 |
|
140 | 139 |
}; |
141 | 140 |
|
142 | 141 |
|
143 | 142 |
class OutArcIt : public Arc { |
144 | 143 |
const Digraph* _digraph; |
145 | 144 |
public: |
146 | 145 |
|
147 | 146 |
OutArcIt() { } |
148 | 147 |
|
149 | 148 |
OutArcIt(Invalid i) : Arc(i) { } |
150 | 149 |
|
151 | 150 |
OutArcIt(const Digraph& digraph, const Node& node) |
152 | 151 |
: _digraph(&digraph) { |
153 | 152 |
_digraph->firstOut(*this, node); |
154 | 153 |
} |
155 | 154 |
|
156 | 155 |
OutArcIt(const Digraph& digraph, const Arc& arc) |
157 | 156 |
: Arc(arc), _digraph(&digraph) {} |
158 | 157 |
|
159 | 158 |
OutArcIt& operator++() { |
160 | 159 |
_digraph->nextOut(*this); |
161 | 160 |
return *this; |
162 | 161 |
} |
163 | 162 |
|
164 | 163 |
}; |
165 | 164 |
|
166 | 165 |
|
167 | 166 |
class InArcIt : public Arc { |
168 | 167 |
const Digraph* _digraph; |
169 | 168 |
public: |
170 | 169 |
|
171 | 170 |
InArcIt() { } |
172 | 171 |
|
173 | 172 |
InArcIt(Invalid i) : Arc(i) { } |
174 | 173 |
|
175 | 174 |
InArcIt(const Digraph& digraph, const Node& node) |
176 | 175 |
: _digraph(&digraph) { |
177 | 176 |
_digraph->firstIn(*this, node); |
178 | 177 |
} |
179 | 178 |
|
180 | 179 |
InArcIt(const Digraph& digraph, const Arc& arc) : |
181 | 180 |
Arc(arc), _digraph(&digraph) {} |
182 | 181 |
|
183 | 182 |
InArcIt& operator++() { |
184 | 183 |
_digraph->nextIn(*this); |
185 | 184 |
return *this; |
186 | 185 |
} |
187 | 186 |
|
188 | 187 |
}; |
189 | 188 |
|
190 | 189 |
/// \brief Base node of the iterator |
191 | 190 |
/// |
192 | 191 |
/// Returns the base node (i.e. the source in this case) of the iterator |
193 | 192 |
Node baseNode(const OutArcIt &arc) const { |
194 | 193 |
return Parent::source(arc); |
195 | 194 |
} |
196 | 195 |
/// \brief Running node of the iterator |
197 | 196 |
/// |
198 | 197 |
/// Returns the running node (i.e. the target in this case) of the |
199 | 198 |
/// iterator |
200 | 199 |
Node runningNode(const OutArcIt &arc) const { |
201 | 200 |
return Parent::target(arc); |
202 | 201 |
} |
203 | 202 |
|
204 | 203 |
/// \brief Base node of the iterator |
205 | 204 |
/// |
206 | 205 |
/// Returns the base node (i.e. the target in this case) of the iterator |
207 | 206 |
Node baseNode(const InArcIt &arc) const { |
208 | 207 |
return Parent::target(arc); |
209 | 208 |
} |
210 | 209 |
/// \brief Running node of the iterator |
211 | 210 |
/// |
212 | 211 |
/// Returns the running node (i.e. the source in this case) of the |
213 | 212 |
/// iterator |
214 | 213 |
Node runningNode(const InArcIt &arc) const { |
215 | 214 |
return Parent::source(arc); |
216 | 215 |
} |
217 | 216 |
|
218 | 217 |
|
219 | 218 |
template <typename _Value> |
220 | 219 |
class NodeMap |
221 | 220 |
: public MapExtender<DefaultMap<Digraph, Node, _Value> > { |
222 | 221 |
public: |
223 | 222 |
typedef DigraphExtender Digraph; |
224 | 223 |
typedef MapExtender<DefaultMap<Digraph, Node, _Value> > Parent; |
225 | 224 |
|
226 | 225 |
explicit NodeMap(const Digraph& digraph) |
227 | 226 |
: Parent(digraph) {} |
228 | 227 |
NodeMap(const Digraph& digraph, const _Value& value) |
229 | 228 |
: Parent(digraph, value) {} |
230 | 229 |
|
231 | 230 |
NodeMap& operator=(const NodeMap& cmap) { |
232 | 231 |
return operator=<NodeMap>(cmap); |
233 | 232 |
} |
234 | 233 |
|
235 | 234 |
template <typename CMap> |
236 | 235 |
NodeMap& operator=(const CMap& cmap) { |
237 | 236 |
Parent::operator=(cmap); |
238 | 237 |
return *this; |
239 | 238 |
} |
240 | 239 |
|
241 | 240 |
}; |
242 | 241 |
|
243 | 242 |
template <typename _Value> |
244 | 243 |
class ArcMap |
245 | 244 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
246 | 245 |
public: |
247 | 246 |
typedef DigraphExtender Digraph; |
248 | 247 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
249 | 248 |
|
250 | 249 |
explicit ArcMap(const Digraph& digraph) |
251 | 250 |
: Parent(digraph) {} |
252 | 251 |
ArcMap(const Digraph& digraph, const _Value& value) |
253 | 252 |
: Parent(digraph, value) {} |
254 | 253 |
|
255 | 254 |
ArcMap& operator=(const ArcMap& cmap) { |
256 | 255 |
return operator=<ArcMap>(cmap); |
257 | 256 |
} |
258 | 257 |
|
259 | 258 |
template <typename CMap> |
260 | 259 |
ArcMap& operator=(const CMap& cmap) { |
261 | 260 |
Parent::operator=(cmap); |
262 | 261 |
return *this; |
263 | 262 |
} |
264 | 263 |
}; |
265 | 264 |
|
266 | 265 |
|
267 | 266 |
Node addNode() { |
268 | 267 |
Node node = Parent::addNode(); |
269 | 268 |
notifier(Node()).add(node); |
270 | 269 |
return node; |
271 | 270 |
} |
272 | 271 |
|
273 | 272 |
Arc addArc(const Node& from, const Node& to) { |
274 | 273 |
Arc arc = Parent::addArc(from, to); |
275 | 274 |
notifier(Arc()).add(arc); |
276 | 275 |
return arc; |
277 | 276 |
} |
278 | 277 |
|
279 | 278 |
void clear() { |
280 | 279 |
notifier(Arc()).clear(); |
281 | 280 |
notifier(Node()).clear(); |
282 | 281 |
Parent::clear(); |
283 | 282 |
} |
284 | 283 |
|
285 | 284 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
286 | 285 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
287 | 286 |
Parent::build(digraph, nodeRef, arcRef); |
288 | 287 |
notifier(Node()).build(); |
289 | 288 |
notifier(Arc()).build(); |
290 | 289 |
} |
291 | 290 |
|
292 | 291 |
void erase(const Node& node) { |
293 | 292 |
Arc arc; |
294 | 293 |
Parent::firstOut(arc, node); |
295 | 294 |
while (arc != INVALID ) { |
296 | 295 |
erase(arc); |
297 | 296 |
Parent::firstOut(arc, node); |
298 | 297 |
} |
299 | 298 |
|
300 | 299 |
Parent::firstIn(arc, node); |
301 | 300 |
while (arc != INVALID ) { |
302 | 301 |
erase(arc); |
303 | 302 |
Parent::firstIn(arc, node); |
304 | 303 |
} |
305 | 304 |
|
306 | 305 |
notifier(Node()).erase(node); |
307 | 306 |
Parent::erase(node); |
308 | 307 |
} |
309 | 308 |
|
310 | 309 |
void erase(const Arc& arc) { |
311 | 310 |
notifier(Arc()).erase(arc); |
312 | 311 |
Parent::erase(arc); |
313 | 312 |
} |
314 | 313 |
|
315 | 314 |
DigraphExtender() { |
316 | 315 |
node_notifier.setContainer(*this); |
317 | 316 |
arc_notifier.setContainer(*this); |
318 | 317 |
} |
319 | 318 |
|
320 | 319 |
|
321 | 320 |
~DigraphExtender() { |
322 | 321 |
arc_notifier.clear(); |
323 | 322 |
node_notifier.clear(); |
324 | 323 |
} |
325 | 324 |
}; |
326 | 325 |
|
327 | 326 |
/// \ingroup _graphbits |
328 | 327 |
/// |
329 | 328 |
/// \brief Extender for the Graphs |
330 | 329 |
template <typename Base> |
331 | 330 |
class GraphExtender : public Base { |
332 | 331 |
public: |
333 | 332 |
|
334 | 333 |
typedef Base Parent; |
335 | 334 |
typedef GraphExtender Graph; |
336 | 335 |
|
337 | 336 |
typedef True UndirectedTag; |
338 | 337 |
|
339 | 338 |
typedef typename Parent::Node Node; |
340 | 339 |
typedef typename Parent::Arc Arc; |
341 | 340 |
typedef typename Parent::Edge Edge; |
342 | 341 |
|
343 | 342 |
// Graph extension |
344 | 343 |
|
345 | 344 |
int maxId(Node) const { |
346 | 345 |
return Parent::maxNodeId(); |
347 | 346 |
} |
348 | 347 |
|
349 | 348 |
int maxId(Arc) const { |
350 | 349 |
return Parent::maxArcId(); |
351 | 350 |
} |
352 | 351 |
|
353 | 352 |
int maxId(Edge) const { |
354 | 353 |
return Parent::maxEdgeId(); |
355 | 354 |
} |
356 | 355 |
|
357 | 356 |
Node fromId(int id, Node) const { |
358 | 357 |
return Parent::nodeFromId(id); |
359 | 358 |
} |
360 | 359 |
|
361 | 360 |
Arc fromId(int id, Arc) const { |
362 | 361 |
return Parent::arcFromId(id); |
363 | 362 |
} |
364 | 363 |
|
365 | 364 |
Edge fromId(int id, Edge) const { |
366 | 365 |
return Parent::edgeFromId(id); |
367 | 366 |
} |
368 | 367 |
|
369 | 368 |
Node oppositeNode(const Node &n, const Edge &e) const { |
370 | 369 |
if( n == Parent::u(e)) |
371 | 370 |
return Parent::v(e); |
372 | 371 |
else if( n == Parent::v(e)) |
373 | 372 |
return Parent::u(e); |
374 | 373 |
else |
375 | 374 |
return INVALID; |
376 | 375 |
} |
377 | 376 |
|
378 | 377 |
Arc oppositeArc(const Arc &arc) const { |
379 | 378 |
return Parent::direct(arc, !Parent::direction(arc)); |
380 | 379 |
} |
381 | 380 |
|
382 | 381 |
using Parent::direct; |
383 | 382 |
Arc direct(const Edge &edge, const Node &node) const { |
384 | 383 |
return Parent::direct(edge, Parent::u(edge) == node); |
385 | 384 |
} |
386 | 385 |
|
387 | 386 |
// Alterable extension |
388 | 387 |
|
389 | 388 |
typedef AlterationNotifier<GraphExtender, Node> NodeNotifier; |
390 | 389 |
typedef AlterationNotifier<GraphExtender, Arc> ArcNotifier; |
391 | 390 |
typedef AlterationNotifier<GraphExtender, Edge> EdgeNotifier; |
392 | 391 |
|
393 | 392 |
|
394 | 393 |
protected: |
395 | 394 |
|
396 | 395 |
mutable NodeNotifier node_notifier; |
397 | 396 |
mutable ArcNotifier arc_notifier; |
398 | 397 |
mutable EdgeNotifier edge_notifier; |
399 | 398 |
|
400 | 399 |
public: |
401 | 400 |
|
402 | 401 |
NodeNotifier& notifier(Node) const { |
403 | 402 |
return node_notifier; |
404 | 403 |
} |
405 | 404 |
|
406 | 405 |
ArcNotifier& notifier(Arc) const { |
407 | 406 |
return arc_notifier; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_TRAITS_H |
20 | 20 |
#define LEMON_BITS_TRAITS_H |
21 | 21 |
|
22 |
#include <lemon/bits/utility.h> |
|
23 |
|
|
24 | 22 |
///\file |
25 | 23 |
///\brief Traits for graphs and maps |
26 | 24 |
/// |
27 | 25 |
|
26 |
#include <lemon/bits/enable_if.h> |
|
27 |
|
|
28 | 28 |
namespace lemon { |
29 |
|
|
30 |
struct InvalidType {}; |
|
31 |
|
|
29 | 32 |
template <typename _Graph, typename _Item> |
30 | 33 |
class ItemSetTraits {}; |
31 | 34 |
|
32 | 35 |
|
33 | 36 |
template <typename Graph, typename Enable = void> |
34 | 37 |
struct NodeNotifierIndicator { |
35 | 38 |
typedef InvalidType Type; |
36 | 39 |
}; |
37 | 40 |
template <typename Graph> |
38 | 41 |
struct NodeNotifierIndicator< |
39 | 42 |
Graph, |
40 | 43 |
typename enable_if<typename Graph::NodeNotifier::Notifier, void>::type |
41 | 44 |
> { |
42 | 45 |
typedef typename Graph::NodeNotifier Type; |
43 | 46 |
}; |
44 | 47 |
|
45 | 48 |
template <typename _Graph> |
46 | 49 |
class ItemSetTraits<_Graph, typename _Graph::Node> { |
47 | 50 |
public: |
48 | 51 |
|
49 | 52 |
typedef _Graph Graph; |
50 | 53 |
|
51 | 54 |
typedef typename Graph::Node Item; |
52 | 55 |
typedef typename Graph::NodeIt ItemIt; |
53 | 56 |
|
54 | 57 |
typedef typename NodeNotifierIndicator<Graph>::Type ItemNotifier; |
55 | 58 |
|
56 | 59 |
template <typename _Value> |
57 | 60 |
class Map : public Graph::template NodeMap<_Value> { |
58 | 61 |
public: |
59 | 62 |
typedef typename Graph::template NodeMap<_Value> Parent; |
60 | 63 |
typedef typename Graph::template NodeMap<_Value> Type; |
61 | 64 |
typedef typename Parent::Value Value; |
62 | 65 |
|
63 | 66 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
64 | 67 |
Map(const Graph& _digraph, const Value& _value) |
65 | 68 |
: Parent(_digraph, _value) {} |
66 | 69 |
|
67 | 70 |
}; |
68 | 71 |
|
69 | 72 |
}; |
70 | 73 |
|
71 | 74 |
template <typename Graph, typename Enable = void> |
72 | 75 |
struct ArcNotifierIndicator { |
73 | 76 |
typedef InvalidType Type; |
74 | 77 |
}; |
75 | 78 |
template <typename Graph> |
76 | 79 |
struct ArcNotifierIndicator< |
77 | 80 |
Graph, |
78 | 81 |
typename enable_if<typename Graph::ArcNotifier::Notifier, void>::type |
79 | 82 |
> { |
80 | 83 |
typedef typename Graph::ArcNotifier Type; |
81 | 84 |
}; |
82 | 85 |
|
83 | 86 |
template <typename _Graph> |
84 | 87 |
class ItemSetTraits<_Graph, typename _Graph::Arc> { |
85 | 88 |
public: |
86 | 89 |
|
87 | 90 |
typedef _Graph Graph; |
88 | 91 |
|
89 | 92 |
typedef typename Graph::Arc Item; |
90 | 93 |
typedef typename Graph::ArcIt ItemIt; |
91 | 94 |
|
92 | 95 |
typedef typename ArcNotifierIndicator<Graph>::Type ItemNotifier; |
93 | 96 |
|
94 | 97 |
template <typename _Value> |
95 | 98 |
class Map : public Graph::template ArcMap<_Value> { |
96 | 99 |
public: |
97 | 100 |
typedef typename Graph::template ArcMap<_Value> Parent; |
98 | 101 |
typedef typename Graph::template ArcMap<_Value> Type; |
99 | 102 |
typedef typename Parent::Value Value; |
100 | 103 |
|
101 | 104 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
102 | 105 |
Map(const Graph& _digraph, const Value& _value) |
103 | 106 |
: Parent(_digraph, _value) {} |
104 | 107 |
}; |
105 | 108 |
|
106 | 109 |
}; |
107 | 110 |
|
108 | 111 |
template <typename Graph, typename Enable = void> |
109 | 112 |
struct EdgeNotifierIndicator { |
110 | 113 |
typedef InvalidType Type; |
111 | 114 |
}; |
112 | 115 |
template <typename Graph> |
113 | 116 |
struct EdgeNotifierIndicator< |
114 | 117 |
Graph, |
115 | 118 |
typename enable_if<typename Graph::EdgeNotifier::Notifier, void>::type |
116 | 119 |
> { |
117 | 120 |
typedef typename Graph::EdgeNotifier Type; |
118 | 121 |
}; |
119 | 122 |
|
120 | 123 |
template <typename _Graph> |
121 | 124 |
class ItemSetTraits<_Graph, typename _Graph::Edge> { |
122 | 125 |
public: |
123 | 126 |
|
124 | 127 |
typedef _Graph Graph; |
125 | 128 |
|
126 | 129 |
typedef typename Graph::Edge Item; |
127 | 130 |
typedef typename Graph::EdgeIt ItemIt; |
128 | 131 |
|
129 | 132 |
typedef typename EdgeNotifierIndicator<Graph>::Type ItemNotifier; |
130 | 133 |
|
131 | 134 |
template <typename _Value> |
132 | 135 |
class Map : public Graph::template EdgeMap<_Value> { |
133 | 136 |
public: |
134 | 137 |
typedef typename Graph::template EdgeMap<_Value> Parent; |
135 | 138 |
typedef typename Graph::template EdgeMap<_Value> Type; |
136 | 139 |
typedef typename Parent::Value Value; |
137 | 140 |
|
138 | 141 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
139 | 142 |
Map(const Graph& _digraph, const Value& _value) |
140 | 143 |
: Parent(_digraph, _value) {} |
141 | 144 |
}; |
142 | 145 |
|
143 | 146 |
}; |
144 | 147 |
|
145 | 148 |
template <typename Map, typename Enable = void> |
146 | 149 |
struct MapTraits { |
147 | 150 |
typedef False ReferenceMapTag; |
148 | 151 |
|
149 | 152 |
typedef typename Map::Key Key; |
150 | 153 |
typedef typename Map::Value Value; |
151 | 154 |
|
152 | 155 |
typedef Value ConstReturnValue; |
153 | 156 |
typedef Value ReturnValue; |
154 | 157 |
}; |
155 | 158 |
|
156 | 159 |
template <typename Map> |
157 | 160 |
struct MapTraits< |
158 | 161 |
Map, typename enable_if<typename Map::ReferenceMapTag, void>::type > |
159 | 162 |
{ |
160 | 163 |
typedef True ReferenceMapTag; |
161 | 164 |
|
162 | 165 |
typedef typename Map::Key Key; |
163 | 166 |
typedef typename Map::Value Value; |
164 | 167 |
|
165 | 168 |
typedef typename Map::ConstReference ConstReturnValue; |
166 | 169 |
typedef typename Map::Reference ReturnValue; |
167 | 170 |
|
168 | 171 |
typedef typename Map::ConstReference ConstReference; |
169 | 172 |
typedef typename Map::Reference Reference; |
170 | 173 |
}; |
171 | 174 |
|
172 | 175 |
template <typename MatrixMap, typename Enable = void> |
173 | 176 |
struct MatrixMapTraits { |
174 | 177 |
typedef False ReferenceMapTag; |
175 | 178 |
|
176 | 179 |
typedef typename MatrixMap::FirstKey FirstKey; |
177 | 180 |
typedef typename MatrixMap::SecondKey SecondKey; |
178 | 181 |
typedef typename MatrixMap::Value Value; |
179 | 182 |
|
180 | 183 |
typedef Value ConstReturnValue; |
181 | 184 |
typedef Value ReturnValue; |
182 | 185 |
}; |
183 | 186 |
|
184 | 187 |
template <typename MatrixMap> |
185 | 188 |
struct MatrixMapTraits< |
186 | 189 |
MatrixMap, typename enable_if<typename MatrixMap::ReferenceMapTag, |
187 | 190 |
void>::type > |
188 | 191 |
{ |
189 | 192 |
typedef True ReferenceMapTag; |
190 | 193 |
|
191 | 194 |
typedef typename MatrixMap::FirstKey FirstKey; |
192 | 195 |
typedef typename MatrixMap::SecondKey SecondKey; |
193 | 196 |
typedef typename MatrixMap::Value Value; |
194 | 197 |
|
195 | 198 |
typedef typename MatrixMap::ConstReference ConstReturnValue; |
196 | 199 |
typedef typename MatrixMap::Reference ReturnValue; |
197 | 200 |
|
198 | 201 |
typedef typename MatrixMap::ConstReference ConstReference; |
199 | 202 |
typedef typename MatrixMap::Reference Reference; |
200 | 203 |
}; |
201 | 204 |
|
202 | 205 |
// Indicators for the tags |
203 | 206 |
|
204 | 207 |
template <typename Graph, typename Enable = void> |
205 | 208 |
struct NodeNumTagIndicator { |
206 | 209 |
static const bool value = false; |
207 | 210 |
}; |
208 | 211 |
|
209 | 212 |
template <typename Graph> |
210 | 213 |
struct NodeNumTagIndicator< |
211 | 214 |
Graph, |
212 | 215 |
typename enable_if<typename Graph::NodeNumTag, void>::type |
213 | 216 |
> { |
214 | 217 |
static const bool value = true; |
215 | 218 |
}; |
216 | 219 |
|
217 | 220 |
template <typename Graph, typename Enable = void> |
218 | 221 |
struct EdgeNumTagIndicator { |
219 | 222 |
static const bool value = false; |
220 | 223 |
}; |
221 | 224 |
|
222 | 225 |
template <typename Graph> |
223 | 226 |
struct EdgeNumTagIndicator< |
224 | 227 |
Graph, |
225 | 228 |
typename enable_if<typename Graph::EdgeNumTag, void>::type |
226 | 229 |
> { |
227 | 230 |
static const bool value = true; |
228 | 231 |
}; |
229 | 232 |
|
230 | 233 |
template <typename Graph, typename Enable = void> |
231 | 234 |
struct FindEdgeTagIndicator { |
232 | 235 |
static const bool value = false; |
233 | 236 |
}; |
234 | 237 |
|
235 | 238 |
template <typename Graph> |
236 | 239 |
struct FindEdgeTagIndicator< |
237 | 240 |
Graph, |
238 | 241 |
typename enable_if<typename Graph::FindEdgeTag, void>::type |
239 | 242 |
> { |
240 | 243 |
static const bool value = true; |
241 | 244 |
}; |
242 | 245 |
|
243 | 246 |
template <typename Graph, typename Enable = void> |
244 | 247 |
struct UndirectedTagIndicator { |
245 | 248 |
static const bool value = false; |
246 | 249 |
}; |
247 | 250 |
|
248 | 251 |
template <typename Graph> |
249 | 252 |
struct UndirectedTagIndicator< |
250 | 253 |
Graph, |
251 | 254 |
typename enable_if<typename Graph::UndirectedTag, void>::type |
252 | 255 |
> { |
253 | 256 |
static const bool value = true; |
254 | 257 |
}; |
255 | 258 |
|
256 | 259 |
template <typename Graph, typename Enable = void> |
257 | 260 |
struct BuildTagIndicator { |
258 | 261 |
static const bool value = false; |
259 | 262 |
}; |
260 | 263 |
|
261 | 264 |
template <typename Graph> |
262 | 265 |
struct BuildTagIndicator< |
263 | 266 |
Graph, |
264 | 267 |
typename enable_if<typename Graph::BuildTag, void>::type |
265 | 268 |
> { |
266 | 269 |
static const bool value = true; |
267 | 270 |
}; |
268 | 271 |
|
269 | 272 |
} |
270 | 273 |
|
271 | 274 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 |
#include <lemon/bits/traits.h> |
|
26 |
#include <lemon/bits/utility.h> |
|
27 |
|
|
25 |
#include <lemon/core.h> |
|
28 | 26 |
#include <lemon/bits/alteration_notifier.h> |
29 | 27 |
|
30 | 28 |
#include <lemon/concept_check.h> |
31 | 29 |
#include <lemon/concepts/maps.h> |
32 | 30 |
|
33 | 31 |
///\ingroup graphbits |
34 | 32 |
/// |
35 | 33 |
///\file |
36 | 34 |
///\brief Vector based graph maps. |
37 | 35 |
namespace lemon { |
38 | 36 |
|
39 | 37 |
/// \ingroup graphbits |
40 | 38 |
/// |
41 | 39 |
/// \brief Graph map based on the std::vector storage. |
42 | 40 |
/// |
43 | 41 |
/// The VectorMap template class is graph map structure what |
44 | 42 |
/// automatically updates the map when a key is added to or erased from |
45 | 43 |
/// the map. This map type uses the std::vector to store the values. |
46 | 44 |
/// |
47 | 45 |
/// \tparam _Notifier The AlterationNotifier that will notify this map. |
48 | 46 |
/// \tparam _Item The item type of the graph items. |
49 | 47 |
/// \tparam _Value The value type of the map. |
50 | 48 |
/// \todo Fix the doc: there is _Graph parameter instead of _Notifier. |
51 | 49 |
template <typename _Graph, typename _Item, typename _Value> |
52 | 50 |
class VectorMap |
53 | 51 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
54 | 52 |
private: |
55 | 53 |
|
56 | 54 |
/// The container type of the map. |
57 | 55 |
typedef std::vector<_Value> Container; |
58 | 56 |
|
59 | 57 |
public: |
60 | 58 |
|
61 | 59 |
/// The graph type of the map. |
62 | 60 |
typedef _Graph Graph; |
63 | 61 |
/// The item type of the map. |
64 | 62 |
typedef _Item Item; |
65 | 63 |
/// The reference map tag. |
66 | 64 |
typedef True ReferenceMapTag; |
67 | 65 |
|
68 | 66 |
/// The key type of the map. |
69 | 67 |
typedef _Item Key; |
70 | 68 |
/// The value type of the map. |
71 | 69 |
typedef _Value Value; |
72 | 70 |
|
73 | 71 |
/// The notifier type. |
74 | 72 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
75 | 73 |
|
76 | 74 |
/// The map type. |
77 | 75 |
typedef VectorMap Map; |
78 | 76 |
/// The base class of the map. |
79 | 77 |
typedef typename Notifier::ObserverBase Parent; |
80 | 78 |
|
81 | 79 |
/// The reference type of the map; |
82 | 80 |
typedef typename Container::reference Reference; |
83 | 81 |
/// The const reference type of the map; |
84 | 82 |
typedef typename Container::const_reference ConstReference; |
85 | 83 |
|
86 | 84 |
|
87 | 85 |
/// \brief Constructor to attach the new map into the notifier. |
88 | 86 |
/// |
89 | 87 |
/// It constructs a map and attachs it into the notifier. |
90 | 88 |
/// It adds all the items of the graph to the map. |
91 | 89 |
VectorMap(const Graph& graph) { |
92 | 90 |
Parent::attach(graph.notifier(Item())); |
93 | 91 |
container.resize(Parent::notifier()->maxId() + 1); |
94 | 92 |
} |
95 | 93 |
|
96 | 94 |
/// \brief Constructor uses given value to initialize the map. |
97 | 95 |
/// |
98 | 96 |
/// It constructs a map uses a given value to initialize the map. |
99 | 97 |
/// It adds all the items of the graph to the map. |
100 | 98 |
VectorMap(const Graph& graph, const Value& value) { |
101 | 99 |
Parent::attach(graph.notifier(Item())); |
102 | 100 |
container.resize(Parent::notifier()->maxId() + 1, value); |
103 | 101 |
} |
104 | 102 |
|
105 | 103 |
/// \brief Copy constructor |
106 | 104 |
/// |
107 | 105 |
/// Copy constructor. |
108 | 106 |
VectorMap(const VectorMap& _copy) : Parent() { |
109 | 107 |
if (_copy.attached()) { |
110 | 108 |
Parent::attach(*_copy.notifier()); |
111 | 109 |
container = _copy.container; |
112 | 110 |
} |
113 | 111 |
} |
114 | 112 |
|
115 | 113 |
/// \brief Assign operator. |
116 | 114 |
/// |
117 | 115 |
/// This operator assigns for each item in the map the |
118 | 116 |
/// value mapped to the same item in the copied map. |
119 | 117 |
/// The parameter map should be indiced with the same |
120 | 118 |
/// itemset because this assign operator does not change |
121 | 119 |
/// the container of the map. |
122 | 120 |
VectorMap& operator=(const VectorMap& cmap) { |
123 | 121 |
return operator=<VectorMap>(cmap); |
124 | 122 |
} |
125 | 123 |
|
126 | 124 |
|
127 | 125 |
/// \brief Template assign operator. |
128 | 126 |
/// |
129 | 127 |
/// The given parameter should be conform to the ReadMap |
130 | 128 |
/// concecpt and could be indiced by the current item set of |
131 | 129 |
/// the NodeMap. In this case the value for each item |
132 | 130 |
/// is assigned by the value of the given ReadMap. |
133 | 131 |
template <typename CMap> |
134 | 132 |
VectorMap& operator=(const CMap& cmap) { |
135 | 133 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
136 | 134 |
const typename Parent::Notifier* nf = Parent::notifier(); |
137 | 135 |
Item it; |
138 | 136 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
139 | 137 |
set(it, cmap[it]); |
140 | 138 |
} |
141 | 139 |
return *this; |
142 | 140 |
} |
143 | 141 |
|
144 | 142 |
public: |
145 | 143 |
|
146 | 144 |
/// \brief The subcript operator. |
147 | 145 |
/// |
148 | 146 |
/// The subscript operator. The map can be subscripted by the |
149 | 147 |
/// actual items of the graph. |
150 | 148 |
Reference operator[](const Key& key) { |
151 | 149 |
return container[Parent::notifier()->id(key)]; |
152 | 150 |
} |
153 | 151 |
|
154 | 152 |
/// \brief The const subcript operator. |
155 | 153 |
/// |
156 | 154 |
/// The const subscript operator. The map can be subscripted by the |
157 | 155 |
/// actual items of the graph. |
158 | 156 |
ConstReference operator[](const Key& key) const { |
159 | 157 |
return container[Parent::notifier()->id(key)]; |
160 | 158 |
} |
161 | 159 |
|
162 | 160 |
|
163 | 161 |
/// \brief The setter function of the map. |
164 | 162 |
/// |
165 | 163 |
/// It the same as operator[](key) = value expression. |
166 | 164 |
void set(const Key& key, const Value& value) { |
167 | 165 |
(*this)[key] = value; |
168 | 166 |
} |
169 | 167 |
|
170 | 168 |
protected: |
171 | 169 |
|
172 | 170 |
/// \brief Adds a new key to the map. |
173 | 171 |
/// |
174 | 172 |
/// It adds a new key to the map. It called by the observer notifier |
175 | 173 |
/// and it overrides the add() member function of the observer base. |
176 | 174 |
virtual void add(const Key& key) { |
177 | 175 |
int id = Parent::notifier()->id(key); |
178 | 176 |
if (id >= int(container.size())) { |
179 | 177 |
container.resize(id + 1); |
180 | 178 |
} |
181 | 179 |
} |
182 | 180 |
|
183 | 181 |
/// \brief Adds more new keys to the map. |
184 | 182 |
/// |
185 | 183 |
/// It adds more new keys to the map. It called by the observer notifier |
186 | 184 |
/// and it overrides the add() member function of the observer base. |
187 | 185 |
virtual void add(const std::vector<Key>& keys) { |
188 | 186 |
int max = container.size() - 1; |
189 | 187 |
for (int i = 0; i < int(keys.size()); ++i) { |
190 | 188 |
int id = Parent::notifier()->id(keys[i]); |
191 | 189 |
if (id >= max) { |
192 | 190 |
max = id; |
193 | 191 |
} |
194 | 192 |
} |
195 | 193 |
container.resize(max + 1); |
196 | 194 |
} |
197 | 195 |
|
198 | 196 |
/// \brief Erase a key from the map. |
199 | 197 |
/// |
200 | 198 |
/// Erase a key from the map. It called by the observer notifier |
201 | 199 |
/// and it overrides the erase() member function of the observer base. |
202 | 200 |
virtual void erase(const Key& key) { |
203 | 201 |
container[Parent::notifier()->id(key)] = Value(); |
204 | 202 |
} |
205 | 203 |
|
206 | 204 |
/// \brief Erase more keys from the map. |
207 | 205 |
/// |
208 | 206 |
/// Erase more keys from the map. It called by the observer notifier |
209 | 207 |
/// and it overrides the erase() member function of the observer base. |
210 | 208 |
virtual void erase(const std::vector<Key>& keys) { |
211 | 209 |
for (int i = 0; i < int(keys.size()); ++i) { |
212 | 210 |
container[Parent::notifier()->id(keys[i])] = Value(); |
213 | 211 |
} |
214 | 212 |
} |
215 | 213 |
|
216 | 214 |
/// \brief Buildes the map. |
217 | 215 |
/// |
218 | 216 |
/// It buildes the map. It called by the observer notifier |
219 | 217 |
/// and it overrides the build() member function of the observer base. |
220 | 218 |
virtual void build() { |
221 | 219 |
int size = Parent::notifier()->maxId() + 1; |
222 | 220 |
container.reserve(size); |
223 | 221 |
container.resize(size); |
224 | 222 |
} |
225 | 223 |
|
226 | 224 |
/// \brief Clear the map. |
227 | 225 |
/// |
228 | 226 |
/// It erase all items from the map. It called by the observer notifier |
229 | 227 |
/// and it overrides the clear() member function of the observer base. |
230 | 228 |
virtual void clear() { |
231 | 229 |
container.clear(); |
232 | 230 |
} |
233 | 231 |
|
234 | 232 |
private: |
235 | 233 |
|
236 | 234 |
Container container; |
237 | 235 |
|
238 | 236 |
}; |
239 | 237 |
|
240 | 238 |
} |
241 | 239 |
|
242 | 240 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPT_DIGRAPH_H |
20 | 20 |
#define LEMON_CONCEPT_DIGRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graph_concepts |
23 | 23 |
///\file |
24 | 24 |
///\brief The concept of directed graphs. |
25 | 25 |
|
26 |
#include <lemon/bits/invalid.h> |
|
27 |
#include <lemon/bits/utility.h> |
|
26 |
#include <lemon/core.h> |
|
28 | 27 |
#include <lemon/concepts/maps.h> |
29 | 28 |
#include <lemon/concept_check.h> |
30 | 29 |
#include <lemon/concepts/graph_components.h> |
31 | 30 |
|
32 | 31 |
namespace lemon { |
33 | 32 |
namespace concepts { |
34 | 33 |
|
35 | 34 |
/// \ingroup graph_concepts |
36 | 35 |
/// |
37 | 36 |
/// \brief Class describing the concept of directed graphs. |
38 | 37 |
/// |
39 | 38 |
/// This class describes the \ref concept "concept" of the |
40 | 39 |
/// immutable directed digraphs. |
41 | 40 |
/// |
42 | 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
43 | 42 |
/// @ref SmartDigraph may have several additional functionality. |
44 | 43 |
/// |
45 | 44 |
/// \sa concept |
46 | 45 |
class Digraph { |
47 | 46 |
private: |
48 | 47 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
49 | 48 |
|
50 | 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
51 | 50 |
/// |
52 | 51 |
Digraph(const Digraph &) {}; |
53 | 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
54 | 53 |
///\e not allowed. Use DigraphCopy() instead. |
55 | 54 |
|
56 | 55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
57 | 56 |
///\e not allowed. Use DigraphCopy() instead. |
58 | 57 |
|
59 | 58 |
void operator=(const Digraph &) {} |
60 | 59 |
public: |
61 | 60 |
///\e |
62 | 61 |
|
63 | 62 |
/// Defalult constructor. |
64 | 63 |
|
65 | 64 |
/// Defalult constructor. |
66 | 65 |
/// |
67 | 66 |
Digraph() { } |
68 | 67 |
/// Class for identifying a node of the digraph |
69 | 68 |
|
70 | 69 |
/// This class identifies a node of the digraph. It also serves |
71 | 70 |
/// as a base class of the node iterators, |
72 | 71 |
/// thus they will convert to this type. |
73 | 72 |
class Node { |
74 | 73 |
public: |
75 | 74 |
/// Default constructor |
76 | 75 |
|
77 | 76 |
/// @warning The default constructor sets the iterator |
78 | 77 |
/// to an undefined value. |
79 | 78 |
Node() { } |
80 | 79 |
/// Copy constructor. |
81 | 80 |
|
82 | 81 |
/// Copy constructor. |
83 | 82 |
/// |
84 | 83 |
Node(const Node&) { } |
85 | 84 |
|
86 | 85 |
/// Invalid constructor \& conversion. |
87 | 86 |
|
88 | 87 |
/// This constructor initializes the iterator to be invalid. |
89 | 88 |
/// \sa Invalid for more details. |
90 | 89 |
Node(Invalid) { } |
91 | 90 |
/// Equality operator |
92 | 91 |
|
93 | 92 |
/// Two iterators are equal if and only if they point to the |
94 | 93 |
/// same object or both are invalid. |
95 | 94 |
bool operator==(Node) const { return true; } |
96 | 95 |
|
97 | 96 |
/// Inequality operator |
98 | 97 |
|
99 | 98 |
/// \sa operator==(Node n) |
100 | 99 |
/// |
101 | 100 |
bool operator!=(Node) const { return true; } |
102 | 101 |
|
103 | 102 |
/// Artificial ordering operator. |
104 | 103 |
|
105 | 104 |
/// To allow the use of digraph descriptors as key type in std::map or |
106 | 105 |
/// similar associative container we require this. |
107 | 106 |
/// |
108 | 107 |
/// \note This operator only have to define some strict ordering of |
109 | 108 |
/// the items; this order has nothing to do with the iteration |
110 | 109 |
/// ordering of the items. |
111 | 110 |
bool operator<(Node) const { return false; } |
112 | 111 |
|
113 | 112 |
}; |
114 | 113 |
|
115 | 114 |
/// This iterator goes through each node. |
116 | 115 |
|
117 | 116 |
/// This iterator goes through each node. |
118 | 117 |
/// Its usage is quite simple, for example you can count the number |
119 | 118 |
/// of nodes in digraph \c g of type \c Digraph like this: |
120 | 119 |
///\code |
121 | 120 |
/// int count=0; |
122 | 121 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
123 | 122 |
///\endcode |
124 | 123 |
class NodeIt : public Node { |
125 | 124 |
public: |
126 | 125 |
/// Default constructor |
127 | 126 |
|
128 | 127 |
/// @warning The default constructor sets the iterator |
129 | 128 |
/// to an undefined value. |
130 | 129 |
NodeIt() { } |
131 | 130 |
/// Copy constructor. |
132 | 131 |
|
133 | 132 |
/// Copy constructor. |
134 | 133 |
/// |
135 | 134 |
NodeIt(const NodeIt& n) : Node(n) { } |
136 | 135 |
/// Invalid constructor \& conversion. |
137 | 136 |
|
138 | 137 |
/// Initialize the iterator to be invalid. |
139 | 138 |
/// \sa Invalid for more details. |
140 | 139 |
NodeIt(Invalid) { } |
141 | 140 |
/// Sets the iterator to the first node. |
142 | 141 |
|
143 | 142 |
/// Sets the iterator to the first node of \c g. |
144 | 143 |
/// |
145 | 144 |
NodeIt(const Digraph&) { } |
146 | 145 |
/// Node -> NodeIt conversion. |
147 | 146 |
|
148 | 147 |
/// Sets the iterator to the node of \c the digraph pointed by |
149 | 148 |
/// the trivial iterator. |
150 | 149 |
/// This feature necessitates that each time we |
151 | 150 |
/// iterate the arc-set, the iteration order is the same. |
152 | 151 |
NodeIt(const Digraph&, const Node&) { } |
153 | 152 |
/// Next node. |
154 | 153 |
|
155 | 154 |
/// Assign the iterator to the next node. |
156 | 155 |
/// |
157 | 156 |
NodeIt& operator++() { return *this; } |
158 | 157 |
}; |
159 | 158 |
|
160 | 159 |
|
161 | 160 |
/// Class for identifying an arc of the digraph |
162 | 161 |
|
163 | 162 |
/// This class identifies an arc of the digraph. It also serves |
164 | 163 |
/// as a base class of the arc iterators, |
165 | 164 |
/// thus they will convert to this type. |
166 | 165 |
class Arc { |
167 | 166 |
public: |
168 | 167 |
/// Default constructor |
169 | 168 |
|
170 | 169 |
/// @warning The default constructor sets the iterator |
171 | 170 |
/// to an undefined value. |
172 | 171 |
Arc() { } |
173 | 172 |
/// Copy constructor. |
174 | 173 |
|
175 | 174 |
/// Copy constructor. |
176 | 175 |
/// |
177 | 176 |
Arc(const Arc&) { } |
178 | 177 |
/// Initialize the iterator to be invalid. |
179 | 178 |
|
180 | 179 |
/// Initialize the iterator to be invalid. |
181 | 180 |
/// |
182 | 181 |
Arc(Invalid) { } |
183 | 182 |
/// Equality operator |
184 | 183 |
|
185 | 184 |
/// Two iterators are equal if and only if they point to the |
186 | 185 |
/// same object or both are invalid. |
187 | 186 |
bool operator==(Arc) const { return true; } |
188 | 187 |
/// Inequality operator |
189 | 188 |
|
190 | 189 |
/// \sa operator==(Arc n) |
191 | 190 |
/// |
192 | 191 |
bool operator!=(Arc) const { return true; } |
193 | 192 |
|
194 | 193 |
/// Artificial ordering operator. |
195 | 194 |
|
196 | 195 |
/// To allow the use of digraph descriptors as key type in std::map or |
197 | 196 |
/// similar associative container we require this. |
198 | 197 |
/// |
199 | 198 |
/// \note This operator only have to define some strict ordering of |
200 | 199 |
/// the items; this order has nothing to do with the iteration |
201 | 200 |
/// ordering of the items. |
202 | 201 |
bool operator<(Arc) const { return false; } |
203 | 202 |
}; |
204 | 203 |
|
205 | 204 |
/// This iterator goes trough the outgoing arcs of a node. |
206 | 205 |
|
207 | 206 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
208 | 207 |
/// of a digraph. |
209 | 208 |
/// Its usage is quite simple, for example you can count the number |
210 | 209 |
/// of outgoing arcs of a node \c n |
211 | 210 |
/// in digraph \c g of type \c Digraph as follows. |
212 | 211 |
///\code |
213 | 212 |
/// int count=0; |
214 | 213 |
/// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; |
215 | 214 |
///\endcode |
216 | 215 |
|
217 | 216 |
class OutArcIt : public Arc { |
218 | 217 |
public: |
219 | 218 |
/// Default constructor |
220 | 219 |
|
221 | 220 |
/// @warning The default constructor sets the iterator |
222 | 221 |
/// to an undefined value. |
223 | 222 |
OutArcIt() { } |
224 | 223 |
/// Copy constructor. |
225 | 224 |
|
226 | 225 |
/// Copy constructor. |
227 | 226 |
/// |
228 | 227 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
229 | 228 |
/// Initialize the iterator to be invalid. |
230 | 229 |
|
231 | 230 |
/// Initialize the iterator to be invalid. |
232 | 231 |
/// |
233 | 232 |
OutArcIt(Invalid) { } |
234 | 233 |
/// This constructor sets the iterator to the first outgoing arc. |
235 | 234 |
|
236 | 235 |
/// This constructor sets the iterator to the first outgoing arc of |
237 | 236 |
/// the node. |
238 | 237 |
OutArcIt(const Digraph&, const Node&) { } |
239 | 238 |
/// Arc -> OutArcIt conversion |
240 | 239 |
|
241 | 240 |
/// Sets the iterator to the value of the trivial iterator. |
242 | 241 |
/// This feature necessitates that each time we |
243 | 242 |
/// iterate the arc-set, the iteration order is the same. |
244 | 243 |
OutArcIt(const Digraph&, const Arc&) { } |
245 | 244 |
///Next outgoing arc |
246 | 245 |
|
247 | 246 |
/// Assign the iterator to the next |
248 | 247 |
/// outgoing arc of the corresponding node. |
249 | 248 |
OutArcIt& operator++() { return *this; } |
250 | 249 |
}; |
251 | 250 |
|
252 | 251 |
/// This iterator goes trough the incoming arcs of a node. |
253 | 252 |
|
254 | 253 |
/// This iterator goes trough the \e incoming arcs of a certain node |
255 | 254 |
/// of a digraph. |
256 | 255 |
/// Its usage is quite simple, for example you can count the number |
257 | 256 |
/// of outgoing arcs of a node \c n |
258 | 257 |
/// in digraph \c g of type \c Digraph as follows. |
259 | 258 |
///\code |
260 | 259 |
/// int count=0; |
261 | 260 |
/// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count; |
262 | 261 |
///\endcode |
263 | 262 |
|
264 | 263 |
class InArcIt : public Arc { |
265 | 264 |
public: |
266 | 265 |
/// Default constructor |
267 | 266 |
|
268 | 267 |
/// @warning The default constructor sets the iterator |
269 | 268 |
/// to an undefined value. |
270 | 269 |
InArcIt() { } |
271 | 270 |
/// Copy constructor. |
272 | 271 |
|
273 | 272 |
/// Copy constructor. |
274 | 273 |
/// |
275 | 274 |
InArcIt(const InArcIt& e) : Arc(e) { } |
276 | 275 |
/// Initialize the iterator to be invalid. |
277 | 276 |
|
278 | 277 |
/// Initialize the iterator to be invalid. |
279 | 278 |
/// |
280 | 279 |
InArcIt(Invalid) { } |
281 | 280 |
/// This constructor sets the iterator to first incoming arc. |
282 | 281 |
|
283 | 282 |
/// This constructor set the iterator to the first incoming arc of |
284 | 283 |
/// the node. |
285 | 284 |
InArcIt(const Digraph&, const Node&) { } |
286 | 285 |
/// Arc -> InArcIt conversion |
287 | 286 |
|
288 | 287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
289 | 288 |
/// This feature necessitates that each time we |
290 | 289 |
/// iterate the arc-set, the iteration order is the same. |
291 | 290 |
InArcIt(const Digraph&, const Arc&) { } |
292 | 291 |
/// Next incoming arc |
293 | 292 |
|
294 | 293 |
/// Assign the iterator to the next inarc of the corresponding node. |
295 | 294 |
/// |
296 | 295 |
InArcIt& operator++() { return *this; } |
297 | 296 |
}; |
298 | 297 |
/// This iterator goes through each arc. |
299 | 298 |
|
300 | 299 |
/// This iterator goes through each arc of a digraph. |
301 | 300 |
/// Its usage is quite simple, for example you can count the number |
302 | 301 |
/// of arcs in a digraph \c g of type \c Digraph as follows: |
303 | 302 |
///\code |
304 | 303 |
/// int count=0; |
305 | 304 |
/// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count; |
306 | 305 |
///\endcode |
307 | 306 |
class ArcIt : public Arc { |
308 | 307 |
public: |
309 | 308 |
/// Default constructor |
310 | 309 |
|
311 | 310 |
/// @warning The default constructor sets the iterator |
312 | 311 |
/// to an undefined value. |
313 | 312 |
ArcIt() { } |
314 | 313 |
/// Copy constructor. |
315 | 314 |
|
316 | 315 |
/// Copy constructor. |
317 | 316 |
/// |
318 | 317 |
ArcIt(const ArcIt& e) : Arc(e) { } |
319 | 318 |
/// Initialize the iterator to be invalid. |
320 | 319 |
|
321 | 320 |
/// Initialize the iterator to be invalid. |
322 | 321 |
/// |
323 | 322 |
ArcIt(Invalid) { } |
324 | 323 |
/// This constructor sets the iterator to the first arc. |
325 | 324 |
|
326 | 325 |
/// This constructor sets the iterator to the first arc of \c g. |
327 | 326 |
///@param g the digraph |
328 | 327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); } |
329 | 328 |
/// Arc -> ArcIt conversion |
330 | 329 |
|
331 | 330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
332 | 331 |
/// This feature necessitates that each time we |
333 | 332 |
/// iterate the arc-set, the iteration order is the same. |
334 | 333 |
ArcIt(const Digraph&, const Arc&) { } |
335 | 334 |
///Next arc |
336 | 335 |
|
337 | 336 |
/// Assign the iterator to the next arc. |
338 | 337 |
ArcIt& operator++() { return *this; } |
339 | 338 |
}; |
340 | 339 |
///Gives back the target node of an arc. |
341 | 340 |
|
342 | 341 |
///Gives back the target node of an arc. |
343 | 342 |
/// |
344 | 343 |
Node target(Arc) const { return INVALID; } |
345 | 344 |
///Gives back the source node of an arc. |
346 | 345 |
|
347 | 346 |
///Gives back the source node of an arc. |
348 | 347 |
/// |
349 | 348 |
Node source(Arc) const { return INVALID; } |
350 | 349 |
|
351 | 350 |
/// \brief Returns the ID of the node. |
352 | 351 |
int id(Node) const { return -1; } |
353 | 352 |
|
354 | 353 |
/// \brief Returns the ID of the arc. |
355 | 354 |
int id(Arc) const { return -1; } |
356 | 355 |
|
357 | 356 |
/// \brief Returns the node with the given ID. |
358 | 357 |
/// |
359 | 358 |
/// \pre The argument should be a valid node ID in the graph. |
360 | 359 |
Node nodeFromId(int) const { return INVALID; } |
361 | 360 |
|
362 | 361 |
/// \brief Returns the arc with the given ID. |
363 | 362 |
/// |
364 | 363 |
/// \pre The argument should be a valid arc ID in the graph. |
365 | 364 |
Arc arcFromId(int) const { return INVALID; } |
366 | 365 |
|
367 | 366 |
/// \brief Returns an upper bound on the node IDs. |
368 | 367 |
int maxNodeId() const { return -1; } |
369 | 368 |
|
370 | 369 |
/// \brief Returns an upper bound on the arc IDs. |
371 | 370 |
int maxArcId() const { return -1; } |
372 | 371 |
|
373 | 372 |
void first(Node&) const {} |
374 | 373 |
void next(Node&) const {} |
375 | 374 |
|
376 | 375 |
void first(Arc&) const {} |
377 | 376 |
void next(Arc&) const {} |
378 | 377 |
|
379 | 378 |
|
380 | 379 |
void firstIn(Arc&, const Node&) const {} |
381 | 380 |
void nextIn(Arc&) const {} |
382 | 381 |
|
383 | 382 |
void firstOut(Arc&, const Node&) const {} |
384 | 383 |
void nextOut(Arc&) const {} |
385 | 384 |
|
386 | 385 |
// The second parameter is dummy. |
387 | 386 |
Node fromId(int, Node) const { return INVALID; } |
388 | 387 |
// The second parameter is dummy. |
389 | 388 |
Arc fromId(int, Arc) const { return INVALID; } |
390 | 389 |
|
391 | 390 |
// Dummy parameter. |
392 | 391 |
int maxId(Node) const { return -1; } |
393 | 392 |
// Dummy parameter. |
394 | 393 |
int maxId(Arc) const { return -1; } |
395 | 394 |
|
396 | 395 |
/// \brief The base node of the iterator. |
397 | 396 |
/// |
398 | 397 |
/// Gives back the base node of the iterator. |
399 | 398 |
/// It is always the target of the pointed arc. |
400 | 399 |
Node baseNode(const InArcIt&) const { return INVALID; } |
401 | 400 |
|
402 | 401 |
/// \brief The running node of the iterator. |
403 | 402 |
/// |
404 | 403 |
/// Gives back the running node of the iterator. |
405 | 404 |
/// It is always the source of the pointed arc. |
406 | 405 |
Node runningNode(const InArcIt&) const { return INVALID; } |
407 | 406 |
|
408 | 407 |
/// \brief The base node of the iterator. |
409 | 408 |
/// |
410 | 409 |
/// Gives back the base node of the iterator. |
411 | 410 |
/// It is always the source of the pointed arc. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of Undirected Graphs. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPT_GRAPH_H |
24 | 24 |
#define LEMON_CONCEPT_GRAPH_H |
25 | 25 |
|
26 | 26 |
#include <lemon/concepts/graph_components.h> |
27 | 27 |
#include <lemon/concepts/graph.h> |
28 |
#include <lemon/ |
|
28 |
#include <lemon/core.h> |
|
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \ingroup graph_concepts |
34 | 34 |
/// |
35 | 35 |
/// \brief Class describing the concept of Undirected Graphs. |
36 | 36 |
/// |
37 | 37 |
/// This class describes the common interface of all Undirected |
38 | 38 |
/// Graphs. |
39 | 39 |
/// |
40 | 40 |
/// As all concept describing classes it provides only interface |
41 | 41 |
/// without any sensible implementation. So any algorithm for |
42 | 42 |
/// undirected graph should compile with this class, but it will not |
43 | 43 |
/// run properly, of course. |
44 | 44 |
/// |
45 | 45 |
/// The LEMON undirected graphs also fulfill the concept of |
46 | 46 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
47 | 47 |
/// Concept"). Each edges can be seen as two opposite |
48 | 48 |
/// directed arc and consequently the undirected graph can be |
49 | 49 |
/// seen as the direceted graph of these directed arcs. The |
50 | 50 |
/// Graph has the Edge inner class for the edges and |
51 | 51 |
/// the Arc type for the directed arcs. The Arc type is |
52 | 52 |
/// convertible to Edge or inherited from it so from a directed |
53 | 53 |
/// arc we can get the represented edge. |
54 | 54 |
/// |
55 | 55 |
/// In the sense of the LEMON each edge has a default |
56 | 56 |
/// direction (it should be in every computer implementation, |
57 | 57 |
/// because the order of edge's nodes defines an |
58 | 58 |
/// orientation). With the default orientation we can define that |
59 | 59 |
/// the directed arc is forward or backward directed. With the \c |
60 | 60 |
/// direction() and \c direct() function we can get the direction |
61 | 61 |
/// of the directed arc and we can direct an edge. |
62 | 62 |
/// |
63 | 63 |
/// The EdgeIt is an iterator for the edges. We can use |
64 | 64 |
/// the EdgeMap to map values for the edges. The InArcIt and |
65 | 65 |
/// OutArcIt iterates on the same edges but with opposite |
66 | 66 |
/// direction. The IncEdgeIt iterates also on the same edges |
67 | 67 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
68 | 68 |
/// to Edge. |
69 | 69 |
class Graph { |
70 | 70 |
public: |
71 | 71 |
/// \brief The undirected graph should be tagged by the |
72 | 72 |
/// UndirectedTag. |
73 | 73 |
/// |
74 | 74 |
/// The undirected graph should be tagged by the UndirectedTag. This |
75 | 75 |
/// tag helps the enable_if technics to make compile time |
76 | 76 |
/// specializations for undirected graphs. |
77 | 77 |
typedef True UndirectedTag; |
78 | 78 |
|
79 | 79 |
/// \brief The base type of node iterators, |
80 | 80 |
/// or in other words, the trivial node iterator. |
81 | 81 |
/// |
82 | 82 |
/// This is the base type of each node iterator, |
83 | 83 |
/// thus each kind of node iterator converts to this. |
84 | 84 |
/// More precisely each kind of node iterator should be inherited |
85 | 85 |
/// from the trivial node iterator. |
86 | 86 |
class Node { |
87 | 87 |
public: |
88 | 88 |
/// Default constructor |
89 | 89 |
|
90 | 90 |
/// @warning The default constructor sets the iterator |
91 | 91 |
/// to an undefined value. |
92 | 92 |
Node() { } |
93 | 93 |
/// Copy constructor. |
94 | 94 |
|
95 | 95 |
/// Copy constructor. |
96 | 96 |
/// |
97 | 97 |
Node(const Node&) { } |
98 | 98 |
|
99 | 99 |
/// Invalid constructor \& conversion. |
100 | 100 |
|
101 | 101 |
/// This constructor initializes the iterator to be invalid. |
102 | 102 |
/// \sa Invalid for more details. |
103 | 103 |
Node(Invalid) { } |
104 | 104 |
/// Equality operator |
105 | 105 |
|
106 | 106 |
/// Two iterators are equal if and only if they point to the |
107 | 107 |
/// same object or both are invalid. |
108 | 108 |
bool operator==(Node) const { return true; } |
109 | 109 |
|
110 | 110 |
/// Inequality operator |
111 | 111 |
|
112 | 112 |
/// \sa operator==(Node n) |
113 | 113 |
/// |
114 | 114 |
bool operator!=(Node) const { return true; } |
115 | 115 |
|
116 | 116 |
/// Artificial ordering operator. |
117 | 117 |
|
118 | 118 |
/// To allow the use of graph descriptors as key type in std::map or |
119 | 119 |
/// similar associative container we require this. |
120 | 120 |
/// |
121 | 121 |
/// \note This operator only have to define some strict ordering of |
122 | 122 |
/// the items; this order has nothing to do with the iteration |
123 | 123 |
/// ordering of the items. |
124 | 124 |
bool operator<(Node) const { return false; } |
125 | 125 |
|
126 | 126 |
}; |
127 | 127 |
|
128 | 128 |
/// This iterator goes through each node. |
129 | 129 |
|
130 | 130 |
/// This iterator goes through each node. |
131 | 131 |
/// Its usage is quite simple, for example you can count the number |
132 | 132 |
/// of nodes in graph \c g of type \c Graph like this: |
133 | 133 |
///\code |
134 | 134 |
/// int count=0; |
135 | 135 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
136 | 136 |
///\endcode |
137 | 137 |
class NodeIt : public Node { |
138 | 138 |
public: |
139 | 139 |
/// Default constructor |
140 | 140 |
|
141 | 141 |
/// @warning The default constructor sets the iterator |
142 | 142 |
/// to an undefined value. |
143 | 143 |
NodeIt() { } |
144 | 144 |
/// Copy constructor. |
145 | 145 |
|
146 | 146 |
/// Copy constructor. |
147 | 147 |
/// |
148 | 148 |
NodeIt(const NodeIt& n) : Node(n) { } |
149 | 149 |
/// Invalid constructor \& conversion. |
150 | 150 |
|
151 | 151 |
/// Initialize the iterator to be invalid. |
152 | 152 |
/// \sa Invalid for more details. |
153 | 153 |
NodeIt(Invalid) { } |
154 | 154 |
/// Sets the iterator to the first node. |
155 | 155 |
|
156 | 156 |
/// Sets the iterator to the first node of \c g. |
157 | 157 |
/// |
158 | 158 |
NodeIt(const Graph&) { } |
159 | 159 |
/// Node -> NodeIt conversion. |
160 | 160 |
|
161 | 161 |
/// Sets the iterator to the node of \c the graph pointed by |
162 | 162 |
/// the trivial iterator. |
163 | 163 |
/// This feature necessitates that each time we |
164 | 164 |
/// iterate the arc-set, the iteration order is the same. |
165 | 165 |
NodeIt(const Graph&, const Node&) { } |
166 | 166 |
/// Next node. |
167 | 167 |
|
168 | 168 |
/// Assign the iterator to the next node. |
169 | 169 |
/// |
170 | 170 |
NodeIt& operator++() { return *this; } |
171 | 171 |
}; |
172 | 172 |
|
173 | 173 |
|
174 | 174 |
/// The base type of the edge iterators. |
175 | 175 |
|
176 | 176 |
/// The base type of the edge iterators. |
177 | 177 |
/// |
178 | 178 |
class Edge { |
179 | 179 |
public: |
180 | 180 |
/// Default constructor |
181 | 181 |
|
182 | 182 |
/// @warning The default constructor sets the iterator |
183 | 183 |
/// to an undefined value. |
184 | 184 |
Edge() { } |
185 | 185 |
/// Copy constructor. |
186 | 186 |
|
187 | 187 |
/// Copy constructor. |
188 | 188 |
/// |
189 | 189 |
Edge(const Edge&) { } |
190 | 190 |
/// Initialize the iterator to be invalid. |
191 | 191 |
|
192 | 192 |
/// Initialize the iterator to be invalid. |
193 | 193 |
/// |
194 | 194 |
Edge(Invalid) { } |
195 | 195 |
/// Equality operator |
196 | 196 |
|
197 | 197 |
/// Two iterators are equal if and only if they point to the |
198 | 198 |
/// same object or both are invalid. |
199 | 199 |
bool operator==(Edge) const { return true; } |
200 | 200 |
/// Inequality operator |
201 | 201 |
|
202 | 202 |
/// \sa operator==(Edge n) |
203 | 203 |
/// |
204 | 204 |
bool operator!=(Edge) const { return true; } |
205 | 205 |
|
206 | 206 |
/// Artificial ordering operator. |
207 | 207 |
|
208 | 208 |
/// To allow the use of graph descriptors as key type in std::map or |
209 | 209 |
/// similar associative container we require this. |
210 | 210 |
/// |
211 | 211 |
/// \note This operator only have to define some strict ordering of |
212 | 212 |
/// the items; this order has nothing to do with the iteration |
213 | 213 |
/// ordering of the items. |
214 | 214 |
bool operator<(Edge) const { return false; } |
215 | 215 |
}; |
216 | 216 |
|
217 | 217 |
/// This iterator goes through each edge. |
218 | 218 |
|
219 | 219 |
/// This iterator goes through each edge of a graph. |
220 | 220 |
/// Its usage is quite simple, for example you can count the number |
221 | 221 |
/// of edges in a graph \c g of type \c Graph as follows: |
222 | 222 |
///\code |
223 | 223 |
/// int count=0; |
224 | 224 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
225 | 225 |
///\endcode |
226 | 226 |
class EdgeIt : public Edge { |
227 | 227 |
public: |
228 | 228 |
/// Default constructor |
229 | 229 |
|
230 | 230 |
/// @warning The default constructor sets the iterator |
231 | 231 |
/// to an undefined value. |
232 | 232 |
EdgeIt() { } |
233 | 233 |
/// Copy constructor. |
234 | 234 |
|
235 | 235 |
/// Copy constructor. |
236 | 236 |
/// |
237 | 237 |
EdgeIt(const EdgeIt& e) : Edge(e) { } |
238 | 238 |
/// Initialize the iterator to be invalid. |
239 | 239 |
|
240 | 240 |
/// Initialize the iterator to be invalid. |
241 | 241 |
/// |
242 | 242 |
EdgeIt(Invalid) { } |
243 | 243 |
/// This constructor sets the iterator to the first edge. |
244 | 244 |
|
245 | 245 |
/// This constructor sets the iterator to the first edge. |
246 | 246 |
EdgeIt(const Graph&) { } |
247 | 247 |
/// Edge -> EdgeIt conversion |
248 | 248 |
|
249 | 249 |
/// Sets the iterator to the value of the trivial iterator. |
250 | 250 |
/// This feature necessitates that each time we |
251 | 251 |
/// iterate the edge-set, the iteration order is the |
252 | 252 |
/// same. |
253 | 253 |
EdgeIt(const Graph&, const Edge&) { } |
254 | 254 |
/// Next edge |
255 | 255 |
|
256 | 256 |
/// Assign the iterator to the next edge. |
257 | 257 |
EdgeIt& operator++() { return *this; } |
258 | 258 |
}; |
259 | 259 |
|
260 | 260 |
/// \brief This iterator goes trough the incident undirected |
261 | 261 |
/// arcs of a node. |
262 | 262 |
/// |
263 | 263 |
/// This iterator goes trough the incident edges |
264 | 264 |
/// of a certain node of a graph. You should assume that the |
265 | 265 |
/// loop arcs will be iterated twice. |
266 | 266 |
/// |
267 | 267 |
/// Its usage is quite simple, for example you can compute the |
268 | 268 |
/// degree (i.e. count the number of incident arcs of a node \c n |
269 | 269 |
/// in graph \c g of type \c Graph as follows. |
270 | 270 |
/// |
271 | 271 |
///\code |
272 | 272 |
/// int count=0; |
273 | 273 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
274 | 274 |
///\endcode |
275 | 275 |
class IncEdgeIt : public Edge { |
276 | 276 |
public: |
277 | 277 |
/// Default constructor |
278 | 278 |
|
279 | 279 |
/// @warning The default constructor sets the iterator |
280 | 280 |
/// to an undefined value. |
281 | 281 |
IncEdgeIt() { } |
282 | 282 |
/// Copy constructor. |
283 | 283 |
|
284 | 284 |
/// Copy constructor. |
285 | 285 |
/// |
286 | 286 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } |
287 | 287 |
/// Initialize the iterator to be invalid. |
288 | 288 |
|
289 | 289 |
/// Initialize the iterator to be invalid. |
290 | 290 |
/// |
291 | 291 |
IncEdgeIt(Invalid) { } |
292 | 292 |
/// This constructor sets the iterator to first incident arc. |
293 | 293 |
|
294 | 294 |
/// This constructor set the iterator to the first incident arc of |
295 | 295 |
/// the node. |
296 | 296 |
IncEdgeIt(const Graph&, const Node&) { } |
297 | 297 |
/// Edge -> IncEdgeIt conversion |
298 | 298 |
|
299 | 299 |
/// Sets the iterator to the value of the trivial iterator \c e. |
300 | 300 |
/// This feature necessitates that each time we |
301 | 301 |
/// iterate the arc-set, the iteration order is the same. |
302 | 302 |
IncEdgeIt(const Graph&, const Edge&) { } |
303 | 303 |
/// Next incident arc |
304 | 304 |
|
305 | 305 |
/// Assign the iterator to the next incident arc |
306 | 306 |
/// of the corresponding node. |
307 | 307 |
IncEdgeIt& operator++() { return *this; } |
308 | 308 |
}; |
309 | 309 |
|
310 | 310 |
/// The directed arc type. |
311 | 311 |
|
312 | 312 |
/// The directed arc type. It can be converted to the |
313 | 313 |
/// edge or it should be inherited from the undirected |
314 | 314 |
/// arc. |
315 | 315 |
class Arc : public Edge { |
316 | 316 |
public: |
317 | 317 |
/// Default constructor |
318 | 318 |
|
319 | 319 |
/// @warning The default constructor sets the iterator |
320 | 320 |
/// to an undefined value. |
321 | 321 |
Arc() { } |
322 | 322 |
/// Copy constructor. |
323 | 323 |
|
324 | 324 |
/// Copy constructor. |
325 | 325 |
/// |
326 | 326 |
Arc(const Arc& e) : Edge(e) { } |
327 | 327 |
/// Initialize the iterator to be invalid. |
328 | 328 |
|
329 | 329 |
/// Initialize the iterator to be invalid. |
330 | 330 |
/// |
331 | 331 |
Arc(Invalid) { } |
332 | 332 |
/// Equality operator |
333 | 333 |
|
334 | 334 |
/// Two iterators are equal if and only if they point to the |
335 | 335 |
/// same object or both are invalid. |
336 | 336 |
bool operator==(Arc) const { return true; } |
337 | 337 |
/// Inequality operator |
338 | 338 |
|
339 | 339 |
/// \sa operator==(Arc n) |
340 | 340 |
/// |
341 | 341 |
bool operator!=(Arc) const { return true; } |
342 | 342 |
|
343 | 343 |
/// Artificial ordering operator. |
344 | 344 |
|
345 | 345 |
/// To allow the use of graph descriptors as key type in std::map or |
346 | 346 |
/// similar associative container we require this. |
347 | 347 |
/// |
348 | 348 |
/// \note This operator only have to define some strict ordering of |
349 | 349 |
/// the items; this order has nothing to do with the iteration |
350 | 350 |
/// ordering of the items. |
351 | 351 |
bool operator<(Arc) const { return false; } |
352 | 352 |
|
353 | 353 |
}; |
354 | 354 |
/// This iterator goes through each directed arc. |
355 | 355 |
|
356 | 356 |
/// This iterator goes through each arc of a graph. |
357 | 357 |
/// Its usage is quite simple, for example you can count the number |
358 | 358 |
/// of arcs in a graph \c g of type \c Graph as follows: |
359 | 359 |
///\code |
360 | 360 |
/// int count=0; |
361 | 361 |
/// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count; |
362 | 362 |
///\endcode |
363 | 363 |
class ArcIt : public Arc { |
364 | 364 |
public: |
365 | 365 |
/// Default constructor |
366 | 366 |
|
367 | 367 |
/// @warning The default constructor sets the iterator |
368 | 368 |
/// to an undefined value. |
369 | 369 |
ArcIt() { } |
370 | 370 |
/// Copy constructor. |
371 | 371 |
|
372 | 372 |
/// Copy constructor. |
373 | 373 |
/// |
374 | 374 |
ArcIt(const ArcIt& e) : Arc(e) { } |
375 | 375 |
/// Initialize the iterator to be invalid. |
376 | 376 |
|
377 | 377 |
/// Initialize the iterator to be invalid. |
378 | 378 |
/// |
379 | 379 |
ArcIt(Invalid) { } |
380 | 380 |
/// This constructor sets the iterator to the first arc. |
381 | 381 |
|
382 | 382 |
/// This constructor sets the iterator to the first arc of \c g. |
383 | 383 |
///@param g the graph |
384 | 384 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } |
385 | 385 |
/// Arc -> ArcIt conversion |
386 | 386 |
|
387 | 387 |
/// Sets the iterator to the value of the trivial iterator \c e. |
388 | 388 |
/// This feature necessitates that each time we |
389 | 389 |
/// iterate the arc-set, the iteration order is the same. |
390 | 390 |
ArcIt(const Graph&, const Arc&) { } |
391 | 391 |
///Next arc |
392 | 392 |
|
393 | 393 |
/// Assign the iterator to the next arc. |
394 | 394 |
ArcIt& operator++() { return *this; } |
395 | 395 |
}; |
396 | 396 |
|
397 | 397 |
/// This iterator goes trough the outgoing directed arcs of a node. |
398 | 398 |
|
399 | 399 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
400 | 400 |
/// of a graph. |
401 | 401 |
/// Its usage is quite simple, for example you can count the number |
402 | 402 |
/// of outgoing arcs of a node \c n |
403 | 403 |
/// in graph \c g of type \c Graph as follows. |
404 | 404 |
///\code |
405 | 405 |
/// int count=0; |
406 | 406 |
/// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; |
407 | 407 |
///\endcode |
408 | 408 |
|
409 | 409 |
class OutArcIt : public Arc { |
410 | 410 |
public: |
411 | 411 |
/// Default constructor |
412 | 412 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of graph components. |
22 | 22 |
|
23 | 23 |
|
24 | 24 |
#ifndef LEMON_CONCEPT_GRAPH_COMPONENTS_H |
25 | 25 |
#define LEMON_CONCEPT_GRAPH_COMPONENTS_H |
26 | 26 |
|
27 |
#include <lemon/ |
|
27 |
#include <lemon/core.h> |
|
28 | 28 |
#include <lemon/concepts/maps.h> |
29 | 29 |
|
30 | 30 |
#include <lemon/bits/alteration_notifier.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
namespace concepts { |
34 | 34 |
|
35 | 35 |
/// \brief Skeleton class for graph Node and Arc types |
36 | 36 |
/// |
37 | 37 |
/// This class describes the interface of Node and Arc (and Edge |
38 | 38 |
/// in undirected graphs) subtypes of graph types. |
39 | 39 |
/// |
40 | 40 |
/// \note This class is a template class so that we can use it to |
41 | 41 |
/// create graph skeleton classes. The reason for this is than Node |
42 | 42 |
/// and Arc types should \em not derive from the same base class. |
43 | 43 |
/// For Node you should instantiate it with character 'n' and for Arc |
44 | 44 |
/// with 'a'. |
45 | 45 |
|
46 | 46 |
#ifndef DOXYGEN |
47 | 47 |
template <char _selector = '0'> |
48 | 48 |
#endif |
49 | 49 |
class GraphItem { |
50 | 50 |
public: |
51 | 51 |
/// \brief Default constructor. |
52 | 52 |
/// |
53 | 53 |
/// \warning The default constructor is not required to set |
54 | 54 |
/// the item to some well-defined value. So you should consider it |
55 | 55 |
/// as uninitialized. |
56 | 56 |
GraphItem() {} |
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
/// |
61 | 61 |
GraphItem(const GraphItem &) {} |
62 | 62 |
/// \brief Invalid constructor \& conversion. |
63 | 63 |
/// |
64 | 64 |
/// This constructor initializes the item to be invalid. |
65 | 65 |
/// \sa Invalid for more details. |
66 | 66 |
GraphItem(Invalid) {} |
67 | 67 |
/// \brief Assign operator for nodes. |
68 | 68 |
/// |
69 | 69 |
/// The nodes are assignable. |
70 | 70 |
/// |
71 | 71 |
GraphItem& operator=(GraphItem const&) { return *this; } |
72 | 72 |
/// \brief Equality operator. |
73 | 73 |
/// |
74 | 74 |
/// Two iterators are equal if and only if they represents the |
75 | 75 |
/// same node in the graph or both are invalid. |
76 | 76 |
bool operator==(GraphItem) const { return false; } |
77 | 77 |
/// \brief Inequality operator. |
78 | 78 |
/// |
79 | 79 |
/// \sa operator==(const Node& n) |
80 | 80 |
/// |
81 | 81 |
bool operator!=(GraphItem) const { return false; } |
82 | 82 |
|
83 | 83 |
/// \brief Artificial ordering operator. |
84 | 84 |
/// |
85 | 85 |
/// To allow the use of graph descriptors as key type in std::map or |
86 | 86 |
/// similar associative container we require this. |
87 | 87 |
/// |
88 | 88 |
/// \note This operator only have to define some strict ordering of |
89 | 89 |
/// the items; this order has nothing to do with the iteration |
90 | 90 |
/// ordering of the items. |
91 | 91 |
bool operator<(GraphItem) const { return false; } |
92 | 92 |
|
93 | 93 |
template<typename _GraphItem> |
94 | 94 |
struct Constraints { |
95 | 95 |
void constraints() { |
96 | 96 |
_GraphItem i1; |
97 | 97 |
_GraphItem i2 = i1; |
98 | 98 |
_GraphItem i3 = INVALID; |
99 | 99 |
|
100 | 100 |
i1 = i2 = i3; |
101 | 101 |
|
102 | 102 |
bool b; |
103 | 103 |
// b = (ia == ib) && (ia != ib) && (ia < ib); |
104 | 104 |
b = (ia == ib) && (ia != ib); |
105 | 105 |
b = (ia == INVALID) && (ib != INVALID); |
106 | 106 |
b = (ia < ib); |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
const _GraphItem &ia; |
110 | 110 |
const _GraphItem &ib; |
111 | 111 |
}; |
112 | 112 |
}; |
113 | 113 |
|
114 | 114 |
/// \brief An empty base directed graph class. |
115 | 115 |
/// |
116 | 116 |
/// This class provides the minimal set of features needed for a |
117 | 117 |
/// directed graph structure. All digraph concepts have to be |
118 | 118 |
/// conform to this base directed graph. It just provides types |
119 | 119 |
/// for nodes and arcs and functions to get the source and the |
120 | 120 |
/// target of the arcs. |
121 | 121 |
class BaseDigraphComponent { |
122 | 122 |
public: |
123 | 123 |
|
124 | 124 |
typedef BaseDigraphComponent Digraph; |
125 | 125 |
|
126 | 126 |
/// \brief Node class of the digraph. |
127 | 127 |
/// |
128 | 128 |
/// This class represents the Nodes of the digraph. |
129 | 129 |
/// |
130 | 130 |
typedef GraphItem<'n'> Node; |
131 | 131 |
|
132 | 132 |
/// \brief Arc class of the digraph. |
133 | 133 |
/// |
134 | 134 |
/// This class represents the Arcs of the digraph. |
135 | 135 |
/// |
136 | 136 |
typedef GraphItem<'e'> Arc; |
137 | 137 |
|
138 | 138 |
/// \brief Gives back the target node of an arc. |
139 | 139 |
/// |
140 | 140 |
/// Gives back the target node of an arc. |
141 | 141 |
/// |
142 | 142 |
Node target(const Arc&) const { return INVALID;} |
143 | 143 |
|
144 | 144 |
/// \brief Gives back the source node of an arc. |
145 | 145 |
/// |
146 | 146 |
/// Gives back the source node of an arc. |
147 | 147 |
/// |
148 | 148 |
Node source(const Arc&) const { return INVALID;} |
149 | 149 |
|
150 | 150 |
/// \brief Gives back the opposite node on the given arc. |
151 | 151 |
/// |
152 | 152 |
/// Gives back the opposite node on the given arc. |
153 | 153 |
Node oppositeNode(const Node&, const Arc&) const { |
154 | 154 |
return INVALID; |
155 | 155 |
} |
156 | 156 |
|
157 | 157 |
template <typename _Digraph> |
158 | 158 |
struct Constraints { |
159 | 159 |
typedef typename _Digraph::Node Node; |
160 | 160 |
typedef typename _Digraph::Arc Arc; |
161 | 161 |
|
162 | 162 |
void constraints() { |
163 | 163 |
checkConcept<GraphItem<'n'>, Node>(); |
164 | 164 |
checkConcept<GraphItem<'a'>, Arc>(); |
165 | 165 |
{ |
166 | 166 |
Node n; |
167 | 167 |
Arc e(INVALID); |
168 | 168 |
n = digraph.source(e); |
169 | 169 |
n = digraph.target(e); |
170 | 170 |
n = digraph.oppositeNode(n, e); |
171 | 171 |
} |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
const _Digraph& digraph; |
175 | 175 |
}; |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
/// \brief An empty base undirected graph class. |
179 | 179 |
/// |
180 | 180 |
/// This class provides the minimal set of features needed for an |
181 | 181 |
/// undirected graph structure. All undirected graph concepts have |
182 | 182 |
/// to be conform to this base graph. It just provides types for |
183 | 183 |
/// nodes, arcs and edges and functions to get the |
184 | 184 |
/// source and the target of the arcs and edges, |
185 | 185 |
/// conversion from arcs to edges and function to get |
186 | 186 |
/// both direction of the edges. |
187 | 187 |
class BaseGraphComponent : public BaseDigraphComponent { |
188 | 188 |
public: |
189 | 189 |
typedef BaseDigraphComponent::Node Node; |
190 | 190 |
typedef BaseDigraphComponent::Arc Arc; |
191 | 191 |
/// \brief Undirected arc class of the graph. |
192 | 192 |
/// |
193 | 193 |
/// This class represents the edges of the graph. |
194 | 194 |
/// The undirected graphs can be used as a directed graph which |
195 | 195 |
/// for each arc contains the opposite arc too so the graph is |
196 | 196 |
/// bidirected. The edge represents two opposite |
197 | 197 |
/// directed arcs. |
198 | 198 |
class Edge : public GraphItem<'u'> { |
199 | 199 |
public: |
200 | 200 |
typedef GraphItem<'u'> Parent; |
201 | 201 |
/// \brief Default constructor. |
202 | 202 |
/// |
203 | 203 |
/// \warning The default constructor is not required to set |
204 | 204 |
/// the item to some well-defined value. So you should consider it |
205 | 205 |
/// as uninitialized. |
206 | 206 |
Edge() {} |
207 | 207 |
/// \brief Copy constructor. |
208 | 208 |
/// |
209 | 209 |
/// Copy constructor. |
210 | 210 |
/// |
211 | 211 |
Edge(const Edge &) : Parent() {} |
212 | 212 |
/// \brief Invalid constructor \& conversion. |
213 | 213 |
/// |
214 | 214 |
/// This constructor initializes the item to be invalid. |
215 | 215 |
/// \sa Invalid for more details. |
216 | 216 |
Edge(Invalid) {} |
217 | 217 |
/// \brief Converter from arc to edge. |
218 | 218 |
/// |
219 | 219 |
/// Besides the core graph item functionality each arc should |
220 | 220 |
/// be convertible to the represented edge. |
221 | 221 |
Edge(const Arc&) {} |
222 | 222 |
/// \brief Assign arc to edge. |
223 | 223 |
/// |
224 | 224 |
/// Besides the core graph item functionality each arc should |
225 | 225 |
/// be convertible to the represented edge. |
226 | 226 |
Edge& operator=(const Arc&) { return *this; } |
227 | 227 |
}; |
228 | 228 |
|
229 | 229 |
/// \brief Returns the direction of the arc. |
230 | 230 |
/// |
231 | 231 |
/// Returns the direction of the arc. Each arc represents an |
232 | 232 |
/// edge with a direction. It gives back the |
233 | 233 |
/// direction. |
234 | 234 |
bool direction(const Arc&) const { return true; } |
235 | 235 |
|
236 | 236 |
/// \brief Returns the directed arc. |
237 | 237 |
/// |
238 | 238 |
/// Returns the directed arc from its direction and the |
239 | 239 |
/// represented edge. |
240 | 240 |
Arc direct(const Edge&, bool) const { return INVALID;} |
241 | 241 |
|
242 | 242 |
/// \brief Returns the directed arc. |
243 | 243 |
/// |
244 | 244 |
/// Returns the directed arc from its source and the |
245 | 245 |
/// represented edge. |
246 | 246 |
Arc direct(const Edge&, const Node&) const { return INVALID;} |
247 | 247 |
|
248 | 248 |
/// \brief Returns the opposite arc. |
249 | 249 |
/// |
250 | 250 |
/// Returns the opposite arc. It is the arc representing the |
251 | 251 |
/// same edge and has opposite direction. |
252 | 252 |
Arc oppositeArc(const Arc&) const { return INVALID;} |
253 | 253 |
|
254 | 254 |
/// \brief Gives back one ending of an edge. |
255 | 255 |
/// |
256 | 256 |
/// Gives back one ending of an edge. |
257 | 257 |
Node u(const Edge&) const { return INVALID;} |
258 | 258 |
|
259 | 259 |
/// \brief Gives back the other ending of an edge. |
260 | 260 |
/// |
261 | 261 |
/// Gives back the other ending of an edge. |
262 | 262 |
Node v(const Edge&) const { return INVALID;} |
263 | 263 |
|
264 | 264 |
template <typename _Graph> |
265 | 265 |
struct Constraints { |
266 | 266 |
typedef typename _Graph::Node Node; |
267 | 267 |
typedef typename _Graph::Arc Arc; |
268 | 268 |
typedef typename _Graph::Edge Edge; |
269 | 269 |
|
270 | 270 |
void constraints() { |
271 | 271 |
checkConcept<BaseDigraphComponent, _Graph>(); |
272 | 272 |
checkConcept<GraphItem<'u'>, Edge>(); |
273 | 273 |
{ |
274 | 274 |
Node n; |
275 | 275 |
Edge ue(INVALID); |
276 | 276 |
Arc e; |
277 | 277 |
n = graph.u(ue); |
278 | 278 |
n = graph.v(ue); |
279 | 279 |
e = graph.direct(ue, true); |
280 | 280 |
e = graph.direct(ue, n); |
281 | 281 |
e = graph.oppositeArc(e); |
282 | 282 |
ue = e; |
283 | 283 |
bool d = graph.direction(e); |
284 | 284 |
ignore_unused_variable_warning(d); |
285 | 285 |
} |
286 | 286 |
} |
287 | 287 |
|
288 | 288 |
const _Graph& graph; |
289 | 289 |
}; |
290 | 290 |
|
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
/// \brief An empty idable base digraph class. |
294 | 294 |
/// |
295 | 295 |
/// This class provides beside the core digraph features |
296 | 296 |
/// core id functions for the digraph structure. |
297 | 297 |
/// The most of the base digraphs should be conform to this concept. |
298 | 298 |
/// The id's are unique and immutable. |
299 | 299 |
template <typename _Base = BaseDigraphComponent> |
300 | 300 |
class IDableDigraphComponent : public _Base { |
301 | 301 |
public: |
302 | 302 |
|
303 | 303 |
typedef _Base Base; |
304 | 304 |
typedef typename Base::Node Node; |
305 | 305 |
typedef typename Base::Arc Arc; |
306 | 306 |
|
307 | 307 |
/// \brief Gives back an unique integer id for the Node. |
308 | 308 |
/// |
309 | 309 |
/// Gives back an unique integer id for the Node. |
310 | 310 |
/// |
311 | 311 |
int id(const Node&) const { return -1;} |
312 | 312 |
|
313 | 313 |
/// \brief Gives back the node by the unique id. |
314 | 314 |
/// |
315 | 315 |
/// Gives back the node by the unique id. |
316 | 316 |
/// If the digraph does not contain node with the given id |
317 | 317 |
/// then the result of the function is undetermined. |
318 | 318 |
Node nodeFromId(int) const { return INVALID;} |
319 | 319 |
|
320 | 320 |
/// \brief Gives back an unique integer id for the Arc. |
321 | 321 |
/// |
322 | 322 |
/// Gives back an unique integer id for the Arc. |
323 | 323 |
/// |
324 | 324 |
int id(const Arc&) const { return -1;} |
325 | 325 |
|
326 | 326 |
/// \brief Gives back the arc by the unique id. |
327 | 327 |
/// |
328 | 328 |
/// Gives back the arc by the unique id. |
329 | 329 |
/// If the digraph does not contain arc with the given id |
330 | 330 |
/// then the result of the function is undetermined. |
331 | 331 |
Arc arcFromId(int) const { return INVALID;} |
332 | 332 |
|
333 | 333 |
/// \brief Gives back an integer greater or equal to the maximum |
334 | 334 |
/// Node id. |
335 | 335 |
/// |
336 | 336 |
/// Gives back an integer greater or equal to the maximum Node |
337 | 337 |
/// id. |
338 | 338 |
int maxNodeId() const { return -1;} |
339 | 339 |
|
340 | 340 |
/// \brief Gives back an integer greater or equal to the maximum |
341 | 341 |
/// Arc id. |
342 | 342 |
/// |
343 | 343 |
/// Gives back an integer greater or equal to the maximum Arc |
344 | 344 |
/// id. |
345 | 345 |
int maxArcId() const { return -1;} |
346 | 346 |
|
347 | 347 |
template <typename _Digraph> |
348 | 348 |
struct Constraints { |
349 | 349 |
|
350 | 350 |
void constraints() { |
351 | 351 |
checkConcept<Base, _Digraph >(); |
352 | 352 |
typename _Digraph::Node node; |
353 | 353 |
int nid = digraph.id(node); |
354 | 354 |
nid = digraph.id(node); |
355 | 355 |
node = digraph.nodeFromId(nid); |
356 | 356 |
typename _Digraph::Arc arc; |
357 | 357 |
int eid = digraph.id(arc); |
358 | 358 |
eid = digraph.id(arc); |
359 | 359 |
arc = digraph.arcFromId(eid); |
360 | 360 |
|
361 | 361 |
nid = digraph.maxNodeId(); |
362 | 362 |
ignore_unused_variable_warning(nid); |
363 | 363 |
eid = digraph.maxArcId(); |
364 | 364 |
ignore_unused_variable_warning(eid); |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
const _Digraph& digraph; |
368 | 368 |
}; |
369 | 369 |
}; |
370 | 370 |
|
371 | 371 |
/// \brief An empty idable base undirected graph class. |
372 | 372 |
/// |
373 | 373 |
/// This class provides beside the core undirected graph features |
374 | 374 |
/// core id functions for the undirected graph structure. The |
375 | 375 |
/// most of the base undirected graphs should be conform to this |
376 | 376 |
/// concept. The id's are unique and immutable. |
377 | 377 |
template <typename _Base = BaseGraphComponent> |
378 | 378 |
class IDableGraphComponent : public IDableDigraphComponent<_Base> { |
379 | 379 |
public: |
380 | 380 |
|
381 | 381 |
typedef _Base Base; |
382 | 382 |
typedef typename Base::Edge Edge; |
383 | 383 |
|
384 | 384 |
using IDableDigraphComponent<_Base>::id; |
385 | 385 |
|
386 | 386 |
/// \brief Gives back an unique integer id for the Edge. |
387 | 387 |
/// |
388 | 388 |
/// Gives back an unique integer id for the Edge. |
389 | 389 |
/// |
390 | 390 |
int id(const Edge&) const { return -1;} |
391 | 391 |
|
392 | 392 |
/// \brief Gives back the edge by the unique id. |
393 | 393 |
/// |
394 | 394 |
/// Gives back the edge by the unique id. If the |
395 | 395 |
/// graph does not contain arc with the given id then the |
396 | 396 |
/// result of the function is undetermined. |
397 | 397 |
Edge edgeFromId(int) const { return INVALID;} |
398 | 398 |
|
399 | 399 |
/// \brief Gives back an integer greater or equal to the maximum |
400 | 400 |
/// Edge id. |
401 | 401 |
/// |
402 | 402 |
/// Gives back an integer greater or equal to the maximum Edge |
403 | 403 |
/// id. |
404 | 404 |
int maxEdgeId() const { return -1;} |
405 | 405 |
|
406 | 406 |
template <typename _Graph> |
407 | 407 |
struct Constraints { |
408 | 408 |
|
409 | 409 |
void constraints() { |
410 | 410 |
checkConcept<Base, _Graph >(); |
411 | 411 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPT_HEAP_H |
24 | 24 |
#define LEMON_CONCEPT_HEAP_H |
25 | 25 |
|
26 |
#include <lemon/ |
|
26 |
#include <lemon/core.h> |
|
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
namespace concepts { |
31 | 31 |
|
32 | 32 |
/// \addtogroup concept |
33 | 33 |
/// @{ |
34 | 34 |
|
35 | 35 |
/// \brief The heap concept. |
36 | 36 |
/// |
37 | 37 |
/// Concept class describing the main interface of heaps. |
38 | 38 |
template <typename Priority, typename ItemIntMap> |
39 | 39 |
class Heap { |
40 | 40 |
public: |
41 | 41 |
|
42 | 42 |
/// Type of the items stored in the heap. |
43 | 43 |
typedef typename ItemIntMap::Key Item; |
44 | 44 |
|
45 | 45 |
/// Type of the priorities. |
46 | 46 |
typedef Priority Prio; |
47 | 47 |
|
48 | 48 |
/// \brief Type to represent the states of the items. |
49 | 49 |
/// |
50 | 50 |
/// Each item has a state associated to it. It can be "in heap", |
51 | 51 |
/// "pre heap" or "post heap". The later two are indifferent |
52 | 52 |
/// from the point of view of the heap, but may be useful for |
53 | 53 |
/// the user. |
54 | 54 |
/// |
55 | 55 |
/// The \c ItemIntMap must be initialized in such a way, that it |
56 | 56 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
57 | 57 |
enum State { |
58 | 58 |
IN_HEAP = 0, |
59 | 59 |
PRE_HEAP = -1, |
60 | 60 |
POST_HEAP = -2 |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
/// \brief The constructor. |
64 | 64 |
/// |
65 | 65 |
/// The constructor. |
66 | 66 |
/// \param map A map that assigns \c int values to keys of type |
67 | 67 |
/// \c Item. It is used internally by the heap implementations to |
68 | 68 |
/// handle the cross references. The assigned value must be |
69 | 69 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
70 | 70 |
explicit Heap(ItemIntMap &map) {} |
71 | 71 |
|
72 | 72 |
/// \brief The number of items stored in the heap. |
73 | 73 |
/// |
74 | 74 |
/// Returns the number of items stored in the heap. |
75 | 75 |
int size() const { return 0; } |
76 | 76 |
|
77 | 77 |
/// \brief Checks if the heap is empty. |
78 | 78 |
/// |
79 | 79 |
/// Returns \c true if the heap is empty. |
80 | 80 |
bool empty() const { return false; } |
81 | 81 |
|
82 | 82 |
/// \brief Makes the heap empty. |
83 | 83 |
/// |
84 | 84 |
/// Makes the heap empty. |
85 | 85 |
void clear(); |
86 | 86 |
|
87 | 87 |
/// \brief Inserts an item into the heap with the given priority. |
88 | 88 |
/// |
89 | 89 |
/// Inserts the given item into the heap with the given priority. |
90 | 90 |
/// \param i The item to insert. |
91 | 91 |
/// \param p The priority of the item. |
92 | 92 |
void push(const Item &i, const Prio &p) {} |
93 | 93 |
|
94 | 94 |
/// \brief Returns the item having minimum priority. |
95 | 95 |
/// |
96 | 96 |
/// Returns the item having minimum priority. |
97 | 97 |
/// \pre The heap must be non-empty. |
98 | 98 |
Item top() const {} |
99 | 99 |
|
100 | 100 |
/// \brief The minimum priority. |
101 | 101 |
/// |
102 | 102 |
/// Returns the minimum priority. |
103 | 103 |
/// \pre The heap must be non-empty. |
104 | 104 |
Prio prio() const {} |
105 | 105 |
|
106 | 106 |
/// \brief Removes the item having minimum priority. |
107 | 107 |
/// |
108 | 108 |
/// Removes the item having minimum priority. |
109 | 109 |
/// \pre The heap must be non-empty. |
110 | 110 |
void pop() {} |
111 | 111 |
|
112 | 112 |
/// \brief Removes an item from the heap. |
113 | 113 |
/// |
114 | 114 |
/// Removes the given item from the heap if it is already stored. |
115 | 115 |
/// \param i The item to delete. |
116 | 116 |
void erase(const Item &i) {} |
117 | 117 |
|
118 | 118 |
/// \brief The priority of an item. |
119 | 119 |
/// |
120 | 120 |
/// Returns the priority of the given item. |
121 | 121 |
/// \pre \c i must be in the heap. |
122 | 122 |
/// \param i The item. |
123 | 123 |
Prio operator[](const Item &i) const {} |
124 | 124 |
|
125 | 125 |
/// \brief Sets the priority of an item or inserts it, if it is |
126 | 126 |
/// not stored in the heap. |
127 | 127 |
/// |
128 | 128 |
/// This method sets the priority of the given item if it is |
129 | 129 |
/// already stored in the heap. |
130 | 130 |
/// Otherwise it inserts the given item with the given priority. |
131 | 131 |
/// |
132 | 132 |
/// It may throw an \ref UnderflowPriorityException. |
133 | 133 |
/// \param i The item. |
134 | 134 |
/// \param p The priority. |
135 | 135 |
void set(const Item &i, const Prio &p) {} |
136 | 136 |
|
137 | 137 |
/// \brief Decreases the priority of an item to the given value. |
138 | 138 |
/// |
139 | 139 |
/// Decreases the priority of an item to the given value. |
140 | 140 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
141 | 141 |
/// \param i The item. |
142 | 142 |
/// \param p The priority. |
143 | 143 |
void decrease(const Item &i, const Prio &p) {} |
144 | 144 |
|
145 | 145 |
/// \brief Increases the priority of an item to the given value. |
146 | 146 |
/// |
147 | 147 |
/// Increases the priority of an item to the given value. |
148 | 148 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
149 | 149 |
/// \param i The item. |
150 | 150 |
/// \param p The priority. |
151 | 151 |
void increase(const Item &i, const Prio &p) {} |
152 | 152 |
|
153 | 153 |
/// \brief Returns if an item is in, has already been in, or has |
154 | 154 |
/// never been in the heap. |
155 | 155 |
/// |
156 | 156 |
/// This method returns \c PRE_HEAP if the given item has never |
157 | 157 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
158 | 158 |
/// and \c POST_HEAP otherwise. |
159 | 159 |
/// In the latter case it is possible that the item will get back |
160 | 160 |
/// to the heap again. |
161 | 161 |
/// \param i The item. |
162 | 162 |
State state(const Item &i) const {} |
163 | 163 |
|
164 | 164 |
/// \brief Sets the state of an item in the heap. |
165 | 165 |
/// |
166 | 166 |
/// Sets the state of the given item in the heap. It can be used |
167 | 167 |
/// to manually clear the heap when it is important to achive the |
168 | 168 |
/// better time complexity. |
169 | 169 |
/// \param i The item. |
170 | 170 |
/// \param st The state. It should not be \c IN_HEAP. |
171 | 171 |
void state(const Item& i, State st) {} |
172 | 172 |
|
173 | 173 |
|
174 | 174 |
template <typename _Heap> |
175 | 175 |
struct Constraints { |
176 | 176 |
public: |
177 | 177 |
void constraints() { |
178 | 178 |
typedef typename _Heap::Item OwnItem; |
179 | 179 |
typedef typename _Heap::Prio OwnPrio; |
180 | 180 |
typedef typename _Heap::State OwnState; |
181 | 181 |
|
182 | 182 |
Item item; |
183 | 183 |
Prio prio; |
184 | 184 |
item=Item(); |
185 | 185 |
prio=Prio(); |
186 | 186 |
ignore_unused_variable_warning(item); |
187 | 187 |
ignore_unused_variable_warning(prio); |
188 | 188 |
|
189 | 189 |
OwnItem own_item; |
190 | 190 |
OwnPrio own_prio; |
191 | 191 |
OwnState own_state; |
192 | 192 |
own_item=Item(); |
193 | 193 |
own_prio=Prio(); |
194 | 194 |
ignore_unused_variable_warning(own_item); |
195 | 195 |
ignore_unused_variable_warning(own_prio); |
196 | 196 |
ignore_unused_variable_warning(own_state); |
197 | 197 |
|
198 | 198 |
_Heap heap1(map); |
199 | 199 |
_Heap heap2 = heap1; |
200 | 200 |
ignore_unused_variable_warning(heap1); |
201 | 201 |
ignore_unused_variable_warning(heap2); |
202 | 202 |
|
203 | 203 |
int s = heap.size(); |
204 | 204 |
ignore_unused_variable_warning(s); |
205 | 205 |
bool e = heap.empty(); |
206 | 206 |
ignore_unused_variable_warning(e); |
207 | 207 |
|
208 | 208 |
prio = heap.prio(); |
209 | 209 |
item = heap.top(); |
210 | 210 |
prio = heap[item]; |
211 | 211 |
own_prio = heap.prio(); |
212 | 212 |
own_item = heap.top(); |
213 | 213 |
own_prio = heap[own_item]; |
214 | 214 |
|
215 | 215 |
heap.push(item, prio); |
216 | 216 |
heap.push(own_item, own_prio); |
217 | 217 |
heap.pop(); |
218 | 218 |
|
219 | 219 |
heap.set(item, prio); |
220 | 220 |
heap.decrease(item, prio); |
221 | 221 |
heap.increase(item, prio); |
222 | 222 |
heap.set(own_item, own_prio); |
223 | 223 |
heap.decrease(own_item, own_prio); |
224 | 224 |
heap.increase(own_item, own_prio); |
225 | 225 |
|
226 | 226 |
heap.erase(item); |
227 | 227 |
heap.erase(own_item); |
228 | 228 |
heap.clear(); |
229 | 229 |
|
230 | 230 |
own_state = heap.state(own_item); |
231 | 231 |
heap.state(own_item, own_state); |
232 | 232 |
|
233 | 233 |
own_state = _Heap::PRE_HEAP; |
234 | 234 |
own_state = _Heap::IN_HEAP; |
235 | 235 |
own_state = _Heap::POST_HEAP; |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
_Heap& heap; |
239 | 239 |
ItemIntMap& map; |
240 | 240 |
}; |
241 | 241 |
}; |
242 | 242 |
|
243 | 243 |
/// @} |
244 | 244 |
} // namespace lemon |
245 | 245 |
} |
246 | 246 |
#endif // LEMON_CONCEPT_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPT_MAPS_H |
20 | 20 |
#define LEMON_CONCEPT_MAPS_H |
21 | 21 |
|
22 |
#include <lemon/ |
|
22 |
#include <lemon/core.h> |
|
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
///\ingroup concept |
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
|
38 | 38 |
/// Readable map concept. |
39 | 39 |
/// |
40 | 40 |
template<typename K, typename T> |
41 | 41 |
class ReadMap |
42 | 42 |
{ |
43 | 43 |
public: |
44 | 44 |
/// The key type of the map. |
45 | 45 |
typedef K Key; |
46 | 46 |
/// \brief The value type of the map. |
47 | 47 |
/// (The type of objects associated with the keys). |
48 | 48 |
typedef T Value; |
49 | 49 |
|
50 | 50 |
/// Returns the value associated with the given key. |
51 | 51 |
Value operator[](const Key &) const { |
52 | 52 |
return *static_cast<Value *>(0); |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
template<typename _ReadMap> |
56 | 56 |
struct Constraints { |
57 | 57 |
void constraints() { |
58 | 58 |
Value val = m[key]; |
59 | 59 |
val = m[key]; |
60 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
61 | 61 |
own_val = m[own_key]; |
62 | 62 |
|
63 | 63 |
ignore_unused_variable_warning(key); |
64 | 64 |
ignore_unused_variable_warning(val); |
65 | 65 |
ignore_unused_variable_warning(own_key); |
66 | 66 |
ignore_unused_variable_warning(own_val); |
67 | 67 |
} |
68 | 68 |
const Key& key; |
69 | 69 |
const typename _ReadMap::Key& own_key; |
70 | 70 |
const _ReadMap& m; |
71 | 71 |
}; |
72 | 72 |
|
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
/// Writable map concept |
77 | 77 |
|
78 | 78 |
/// Writable map concept. |
79 | 79 |
/// |
80 | 80 |
template<typename K, typename T> |
81 | 81 |
class WriteMap |
82 | 82 |
{ |
83 | 83 |
public: |
84 | 84 |
/// The key type of the map. |
85 | 85 |
typedef K Key; |
86 | 86 |
/// \brief The value type of the map. |
87 | 87 |
/// (The type of objects associated with the keys). |
88 | 88 |
typedef T Value; |
89 | 89 |
|
90 | 90 |
/// Sets the value associated with the given key. |
91 | 91 |
void set(const Key &, const Value &) {} |
92 | 92 |
|
93 | 93 |
/// Default constructor. |
94 | 94 |
WriteMap() {} |
95 | 95 |
|
96 | 96 |
template <typename _WriteMap> |
97 | 97 |
struct Constraints { |
98 | 98 |
void constraints() { |
99 | 99 |
m.set(key, val); |
100 | 100 |
m.set(own_key, own_val); |
101 | 101 |
|
102 | 102 |
ignore_unused_variable_warning(key); |
103 | 103 |
ignore_unused_variable_warning(val); |
104 | 104 |
ignore_unused_variable_warning(own_key); |
105 | 105 |
ignore_unused_variable_warning(own_val); |
106 | 106 |
} |
107 | 107 |
const Key& key; |
108 | 108 |
const Value& val; |
109 | 109 |
const typename _WriteMap::Key& own_key; |
110 | 110 |
const typename _WriteMap::Value& own_val; |
111 | 111 |
_WriteMap& m; |
112 | 112 |
}; |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
/// Read/writable map concept |
116 | 116 |
|
117 | 117 |
/// Read/writable map concept. |
118 | 118 |
/// |
119 | 119 |
template<typename K, typename T> |
120 | 120 |
class ReadWriteMap : public ReadMap<K,T>, |
121 | 121 |
public WriteMap<K,T> |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
/// The key type of the map. |
125 | 125 |
typedef K Key; |
126 | 126 |
/// \brief The value type of the map. |
127 | 127 |
/// (The type of objects associated with the keys). |
128 | 128 |
typedef T Value; |
129 | 129 |
|
130 | 130 |
/// Returns the value associated with the given key. |
131 | 131 |
Value operator[](const Key &) const { |
132 | 132 |
return *static_cast<Value *>(0); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
/// Sets the value associated with the given key. |
136 | 136 |
void set(const Key &, const Value &) {} |
137 | 137 |
|
138 | 138 |
template<typename _ReadWriteMap> |
139 | 139 |
struct Constraints { |
140 | 140 |
void constraints() { |
141 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
142 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
143 | 143 |
} |
144 | 144 |
}; |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
|
148 | 148 |
/// Dereferable map concept |
149 | 149 |
|
150 | 150 |
/// Dereferable map concept. |
151 | 151 |
/// |
152 | 152 |
template<typename K, typename T, typename R, typename CR> |
153 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
154 | 154 |
{ |
155 | 155 |
public: |
156 | 156 |
/// Tag for reference maps. |
157 | 157 |
typedef True ReferenceMapTag; |
158 | 158 |
/// The key type of the map. |
159 | 159 |
typedef K Key; |
160 | 160 |
/// \brief The value type of the map. |
161 | 161 |
/// (The type of objects associated with the keys). |
162 | 162 |
typedef T Value; |
163 | 163 |
/// The reference type of the map. |
164 | 164 |
typedef R Reference; |
165 | 165 |
/// The const reference type of the map. |
166 | 166 |
typedef CR ConstReference; |
167 | 167 |
|
168 | 168 |
public: |
169 | 169 |
|
170 | 170 |
/// Returns a reference to the value associated with the given key. |
171 | 171 |
Reference operator[](const Key &) { |
172 | 172 |
return *static_cast<Value *>(0); |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
/// Returns a const reference to the value associated with the given key. |
176 | 176 |
ConstReference operator[](const Key &) const { |
177 | 177 |
return *static_cast<Value *>(0); |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
/// Sets the value associated with the given key. |
181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 182 |
|
183 | 183 |
template<typename _ReferenceMap> |
184 | 184 |
struct Constraints { |
185 | 185 |
void constraints() { |
186 | 186 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
187 | 187 |
ref = m[key]; |
188 | 188 |
m[key] = val; |
189 | 189 |
m[key] = ref; |
190 | 190 |
m[key] = cref; |
191 | 191 |
own_ref = m[own_key]; |
192 | 192 |
m[own_key] = own_val; |
193 | 193 |
m[own_key] = own_ref; |
194 | 194 |
m[own_key] = own_cref; |
195 | 195 |
m[key] = m[own_key]; |
196 | 196 |
m[own_key] = m[key]; |
197 | 197 |
} |
198 | 198 |
const Key& key; |
199 | 199 |
Value& val; |
200 | 200 |
Reference ref; |
201 | 201 |
ConstReference cref; |
202 | 202 |
const typename _ReferenceMap::Key& own_key; |
203 | 203 |
typename _ReferenceMap::Value& own_val; |
204 | 204 |
typename _ReferenceMap::Reference own_ref; |
205 | 205 |
typename _ReferenceMap::ConstReference own_cref; |
206 | 206 |
_ReferenceMap& m; |
207 | 207 |
}; |
208 | 208 |
}; |
209 | 209 |
|
210 | 210 |
// @} |
211 | 211 |
|
212 | 212 |
} //namespace concepts |
213 | 213 |
|
214 | 214 |
} //namespace lemon |
215 | 215 |
|
216 | 216 |
#endif // LEMON_CONCEPT_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
///\todo Iterators have obsolete style |
24 | 24 |
|
25 | 25 |
#ifndef LEMON_CONCEPT_PATH_H |
26 | 26 |
#define LEMON_CONCEPT_PATH_H |
27 | 27 |
|
28 |
#include <lemon/bits/invalid.h> |
|
29 |
#include <lemon/bits/utility.h> |
|
28 |
#include <lemon/core.h> |
|
30 | 29 |
#include <lemon/concept_check.h> |
31 | 30 |
|
32 | 31 |
namespace lemon { |
33 | 32 |
namespace concepts { |
34 | 33 |
|
35 | 34 |
/// \addtogroup concept |
36 | 35 |
/// @{ |
37 | 36 |
|
38 | 37 |
/// \brief A skeleton structure for representing directed paths in |
39 | 38 |
/// a digraph. |
40 | 39 |
/// |
41 | 40 |
/// A skeleton structure for representing directed paths in a |
42 | 41 |
/// digraph. |
43 | 42 |
/// \tparam _Digraph The digraph type in which the path is. |
44 | 43 |
/// |
45 | 44 |
/// In a sense, the path can be treated as a list of arcs. The |
46 | 45 |
/// lemon path type stores just this list. As a consequence it |
47 | 46 |
/// cannot enumerate the nodes in the path and the zero length |
48 | 47 |
/// paths cannot store the source. |
49 | 48 |
/// |
50 | 49 |
template <typename _Digraph> |
51 | 50 |
class Path { |
52 | 51 |
public: |
53 | 52 |
|
54 | 53 |
/// Type of the underlying digraph. |
55 | 54 |
typedef _Digraph Digraph; |
56 | 55 |
/// Arc type of the underlying digraph. |
57 | 56 |
typedef typename Digraph::Arc Arc; |
58 | 57 |
|
59 | 58 |
class ArcIt; |
60 | 59 |
|
61 | 60 |
/// \brief Default constructor |
62 | 61 |
Path() {} |
63 | 62 |
|
64 | 63 |
/// \brief Template constructor |
65 | 64 |
template <typename CPath> |
66 | 65 |
Path(const CPath& cpath) {} |
67 | 66 |
|
68 | 67 |
/// \brief Template assigment |
69 | 68 |
template <typename CPath> |
70 | 69 |
Path& operator=(const CPath& cpath) {} |
71 | 70 |
|
72 | 71 |
/// Length of the path ie. the number of arcs in the path. |
73 | 72 |
int length() const { return 0;} |
74 | 73 |
|
75 | 74 |
/// Returns whether the path is empty. |
76 | 75 |
bool empty() const { return true;} |
77 | 76 |
|
78 | 77 |
/// Resets the path to an empty path. |
79 | 78 |
void clear() {} |
80 | 79 |
|
81 | 80 |
/// \brief Lemon style iterator for path arcs |
82 | 81 |
/// |
83 | 82 |
/// This class is used to iterate on the arcs of the paths. |
84 | 83 |
class ArcIt { |
85 | 84 |
public: |
86 | 85 |
/// Default constructor |
87 | 86 |
ArcIt() {} |
88 | 87 |
/// Invalid constructor |
89 | 88 |
ArcIt(Invalid) {} |
90 | 89 |
/// Constructor for first arc |
91 | 90 |
ArcIt(const Path &) {} |
92 | 91 |
|
93 | 92 |
/// Conversion to Arc |
94 | 93 |
operator Arc() const { return INVALID; } |
95 | 94 |
|
96 | 95 |
/// Next arc |
97 | 96 |
ArcIt& operator++() {return *this;} |
98 | 97 |
|
99 | 98 |
/// Comparison operator |
100 | 99 |
bool operator==(const ArcIt&) const {return true;} |
101 | 100 |
/// Comparison operator |
102 | 101 |
bool operator!=(const ArcIt&) const {return true;} |
103 | 102 |
/// Comparison operator |
104 | 103 |
bool operator<(const ArcIt&) const {return false;} |
105 | 104 |
|
106 | 105 |
}; |
107 | 106 |
|
108 | 107 |
template <typename _Path> |
109 | 108 |
struct Constraints { |
110 | 109 |
void constraints() { |
111 | 110 |
Path<Digraph> pc; |
112 | 111 |
_Path p, pp(pc); |
113 | 112 |
int l = p.length(); |
114 | 113 |
int e = p.empty(); |
115 | 114 |
p.clear(); |
116 | 115 |
|
117 | 116 |
p = pc; |
118 | 117 |
|
119 | 118 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
120 | 119 |
|
121 | 120 |
++i; |
122 | 121 |
typename Digraph::Arc ed = i; |
123 | 122 |
|
124 | 123 |
e = (i == ii); |
125 | 124 |
e = (i != ii); |
126 | 125 |
e = (i < ii); |
127 | 126 |
|
128 | 127 |
ignore_unused_variable_warning(l); |
129 | 128 |
ignore_unused_variable_warning(pp); |
130 | 129 |
ignore_unused_variable_warning(e); |
131 | 130 |
ignore_unused_variable_warning(id); |
132 | 131 |
ignore_unused_variable_warning(ii); |
133 | 132 |
ignore_unused_variable_warning(ed); |
134 | 133 |
} |
135 | 134 |
}; |
136 | 135 |
|
137 | 136 |
}; |
138 | 137 |
|
139 | 138 |
namespace _path_bits { |
140 | 139 |
|
141 | 140 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
142 | 141 |
struct PathDumperConstraints { |
143 | 142 |
void constraints() { |
144 | 143 |
int l = p.length(); |
145 | 144 |
int e = p.empty(); |
146 | 145 |
|
147 | 146 |
typename _Path::ArcIt id, i(p); |
148 | 147 |
|
149 | 148 |
++i; |
150 | 149 |
typename _Digraph::Arc ed = i; |
151 | 150 |
|
152 | 151 |
e = (i == INVALID); |
153 | 152 |
e = (i != INVALID); |
154 | 153 |
|
155 | 154 |
ignore_unused_variable_warning(l); |
156 | 155 |
ignore_unused_variable_warning(e); |
157 | 156 |
ignore_unused_variable_warning(id); |
158 | 157 |
ignore_unused_variable_warning(ed); |
159 | 158 |
} |
160 | 159 |
_Path& p; |
161 | 160 |
}; |
162 | 161 |
|
163 | 162 |
template <typename _Digraph, typename _Path> |
164 | 163 |
struct PathDumperConstraints< |
165 | 164 |
_Digraph, _Path, |
166 | 165 |
typename enable_if<typename _Path::RevPathTag, void>::type |
167 | 166 |
> { |
168 | 167 |
void constraints() { |
169 | 168 |
int l = p.length(); |
170 | 169 |
int e = p.empty(); |
171 | 170 |
|
172 | 171 |
typename _Path::RevArcIt id, i(p); |
173 | 172 |
|
174 | 173 |
++i; |
175 | 174 |
typename _Digraph::Arc ed = i; |
176 | 175 |
|
177 | 176 |
e = (i == INVALID); |
178 | 177 |
e = (i != INVALID); |
179 | 178 |
|
180 | 179 |
ignore_unused_variable_warning(l); |
181 | 180 |
ignore_unused_variable_warning(e); |
182 | 181 |
ignore_unused_variable_warning(id); |
183 | 182 |
ignore_unused_variable_warning(ed); |
184 | 183 |
} |
185 | 184 |
_Path& p; |
186 | 185 |
}; |
187 | 186 |
|
188 | 187 |
} |
189 | 188 |
|
190 | 189 |
|
191 | 190 |
/// \brief A skeleton structure for path dumpers. |
192 | 191 |
/// |
193 | 192 |
/// A skeleton structure for path dumpers. The path dumpers are |
194 | 193 |
/// the generalization of the paths. The path dumpers can |
195 | 194 |
/// enumerate the arcs of the path wheter in forward or in |
196 | 195 |
/// backward order. In most time these classes are not used |
197 | 196 |
/// directly rather it used to assign a dumped class to a real |
198 | 197 |
/// path type. |
199 | 198 |
/// |
200 | 199 |
/// The main purpose of this concept is that the shortest path |
201 | 200 |
/// algorithms can enumerate easily the arcs in reverse order. |
202 | 201 |
/// If we would like to give back a real path from these |
203 | 202 |
/// algorithms then we should create a temporarly path object. In |
204 | 203 |
/// Lemon such algorithms gives back a path dumper what can |
205 | 204 |
/// assigned to a real path and the dumpers can be implemented as |
206 | 205 |
/// an adaptor class to the predecessor map. |
207 | 206 |
|
208 | 207 |
/// \tparam _Digraph The digraph type in which the path is. |
209 | 208 |
/// |
210 | 209 |
/// The paths can be constructed from any path type by a |
211 | 210 |
/// template constructor or a template assignment operator. |
212 | 211 |
/// |
213 | 212 |
template <typename _Digraph> |
214 | 213 |
class PathDumper { |
215 | 214 |
public: |
216 | 215 |
|
217 | 216 |
/// Type of the underlying digraph. |
218 | 217 |
typedef _Digraph Digraph; |
219 | 218 |
/// Arc type of the underlying digraph. |
220 | 219 |
typedef typename Digraph::Arc Arc; |
221 | 220 |
|
222 | 221 |
/// Length of the path ie. the number of arcs in the path. |
223 | 222 |
int length() const { return 0;} |
224 | 223 |
|
225 | 224 |
/// Returns whether the path is empty. |
226 | 225 |
bool empty() const { return true;} |
227 | 226 |
|
228 | 227 |
/// \brief Forward or reverse dumping |
229 | 228 |
/// |
230 | 229 |
/// If the RevPathTag is defined and true then reverse dumping |
231 | 230 |
/// is provided in the path dumper. In this case instead of the |
232 | 231 |
/// ArcIt the RevArcIt iterator should be implemented in the |
233 | 232 |
/// dumper. |
234 | 233 |
typedef False RevPathTag; |
235 | 234 |
|
236 | 235 |
/// \brief Lemon style iterator for path arcs |
237 | 236 |
/// |
238 | 237 |
/// This class is used to iterate on the arcs of the paths. |
239 | 238 |
class ArcIt { |
240 | 239 |
public: |
241 | 240 |
/// Default constructor |
242 | 241 |
ArcIt() {} |
243 | 242 |
/// Invalid constructor |
244 | 243 |
ArcIt(Invalid) {} |
245 | 244 |
/// Constructor for first arc |
246 | 245 |
ArcIt(const PathDumper&) {} |
247 | 246 |
|
248 | 247 |
/// Conversion to Arc |
249 | 248 |
operator Arc() const { return INVALID; } |
250 | 249 |
|
251 | 250 |
/// Next arc |
252 | 251 |
ArcIt& operator++() {return *this;} |
253 | 252 |
|
254 | 253 |
/// Comparison operator |
255 | 254 |
bool operator==(const ArcIt&) const {return true;} |
256 | 255 |
/// Comparison operator |
257 | 256 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 257 |
/// Comparison operator |
259 | 258 |
bool operator<(const ArcIt&) const {return false;} |
260 | 259 |
|
261 | 260 |
}; |
262 | 261 |
|
263 | 262 |
/// \brief Lemon style iterator for path arcs |
264 | 263 |
/// |
265 | 264 |
/// This class is used to iterate on the arcs of the paths in |
266 | 265 |
/// reverse direction. |
267 | 266 |
class RevArcIt { |
268 | 267 |
public: |
269 | 268 |
/// Default constructor |
270 | 269 |
RevArcIt() {} |
271 | 270 |
/// Invalid constructor |
272 | 271 |
RevArcIt(Invalid) {} |
273 | 272 |
/// Constructor for first arc |
274 | 273 |
RevArcIt(const PathDumper &) {} |
275 | 274 |
|
276 | 275 |
/// Conversion to Arc |
277 | 276 |
operator Arc() const { return INVALID; } |
278 | 277 |
|
279 | 278 |
/// Next arc |
280 | 279 |
RevArcIt& operator++() {return *this;} |
281 | 280 |
|
282 | 281 |
/// Comparison operator |
283 | 282 |
bool operator==(const RevArcIt&) const {return true;} |
284 | 283 |
/// Comparison operator |
285 | 284 |
bool operator!=(const RevArcIt&) const {return true;} |
286 | 285 |
/// Comparison operator |
287 | 286 |
bool operator<(const RevArcIt&) const {return false;} |
288 | 287 |
|
289 | 288 |
}; |
290 | 289 |
|
291 | 290 |
template <typename _Path> |
292 | 291 |
struct Constraints { |
293 | 292 |
void constraints() { |
294 | 293 |
function_requires<_path_bits:: |
295 | 294 |
PathDumperConstraints<Digraph, _Path> >(); |
296 | 295 |
} |
297 | 296 |
}; |
298 | 297 |
|
299 | 298 |
}; |
300 | 299 |
|
301 | 300 |
|
302 | 301 |
///@} |
303 | 302 |
} |
304 | 303 |
|
305 | 304 |
} // namespace lemon |
306 | 305 |
|
307 | 306 |
#endif // LEMON_CONCEPT_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Dfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 |
#include <lemon/graph_utils.h> |
|
28 | 27 |
#include <lemon/bits/path_dump.h> |
29 |
#include <lemon/ |
|
28 |
#include <lemon/core.h> |
|
30 | 29 |
#include <lemon/error.h> |
31 | 30 |
#include <lemon/maps.h> |
32 | 31 |
|
33 | 32 |
#include <lemon/concept_check.h> |
34 | 33 |
|
35 | 34 |
namespace lemon { |
36 | 35 |
|
37 | 36 |
|
38 | 37 |
///Default traits class of Dfs class. |
39 | 38 |
|
40 | 39 |
///Default traits class of Dfs class. |
41 | 40 |
///\tparam GR Digraph type. |
42 | 41 |
template<class GR> |
43 | 42 |
struct DfsDefaultTraits |
44 | 43 |
{ |
45 | 44 |
///The digraph type the algorithm runs on. |
46 | 45 |
typedef GR Digraph; |
47 | 46 |
///\brief The type of the map that stores the last |
48 | 47 |
///arcs of the %DFS paths. |
49 | 48 |
/// |
50 | 49 |
///The type of the map that stores the last |
51 | 50 |
///arcs of the %DFS paths. |
52 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
53 | 52 |
/// |
54 | 53 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
55 | 54 |
///Instantiates a PredMap. |
56 | 55 |
|
57 | 56 |
///This function instantiates a \ref PredMap. |
58 | 57 |
///\param G is the digraph, to which we would like to define the PredMap. |
59 | 58 |
///\todo The digraph alone may be insufficient to initialize |
60 | 59 |
static PredMap *createPredMap(const GR &G) |
61 | 60 |
{ |
62 | 61 |
return new PredMap(G); |
63 | 62 |
} |
64 | 63 |
|
65 | 64 |
///The type of the map that indicates which nodes are processed. |
66 | 65 |
|
67 | 66 |
///The type of the map that indicates which nodes are processed. |
68 | 67 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
69 | 68 |
///\todo named parameter to set this type, function to read and write. |
70 | 69 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
71 | 70 |
///Instantiates a ProcessedMap. |
72 | 71 |
|
73 | 72 |
///This function instantiates a \ref ProcessedMap. |
74 | 73 |
///\param g is the digraph, to which |
75 | 74 |
///we would like to define the \ref ProcessedMap |
76 | 75 |
#ifdef DOXYGEN |
77 | 76 |
static ProcessedMap *createProcessedMap(const GR &g) |
78 | 77 |
#else |
79 | 78 |
static ProcessedMap *createProcessedMap(const GR &) |
80 | 79 |
#endif |
81 | 80 |
{ |
82 | 81 |
return new ProcessedMap(); |
83 | 82 |
} |
84 | 83 |
///The type of the map that indicates which nodes are reached. |
85 | 84 |
|
86 | 85 |
///The type of the map that indicates which nodes are reached. |
87 | 86 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
88 | 87 |
///\todo named parameter to set this type, function to read and write. |
89 | 88 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
90 | 89 |
///Instantiates a ReachedMap. |
91 | 90 |
|
92 | 91 |
///This function instantiates a \ref ReachedMap. |
93 | 92 |
///\param G is the digraph, to which |
94 | 93 |
///we would like to define the \ref ReachedMap. |
95 | 94 |
static ReachedMap *createReachedMap(const GR &G) |
96 | 95 |
{ |
97 | 96 |
return new ReachedMap(G); |
98 | 97 |
} |
99 | 98 |
///The type of the map that stores the dists of the nodes. |
100 | 99 |
|
101 | 100 |
///The type of the map that stores the dists of the nodes. |
102 | 101 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
103 | 102 |
/// |
104 | 103 |
typedef typename Digraph::template NodeMap<int> DistMap; |
105 | 104 |
///Instantiates a DistMap. |
106 | 105 |
|
107 | 106 |
///This function instantiates a \ref DistMap. |
108 | 107 |
///\param G is the digraph, to which we would like to define |
109 | 108 |
///the \ref DistMap |
110 | 109 |
static DistMap *createDistMap(const GR &G) |
111 | 110 |
{ |
112 | 111 |
return new DistMap(G); |
113 | 112 |
} |
114 | 113 |
}; |
115 | 114 |
|
116 | 115 |
///%DFS algorithm class. |
117 | 116 |
|
118 | 117 |
///\ingroup search |
119 | 118 |
///This class provides an efficient implementation of the %DFS algorithm. |
120 | 119 |
/// |
121 | 120 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
122 | 121 |
///\ref ListDigraph. The value of GR is not used directly by Dfs, it |
123 | 122 |
///is only passed to \ref DfsDefaultTraits. |
124 | 123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
125 | 124 |
///The default traits class is |
126 | 125 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
127 | 126 |
///See \ref DfsDefaultTraits for the documentation of |
128 | 127 |
///a Dfs traits class. |
129 | 128 |
#ifdef DOXYGEN |
130 | 129 |
template <typename GR, |
131 | 130 |
typename TR> |
132 | 131 |
#else |
133 | 132 |
template <typename GR=ListDigraph, |
134 | 133 |
typename TR=DfsDefaultTraits<GR> > |
135 | 134 |
#endif |
136 | 135 |
class Dfs { |
137 | 136 |
public: |
138 | 137 |
/** |
139 | 138 |
* \brief \ref Exception for uninitialized parameters. |
140 | 139 |
* |
141 | 140 |
* This error represents problems in the initialization |
142 | 141 |
* of the parameters of the algorithms. |
143 | 142 |
*/ |
144 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter { |
145 | 144 |
public: |
146 | 145 |
virtual const char* what() const throw() { |
147 | 146 |
return "lemon::Dfs::UninitializedParameter"; |
148 | 147 |
} |
149 | 148 |
}; |
150 | 149 |
|
151 | 150 |
typedef TR Traits; |
152 | 151 |
///The type of the underlying digraph. |
153 | 152 |
typedef typename TR::Digraph Digraph; |
154 | 153 |
///\e |
155 | 154 |
typedef typename Digraph::Node Node; |
156 | 155 |
///\e |
157 | 156 |
typedef typename Digraph::NodeIt NodeIt; |
158 | 157 |
///\e |
159 | 158 |
typedef typename Digraph::Arc Arc; |
160 | 159 |
///\e |
161 | 160 |
typedef typename Digraph::OutArcIt OutArcIt; |
162 | 161 |
|
163 | 162 |
///\brief The type of the map that stores the last |
164 | 163 |
///arcs of the %DFS paths. |
165 | 164 |
typedef typename TR::PredMap PredMap; |
166 | 165 |
///The type of the map indicating which nodes are reached. |
167 | 166 |
typedef typename TR::ReachedMap ReachedMap; |
168 | 167 |
///The type of the map indicating which nodes are processed. |
169 | 168 |
typedef typename TR::ProcessedMap ProcessedMap; |
170 | 169 |
///The type of the map that stores the dists of the nodes. |
171 | 170 |
typedef typename TR::DistMap DistMap; |
172 | 171 |
private: |
173 | 172 |
/// Pointer to the underlying digraph. |
174 | 173 |
const Digraph *G; |
175 | 174 |
///Pointer to the map of predecessors arcs. |
176 | 175 |
PredMap *_pred; |
177 | 176 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
178 | 177 |
bool local_pred; |
179 | 178 |
///Pointer to the map of distances. |
180 | 179 |
DistMap *_dist; |
181 | 180 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
182 | 181 |
bool local_dist; |
183 | 182 |
///Pointer to the map of reached status of the nodes. |
184 | 183 |
ReachedMap *_reached; |
185 | 184 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
186 | 185 |
bool local_reached; |
187 | 186 |
///Pointer to the map of processed status of the nodes. |
188 | 187 |
ProcessedMap *_processed; |
189 | 188 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
190 | 189 |
bool local_processed; |
191 | 190 |
|
192 | 191 |
std::vector<typename Digraph::OutArcIt> _stack; |
193 | 192 |
int _stack_head; |
194 | 193 |
|
195 | 194 |
///Creates the maps if necessary. |
196 | 195 |
|
197 | 196 |
///\todo Better memory allocation (instead of new). |
198 | 197 |
void create_maps() |
199 | 198 |
{ |
200 | 199 |
if(!_pred) { |
201 | 200 |
local_pred = true; |
202 | 201 |
_pred = Traits::createPredMap(*G); |
203 | 202 |
} |
204 | 203 |
if(!_dist) { |
205 | 204 |
local_dist = true; |
206 | 205 |
_dist = Traits::createDistMap(*G); |
207 | 206 |
} |
208 | 207 |
if(!_reached) { |
209 | 208 |
local_reached = true; |
210 | 209 |
_reached = Traits::createReachedMap(*G); |
211 | 210 |
} |
212 | 211 |
if(!_processed) { |
213 | 212 |
local_processed = true; |
214 | 213 |
_processed = Traits::createProcessedMap(*G); |
215 | 214 |
} |
216 | 215 |
} |
217 | 216 |
|
218 | 217 |
protected: |
219 | 218 |
|
220 | 219 |
Dfs() {} |
221 | 220 |
|
222 | 221 |
public: |
223 | 222 |
|
224 | 223 |
typedef Dfs Create; |
225 | 224 |
|
226 | 225 |
///\name Named template parameters |
227 | 226 |
|
228 | 227 |
///@{ |
229 | 228 |
|
230 | 229 |
template <class T> |
231 | 230 |
struct DefPredMapTraits : public Traits { |
232 | 231 |
typedef T PredMap; |
233 | 232 |
static PredMap *createPredMap(const Digraph &G) |
234 | 233 |
{ |
235 | 234 |
throw UninitializedParameter(); |
236 | 235 |
} |
237 | 236 |
}; |
238 | 237 |
///\brief \ref named-templ-param "Named parameter" for setting |
239 | 238 |
///PredMap type |
240 | 239 |
/// |
241 | 240 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
242 | 241 |
/// |
243 | 242 |
template <class T> |
244 | 243 |
struct DefPredMap : public Dfs<Digraph, DefPredMapTraits<T> > { |
245 | 244 |
typedef Dfs<Digraph, DefPredMapTraits<T> > Create; |
246 | 245 |
}; |
247 | 246 |
|
248 | 247 |
|
249 | 248 |
template <class T> |
250 | 249 |
struct DefDistMapTraits : public Traits { |
251 | 250 |
typedef T DistMap; |
252 | 251 |
static DistMap *createDistMap(const Digraph &) |
253 | 252 |
{ |
254 | 253 |
throw UninitializedParameter(); |
255 | 254 |
} |
256 | 255 |
}; |
257 | 256 |
///\brief \ref named-templ-param "Named parameter" for setting |
258 | 257 |
///DistMap type |
259 | 258 |
/// |
260 | 259 |
///\ref named-templ-param "Named parameter" for setting DistMap |
261 | 260 |
///type |
262 | 261 |
template <class T> |
263 | 262 |
struct DefDistMap { |
264 | 263 |
typedef Dfs<Digraph, DefDistMapTraits<T> > Create; |
265 | 264 |
}; |
266 | 265 |
|
267 | 266 |
template <class T> |
268 | 267 |
struct DefReachedMapTraits : public Traits { |
269 | 268 |
typedef T ReachedMap; |
270 | 269 |
static ReachedMap *createReachedMap(const Digraph &) |
271 | 270 |
{ |
272 | 271 |
throw UninitializedParameter(); |
273 | 272 |
} |
274 | 273 |
}; |
275 | 274 |
///\brief \ref named-templ-param "Named parameter" for setting |
276 | 275 |
///ReachedMap type |
277 | 276 |
/// |
278 | 277 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type |
279 | 278 |
/// |
280 | 279 |
template <class T> |
281 | 280 |
struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits<T> > { |
282 | 281 |
typedef Dfs< Digraph, DefReachedMapTraits<T> > Create; |
283 | 282 |
}; |
284 | 283 |
|
285 | 284 |
template <class T> |
286 | 285 |
struct DefProcessedMapTraits : public Traits { |
287 | 286 |
typedef T ProcessedMap; |
288 | 287 |
static ProcessedMap *createProcessedMap(const Digraph &) |
289 | 288 |
{ |
290 | 289 |
throw UninitializedParameter(); |
291 | 290 |
} |
292 | 291 |
}; |
293 | 292 |
///\brief \ref named-templ-param "Named parameter" for setting |
294 | 293 |
///ProcessedMap type |
295 | 294 |
/// |
296 | 295 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
297 | 296 |
/// |
298 | 297 |
template <class T> |
299 | 298 |
struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits<T> > { |
300 | 299 |
typedef Dfs< Digraph, DefProcessedMapTraits<T> > Create; |
301 | 300 |
}; |
302 | 301 |
|
303 | 302 |
struct DefDigraphProcessedMapTraits : public Traits { |
304 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
305 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
306 | 305 |
{ |
307 | 306 |
return new ProcessedMap(G); |
308 | 307 |
} |
309 | 308 |
}; |
310 | 309 |
///\brief \ref named-templ-param "Named parameter" |
311 | 310 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
312 | 311 |
/// |
313 | 312 |
///\ref named-templ-param "Named parameter" |
314 | 313 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
315 | 314 |
///If you don't set it explicitely, it will be automatically allocated. |
316 | 315 |
template <class T> |
317 | 316 |
class DefProcessedMapToBeDefaultMap : |
318 | 317 |
public Dfs< Digraph, DefDigraphProcessedMapTraits> { |
319 | 318 |
typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create; |
320 | 319 |
}; |
321 | 320 |
|
322 | 321 |
///@} |
323 | 322 |
|
324 | 323 |
public: |
325 | 324 |
|
326 | 325 |
///Constructor. |
327 | 326 |
|
328 | 327 |
///\param _G the digraph the algorithm will run on. |
329 | 328 |
/// |
330 | 329 |
Dfs(const Digraph& _G) : |
331 | 330 |
G(&_G), |
332 | 331 |
_pred(NULL), local_pred(false), |
333 | 332 |
_dist(NULL), local_dist(false), |
334 | 333 |
_reached(NULL), local_reached(false), |
335 | 334 |
_processed(NULL), local_processed(false) |
336 | 335 |
{ } |
337 | 336 |
|
338 | 337 |
///Destructor. |
339 | 338 |
~Dfs() |
340 | 339 |
{ |
341 | 340 |
if(local_pred) delete _pred; |
342 | 341 |
if(local_dist) delete _dist; |
343 | 342 |
if(local_reached) delete _reached; |
344 | 343 |
if(local_processed) delete _processed; |
345 | 344 |
} |
346 | 345 |
|
347 | 346 |
///Sets the map storing the predecessor arcs. |
348 | 347 |
|
349 | 348 |
///Sets the map storing the predecessor arcs. |
350 | 349 |
///If you don't use this function before calling \ref run(), |
351 | 350 |
///it will allocate one. The destuctor deallocates this |
352 | 351 |
///automatically allocated map, of course. |
353 | 352 |
///\return <tt> (*this) </tt> |
354 | 353 |
Dfs &predMap(PredMap &m) |
355 | 354 |
{ |
356 | 355 |
if(local_pred) { |
357 | 356 |
delete _pred; |
358 | 357 |
local_pred=false; |
359 | 358 |
} |
360 | 359 |
_pred = &m; |
361 | 360 |
return *this; |
362 | 361 |
} |
363 | 362 |
|
364 | 363 |
///Sets the map storing the distances calculated by the algorithm. |
365 | 364 |
|
366 | 365 |
///Sets the map storing the distances calculated by the algorithm. |
367 | 366 |
///If you don't use this function before calling \ref run(), |
368 | 367 |
///it will allocate one. The destuctor deallocates this |
369 | 368 |
///automatically allocated map, of course. |
370 | 369 |
///\return <tt> (*this) </tt> |
371 | 370 |
Dfs &distMap(DistMap &m) |
372 | 371 |
{ |
373 | 372 |
if(local_dist) { |
374 | 373 |
delete _dist; |
375 | 374 |
local_dist=false; |
376 | 375 |
} |
377 | 376 |
_dist = &m; |
378 | 377 |
return *this; |
379 | 378 |
} |
380 | 379 |
|
381 | 380 |
///Sets the map indicating if a node is reached. |
382 | 381 |
|
383 | 382 |
///Sets the map indicating if a node is reached. |
384 | 383 |
///If you don't use this function before calling \ref run(), |
385 | 384 |
///it will allocate one. The destuctor deallocates this |
386 | 385 |
///automatically allocated map, of course. |
387 | 386 |
///\return <tt> (*this) </tt> |
388 | 387 |
Dfs &reachedMap(ReachedMap &m) |
389 | 388 |
{ |
390 | 389 |
if(local_reached) { |
391 | 390 |
delete _reached; |
392 | 391 |
local_reached=false; |
393 | 392 |
} |
394 | 393 |
_reached = &m; |
395 | 394 |
return *this; |
396 | 395 |
} |
397 | 396 |
|
398 | 397 |
///Sets the map indicating if a node is processed. |
399 | 398 |
|
400 | 399 |
///Sets the map indicating if a node is processed. |
401 | 400 |
///If you don't use this function before calling \ref run(), |
402 | 401 |
///it will allocate one. The destuctor deallocates this |
403 | 402 |
///automatically allocated map, of course. |
404 | 403 |
///\return <tt> (*this) </tt> |
405 | 404 |
Dfs &processedMap(ProcessedMap &m) |
406 | 405 |
{ |
407 | 406 |
if(local_processed) { |
408 | 407 |
delete _processed; |
409 | 408 |
local_processed=false; |
410 | 409 |
} |
411 | 410 |
_processed = &m; |
412 | 411 |
return *this; |
413 | 412 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 |
#include <lemon/ |
|
30 |
#include <lemon/core.h> |
|
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default OperationTraits for the Dijkstra algorithm class. |
37 | 37 |
/// |
38 | 38 |
/// It defines all computational operations and constants which are |
39 | 39 |
/// used in the Dijkstra algorithm. |
40 | 40 |
template <typename Value> |
41 | 41 |
struct DijkstraDefaultOperationTraits { |
42 | 42 |
/// \brief Gives back the zero value of the type. |
43 | 43 |
static Value zero() { |
44 | 44 |
return static_cast<Value>(0); |
45 | 45 |
} |
46 | 46 |
/// \brief Gives back the sum of the given two elements. |
47 | 47 |
static Value plus(const Value& left, const Value& right) { |
48 | 48 |
return left + right; |
49 | 49 |
} |
50 | 50 |
/// \brief Gives back true only if the first value less than the second. |
51 | 51 |
static bool less(const Value& left, const Value& right) { |
52 | 52 |
return left < right; |
53 | 53 |
} |
54 | 54 |
}; |
55 | 55 |
|
56 | 56 |
/// \brief Widest path OperationTraits for the Dijkstra algorithm class. |
57 | 57 |
/// |
58 | 58 |
/// It defines all computational operations and constants which are |
59 | 59 |
/// used in the Dijkstra algorithm for widest path computation. |
60 | 60 |
template <typename Value> |
61 | 61 |
struct DijkstraWidestPathOperationTraits { |
62 | 62 |
/// \brief Gives back the maximum value of the type. |
63 | 63 |
static Value zero() { |
64 | 64 |
return std::numeric_limits<Value>::max(); |
65 | 65 |
} |
66 | 66 |
/// \brief Gives back the minimum of the given two elements. |
67 | 67 |
static Value plus(const Value& left, const Value& right) { |
68 | 68 |
return std::min(left, right); |
69 | 69 |
} |
70 | 70 |
/// \brief Gives back true only if the first value less than the second. |
71 | 71 |
static bool less(const Value& left, const Value& right) { |
72 | 72 |
return left < right; |
73 | 73 |
} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
///Default traits class of Dijkstra class. |
77 | 77 |
|
78 | 78 |
///Default traits class of Dijkstra class. |
79 | 79 |
///\tparam GR Digraph type. |
80 | 80 |
///\tparam LM Type of length map. |
81 | 81 |
template<class GR, class LM> |
82 | 82 |
struct DijkstraDefaultTraits |
83 | 83 |
{ |
84 | 84 |
///The digraph type the algorithm runs on. |
85 | 85 |
typedef GR Digraph; |
86 | 86 |
///The type of the map that stores the arc lengths. |
87 | 87 |
|
88 | 88 |
///The type of the map that stores the arc lengths. |
89 | 89 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
90 | 90 |
typedef LM LengthMap; |
91 | 91 |
//The type of the length of the arcs. |
92 | 92 |
typedef typename LM::Value Value; |
93 | 93 |
/// Operation traits for Dijkstra algorithm. |
94 | 94 |
|
95 | 95 |
/// It defines the used operation by the algorithm. |
96 | 96 |
/// \see DijkstraDefaultOperationTraits |
97 | 97 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
98 | 98 |
/// The cross reference type used by heap. |
99 | 99 |
|
100 | 100 |
|
101 | 101 |
/// The cross reference type used by heap. |
102 | 102 |
/// Usually it is \c Digraph::NodeMap<int>. |
103 | 103 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
104 | 104 |
///Instantiates a HeapCrossRef. |
105 | 105 |
|
106 | 106 |
///This function instantiates a \c HeapCrossRef. |
107 | 107 |
/// \param G is the digraph, to which we would like to define the |
108 | 108 |
/// HeapCrossRef. |
109 | 109 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
110 | 110 |
{ |
111 | 111 |
return new HeapCrossRef(G); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///The heap type used by Dijkstra algorithm. |
115 | 115 |
|
116 | 116 |
///The heap type used by Dijkstra algorithm. |
117 | 117 |
/// |
118 | 118 |
///\sa BinHeap |
119 | 119 |
///\sa Dijkstra |
120 | 120 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
121 | 121 |
|
122 | 122 |
static Heap *createHeap(HeapCrossRef& R) |
123 | 123 |
{ |
124 | 124 |
return new Heap(R); |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
///\brief The type of the map that stores the last |
128 | 128 |
///arcs of the shortest paths. |
129 | 129 |
/// |
130 | 130 |
///The type of the map that stores the last |
131 | 131 |
///arcs of the shortest paths. |
132 | 132 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
133 | 133 |
/// |
134 | 134 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
135 | 135 |
///Instantiates a PredMap. |
136 | 136 |
|
137 | 137 |
///This function instantiates a \c PredMap. |
138 | 138 |
///\param G is the digraph, to which we would like to define the PredMap. |
139 | 139 |
///\todo The digraph alone may be insufficient for the initialization |
140 | 140 |
static PredMap *createPredMap(const GR &G) |
141 | 141 |
{ |
142 | 142 |
return new PredMap(G); |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
///The type of the map that stores whether a nodes is processed. |
146 | 146 |
|
147 | 147 |
///The type of the map that stores whether a nodes is processed. |
148 | 148 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
149 | 149 |
///By default it is a NullMap. |
150 | 150 |
///\todo If it is set to a real map, |
151 | 151 |
///Dijkstra::processed() should read this. |
152 | 152 |
///\todo named parameter to set this type, function to read and write. |
153 | 153 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
154 | 154 |
///Instantiates a ProcessedMap. |
155 | 155 |
|
156 | 156 |
///This function instantiates a \c ProcessedMap. |
157 | 157 |
///\param g is the digraph, to which |
158 | 158 |
///we would like to define the \c ProcessedMap |
159 | 159 |
#ifdef DOXYGEN |
160 | 160 |
static ProcessedMap *createProcessedMap(const GR &g) |
161 | 161 |
#else |
162 | 162 |
static ProcessedMap *createProcessedMap(const GR &) |
163 | 163 |
#endif |
164 | 164 |
{ |
165 | 165 |
return new ProcessedMap(); |
166 | 166 |
} |
167 | 167 |
///The type of the map that stores the dists of the nodes. |
168 | 168 |
|
169 | 169 |
///The type of the map that stores the dists of the nodes. |
170 | 170 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
171 | 171 |
/// |
172 | 172 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
173 | 173 |
///Instantiates a DistMap. |
174 | 174 |
|
175 | 175 |
///This function instantiates a \ref DistMap. |
176 | 176 |
///\param G is the digraph, to which we would like to define |
177 | 177 |
///the \ref DistMap |
178 | 178 |
static DistMap *createDistMap(const GR &G) |
179 | 179 |
{ |
180 | 180 |
return new DistMap(G); |
181 | 181 |
} |
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
///%Dijkstra algorithm class. |
185 | 185 |
|
186 | 186 |
/// \ingroup shortest_path |
187 | 187 |
///This class provides an efficient implementation of %Dijkstra algorithm. |
188 | 188 |
///The arc lengths are passed to the algorithm using a |
189 | 189 |
///\ref concepts::ReadMap "ReadMap", |
190 | 190 |
///so it is easy to change it to any kind of length. |
191 | 191 |
/// |
192 | 192 |
///The type of the length is determined by the |
193 | 193 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
194 | 194 |
/// |
195 | 195 |
///It is also possible to change the underlying priority heap. |
196 | 196 |
/// |
197 | 197 |
///\tparam GR The digraph type the algorithm runs on. The default value |
198 | 198 |
///is \ref ListDigraph. The value of GR is not used directly by |
199 | 199 |
///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. |
200 | 200 |
///\tparam LM This read-only ArcMap determines the lengths of the |
201 | 201 |
///arcs. It is read once for each arc, so the map may involve in |
202 | 202 |
///relatively time consuming process to compute the arc length if |
203 | 203 |
///it is necessary. The default map type is \ref |
204 | 204 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value |
205 | 205 |
///of LM is not used directly by Dijkstra, it is only passed to \ref |
206 | 206 |
///DijkstraDefaultTraits. |
207 | 207 |
///\tparam TR Traits class to set |
208 | 208 |
///various data types used by the algorithm. The default traits |
209 | 209 |
///class is \ref DijkstraDefaultTraits |
210 | 210 |
///"DijkstraDefaultTraits<GR,LM>". See \ref |
211 | 211 |
///DijkstraDefaultTraits for the documentation of a Dijkstra traits |
212 | 212 |
///class. |
213 | 213 |
|
214 | 214 |
#ifdef DOXYGEN |
215 | 215 |
template <typename GR, typename LM, typename TR> |
216 | 216 |
#else |
217 | 217 |
template <typename GR=ListDigraph, |
218 | 218 |
typename LM=typename GR::template ArcMap<int>, |
219 | 219 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
220 | 220 |
#endif |
221 | 221 |
class Dijkstra { |
222 | 222 |
public: |
223 | 223 |
/** |
224 | 224 |
* \brief \ref Exception for uninitialized parameters. |
225 | 225 |
* |
226 | 226 |
* This error represents problems in the initialization |
227 | 227 |
* of the parameters of the algorithms. |
228 | 228 |
*/ |
229 | 229 |
class UninitializedParameter : public lemon::UninitializedParameter { |
230 | 230 |
public: |
231 | 231 |
virtual const char* what() const throw() { |
232 | 232 |
return "lemon::Dijkstra::UninitializedParameter"; |
233 | 233 |
} |
234 | 234 |
}; |
235 | 235 |
|
236 | 236 |
typedef TR Traits; |
237 | 237 |
///The type of the underlying digraph. |
238 | 238 |
typedef typename TR::Digraph Digraph; |
239 | 239 |
///\e |
240 | 240 |
typedef typename Digraph::Node Node; |
241 | 241 |
///\e |
242 | 242 |
typedef typename Digraph::NodeIt NodeIt; |
243 | 243 |
///\e |
244 | 244 |
typedef typename Digraph::Arc Arc; |
245 | 245 |
///\e |
246 | 246 |
typedef typename Digraph::OutArcIt OutArcIt; |
247 | 247 |
|
248 | 248 |
///The type of the length of the arcs. |
249 | 249 |
typedef typename TR::LengthMap::Value Value; |
250 | 250 |
///The type of the map that stores the arc lengths. |
251 | 251 |
typedef typename TR::LengthMap LengthMap; |
252 | 252 |
///\brief The type of the map that stores the last |
253 | 253 |
///arcs of the shortest paths. |
254 | 254 |
typedef typename TR::PredMap PredMap; |
255 | 255 |
///The type of the map indicating if a node is processed. |
256 | 256 |
typedef typename TR::ProcessedMap ProcessedMap; |
257 | 257 |
///The type of the map that stores the dists of the nodes. |
258 | 258 |
typedef typename TR::DistMap DistMap; |
259 | 259 |
///The cross reference type used for the current heap. |
260 | 260 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
261 | 261 |
///The heap type used by the dijkstra algorithm. |
262 | 262 |
typedef typename TR::Heap Heap; |
263 | 263 |
///The operation traits. |
264 | 264 |
typedef typename TR::OperationTraits OperationTraits; |
265 | 265 |
private: |
266 | 266 |
/// Pointer to the underlying digraph. |
267 | 267 |
const Digraph *G; |
268 | 268 |
/// Pointer to the length map |
269 | 269 |
const LengthMap *length; |
270 | 270 |
///Pointer to the map of predecessors arcs. |
271 | 271 |
PredMap *_pred; |
272 | 272 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
273 | 273 |
bool local_pred; |
274 | 274 |
///Pointer to the map of distances. |
275 | 275 |
DistMap *_dist; |
276 | 276 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
277 | 277 |
bool local_dist; |
278 | 278 |
///Pointer to the map of processed status of the nodes. |
279 | 279 |
ProcessedMap *_processed; |
280 | 280 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
281 | 281 |
bool local_processed; |
282 | 282 |
///Pointer to the heap cross references. |
283 | 283 |
HeapCrossRef *_heap_cross_ref; |
284 | 284 |
///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
285 | 285 |
bool local_heap_cross_ref; |
286 | 286 |
///Pointer to the heap. |
287 | 287 |
Heap *_heap; |
288 | 288 |
///Indicates if \ref _heap is locally allocated (\c true) or not. |
289 | 289 |
bool local_heap; |
290 | 290 |
|
291 | 291 |
///Creates the maps if necessary. |
292 | 292 |
|
293 | 293 |
///\todo Better memory allocation (instead of new). |
294 | 294 |
void create_maps() |
295 | 295 |
{ |
296 | 296 |
if(!_pred) { |
297 | 297 |
local_pred = true; |
298 | 298 |
_pred = Traits::createPredMap(*G); |
299 | 299 |
} |
300 | 300 |
if(!_dist) { |
301 | 301 |
local_dist = true; |
302 | 302 |
_dist = Traits::createDistMap(*G); |
303 | 303 |
} |
304 | 304 |
if(!_processed) { |
305 | 305 |
local_processed = true; |
306 | 306 |
_processed = Traits::createProcessedMap(*G); |
307 | 307 |
} |
308 | 308 |
if (!_heap_cross_ref) { |
309 | 309 |
local_heap_cross_ref = true; |
310 | 310 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
311 | 311 |
} |
312 | 312 |
if (!_heap) { |
313 | 313 |
local_heap = true; |
314 | 314 |
_heap = Traits::createHeap(*_heap_cross_ref); |
315 | 315 |
} |
316 | 316 |
} |
317 | 317 |
|
318 | 318 |
public : |
319 | 319 |
|
320 | 320 |
typedef Dijkstra Create; |
321 | 321 |
|
322 | 322 |
///\name Named template parameters |
323 | 323 |
|
324 | 324 |
///@{ |
325 | 325 |
|
326 | 326 |
template <class T> |
327 | 327 |
struct DefPredMapTraits : public Traits { |
328 | 328 |
typedef T PredMap; |
329 | 329 |
static PredMap *createPredMap(const Digraph &) |
330 | 330 |
{ |
331 | 331 |
throw UninitializedParameter(); |
332 | 332 |
} |
333 | 333 |
}; |
334 | 334 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
335 | 335 |
|
336 | 336 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
337 | 337 |
/// |
338 | 338 |
template <class T> |
339 | 339 |
struct DefPredMap |
340 | 340 |
: public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > { |
341 | 341 |
typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
342 | 342 |
}; |
343 | 343 |
|
344 | 344 |
template <class T> |
345 | 345 |
struct DefDistMapTraits : public Traits { |
346 | 346 |
typedef T DistMap; |
347 | 347 |
static DistMap *createDistMap(const Digraph &) |
348 | 348 |
{ |
349 | 349 |
throw UninitializedParameter(); |
350 | 350 |
} |
351 | 351 |
}; |
352 | 352 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
353 | 353 |
|
354 | 354 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
355 | 355 |
/// |
356 | 356 |
template <class T> |
357 | 357 |
struct DefDistMap |
358 | 358 |
: public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > { |
359 | 359 |
typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
360 | 360 |
}; |
361 | 361 |
|
362 | 362 |
template <class T> |
363 | 363 |
struct DefProcessedMapTraits : public Traits { |
364 | 364 |
typedef T ProcessedMap; |
365 | 365 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
366 | 366 |
{ |
367 | 367 |
throw UninitializedParameter(); |
368 | 368 |
} |
369 | 369 |
}; |
370 | 370 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
371 | 371 |
|
372 | 372 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
373 | 373 |
/// |
374 | 374 |
template <class T> |
375 | 375 |
struct DefProcessedMap |
376 | 376 |
: public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > { |
377 | 377 |
typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create; |
378 | 378 |
}; |
379 | 379 |
|
380 | 380 |
struct DefDigraphProcessedMapTraits : public Traits { |
381 | 381 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
382 | 382 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
383 | 383 |
{ |
384 | 384 |
return new ProcessedMap(G); |
385 | 385 |
} |
386 | 386 |
}; |
387 | 387 |
///\brief \ref named-templ-param "Named parameter" |
388 | 388 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
389 | 389 |
/// |
390 | 390 |
///\ref named-templ-param "Named parameter" |
391 | 391 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
392 | 392 |
///If you don't set it explicitely, it will be automatically allocated. |
393 | 393 |
template <class T> |
394 | 394 |
struct DefProcessedMapToBeDefaultMap |
395 | 395 |
: public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> { |
396 | 396 |
typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> |
397 | 397 |
Create; |
398 | 398 |
}; |
399 | 399 |
|
400 | 400 |
template <class H, class CR> |
401 | 401 |
struct DefHeapTraits : public Traits { |
402 | 402 |
typedef CR HeapCrossRef; |
403 | 403 |
typedef H Heap; |
404 | 404 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
405 | 405 |
throw UninitializedParameter(); |
406 | 406 |
} |
407 | 407 |
static Heap *createHeap(HeapCrossRef &) |
408 | 408 |
{ |
409 | 409 |
throw UninitializedParameter(); |
410 | 410 |
} |
411 | 411 |
}; |
412 | 412 |
///\brief \ref named-templ-param "Named parameter" for setting |
413 | 413 |
///heap and cross reference type |
414 | 414 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 |
#include <lemon/ |
|
23 |
#include <lemon/core.h> |
|
24 | 24 |
|
25 | 25 |
///\ingroup misc |
26 | 26 |
///\file |
27 | 27 |
///\brief A simple two dimensional vector and a bounding box implementation |
28 | 28 |
/// |
29 | 29 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
30 | 30 |
/// a two dimensional vector with the usual operations. |
31 | 31 |
/// |
32 | 32 |
/// The class \ref lemon::dim2::BoundingBox "dim2::BoundingBox" |
33 | 33 |
/// can be used to determine |
34 | 34 |
/// the rectangular bounding box of a set of |
35 | 35 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
///Tools for handling two dimensional coordinates |
40 | 40 |
|
41 | 41 |
///This namespace is a storage of several |
42 | 42 |
///tools for handling two dimensional coordinates |
43 | 43 |
namespace dim2 { |
44 | 44 |
|
45 | 45 |
/// \addtogroup misc |
46 | 46 |
/// @{ |
47 | 47 |
|
48 | 48 |
/// A simple two dimensional vector (plainvector) implementation |
49 | 49 |
|
50 | 50 |
/// A simple two dimensional vector (plainvector) implementation |
51 | 51 |
/// with the usual vector operations. |
52 | 52 |
template<typename T> |
53 | 53 |
class Point { |
54 | 54 |
|
55 | 55 |
public: |
56 | 56 |
|
57 | 57 |
typedef T Value; |
58 | 58 |
|
59 | 59 |
///First coordinate |
60 | 60 |
T x; |
61 | 61 |
///Second coordinate |
62 | 62 |
T y; |
63 | 63 |
|
64 | 64 |
///Default constructor |
65 | 65 |
Point() {} |
66 | 66 |
|
67 | 67 |
///Construct an instance from coordinates |
68 | 68 |
Point(T a, T b) : x(a), y(b) { } |
69 | 69 |
|
70 | 70 |
///Returns the dimension of the vector (i.e. returns 2). |
71 | 71 |
|
72 | 72 |
///The dimension of the vector. |
73 | 73 |
///This function always returns 2. |
74 | 74 |
int size() const { return 2; } |
75 | 75 |
|
76 | 76 |
///Subscripting operator |
77 | 77 |
|
78 | 78 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
79 | 79 |
/// |
80 | 80 |
T& operator[](int idx) { return idx == 0 ? x : y; } |
81 | 81 |
|
82 | 82 |
///Const subscripting operator |
83 | 83 |
|
84 | 84 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
85 | 85 |
/// |
86 | 86 |
const T& operator[](int idx) const { return idx == 0 ? x : y; } |
87 | 87 |
|
88 | 88 |
///Conversion constructor |
89 | 89 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} |
90 | 90 |
|
91 | 91 |
///Give back the square of the norm of the vector |
92 | 92 |
T normSquare() const { |
93 | 93 |
return x*x+y*y; |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
///Increment the left hand side by \c u |
97 | 97 |
Point<T>& operator +=(const Point<T>& u) { |
98 | 98 |
x += u.x; |
99 | 99 |
y += u.y; |
100 | 100 |
return *this; |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
///Decrement the left hand side by \c u |
104 | 104 |
Point<T>& operator -=(const Point<T>& u) { |
105 | 105 |
x -= u.x; |
106 | 106 |
y -= u.y; |
107 | 107 |
return *this; |
108 | 108 |
} |
109 | 109 |
|
110 | 110 |
///Multiply the left hand side with a scalar |
111 | 111 |
Point<T>& operator *=(const T &u) { |
112 | 112 |
x *= u; |
113 | 113 |
y *= u; |
114 | 114 |
return *this; |
115 | 115 |
} |
116 | 116 |
|
117 | 117 |
///Divide the left hand side by a scalar |
118 | 118 |
Point<T>& operator /=(const T &u) { |
119 | 119 |
x /= u; |
120 | 120 |
y /= u; |
121 | 121 |
return *this; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
///Return the scalar product of two vectors |
125 | 125 |
T operator *(const Point<T>& u) const { |
126 | 126 |
return x*u.x+y*u.y; |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
///Return the sum of two vectors |
130 | 130 |
Point<T> operator+(const Point<T> &u) const { |
131 | 131 |
Point<T> b=*this; |
132 | 132 |
return b+=u; |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
///Return the negative of the vector |
136 | 136 |
Point<T> operator-() const { |
137 | 137 |
Point<T> b=*this; |
138 | 138 |
b.x=-b.x; b.y=-b.y; |
139 | 139 |
return b; |
140 | 140 |
} |
141 | 141 |
|
142 | 142 |
///Return the difference of two vectors |
143 | 143 |
Point<T> operator-(const Point<T> &u) const { |
144 | 144 |
Point<T> b=*this; |
145 | 145 |
return b-=u; |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
///Return a vector multiplied by a scalar |
149 | 149 |
Point<T> operator*(const T &u) const { |
150 | 150 |
Point<T> b=*this; |
151 | 151 |
return b*=u; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
///Return a vector divided by a scalar |
155 | 155 |
Point<T> operator/(const T &u) const { |
156 | 156 |
Point<T> b=*this; |
157 | 157 |
return b/=u; |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
///Test equality |
161 | 161 |
bool operator==(const Point<T> &u) const { |
162 | 162 |
return (x==u.x) && (y==u.y); |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
///Test inequality |
166 | 166 |
bool operator!=(Point u) const { |
167 | 167 |
return (x!=u.x) || (y!=u.y); |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
///Return a Point |
173 | 173 |
|
174 | 174 |
///Return a Point. |
175 | 175 |
///\relates Point |
176 | 176 |
template <typename T> |
177 | 177 |
inline Point<T> makePoint(const T& x, const T& y) { |
178 | 178 |
return Point<T>(x, y); |
179 | 179 |
} |
180 | 180 |
|
181 | 181 |
///Return a vector multiplied by a scalar |
182 | 182 |
|
183 | 183 |
///Return a vector multiplied by a scalar. |
184 | 184 |
///\relates Point |
185 | 185 |
template<typename T> Point<T> operator*(const T &u,const Point<T> &x) { |
186 | 186 |
return x*u; |
187 | 187 |
} |
188 | 188 |
|
189 | 189 |
///Read a plainvector from a stream |
190 | 190 |
|
191 | 191 |
///Read a plainvector from a stream. |
192 | 192 |
///\relates Point |
193 | 193 |
/// |
194 | 194 |
template<typename T> |
195 | 195 |
inline std::istream& operator>>(std::istream &is, Point<T> &z) { |
196 | 196 |
char c; |
197 | 197 |
if (is >> c) { |
198 | 198 |
if (c != '(') is.putback(c); |
199 | 199 |
} else { |
200 | 200 |
is.clear(); |
201 | 201 |
} |
202 | 202 |
if (!(is >> z.x)) return is; |
203 | 203 |
if (is >> c) { |
204 | 204 |
if (c != ',') is.putback(c); |
205 | 205 |
} else { |
206 | 206 |
is.clear(); |
207 | 207 |
} |
208 | 208 |
if (!(is >> z.y)) return is; |
209 | 209 |
if (is >> c) { |
210 | 210 |
if (c != ')') is.putback(c); |
211 | 211 |
} else { |
212 | 212 |
is.clear(); |
213 | 213 |
} |
214 | 214 |
return is; |
215 | 215 |
} |
216 | 216 |
|
217 | 217 |
///Write a plainvector to a stream |
218 | 218 |
|
219 | 219 |
///Write a plainvector to a stream. |
220 | 220 |
///\relates Point |
221 | 221 |
/// |
222 | 222 |
template<typename T> |
223 | 223 |
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) |
224 | 224 |
{ |
225 | 225 |
os << "(" << z.x << ", " << z.y << ")"; |
226 | 226 |
return os; |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
///Rotate by 90 degrees |
230 | 230 |
|
231 | 231 |
///Returns the parameter rotated by 90 degrees in positive direction. |
232 | 232 |
///\relates Point |
233 | 233 |
/// |
234 | 234 |
template<typename T> |
235 | 235 |
inline Point<T> rot90(const Point<T> &z) |
236 | 236 |
{ |
237 | 237 |
return Point<T>(-z.y,z.x); |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
///Rotate by 180 degrees |
241 | 241 |
|
242 | 242 |
///Returns the parameter rotated by 180 degrees. |
243 | 243 |
///\relates Point |
244 | 244 |
/// |
245 | 245 |
template<typename T> |
246 | 246 |
inline Point<T> rot180(const Point<T> &z) |
247 | 247 |
{ |
248 | 248 |
return Point<T>(-z.x,-z.y); |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
///Rotate by 270 degrees |
252 | 252 |
|
253 | 253 |
///Returns the parameter rotated by 90 degrees in negative direction. |
254 | 254 |
///\relates Point |
255 | 255 |
/// |
256 | 256 |
template<typename T> |
257 | 257 |
inline Point<T> rot270(const Point<T> &z) |
258 | 258 |
{ |
259 | 259 |
return Point<T>(z.y,-z.x); |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
|
263 | 263 |
|
264 | 264 |
/// A class to calculate or store the bounding box of plainvectors. |
265 | 265 |
|
266 | 266 |
/// A class to calculate or store the bounding box of plainvectors. |
267 | 267 |
/// |
268 | 268 |
template<typename T> |
269 | 269 |
class BoundingBox { |
270 | 270 |
Point<T> bottom_left, top_right; |
271 | 271 |
bool _empty; |
272 | 272 |
public: |
273 | 273 |
|
274 | 274 |
///Default constructor: creates an empty bounding box |
275 | 275 |
BoundingBox() { _empty = true; } |
276 | 276 |
|
277 | 277 |
///Construct an instance from one point |
278 | 278 |
BoundingBox(Point<T> a) { bottom_left=top_right=a; _empty = false; } |
279 | 279 |
|
280 | 280 |
///Construct an instance from two points |
281 | 281 |
|
282 | 282 |
///Construct an instance from two points. |
283 | 283 |
///\param a The bottom left corner. |
284 | 284 |
///\param b The top right corner. |
285 | 285 |
///\warning The coordinates of the bottom left corner must be no more |
286 | 286 |
///than those of the top right one. |
287 | 287 |
BoundingBox(Point<T> a,Point<T> b) |
288 | 288 |
{ |
289 | 289 |
bottom_left=a; |
290 | 290 |
top_right=b; |
291 | 291 |
_empty = false; |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
///Construct an instance from four numbers |
295 | 295 |
|
296 | 296 |
///Construct an instance from four numbers. |
297 | 297 |
///\param l The left side of the box. |
298 | 298 |
///\param b The bottom of the box. |
299 | 299 |
///\param r The right side of the box. |
300 | 300 |
///\param t The top of the box. |
301 | 301 |
///\warning The left side must be no more than the right side and |
302 | 302 |
///bottom must be no more than the top. |
303 | 303 |
BoundingBox(T l,T b,T r,T t) |
304 | 304 |
{ |
305 | 305 |
bottom_left=Point<T>(l,b); |
306 | 306 |
top_right=Point<T>(r,t); |
307 | 307 |
_empty = false; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
///Return \c true if the bounding box is empty. |
311 | 311 |
|
312 | 312 |
///Return \c true if the bounding box is empty (i.e. return \c false |
313 | 313 |
///if at least one point was added to the box or the coordinates of |
314 | 314 |
///the box were set). |
315 | 315 |
/// |
316 | 316 |
///The coordinates of an empty bounding box are not defined. |
317 | 317 |
bool empty() const { |
318 | 318 |
return _empty; |
319 | 319 |
} |
320 | 320 |
|
321 | 321 |
///Make the BoundingBox empty |
322 | 322 |
void clear() { |
323 | 323 |
_empty=1; |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
///Give back the bottom left corner of the box |
327 | 327 |
|
328 | 328 |
///Give back the bottom left corner of the box. |
329 | 329 |
///If the bounding box is empty, then the return value is not defined. |
330 | 330 |
Point<T> bottomLeft() const { |
331 | 331 |
return bottom_left; |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
///Set the bottom left corner of the box |
335 | 335 |
|
336 | 336 |
///Set the bottom left corner of the box. |
337 | 337 |
///It should only be used for non-empty box. |
338 | 338 |
void bottomLeft(Point<T> p) { |
339 | 339 |
bottom_left = p; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
///Give back the top right corner of the box |
343 | 343 |
|
344 | 344 |
///Give back the top right corner of the box. |
345 | 345 |
///If the bounding box is empty, then the return value is not defined. |
346 | 346 |
Point<T> topRight() const { |
347 | 347 |
return top_right; |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
///Set the top right corner of the box |
351 | 351 |
|
352 | 352 |
///Set the top right corner of the box. |
353 | 353 |
///It should only be used for non-empty box. |
354 | 354 |
void topRight(Point<T> p) { |
355 | 355 |
top_right = p; |
356 | 356 |
} |
357 | 357 |
|
358 | 358 |
///Give back the bottom right corner of the box |
359 | 359 |
|
360 | 360 |
///Give back the bottom right corner of the box. |
361 | 361 |
///If the bounding box is empty, then the return value is not defined. |
362 | 362 |
Point<T> bottomRight() const { |
363 | 363 |
return Point<T>(top_right.x,bottom_left.y); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
///Set the bottom right corner of the box |
367 | 367 |
|
368 | 368 |
///Set the bottom right corner of the box. |
369 | 369 |
///It should only be used for non-empty box. |
370 | 370 |
void bottomRight(Point<T> p) { |
371 | 371 |
top_right.x = p.x; |
372 | 372 |
bottom_left.y = p.y; |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
///Give back the top left corner of the box |
376 | 376 |
|
377 | 377 |
///Give back the top left corner of the box. |
378 | 378 |
///If the bounding box is empty, then the return value is not defined. |
379 | 379 |
Point<T> topLeft() const { |
380 | 380 |
return Point<T>(bottom_left.x,top_right.y); |
381 | 381 |
} |
382 | 382 |
|
383 | 383 |
///Set the top left corner of the box |
384 | 384 |
|
385 | 385 |
///Set the top left corner of the box. |
386 | 386 |
///It should only be used for non-empty box. |
387 | 387 |
void topLeft(Point<T> p) { |
388 | 388 |
top_right.y = p.y; |
389 | 389 |
bottom_left.x = p.x; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
///Give back the bottom of the box |
393 | 393 |
|
394 | 394 |
///Give back the bottom of the box. |
395 | 395 |
///If the bounding box is empty, then the return value is not defined. |
396 | 396 |
T bottom() const { |
397 | 397 |
return bottom_left.y; |
398 | 398 |
} |
399 | 399 |
|
400 | 400 |
///Set the bottom of the box |
401 | 401 |
|
402 | 402 |
///Set the bottom of the box. |
403 | 403 |
///It should only be used for non-empty box. |
404 | 404 |
void bottom(T t) { |
405 | 405 |
bottom_left.y = t; |
406 | 406 |
} |
407 | 407 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#define WIN32_LEAN_AND_MEAN |
33 | 33 |
#define NOMINMAX |
34 | 34 |
#include<windows.h> |
35 | 35 |
#endif |
36 | 36 |
|
37 | 37 |
#include<lemon/math.h> |
38 |
#include<lemon/ |
|
38 |
#include<lemon/core.h> |
|
39 | 39 |
#include<lemon/dim2.h> |
40 | 40 |
#include<lemon/maps.h> |
41 | 41 |
#include<lemon/color.h> |
42 | 42 |
#include<lemon/bits/bezier.h> |
43 | 43 |
|
44 | 44 |
|
45 | 45 |
///\ingroup eps_io |
46 | 46 |
///\file |
47 | 47 |
///\brief A well configurable tool for visualizing graphs |
48 | 48 |
|
49 | 49 |
namespace lemon { |
50 | 50 |
|
51 | 51 |
namespace _graph_to_eps_bits { |
52 | 52 |
template<class MT> |
53 | 53 |
class _NegY { |
54 | 54 |
public: |
55 | 55 |
typedef typename MT::Key Key; |
56 | 56 |
typedef typename MT::Value Value; |
57 | 57 |
const MT ↦ |
58 | 58 |
int yscale; |
59 | 59 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
60 | 60 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
61 | 61 |
}; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
///Default traits class of \ref GraphToEps |
65 | 65 |
|
66 | 66 |
///Default traits class of \ref GraphToEps. |
67 | 67 |
/// |
68 | 68 |
///\c G is the type of the underlying graph. |
69 | 69 |
template<class G> |
70 | 70 |
struct DefaultGraphToEpsTraits |
71 | 71 |
{ |
72 | 72 |
typedef G Graph; |
73 | 73 |
typedef typename Graph::Node Node; |
74 | 74 |
typedef typename Graph::NodeIt NodeIt; |
75 | 75 |
typedef typename Graph::Arc Arc; |
76 | 76 |
typedef typename Graph::ArcIt ArcIt; |
77 | 77 |
typedef typename Graph::InArcIt InArcIt; |
78 | 78 |
typedef typename Graph::OutArcIt OutArcIt; |
79 | 79 |
|
80 | 80 |
|
81 | 81 |
const Graph &g; |
82 | 82 |
|
83 | 83 |
std::ostream& os; |
84 | 84 |
|
85 | 85 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
86 | 86 |
CoordsMapType _coords; |
87 | 87 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
88 | 88 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
89 | 89 |
|
90 | 90 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
91 | 91 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
92 | 92 |
|
93 | 93 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
94 | 94 |
|
95 | 95 |
double _arcWidthScale; |
96 | 96 |
|
97 | 97 |
double _nodeScale; |
98 | 98 |
double _xBorder, _yBorder; |
99 | 99 |
double _scale; |
100 | 100 |
double _nodeBorderQuotient; |
101 | 101 |
|
102 | 102 |
bool _drawArrows; |
103 | 103 |
double _arrowLength, _arrowWidth; |
104 | 104 |
|
105 | 105 |
bool _showNodes, _showArcs; |
106 | 106 |
|
107 | 107 |
bool _enableParallel; |
108 | 108 |
double _parArcDist; |
109 | 109 |
|
110 | 110 |
bool _showNodeText; |
111 | 111 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
112 | 112 |
double _nodeTextSize; |
113 | 113 |
|
114 | 114 |
bool _showNodePsText; |
115 | 115 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
116 | 116 |
char *_nodePsTextsPreamble; |
117 | 117 |
|
118 | 118 |
bool _undirected; |
119 | 119 |
|
120 | 120 |
bool _pleaseRemoveOsStream; |
121 | 121 |
|
122 | 122 |
bool _scaleToA4; |
123 | 123 |
|
124 | 124 |
std::string _title; |
125 | 125 |
std::string _copyright; |
126 | 126 |
|
127 | 127 |
enum NodeTextColorType |
128 | 128 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
129 | 129 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
130 | 130 |
|
131 | 131 |
bool _autoNodeScale; |
132 | 132 |
bool _autoArcWidthScale; |
133 | 133 |
|
134 | 134 |
bool _absoluteNodeSizes; |
135 | 135 |
bool _absoluteArcWidths; |
136 | 136 |
|
137 | 137 |
bool _negY; |
138 | 138 |
|
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param _g Reference to the graph to be printed. |
144 | 144 |
///\param _os Reference to the output stream. |
145 | 145 |
///\param _os Reference to the output stream. |
146 | 146 |
///By default it is <tt>std::cout</tt>. |
147 | 147 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
148 | 148 |
///will be explicitly deallocated by the destructor. |
149 | 149 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
150 | 150 |
bool _pros=false) : |
151 | 151 |
g(_g), os(_os), |
152 | 152 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
153 | 153 |
_nodeColors(WHITE), _arcColors(BLACK), |
154 | 154 |
_arcWidths(1.0), _arcWidthScale(0.003), |
155 | 155 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
156 | 156 |
_nodeBorderQuotient(.1), |
157 | 157 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
158 | 158 |
_showNodes(true), _showArcs(true), |
159 | 159 |
_enableParallel(false), _parArcDist(1), |
160 | 160 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
161 | 161 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
162 | 162 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
163 | 163 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
164 | 164 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
165 | 165 |
_autoNodeScale(false), |
166 | 166 |
_autoArcWidthScale(false), |
167 | 167 |
_absoluteNodeSizes(false), |
168 | 168 |
_absoluteArcWidths(false), |
169 | 169 |
_negY(false), |
170 | 170 |
_preScale(true) |
171 | 171 |
{} |
172 | 172 |
}; |
173 | 173 |
|
174 | 174 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
175 | 175 |
|
176 | 176 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
177 | 177 |
/// |
178 | 178 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
179 | 179 |
template<class T> class GraphToEps : public T |
180 | 180 |
{ |
181 | 181 |
// Can't believe it is required by the C++ standard |
182 | 182 |
using T::g; |
183 | 183 |
using T::os; |
184 | 184 |
|
185 | 185 |
using T::_coords; |
186 | 186 |
using T::_nodeSizes; |
187 | 187 |
using T::_nodeShapes; |
188 | 188 |
using T::_nodeColors; |
189 | 189 |
using T::_arcColors; |
190 | 190 |
using T::_arcWidths; |
191 | 191 |
|
192 | 192 |
using T::_arcWidthScale; |
193 | 193 |
using T::_nodeScale; |
194 | 194 |
using T::_xBorder; |
195 | 195 |
using T::_yBorder; |
196 | 196 |
using T::_scale; |
197 | 197 |
using T::_nodeBorderQuotient; |
198 | 198 |
|
199 | 199 |
using T::_drawArrows; |
200 | 200 |
using T::_arrowLength; |
201 | 201 |
using T::_arrowWidth; |
202 | 202 |
|
203 | 203 |
using T::_showNodes; |
204 | 204 |
using T::_showArcs; |
205 | 205 |
|
206 | 206 |
using T::_enableParallel; |
207 | 207 |
using T::_parArcDist; |
208 | 208 |
|
209 | 209 |
using T::_showNodeText; |
210 | 210 |
using T::_nodeTexts; |
211 | 211 |
using T::_nodeTextSize; |
212 | 212 |
|
213 | 213 |
using T::_showNodePsText; |
214 | 214 |
using T::_nodePsTexts; |
215 | 215 |
using T::_nodePsTextsPreamble; |
216 | 216 |
|
217 | 217 |
using T::_undirected; |
218 | 218 |
|
219 | 219 |
using T::_pleaseRemoveOsStream; |
220 | 220 |
|
221 | 221 |
using T::_scaleToA4; |
222 | 222 |
|
223 | 223 |
using T::_title; |
224 | 224 |
using T::_copyright; |
225 | 225 |
|
226 | 226 |
using T::NodeTextColorType; |
227 | 227 |
using T::CUST_COL; |
228 | 228 |
using T::DIST_COL; |
229 | 229 |
using T::DIST_BW; |
230 | 230 |
using T::_nodeTextColorType; |
231 | 231 |
using T::_nodeTextColors; |
232 | 232 |
|
233 | 233 |
using T::_autoNodeScale; |
234 | 234 |
using T::_autoArcWidthScale; |
235 | 235 |
|
236 | 236 |
using T::_absoluteNodeSizes; |
237 | 237 |
using T::_absoluteArcWidths; |
238 | 238 |
|
239 | 239 |
|
240 | 240 |
using T::_negY; |
241 | 241 |
using T::_preScale; |
242 | 242 |
|
243 | 243 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
244 | 244 |
|
245 | 245 |
typedef typename T::Graph Graph; |
246 | 246 |
typedef typename Graph::Node Node; |
247 | 247 |
typedef typename Graph::NodeIt NodeIt; |
248 | 248 |
typedef typename Graph::Arc Arc; |
249 | 249 |
typedef typename Graph::ArcIt ArcIt; |
250 | 250 |
typedef typename Graph::InArcIt InArcIt; |
251 | 251 |
typedef typename Graph::OutArcIt OutArcIt; |
252 | 252 |
|
253 | 253 |
static const int INTERPOL_PREC; |
254 | 254 |
static const double A4HEIGHT; |
255 | 255 |
static const double A4WIDTH; |
256 | 256 |
static const double A4BORDER; |
257 | 257 |
|
258 | 258 |
bool dontPrint; |
259 | 259 |
|
260 | 260 |
public: |
261 | 261 |
///Node shapes |
262 | 262 |
|
263 | 263 |
///Node shapes. |
264 | 264 |
/// |
265 | 265 |
enum NodeShapes { |
266 | 266 |
/// = 0 |
267 | 267 |
///\image html nodeshape_0.png |
268 | 268 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
269 | 269 |
CIRCLE=0, |
270 | 270 |
/// = 1 |
271 | 271 |
///\image html nodeshape_1.png |
272 | 272 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
273 | 273 |
/// |
274 | 274 |
SQUARE=1, |
275 | 275 |
/// = 2 |
276 | 276 |
///\image html nodeshape_2.png |
277 | 277 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
278 | 278 |
/// |
279 | 279 |
DIAMOND=2, |
280 | 280 |
/// = 3 |
281 | 281 |
///\image html nodeshape_3.png |
282 | 282 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
283 | 283 |
/// |
284 | 284 |
MALE=3, |
285 | 285 |
/// = 4 |
286 | 286 |
///\image html nodeshape_4.png |
287 | 287 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
288 | 288 |
/// |
289 | 289 |
FEMALE=4 |
290 | 290 |
}; |
291 | 291 |
|
292 | 292 |
private: |
293 | 293 |
class arcLess { |
294 | 294 |
const Graph &g; |
295 | 295 |
public: |
296 | 296 |
arcLess(const Graph &_g) : g(_g) {} |
297 | 297 |
bool operator()(Arc a,Arc b) const |
298 | 298 |
{ |
299 | 299 |
Node ai=std::min(g.source(a),g.target(a)); |
300 | 300 |
Node aa=std::max(g.source(a),g.target(a)); |
301 | 301 |
Node bi=std::min(g.source(b),g.target(b)); |
302 | 302 |
Node ba=std::max(g.source(b),g.target(b)); |
303 | 303 |
return ai<bi || |
304 | 304 |
(ai==bi && (aa < ba || |
305 | 305 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
306 | 306 |
} |
307 | 307 |
}; |
308 | 308 |
bool isParallel(Arc e,Arc f) const |
309 | 309 |
{ |
310 | 310 |
return (g.source(e)==g.source(f)&& |
311 | 311 |
g.target(e)==g.target(f)) || |
312 | 312 |
(g.source(e)==g.target(f)&& |
313 | 313 |
g.target(e)==g.source(f)); |
314 | 314 |
} |
315 | 315 |
template<class TT> |
316 | 316 |
static std::string psOut(const dim2::Point<TT> &p) |
317 | 317 |
{ |
318 | 318 |
std::ostringstream os; |
319 | 319 |
os << p.x << ' ' << p.y; |
320 | 320 |
return os.str(); |
321 | 321 |
} |
322 | 322 |
static std::string psOut(const Color &c) |
323 | 323 |
{ |
324 | 324 |
std::ostringstream os; |
325 | 325 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
326 | 326 |
return os.str(); |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
public: |
330 | 330 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
331 | 331 |
|
332 | 332 |
template<class X> struct CoordsTraits : public T { |
333 | 333 |
typedef X CoordsMapType; |
334 | 334 |
const X &_coords; |
335 | 335 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
336 | 336 |
}; |
337 | 337 |
///Sets the map of the node coordinates |
338 | 338 |
|
339 | 339 |
///Sets the map of the node coordinates. |
340 | 340 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
341 | 341 |
///\ref dim2::Point "dim2::Point<int>" values. |
342 | 342 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
343 | 343 |
dontPrint=true; |
344 | 344 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
345 | 345 |
} |
346 | 346 |
template<class X> struct NodeSizesTraits : public T { |
347 | 347 |
const X &_nodeSizes; |
348 | 348 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
349 | 349 |
}; |
350 | 350 |
///Sets the map of the node sizes |
351 | 351 |
|
352 | 352 |
///Sets the map of the node sizes. |
353 | 353 |
///\param x must be a node map with \c double (or convertible) values. |
354 | 354 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
355 | 355 |
{ |
356 | 356 |
dontPrint=true; |
357 | 357 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
358 | 358 |
} |
359 | 359 |
template<class X> struct NodeShapesTraits : public T { |
360 | 360 |
const X &_nodeShapes; |
361 | 361 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
362 | 362 |
}; |
363 | 363 |
///Sets the map of the node shapes |
364 | 364 |
|
365 | 365 |
///Sets the map of the node shapes. |
366 | 366 |
///The available shape values |
367 | 367 |
///can be found in \ref NodeShapes "enum NodeShapes". |
368 | 368 |
///\param x must be a node map with \c int (or convertible) values. |
369 | 369 |
///\sa NodeShapes |
370 | 370 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
371 | 371 |
{ |
372 | 372 |
dontPrint=true; |
373 | 373 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
374 | 374 |
} |
375 | 375 |
template<class X> struct NodeTextsTraits : public T { |
376 | 376 |
const X &_nodeTexts; |
377 | 377 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
378 | 378 |
}; |
379 | 379 |
///Sets the text printed on the nodes |
380 | 380 |
|
381 | 381 |
///Sets the text printed on the nodes. |
382 | 382 |
///\param x must be a node map with type that can be pushed to a standard |
383 | 383 |
///\c ostream. |
384 | 384 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
385 | 385 |
{ |
386 | 386 |
dontPrint=true; |
387 | 387 |
_showNodeText=true; |
388 | 388 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
389 | 389 |
} |
390 | 390 |
template<class X> struct NodePsTextsTraits : public T { |
391 | 391 |
const X &_nodePsTexts; |
392 | 392 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
393 | 393 |
}; |
394 | 394 |
///Inserts a PostScript block to the nodes |
395 | 395 |
|
396 | 396 |
///With this command it is possible to insert a verbatim PostScript |
397 | 397 |
///block to the nodes. |
398 | 398 |
///The PS current point will be moved to the center of the node before |
399 | 399 |
///the PostScript block inserted. |
400 | 400 |
/// |
401 | 401 |
///Before and after the block a newline character is inserted so you |
402 | 402 |
///don't have to bother with the separators. |
403 | 403 |
/// |
404 | 404 |
///\param x must be a node map with type that can be pushed to a standard |
405 | 405 |
///\c ostream. |
406 | 406 |
/// |
407 | 407 |
///\sa nodePsTextsPreamble() |
408 | 408 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
409 | 409 |
{ |
410 | 410 |
dontPrint=true; |
411 | 411 |
_showNodePsText=true; |
412 | 412 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
413 | 413 |
} |
414 | 414 |
template<class X> struct ArcWidthsTraits : public T { |
415 | 415 |
const X &_arcWidths; |
416 | 416 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
417 | 417 |
}; |
418 | 418 |
///Sets the map of the arc widths |
419 | 419 |
|
420 | 420 |
///Sets the map of the arc widths. |
421 | 421 |
///\param x must be an arc map with \c double (or convertible) values. |
422 | 422 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KRUSKAL_H |
20 | 20 |
#define LEMON_KRUSKAL_H |
21 | 21 |
|
22 | 22 |
#include <algorithm> |
23 | 23 |
#include <vector> |
24 | 24 |
#include <lemon/unionfind.h> |
25 |
// #include <lemon/graph_utils.h> |
|
26 | 25 |
#include <lemon/maps.h> |
27 | 26 |
|
28 |
// #include <lemon/radix_sort.h> |
|
29 |
|
|
30 |
#include <lemon/ |
|
27 |
#include <lemon/core.h> |
|
31 | 28 |
#include <lemon/bits/traits.h> |
32 | 29 |
|
33 | 30 |
///\ingroup spantree |
34 | 31 |
///\file |
35 | 32 |
///\brief Kruskal's algorithm to compute a minimum cost spanning tree |
36 | 33 |
/// |
37 | 34 |
///Kruskal's algorithm to compute a minimum cost spanning tree. |
38 | 35 |
/// |
39 | 36 |
|
40 | 37 |
namespace lemon { |
41 | 38 |
|
42 | 39 |
namespace _kruskal_bits { |
43 | 40 |
|
44 | 41 |
// Kruskal for directed graphs. |
45 | 42 |
|
46 | 43 |
template <typename Digraph, typename In, typename Out> |
47 | 44 |
typename disable_if<lemon::UndirectedTagIndicator<Digraph>, |
48 | 45 |
typename In::value_type::second_type >::type |
49 | 46 |
kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) { |
50 | 47 |
typedef typename In::value_type::second_type Value; |
51 | 48 |
typedef typename Digraph::template NodeMap<int> IndexMap; |
52 | 49 |
typedef typename Digraph::Node Node; |
53 | 50 |
|
54 | 51 |
IndexMap index(digraph); |
55 | 52 |
UnionFind<IndexMap> uf(index); |
56 | 53 |
for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) { |
57 | 54 |
uf.insert(it); |
58 | 55 |
} |
59 | 56 |
|
60 | 57 |
Value tree_value = 0; |
61 | 58 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
62 | 59 |
if (uf.join(digraph.target(it->first),digraph.source(it->first))) { |
63 | 60 |
out.set(it->first, true); |
64 | 61 |
tree_value += it->second; |
65 | 62 |
} |
66 | 63 |
else { |
67 | 64 |
out.set(it->first, false); |
68 | 65 |
} |
69 | 66 |
} |
70 | 67 |
return tree_value; |
71 | 68 |
} |
72 | 69 |
|
73 | 70 |
// Kruskal for undirected graphs. |
74 | 71 |
|
75 | 72 |
template <typename Graph, typename In, typename Out> |
76 | 73 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>, |
77 | 74 |
typename In::value_type::second_type >::type |
78 | 75 |
kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) { |
79 | 76 |
typedef typename In::value_type::second_type Value; |
80 | 77 |
typedef typename Graph::template NodeMap<int> IndexMap; |
81 | 78 |
typedef typename Graph::Node Node; |
82 | 79 |
|
83 | 80 |
IndexMap index(graph); |
84 | 81 |
UnionFind<IndexMap> uf(index); |
85 | 82 |
for (typename Graph::NodeIt it(graph); it != INVALID; ++it) { |
86 | 83 |
uf.insert(it); |
87 | 84 |
} |
88 | 85 |
|
89 | 86 |
Value tree_value = 0; |
90 | 87 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
91 | 88 |
if (uf.join(graph.u(it->first),graph.v(it->first))) { |
92 | 89 |
out.set(it->first, true); |
93 | 90 |
tree_value += it->second; |
94 | 91 |
} |
95 | 92 |
else { |
96 | 93 |
out.set(it->first, false); |
97 | 94 |
} |
98 | 95 |
} |
99 | 96 |
return tree_value; |
100 | 97 |
} |
101 | 98 |
|
102 | 99 |
|
103 | 100 |
template <typename Sequence> |
104 | 101 |
struct PairComp { |
105 | 102 |
typedef typename Sequence::value_type Value; |
106 | 103 |
bool operator()(const Value& left, const Value& right) { |
107 | 104 |
return left.second < right.second; |
108 | 105 |
} |
109 | 106 |
}; |
110 | 107 |
|
111 | 108 |
template <typename In, typename Enable = void> |
112 | 109 |
struct SequenceInputIndicator { |
113 | 110 |
static const bool value = false; |
114 | 111 |
}; |
115 | 112 |
|
116 | 113 |
template <typename In> |
117 | 114 |
struct SequenceInputIndicator<In, |
118 | 115 |
typename exists<typename In::value_type::first_type>::type> { |
119 | 116 |
static const bool value = true; |
120 | 117 |
}; |
121 | 118 |
|
122 | 119 |
template <typename In, typename Enable = void> |
123 | 120 |
struct MapInputIndicator { |
124 | 121 |
static const bool value = false; |
125 | 122 |
}; |
126 | 123 |
|
127 | 124 |
template <typename In> |
128 | 125 |
struct MapInputIndicator<In, |
129 | 126 |
typename exists<typename In::Value>::type> { |
130 | 127 |
static const bool value = true; |
131 | 128 |
}; |
132 | 129 |
|
133 | 130 |
template <typename In, typename Enable = void> |
134 | 131 |
struct SequenceOutputIndicator { |
135 | 132 |
static const bool value = false; |
136 | 133 |
}; |
137 | 134 |
|
138 | 135 |
template <typename Out> |
139 | 136 |
struct SequenceOutputIndicator<Out, |
140 | 137 |
typename exists<typename Out::value_type>::type> { |
141 | 138 |
static const bool value = true; |
142 | 139 |
}; |
143 | 140 |
|
144 | 141 |
template <typename Out, typename Enable = void> |
145 | 142 |
struct MapOutputIndicator { |
146 | 143 |
static const bool value = false; |
147 | 144 |
}; |
148 | 145 |
|
149 | 146 |
template <typename Out> |
150 | 147 |
struct MapOutputIndicator<Out, |
151 | 148 |
typename exists<typename Out::Value>::type> { |
152 | 149 |
static const bool value = true; |
153 | 150 |
}; |
154 | 151 |
|
155 | 152 |
template <typename In, typename InEnable = void> |
156 | 153 |
struct KruskalValueSelector {}; |
157 | 154 |
|
158 | 155 |
template <typename In> |
159 | 156 |
struct KruskalValueSelector<In, |
160 | 157 |
typename enable_if<SequenceInputIndicator<In>, void>::type> |
161 | 158 |
{ |
162 | 159 |
typedef typename In::value_type::second_type Value; |
163 | 160 |
}; |
164 | 161 |
|
165 | 162 |
template <typename In> |
166 | 163 |
struct KruskalValueSelector<In, |
167 | 164 |
typename enable_if<MapInputIndicator<In>, void>::type> |
168 | 165 |
{ |
169 | 166 |
typedef typename In::Value Value; |
170 | 167 |
}; |
171 | 168 |
|
172 | 169 |
template <typename Graph, typename In, typename Out, |
173 | 170 |
typename InEnable = void> |
174 | 171 |
struct KruskalInputSelector {}; |
175 | 172 |
|
176 | 173 |
template <typename Graph, typename In, typename Out, |
177 | 174 |
typename InEnable = void> |
178 | 175 |
struct KruskalOutputSelector {}; |
179 | 176 |
|
180 | 177 |
template <typename Graph, typename In, typename Out> |
181 | 178 |
struct KruskalInputSelector<Graph, In, Out, |
182 | 179 |
typename enable_if<SequenceInputIndicator<In>, void>::type > |
183 | 180 |
{ |
184 | 181 |
typedef typename In::value_type::second_type Value; |
185 | 182 |
|
186 | 183 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
187 | 184 |
return KruskalOutputSelector<Graph, In, Out>:: |
188 | 185 |
kruskal(graph, in, out); |
189 | 186 |
} |
190 | 187 |
|
191 | 188 |
}; |
192 | 189 |
|
193 | 190 |
template <typename Graph, typename In, typename Out> |
194 | 191 |
struct KruskalInputSelector<Graph, In, Out, |
195 | 192 |
typename enable_if<MapInputIndicator<In>, void>::type > |
196 | 193 |
{ |
197 | 194 |
typedef typename In::Value Value; |
198 | 195 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
199 | 196 |
typedef typename In::Key MapArc; |
200 | 197 |
typedef typename In::Value Value; |
201 | 198 |
typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt; |
202 | 199 |
typedef std::vector<std::pair<MapArc, Value> > Sequence; |
203 | 200 |
Sequence seq; |
204 | 201 |
|
205 | 202 |
for (MapArcIt it(graph); it != INVALID; ++it) { |
206 | 203 |
seq.push_back(std::make_pair(it, in[it])); |
207 | 204 |
} |
208 | 205 |
|
209 | 206 |
std::sort(seq.begin(), seq.end(), PairComp<Sequence>()); |
210 | 207 |
return KruskalOutputSelector<Graph, Sequence, Out>:: |
211 | 208 |
kruskal(graph, seq, out); |
212 | 209 |
} |
213 | 210 |
}; |
214 | 211 |
|
215 | 212 |
template <typename T> |
216 | 213 |
struct RemoveConst { |
217 | 214 |
typedef T type; |
218 | 215 |
}; |
219 | 216 |
|
220 | 217 |
template <typename T> |
221 | 218 |
struct RemoveConst<const T> { |
222 | 219 |
typedef T type; |
223 | 220 |
}; |
224 | 221 |
|
225 | 222 |
template <typename Graph, typename In, typename Out> |
226 | 223 |
struct KruskalOutputSelector<Graph, In, Out, |
227 | 224 |
typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
228 | 225 |
{ |
229 | 226 |
typedef typename In::value_type::second_type Value; |
230 | 227 |
|
231 | 228 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
232 | 229 |
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map; |
233 | 230 |
Map map(out); |
234 | 231 |
return _kruskal_bits::kruskal(graph, in, map); |
235 | 232 |
} |
236 | 233 |
|
237 | 234 |
}; |
238 | 235 |
|
239 | 236 |
template <typename Graph, typename In, typename Out> |
240 | 237 |
struct KruskalOutputSelector<Graph, In, Out, |
241 | 238 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
242 | 239 |
{ |
243 | 240 |
typedef typename In::value_type::second_type Value; |
244 | 241 |
|
245 | 242 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
246 | 243 |
return _kruskal_bits::kruskal(graph, in, out); |
247 | 244 |
} |
248 | 245 |
}; |
249 | 246 |
|
250 | 247 |
} |
251 | 248 |
|
252 | 249 |
/// \ingroup spantree |
253 | 250 |
/// |
254 | 251 |
/// \brief Kruskal algorithm to find a minimum cost spanning tree of |
255 | 252 |
/// a graph. |
256 | 253 |
/// |
257 | 254 |
/// This function runs Kruskal's algorithm to find a minimum cost |
258 | 255 |
/// spanning tree. |
259 | 256 |
/// Due to some C++ hacking, it accepts various input and output types. |
260 | 257 |
/// |
261 | 258 |
/// \param g The graph the algorithm runs on. |
262 | 259 |
/// It can be either \ref concepts::Digraph "directed" or |
263 | 260 |
/// \ref concepts::Graph "undirected". |
264 | 261 |
/// If the graph is directed, the algorithm consider it to be |
265 | 262 |
/// undirected by disregarding the direction of the arcs. |
266 | 263 |
/// |
267 | 264 |
/// \param in This object is used to describe the arc/edge costs. |
268 | 265 |
/// It can be one of the following choices. |
269 | 266 |
/// - An STL compatible 'Forward Container' with |
270 | 267 |
/// <tt>std::pair<GR::Arc,X></tt> or |
271 | 268 |
/// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where |
272 | 269 |
/// \c X is the type of the costs. The pairs indicates the arcs/edges |
273 | 270 |
/// along with the assigned cost. <em>They must be in a |
274 | 271 |
/// cost-ascending order.</em> |
275 | 272 |
/// - Any readable arc/edge map. The values of the map indicate the |
276 | 273 |
/// arc/edge costs. |
277 | 274 |
/// |
278 | 275 |
/// \retval out Here we also have a choice. |
279 | 276 |
/// - It can be a writable \c bool arc/edge map. After running the |
280 | 277 |
/// algorithm it will contain the found minimum cost spanning |
281 | 278 |
/// tree: the value of an arc/edge will be set to \c true if it belongs |
282 | 279 |
/// to the tree, otherwise it will be set to \c false. The value of |
283 | 280 |
/// each arc/edge will be set exactly once. |
284 | 281 |
/// - It can also be an iteraror of an STL Container with |
285 | 282 |
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its |
286 | 283 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
287 | 284 |
/// found tree into this sequence. For example, if we know that the |
288 | 285 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
289 | 286 |
/// put its arcs into an STL vector \c tree with a code like this. |
290 | 287 |
///\code |
291 | 288 |
/// std::vector<Arc> tree(53); |
292 | 289 |
/// kruskal(g,cost,tree.begin()); |
293 | 290 |
///\endcode |
294 | 291 |
/// Or if we don't know in advance the size of the tree, we can |
295 | 292 |
/// write this. |
296 | 293 |
///\code |
297 | 294 |
/// std::vector<Arc> tree; |
298 | 295 |
/// kruskal(g,cost,std::back_inserter(tree)); |
299 | 296 |
///\endcode |
300 | 297 |
/// |
301 | 298 |
/// \return The total cost of the found spanning tree. |
302 | 299 |
/// |
303 |
/// \note If the input graph is not (weakly) connected, a spanning |
|
300 |
/// \note If the input graph is not (weakly) connected, a spanning |
|
304 | 301 |
/// forest is calculated instead of a spanning tree. |
305 | 302 |
|
306 | 303 |
#ifdef DOXYGEN |
307 | 304 |
template <class Graph, class In, class Out> |
308 | 305 |
Value kruskal(GR const& g, const In& in, Out& out) |
309 | 306 |
#else |
310 | 307 |
template <class Graph, class In, class Out> |
311 | 308 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
312 | 309 |
kruskal(const Graph& graph, const In& in, Out& out) |
313 | 310 |
#endif |
314 | 311 |
{ |
315 | 312 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
316 | 313 |
kruskal(graph, in, out); |
317 | 314 |
} |
318 | 315 |
|
319 | 316 |
|
320 | 317 |
|
321 | 318 |
|
322 | 319 |
template <class Graph, class In, class Out> |
323 | 320 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
324 | 321 |
kruskal(const Graph& graph, const In& in, const Out& out) |
325 | 322 |
{ |
326 | 323 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
327 | 324 |
kruskal(graph, in, out); |
328 | 325 |
} |
329 | 326 |
|
330 | 327 |
} //namespace lemon |
331 | 328 |
|
332 | 329 |
#endif //LEMON_KRUSKAL_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup lemon_io |
20 | 20 |
///\file |
21 | 21 |
///\brief \ref lgf-format "Lemon Graph Format" reader. |
22 | 22 |
|
23 | 23 |
|
24 | 24 |
#ifndef LEMON_LGF_READER_H |
25 | 25 |
#define LEMON_LGF_READER_H |
26 | 26 |
|
27 | 27 |
#include <iostream> |
28 | 28 |
#include <fstream> |
29 | 29 |
#include <sstream> |
30 | 30 |
|
31 | 31 |
#include <set> |
32 | 32 |
#include <map> |
33 | 33 |
|
34 | 34 |
#include <lemon/assert.h> |
35 |
#include <lemon/ |
|
35 |
#include <lemon/core.h> |
|
36 | 36 |
|
37 | 37 |
#include <lemon/lgf_writer.h> |
38 | 38 |
|
39 | 39 |
#include <lemon/concept_check.h> |
40 | 40 |
#include <lemon/concepts/maps.h> |
41 | 41 |
|
42 | 42 |
namespace lemon { |
43 | 43 |
|
44 | 44 |
namespace _reader_bits { |
45 | 45 |
|
46 | 46 |
template <typename Value> |
47 | 47 |
struct DefaultConverter { |
48 | 48 |
Value operator()(const std::string& str) { |
49 | 49 |
std::istringstream is(str); |
50 | 50 |
Value value; |
51 | 51 |
is >> value; |
52 | 52 |
|
53 | 53 |
char c; |
54 | 54 |
if (is >> std::ws >> c) { |
55 | 55 |
throw DataFormatError("Remaining characters in token"); |
56 | 56 |
} |
57 | 57 |
return value; |
58 | 58 |
} |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
template <> |
62 | 62 |
struct DefaultConverter<std::string> { |
63 | 63 |
std::string operator()(const std::string& str) { |
64 | 64 |
return str; |
65 | 65 |
} |
66 | 66 |
}; |
67 | 67 |
|
68 | 68 |
template <typename _Item> |
69 | 69 |
class MapStorageBase { |
70 | 70 |
public: |
71 | 71 |
typedef _Item Item; |
72 | 72 |
|
73 | 73 |
public: |
74 | 74 |
MapStorageBase() {} |
75 | 75 |
virtual ~MapStorageBase() {} |
76 | 76 |
|
77 | 77 |
virtual void set(const Item& item, const std::string& value) = 0; |
78 | 78 |
|
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
template <typename _Item, typename _Map, |
82 | 82 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
83 | 83 |
class MapStorage : public MapStorageBase<_Item> { |
84 | 84 |
public: |
85 | 85 |
typedef _Map Map; |
86 | 86 |
typedef _Converter Converter; |
87 | 87 |
typedef _Item Item; |
88 | 88 |
|
89 | 89 |
private: |
90 | 90 |
Map& _map; |
91 | 91 |
Converter _converter; |
92 | 92 |
|
93 | 93 |
public: |
94 | 94 |
MapStorage(Map& map, const Converter& converter = Converter()) |
95 | 95 |
: _map(map), _converter(converter) {} |
96 | 96 |
virtual ~MapStorage() {} |
97 | 97 |
|
98 | 98 |
virtual void set(const Item& item ,const std::string& value) { |
99 | 99 |
_map.set(item, _converter(value)); |
100 | 100 |
} |
101 | 101 |
}; |
102 | 102 |
|
103 | 103 |
template <typename _Graph, bool _dir, typename _Map, |
104 | 104 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
105 | 105 |
class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> { |
106 | 106 |
public: |
107 | 107 |
typedef _Map Map; |
108 | 108 |
typedef _Converter Converter; |
109 | 109 |
typedef _Graph Graph; |
110 | 110 |
typedef typename Graph::Edge Item; |
111 | 111 |
static const bool dir = _dir; |
112 | 112 |
|
113 | 113 |
private: |
114 | 114 |
const Graph& _graph; |
115 | 115 |
Map& _map; |
116 | 116 |
Converter _converter; |
117 | 117 |
|
118 | 118 |
public: |
119 | 119 |
GraphArcMapStorage(const Graph& graph, Map& map, |
120 | 120 |
const Converter& converter = Converter()) |
121 | 121 |
: _graph(graph), _map(map), _converter(converter) {} |
122 | 122 |
virtual ~GraphArcMapStorage() {} |
123 | 123 |
|
124 | 124 |
virtual void set(const Item& item ,const std::string& value) { |
125 | 125 |
_map.set(_graph.direct(item, dir), _converter(value)); |
126 | 126 |
} |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
class ValueStorageBase { |
130 | 130 |
public: |
131 | 131 |
ValueStorageBase() {} |
132 | 132 |
virtual ~ValueStorageBase() {} |
133 | 133 |
|
134 | 134 |
virtual void set(const std::string&) = 0; |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
template <typename _Value, typename _Converter = DefaultConverter<_Value> > |
138 | 138 |
class ValueStorage : public ValueStorageBase { |
139 | 139 |
public: |
140 | 140 |
typedef _Value Value; |
141 | 141 |
typedef _Converter Converter; |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
Value& _value; |
145 | 145 |
Converter _converter; |
146 | 146 |
|
147 | 147 |
public: |
148 | 148 |
ValueStorage(Value& value, const Converter& converter = Converter()) |
149 | 149 |
: _value(value), _converter(converter) {} |
150 | 150 |
|
151 | 151 |
virtual void set(const std::string& value) { |
152 | 152 |
_value = _converter(value); |
153 | 153 |
} |
154 | 154 |
}; |
155 | 155 |
|
156 | 156 |
template <typename Value> |
157 | 157 |
struct MapLookUpConverter { |
158 | 158 |
const std::map<std::string, Value>& _map; |
159 | 159 |
|
160 | 160 |
MapLookUpConverter(const std::map<std::string, Value>& map) |
161 | 161 |
: _map(map) {} |
162 | 162 |
|
163 | 163 |
Value operator()(const std::string& str) { |
164 | 164 |
typename std::map<std::string, Value>::const_iterator it = |
165 | 165 |
_map.find(str); |
166 | 166 |
if (it == _map.end()) { |
167 | 167 |
std::ostringstream msg; |
168 | 168 |
msg << "Item not found: " << str; |
169 | 169 |
throw DataFormatError(msg.str().c_str()); |
170 | 170 |
} |
171 | 171 |
return it->second; |
172 | 172 |
} |
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
template <typename Graph> |
176 | 176 |
struct GraphArcLookUpConverter { |
177 | 177 |
const Graph& _graph; |
178 | 178 |
const std::map<std::string, typename Graph::Edge>& _map; |
179 | 179 |
|
180 | 180 |
GraphArcLookUpConverter(const Graph& graph, |
181 | 181 |
const std::map<std::string, |
182 | 182 |
typename Graph::Edge>& map) |
183 | 183 |
: _graph(graph), _map(map) {} |
184 | 184 |
|
185 | 185 |
typename Graph::Arc operator()(const std::string& str) { |
186 | 186 |
if (str.empty() || (str[0] != '+' && str[0] != '-')) { |
187 | 187 |
throw DataFormatError("Item must start with '+' or '-'"); |
188 | 188 |
} |
189 | 189 |
typename std::map<std::string, typename Graph::Edge> |
190 | 190 |
::const_iterator it = _map.find(str.substr(1)); |
191 | 191 |
if (it == _map.end()) { |
192 | 192 |
throw DataFormatError("Item not found"); |
193 | 193 |
} |
194 | 194 |
return _graph.direct(it->second, str[0] == '+'); |
195 | 195 |
} |
196 | 196 |
}; |
197 | 197 |
|
198 | 198 |
inline bool isWhiteSpace(char c) { |
199 | 199 |
return c == ' ' || c == '\t' || c == '\v' || |
200 | 200 |
c == '\n' || c == '\r' || c == '\f'; |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
inline bool isOct(char c) { |
204 | 204 |
return '0' <= c && c <='7'; |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
inline int valueOct(char c) { |
208 | 208 |
LEMON_ASSERT(isOct(c), "The character is not octal."); |
209 | 209 |
return c - '0'; |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
inline bool isHex(char c) { |
213 | 213 |
return ('0' <= c && c <= '9') || |
214 | 214 |
('a' <= c && c <= 'z') || |
215 | 215 |
('A' <= c && c <= 'Z'); |
216 | 216 |
} |
217 | 217 |
|
218 | 218 |
inline int valueHex(char c) { |
219 | 219 |
LEMON_ASSERT(isHex(c), "The character is not hexadecimal."); |
220 | 220 |
if ('0' <= c && c <= '9') return c - '0'; |
221 | 221 |
if ('a' <= c && c <= 'z') return c - 'a' + 10; |
222 | 222 |
return c - 'A' + 10; |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
inline bool isIdentifierFirstChar(char c) { |
226 | 226 |
return ('a' <= c && c <= 'z') || |
227 | 227 |
('A' <= c && c <= 'Z') || c == '_'; |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
inline bool isIdentifierChar(char c) { |
231 | 231 |
return isIdentifierFirstChar(c) || |
232 | 232 |
('0' <= c && c <= '9'); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
inline char readEscape(std::istream& is) { |
236 | 236 |
char c; |
237 | 237 |
if (!is.get(c)) |
238 | 238 |
throw DataFormatError("Escape format error"); |
239 | 239 |
|
240 | 240 |
switch (c) { |
241 | 241 |
case '\\': |
242 | 242 |
return '\\'; |
243 | 243 |
case '\"': |
244 | 244 |
return '\"'; |
245 | 245 |
case '\'': |
246 | 246 |
return '\''; |
247 | 247 |
case '\?': |
248 | 248 |
return '\?'; |
249 | 249 |
case 'a': |
250 | 250 |
return '\a'; |
251 | 251 |
case 'b': |
252 | 252 |
return '\b'; |
253 | 253 |
case 'f': |
254 | 254 |
return '\f'; |
255 | 255 |
case 'n': |
256 | 256 |
return '\n'; |
257 | 257 |
case 'r': |
258 | 258 |
return '\r'; |
259 | 259 |
case 't': |
260 | 260 |
return '\t'; |
261 | 261 |
case 'v': |
262 | 262 |
return '\v'; |
263 | 263 |
case 'x': |
264 | 264 |
{ |
265 | 265 |
int code; |
266 | 266 |
if (!is.get(c) || !isHex(c)) |
267 | 267 |
throw DataFormatError("Escape format error"); |
268 | 268 |
else if (code = valueHex(c), !is.get(c) || !isHex(c)) is.putback(c); |
269 | 269 |
else code = code * 16 + valueHex(c); |
270 | 270 |
return code; |
271 | 271 |
} |
272 | 272 |
default: |
273 | 273 |
{ |
274 | 274 |
int code; |
275 | 275 |
if (!isOct(c)) |
276 | 276 |
throw DataFormatError("Escape format error"); |
277 | 277 |
else if (code = valueOct(c), !is.get(c) || !isOct(c)) |
278 | 278 |
is.putback(c); |
279 | 279 |
else if (code = code * 8 + valueOct(c), !is.get(c) || !isOct(c)) |
280 | 280 |
is.putback(c); |
281 | 281 |
else code = code * 8 + valueOct(c); |
282 | 282 |
return code; |
283 | 283 |
} |
284 | 284 |
} |
285 | 285 |
} |
286 | 286 |
|
287 | 287 |
inline std::istream& readToken(std::istream& is, std::string& str) { |
288 | 288 |
std::ostringstream os; |
289 | 289 |
|
290 | 290 |
char c; |
291 | 291 |
is >> std::ws; |
292 | 292 |
|
293 | 293 |
if (!is.get(c)) |
294 | 294 |
return is; |
295 | 295 |
|
296 | 296 |
if (c == '\"') { |
297 | 297 |
while (is.get(c) && c != '\"') { |
298 | 298 |
if (c == '\\') |
299 | 299 |
c = readEscape(is); |
300 | 300 |
os << c; |
301 | 301 |
} |
302 | 302 |
if (!is) |
303 | 303 |
throw DataFormatError("Quoted format error"); |
304 | 304 |
} else { |
305 | 305 |
is.putback(c); |
306 | 306 |
while (is.get(c) && !isWhiteSpace(c)) { |
307 | 307 |
if (c == '\\') |
308 | 308 |
c = readEscape(is); |
309 | 309 |
os << c; |
310 | 310 |
} |
311 | 311 |
if (!is) { |
312 | 312 |
is.clear(); |
313 | 313 |
} else { |
314 | 314 |
is.putback(c); |
315 | 315 |
} |
316 | 316 |
} |
317 | 317 |
str = os.str(); |
318 | 318 |
return is; |
319 | 319 |
} |
320 | 320 |
|
321 | 321 |
class Section { |
322 | 322 |
public: |
323 | 323 |
virtual ~Section() {} |
324 | 324 |
virtual void process(std::istream& is, int& line_num) = 0; |
325 | 325 |
}; |
326 | 326 |
|
327 | 327 |
template <typename Functor> |
328 | 328 |
class LineSection : public Section { |
329 | 329 |
private: |
330 | 330 |
|
331 | 331 |
Functor _functor; |
332 | 332 |
|
333 | 333 |
public: |
334 | 334 |
|
335 | 335 |
LineSection(const Functor& functor) : _functor(functor) {} |
336 | 336 |
virtual ~LineSection() {} |
337 | 337 |
|
338 | 338 |
virtual void process(std::istream& is, int& line_num) { |
339 | 339 |
char c; |
340 | 340 |
std::string line; |
341 | 341 |
while (is.get(c) && c != '@') { |
342 | 342 |
if (c == '\n') { |
343 | 343 |
++line_num; |
344 | 344 |
} else if (c == '#') { |
345 | 345 |
getline(is, line); |
346 | 346 |
++line_num; |
347 | 347 |
} else if (!isWhiteSpace(c)) { |
348 | 348 |
is.putback(c); |
349 | 349 |
getline(is, line); |
350 | 350 |
_functor(line); |
351 | 351 |
++line_num; |
352 | 352 |
} |
353 | 353 |
} |
354 | 354 |
if (is) is.putback(c); |
355 | 355 |
else if (is.eof()) is.clear(); |
356 | 356 |
} |
357 | 357 |
}; |
358 | 358 |
|
359 | 359 |
template <typename Functor> |
360 | 360 |
class StreamSection : public Section { |
361 | 361 |
private: |
362 | 362 |
|
363 | 363 |
Functor _functor; |
364 | 364 |
|
365 | 365 |
public: |
366 | 366 |
|
367 | 367 |
StreamSection(const Functor& functor) : _functor(functor) {} |
368 | 368 |
virtual ~StreamSection() {} |
369 | 369 |
|
370 | 370 |
virtual void process(std::istream& is, int& line_num) { |
371 | 371 |
_functor(is, line_num); |
372 | 372 |
char c; |
373 | 373 |
std::string line; |
374 | 374 |
while (is.get(c) && c != '@') { |
375 | 375 |
if (c == '\n') { |
376 | 376 |
++line_num; |
377 | 377 |
} else if (!isWhiteSpace(c)) { |
378 | 378 |
getline(is, line); |
379 | 379 |
++line_num; |
380 | 380 |
} |
381 | 381 |
} |
382 | 382 |
if (is) is.putback(c); |
383 | 383 |
else if (is.eof()) is.clear(); |
384 | 384 |
} |
385 | 385 |
}; |
386 | 386 |
|
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
template <typename Digraph> |
390 | 390 |
class DigraphReader; |
391 | 391 |
|
392 | 392 |
template <typename Digraph> |
393 | 393 |
DigraphReader<Digraph> digraphReader(std::istream& is, Digraph& digraph); |
394 | 394 |
|
395 | 395 |
template <typename Digraph> |
396 | 396 |
DigraphReader<Digraph> digraphReader(const std::string& fn, Digraph& digraph); |
397 | 397 |
|
398 | 398 |
template <typename Digraph> |
399 | 399 |
DigraphReader<Digraph> digraphReader(const char *fn, Digraph& digraph); |
400 | 400 |
|
401 | 401 |
/// \ingroup lemon_io |
402 | 402 |
/// |
403 | 403 |
/// \brief \ref lgf-format "LGF" reader for directed graphs |
404 | 404 |
/// |
405 | 405 |
/// This utility reads an \ref lgf-format "LGF" file. |
406 | 406 |
/// |
407 | 407 |
/// The reading method does a batch processing. The user creates a |
408 | 408 |
/// reader object, then various reading rules can be added to the |
409 | 409 |
/// reader, and eventually the reading is executed with the \c run() |
410 | 410 |
/// member function. A map reading rule can be added to the reader |
411 | 411 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
412 | 412 |
/// converter parameter can also be added as a standard functor |
413 | 413 |
/// converting from \c std::string to the value type of the map. If it |
414 | 414 |
/// is set, it will determine how the tokens in the file should be |
415 | 415 |
/// converted to the value type of the map. If the functor is not set, |
416 | 416 |
/// then a default conversion will be used. One map can be read into |
417 | 417 |
/// multiple map objects at the same time. The \c attribute(), \c |
418 | 418 |
/// node() and \c arc() functions are used to add attribute reading |
419 | 419 |
/// rules. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup lemon_io |
20 | 20 |
///\file |
21 | 21 |
///\brief \ref lgf-format "Lemon Graph Format" writer. |
22 | 22 |
|
23 | 23 |
|
24 | 24 |
#ifndef LEMON_LGF_WRITER_H |
25 | 25 |
#define LEMON_LGF_WRITER_H |
26 | 26 |
|
27 | 27 |
#include <iostream> |
28 | 28 |
#include <fstream> |
29 | 29 |
#include <sstream> |
30 | 30 |
|
31 | 31 |
#include <algorithm> |
32 | 32 |
|
33 | 33 |
#include <vector> |
34 | 34 |
#include <functional> |
35 | 35 |
|
36 | 36 |
#include <lemon/assert.h> |
37 |
#include <lemon/ |
|
37 |
#include <lemon/core.h> |
|
38 |
#include <lemon/maps.h> |
|
38 | 39 |
|
39 | 40 |
namespace lemon { |
40 | 41 |
|
41 | 42 |
namespace _writer_bits { |
42 | 43 |
|
43 | 44 |
template <typename Value> |
44 | 45 |
struct DefaultConverter { |
45 | 46 |
std::string operator()(const Value& value) { |
46 | 47 |
std::ostringstream os; |
47 | 48 |
os << value; |
48 | 49 |
return os.str(); |
49 | 50 |
} |
50 | 51 |
}; |
51 | 52 |
|
52 | 53 |
template <typename T> |
53 | 54 |
bool operator<(const T&, const T&) { |
54 | 55 |
throw DataFormatError("Label map is not comparable"); |
55 | 56 |
} |
56 | 57 |
|
57 | 58 |
template <typename _Map> |
58 | 59 |
class MapLess { |
59 | 60 |
public: |
60 | 61 |
typedef _Map Map; |
61 | 62 |
typedef typename Map::Key Item; |
62 | 63 |
|
63 | 64 |
private: |
64 | 65 |
const Map& _map; |
65 | 66 |
|
66 | 67 |
public: |
67 | 68 |
MapLess(const Map& map) : _map(map) {} |
68 | 69 |
|
69 | 70 |
bool operator()(const Item& left, const Item& right) { |
70 | 71 |
return _map[left] < _map[right]; |
71 | 72 |
} |
72 | 73 |
}; |
73 | 74 |
|
74 | 75 |
template <typename _Graph, bool _dir, typename _Map> |
75 | 76 |
class GraphArcMapLess { |
76 | 77 |
public: |
77 | 78 |
typedef _Map Map; |
78 | 79 |
typedef _Graph Graph; |
79 | 80 |
typedef typename Graph::Edge Item; |
80 | 81 |
|
81 | 82 |
private: |
82 | 83 |
const Graph& _graph; |
83 | 84 |
const Map& _map; |
84 | 85 |
|
85 | 86 |
public: |
86 | 87 |
GraphArcMapLess(const Graph& graph, const Map& map) |
87 | 88 |
: _graph(graph), _map(map) {} |
88 | 89 |
|
89 | 90 |
bool operator()(const Item& left, const Item& right) { |
90 | 91 |
return _map[_graph.direct(left, _dir)] < |
91 | 92 |
_map[_graph.direct(right, _dir)]; |
92 | 93 |
} |
93 | 94 |
}; |
94 | 95 |
|
95 | 96 |
template <typename _Item> |
96 | 97 |
class MapStorageBase { |
97 | 98 |
public: |
98 | 99 |
typedef _Item Item; |
99 | 100 |
|
100 | 101 |
public: |
101 | 102 |
MapStorageBase() {} |
102 | 103 |
virtual ~MapStorageBase() {} |
103 | 104 |
|
104 | 105 |
virtual std::string get(const Item& item) = 0; |
105 | 106 |
virtual void sort(std::vector<Item>&) = 0; |
106 | 107 |
}; |
107 | 108 |
|
108 | 109 |
template <typename _Item, typename _Map, |
109 | 110 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
110 | 111 |
class MapStorage : public MapStorageBase<_Item> { |
111 | 112 |
public: |
112 | 113 |
typedef _Map Map; |
113 | 114 |
typedef _Converter Converter; |
114 | 115 |
typedef _Item Item; |
115 | 116 |
|
116 | 117 |
private: |
117 | 118 |
const Map& _map; |
118 | 119 |
Converter _converter; |
119 | 120 |
|
120 | 121 |
public: |
121 | 122 |
MapStorage(const Map& map, const Converter& converter = Converter()) |
122 | 123 |
: _map(map), _converter(converter) {} |
123 | 124 |
virtual ~MapStorage() {} |
124 | 125 |
|
125 | 126 |
virtual std::string get(const Item& item) { |
126 | 127 |
return _converter(_map[item]); |
127 | 128 |
} |
128 | 129 |
virtual void sort(std::vector<Item>& items) { |
129 | 130 |
MapLess<Map> less(_map); |
130 | 131 |
std::sort(items.begin(), items.end(), less); |
131 | 132 |
} |
132 | 133 |
}; |
133 | 134 |
|
134 | 135 |
template <typename _Graph, bool _dir, typename _Map, |
135 | 136 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
136 | 137 |
class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> { |
137 | 138 |
public: |
138 | 139 |
typedef _Map Map; |
139 | 140 |
typedef _Converter Converter; |
140 | 141 |
typedef _Graph Graph; |
141 | 142 |
typedef typename Graph::Edge Item; |
142 | 143 |
static const bool dir = _dir; |
143 | 144 |
|
144 | 145 |
private: |
145 | 146 |
const Graph& _graph; |
146 | 147 |
const Map& _map; |
147 | 148 |
Converter _converter; |
148 | 149 |
|
149 | 150 |
public: |
150 | 151 |
GraphArcMapStorage(const Graph& graph, const Map& map, |
151 | 152 |
const Converter& converter = Converter()) |
152 | 153 |
: _graph(graph), _map(map), _converter(converter) {} |
153 | 154 |
virtual ~GraphArcMapStorage() {} |
154 | 155 |
|
155 | 156 |
virtual std::string get(const Item& item) { |
156 | 157 |
return _converter(_map[_graph.direct(item, dir)]); |
157 | 158 |
} |
158 | 159 |
virtual void sort(std::vector<Item>& items) { |
159 | 160 |
GraphArcMapLess<Graph, dir, Map> less(_graph, _map); |
160 | 161 |
std::sort(items.begin(), items.end(), less); |
161 | 162 |
} |
162 | 163 |
}; |
163 | 164 |
|
164 | 165 |
class ValueStorageBase { |
165 | 166 |
public: |
166 | 167 |
ValueStorageBase() {} |
167 | 168 |
virtual ~ValueStorageBase() {} |
168 | 169 |
|
169 | 170 |
virtual std::string get() = 0; |
170 | 171 |
}; |
171 | 172 |
|
172 | 173 |
template <typename _Value, typename _Converter = DefaultConverter<_Value> > |
173 | 174 |
class ValueStorage : public ValueStorageBase { |
174 | 175 |
public: |
175 | 176 |
typedef _Value Value; |
176 | 177 |
typedef _Converter Converter; |
177 | 178 |
|
178 | 179 |
private: |
179 | 180 |
const Value& _value; |
180 | 181 |
Converter _converter; |
181 | 182 |
|
182 | 183 |
public: |
183 | 184 |
ValueStorage(const Value& value, const Converter& converter = Converter()) |
184 | 185 |
: _value(value), _converter(converter) {} |
185 | 186 |
|
186 | 187 |
virtual std::string get() { |
187 | 188 |
return _converter(_value); |
188 | 189 |
} |
189 | 190 |
}; |
190 | 191 |
|
191 | 192 |
template <typename Value> |
192 | 193 |
struct MapLookUpConverter { |
193 | 194 |
const std::map<Value, std::string>& _map; |
194 | 195 |
|
195 | 196 |
MapLookUpConverter(const std::map<Value, std::string>& map) |
196 | 197 |
: _map(map) {} |
197 | 198 |
|
198 | 199 |
std::string operator()(const Value& str) { |
199 | 200 |
typename std::map<Value, std::string>::const_iterator it = |
200 | 201 |
_map.find(str); |
201 | 202 |
if (it == _map.end()) { |
202 | 203 |
throw DataFormatError("Item not found"); |
203 | 204 |
} |
204 | 205 |
return it->second; |
205 | 206 |
} |
206 | 207 |
}; |
207 | 208 |
|
208 | 209 |
template <typename Graph> |
209 | 210 |
struct GraphArcLookUpConverter { |
210 | 211 |
const Graph& _graph; |
211 | 212 |
const std::map<typename Graph::Edge, std::string>& _map; |
212 | 213 |
|
213 | 214 |
GraphArcLookUpConverter(const Graph& graph, |
214 | 215 |
const std::map<typename Graph::Edge, |
215 | 216 |
std::string>& map) |
216 | 217 |
: _graph(graph), _map(map) {} |
217 | 218 |
|
218 | 219 |
std::string operator()(const typename Graph::Arc& val) { |
219 | 220 |
typename std::map<typename Graph::Edge, std::string> |
220 | 221 |
::const_iterator it = _map.find(val); |
221 | 222 |
if (it == _map.end()) { |
222 | 223 |
throw DataFormatError("Item not found"); |
223 | 224 |
} |
224 | 225 |
return (_graph.direction(val) ? '+' : '-') + it->second; |
225 | 226 |
} |
226 | 227 |
}; |
227 | 228 |
|
228 | 229 |
inline bool isWhiteSpace(char c) { |
229 | 230 |
return c == ' ' || c == '\t' || c == '\v' || |
230 | 231 |
c == '\n' || c == '\r' || c == '\f'; |
231 | 232 |
} |
232 | 233 |
|
233 | 234 |
inline bool isEscaped(char c) { |
234 | 235 |
return c == '\\' || c == '\"' || c == '\'' || |
235 | 236 |
c == '\a' || c == '\b'; |
236 | 237 |
} |
237 | 238 |
|
238 | 239 |
inline static void writeEscape(std::ostream& os, char c) { |
239 | 240 |
switch (c) { |
240 | 241 |
case '\\': |
241 | 242 |
os << "\\\\"; |
242 | 243 |
return; |
243 | 244 |
case '\"': |
244 | 245 |
os << "\\\""; |
245 | 246 |
return; |
246 | 247 |
case '\a': |
247 | 248 |
os << "\\a"; |
248 | 249 |
return; |
249 | 250 |
case '\b': |
250 | 251 |
os << "\\b"; |
251 | 252 |
return; |
252 | 253 |
case '\f': |
253 | 254 |
os << "\\f"; |
254 | 255 |
return; |
255 | 256 |
case '\r': |
256 | 257 |
os << "\\r"; |
257 | 258 |
return; |
258 | 259 |
case '\n': |
259 | 260 |
os << "\\n"; |
260 | 261 |
return; |
261 | 262 |
case '\t': |
262 | 263 |
os << "\\t"; |
263 | 264 |
return; |
264 | 265 |
case '\v': |
265 | 266 |
os << "\\v"; |
266 | 267 |
return; |
267 | 268 |
default: |
268 | 269 |
if (c < 0x20) { |
269 | 270 |
std::ios::fmtflags flags = os.flags(); |
270 | 271 |
os << '\\' << std::oct << static_cast<int>(c); |
271 | 272 |
os.flags(flags); |
272 | 273 |
} else { |
273 | 274 |
os << c; |
274 | 275 |
} |
275 | 276 |
return; |
276 | 277 |
} |
277 | 278 |
} |
278 | 279 |
|
279 | 280 |
inline bool requireEscape(const std::string& str) { |
280 | 281 |
if (str.empty() || str[0] == '@') return true; |
281 | 282 |
std::istringstream is(str); |
282 | 283 |
char c; |
283 | 284 |
while (is.get(c)) { |
284 | 285 |
if (isWhiteSpace(c) || isEscaped(c)) { |
285 | 286 |
return true; |
286 | 287 |
} |
287 | 288 |
} |
288 | 289 |
return false; |
289 | 290 |
} |
290 | 291 |
|
291 | 292 |
inline std::ostream& writeToken(std::ostream& os, const std::string& str) { |
292 | 293 |
|
293 | 294 |
if (requireEscape(str)) { |
294 | 295 |
os << '\"'; |
295 | 296 |
for (std::string::const_iterator it = str.begin(); |
296 | 297 |
it != str.end(); ++it) { |
297 | 298 |
writeEscape(os, *it); |
298 | 299 |
} |
299 | 300 |
os << '\"'; |
300 | 301 |
} else { |
301 | 302 |
os << str; |
302 | 303 |
} |
303 | 304 |
return os; |
304 | 305 |
} |
305 | 306 |
|
306 | 307 |
} |
307 | 308 |
|
308 | 309 |
template <typename Digraph> |
309 | 310 |
class DigraphWriter; |
310 | 311 |
|
311 | 312 |
template <typename Digraph> |
312 | 313 |
DigraphWriter<Digraph> digraphWriter(std::ostream& os, |
313 | 314 |
const Digraph& digraph); |
314 | 315 |
|
315 | 316 |
template <typename Digraph> |
316 | 317 |
DigraphWriter<Digraph> digraphWriter(const std::string& fn, |
317 | 318 |
const Digraph& digraph); |
318 | 319 |
|
319 | 320 |
template <typename Digraph> |
320 | 321 |
DigraphWriter<Digraph> digraphWriter(const char *fn, |
321 | 322 |
const Digraph& digraph); |
322 | 323 |
|
323 | 324 |
/// \ingroup lemon_io |
324 | 325 |
/// |
325 | 326 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
326 | 327 |
/// |
327 | 328 |
/// This utility writes an \ref lgf-format "LGF" file. |
328 | 329 |
/// |
329 | 330 |
/// The writing method does a batch processing. The user creates a |
330 | 331 |
/// writer object, then various writing rules can be added to the |
331 | 332 |
/// writer, and eventually the writing is executed with the \c run() |
332 | 333 |
/// member function. A map writing rule can be added to the writer |
333 | 334 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
334 | 335 |
/// converter parameter can also be added as a standard functor |
335 | 336 |
/// converting from the value type of the map to \c std::string. If it |
336 | 337 |
/// is set, it will determine how the value type of the map is written to |
337 | 338 |
/// the output stream. If the functor is not set, then a default |
338 | 339 |
/// conversion will be used. The \c attribute(), \c node() and \c |
339 | 340 |
/// arc() functions are used to add attribute writing rules. |
340 | 341 |
/// |
341 | 342 |
///\code |
342 | 343 |
/// DigraphWriter<Digraph>(std::cout, digraph). |
343 | 344 |
/// nodeMap("coordinates", coord_map). |
344 | 345 |
/// nodeMap("size", size). |
345 | 346 |
/// nodeMap("title", title). |
346 | 347 |
/// arcMap("capacity", cap_map). |
347 | 348 |
/// node("source", src). |
348 | 349 |
/// node("target", trg). |
349 | 350 |
/// attribute("caption", caption). |
350 | 351 |
/// run(); |
351 | 352 |
///\endcode |
352 | 353 |
/// |
353 | 354 |
/// |
354 | 355 |
/// By default, the writer does not write additional captions to the |
355 | 356 |
/// sections, but they can be give as an optional parameter of |
356 | 357 |
/// the \c nodes(), \c arcs() or \c |
357 | 358 |
/// attributes() functions. |
358 | 359 |
/// |
359 | 360 |
/// The \c skipNodes() and \c skipArcs() functions forbid the |
360 | 361 |
/// writing of the sections. If two arc sections should be written |
361 | 362 |
/// to the output, it can be done in two passes, the first pass |
362 | 363 |
/// writes the node section and the first arc section, then the |
363 | 364 |
/// second pass skips the node section and writes just the arc |
364 | 365 |
/// section to the stream. The output stream can be retrieved with |
365 | 366 |
/// the \c ostream() function, hence the second pass can append its |
366 | 367 |
/// output to the output of the first pass. |
367 | 368 |
template <typename _Digraph> |
368 | 369 |
class DigraphWriter { |
369 | 370 |
public: |
370 | 371 |
|
371 | 372 |
typedef _Digraph Digraph; |
372 | 373 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
373 | 374 |
|
374 | 375 |
private: |
375 | 376 |
|
376 | 377 |
|
377 | 378 |
std::ostream* _os; |
378 | 379 |
bool local_os; |
379 | 380 |
|
380 | 381 |
const Digraph& _digraph; |
381 | 382 |
|
382 | 383 |
std::string _nodes_caption; |
383 | 384 |
std::string _arcs_caption; |
384 | 385 |
std::string _attributes_caption; |
385 | 386 |
|
386 | 387 |
typedef std::map<Node, std::string> NodeIndex; |
387 | 388 |
NodeIndex _node_index; |
388 | 389 |
typedef std::map<Arc, std::string> ArcIndex; |
389 | 390 |
ArcIndex _arc_index; |
390 | 391 |
|
391 | 392 |
typedef std::vector<std::pair<std::string, |
392 | 393 |
_writer_bits::MapStorageBase<Node>* > > NodeMaps; |
393 | 394 |
NodeMaps _node_maps; |
394 | 395 |
|
395 | 396 |
typedef std::vector<std::pair<std::string, |
396 | 397 |
_writer_bits::MapStorageBase<Arc>* > >ArcMaps; |
397 | 398 |
ArcMaps _arc_maps; |
398 | 399 |
|
399 | 400 |
typedef std::vector<std::pair<std::string, |
400 | 401 |
_writer_bits::ValueStorageBase*> > Attributes; |
401 | 402 |
Attributes _attributes; |
402 | 403 |
|
403 | 404 |
bool _skip_nodes; |
404 | 405 |
bool _skip_arcs; |
405 | 406 |
|
406 | 407 |
public: |
407 | 408 |
|
408 | 409 |
/// \brief Constructor |
409 | 410 |
/// |
410 | 411 |
/// Construct a directed graph writer, which writes to the given |
411 | 412 |
/// output stream. |
412 | 413 |
DigraphWriter(std::ostream& is, const Digraph& digraph) |
413 | 414 |
: _os(&is), local_os(false), _digraph(digraph), |
414 | 415 |
_skip_nodes(false), _skip_arcs(false) {} |
415 | 416 |
|
416 | 417 |
/// \brief Constructor |
417 | 418 |
/// |
418 | 419 |
/// Construct a directed graph writer, which writes to the given |
419 | 420 |
/// output file. |
420 | 421 |
DigraphWriter(const std::string& fn, const Digraph& digraph) |
421 | 422 |
: _os(new std::ofstream(fn.c_str())), local_os(true), _digraph(digraph), |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph, ListGraph classes. |
25 | 25 |
|
26 |
#include <lemon/core.h> |
|
27 |
#include <lemon/error.h> |
|
26 | 28 |
#include <lemon/bits/graph_extender.h> |
27 | 29 |
|
28 | 30 |
#include <vector> |
29 | 31 |
#include <list> |
30 | 32 |
|
31 | 33 |
namespace lemon { |
32 | 34 |
|
33 | 35 |
class ListDigraphBase { |
34 | 36 |
|
35 | 37 |
protected: |
36 | 38 |
struct NodeT { |
37 | 39 |
int first_in, first_out; |
38 | 40 |
int prev, next; |
39 | 41 |
}; |
40 | 42 |
|
41 | 43 |
struct ArcT { |
42 | 44 |
int target, source; |
43 | 45 |
int prev_in, prev_out; |
44 | 46 |
int next_in, next_out; |
45 | 47 |
}; |
46 | 48 |
|
47 | 49 |
std::vector<NodeT> nodes; |
48 | 50 |
|
49 | 51 |
int first_node; |
50 | 52 |
|
51 | 53 |
int first_free_node; |
52 | 54 |
|
53 | 55 |
std::vector<ArcT> arcs; |
54 | 56 |
|
55 | 57 |
int first_free_arc; |
56 | 58 |
|
57 | 59 |
public: |
58 | 60 |
|
59 | 61 |
typedef ListDigraphBase Digraph; |
60 | 62 |
|
61 | 63 |
class Node { |
62 | 64 |
friend class ListDigraphBase; |
63 | 65 |
protected: |
64 | 66 |
|
65 | 67 |
int id; |
66 | 68 |
explicit Node(int pid) { id = pid;} |
67 | 69 |
|
68 | 70 |
public: |
69 | 71 |
Node() {} |
70 | 72 |
Node (Invalid) { id = -1; } |
71 | 73 |
bool operator==(const Node& node) const {return id == node.id;} |
72 | 74 |
bool operator!=(const Node& node) const {return id != node.id;} |
73 | 75 |
bool operator<(const Node& node) const {return id < node.id;} |
74 | 76 |
}; |
75 | 77 |
|
76 | 78 |
class Arc { |
77 | 79 |
friend class ListDigraphBase; |
78 | 80 |
protected: |
79 | 81 |
|
80 | 82 |
int id; |
81 | 83 |
explicit Arc(int pid) { id = pid;} |
82 | 84 |
|
83 | 85 |
public: |
84 | 86 |
Arc() {} |
85 | 87 |
Arc (Invalid) { id = -1; } |
86 | 88 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
87 | 89 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
88 | 90 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
89 | 91 |
}; |
90 | 92 |
|
91 | 93 |
|
92 | 94 |
|
93 | 95 |
ListDigraphBase() |
94 | 96 |
: nodes(), first_node(-1), |
95 | 97 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
96 | 98 |
|
97 | 99 |
|
98 | 100 |
int maxNodeId() const { return nodes.size()-1; } |
99 | 101 |
int maxArcId() const { return arcs.size()-1; } |
100 | 102 |
|
101 | 103 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
102 | 104 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
103 | 105 |
|
104 | 106 |
|
105 | 107 |
void first(Node& node) const { |
106 | 108 |
node.id = first_node; |
107 | 109 |
} |
108 | 110 |
|
109 | 111 |
void next(Node& node) const { |
110 | 112 |
node.id = nodes[node.id].next; |
111 | 113 |
} |
112 | 114 |
|
113 | 115 |
|
114 | 116 |
void first(Arc& arc) const { |
115 | 117 |
int n; |
116 | 118 |
for(n = first_node; |
117 | 119 |
n!=-1 && nodes[n].first_in == -1; |
118 | 120 |
n = nodes[n].next) {} |
119 | 121 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
120 | 122 |
} |
121 | 123 |
|
122 | 124 |
void next(Arc& arc) const { |
123 | 125 |
if (arcs[arc.id].next_in != -1) { |
124 | 126 |
arc.id = arcs[arc.id].next_in; |
125 | 127 |
} else { |
126 | 128 |
int n; |
127 | 129 |
for(n = nodes[arcs[arc.id].target].next; |
128 | 130 |
n!=-1 && nodes[n].first_in == -1; |
129 | 131 |
n = nodes[n].next) {} |
130 | 132 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
131 | 133 |
} |
132 | 134 |
} |
133 | 135 |
|
134 | 136 |
void firstOut(Arc &e, const Node& v) const { |
135 | 137 |
e.id = nodes[v.id].first_out; |
136 | 138 |
} |
137 | 139 |
void nextOut(Arc &e) const { |
138 | 140 |
e.id=arcs[e.id].next_out; |
139 | 141 |
} |
140 | 142 |
|
141 | 143 |
void firstIn(Arc &e, const Node& v) const { |
142 | 144 |
e.id = nodes[v.id].first_in; |
143 | 145 |
} |
144 | 146 |
void nextIn(Arc &e) const { |
145 | 147 |
e.id=arcs[e.id].next_in; |
146 | 148 |
} |
147 | 149 |
|
148 | 150 |
|
149 | 151 |
static int id(Node v) { return v.id; } |
150 | 152 |
static int id(Arc e) { return e.id; } |
151 | 153 |
|
152 | 154 |
static Node nodeFromId(int id) { return Node(id);} |
153 | 155 |
static Arc arcFromId(int id) { return Arc(id);} |
154 | 156 |
|
155 | 157 |
bool valid(Node n) const { |
156 | 158 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
157 | 159 |
nodes[n.id].prev != -2; |
158 | 160 |
} |
159 | 161 |
|
160 | 162 |
bool valid(Arc a) const { |
161 | 163 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
162 | 164 |
arcs[a.id].prev_in != -2; |
163 | 165 |
} |
164 | 166 |
|
165 | 167 |
Node addNode() { |
166 | 168 |
int n; |
167 | 169 |
|
168 | 170 |
if(first_free_node==-1) { |
169 | 171 |
n = nodes.size(); |
170 | 172 |
nodes.push_back(NodeT()); |
171 | 173 |
} else { |
172 | 174 |
n = first_free_node; |
173 | 175 |
first_free_node = nodes[n].next; |
174 | 176 |
} |
175 | 177 |
|
176 | 178 |
nodes[n].next = first_node; |
177 | 179 |
if(first_node != -1) nodes[first_node].prev = n; |
178 | 180 |
first_node = n; |
179 | 181 |
nodes[n].prev = -1; |
180 | 182 |
|
181 | 183 |
nodes[n].first_in = nodes[n].first_out = -1; |
182 | 184 |
|
183 | 185 |
return Node(n); |
184 | 186 |
} |
185 | 187 |
|
186 | 188 |
Arc addArc(Node u, Node v) { |
187 | 189 |
int n; |
188 | 190 |
|
189 | 191 |
if (first_free_arc == -1) { |
190 | 192 |
n = arcs.size(); |
191 | 193 |
arcs.push_back(ArcT()); |
192 | 194 |
} else { |
193 | 195 |
n = first_free_arc; |
194 | 196 |
first_free_arc = arcs[n].next_in; |
195 | 197 |
} |
196 | 198 |
|
197 | 199 |
arcs[n].source = u.id; |
198 | 200 |
arcs[n].target = v.id; |
199 | 201 |
|
200 | 202 |
arcs[n].next_out = nodes[u.id].first_out; |
201 | 203 |
if(nodes[u.id].first_out != -1) { |
202 | 204 |
arcs[nodes[u.id].first_out].prev_out = n; |
203 | 205 |
} |
204 | 206 |
|
205 | 207 |
arcs[n].next_in = nodes[v.id].first_in; |
206 | 208 |
if(nodes[v.id].first_in != -1) { |
207 | 209 |
arcs[nodes[v.id].first_in].prev_in = n; |
208 | 210 |
} |
209 | 211 |
|
210 | 212 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
211 | 213 |
|
212 | 214 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
213 | 215 |
|
214 | 216 |
return Arc(n); |
215 | 217 |
} |
216 | 218 |
|
217 | 219 |
void erase(const Node& node) { |
218 | 220 |
int n = node.id; |
219 | 221 |
|
220 | 222 |
if(nodes[n].next != -1) { |
221 | 223 |
nodes[nodes[n].next].prev = nodes[n].prev; |
222 | 224 |
} |
223 | 225 |
|
224 | 226 |
if(nodes[n].prev != -1) { |
225 | 227 |
nodes[nodes[n].prev].next = nodes[n].next; |
226 | 228 |
} else { |
227 | 229 |
first_node = nodes[n].next; |
228 | 230 |
} |
229 | 231 |
|
230 | 232 |
nodes[n].next = first_free_node; |
231 | 233 |
first_free_node = n; |
232 | 234 |
nodes[n].prev = -2; |
233 | 235 |
|
234 | 236 |
} |
235 | 237 |
|
236 | 238 |
void erase(const Arc& arc) { |
237 | 239 |
int n = arc.id; |
238 | 240 |
|
239 | 241 |
if(arcs[n].next_in!=-1) { |
240 | 242 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
241 | 243 |
} |
242 | 244 |
|
243 | 245 |
if(arcs[n].prev_in!=-1) { |
244 | 246 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
245 | 247 |
} else { |
246 | 248 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
247 | 249 |
} |
248 | 250 |
|
249 | 251 |
|
250 | 252 |
if(arcs[n].next_out!=-1) { |
251 | 253 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
252 | 254 |
} |
253 | 255 |
|
254 | 256 |
if(arcs[n].prev_out!=-1) { |
255 | 257 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
256 | 258 |
} else { |
257 | 259 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
258 | 260 |
} |
259 | 261 |
|
260 | 262 |
arcs[n].next_in = first_free_arc; |
261 | 263 |
first_free_arc = n; |
262 | 264 |
arcs[n].prev_in = -2; |
263 | 265 |
} |
264 | 266 |
|
265 | 267 |
void clear() { |
266 | 268 |
arcs.clear(); |
267 | 269 |
nodes.clear(); |
268 | 270 |
first_node = first_free_node = first_free_arc = -1; |
269 | 271 |
} |
270 | 272 |
|
271 | 273 |
protected: |
272 | 274 |
void changeTarget(Arc e, Node n) |
273 | 275 |
{ |
274 | 276 |
if(arcs[e.id].next_in != -1) |
275 | 277 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
276 | 278 |
if(arcs[e.id].prev_in != -1) |
277 | 279 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
278 | 280 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
279 | 281 |
if (nodes[n.id].first_in != -1) { |
280 | 282 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
281 | 283 |
} |
282 | 284 |
arcs[e.id].target = n.id; |
283 | 285 |
arcs[e.id].prev_in = -1; |
284 | 286 |
arcs[e.id].next_in = nodes[n.id].first_in; |
285 | 287 |
nodes[n.id].first_in = e.id; |
286 | 288 |
} |
287 | 289 |
void changeSource(Arc e, Node n) |
288 | 290 |
{ |
289 | 291 |
if(arcs[e.id].next_out != -1) |
290 | 292 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
291 | 293 |
if(arcs[e.id].prev_out != -1) |
292 | 294 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
293 | 295 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
294 | 296 |
if (nodes[n.id].first_out != -1) { |
295 | 297 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
296 | 298 |
} |
297 | 299 |
arcs[e.id].source = n.id; |
298 | 300 |
arcs[e.id].prev_out = -1; |
299 | 301 |
arcs[e.id].next_out = nodes[n.id].first_out; |
300 | 302 |
nodes[n.id].first_out = e.id; |
301 | 303 |
} |
302 | 304 |
|
303 | 305 |
}; |
304 | 306 |
|
305 | 307 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
306 | 308 |
|
307 | 309 |
/// \addtogroup graphs |
308 | 310 |
/// @{ |
309 | 311 |
|
310 | 312 |
///A general directed graph structure. |
311 | 313 |
|
312 | 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
313 | 315 |
///implementation based on static linked lists that are stored in |
314 | 316 |
///\c std::vector structures. |
315 | 317 |
/// |
316 | 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
317 | 319 |
///also provides several useful additional functionalities. |
318 | 320 |
///Most of the member functions and nested classes are documented |
319 | 321 |
///only in the concept class. |
320 | 322 |
/// |
321 | 323 |
///An important extra feature of this digraph implementation is that |
322 | 324 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
323 | 325 |
/// |
324 | 326 |
///\sa concepts::Digraph |
325 | 327 |
|
326 | 328 |
class ListDigraph : public ExtendedListDigraphBase { |
327 | 329 |
private: |
328 | 330 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
329 | 331 |
|
330 | 332 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
331 | 333 |
/// |
332 | 334 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
333 | 335 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
334 | 336 |
///Use copyDigraph() instead. |
335 | 337 |
|
336 | 338 |
///Assignment of ListDigraph to another one is \e not allowed. |
337 | 339 |
///Use copyDigraph() instead. |
338 | 340 |
void operator=(const ListDigraph &) {} |
339 | 341 |
public: |
340 | 342 |
|
341 | 343 |
typedef ExtendedListDigraphBase Parent; |
342 | 344 |
|
343 | 345 |
/// Constructor |
344 | 346 |
|
345 | 347 |
/// Constructor. |
346 | 348 |
/// |
347 | 349 |
ListDigraph() {} |
348 | 350 |
|
349 | 351 |
///Add a new node to the digraph. |
350 | 352 |
|
351 | 353 |
///Add a new node to the digraph. |
352 | 354 |
///\return the new node. |
353 | 355 |
Node addNode() { return Parent::addNode(); } |
354 | 356 |
|
355 | 357 |
///Add a new arc to the digraph. |
356 | 358 |
|
357 | 359 |
///Add a new arc to the digraph with source node \c s |
358 | 360 |
///and target node \c t. |
359 | 361 |
///\return the new arc. |
360 | 362 |
Arc addArc(const Node& s, const Node& t) { |
361 | 363 |
return Parent::addArc(s, t); |
362 | 364 |
} |
363 | 365 |
|
364 | 366 |
/// Node validity check |
365 | 367 |
|
366 | 368 |
/// This function gives back true if the given node is valid, |
367 | 369 |
/// ie. it is a real node of the graph. |
368 | 370 |
/// |
369 | 371 |
/// \warning A Node pointing to a removed item |
370 | 372 |
/// could become valid again later if new nodes are |
371 | 373 |
/// added to the graph. |
372 | 374 |
bool valid(Node n) const { return Parent::valid(n); } |
373 | 375 |
|
374 | 376 |
/// Arc validity check |
375 | 377 |
|
376 | 378 |
/// This function gives back true if the given arc is valid, |
377 | 379 |
/// ie. it is a real arc of the graph. |
378 | 380 |
/// |
379 | 381 |
/// \warning An Arc pointing to a removed item |
380 | 382 |
/// could become valid again later if new nodes are |
381 | 383 |
/// added to the graph. |
382 | 384 |
bool valid(Arc a) const { return Parent::valid(a); } |
383 | 385 |
|
384 | 386 |
/// Change the target of \c e to \c n |
385 | 387 |
|
386 | 388 |
/// Change the target of \c e to \c n |
387 | 389 |
/// |
388 | 390 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
389 | 391 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
390 | 392 |
///invalidated. |
391 | 393 |
/// |
392 | 394 |
///\warning This functionality cannot be used together with the Snapshot |
393 | 395 |
///feature. |
394 | 396 |
void changeTarget(Arc e, Node n) { |
395 | 397 |
Parent::changeTarget(e,n); |
396 | 398 |
} |
397 | 399 |
/// Change the source of \c e to \c n |
398 | 400 |
|
399 | 401 |
/// Change the source of \c e to \c n |
400 | 402 |
/// |
401 | 403 |
///\note The <tt>ArcIt</tt>s and <tt>InArcIt</tt>s referencing |
402 | 404 |
///the changed arc remain valid. However <tt>OutArcIt</tt>s are |
403 | 405 |
///invalidated. |
404 | 406 |
/// |
405 | 407 |
///\warning This functionality cannot be used together with the Snapshot |
406 | 408 |
///feature. |
407 | 409 |
void changeSource(Arc e, Node n) { |
408 | 410 |
Parent::changeSource(e,n); |
409 | 411 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 |
#include <lemon/bits/utility.h> |
|
27 |
#include <lemon/bits/traits.h> |
|
26 |
#include <lemon/core.h> |
|
28 | 27 |
|
29 | 28 |
///\file |
30 | 29 |
///\ingroup maps |
31 | 30 |
///\brief Miscellaneous property maps |
32 | 31 |
|
33 | 32 |
#include <map> |
34 | 33 |
|
35 | 34 |
namespace lemon { |
36 | 35 |
|
37 | 36 |
/// \addtogroup maps |
38 | 37 |
/// @{ |
39 | 38 |
|
40 | 39 |
/// Base class of maps. |
41 | 40 |
|
42 | 41 |
/// Base class of maps. It provides the necessary type definitions |
43 | 42 |
/// required by the map %concepts. |
44 | 43 |
template<typename K, typename V> |
45 | 44 |
class MapBase { |
46 | 45 |
public: |
47 | 46 |
/// \biref The key type of the map. |
48 | 47 |
typedef K Key; |
49 | 48 |
/// \brief The value type of the map. |
50 | 49 |
/// (The type of objects associated with the keys). |
51 | 50 |
typedef V Value; |
52 | 51 |
}; |
53 | 52 |
|
54 | 53 |
|
55 | 54 |
/// Null map. (a.k.a. DoNothingMap) |
56 | 55 |
|
57 | 56 |
/// This map can be used if you have to provide a map only for |
58 | 57 |
/// its type definitions, or if you have to provide a writable map, |
59 | 58 |
/// but data written to it is not required (i.e. it will be sent to |
60 | 59 |
/// <tt>/dev/null</tt>). |
61 | 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
62 | 61 |
/// |
63 | 62 |
/// \sa ConstMap |
64 | 63 |
template<typename K, typename V> |
65 | 64 |
class NullMap : public MapBase<K, V> { |
66 | 65 |
public: |
67 | 66 |
typedef MapBase<K, V> Parent; |
68 | 67 |
typedef typename Parent::Key Key; |
69 | 68 |
typedef typename Parent::Value Value; |
70 | 69 |
|
71 | 70 |
/// Gives back a default constructed element. |
72 | 71 |
Value operator[](const Key&) const { return Value(); } |
73 | 72 |
/// Absorbs the value. |
74 | 73 |
void set(const Key&, const Value&) {} |
75 | 74 |
}; |
76 | 75 |
|
77 | 76 |
/// Returns a \ref NullMap class |
78 | 77 |
|
79 | 78 |
/// This function just returns a \ref NullMap class. |
80 | 79 |
/// \relates NullMap |
81 | 80 |
template <typename K, typename V> |
82 | 81 |
NullMap<K, V> nullMap() { |
83 | 82 |
return NullMap<K, V>(); |
84 | 83 |
} |
85 | 84 |
|
86 | 85 |
|
87 | 86 |
/// Constant map. |
88 | 87 |
|
89 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
90 | 89 |
/// value to each key. |
91 | 90 |
/// |
92 | 91 |
/// In other aspects it is equivalent to \ref NullMap. |
93 | 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
94 | 93 |
/// concept, but it absorbs the data written to it. |
95 | 94 |
/// |
96 | 95 |
/// The simplest way of using this map is through the constMap() |
97 | 96 |
/// function. |
98 | 97 |
/// |
99 | 98 |
/// \sa NullMap |
100 | 99 |
/// \sa IdentityMap |
101 | 100 |
template<typename K, typename V> |
102 | 101 |
class ConstMap : public MapBase<K, V> { |
103 | 102 |
private: |
104 | 103 |
V _value; |
105 | 104 |
public: |
106 | 105 |
typedef MapBase<K, V> Parent; |
107 | 106 |
typedef typename Parent::Key Key; |
108 | 107 |
typedef typename Parent::Value Value; |
109 | 108 |
|
110 | 109 |
/// Default constructor |
111 | 110 |
|
112 | 111 |
/// Default constructor. |
113 | 112 |
/// The value of the map will be default constructed. |
114 | 113 |
ConstMap() {} |
115 | 114 |
|
116 | 115 |
/// Constructor with specified initial value |
117 | 116 |
|
118 | 117 |
/// Constructor with specified initial value. |
119 | 118 |
/// \param v The initial value of the map. |
120 | 119 |
ConstMap(const Value &v) : _value(v) {} |
121 | 120 |
|
122 | 121 |
/// Gives back the specified value. |
123 | 122 |
Value operator[](const Key&) const { return _value; } |
124 | 123 |
|
125 | 124 |
/// Absorbs the value. |
126 | 125 |
void set(const Key&, const Value&) {} |
127 | 126 |
|
128 | 127 |
/// Sets the value that is assigned to each key. |
129 | 128 |
void setAll(const Value &v) { |
130 | 129 |
_value = v; |
131 | 130 |
} |
132 | 131 |
|
133 | 132 |
template<typename V1> |
134 | 133 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
135 | 134 |
}; |
136 | 135 |
|
137 | 136 |
/// Returns a \ref ConstMap class |
138 | 137 |
|
139 | 138 |
/// This function just returns a \ref ConstMap class. |
140 | 139 |
/// \relates ConstMap |
141 | 140 |
template<typename K, typename V> |
142 | 141 |
inline ConstMap<K, V> constMap(const V &v) { |
143 | 142 |
return ConstMap<K, V>(v); |
144 | 143 |
} |
145 | 144 |
|
146 | 145 |
template<typename K, typename V> |
147 | 146 |
inline ConstMap<K, V> constMap() { |
148 | 147 |
return ConstMap<K, V>(); |
149 | 148 |
} |
150 | 149 |
|
151 | 150 |
|
152 | 151 |
template<typename T, T v> |
153 | 152 |
struct Const {}; |
154 | 153 |
|
155 | 154 |
/// Constant map with inlined constant value. |
156 | 155 |
|
157 | 156 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
158 | 157 |
/// value to each key. |
159 | 158 |
/// |
160 | 159 |
/// In other aspects it is equivalent to \ref NullMap. |
161 | 160 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
162 | 161 |
/// concept, but it absorbs the data written to it. |
163 | 162 |
/// |
164 | 163 |
/// The simplest way of using this map is through the constMap() |
165 | 164 |
/// function. |
166 | 165 |
/// |
167 | 166 |
/// \sa NullMap |
168 | 167 |
/// \sa IdentityMap |
169 | 168 |
template<typename K, typename V, V v> |
170 | 169 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
171 | 170 |
public: |
172 | 171 |
typedef MapBase<K, V> Parent; |
173 | 172 |
typedef typename Parent::Key Key; |
174 | 173 |
typedef typename Parent::Value Value; |
175 | 174 |
|
176 | 175 |
/// Constructor. |
177 | 176 |
ConstMap() {} |
178 | 177 |
|
179 | 178 |
/// Gives back the specified value. |
180 | 179 |
Value operator[](const Key&) const { return v; } |
181 | 180 |
|
182 | 181 |
/// Absorbs the value. |
183 | 182 |
void set(const Key&, const Value&) {} |
184 | 183 |
}; |
185 | 184 |
|
186 | 185 |
/// Returns a \ref ConstMap class with inlined constant value |
187 | 186 |
|
188 | 187 |
/// This function just returns a \ref ConstMap class with inlined |
189 | 188 |
/// constant value. |
190 | 189 |
/// \relates ConstMap |
191 | 190 |
template<typename K, typename V, V v> |
192 | 191 |
inline ConstMap<K, Const<V, v> > constMap() { |
193 | 192 |
return ConstMap<K, Const<V, v> >(); |
194 | 193 |
} |
195 | 194 |
|
196 | 195 |
|
197 | 196 |
/// Identity map. |
198 | 197 |
|
199 | 198 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
200 | 199 |
/// key as value without any modification. |
201 | 200 |
/// |
202 | 201 |
/// \sa ConstMap |
203 | 202 |
template <typename T> |
204 | 203 |
class IdentityMap : public MapBase<T, T> { |
205 | 204 |
public: |
206 | 205 |
typedef MapBase<T, T> Parent; |
207 | 206 |
typedef typename Parent::Key Key; |
208 | 207 |
typedef typename Parent::Value Value; |
209 | 208 |
|
210 | 209 |
/// Gives back the given value without any modification. |
211 | 210 |
Value operator[](const Key &k) const { |
212 | 211 |
return k; |
213 | 212 |
} |
214 | 213 |
}; |
215 | 214 |
|
216 | 215 |
/// Returns an \ref IdentityMap class |
217 | 216 |
|
218 | 217 |
/// This function just returns an \ref IdentityMap class. |
219 | 218 |
/// \relates IdentityMap |
220 | 219 |
template<typename T> |
221 | 220 |
inline IdentityMap<T> identityMap() { |
222 | 221 |
return IdentityMap<T>(); |
223 | 222 |
} |
224 | 223 |
|
225 | 224 |
|
226 | 225 |
/// \brief Map for storing values for integer keys from the range |
227 | 226 |
/// <tt>[0..size-1]</tt>. |
228 | 227 |
/// |
229 | 228 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
230 | 229 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
231 | 230 |
/// It can be used with some data structures, for example |
232 | 231 |
/// \ref UnionFind, \ref BinHeap, when the used items are small |
233 | 232 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
234 | 233 |
/// "ReferenceMap" concept. |
235 | 234 |
/// |
236 | 235 |
/// The simplest way of using this map is through the rangeMap() |
237 | 236 |
/// function. |
238 | 237 |
template <typename V> |
239 | 238 |
class RangeMap : public MapBase<int, V> { |
240 | 239 |
template <typename V1> |
241 | 240 |
friend class RangeMap; |
242 | 241 |
private: |
243 | 242 |
|
244 | 243 |
typedef std::vector<V> Vector; |
245 | 244 |
Vector _vector; |
246 | 245 |
|
247 | 246 |
public: |
248 | 247 |
|
249 | 248 |
typedef MapBase<int, V> Parent; |
250 | 249 |
/// Key type |
251 | 250 |
typedef typename Parent::Key Key; |
252 | 251 |
/// Value type |
253 | 252 |
typedef typename Parent::Value Value; |
254 | 253 |
/// Reference type |
255 | 254 |
typedef typename Vector::reference Reference; |
256 | 255 |
/// Const reference type |
257 | 256 |
typedef typename Vector::const_reference ConstReference; |
258 | 257 |
|
259 | 258 |
typedef True ReferenceMapTag; |
260 | 259 |
|
261 | 260 |
public: |
262 | 261 |
|
263 | 262 |
/// Constructor with specified default value. |
264 | 263 |
RangeMap(int size = 0, const Value &value = Value()) |
265 | 264 |
: _vector(size, value) {} |
266 | 265 |
|
267 | 266 |
/// Constructs the map from an appropriate \c std::vector. |
268 | 267 |
template <typename V1> |
269 | 268 |
RangeMap(const std::vector<V1>& vector) |
270 | 269 |
: _vector(vector.begin(), vector.end()) {} |
271 | 270 |
|
272 | 271 |
/// Constructs the map from another \ref RangeMap. |
273 | 272 |
template <typename V1> |
274 | 273 |
RangeMap(const RangeMap<V1> &c) |
275 | 274 |
: _vector(c._vector.begin(), c._vector.end()) {} |
276 | 275 |
|
277 | 276 |
/// Returns the size of the map. |
278 | 277 |
int size() { |
279 | 278 |
return _vector.size(); |
280 | 279 |
} |
281 | 280 |
|
282 | 281 |
/// Resizes the map. |
283 | 282 |
|
284 | 283 |
/// Resizes the underlying \c std::vector container, so changes the |
285 | 284 |
/// keyset of the map. |
286 | 285 |
/// \param size The new size of the map. The new keyset will be the |
287 | 286 |
/// range <tt>[0..size-1]</tt>. |
288 | 287 |
/// \param value The default value to assign to the new keys. |
289 | 288 |
void resize(int size, const Value &value = Value()) { |
290 | 289 |
_vector.resize(size, value); |
291 | 290 |
} |
292 | 291 |
|
293 | 292 |
private: |
294 | 293 |
|
295 | 294 |
RangeMap& operator=(const RangeMap&); |
296 | 295 |
|
297 | 296 |
public: |
298 | 297 |
|
299 | 298 |
///\e |
300 | 299 |
Reference operator[](const Key &k) { |
301 | 300 |
return _vector[k]; |
302 | 301 |
} |
303 | 302 |
|
304 | 303 |
///\e |
305 | 304 |
ConstReference operator[](const Key &k) const { |
306 | 305 |
return _vector[k]; |
307 | 306 |
} |
308 | 307 |
|
309 | 308 |
///\e |
310 | 309 |
void set(const Key &k, const Value &v) { |
311 | 310 |
_vector[k] = v; |
312 | 311 |
} |
313 | 312 |
}; |
314 | 313 |
|
315 | 314 |
/// Returns a \ref RangeMap class |
316 | 315 |
|
317 | 316 |
/// This function just returns a \ref RangeMap class. |
318 | 317 |
/// \relates RangeMap |
319 | 318 |
template<typename V> |
320 | 319 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
321 | 320 |
return RangeMap<V>(size, value); |
322 | 321 |
} |
323 | 322 |
|
324 | 323 |
/// \brief Returns a \ref RangeMap class created from an appropriate |
325 | 324 |
/// \c std::vector |
326 | 325 |
|
327 | 326 |
/// This function just returns a \ref RangeMap class created from an |
328 | 327 |
/// appropriate \c std::vector. |
329 | 328 |
/// \relates RangeMap |
330 | 329 |
template<typename V> |
331 | 330 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
332 | 331 |
return RangeMap<V>(vector); |
333 | 332 |
} |
334 | 333 |
|
335 | 334 |
|
336 | 335 |
/// Map type based on \c std::map |
337 | 336 |
|
338 | 337 |
/// This map is essentially a wrapper for \c std::map with addition |
339 | 338 |
/// that you can specify a default value for the keys that are not |
340 | 339 |
/// stored actually. This value can be different from the default |
341 | 340 |
/// contructed value (i.e. \c %Value()). |
342 | 341 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
343 | 342 |
/// concept. |
344 | 343 |
/// |
345 | 344 |
/// This map is useful if a default value should be assigned to most of |
346 | 345 |
/// the keys and different values should be assigned only to a few |
347 | 346 |
/// keys (i.e. the map is "sparse"). |
348 | 347 |
/// The name of this type also refers to this important usage. |
349 | 348 |
/// |
350 | 349 |
/// Apart form that this map can be used in many other cases since it |
351 | 350 |
/// is based on \c std::map, which is a general associative container. |
352 | 351 |
/// However keep in mind that it is usually not as efficient as other |
353 | 352 |
/// maps. |
354 | 353 |
/// |
355 | 354 |
/// The simplest way of using this map is through the sparseMap() |
356 | 355 |
/// function. |
357 | 356 |
template <typename K, typename V, typename Compare = std::less<K> > |
358 | 357 |
class SparseMap : public MapBase<K, V> { |
359 | 358 |
template <typename K1, typename V1, typename C1> |
360 | 359 |
friend class SparseMap; |
361 | 360 |
public: |
362 | 361 |
|
363 | 362 |
typedef MapBase<K, V> Parent; |
364 | 363 |
/// Key type |
365 | 364 |
typedef typename Parent::Key Key; |
366 | 365 |
/// Value type |
367 | 366 |
typedef typename Parent::Value Value; |
368 | 367 |
/// Reference type |
369 | 368 |
typedef Value& Reference; |
370 | 369 |
/// Const reference type |
371 | 370 |
typedef const Value& ConstReference; |
372 | 371 |
|
373 | 372 |
typedef True ReferenceMapTag; |
374 | 373 |
|
375 | 374 |
private: |
376 | 375 |
|
377 | 376 |
typedef std::map<K, V, Compare> Map; |
378 | 377 |
Map _map; |
379 | 378 |
Value _value; |
380 | 379 |
|
381 | 380 |
public: |
382 | 381 |
|
383 | 382 |
/// \brief Constructor with specified default value. |
384 | 383 |
SparseMap(const Value &value = Value()) : _value(value) {} |
385 | 384 |
/// \brief Constructs the map from an appropriate \c std::map, and |
386 | 385 |
/// explicitly specifies a default value. |
387 | 386 |
template <typename V1, typename Comp1> |
388 | 387 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
389 | 388 |
const Value &value = Value()) |
390 | 389 |
: _map(map.begin(), map.end()), _value(value) {} |
391 | 390 |
|
392 | 391 |
/// \brief Constructs the map from another \ref SparseMap. |
393 | 392 |
template<typename V1, typename Comp1> |
394 | 393 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
395 | 394 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
396 | 395 |
|
397 | 396 |
private: |
398 | 397 |
|
399 | 398 |
SparseMap& operator=(const SparseMap&); |
400 | 399 |
|
401 | 400 |
public: |
402 | 401 |
|
403 | 402 |
///\e |
404 | 403 |
Reference operator[](const Key &k) { |
405 | 404 |
typename Map::iterator it = _map.lower_bound(k); |
406 | 405 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
407 | 406 |
return it->second; |
408 | 407 |
else |
409 | 408 |
return _map.insert(it, std::make_pair(k, _value))->second; |
410 | 409 |
} |
411 | 410 |
|
... | ... |
@@ -1399,388 +1398,1308 @@ |
1399 | 1398 |
/// @} |
1400 | 1399 |
|
1401 | 1400 |
/// \addtogroup map_adaptors |
1402 | 1401 |
/// @{ |
1403 | 1402 |
|
1404 | 1403 |
/// Logical 'and' of two maps |
1405 | 1404 |
|
1406 | 1405 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1407 | 1406 |
/// 'and' of the values of the two given maps. |
1408 | 1407 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1409 | 1408 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1410 | 1409 |
/// |
1411 | 1410 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1412 | 1411 |
/// \code |
1413 | 1412 |
/// AndMap<M1,M2> am(m1,m2); |
1414 | 1413 |
/// \endcode |
1415 | 1414 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
1416 | 1415 |
/// |
1417 | 1416 |
/// The simplest way of using this map is through the andMap() |
1418 | 1417 |
/// function. |
1419 | 1418 |
/// |
1420 | 1419 |
/// \sa OrMap |
1421 | 1420 |
/// \sa NotMap, NotWriteMap |
1422 | 1421 |
template<typename M1, typename M2> |
1423 | 1422 |
class AndMap : public MapBase<typename M1::Key, bool> { |
1424 | 1423 |
const M1 &_m1; |
1425 | 1424 |
const M2 &_m2; |
1426 | 1425 |
public: |
1427 | 1426 |
typedef MapBase<typename M1::Key, bool> Parent; |
1428 | 1427 |
typedef typename Parent::Key Key; |
1429 | 1428 |
typedef typename Parent::Value Value; |
1430 | 1429 |
|
1431 | 1430 |
/// Constructor |
1432 | 1431 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1433 | 1432 |
/// \e |
1434 | 1433 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
1435 | 1434 |
}; |
1436 | 1435 |
|
1437 | 1436 |
/// Returns an \ref AndMap class |
1438 | 1437 |
|
1439 | 1438 |
/// This function just returns an \ref AndMap class. |
1440 | 1439 |
/// |
1441 | 1440 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1442 | 1441 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1443 | 1442 |
/// <tt>m1[x]&&m2[x]</tt>. |
1444 | 1443 |
/// |
1445 | 1444 |
/// \relates AndMap |
1446 | 1445 |
template<typename M1, typename M2> |
1447 | 1446 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1448 | 1447 |
return AndMap<M1, M2>(m1,m2); |
1449 | 1448 |
} |
1450 | 1449 |
|
1451 | 1450 |
|
1452 | 1451 |
/// Logical 'or' of two maps |
1453 | 1452 |
|
1454 | 1453 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1455 | 1454 |
/// 'or' of the values of the two given maps. |
1456 | 1455 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1457 | 1456 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1458 | 1457 |
/// |
1459 | 1458 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1460 | 1459 |
/// \code |
1461 | 1460 |
/// OrMap<M1,M2> om(m1,m2); |
1462 | 1461 |
/// \endcode |
1463 | 1462 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1464 | 1463 |
/// |
1465 | 1464 |
/// The simplest way of using this map is through the orMap() |
1466 | 1465 |
/// function. |
1467 | 1466 |
/// |
1468 | 1467 |
/// \sa AndMap |
1469 | 1468 |
/// \sa NotMap, NotWriteMap |
1470 | 1469 |
template<typename M1, typename M2> |
1471 | 1470 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1472 | 1471 |
const M1 &_m1; |
1473 | 1472 |
const M2 &_m2; |
1474 | 1473 |
public: |
1475 | 1474 |
typedef MapBase<typename M1::Key, bool> Parent; |
1476 | 1475 |
typedef typename Parent::Key Key; |
1477 | 1476 |
typedef typename Parent::Value Value; |
1478 | 1477 |
|
1479 | 1478 |
/// Constructor |
1480 | 1479 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1481 | 1480 |
/// \e |
1482 | 1481 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1483 | 1482 |
}; |
1484 | 1483 |
|
1485 | 1484 |
/// Returns an \ref OrMap class |
1486 | 1485 |
|
1487 | 1486 |
/// This function just returns an \ref OrMap class. |
1488 | 1487 |
/// |
1489 | 1488 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1490 | 1489 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1491 | 1490 |
/// <tt>m1[x]||m2[x]</tt>. |
1492 | 1491 |
/// |
1493 | 1492 |
/// \relates OrMap |
1494 | 1493 |
template<typename M1, typename M2> |
1495 | 1494 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1496 | 1495 |
return OrMap<M1, M2>(m1,m2); |
1497 | 1496 |
} |
1498 | 1497 |
|
1499 | 1498 |
|
1500 | 1499 |
/// Logical 'not' of a map |
1501 | 1500 |
|
1502 | 1501 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1503 | 1502 |
/// negation of the values of the given map. |
1504 | 1503 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1505 | 1504 |
/// |
1506 | 1505 |
/// The simplest way of using this map is through the notMap() |
1507 | 1506 |
/// function. |
1508 | 1507 |
/// |
1509 | 1508 |
/// \sa NotWriteMap |
1510 | 1509 |
template <typename M> |
1511 | 1510 |
class NotMap : public MapBase<typename M::Key, bool> { |
1512 | 1511 |
const M &_m; |
1513 | 1512 |
public: |
1514 | 1513 |
typedef MapBase<typename M::Key, bool> Parent; |
1515 | 1514 |
typedef typename Parent::Key Key; |
1516 | 1515 |
typedef typename Parent::Value Value; |
1517 | 1516 |
|
1518 | 1517 |
/// Constructor |
1519 | 1518 |
NotMap(const M &m) : _m(m) {} |
1520 | 1519 |
/// \e |
1521 | 1520 |
Value operator[](const Key &k) const { return !_m[k]; } |
1522 | 1521 |
}; |
1523 | 1522 |
|
1524 | 1523 |
/// Logical 'not' of a map (read-write version) |
1525 | 1524 |
|
1526 | 1525 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1527 | 1526 |
/// logical negation of the values of the given map. |
1528 | 1527 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1529 | 1528 |
/// It makes also possible to write the map. When a value is set, |
1530 | 1529 |
/// the opposite value is set to the original map. |
1531 | 1530 |
/// |
1532 | 1531 |
/// The simplest way of using this map is through the notWriteMap() |
1533 | 1532 |
/// function. |
1534 | 1533 |
/// |
1535 | 1534 |
/// \sa NotMap |
1536 | 1535 |
template <typename M> |
1537 | 1536 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1538 | 1537 |
M &_m; |
1539 | 1538 |
public: |
1540 | 1539 |
typedef MapBase<typename M::Key, bool> Parent; |
1541 | 1540 |
typedef typename Parent::Key Key; |
1542 | 1541 |
typedef typename Parent::Value Value; |
1543 | 1542 |
|
1544 | 1543 |
/// Constructor |
1545 | 1544 |
NotWriteMap(M &m) : _m(m) {} |
1546 | 1545 |
/// \e |
1547 | 1546 |
Value operator[](const Key &k) const { return !_m[k]; } |
1548 | 1547 |
/// \e |
1549 | 1548 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1550 | 1549 |
}; |
1551 | 1550 |
|
1552 | 1551 |
/// Returns a \ref NotMap class |
1553 | 1552 |
|
1554 | 1553 |
/// This function just returns a \ref NotMap class. |
1555 | 1554 |
/// |
1556 | 1555 |
/// For example, if \c m is a map with \c bool values, then |
1557 | 1556 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1558 | 1557 |
/// |
1559 | 1558 |
/// \relates NotMap |
1560 | 1559 |
template <typename M> |
1561 | 1560 |
inline NotMap<M> notMap(const M &m) { |
1562 | 1561 |
return NotMap<M>(m); |
1563 | 1562 |
} |
1564 | 1563 |
|
1565 | 1564 |
/// Returns a \ref NotWriteMap class |
1566 | 1565 |
|
1567 | 1566 |
/// This function just returns a \ref NotWriteMap class. |
1568 | 1567 |
/// |
1569 | 1568 |
/// For example, if \c m is a map with \c bool values, then |
1570 | 1569 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1571 | 1570 |
/// Moreover it makes also possible to write the map. |
1572 | 1571 |
/// |
1573 | 1572 |
/// \relates NotWriteMap |
1574 | 1573 |
template <typename M> |
1575 | 1574 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1576 | 1575 |
return NotWriteMap<M>(m); |
1577 | 1576 |
} |
1578 | 1577 |
|
1579 | 1578 |
|
1580 | 1579 |
/// Combination of two maps using the \c == operator |
1581 | 1580 |
|
1582 | 1581 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1583 | 1582 |
/// the keys for which the corresponding values of the two maps are |
1584 | 1583 |
/// equal. |
1585 | 1584 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1586 | 1585 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1587 | 1586 |
/// |
1588 | 1587 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1589 | 1588 |
/// \code |
1590 | 1589 |
/// EqualMap<M1,M2> em(m1,m2); |
1591 | 1590 |
/// \endcode |
1592 | 1591 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1593 | 1592 |
/// |
1594 | 1593 |
/// The simplest way of using this map is through the equalMap() |
1595 | 1594 |
/// function. |
1596 | 1595 |
/// |
1597 | 1596 |
/// \sa LessMap |
1598 | 1597 |
template<typename M1, typename M2> |
1599 | 1598 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1600 | 1599 |
const M1 &_m1; |
1601 | 1600 |
const M2 &_m2; |
1602 | 1601 |
public: |
1603 | 1602 |
typedef MapBase<typename M1::Key, bool> Parent; |
1604 | 1603 |
typedef typename Parent::Key Key; |
1605 | 1604 |
typedef typename Parent::Value Value; |
1606 | 1605 |
|
1607 | 1606 |
/// Constructor |
1608 | 1607 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1609 | 1608 |
/// \e |
1610 | 1609 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1611 | 1610 |
}; |
1612 | 1611 |
|
1613 | 1612 |
/// Returns an \ref EqualMap class |
1614 | 1613 |
|
1615 | 1614 |
/// This function just returns an \ref EqualMap class. |
1616 | 1615 |
/// |
1617 | 1616 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1618 | 1617 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1619 | 1618 |
/// <tt>m1[x]==m2[x]</tt>. |
1620 | 1619 |
/// |
1621 | 1620 |
/// \relates EqualMap |
1622 | 1621 |
template<typename M1, typename M2> |
1623 | 1622 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1624 | 1623 |
return EqualMap<M1, M2>(m1,m2); |
1625 | 1624 |
} |
1626 | 1625 |
|
1627 | 1626 |
|
1628 | 1627 |
/// Combination of two maps using the \c < operator |
1629 | 1628 |
|
1630 | 1629 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1631 | 1630 |
/// the keys for which the corresponding value of the first map is |
1632 | 1631 |
/// less then the value of the second map. |
1633 | 1632 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1634 | 1633 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1635 | 1634 |
/// |
1636 | 1635 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1637 | 1636 |
/// \code |
1638 | 1637 |
/// LessMap<M1,M2> lm(m1,m2); |
1639 | 1638 |
/// \endcode |
1640 | 1639 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1641 | 1640 |
/// |
1642 | 1641 |
/// The simplest way of using this map is through the lessMap() |
1643 | 1642 |
/// function. |
1644 | 1643 |
/// |
1645 | 1644 |
/// \sa EqualMap |
1646 | 1645 |
template<typename M1, typename M2> |
1647 | 1646 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1648 | 1647 |
const M1 &_m1; |
1649 | 1648 |
const M2 &_m2; |
1650 | 1649 |
public: |
1651 | 1650 |
typedef MapBase<typename M1::Key, bool> Parent; |
1652 | 1651 |
typedef typename Parent::Key Key; |
1653 | 1652 |
typedef typename Parent::Value Value; |
1654 | 1653 |
|
1655 | 1654 |
/// Constructor |
1656 | 1655 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1657 | 1656 |
/// \e |
1658 | 1657 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1659 | 1658 |
}; |
1660 | 1659 |
|
1661 | 1660 |
/// Returns an \ref LessMap class |
1662 | 1661 |
|
1663 | 1662 |
/// This function just returns an \ref LessMap class. |
1664 | 1663 |
/// |
1665 | 1664 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1666 | 1665 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1667 | 1666 |
/// <tt>m1[x]<m2[x]</tt>. |
1668 | 1667 |
/// |
1669 | 1668 |
/// \relates LessMap |
1670 | 1669 |
template<typename M1, typename M2> |
1671 | 1670 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1672 | 1671 |
return LessMap<M1, M2>(m1,m2); |
1673 | 1672 |
} |
1674 | 1673 |
|
1675 | 1674 |
namespace _maps_bits { |
1676 | 1675 |
|
1677 | 1676 |
template <typename _Iterator, typename Enable = void> |
1678 | 1677 |
struct IteratorTraits { |
1679 | 1678 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1680 | 1679 |
}; |
1681 | 1680 |
|
1682 | 1681 |
template <typename _Iterator> |
1683 | 1682 |
struct IteratorTraits<_Iterator, |
1684 | 1683 |
typename exists<typename _Iterator::container_type>::type> |
1685 | 1684 |
{ |
1686 | 1685 |
typedef typename _Iterator::container_type::value_type Value; |
1687 | 1686 |
}; |
1688 | 1687 |
|
1689 | 1688 |
} |
1690 | 1689 |
|
1691 | 1690 |
/// \brief Writable bool map for logging each \c true assigned element |
1692 | 1691 |
/// |
1693 | 1692 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1694 | 1693 |
/// each \c true assigned element, i.e it copies subsequently each |
1695 | 1694 |
/// keys set to \c true to the given iterator. |
1696 | 1695 |
/// The most important usage of it is storing certain nodes or arcs |
1697 | 1696 |
/// that were marked \c true by an algorithm. |
1698 | 1697 |
/// |
1699 | 1698 |
/// There are several algorithms that provide solutions through bool |
1700 | 1699 |
/// maps and most of them assign \c true at most once for each key. |
1701 | 1700 |
/// In these cases it is a natural request to store each \c true |
1702 | 1701 |
/// assigned elements (in order of the assignment), which can be |
1703 | 1702 |
/// easily done with LoggerBoolMap. |
1704 | 1703 |
/// |
1705 | 1704 |
/// The simplest way of using this map is through the loggerBoolMap() |
1706 | 1705 |
/// function. |
1707 | 1706 |
/// |
1708 | 1707 |
/// \tparam It The type of the iterator. |
1709 | 1708 |
/// \tparam Ke The key type of the map. The default value set |
1710 | 1709 |
/// according to the iterator type should work in most cases. |
1711 | 1710 |
/// |
1712 | 1711 |
/// \note The container of the iterator must contain enough space |
1713 | 1712 |
/// for the elements or the iterator should be an inserter iterator. |
1714 | 1713 |
#ifdef DOXYGEN |
1715 | 1714 |
template <typename It, typename Ke> |
1716 | 1715 |
#else |
1717 | 1716 |
template <typename It, |
1718 | 1717 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
1719 | 1718 |
#endif |
1720 | 1719 |
class LoggerBoolMap { |
1721 | 1720 |
public: |
1722 | 1721 |
typedef It Iterator; |
1723 | 1722 |
|
1724 | 1723 |
typedef Ke Key; |
1725 | 1724 |
typedef bool Value; |
1726 | 1725 |
|
1727 | 1726 |
/// Constructor |
1728 | 1727 |
LoggerBoolMap(Iterator it) |
1729 | 1728 |
: _begin(it), _end(it) {} |
1730 | 1729 |
|
1731 | 1730 |
/// Gives back the given iterator set for the first key |
1732 | 1731 |
Iterator begin() const { |
1733 | 1732 |
return _begin; |
1734 | 1733 |
} |
1735 | 1734 |
|
1736 | 1735 |
/// Gives back the the 'after the last' iterator |
1737 | 1736 |
Iterator end() const { |
1738 | 1737 |
return _end; |
1739 | 1738 |
} |
1740 | 1739 |
|
1741 | 1740 |
/// The set function of the map |
1742 | 1741 |
void set(const Key& key, Value value) { |
1743 | 1742 |
if (value) { |
1744 | 1743 |
*_end++ = key; |
1745 | 1744 |
} |
1746 | 1745 |
} |
1747 | 1746 |
|
1748 | 1747 |
private: |
1749 | 1748 |
Iterator _begin; |
1750 | 1749 |
Iterator _end; |
1751 | 1750 |
}; |
1752 | 1751 |
|
1753 | 1752 |
/// Returns a \ref LoggerBoolMap class |
1754 | 1753 |
|
1755 | 1754 |
/// This function just returns a \ref LoggerBoolMap class. |
1756 | 1755 |
/// |
1757 | 1756 |
/// The most important usage of it is storing certain nodes or arcs |
1758 | 1757 |
/// that were marked \c true by an algorithm. |
1759 | 1758 |
/// For example it makes easier to store the nodes in the processing |
1760 | 1759 |
/// order of Dfs algorithm, as the following examples show. |
1761 | 1760 |
/// \code |
1762 | 1761 |
/// std::vector<Node> v; |
1763 | 1762 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1764 | 1763 |
/// \endcode |
1765 | 1764 |
/// \code |
1766 | 1765 |
/// std::vector<Node> v(countNodes(g)); |
1767 | 1766 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1768 | 1767 |
/// \endcode |
1769 | 1768 |
/// |
1770 | 1769 |
/// \note The container of the iterator must contain enough space |
1771 | 1770 |
/// for the elements or the iterator should be an inserter iterator. |
1772 | 1771 |
/// |
1773 | 1772 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1774 | 1773 |
/// it cannot be used when a readable map is needed, for example as |
1775 | 1774 |
/// \c ReachedMap for \ref Bfs, \ref Dfs and \ref Dijkstra algorithms. |
1776 | 1775 |
/// |
1777 | 1776 |
/// \relates LoggerBoolMap |
1778 | 1777 |
template<typename Iterator> |
1779 | 1778 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1780 | 1779 |
return LoggerBoolMap<Iterator>(it); |
1781 | 1780 |
} |
1782 | 1781 |
|
1782 |
/// Provides an immutable and unique id for each item in the graph. |
|
1783 |
|
|
1784 |
/// The IdMap class provides a unique and immutable id for each item of the |
|
1785 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
|
1786 |
/// different items (nodes) get different ids <li>\b immutable: the id of an |
|
1787 |
/// item (node) does not change (even if you delete other nodes). </ul> |
|
1788 |
/// Through this map you get access (i.e. can read) the inner id values of |
|
1789 |
/// the items stored in the graph. This map can be inverted with its member |
|
1790 |
/// class \c InverseMap or with the \c operator() member. |
|
1791 |
/// |
|
1792 |
template <typename _Graph, typename _Item> |
|
1793 |
class IdMap { |
|
1794 |
public: |
|
1795 |
typedef _Graph Graph; |
|
1796 |
typedef int Value; |
|
1797 |
typedef _Item Item; |
|
1798 |
typedef _Item Key; |
|
1799 |
|
|
1800 |
/// \brief Constructor. |
|
1801 |
/// |
|
1802 |
/// Constructor of the map. |
|
1803 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
|
1804 |
|
|
1805 |
/// \brief Gives back the \e id of the item. |
|
1806 |
/// |
|
1807 |
/// Gives back the immutable and unique \e id of the item. |
|
1808 |
int operator[](const Item& item) const { return _graph->id(item);} |
|
1809 |
|
|
1810 |
/// \brief Gives back the item by its id. |
|
1811 |
/// |
|
1812 |
/// Gives back the item by its id. |
|
1813 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
|
1814 |
|
|
1815 |
private: |
|
1816 |
const Graph* _graph; |
|
1817 |
|
|
1818 |
public: |
|
1819 |
|
|
1820 |
/// \brief The class represents the inverse of its owner (IdMap). |
|
1821 |
/// |
|
1822 |
/// The class represents the inverse of its owner (IdMap). |
|
1823 |
/// \see inverse() |
|
1824 |
class InverseMap { |
|
1825 |
public: |
|
1826 |
|
|
1827 |
/// \brief Constructor. |
|
1828 |
/// |
|
1829 |
/// Constructor for creating an id-to-item map. |
|
1830 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
|
1831 |
|
|
1832 |
/// \brief Constructor. |
|
1833 |
/// |
|
1834 |
/// Constructor for creating an id-to-item map. |
|
1835 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
|
1836 |
|
|
1837 |
/// \brief Gives back the given item from its id. |
|
1838 |
/// |
|
1839 |
/// Gives back the given item from its id. |
|
1840 |
/// |
|
1841 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
|
1842 |
|
|
1843 |
private: |
|
1844 |
const Graph* _graph; |
|
1845 |
}; |
|
1846 |
|
|
1847 |
/// \brief Gives back the inverse of the map. |
|
1848 |
/// |
|
1849 |
/// Gives back the inverse of the IdMap. |
|
1850 |
InverseMap inverse() const { return InverseMap(*_graph);} |
|
1851 |
|
|
1852 |
}; |
|
1853 |
|
|
1854 |
|
|
1855 |
/// \brief General invertable graph-map type. |
|
1856 |
|
|
1857 |
/// This type provides simple invertable graph-maps. |
|
1858 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
|
1859 |
/// and if a key is set to a new value then store it |
|
1860 |
/// in the inverse map. |
|
1861 |
/// |
|
1862 |
/// The values of the map can be accessed |
|
1863 |
/// with stl compatible forward iterator. |
|
1864 |
/// |
|
1865 |
/// \tparam _Graph The graph type. |
|
1866 |
/// \tparam _Item The item type of the graph. |
|
1867 |
/// \tparam _Value The value type of the map. |
|
1868 |
/// |
|
1869 |
/// \see IterableValueMap |
|
1870 |
template <typename _Graph, typename _Item, typename _Value> |
|
1871 |
class InvertableMap |
|
1872 |
: protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type { |
|
1873 |
private: |
|
1874 |
|
|
1875 |
typedef typename ItemSetTraits<_Graph, _Item>:: |
|
1876 |
template Map<_Value>::Type Map; |
|
1877 |
typedef _Graph Graph; |
|
1878 |
|
|
1879 |
typedef std::map<_Value, _Item> Container; |
|
1880 |
Container _inv_map; |
|
1881 |
|
|
1882 |
public: |
|
1883 |
|
|
1884 |
/// The key type of InvertableMap (Node, Arc, Edge). |
|
1885 |
typedef typename Map::Key Key; |
|
1886 |
/// The value type of the InvertableMap. |
|
1887 |
typedef typename Map::Value Value; |
|
1888 |
|
|
1889 |
|
|
1890 |
|
|
1891 |
/// \brief Constructor. |
|
1892 |
/// |
|
1893 |
/// Construct a new InvertableMap for the graph. |
|
1894 |
/// |
|
1895 |
explicit InvertableMap(const Graph& graph) : Map(graph) {} |
|
1896 |
|
|
1897 |
/// \brief Forward iterator for values. |
|
1898 |
/// |
|
1899 |
/// This iterator is an stl compatible forward |
|
1900 |
/// iterator on the values of the map. The values can |
|
1901 |
/// be accessed in the [beginValue, endValue) range. |
|
1902 |
/// |
|
1903 |
class ValueIterator |
|
1904 |
: public std::iterator<std::forward_iterator_tag, Value> { |
|
1905 |
friend class InvertableMap; |
|
1906 |
private: |
|
1907 |
ValueIterator(typename Container::const_iterator _it) |
|
1908 |
: it(_it) {} |
|
1909 |
public: |
|
1910 |
|
|
1911 |
ValueIterator() {} |
|
1912 |
|
|
1913 |
ValueIterator& operator++() { ++it; return *this; } |
|
1914 |
ValueIterator operator++(int) { |
|
1915 |
ValueIterator tmp(*this); |
|
1916 |
operator++(); |
|
1917 |
return tmp; |
|
1918 |
} |
|
1919 |
|
|
1920 |
const Value& operator*() const { return it->first; } |
|
1921 |
const Value* operator->() const { return &(it->first); } |
|
1922 |
|
|
1923 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
1924 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
1925 |
|
|
1926 |
private: |
|
1927 |
typename Container::const_iterator it; |
|
1928 |
}; |
|
1929 |
|
|
1930 |
/// \brief Returns an iterator to the first value. |
|
1931 |
/// |
|
1932 |
/// Returns an stl compatible iterator to the |
|
1933 |
/// first value of the map. The values of the |
|
1934 |
/// map can be accessed in the [beginValue, endValue) |
|
1935 |
/// range. |
|
1936 |
ValueIterator beginValue() const { |
|
1937 |
return ValueIterator(_inv_map.begin()); |
|
1938 |
} |
|
1939 |
|
|
1940 |
/// \brief Returns an iterator after the last value. |
|
1941 |
/// |
|
1942 |
/// Returns an stl compatible iterator after the |
|
1943 |
/// last value of the map. The values of the |
|
1944 |
/// map can be accessed in the [beginValue, endValue) |
|
1945 |
/// range. |
|
1946 |
ValueIterator endValue() const { |
|
1947 |
return ValueIterator(_inv_map.end()); |
|
1948 |
} |
|
1949 |
|
|
1950 |
/// \brief The setter function of the map. |
|
1951 |
/// |
|
1952 |
/// Sets the mapped value. |
|
1953 |
void set(const Key& key, const Value& val) { |
|
1954 |
Value oldval = Map::operator[](key); |
|
1955 |
typename Container::iterator it = _inv_map.find(oldval); |
|
1956 |
if (it != _inv_map.end() && it->second == key) { |
|
1957 |
_inv_map.erase(it); |
|
1958 |
} |
|
1959 |
_inv_map.insert(make_pair(val, key)); |
|
1960 |
Map::set(key, val); |
|
1961 |
} |
|
1962 |
|
|
1963 |
/// \brief The getter function of the map. |
|
1964 |
/// |
|
1965 |
/// It gives back the value associated with the key. |
|
1966 |
typename MapTraits<Map>::ConstReturnValue |
|
1967 |
operator[](const Key& key) const { |
|
1968 |
return Map::operator[](key); |
|
1969 |
} |
|
1970 |
|
|
1971 |
/// \brief Gives back the item by its value. |
|
1972 |
/// |
|
1973 |
/// Gives back the item by its value. |
|
1974 |
Key operator()(const Value& key) const { |
|
1975 |
typename Container::const_iterator it = _inv_map.find(key); |
|
1976 |
return it != _inv_map.end() ? it->second : INVALID; |
|
1977 |
} |
|
1978 |
|
|
1979 |
protected: |
|
1980 |
|
|
1981 |
/// \brief Erase the key from the map. |
|
1982 |
/// |
|
1983 |
/// Erase the key to the map. It is called by the |
|
1984 |
/// \c AlterationNotifier. |
|
1985 |
virtual void erase(const Key& key) { |
|
1986 |
Value val = Map::operator[](key); |
|
1987 |
typename Container::iterator it = _inv_map.find(val); |
|
1988 |
if (it != _inv_map.end() && it->second == key) { |
|
1989 |
_inv_map.erase(it); |
|
1990 |
} |
|
1991 |
Map::erase(key); |
|
1992 |
} |
|
1993 |
|
|
1994 |
/// \brief Erase more keys from the map. |
|
1995 |
/// |
|
1996 |
/// Erase more keys from the map. It is called by the |
|
1997 |
/// \c AlterationNotifier. |
|
1998 |
virtual void erase(const std::vector<Key>& keys) { |
|
1999 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2000 |
Value val = Map::operator[](keys[i]); |
|
2001 |
typename Container::iterator it = _inv_map.find(val); |
|
2002 |
if (it != _inv_map.end() && it->second == keys[i]) { |
|
2003 |
_inv_map.erase(it); |
|
2004 |
} |
|
2005 |
} |
|
2006 |
Map::erase(keys); |
|
2007 |
} |
|
2008 |
|
|
2009 |
/// \brief Clear the keys from the map and inverse map. |
|
2010 |
/// |
|
2011 |
/// Clear the keys from the map and inverse map. It is called by the |
|
2012 |
/// \c AlterationNotifier. |
|
2013 |
virtual void clear() { |
|
2014 |
_inv_map.clear(); |
|
2015 |
Map::clear(); |
|
2016 |
} |
|
2017 |
|
|
2018 |
public: |
|
2019 |
|
|
2020 |
/// \brief The inverse map type. |
|
2021 |
/// |
|
2022 |
/// The inverse of this map. The subscript operator of the map |
|
2023 |
/// gives back always the item what was last assigned to the value. |
|
2024 |
class InverseMap { |
|
2025 |
public: |
|
2026 |
/// \brief Constructor of the InverseMap. |
|
2027 |
/// |
|
2028 |
/// Constructor of the InverseMap. |
|
2029 |
explicit InverseMap(const InvertableMap& inverted) |
|
2030 |
: _inverted(inverted) {} |
|
2031 |
|
|
2032 |
/// The value type of the InverseMap. |
|
2033 |
typedef typename InvertableMap::Key Value; |
|
2034 |
/// The key type of the InverseMap. |
|
2035 |
typedef typename InvertableMap::Value Key; |
|
2036 |
|
|
2037 |
/// \brief Subscript operator. |
|
2038 |
/// |
|
2039 |
/// Subscript operator. It gives back always the item |
|
2040 |
/// what was last assigned to the value. |
|
2041 |
Value operator[](const Key& key) const { |
|
2042 |
return _inverted(key); |
|
2043 |
} |
|
2044 |
|
|
2045 |
private: |
|
2046 |
const InvertableMap& _inverted; |
|
2047 |
}; |
|
2048 |
|
|
2049 |
/// \brief It gives back the just readable inverse map. |
|
2050 |
/// |
|
2051 |
/// It gives back the just readable inverse map. |
|
2052 |
InverseMap inverse() const { |
|
2053 |
return InverseMap(*this); |
|
2054 |
} |
|
2055 |
|
|
2056 |
|
|
2057 |
|
|
2058 |
}; |
|
2059 |
|
|
2060 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
|
2061 |
/// item in the graph. |
|
2062 |
/// |
|
2063 |
/// The DescriptorMap class provides a unique and continuous (but mutable) |
|
2064 |
/// descriptor (id) for each item of the same type (e.g. node) in the |
|
2065 |
/// graph. This id is <ul><li>\b unique: different items (nodes) get |
|
2066 |
/// different ids <li>\b continuous: the range of the ids is the set of |
|
2067 |
/// integers between 0 and \c n-1, where \c n is the number of the items of |
|
2068 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an |
|
2069 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted |
|
2070 |
/// with its member class \c InverseMap, or with the \c operator() member. |
|
2071 |
/// |
|
2072 |
/// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
|
2073 |
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
|
2074 |
/// Edge. |
|
2075 |
template <typename _Graph, typename _Item> |
|
2076 |
class DescriptorMap |
|
2077 |
: protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type { |
|
2078 |
|
|
2079 |
typedef _Item Item; |
|
2080 |
typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map; |
|
2081 |
|
|
2082 |
public: |
|
2083 |
/// The graph class of DescriptorMap. |
|
2084 |
typedef _Graph Graph; |
|
2085 |
|
|
2086 |
/// The key type of DescriptorMap (Node, Arc, Edge). |
|
2087 |
typedef typename Map::Key Key; |
|
2088 |
/// The value type of DescriptorMap. |
|
2089 |
typedef typename Map::Value Value; |
|
2090 |
|
|
2091 |
/// \brief Constructor. |
|
2092 |
/// |
|
2093 |
/// Constructor for descriptor map. |
|
2094 |
explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
|
2095 |
Item it; |
|
2096 |
const typename Map::Notifier* nf = Map::notifier(); |
|
2097 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2098 |
Map::set(it, _inv_map.size()); |
|
2099 |
_inv_map.push_back(it); |
|
2100 |
} |
|
2101 |
} |
|
2102 |
|
|
2103 |
protected: |
|
2104 |
|
|
2105 |
/// \brief Add a new key to the map. |
|
2106 |
/// |
|
2107 |
/// Add a new key to the map. It is called by the |
|
2108 |
/// \c AlterationNotifier. |
|
2109 |
virtual void add(const Item& item) { |
|
2110 |
Map::add(item); |
|
2111 |
Map::set(item, _inv_map.size()); |
|
2112 |
_inv_map.push_back(item); |
|
2113 |
} |
|
2114 |
|
|
2115 |
/// \brief Add more new keys to the map. |
|
2116 |
/// |
|
2117 |
/// Add more new keys to the map. It is called by the |
|
2118 |
/// \c AlterationNotifier. |
|
2119 |
virtual void add(const std::vector<Item>& items) { |
|
2120 |
Map::add(items); |
|
2121 |
for (int i = 0; i < int(items.size()); ++i) { |
|
2122 |
Map::set(items[i], _inv_map.size()); |
|
2123 |
_inv_map.push_back(items[i]); |
|
2124 |
} |
|
2125 |
} |
|
2126 |
|
|
2127 |
/// \brief Erase the key from the map. |
|
2128 |
/// |
|
2129 |
/// Erase the key from the map. It is called by the |
|
2130 |
/// \c AlterationNotifier. |
|
2131 |
virtual void erase(const Item& item) { |
|
2132 |
Map::set(_inv_map.back(), Map::operator[](item)); |
|
2133 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
|
2134 |
_inv_map.pop_back(); |
|
2135 |
Map::erase(item); |
|
2136 |
} |
|
2137 |
|
|
2138 |
/// \brief Erase more keys from the map. |
|
2139 |
/// |
|
2140 |
/// Erase more keys from the map. It is called by the |
|
2141 |
/// \c AlterationNotifier. |
|
2142 |
virtual void erase(const std::vector<Item>& items) { |
|
2143 |
for (int i = 0; i < int(items.size()); ++i) { |
|
2144 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
|
2145 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
|
2146 |
_inv_map.pop_back(); |
|
2147 |
} |
|
2148 |
Map::erase(items); |
|
2149 |
} |
|
2150 |
|
|
2151 |
/// \brief Build the unique map. |
|
2152 |
/// |
|
2153 |
/// Build the unique map. It is called by the |
|
2154 |
/// \c AlterationNotifier. |
|
2155 |
virtual void build() { |
|
2156 |
Map::build(); |
|
2157 |
Item it; |
|
2158 |
const typename Map::Notifier* nf = Map::notifier(); |
|
2159 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2160 |
Map::set(it, _inv_map.size()); |
|
2161 |
_inv_map.push_back(it); |
|
2162 |
} |
|
2163 |
} |
|
2164 |
|
|
2165 |
/// \brief Clear the keys from the map. |
|
2166 |
/// |
|
2167 |
/// Clear the keys from the map. It is called by the |
|
2168 |
/// \c AlterationNotifier. |
|
2169 |
virtual void clear() { |
|
2170 |
_inv_map.clear(); |
|
2171 |
Map::clear(); |
|
2172 |
} |
|
2173 |
|
|
2174 |
public: |
|
2175 |
|
|
2176 |
/// \brief Returns the maximal value plus one. |
|
2177 |
/// |
|
2178 |
/// Returns the maximal value plus one in the map. |
|
2179 |
unsigned int size() const { |
|
2180 |
return _inv_map.size(); |
|
2181 |
} |
|
2182 |
|
|
2183 |
/// \brief Swaps the position of the two items in the map. |
|
2184 |
/// |
|
2185 |
/// Swaps the position of the two items in the map. |
|
2186 |
void swap(const Item& p, const Item& q) { |
|
2187 |
int pi = Map::operator[](p); |
|
2188 |
int qi = Map::operator[](q); |
|
2189 |
Map::set(p, qi); |
|
2190 |
_inv_map[qi] = p; |
|
2191 |
Map::set(q, pi); |
|
2192 |
_inv_map[pi] = q; |
|
2193 |
} |
|
2194 |
|
|
2195 |
/// \brief Gives back the \e descriptor of the item. |
|
2196 |
/// |
|
2197 |
/// Gives back the mutable and unique \e descriptor of the map. |
|
2198 |
int operator[](const Item& item) const { |
|
2199 |
return Map::operator[](item); |
|
2200 |
} |
|
2201 |
|
|
2202 |
/// \brief Gives back the item by its descriptor. |
|
2203 |
/// |
|
2204 |
/// Gives back th item by its descriptor. |
|
2205 |
Item operator()(int id) const { |
|
2206 |
return _inv_map[id]; |
|
2207 |
} |
|
2208 |
|
|
2209 |
private: |
|
2210 |
|
|
2211 |
typedef std::vector<Item> Container; |
|
2212 |
Container _inv_map; |
|
2213 |
|
|
2214 |
public: |
|
2215 |
/// \brief The inverse map type of DescriptorMap. |
|
2216 |
/// |
|
2217 |
/// The inverse map type of DescriptorMap. |
|
2218 |
class InverseMap { |
|
2219 |
public: |
|
2220 |
/// \brief Constructor of the InverseMap. |
|
2221 |
/// |
|
2222 |
/// Constructor of the InverseMap. |
|
2223 |
explicit InverseMap(const DescriptorMap& inverted) |
|
2224 |
: _inverted(inverted) {} |
|
2225 |
|
|
2226 |
|
|
2227 |
/// The value type of the InverseMap. |
|
2228 |
typedef typename DescriptorMap::Key Value; |
|
2229 |
/// The key type of the InverseMap. |
|
2230 |
typedef typename DescriptorMap::Value Key; |
|
2231 |
|
|
2232 |
/// \brief Subscript operator. |
|
2233 |
/// |
|
2234 |
/// Subscript operator. It gives back the item |
|
2235 |
/// that the descriptor belongs to currently. |
|
2236 |
Value operator[](const Key& key) const { |
|
2237 |
return _inverted(key); |
|
2238 |
} |
|
2239 |
|
|
2240 |
/// \brief Size of the map. |
|
2241 |
/// |
|
2242 |
/// Returns the size of the map. |
|
2243 |
unsigned int size() const { |
|
2244 |
return _inverted.size(); |
|
2245 |
} |
|
2246 |
|
|
2247 |
private: |
|
2248 |
const DescriptorMap& _inverted; |
|
2249 |
}; |
|
2250 |
|
|
2251 |
/// \brief Gives back the inverse of the map. |
|
2252 |
/// |
|
2253 |
/// Gives back the inverse of the map. |
|
2254 |
const InverseMap inverse() const { |
|
2255 |
return InverseMap(*this); |
|
2256 |
} |
|
2257 |
}; |
|
2258 |
|
|
2259 |
/// \brief Returns the source of the given arc. |
|
2260 |
/// |
|
2261 |
/// The SourceMap gives back the source Node of the given arc. |
|
2262 |
/// \see TargetMap |
|
2263 |
template <typename Digraph> |
|
2264 |
class SourceMap { |
|
2265 |
public: |
|
2266 |
|
|
2267 |
typedef typename Digraph::Node Value; |
|
2268 |
typedef typename Digraph::Arc Key; |
|
2269 |
|
|
2270 |
/// \brief Constructor |
|
2271 |
/// |
|
2272 |
/// Constructor |
|
2273 |
/// \param _digraph The digraph that the map belongs to. |
|
2274 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
|
2275 |
|
|
2276 |
/// \brief The subscript operator. |
|
2277 |
/// |
|
2278 |
/// The subscript operator. |
|
2279 |
/// \param arc The arc |
|
2280 |
/// \return The source of the arc |
|
2281 |
Value operator[](const Key& arc) const { |
|
2282 |
return _digraph.source(arc); |
|
2283 |
} |
|
2284 |
|
|
2285 |
private: |
|
2286 |
const Digraph& _digraph; |
|
2287 |
}; |
|
2288 |
|
|
2289 |
/// \brief Returns a \ref SourceMap class. |
|
2290 |
/// |
|
2291 |
/// This function just returns an \ref SourceMap class. |
|
2292 |
/// \relates SourceMap |
|
2293 |
template <typename Digraph> |
|
2294 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
|
2295 |
return SourceMap<Digraph>(digraph); |
|
2296 |
} |
|
2297 |
|
|
2298 |
/// \brief Returns the target of the given arc. |
|
2299 |
/// |
|
2300 |
/// The TargetMap gives back the target Node of the given arc. |
|
2301 |
/// \see SourceMap |
|
2302 |
template <typename Digraph> |
|
2303 |
class TargetMap { |
|
2304 |
public: |
|
2305 |
|
|
2306 |
typedef typename Digraph::Node Value; |
|
2307 |
typedef typename Digraph::Arc Key; |
|
2308 |
|
|
2309 |
/// \brief Constructor |
|
2310 |
/// |
|
2311 |
/// Constructor |
|
2312 |
/// \param _digraph The digraph that the map belongs to. |
|
2313 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
|
2314 |
|
|
2315 |
/// \brief The subscript operator. |
|
2316 |
/// |
|
2317 |
/// The subscript operator. |
|
2318 |
/// \param e The arc |
|
2319 |
/// \return The target of the arc |
|
2320 |
Value operator[](const Key& e) const { |
|
2321 |
return _digraph.target(e); |
|
2322 |
} |
|
2323 |
|
|
2324 |
private: |
|
2325 |
const Digraph& _digraph; |
|
2326 |
}; |
|
2327 |
|
|
2328 |
/// \brief Returns a \ref TargetMap class. |
|
2329 |
/// |
|
2330 |
/// This function just returns a \ref TargetMap class. |
|
2331 |
/// \relates TargetMap |
|
2332 |
template <typename Digraph> |
|
2333 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
|
2334 |
return TargetMap<Digraph>(digraph); |
|
2335 |
} |
|
2336 |
|
|
2337 |
/// \brief Returns the "forward" directed arc view of an edge. |
|
2338 |
/// |
|
2339 |
/// Returns the "forward" directed arc view of an edge. |
|
2340 |
/// \see BackwardMap |
|
2341 |
template <typename Graph> |
|
2342 |
class ForwardMap { |
|
2343 |
public: |
|
2344 |
|
|
2345 |
typedef typename Graph::Arc Value; |
|
2346 |
typedef typename Graph::Edge Key; |
|
2347 |
|
|
2348 |
/// \brief Constructor |
|
2349 |
/// |
|
2350 |
/// Constructor |
|
2351 |
/// \param _graph The graph that the map belongs to. |
|
2352 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
|
2353 |
|
|
2354 |
/// \brief The subscript operator. |
|
2355 |
/// |
|
2356 |
/// The subscript operator. |
|
2357 |
/// \param key An edge |
|
2358 |
/// \return The "forward" directed arc view of edge |
|
2359 |
Value operator[](const Key& key) const { |
|
2360 |
return _graph.direct(key, true); |
|
2361 |
} |
|
2362 |
|
|
2363 |
private: |
|
2364 |
const Graph& _graph; |
|
2365 |
}; |
|
2366 |
|
|
2367 |
/// \brief Returns a \ref ForwardMap class. |
|
2368 |
/// |
|
2369 |
/// This function just returns an \ref ForwardMap class. |
|
2370 |
/// \relates ForwardMap |
|
2371 |
template <typename Graph> |
|
2372 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
|
2373 |
return ForwardMap<Graph>(graph); |
|
2374 |
} |
|
2375 |
|
|
2376 |
/// \brief Returns the "backward" directed arc view of an edge. |
|
2377 |
/// |
|
2378 |
/// Returns the "backward" directed arc view of an edge. |
|
2379 |
/// \see ForwardMap |
|
2380 |
template <typename Graph> |
|
2381 |
class BackwardMap { |
|
2382 |
public: |
|
2383 |
|
|
2384 |
typedef typename Graph::Arc Value; |
|
2385 |
typedef typename Graph::Edge Key; |
|
2386 |
|
|
2387 |
/// \brief Constructor |
|
2388 |
/// |
|
2389 |
/// Constructor |
|
2390 |
/// \param _graph The graph that the map belongs to. |
|
2391 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
|
2392 |
|
|
2393 |
/// \brief The subscript operator. |
|
2394 |
/// |
|
2395 |
/// The subscript operator. |
|
2396 |
/// \param key An edge |
|
2397 |
/// \return The "backward" directed arc view of edge |
|
2398 |
Value operator[](const Key& key) const { |
|
2399 |
return _graph.direct(key, false); |
|
2400 |
} |
|
2401 |
|
|
2402 |
private: |
|
2403 |
const Graph& _graph; |
|
2404 |
}; |
|
2405 |
|
|
2406 |
/// \brief Returns a \ref BackwardMap class |
|
2407 |
|
|
2408 |
/// This function just returns a \ref BackwardMap class. |
|
2409 |
/// \relates BackwardMap |
|
2410 |
template <typename Graph> |
|
2411 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
|
2412 |
return BackwardMap<Graph>(graph); |
|
2413 |
} |
|
2414 |
|
|
2415 |
/// \brief Potential difference map |
|
2416 |
/// |
|
2417 |
/// If there is an potential map on the nodes then we |
|
2418 |
/// can get an arc map as we get the substraction of the |
|
2419 |
/// values of the target and source. |
|
2420 |
template <typename Digraph, typename NodeMap> |
|
2421 |
class PotentialDifferenceMap { |
|
2422 |
public: |
|
2423 |
typedef typename Digraph::Arc Key; |
|
2424 |
typedef typename NodeMap::Value Value; |
|
2425 |
|
|
2426 |
/// \brief Constructor |
|
2427 |
/// |
|
2428 |
/// Contructor of the map |
|
2429 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
|
2430 |
const NodeMap& potential) |
|
2431 |
: _digraph(digraph), _potential(potential) {} |
|
2432 |
|
|
2433 |
/// \brief Const subscription operator |
|
2434 |
/// |
|
2435 |
/// Const subscription operator |
|
2436 |
Value operator[](const Key& arc) const { |
|
2437 |
return _potential[_digraph.target(arc)] - |
|
2438 |
_potential[_digraph.source(arc)]; |
|
2439 |
} |
|
2440 |
|
|
2441 |
private: |
|
2442 |
const Digraph& _digraph; |
|
2443 |
const NodeMap& _potential; |
|
2444 |
}; |
|
2445 |
|
|
2446 |
/// \brief Returns a PotentialDifferenceMap. |
|
2447 |
/// |
|
2448 |
/// This function just returns a PotentialDifferenceMap. |
|
2449 |
/// \relates PotentialDifferenceMap |
|
2450 |
template <typename Digraph, typename NodeMap> |
|
2451 |
PotentialDifferenceMap<Digraph, NodeMap> |
|
2452 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) { |
|
2453 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential); |
|
2454 |
} |
|
2455 |
|
|
2456 |
/// \brief Map of the node in-degrees. |
|
2457 |
/// |
|
2458 |
/// This map returns the in-degree of a node. Once it is constructed, |
|
2459 |
/// the degrees are stored in a standard NodeMap, so each query is done |
|
2460 |
/// in constant time. On the other hand, the values are updated automatically |
|
2461 |
/// whenever the digraph changes. |
|
2462 |
/// |
|
2463 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
|
2464 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap |
|
2465 |
/// is not guarantied if these additional features are used. For example |
|
2466 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
|
2467 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
|
2468 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
|
2469 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
|
2470 |
/// |
|
2471 |
/// \sa OutDegMap |
|
2472 |
|
|
2473 |
template <typename _Digraph> |
|
2474 |
class InDegMap |
|
2475 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
|
2476 |
::ItemNotifier::ObserverBase { |
|
2477 |
|
|
2478 |
public: |
|
2479 |
|
|
2480 |
typedef _Digraph Digraph; |
|
2481 |
typedef int Value; |
|
2482 |
typedef typename Digraph::Node Key; |
|
2483 |
|
|
2484 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|
2485 |
::ItemNotifier::ObserverBase Parent; |
|
2486 |
|
|
2487 |
private: |
|
2488 |
|
|
2489 |
class AutoNodeMap |
|
2490 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|
2491 |
public: |
|
2492 |
|
|
2493 |
typedef typename ItemSetTraits<Digraph, Key>:: |
|
2494 |
template Map<int>::Type Parent; |
|
2495 |
|
|
2496 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|
2497 |
|
|
2498 |
virtual void add(const Key& key) { |
|
2499 |
Parent::add(key); |
|
2500 |
Parent::set(key, 0); |
|
2501 |
} |
|
2502 |
|
|
2503 |
virtual void add(const std::vector<Key>& keys) { |
|
2504 |
Parent::add(keys); |
|
2505 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2506 |
Parent::set(keys[i], 0); |
|
2507 |
} |
|
2508 |
} |
|
2509 |
|
|
2510 |
virtual void build() { |
|
2511 |
Parent::build(); |
|
2512 |
Key it; |
|
2513 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2514 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2515 |
Parent::set(it, 0); |
|
2516 |
} |
|
2517 |
} |
|
2518 |
}; |
|
2519 |
|
|
2520 |
public: |
|
2521 |
|
|
2522 |
/// \brief Constructor. |
|
2523 |
/// |
|
2524 |
/// Constructor for creating in-degree map. |
|
2525 |
explicit InDegMap(const Digraph& digraph) |
|
2526 |
: _digraph(digraph), _deg(digraph) { |
|
2527 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|
2528 |
|
|
2529 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2530 |
_deg[it] = countInArcs(_digraph, it); |
|
2531 |
} |
|
2532 |
} |
|
2533 |
|
|
2534 |
/// Gives back the in-degree of a Node. |
|
2535 |
int operator[](const Key& key) const { |
|
2536 |
return _deg[key]; |
|
2537 |
} |
|
2538 |
|
|
2539 |
protected: |
|
2540 |
|
|
2541 |
typedef typename Digraph::Arc Arc; |
|
2542 |
|
|
2543 |
virtual void add(const Arc& arc) { |
|
2544 |
++_deg[_digraph.target(arc)]; |
|
2545 |
} |
|
2546 |
|
|
2547 |
virtual void add(const std::vector<Arc>& arcs) { |
|
2548 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2549 |
++_deg[_digraph.target(arcs[i])]; |
|
2550 |
} |
|
2551 |
} |
|
2552 |
|
|
2553 |
virtual void erase(const Arc& arc) { |
|
2554 |
--_deg[_digraph.target(arc)]; |
|
2555 |
} |
|
2556 |
|
|
2557 |
virtual void erase(const std::vector<Arc>& arcs) { |
|
2558 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2559 |
--_deg[_digraph.target(arcs[i])]; |
|
2560 |
} |
|
2561 |
} |
|
2562 |
|
|
2563 |
virtual void build() { |
|
2564 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2565 |
_deg[it] = countInArcs(_digraph, it); |
|
2566 |
} |
|
2567 |
} |
|
2568 |
|
|
2569 |
virtual void clear() { |
|
2570 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2571 |
_deg[it] = 0; |
|
2572 |
} |
|
2573 |
} |
|
2574 |
private: |
|
2575 |
|
|
2576 |
const Digraph& _digraph; |
|
2577 |
AutoNodeMap _deg; |
|
2578 |
}; |
|
2579 |
|
|
2580 |
/// \brief Map of the node out-degrees. |
|
2581 |
/// |
|
2582 |
/// This map returns the out-degree of a node. Once it is constructed, |
|
2583 |
/// the degrees are stored in a standard NodeMap, so each query is done |
|
2584 |
/// in constant time. On the other hand, the values are updated automatically |
|
2585 |
/// whenever the digraph changes. |
|
2586 |
/// |
|
2587 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
|
2588 |
/// alternative ways to modify the digraph. The correct behavior of OutDegMap |
|
2589 |
/// is not guarantied if these additional features are used. For example |
|
2590 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
|
2591 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
|
2592 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
|
2593 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
|
2594 |
/// |
|
2595 |
/// \sa InDegMap |
|
2596 |
|
|
2597 |
template <typename _Digraph> |
|
2598 |
class OutDegMap |
|
2599 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
|
2600 |
::ItemNotifier::ObserverBase { |
|
2601 |
|
|
2602 |
public: |
|
2603 |
|
|
2604 |
typedef _Digraph Digraph; |
|
2605 |
typedef int Value; |
|
2606 |
typedef typename Digraph::Node Key; |
|
2607 |
|
|
2608 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|
2609 |
::ItemNotifier::ObserverBase Parent; |
|
2610 |
|
|
2611 |
private: |
|
2612 |
|
|
2613 |
class AutoNodeMap |
|
2614 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
|
2615 |
public: |
|
2616 |
|
|
2617 |
typedef typename ItemSetTraits<Digraph, Key>:: |
|
2618 |
template Map<int>::Type Parent; |
|
2619 |
|
|
2620 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|
2621 |
|
|
2622 |
virtual void add(const Key& key) { |
|
2623 |
Parent::add(key); |
|
2624 |
Parent::set(key, 0); |
|
2625 |
} |
|
2626 |
virtual void add(const std::vector<Key>& keys) { |
|
2627 |
Parent::add(keys); |
|
2628 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2629 |
Parent::set(keys[i], 0); |
|
2630 |
} |
|
2631 |
} |
|
2632 |
virtual void build() { |
|
2633 |
Parent::build(); |
|
2634 |
Key it; |
|
2635 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2636 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2637 |
Parent::set(it, 0); |
|
2638 |
} |
|
2639 |
} |
|
2640 |
}; |
|
2641 |
|
|
2642 |
public: |
|
2643 |
|
|
2644 |
/// \brief Constructor. |
|
2645 |
/// |
|
2646 |
/// Constructor for creating out-degree map. |
|
2647 |
explicit OutDegMap(const Digraph& digraph) |
|
2648 |
: _digraph(digraph), _deg(digraph) { |
|
2649 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|
2650 |
|
|
2651 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2652 |
_deg[it] = countOutArcs(_digraph, it); |
|
2653 |
} |
|
2654 |
} |
|
2655 |
|
|
2656 |
/// Gives back the out-degree of a Node. |
|
2657 |
int operator[](const Key& key) const { |
|
2658 |
return _deg[key]; |
|
2659 |
} |
|
2660 |
|
|
2661 |
protected: |
|
2662 |
|
|
2663 |
typedef typename Digraph::Arc Arc; |
|
2664 |
|
|
2665 |
virtual void add(const Arc& arc) { |
|
2666 |
++_deg[_digraph.source(arc)]; |
|
2667 |
} |
|
2668 |
|
|
2669 |
virtual void add(const std::vector<Arc>& arcs) { |
|
2670 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2671 |
++_deg[_digraph.source(arcs[i])]; |
|
2672 |
} |
|
2673 |
} |
|
2674 |
|
|
2675 |
virtual void erase(const Arc& arc) { |
|
2676 |
--_deg[_digraph.source(arc)]; |
|
2677 |
} |
|
2678 |
|
|
2679 |
virtual void erase(const std::vector<Arc>& arcs) { |
|
2680 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2681 |
--_deg[_digraph.source(arcs[i])]; |
|
2682 |
} |
|
2683 |
} |
|
2684 |
|
|
2685 |
virtual void build() { |
|
2686 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2687 |
_deg[it] = countOutArcs(_digraph, it); |
|
2688 |
} |
|
2689 |
} |
|
2690 |
|
|
2691 |
virtual void clear() { |
|
2692 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2693 |
_deg[it] = 0; |
|
2694 |
} |
|
2695 |
} |
|
2696 |
private: |
|
2697 |
|
|
2698 |
const Digraph& _digraph; |
|
2699 |
AutoNodeMap _deg; |
|
2700 |
}; |
|
2701 |
|
|
1783 | 2702 |
/// @} |
1784 | 2703 |
} |
1785 | 2704 |
|
1786 | 2705 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup paths |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_PATH_H |
25 | 25 |
#define LEMON_PATH_H |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <algorithm> |
29 | 29 |
|
30 | 30 |
#include <lemon/error.h> |
31 |
#include <lemon/ |
|
31 |
#include <lemon/core.h> |
|
32 | 32 |
#include <lemon/concepts/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup paths |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
|
40 | 40 |
/// \brief A structure for representing directed paths in a digraph. |
41 | 41 |
/// |
42 | 42 |
/// A structure for representing directed path in a digraph. |
43 | 43 |
/// \tparam _Digraph The digraph type in which the path is. |
44 | 44 |
/// |
45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
46 | 46 |
/// lemon path type stores just this list. As a consequence, it |
47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
48 | 48 |
/// a zero length path is undefined. |
49 | 49 |
/// |
50 | 50 |
/// This implementation is a back and front insertable and erasable |
51 | 51 |
/// path type. It can be indexed in O(1) time. The front and back |
52 | 52 |
/// insertion and erase is done in O(1) (amortized) time. The |
53 | 53 |
/// implementation uses two vectors for storing the front and back |
54 | 54 |
/// insertions. |
55 | 55 |
template <typename _Digraph> |
56 | 56 |
class Path { |
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
typedef _Digraph Digraph; |
60 | 60 |
typedef typename Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
/// \brief Default constructor |
63 | 63 |
/// |
64 | 64 |
/// Default constructor |
65 | 65 |
Path() {} |
66 | 66 |
|
67 | 67 |
/// \brief Template copy constructor |
68 | 68 |
/// |
69 | 69 |
/// This constuctor initializes the path from any other path type. |
70 | 70 |
/// It simply makes a copy of the given path. |
71 | 71 |
template <typename CPath> |
72 | 72 |
Path(const CPath& cpath) { |
73 | 73 |
copyPath(*this, cpath); |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
/// \brief Template copy assignment |
77 | 77 |
/// |
78 | 78 |
/// This operator makes a copy of a path of any other type. |
79 | 79 |
template <typename CPath> |
80 | 80 |
Path& operator=(const CPath& cpath) { |
81 | 81 |
copyPath(*this, cpath); |
82 | 82 |
return *this; |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
/// \brief Lemon style iterator for path arcs |
86 | 86 |
/// |
87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
88 | 88 |
class ArcIt { |
89 | 89 |
friend class Path; |
90 | 90 |
public: |
91 | 91 |
/// \brief Default constructor |
92 | 92 |
ArcIt() {} |
93 | 93 |
/// \brief Invalid constructor |
94 | 94 |
ArcIt(Invalid) : path(0), idx(-1) {} |
95 | 95 |
/// \brief Initializate the iterator to the first arc of path |
96 | 96 |
ArcIt(const Path &_path) |
97 | 97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
98 | 98 |
|
99 | 99 |
private: |
100 | 100 |
|
101 | 101 |
ArcIt(const Path &_path, int _idx) |
102 | 102 |
: path(&_path), idx(_idx) {} |
103 | 103 |
|
104 | 104 |
public: |
105 | 105 |
|
106 | 106 |
/// \brief Conversion to Arc |
107 | 107 |
operator const Arc&() const { |
108 | 108 |
return path->nth(idx); |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
/// \brief Next arc |
112 | 112 |
ArcIt& operator++() { |
113 | 113 |
++idx; |
114 | 114 |
if (idx >= path->length()) idx = -1; |
115 | 115 |
return *this; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
/// \brief Comparison operator |
119 | 119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
120 | 120 |
/// \brief Comparison operator |
121 | 121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
122 | 122 |
/// \brief Comparison operator |
123 | 123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
124 | 124 |
|
125 | 125 |
private: |
126 | 126 |
const Path *path; |
127 | 127 |
int idx; |
128 | 128 |
}; |
129 | 129 |
|
130 | 130 |
/// \brief Length of the path. |
131 | 131 |
int length() const { return head.size() + tail.size(); } |
132 | 132 |
/// \brief Return whether the path is empty. |
133 | 133 |
bool empty() const { return head.empty() && tail.empty(); } |
134 | 134 |
|
135 | 135 |
/// \brief Reset the path to an empty one. |
136 | 136 |
void clear() { head.clear(); tail.clear(); } |
137 | 137 |
|
138 | 138 |
/// \brief The nth arc. |
139 | 139 |
/// |
140 | 140 |
/// \pre n is in the [0..length() - 1] range |
141 | 141 |
const Arc& nth(int n) const { |
142 | 142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
143 | 143 |
*(tail.begin() + (n - head.size())); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
/// \brief Initialize arc iterator to point to the nth arc |
147 | 147 |
/// |
148 | 148 |
/// \pre n is in the [0..length() - 1] range |
149 | 149 |
ArcIt nthIt(int n) const { |
150 | 150 |
return ArcIt(*this, n); |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
/// \brief The first arc of the path |
154 | 154 |
const Arc& front() const { |
155 | 155 |
return head.empty() ? tail.front() : head.back(); |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
/// \brief Add a new arc before the current path |
159 | 159 |
void addFront(const Arc& arc) { |
160 | 160 |
head.push_back(arc); |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
/// \brief Erase the first arc of the path |
164 | 164 |
void eraseFront() { |
165 | 165 |
if (!head.empty()) { |
166 | 166 |
head.pop_back(); |
167 | 167 |
} else { |
168 | 168 |
head.clear(); |
169 | 169 |
int halfsize = tail.size() / 2; |
170 | 170 |
head.resize(halfsize); |
171 | 171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
172 | 172 |
head.rbegin()); |
173 | 173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
174 | 174 |
tail.resize(tail.size() - halfsize - 1); |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
/// \brief The last arc of the path |
179 | 179 |
const Arc& back() const { |
180 | 180 |
return tail.empty() ? head.front() : tail.back(); |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
/// \brief Add a new arc behind the current path |
184 | 184 |
void addBack(const Arc& arc) { |
185 | 185 |
tail.push_back(arc); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
/// \brief Erase the last arc of the path |
189 | 189 |
void eraseBack() { |
190 | 190 |
if (!tail.empty()) { |
191 | 191 |
tail.pop_back(); |
192 | 192 |
} else { |
193 | 193 |
int halfsize = head.size() / 2; |
194 | 194 |
tail.resize(halfsize); |
195 | 195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
196 | 196 |
tail.rbegin()); |
197 | 197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
198 | 198 |
head.resize(head.size() - halfsize - 1); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
typedef True BuildTag; |
203 | 203 |
|
204 | 204 |
template <typename CPath> |
205 | 205 |
void build(const CPath& path) { |
206 | 206 |
int len = path.length(); |
207 | 207 |
tail.reserve(len); |
208 | 208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
209 | 209 |
tail.push_back(it); |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
template <typename CPath> |
214 | 214 |
void buildRev(const CPath& path) { |
215 | 215 |
int len = path.length(); |
216 | 216 |
head.reserve(len); |
217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
218 | 218 |
head.push_back(it); |
219 | 219 |
} |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
protected: |
223 | 223 |
typedef std::vector<Arc> Container; |
224 | 224 |
Container head, tail; |
225 | 225 |
|
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
229 | 229 |
/// |
230 | 230 |
/// A structure for representing directed path in a digraph. |
231 | 231 |
/// \tparam _Digraph The digraph type in which the path is. |
232 | 232 |
/// |
233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
234 | 234 |
/// lemon path type stores just this list. As a consequence it |
235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
236 | 236 |
/// cannot store the source. |
237 | 237 |
/// |
238 | 238 |
/// This implementation is a just back insertable and erasable path |
239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
241 | 241 |
/// then the \c Path type because it use just one vector for the |
242 | 242 |
/// arcs. |
243 | 243 |
template <typename _Digraph> |
244 | 244 |
class SimplePath { |
245 | 245 |
public: |
246 | 246 |
|
247 | 247 |
typedef _Digraph Digraph; |
248 | 248 |
typedef typename Digraph::Arc Arc; |
249 | 249 |
|
250 | 250 |
/// \brief Default constructor |
251 | 251 |
/// |
252 | 252 |
/// Default constructor |
253 | 253 |
SimplePath() {} |
254 | 254 |
|
255 | 255 |
/// \brief Template copy constructor |
256 | 256 |
/// |
257 | 257 |
/// This path can be initialized with any other path type. It just |
258 | 258 |
/// makes a copy of the given path. |
259 | 259 |
template <typename CPath> |
260 | 260 |
SimplePath(const CPath& cpath) { |
261 | 261 |
copyPath(*this, cpath); |
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
/// \brief Template copy assignment |
265 | 265 |
/// |
266 | 266 |
/// This path can be initialized with any other path type. It just |
267 | 267 |
/// makes a copy of the given path. |
268 | 268 |
template <typename CPath> |
269 | 269 |
SimplePath& operator=(const CPath& cpath) { |
270 | 270 |
copyPath(*this, cpath); |
271 | 271 |
return *this; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
275 | 275 |
/// |
276 | 276 |
/// This class is used to iterate on the arcs of the paths |
277 | 277 |
/// |
278 | 278 |
/// Of course it converts to Digraph::Arc |
279 | 279 |
class ArcIt { |
280 | 280 |
friend class SimplePath; |
281 | 281 |
public: |
282 | 282 |
/// Default constructor |
283 | 283 |
ArcIt() {} |
284 | 284 |
/// Invalid constructor |
285 | 285 |
ArcIt(Invalid) : path(0), idx(-1) {} |
286 | 286 |
/// \brief Initializate the constructor to the first arc of path |
287 | 287 |
ArcIt(const SimplePath &_path) |
288 | 288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
289 | 289 |
|
290 | 290 |
private: |
291 | 291 |
|
292 | 292 |
/// Constructor with starting point |
293 | 293 |
ArcIt(const SimplePath &_path, int _idx) |
294 | 294 |
: idx(_idx), path(&_path) {} |
295 | 295 |
|
296 | 296 |
public: |
297 | 297 |
|
298 | 298 |
///Conversion to Digraph::Arc |
299 | 299 |
operator const Arc&() const { |
300 | 300 |
return path->nth(idx); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// Next arc |
304 | 304 |
ArcIt& operator++() { |
305 | 305 |
++idx; |
306 | 306 |
if (idx >= path->length()) idx = -1; |
307 | 307 |
return *this; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
/// Comparison operator |
311 | 311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
312 | 312 |
/// Comparison operator |
313 | 313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
314 | 314 |
/// Comparison operator |
315 | 315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
316 | 316 |
|
317 | 317 |
private: |
318 | 318 |
const SimplePath *path; |
319 | 319 |
int idx; |
320 | 320 |
}; |
321 | 321 |
|
322 | 322 |
/// \brief Length of the path. |
323 | 323 |
int length() const { return data.size(); } |
324 | 324 |
/// \brief Return true if the path is empty. |
325 | 325 |
bool empty() const { return data.empty(); } |
326 | 326 |
|
327 | 327 |
/// \brief Reset the path to an empty one. |
328 | 328 |
void clear() { data.clear(); } |
329 | 329 |
|
330 | 330 |
/// \brief The nth arc. |
331 | 331 |
/// |
332 | 332 |
/// \pre n is in the [0..length() - 1] range |
333 | 333 |
const Arc& nth(int n) const { |
334 | 334 |
return data[n]; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
/// \brief Initializes arc iterator to point to the nth arc. |
338 | 338 |
ArcIt nthIt(int n) const { |
339 | 339 |
return ArcIt(*this, n); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
/// \brief The first arc of the path. |
343 | 343 |
const Arc& front() const { |
344 | 344 |
return data.front(); |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief The last arc of the path. |
348 | 348 |
const Arc& back() const { |
349 | 349 |
return data.back(); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
/// \brief Add a new arc behind the current path. |
353 | 353 |
void addBack(const Arc& arc) { |
354 | 354 |
data.push_back(arc); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Erase the last arc of the path |
358 | 358 |
void eraseBack() { |
359 | 359 |
data.pop_back(); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
typedef True BuildTag; |
363 | 363 |
|
364 | 364 |
template <typename CPath> |
365 | 365 |
void build(const CPath& path) { |
366 | 366 |
int len = path.length(); |
367 | 367 |
data.resize(len); |
368 | 368 |
int index = 0; |
369 | 369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
370 | 370 |
data[index] = it;; |
371 | 371 |
++index; |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
template <typename CPath> |
376 | 376 |
void buildRev(const CPath& path) { |
377 | 377 |
int len = path.length(); |
378 | 378 |
data.resize(len); |
379 | 379 |
int index = len; |
380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
381 | 381 |
--index; |
382 | 382 |
data[index] = it;; |
383 | 383 |
} |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
protected: |
387 | 387 |
typedef std::vector<Arc> Container; |
388 | 388 |
Container data; |
389 | 389 |
|
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
393 | 393 |
/// |
394 | 394 |
/// A structure for representing directed path in a digraph. |
395 | 395 |
/// \tparam _Digraph The digraph type in which the path is. |
396 | 396 |
/// |
397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
398 | 398 |
/// lemon path type stores just this list. As a consequence it |
399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
400 | 400 |
/// cannot store the source. |
401 | 401 |
/// |
402 | 402 |
/// This implementation is a back and front insertable and erasable |
403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
406 | 406 |
/// and it can be splited and spliced in O(1) time. |
407 | 407 |
template <typename _Digraph> |
408 | 408 |
class ListPath { |
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
typedef _Digraph Digraph; |
412 | 412 |
typedef typename Digraph::Arc Arc; |
413 | 413 |
|
414 | 414 |
protected: |
415 | 415 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
20 | 20 |
#define LEMON_SMART_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 |
#include <lemon/bits/invalid.h> |
|
29 |
|
|
30 |
#include <lemon/bits/base_extender.h> |
|
31 |
#include <lemon/bits/graph_extender.h> |
|
32 |
|
|
33 |
#include <lemon/bits/utility.h> |
|
28 |
#include <lemon/core.h> |
|
34 | 29 |
#include <lemon/error.h> |
35 |
|
|
36 | 30 |
#include <lemon/bits/graph_extender.h> |
37 | 31 |
|
38 | 32 |
namespace lemon { |
39 | 33 |
|
40 | 34 |
class SmartDigraph; |
41 | 35 |
///Base of SmartDigraph |
42 | 36 |
|
43 | 37 |
///Base of SmartDigraph |
44 | 38 |
/// |
45 | 39 |
class SmartDigraphBase { |
46 | 40 |
protected: |
47 | 41 |
|
48 | 42 |
struct NodeT |
49 | 43 |
{ |
50 | 44 |
int first_in, first_out; |
51 | 45 |
NodeT() {} |
52 | 46 |
}; |
53 | 47 |
struct ArcT |
54 | 48 |
{ |
55 | 49 |
int target, source, next_in, next_out; |
56 | 50 |
ArcT() {} |
57 | 51 |
}; |
58 | 52 |
|
59 | 53 |
std::vector<NodeT> nodes; |
60 | 54 |
std::vector<ArcT> arcs; |
61 | 55 |
|
62 | 56 |
public: |
63 | 57 |
|
64 | 58 |
typedef SmartDigraphBase Graph; |
65 | 59 |
|
66 | 60 |
class Node; |
67 | 61 |
class Arc; |
68 | 62 |
|
69 | 63 |
public: |
70 | 64 |
|
71 | 65 |
SmartDigraphBase() : nodes(), arcs() { } |
72 | 66 |
SmartDigraphBase(const SmartDigraphBase &_g) |
73 | 67 |
: nodes(_g.nodes), arcs(_g.arcs) { } |
74 | 68 |
|
75 | 69 |
typedef True NodeNumTag; |
76 | 70 |
typedef True EdgeNumTag; |
77 | 71 |
|
78 | 72 |
int nodeNum() const { return nodes.size(); } |
79 | 73 |
int arcNum() const { return arcs.size(); } |
80 | 74 |
|
81 | 75 |
int maxNodeId() const { return nodes.size()-1; } |
82 | 76 |
int maxArcId() const { return arcs.size()-1; } |
83 | 77 |
|
84 | 78 |
Node addNode() { |
85 | 79 |
int n = nodes.size(); |
86 | 80 |
nodes.push_back(NodeT()); |
87 | 81 |
nodes[n].first_in = -1; |
88 | 82 |
nodes[n].first_out = -1; |
89 | 83 |
return Node(n); |
90 | 84 |
} |
91 | 85 |
|
92 | 86 |
Arc addArc(Node u, Node v) { |
93 | 87 |
int n = arcs.size(); |
94 | 88 |
arcs.push_back(ArcT()); |
95 | 89 |
arcs[n].source = u._id; |
96 | 90 |
arcs[n].target = v._id; |
97 | 91 |
arcs[n].next_out = nodes[u._id].first_out; |
98 | 92 |
arcs[n].next_in = nodes[v._id].first_in; |
99 | 93 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
100 | 94 |
|
101 | 95 |
return Arc(n); |
102 | 96 |
} |
103 | 97 |
|
104 | 98 |
void clear() { |
105 | 99 |
arcs.clear(); |
106 | 100 |
nodes.clear(); |
107 | 101 |
} |
108 | 102 |
|
109 | 103 |
Node source(Arc a) const { return Node(arcs[a._id].source); } |
110 | 104 |
Node target(Arc a) const { return Node(arcs[a._id].target); } |
111 | 105 |
|
112 | 106 |
static int id(Node v) { return v._id; } |
113 | 107 |
static int id(Arc a) { return a._id; } |
114 | 108 |
|
115 | 109 |
static Node nodeFromId(int id) { return Node(id);} |
116 | 110 |
static Arc arcFromId(int id) { return Arc(id);} |
117 | 111 |
|
118 | 112 |
bool valid(Node n) const { |
119 | 113 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
120 | 114 |
} |
121 | 115 |
bool valid(Arc a) const { |
122 | 116 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
123 | 117 |
} |
124 | 118 |
|
125 | 119 |
class Node { |
126 | 120 |
friend class SmartDigraphBase; |
127 | 121 |
friend class SmartDigraph; |
128 | 122 |
|
129 | 123 |
protected: |
130 | 124 |
int _id; |
131 | 125 |
explicit Node(int id) : _id(id) {} |
132 | 126 |
public: |
133 | 127 |
Node() {} |
134 | 128 |
Node (Invalid) : _id(-1) {} |
135 | 129 |
bool operator==(const Node i) const {return _id == i._id;} |
136 | 130 |
bool operator!=(const Node i) const {return _id != i._id;} |
137 | 131 |
bool operator<(const Node i) const {return _id < i._id;} |
138 | 132 |
}; |
139 | 133 |
|
140 | 134 |
|
141 | 135 |
class Arc { |
142 | 136 |
friend class SmartDigraphBase; |
143 | 137 |
friend class SmartDigraph; |
144 | 138 |
|
145 | 139 |
protected: |
146 | 140 |
int _id; |
147 | 141 |
explicit Arc(int id) : _id(id) {} |
148 | 142 |
public: |
149 | 143 |
Arc() { } |
150 | 144 |
Arc (Invalid) : _id(-1) {} |
151 | 145 |
bool operator==(const Arc i) const {return _id == i._id;} |
152 | 146 |
bool operator!=(const Arc i) const {return _id != i._id;} |
153 | 147 |
bool operator<(const Arc i) const {return _id < i._id;} |
154 | 148 |
}; |
155 | 149 |
|
156 | 150 |
void first(Node& node) const { |
157 | 151 |
node._id = nodes.size() - 1; |
158 | 152 |
} |
159 | 153 |
|
160 | 154 |
static void next(Node& node) { |
161 | 155 |
--node._id; |
162 | 156 |
} |
163 | 157 |
|
164 | 158 |
void first(Arc& arc) const { |
165 | 159 |
arc._id = arcs.size() - 1; |
166 | 160 |
} |
167 | 161 |
|
168 | 162 |
static void next(Arc& arc) { |
169 | 163 |
--arc._id; |
170 | 164 |
} |
171 | 165 |
|
172 | 166 |
void firstOut(Arc& arc, const Node& node) const { |
173 | 167 |
arc._id = nodes[node._id].first_out; |
174 | 168 |
} |
175 | 169 |
|
176 | 170 |
void nextOut(Arc& arc) const { |
177 | 171 |
arc._id = arcs[arc._id].next_out; |
178 | 172 |
} |
179 | 173 |
|
180 | 174 |
void firstIn(Arc& arc, const Node& node) const { |
181 | 175 |
arc._id = nodes[node._id].first_in; |
182 | 176 |
} |
183 | 177 |
|
184 | 178 |
void nextIn(Arc& arc) const { |
185 | 179 |
arc._id = arcs[arc._id].next_in; |
186 | 180 |
} |
187 | 181 |
|
188 | 182 |
}; |
189 | 183 |
|
190 | 184 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
191 | 185 |
|
192 | 186 |
///\ingroup graphs |
193 | 187 |
/// |
194 | 188 |
///\brief A smart directed graph class. |
195 | 189 |
/// |
196 | 190 |
///This is a simple and fast digraph implementation. |
197 | 191 |
///It is also quite memory efficient, but at the price |
198 | 192 |
///that <b> it does support only limited (only stack-like) |
199 | 193 |
///node and arc deletions</b>. |
200 | 194 |
///It conforms to the \ref concepts::Digraph "Digraph concept" with |
201 | 195 |
///an important extra feature that its maps are real \ref |
202 | 196 |
///concepts::ReferenceMap "reference map"s. |
203 | 197 |
/// |
204 | 198 |
///\sa concepts::Digraph. |
205 | 199 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
206 | 200 |
public: |
207 | 201 |
|
208 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
209 | 203 |
|
210 | 204 |
private: |
211 | 205 |
|
212 | 206 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
213 | 207 |
|
214 | 208 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
215 | 209 |
/// |
216 | 210 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
217 | 211 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
218 | 212 |
///Use DigraphCopy() instead. |
219 | 213 |
|
220 | 214 |
///Assignment of SmartDigraph to another one is \e not allowed. |
221 | 215 |
///Use DigraphCopy() instead. |
222 | 216 |
void operator=(const SmartDigraph &) {} |
223 | 217 |
|
224 | 218 |
public: |
225 | 219 |
|
226 | 220 |
/// Constructor |
227 | 221 |
|
228 | 222 |
/// Constructor. |
229 | 223 |
/// |
230 | 224 |
SmartDigraph() {}; |
231 | 225 |
|
232 | 226 |
///Add a new node to the digraph. |
233 | 227 |
|
234 | 228 |
/// \return the new node. |
235 | 229 |
/// |
236 | 230 |
Node addNode() { return Parent::addNode(); } |
237 | 231 |
|
238 | 232 |
///Add a new arc to the digraph. |
239 | 233 |
|
240 | 234 |
///Add a new arc to the digraph with source node \c s |
241 | 235 |
///and target node \c t. |
242 | 236 |
///\return the new arc. |
243 | 237 |
Arc addArc(const Node& s, const Node& t) { |
244 | 238 |
return Parent::addArc(s, t); |
245 | 239 |
} |
246 | 240 |
|
247 | 241 |
/// \brief Using this it is possible to avoid the superfluous memory |
248 | 242 |
/// allocation. |
249 | 243 |
|
250 | 244 |
/// Using this it is possible to avoid the superfluous memory |
251 | 245 |
/// allocation: if you know that the digraph you want to build will |
252 | 246 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
253 | 247 |
/// then it is worth reserving space for this amount before starting |
254 | 248 |
/// to build the digraph. |
255 | 249 |
/// \sa reserveArc |
256 | 250 |
void reserveNode(int n) { nodes.reserve(n); }; |
257 | 251 |
|
258 | 252 |
/// \brief Using this it is possible to avoid the superfluous memory |
259 | 253 |
/// allocation. |
260 | 254 |
|
261 | 255 |
/// Using this it is possible to avoid the superfluous memory |
262 | 256 |
/// allocation: if you know that the digraph you want to build will |
263 | 257 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
264 | 258 |
/// then it is worth reserving space for this amount before starting |
265 | 259 |
/// to build the digraph. |
266 | 260 |
/// \sa reserveNode |
267 | 261 |
void reserveArc(int m) { arcs.reserve(m); }; |
268 | 262 |
|
269 | 263 |
/// \brief Node validity check |
270 | 264 |
/// |
271 | 265 |
/// This function gives back true if the given node is valid, |
272 | 266 |
/// ie. it is a real node of the graph. |
273 | 267 |
/// |
274 | 268 |
/// \warning A removed node (using Snapshot) could become valid again |
275 | 269 |
/// when new nodes are added to the graph. |
276 | 270 |
bool valid(Node n) const { return Parent::valid(n); } |
277 | 271 |
|
278 | 272 |
/// \brief Arc validity check |
279 | 273 |
/// |
280 | 274 |
/// This function gives back true if the given arc is valid, |
281 | 275 |
/// ie. it is a real arc of the graph. |
282 | 276 |
/// |
283 | 277 |
/// \warning A removed arc (using Snapshot) could become valid again |
284 | 278 |
/// when new arcs are added to the graph. |
285 | 279 |
bool valid(Arc a) const { return Parent::valid(a); } |
286 | 280 |
|
287 | 281 |
///Clear the digraph. |
288 | 282 |
|
289 | 283 |
///Erase all the nodes and arcs from the digraph. |
290 | 284 |
/// |
291 | 285 |
void clear() { |
292 | 286 |
Parent::clear(); |
293 | 287 |
} |
294 | 288 |
|
295 | 289 |
///Split a node. |
296 | 290 |
|
297 | 291 |
///This function splits a node. First a new node is added to the digraph, |
298 | 292 |
///then the source of each outgoing arc of \c n is moved to this new node. |
299 | 293 |
///If \c connect is \c true (this is the default value), then a new arc |
300 | 294 |
///from \c n to the newly created node is also added. |
301 | 295 |
///\return The newly created node. |
302 | 296 |
/// |
303 | 297 |
///\note The <tt>Arc</tt>s |
304 | 298 |
///referencing a moved arc remain |
305 | 299 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
306 | 300 |
///may be invalidated. |
307 | 301 |
///\warning This functionality cannot be used together with the Snapshot |
308 | 302 |
///feature. |
309 | 303 |
///\todo It could be implemented in a bit faster way. |
310 | 304 |
Node split(Node n, bool connect = true) |
311 | 305 |
{ |
312 | 306 |
Node b = addNode(); |
313 | 307 |
nodes[b._id].first_out=nodes[n._id].first_out; |
314 | 308 |
nodes[n._id].first_out=-1; |
315 | 309 |
for(int i=nodes[b._id].first_out;i!=-1;i++) arcs[i].source=b._id; |
316 | 310 |
if(connect) addArc(n,b); |
317 | 311 |
return b; |
318 | 312 |
} |
319 | 313 |
|
320 | 314 |
public: |
321 | 315 |
|
322 | 316 |
class Snapshot; |
323 | 317 |
|
324 | 318 |
protected: |
325 | 319 |
|
326 | 320 |
void restoreSnapshot(const Snapshot &s) |
327 | 321 |
{ |
328 | 322 |
while(s.arc_num<arcs.size()) { |
329 | 323 |
Arc arc = arcFromId(arcs.size()-1); |
330 | 324 |
Parent::notifier(Arc()).erase(arc); |
331 | 325 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
332 | 326 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
333 | 327 |
arcs.pop_back(); |
334 | 328 |
} |
335 | 329 |
while(s.node_num<nodes.size()) { |
336 | 330 |
Node node = nodeFromId(nodes.size()-1); |
337 | 331 |
Parent::notifier(Node()).erase(node); |
338 | 332 |
nodes.pop_back(); |
339 | 333 |
} |
340 | 334 |
} |
341 | 335 |
|
342 | 336 |
public: |
343 | 337 |
|
344 | 338 |
///Class to make a snapshot of the digraph and to restrore to it later. |
345 | 339 |
|
346 | 340 |
///Class to make a snapshot of the digraph and to restrore to it later. |
347 | 341 |
/// |
348 | 342 |
///The newly added nodes and arcs can be removed using the |
349 | 343 |
///restore() function. |
350 | 344 |
///\note After you restore a state, you cannot restore |
351 | 345 |
///a later state, in other word you cannot add again the arcs deleted |
352 | 346 |
///by restore() using another one Snapshot instance. |
353 | 347 |
/// |
354 | 348 |
///\warning If you do not use correctly the snapshot that can cause |
355 | 349 |
///either broken program, invalid state of the digraph, valid but |
356 | 350 |
///not the restored digraph or no change. Because the runtime performance |
357 | 351 |
///the validity of the snapshot is not stored. |
358 | 352 |
class Snapshot |
359 | 353 |
{ |
360 | 354 |
SmartDigraph *_graph; |
361 | 355 |
protected: |
362 | 356 |
friend class SmartDigraph; |
363 | 357 |
unsigned int node_num; |
364 | 358 |
unsigned int arc_num; |
365 | 359 |
public: |
366 | 360 |
///Default constructor. |
367 | 361 |
|
368 | 362 |
///Default constructor. |
369 | 363 |
///To actually make a snapshot you must call save(). |
370 | 364 |
/// |
371 | 365 |
Snapshot() : _graph(0) {} |
372 | 366 |
///Constructor that immediately makes a snapshot |
373 | 367 |
|
374 | 368 |
///This constructor immediately makes a snapshot of the digraph. |
375 | 369 |
///\param _g The digraph we make a snapshot of. |
376 | 370 |
Snapshot(SmartDigraph &graph) : _graph(&graph) { |
377 | 371 |
node_num=_graph->nodes.size(); |
378 | 372 |
arc_num=_graph->arcs.size(); |
379 | 373 |
} |
380 | 374 |
|
381 | 375 |
///Make a snapshot. |
382 | 376 |
|
383 | 377 |
///Make a snapshot of the digraph. |
384 | 378 |
/// |
385 | 379 |
///This function can be called more than once. In case of a repeated |
386 | 380 |
///call, the previous snapshot gets lost. |
387 | 381 |
///\param _g The digraph we make the snapshot of. |
388 | 382 |
void save(SmartDigraph &graph) |
389 | 383 |
{ |
390 | 384 |
_graph=&graph; |
391 | 385 |
node_num=_graph->nodes.size(); |
392 | 386 |
arc_num=_graph->arcs.size(); |
393 | 387 |
} |
394 | 388 |
|
395 | 389 |
///Undo the changes until a snapshot. |
396 | 390 |
|
397 | 391 |
///Undo the changes until a snapshot created by save(). |
398 | 392 |
/// |
399 | 393 |
///\note After you restored a state, you cannot restore |
400 | 394 |
///a later state, in other word you cannot add again the arcs deleted |
401 | 395 |
///by restore(). |
402 | 396 |
void restore() |
403 | 397 |
{ |
404 | 398 |
_graph->restoreSnapshot(*this); |
405 | 399 |
} |
406 | 400 |
}; |
407 | 401 |
}; |
408 | 402 |
|
409 | 403 |
|
410 | 404 |
class SmartGraphBase { |
411 | 405 |
|
412 | 406 |
protected: |
413 | 407 |
|
414 | 408 |
struct NodeT { |
415 | 409 |
int first_out; |
416 | 410 |
}; |
417 | 411 |
|
418 | 412 |
struct ArcT { |
419 | 413 |
int target; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_UNION_FIND_H |
20 | 20 |
#define LEMON_UNION_FIND_H |
21 | 21 |
|
22 | 22 |
//!\ingroup auxdat |
23 | 23 |
//!\file |
24 | 24 |
//!\brief Union-Find data structures. |
25 | 25 |
//! |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <list> |
29 | 29 |
#include <utility> |
30 | 30 |
#include <algorithm> |
31 | 31 |
#include <functional> |
32 | 32 |
|
33 |
#include <lemon/ |
|
33 |
#include <lemon/core.h> |
|
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup auxdat |
38 | 38 |
/// |
39 | 39 |
/// \brief A \e Union-Find data structure implementation |
40 | 40 |
/// |
41 | 41 |
/// The class implements the \e Union-Find data structure. |
42 | 42 |
/// The union operation uses rank heuristic, while |
43 | 43 |
/// the find operation uses path compression. |
44 | 44 |
/// This is a very simple but efficient implementation, providing |
45 | 45 |
/// only four methods: join (union), find, insert and size. |
46 | 46 |
/// For more features see the \ref UnionFindEnum class. |
47 | 47 |
/// |
48 | 48 |
/// It is primarily used in Kruskal algorithm for finding minimal |
49 | 49 |
/// cost spanning tree in a graph. |
50 | 50 |
/// \sa kruskal() |
51 | 51 |
/// |
52 | 52 |
/// \pre You need to add all the elements by the \ref insert() |
53 | 53 |
/// method. |
54 | 54 |
template <typename _ItemIntMap> |
55 | 55 |
class UnionFind { |
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
typedef _ItemIntMap ItemIntMap; |
59 | 59 |
typedef typename ItemIntMap::Key Item; |
60 | 60 |
|
61 | 61 |
private: |
62 | 62 |
// If the items vector stores negative value for an item then |
63 | 63 |
// that item is root item and it has -items[it] component size. |
64 | 64 |
// Else the items[it] contains the index of the parent. |
65 | 65 |
std::vector<int> items; |
66 | 66 |
ItemIntMap& index; |
67 | 67 |
|
68 | 68 |
bool rep(int idx) const { |
69 | 69 |
return items[idx] < 0; |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
int repIndex(int idx) const { |
73 | 73 |
int k = idx; |
74 | 74 |
while (!rep(k)) { |
75 | 75 |
k = items[k] ; |
76 | 76 |
} |
77 | 77 |
while (idx != k) { |
78 | 78 |
int next = items[idx]; |
79 | 79 |
const_cast<int&>(items[idx]) = k; |
80 | 80 |
idx = next; |
81 | 81 |
} |
82 | 82 |
return k; |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
|
87 | 87 |
/// \brief Constructor |
88 | 88 |
/// |
89 | 89 |
/// Constructor of the UnionFind class. You should give an item to |
90 | 90 |
/// integer map which will be used from the data structure. If you |
91 | 91 |
/// modify directly this map that may cause segmentation fault, |
92 | 92 |
/// invalid data structure, or infinite loop when you use again |
93 | 93 |
/// the union-find. |
94 | 94 |
UnionFind(ItemIntMap& m) : index(m) {} |
95 | 95 |
|
96 | 96 |
/// \brief Returns the index of the element's component. |
97 | 97 |
/// |
98 | 98 |
/// The method returns the index of the element's component. |
99 | 99 |
/// This is an integer between zero and the number of inserted elements. |
100 | 100 |
/// |
101 | 101 |
int find(const Item& a) { |
102 | 102 |
return repIndex(index[a]); |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
/// \brief Clears the union-find data structure |
106 | 106 |
/// |
107 | 107 |
/// Erase each item from the data structure. |
108 | 108 |
void clear() { |
109 | 109 |
items.clear(); |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
/// \brief Inserts a new element into the structure. |
113 | 113 |
/// |
114 | 114 |
/// This method inserts a new element into the data structure. |
115 | 115 |
/// |
116 | 116 |
/// The method returns the index of the new component. |
117 | 117 |
int insert(const Item& a) { |
118 | 118 |
int n = items.size(); |
119 | 119 |
items.push_back(-1); |
120 | 120 |
index.set(a,n); |
121 | 121 |
return n; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
/// \brief Joining the components of element \e a and element \e b. |
125 | 125 |
/// |
126 | 126 |
/// This is the \e union operation of the Union-Find structure. |
127 | 127 |
/// Joins the component of element \e a and component of |
128 | 128 |
/// element \e b. If \e a and \e b are in the same component then |
129 | 129 |
/// it returns false otherwise it returns true. |
130 | 130 |
bool join(const Item& a, const Item& b) { |
131 | 131 |
int ka = repIndex(index[a]); |
132 | 132 |
int kb = repIndex(index[b]); |
133 | 133 |
|
134 | 134 |
if ( ka == kb ) |
135 | 135 |
return false; |
136 | 136 |
|
137 | 137 |
if (items[ka] < items[kb]) { |
138 | 138 |
items[ka] += items[kb]; |
139 | 139 |
items[kb] = ka; |
140 | 140 |
} else { |
141 | 141 |
items[kb] += items[ka]; |
142 | 142 |
items[ka] = kb; |
143 | 143 |
} |
144 | 144 |
return true; |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
/// \brief Returns the size of the component of element \e a. |
148 | 148 |
/// |
149 | 149 |
/// Returns the size of the component of element \e a. |
150 | 150 |
int size(const Item& a) { |
151 | 151 |
int k = repIndex(index[a]); |
152 | 152 |
return - items[k]; |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
}; |
156 | 156 |
|
157 | 157 |
/// \ingroup auxdat |
158 | 158 |
/// |
159 | 159 |
/// \brief A \e Union-Find data structure implementation which |
160 | 160 |
/// is able to enumerate the components. |
161 | 161 |
/// |
162 | 162 |
/// The class implements a \e Union-Find data structure |
163 | 163 |
/// which is able to enumerate the components and the items in |
164 | 164 |
/// a component. If you don't need this feature then perhaps it's |
165 | 165 |
/// better to use the \ref UnionFind class which is more efficient. |
166 | 166 |
/// |
167 | 167 |
/// The union operation uses rank heuristic, while |
168 | 168 |
/// the find operation uses path compression. |
169 | 169 |
/// |
170 | 170 |
/// \pre You need to add all the elements by the \ref insert() |
171 | 171 |
/// method. |
172 | 172 |
/// |
173 | 173 |
template <typename _ItemIntMap> |
174 | 174 |
class UnionFindEnum { |
175 | 175 |
public: |
176 | 176 |
|
177 | 177 |
typedef _ItemIntMap ItemIntMap; |
178 | 178 |
typedef typename ItemIntMap::Key Item; |
179 | 179 |
|
180 | 180 |
private: |
181 | 181 |
|
182 | 182 |
ItemIntMap& index; |
183 | 183 |
|
184 | 184 |
// If the parent stores negative value for an item then that item |
185 | 185 |
// is root item and it has ~(items[it].parent) component id. Else |
186 | 186 |
// the items[it].parent contains the index of the parent. |
187 | 187 |
// |
188 | 188 |
// The \c next and \c prev provides the double-linked |
189 | 189 |
// cyclic list of one component's items. |
190 | 190 |
struct ItemT { |
191 | 191 |
int parent; |
192 | 192 |
Item item; |
193 | 193 |
|
194 | 194 |
int next, prev; |
195 | 195 |
}; |
196 | 196 |
|
197 | 197 |
std::vector<ItemT> items; |
198 | 198 |
int firstFreeItem; |
199 | 199 |
|
200 | 200 |
struct ClassT { |
201 | 201 |
int size; |
202 | 202 |
int firstItem; |
203 | 203 |
int next, prev; |
204 | 204 |
}; |
205 | 205 |
|
206 | 206 |
std::vector<ClassT> classes; |
207 | 207 |
int firstClass, firstFreeClass; |
208 | 208 |
|
209 | 209 |
int newClass() { |
210 | 210 |
if (firstFreeClass == -1) { |
211 | 211 |
int cdx = classes.size(); |
212 | 212 |
classes.push_back(ClassT()); |
213 | 213 |
return cdx; |
214 | 214 |
} else { |
215 | 215 |
int cdx = firstFreeClass; |
216 | 216 |
firstFreeClass = classes[firstFreeClass].next; |
217 | 217 |
return cdx; |
218 | 218 |
} |
219 | 219 |
} |
220 | 220 |
|
221 | 221 |
int newItem() { |
222 | 222 |
if (firstFreeItem == -1) { |
223 | 223 |
int idx = items.size(); |
224 | 224 |
items.push_back(ItemT()); |
225 | 225 |
return idx; |
226 | 226 |
} else { |
227 | 227 |
int idx = firstFreeItem; |
228 | 228 |
firstFreeItem = items[firstFreeItem].next; |
229 | 229 |
return idx; |
230 | 230 |
} |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
|
234 | 234 |
bool rep(int idx) const { |
235 | 235 |
return items[idx].parent < 0; |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
int repIndex(int idx) const { |
239 | 239 |
int k = idx; |
240 | 240 |
while (!rep(k)) { |
241 | 241 |
k = items[k].parent; |
242 | 242 |
} |
243 | 243 |
while (idx != k) { |
244 | 244 |
int next = items[idx].parent; |
245 | 245 |
const_cast<int&>(items[idx].parent) = k; |
246 | 246 |
idx = next; |
247 | 247 |
} |
248 | 248 |
return k; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
int classIndex(int idx) const { |
252 | 252 |
return ~(items[repIndex(idx)].parent); |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
void singletonItem(int idx) { |
256 | 256 |
items[idx].next = idx; |
257 | 257 |
items[idx].prev = idx; |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
void laceItem(int idx, int rdx) { |
261 | 261 |
items[idx].prev = rdx; |
262 | 262 |
items[idx].next = items[rdx].next; |
263 | 263 |
items[items[rdx].next].prev = idx; |
264 | 264 |
items[rdx].next = idx; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
void unlaceItem(int idx) { |
268 | 268 |
items[items[idx].prev].next = items[idx].next; |
269 | 269 |
items[items[idx].next].prev = items[idx].prev; |
270 | 270 |
|
271 | 271 |
items[idx].next = firstFreeItem; |
272 | 272 |
firstFreeItem = idx; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
void spliceItems(int ak, int bk) { |
276 | 276 |
items[items[ak].prev].next = bk; |
277 | 277 |
items[items[bk].prev].next = ak; |
278 | 278 |
int tmp = items[ak].prev; |
279 | 279 |
items[ak].prev = items[bk].prev; |
280 | 280 |
items[bk].prev = tmp; |
281 | 281 |
|
282 | 282 |
} |
283 | 283 |
|
284 | 284 |
void laceClass(int cls) { |
285 | 285 |
if (firstClass != -1) { |
286 | 286 |
classes[firstClass].prev = cls; |
287 | 287 |
} |
288 | 288 |
classes[cls].next = firstClass; |
289 | 289 |
classes[cls].prev = -1; |
290 | 290 |
firstClass = cls; |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
void unlaceClass(int cls) { |
294 | 294 |
if (classes[cls].prev != -1) { |
295 | 295 |
classes[classes[cls].prev].next = classes[cls].next; |
296 | 296 |
} else { |
297 | 297 |
firstClass = classes[cls].next; |
298 | 298 |
} |
299 | 299 |
if (classes[cls].next != -1) { |
300 | 300 |
classes[classes[cls].next].prev = classes[cls].prev; |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
classes[cls].next = firstFreeClass; |
304 | 304 |
firstFreeClass = cls; |
305 | 305 |
} |
306 | 306 |
|
307 | 307 |
public: |
308 | 308 |
|
309 | 309 |
UnionFindEnum(ItemIntMap& _index) |
310 | 310 |
: index(_index), items(), firstFreeItem(-1), |
311 | 311 |
firstClass(-1), firstFreeClass(-1) {} |
312 | 312 |
|
313 | 313 |
/// \brief Inserts the given element into a new component. |
314 | 314 |
/// |
315 | 315 |
/// This method creates a new component consisting only of the |
316 | 316 |
/// given element. |
317 | 317 |
/// |
318 | 318 |
int insert(const Item& item) { |
319 | 319 |
int idx = newItem(); |
320 | 320 |
|
321 | 321 |
index.set(item, idx); |
322 | 322 |
|
323 | 323 |
singletonItem(idx); |
324 | 324 |
items[idx].item = item; |
325 | 325 |
|
326 | 326 |
int cdx = newClass(); |
327 | 327 |
|
328 | 328 |
items[idx].parent = ~cdx; |
329 | 329 |
|
330 | 330 |
laceClass(cdx); |
331 | 331 |
classes[cdx].size = 1; |
332 | 332 |
classes[cdx].firstItem = idx; |
333 | 333 |
|
334 | 334 |
firstClass = cdx; |
335 | 335 |
|
336 | 336 |
return cdx; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
/// \brief Inserts the given element into the component of the others. |
340 | 340 |
/// |
341 | 341 |
/// This methods inserts the element \e a into the component of the |
342 | 342 |
/// element \e comp. |
343 | 343 |
void insert(const Item& item, int cls) { |
344 | 344 |
int rdx = classes[cls].firstItem; |
345 | 345 |
int idx = newItem(); |
346 | 346 |
|
347 | 347 |
index.set(item, idx); |
348 | 348 |
|
349 | 349 |
laceItem(idx, rdx); |
350 | 350 |
|
351 | 351 |
items[idx].item = item; |
352 | 352 |
items[idx].parent = rdx; |
353 | 353 |
|
354 | 354 |
++classes[~(items[rdx].parent)].size; |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Clears the union-find data structure |
358 | 358 |
/// |
359 | 359 |
/// Erase each item from the data structure. |
360 | 360 |
void clear() { |
361 | 361 |
items.clear(); |
362 | 362 |
firstClass = -1; |
363 | 363 |
firstFreeItem = -1; |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
/// \brief Finds the component of the given element. |
367 | 367 |
/// |
368 | 368 |
/// The method returns the component id of the given element. |
369 | 369 |
int find(const Item &item) const { |
370 | 370 |
return ~(items[repIndex(index[item])].parent); |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
/// \brief Joining the component of element \e a and element \e b. |
374 | 374 |
/// |
375 | 375 |
/// This is the \e union operation of the Union-Find structure. |
376 | 376 |
/// Joins the component of element \e a and component of |
377 | 377 |
/// element \e b. If \e a and \e b are in the same component then |
378 | 378 |
/// returns -1 else returns the remaining class. |
379 | 379 |
int join(const Item& a, const Item& b) { |
380 | 380 |
|
381 | 381 |
int ak = repIndex(index[a]); |
382 | 382 |
int bk = repIndex(index[b]); |
383 | 383 |
|
384 | 384 |
if (ak == bk) { |
385 | 385 |
return -1; |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
int acx = ~(items[ak].parent); |
389 | 389 |
int bcx = ~(items[bk].parent); |
390 | 390 |
|
391 | 391 |
int rcx; |
392 | 392 |
|
393 | 393 |
if (classes[acx].size > classes[bcx].size) { |
394 | 394 |
classes[acx].size += classes[bcx].size; |
395 | 395 |
items[bk].parent = ak; |
396 | 396 |
unlaceClass(bcx); |
397 | 397 |
rcx = acx; |
398 | 398 |
} else { |
399 | 399 |
classes[bcx].size += classes[acx].size; |
400 | 400 |
items[ak].parent = bk; |
401 | 401 |
unlaceClass(acx); |
402 | 402 |
rcx = bcx; |
403 | 403 |
} |
404 | 404 |
spliceItems(ak, bk); |
405 | 405 |
|
406 | 406 |
return rcx; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
/// \brief Returns the size of the class. |
410 | 410 |
/// |
411 | 411 |
/// Returns the size of the class. |
412 | 412 |
int size(int cls) const { |
413 | 413 |
return classes[cls].size; |
414 | 414 |
} |
415 | 415 |
|
416 | 416 |
/// \brief Splits up the component. |
417 | 417 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 |
#include <lemon/graph_utils.h> |
|
23 | 22 |
#include <lemon/dijkstra.h> |
24 | 23 |
#include <lemon/path.h> |
25 | 24 |
|
26 | 25 |
#include "graph_test.h" |
27 | 26 |
#include "test_tools.h" |
28 | 27 |
|
29 | 28 |
using namespace lemon; |
30 | 29 |
|
31 | 30 |
void checkDijkstraCompile() |
32 | 31 |
{ |
33 | 32 |
typedef int VType; |
34 | 33 |
typedef concepts::Digraph Digraph; |
35 | 34 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
36 | 35 |
typedef Dijkstra<Digraph, LengthMap> DType; |
37 | 36 |
|
38 | 37 |
Digraph G; |
39 | 38 |
Digraph::Node n; |
40 | 39 |
Digraph::Arc e; |
41 | 40 |
VType l; |
42 | 41 |
bool b; |
43 | 42 |
DType::DistMap d(G); |
44 | 43 |
DType::PredMap p(G); |
45 | 44 |
// DType::PredNodeMap pn(G); |
46 | 45 |
LengthMap length; |
47 | 46 |
|
48 | 47 |
DType dijkstra_test(G,length); |
49 | 48 |
|
50 | 49 |
dijkstra_test.run(n); |
51 | 50 |
|
52 | 51 |
l = dijkstra_test.dist(n); |
53 | 52 |
e = dijkstra_test.predArc(n); |
54 | 53 |
n = dijkstra_test.predNode(n); |
55 | 54 |
d = dijkstra_test.distMap(); |
56 | 55 |
p = dijkstra_test.predMap(); |
57 | 56 |
// pn = dijkstra_test.predNodeMap(); |
58 | 57 |
b = dijkstra_test.reached(n); |
59 | 58 |
|
60 | 59 |
Path<Digraph> pp = dijkstra_test.path(n); |
61 | 60 |
} |
62 | 61 |
|
63 | 62 |
void checkDijkstraFunctionCompile() |
64 | 63 |
{ |
65 | 64 |
typedef int VType; |
66 | 65 |
typedef concepts::Digraph Digraph; |
67 | 66 |
typedef Digraph::Arc Arc; |
68 | 67 |
typedef Digraph::Node Node; |
69 | 68 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
70 | 69 |
|
71 | 70 |
Digraph g; |
72 | 71 |
dijkstra(g,LengthMap(),Node()).run(); |
73 | 72 |
dijkstra(g,LengthMap()).source(Node()).run(); |
74 | 73 |
dijkstra(g,LengthMap()) |
75 | 74 |
.predMap(concepts::WriteMap<Node,Arc>()) |
76 | 75 |
.distMap(concepts::WriteMap<Node,VType>()) |
77 | 76 |
.run(Node()); |
78 | 77 |
} |
79 | 78 |
|
80 | 79 |
template <class Digraph> |
81 | 80 |
void checkDijkstra() { |
82 | 81 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
83 | 82 |
typedef typename Digraph::template ArcMap<int> LengthMap; |
84 | 83 |
|
85 | 84 |
Digraph G; |
86 | 85 |
Node s, t; |
87 | 86 |
LengthMap length(G); |
88 | 87 |
PetStruct<Digraph> ps = addPetersen(G, 5); |
89 | 88 |
|
90 | 89 |
for(int i=0;i<5;i++) { |
91 | 90 |
length[ps.outcir[i]]=4; |
92 | 91 |
length[ps.incir[i]]=1; |
93 | 92 |
length[ps.chords[i]]=10; |
94 | 93 |
} |
95 | 94 |
s=ps.outer[0]; |
96 | 95 |
t=ps.inner[1]; |
97 | 96 |
|
98 | 97 |
Dijkstra<Digraph, LengthMap> |
99 | 98 |
dijkstra_test(G, length); |
100 | 99 |
dijkstra_test.run(s); |
101 | 100 |
|
102 | 101 |
check(dijkstra_test.dist(t)==13,"Dijkstra found a wrong path."); |
103 | 102 |
|
104 | 103 |
Path<Digraph> p = dijkstra_test.path(t); |
105 | 104 |
check(p.length()==4,"getPath() found a wrong path."); |
106 | 105 |
check(checkPath(G, p),"path() found a wrong path."); |
107 | 106 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
108 | 107 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
109 | 108 |
|
110 | 109 |
for(ArcIt e(G); e!=INVALID; ++e) { |
111 | 110 |
Node u=G.source(e); |
112 | 111 |
Node v=G.target(e); |
113 | 112 |
check( !dijkstra_test.reached(u) || |
114 | 113 |
(dijkstra_test.dist(v) - dijkstra_test.dist(u) <= length[e]), |
115 | 114 |
"dist(target)-dist(source)-arc_length= " << |
116 | 115 |
dijkstra_test.dist(v) - dijkstra_test.dist(u) - length[e]); |
117 | 116 |
} |
118 | 117 |
|
119 | 118 |
for(NodeIt v(G); v!=INVALID; ++v){ |
120 | 119 |
check(dijkstra_test.reached(v),"Each node should be reached."); |
121 | 120 |
if ( dijkstra_test.predArc(v)!=INVALID ) { |
122 | 121 |
Arc e=dijkstra_test.predArc(v); |
123 | 122 |
Node u=G.source(e); |
124 | 123 |
check(u==dijkstra_test.predNode(v),"Wrong tree."); |
125 | 124 |
check(dijkstra_test.dist(v) - dijkstra_test.dist(u) == length[e], |
126 | 125 |
"Wrong distance! Difference: " << |
127 | 126 |
std::abs(dijkstra_test.dist(v)-dijkstra_test.dist(u)-length[e])); |
128 | 127 |
} |
129 | 128 |
} |
130 | 129 |
|
131 | 130 |
{ |
132 | 131 |
NullMap<Node,Arc> myPredMap; |
133 | 132 |
dijkstra(G,length).predMap(myPredMap).run(s); |
134 | 133 |
} |
135 | 134 |
} |
136 | 135 |
|
137 | 136 |
int main() { |
138 | 137 |
checkDijkstra<ListDigraph>(); |
139 | 138 |
checkDijkstra<SmartDigraph>(); |
140 | 139 |
return 0; |
141 | 140 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/smart_graph.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/lgf_reader.h> |
22 |
#include <lemon/graph_utils.h> |
|
23 | 22 |
#include <lemon/error.h> |
24 | 23 |
|
25 | 24 |
#include "test_tools.h" |
26 | 25 |
|
27 | 26 |
using namespace std; |
28 | 27 |
using namespace lemon; |
29 | 28 |
|
30 | 29 |
void digraph_copy_test() { |
31 | 30 |
const int nn = 10; |
32 | 31 |
|
33 | 32 |
SmartDigraph from; |
34 | 33 |
SmartDigraph::NodeMap<int> fnm(from); |
35 | 34 |
SmartDigraph::ArcMap<int> fam(from); |
36 | 35 |
SmartDigraph::Node fn = INVALID; |
37 | 36 |
SmartDigraph::Arc fa = INVALID; |
38 | 37 |
|
39 | 38 |
std::vector<SmartDigraph::Node> fnv; |
40 | 39 |
for (int i = 0; i < nn; ++i) { |
41 | 40 |
SmartDigraph::Node node = from.addNode(); |
42 | 41 |
fnv.push_back(node); |
43 | 42 |
fnm[node] = i * i; |
44 | 43 |
if (i == 0) fn = node; |
45 | 44 |
} |
46 | 45 |
|
47 | 46 |
for (int i = 0; i < nn; ++i) { |
48 | 47 |
for (int j = 0; j < nn; ++j) { |
49 | 48 |
SmartDigraph::Arc arc = from.addArc(fnv[i], fnv[j]); |
50 | 49 |
fam[arc] = i + j * j; |
51 | 50 |
if (i == 0 && j == 0) fa = arc; |
52 | 51 |
} |
53 | 52 |
} |
54 | 53 |
|
55 | 54 |
ListDigraph to; |
56 | 55 |
ListDigraph::NodeMap<int> tnm(to); |
57 | 56 |
ListDigraph::ArcMap<int> tam(to); |
58 | 57 |
ListDigraph::Node tn; |
59 | 58 |
ListDigraph::Arc ta; |
60 | 59 |
|
61 | 60 |
SmartDigraph::NodeMap<ListDigraph::Node> nr(from); |
62 | 61 |
SmartDigraph::ArcMap<ListDigraph::Arc> er(from); |
63 | 62 |
|
64 | 63 |
ListDigraph::NodeMap<SmartDigraph::Node> ncr(to); |
65 | 64 |
ListDigraph::ArcMap<SmartDigraph::Arc> ecr(to); |
66 | 65 |
|
67 | 66 |
DigraphCopy<ListDigraph, SmartDigraph>(to, from). |
68 | 67 |
nodeMap(tnm, fnm).arcMap(tam, fam). |
69 | 68 |
nodeRef(nr).arcRef(er). |
70 | 69 |
nodeCrossRef(ncr).arcCrossRef(ecr). |
71 | 70 |
node(tn, fn).arc(ta, fa).run(); |
72 | 71 |
|
73 | 72 |
for (SmartDigraph::NodeIt it(from); it != INVALID; ++it) { |
74 | 73 |
check(ncr[nr[it]] == it, "Wrong copy."); |
75 | 74 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
76 | 75 |
} |
77 | 76 |
|
78 | 77 |
for (SmartDigraph::ArcIt it(from); it != INVALID; ++it) { |
79 | 78 |
check(ecr[er[it]] == it, "Wrong copy."); |
80 | 79 |
check(fam[it] == tam[er[it]], "Wrong copy."); |
81 | 80 |
check(nr[from.source(it)] == to.source(er[it]), "Wrong copy."); |
82 | 81 |
check(nr[from.target(it)] == to.target(er[it]), "Wrong copy."); |
83 | 82 |
} |
84 | 83 |
|
85 | 84 |
for (ListDigraph::NodeIt it(to); it != INVALID; ++it) { |
86 | 85 |
check(nr[ncr[it]] == it, "Wrong copy."); |
87 | 86 |
} |
88 | 87 |
|
89 | 88 |
for (ListDigraph::ArcIt it(to); it != INVALID; ++it) { |
90 | 89 |
check(er[ecr[it]] == it, "Wrong copy."); |
91 | 90 |
} |
92 | 91 |
check(tn == nr[fn], "Wrong copy."); |
93 | 92 |
check(ta == er[fa], "Wrong copy."); |
94 | 93 |
} |
95 | 94 |
|
96 | 95 |
void graph_copy_test() { |
97 | 96 |
const int nn = 10; |
98 | 97 |
|
99 | 98 |
SmartGraph from; |
100 | 99 |
SmartGraph::NodeMap<int> fnm(from); |
101 | 100 |
SmartGraph::ArcMap<int> fam(from); |
102 | 101 |
SmartGraph::EdgeMap<int> fem(from); |
103 | 102 |
SmartGraph::Node fn = INVALID; |
104 | 103 |
SmartGraph::Arc fa = INVALID; |
105 | 104 |
SmartGraph::Edge fe = INVALID; |
106 | 105 |
|
107 | 106 |
std::vector<SmartGraph::Node> fnv; |
108 | 107 |
for (int i = 0; i < nn; ++i) { |
109 | 108 |
SmartGraph::Node node = from.addNode(); |
110 | 109 |
fnv.push_back(node); |
111 | 110 |
fnm[node] = i * i; |
112 | 111 |
if (i == 0) fn = node; |
113 | 112 |
} |
114 | 113 |
|
115 | 114 |
for (int i = 0; i < nn; ++i) { |
116 | 115 |
for (int j = 0; j < nn; ++j) { |
117 | 116 |
SmartGraph::Edge edge = from.addEdge(fnv[i], fnv[j]); |
118 | 117 |
fem[edge] = i * i + j * j; |
119 | 118 |
fam[from.direct(edge, true)] = i + j * j; |
120 | 119 |
fam[from.direct(edge, false)] = i * i + j; |
121 | 120 |
if (i == 0 && j == 0) fa = from.direct(edge, true); |
122 | 121 |
if (i == 0 && j == 0) fe = edge; |
123 | 122 |
} |
124 | 123 |
} |
125 | 124 |
|
126 | 125 |
ListGraph to; |
127 | 126 |
ListGraph::NodeMap<int> tnm(to); |
128 | 127 |
ListGraph::ArcMap<int> tam(to); |
129 | 128 |
ListGraph::EdgeMap<int> tem(to); |
130 | 129 |
ListGraph::Node tn; |
131 | 130 |
ListGraph::Arc ta; |
132 | 131 |
ListGraph::Edge te; |
133 | 132 |
|
134 | 133 |
SmartGraph::NodeMap<ListGraph::Node> nr(from); |
135 | 134 |
SmartGraph::ArcMap<ListGraph::Arc> ar(from); |
136 | 135 |
SmartGraph::EdgeMap<ListGraph::Edge> er(from); |
137 | 136 |
|
138 | 137 |
ListGraph::NodeMap<SmartGraph::Node> ncr(to); |
139 | 138 |
ListGraph::ArcMap<SmartGraph::Arc> acr(to); |
140 | 139 |
ListGraph::EdgeMap<SmartGraph::Edge> ecr(to); |
141 | 140 |
|
142 | 141 |
GraphCopy<ListGraph, SmartGraph>(to, from). |
143 | 142 |
nodeMap(tnm, fnm).arcMap(tam, fam).edgeMap(tem, fem). |
144 | 143 |
nodeRef(nr).arcRef(ar).edgeRef(er). |
145 | 144 |
nodeCrossRef(ncr).arcCrossRef(acr).edgeCrossRef(ecr). |
146 | 145 |
node(tn, fn).arc(ta, fa).edge(te, fe).run(); |
147 | 146 |
|
148 | 147 |
for (SmartGraph::NodeIt it(from); it != INVALID; ++it) { |
149 | 148 |
check(ncr[nr[it]] == it, "Wrong copy."); |
150 | 149 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
151 | 150 |
} |
152 | 151 |
|
153 | 152 |
for (SmartGraph::ArcIt it(from); it != INVALID; ++it) { |
154 | 153 |
check(acr[ar[it]] == it, "Wrong copy."); |
155 | 154 |
check(fam[it] == tam[ar[it]], "Wrong copy."); |
156 | 155 |
check(nr[from.source(it)] == to.source(ar[it]), "Wrong copy."); |
157 | 156 |
check(nr[from.target(it)] == to.target(ar[it]), "Wrong copy."); |
158 | 157 |
} |
159 | 158 |
|
160 | 159 |
for (SmartGraph::EdgeIt it(from); it != INVALID; ++it) { |
161 | 160 |
check(ecr[er[it]] == it, "Wrong copy."); |
162 | 161 |
check(fem[it] == tem[er[it]], "Wrong copy."); |
163 | 162 |
check(nr[from.u(it)] == to.u(er[it]) || nr[from.u(it)] == to.v(er[it]), |
164 | 163 |
"Wrong copy."); |
165 | 164 |
check(nr[from.v(it)] == to.u(er[it]) || nr[from.v(it)] == to.v(er[it]), |
166 | 165 |
"Wrong copy."); |
167 | 166 |
check((from.u(it) != from.v(it)) == (to.u(er[it]) != to.v(er[it])), |
168 | 167 |
"Wrong copy."); |
169 | 168 |
} |
170 | 169 |
|
171 | 170 |
for (ListGraph::NodeIt it(to); it != INVALID; ++it) { |
172 | 171 |
check(nr[ncr[it]] == it, "Wrong copy."); |
173 | 172 |
} |
174 | 173 |
|
175 | 174 |
for (ListGraph::ArcIt it(to); it != INVALID; ++it) { |
176 | 175 |
check(ar[acr[it]] == it, "Wrong copy."); |
177 | 176 |
} |
178 | 177 |
for (ListGraph::EdgeIt it(to); it != INVALID; ++it) { |
179 | 178 |
check(er[ecr[it]] == it, "Wrong copy."); |
180 | 179 |
} |
181 | 180 |
check(tn == nr[fn], "Wrong copy."); |
182 | 181 |
check(ta == ar[fa], "Wrong copy."); |
183 | 182 |
check(te == er[fe], "Wrong copy."); |
184 | 183 |
} |
185 | 184 |
|
186 | 185 |
|
187 | 186 |
int main() { |
188 | 187 |
digraph_copy_test(); |
189 | 188 |
graph_copy_test(); |
190 | 189 |
|
191 | 190 |
return 0; |
192 | 191 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TEST_GRAPH_TEST_H |
20 | 20 |
#define LEMON_TEST_GRAPH_TEST_H |
21 | 21 |
|
22 |
#include <lemon/ |
|
22 |
#include <lemon/core.h> |
|
23 | 23 |
#include "test_tools.h" |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template<class Graph> |
28 | 28 |
void checkGraphNodeList(const Graph &G, int cnt) |
29 | 29 |
{ |
30 | 30 |
typename Graph::NodeIt n(G); |
31 | 31 |
for(int i=0;i<cnt;i++) { |
32 | 32 |
check(n!=INVALID,"Wrong Node list linking."); |
33 | 33 |
++n; |
34 | 34 |
} |
35 | 35 |
check(n==INVALID,"Wrong Node list linking."); |
36 | 36 |
check(countNodes(G)==cnt,"Wrong Node number."); |
37 | 37 |
} |
38 | 38 |
|
39 | 39 |
template<class Graph> |
40 | 40 |
void checkGraphArcList(const Graph &G, int cnt) |
41 | 41 |
{ |
42 | 42 |
typename Graph::ArcIt e(G); |
43 | 43 |
for(int i=0;i<cnt;i++) { |
44 | 44 |
check(e!=INVALID,"Wrong Arc list linking."); |
45 | 45 |
++e; |
46 | 46 |
} |
47 | 47 |
check(e==INVALID,"Wrong Arc list linking."); |
48 | 48 |
check(countArcs(G)==cnt,"Wrong Arc number."); |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
template<class Graph> |
52 | 52 |
void checkGraphOutArcList(const Graph &G, typename Graph::Node n, int cnt) |
53 | 53 |
{ |
54 | 54 |
typename Graph::OutArcIt e(G,n); |
55 | 55 |
for(int i=0;i<cnt;i++) { |
56 | 56 |
check(e!=INVALID,"Wrong OutArc list linking."); |
57 | 57 |
check(n==G.source(e),"Wrong OutArc list linking."); |
58 | 58 |
++e; |
59 | 59 |
} |
60 | 60 |
check(e==INVALID,"Wrong OutArc list linking."); |
61 | 61 |
check(countOutArcs(G,n)==cnt,"Wrong OutArc number."); |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
template<class Graph> |
65 | 65 |
void checkGraphInArcList(const Graph &G, typename Graph::Node n, int cnt) |
66 | 66 |
{ |
67 | 67 |
typename Graph::InArcIt e(G,n); |
68 | 68 |
for(int i=0;i<cnt;i++) { |
69 | 69 |
check(e!=INVALID,"Wrong InArc list linking."); |
70 | 70 |
check(n==G.target(e),"Wrong InArc list linking."); |
71 | 71 |
++e; |
72 | 72 |
} |
73 | 73 |
check(e==INVALID,"Wrong InArc list linking."); |
74 | 74 |
check(countInArcs(G,n)==cnt,"Wrong InArc number."); |
75 | 75 |
} |
76 | 76 |
|
77 | 77 |
template<class Graph> |
78 | 78 |
void checkGraphEdgeList(const Graph &G, int cnt) |
79 | 79 |
{ |
80 | 80 |
typename Graph::EdgeIt e(G); |
81 | 81 |
for(int i=0;i<cnt;i++) { |
82 | 82 |
check(e!=INVALID,"Wrong Edge list linking."); |
83 | 83 |
++e; |
84 | 84 |
} |
85 | 85 |
check(e==INVALID,"Wrong Edge list linking."); |
86 | 86 |
check(countEdges(G)==cnt,"Wrong Edge number."); |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
template<class Graph> |
90 | 90 |
void checkGraphIncEdgeList(const Graph &G, typename Graph::Node n, int cnt) |
91 | 91 |
{ |
92 | 92 |
typename Graph::IncEdgeIt e(G,n); |
93 | 93 |
for(int i=0;i<cnt;i++) { |
94 | 94 |
check(e!=INVALID,"Wrong IncEdge list linking."); |
95 | 95 |
check(n==G.u(e) || n==G.v(e),"Wrong IncEdge list linking."); |
96 | 96 |
++e; |
97 | 97 |
} |
98 | 98 |
check(e==INVALID,"Wrong IncEdge list linking."); |
99 | 99 |
check(countIncEdges(G,n)==cnt,"Wrong IncEdge number."); |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
template <class Digraph> |
103 | 103 |
void checkDigraphIterators() { |
104 | 104 |
typedef typename Digraph::Node Node; |
105 | 105 |
typedef typename Digraph::NodeIt NodeIt; |
106 | 106 |
typedef typename Digraph::Arc Arc; |
107 | 107 |
typedef typename Digraph::ArcIt ArcIt; |
108 | 108 |
typedef typename Digraph::InArcIt InArcIt; |
109 | 109 |
typedef typename Digraph::OutArcIt OutArcIt; |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
template <class Graph> |
113 | 113 |
void checkGraphIterators() { |
114 | 114 |
checkDigraphIterators<Graph>(); |
115 | 115 |
typedef typename Graph::Edge Edge; |
116 | 116 |
typedef typename Graph::EdgeIt EdgeIt; |
117 | 117 |
typedef typename Graph::IncEdgeIt IncEdgeIt; |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
// Structure returned by addPetersen() |
121 | 121 |
template<class Digraph> |
122 | 122 |
struct PetStruct |
123 | 123 |
{ |
124 | 124 |
// Vector containing the outer nodes |
125 | 125 |
std::vector<typename Digraph::Node> outer; |
126 | 126 |
// Vector containing the inner nodes |
127 | 127 |
std::vector<typename Digraph::Node> inner; |
128 | 128 |
// Vector containing the arcs of the inner circle |
129 | 129 |
std::vector<typename Digraph::Arc> incir; |
130 | 130 |
// Vector containing the arcs of the outer circle |
131 | 131 |
std::vector<typename Digraph::Arc> outcir; |
132 | 132 |
// Vector containing the chord arcs |
133 | 133 |
std::vector<typename Digraph::Arc> chords; |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
// Adds the reverse pair of all arcs to a digraph |
137 | 137 |
template<class Digraph> |
138 | 138 |
void bidirDigraph(Digraph &G) |
139 | 139 |
{ |
140 | 140 |
typedef typename Digraph::Arc Arc; |
141 | 141 |
typedef typename Digraph::ArcIt ArcIt; |
142 | 142 |
|
143 | 143 |
std::vector<Arc> ee; |
144 | 144 |
|
145 | 145 |
for(ArcIt e(G);e!=INVALID;++e) ee.push_back(e); |
146 | 146 |
|
147 | 147 |
for(int i=0;i<int(ee.size());++i) |
148 | 148 |
G.addArc(G.target(ee[i]),G.source(ee[i])); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
// Adds a Petersen digraph to G. |
152 | 152 |
// Returns the nodes and arcs of the generated digraph. |
153 | 153 |
template<typename Digraph> |
154 | 154 |
PetStruct<Digraph> addPetersen(Digraph &G,int num = 5) |
155 | 155 |
{ |
156 | 156 |
PetStruct<Digraph> n; |
157 | 157 |
|
158 | 158 |
for(int i=0;i<num;i++) { |
159 | 159 |
n.outer.push_back(G.addNode()); |
160 | 160 |
n.inner.push_back(G.addNode()); |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
for(int i=0;i<num;i++) { |
164 | 164 |
n.chords.push_back(G.addArc(n.outer[i],n.inner[i])); |
165 | 165 |
n.outcir.push_back(G.addArc(n.outer[i],n.outer[(i+1) % num])); |
166 | 166 |
n.incir.push_back(G.addArc(n.inner[i],n.inner[(i+2) % num])); |
167 | 167 |
} |
168 | 168 |
|
169 | 169 |
return n; |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
// Checks the bidirectioned Petersen digraph |
173 | 173 |
template<class Digraph> |
174 | 174 |
void checkBidirPetersen(const Digraph &G, int num = 5) |
175 | 175 |
{ |
176 | 176 |
typedef typename Digraph::NodeIt NodeIt; |
177 | 177 |
|
178 | 178 |
checkGraphNodeList(G, 2 * num); |
179 | 179 |
checkGraphArcList(G, 6 * num); |
180 | 180 |
|
181 | 181 |
for(NodeIt n(G);n!=INVALID;++n) { |
182 | 182 |
checkGraphInArcList(G, n, 3); |
183 | 183 |
checkGraphOutArcList(G, n, 3); |
184 | 184 |
} |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
// Structure returned by addUPetersen() |
188 | 188 |
template<class Graph> |
189 | 189 |
struct UPetStruct |
190 | 190 |
{ |
191 | 191 |
// Vector containing the outer nodes |
192 | 192 |
std::vector<typename Graph::Node> outer; |
193 | 193 |
// Vector containing the inner nodes |
194 | 194 |
std::vector<typename Graph::Node> inner; |
195 | 195 |
// Vector containing the edges of the inner circle |
196 | 196 |
std::vector<typename Graph::Edge> incir; |
197 | 197 |
// Vector containing the edges of the outer circle |
198 | 198 |
std::vector<typename Graph::Edge> outcir; |
199 | 199 |
// Vector containing the chord edges |
200 | 200 |
std::vector<typename Graph::Edge> chords; |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
// Adds a Petersen graph to \c G. |
204 | 204 |
// Returns the nodes and edges of the generated graph. |
205 | 205 |
template<typename Graph> |
206 | 206 |
UPetStruct<Graph> addUPetersen(Graph &G,int num=5) |
207 | 207 |
{ |
208 | 208 |
UPetStruct<Graph> n; |
209 | 209 |
|
210 | 210 |
for(int i=0;i<num;i++) { |
211 | 211 |
n.outer.push_back(G.addNode()); |
212 | 212 |
n.inner.push_back(G.addNode()); |
213 | 213 |
} |
214 | 214 |
|
215 | 215 |
for(int i=0;i<num;i++) { |
216 | 216 |
n.chords.push_back(G.addEdge(n.outer[i],n.inner[i])); |
217 | 217 |
n.outcir.push_back(G.addEdge(n.outer[i],n.outer[(i+1)%num])); |
218 | 218 |
n.incir.push_back(G.addEdge(n.inner[i],n.inner[(i+2)%num])); |
219 | 219 |
} |
220 | 220 |
|
221 | 221 |
return n; |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
// Checks the undirected Petersen graph |
225 | 225 |
template<class Graph> |
226 | 226 |
void checkUndirPetersen(const Graph &G, int num = 5) |
227 | 227 |
{ |
228 | 228 |
typedef typename Graph::NodeIt NodeIt; |
229 | 229 |
|
230 | 230 |
checkGraphNodeList(G, 2 * num); |
231 | 231 |
checkGraphEdgeList(G, 3 * num); |
232 | 232 |
checkGraphArcList(G, 6 * num); |
233 | 233 |
|
234 | 234 |
for(NodeIt n(G);n!=INVALID;++n) { |
235 | 235 |
checkGraphIncEdgeList(G, n, 3); |
236 | 236 |
} |
237 | 237 |
} |
238 | 238 |
|
239 | 239 |
template <class Digraph> |
240 | 240 |
void checkDigraph() { |
241 | 241 |
const int num = 5; |
242 | 242 |
Digraph G; |
243 | 243 |
checkGraphNodeList(G, 0); |
244 | 244 |
checkGraphArcList(G, 0); |
245 | 245 |
addPetersen(G, num); |
246 | 246 |
bidirDigraph(G); |
247 | 247 |
checkBidirPetersen(G, num); |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
template <class Graph> |
251 | 251 |
void checkGraph() { |
252 | 252 |
const int num = 5; |
253 | 253 |
Graph G; |
254 | 254 |
checkGraphNodeList(G, 0); |
255 | 255 |
checkGraphEdgeList(G, 0); |
256 | 256 |
addUPetersen(G, num); |
257 | 257 |
checkUndirPetersen(G, num); |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
} //namespace lemon |
261 | 261 |
|
262 | 262 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <cstdlib> |
20 | 20 |
#include <ctime> |
21 | 21 |
|
22 | 22 |
#include <lemon/random.h> |
23 |
#include <lemon/graph_utils.h> |
|
24 | 23 |
#include <lemon/list_graph.h> |
25 | 24 |
#include <lemon/smart_graph.h> |
25 |
#include <lemon/maps.h> |
|
26 | 26 |
|
27 | 27 |
#include "graph_test.h" |
28 | 28 |
#include "test_tools.h" |
29 | 29 |
|
30 | 30 |
using namespace lemon; |
31 | 31 |
|
32 | 32 |
template <typename Digraph> |
33 | 33 |
void checkFindArcs() { |
34 | 34 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
35 | 35 |
|
36 | 36 |
{ |
37 | 37 |
Digraph digraph; |
38 | 38 |
for (int i = 0; i < 10; ++i) { |
39 | 39 |
digraph.addNode(); |
40 | 40 |
} |
41 | 41 |
DescriptorMap<Digraph, Node> nodes(digraph); |
42 | 42 |
typename DescriptorMap<Digraph, Node>::InverseMap invNodes(nodes); |
43 | 43 |
for (int i = 0; i < 100; ++i) { |
44 | 44 |
int src = rnd[invNodes.size()]; |
45 | 45 |
int trg = rnd[invNodes.size()]; |
46 | 46 |
digraph.addArc(invNodes[src], invNodes[trg]); |
47 | 47 |
} |
48 | 48 |
typename Digraph::template ArcMap<bool> found(digraph, false); |
49 | 49 |
DescriptorMap<Digraph, Arc> arcs(digraph); |
50 | 50 |
for (NodeIt src(digraph); src != INVALID; ++src) { |
51 | 51 |
for (NodeIt trg(digraph); trg != INVALID; ++trg) { |
52 | 52 |
for (ConArcIt<Digraph> con(digraph, src, trg); con != INVALID; ++con) { |
53 | 53 |
check(digraph.source(con) == src, "Wrong source."); |
54 | 54 |
check(digraph.target(con) == trg, "Wrong target."); |
55 | 55 |
check(found[con] == false, "The arc found already."); |
56 | 56 |
found[con] = true; |
57 | 57 |
} |
58 | 58 |
} |
59 | 59 |
} |
60 | 60 |
for (ArcIt it(digraph); it != INVALID; ++it) { |
61 | 61 |
check(found[it] == true, "The arc is not found."); |
62 | 62 |
} |
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
{ |
66 | 66 |
int num = 5; |
67 | 67 |
Digraph fg; |
68 | 68 |
std::vector<Node> nodes; |
69 | 69 |
for (int i = 0; i < num; ++i) { |
70 | 70 |
nodes.push_back(fg.addNode()); |
71 | 71 |
} |
72 | 72 |
for (int i = 0; i < num * num; ++i) { |
73 | 73 |
fg.addArc(nodes[i / num], nodes[i % num]); |
74 | 74 |
} |
75 | 75 |
check(countNodes(fg) == num, "Wrong node number."); |
76 | 76 |
check(countArcs(fg) == num*num, "Wrong arc number."); |
77 | 77 |
for (NodeIt src(fg); src != INVALID; ++src) { |
78 | 78 |
for (NodeIt trg(fg); trg != INVALID; ++trg) { |
79 | 79 |
ConArcIt<Digraph> con(fg, src, trg); |
80 | 80 |
check(con != INVALID, "There is no connecting arc."); |
81 | 81 |
check(fg.source(con) == src, "Wrong source."); |
82 | 82 |
check(fg.target(con) == trg, "Wrong target."); |
83 | 83 |
check(++con == INVALID, "There is more connecting arc."); |
84 | 84 |
} |
85 | 85 |
} |
86 | 86 |
ArcLookUp<Digraph> al1(fg); |
87 | 87 |
DynArcLookUp<Digraph> al2(fg); |
88 | 88 |
AllArcLookUp<Digraph> al3(fg); |
89 | 89 |
for (NodeIt src(fg); src != INVALID; ++src) { |
90 | 90 |
for (NodeIt trg(fg); trg != INVALID; ++trg) { |
91 | 91 |
Arc con1 = al1(src, trg); |
92 | 92 |
Arc con2 = al2(src, trg); |
93 | 93 |
Arc con3 = al3(src, trg); |
94 | 94 |
Arc con4 = findArc(fg, src, trg); |
95 | 95 |
check(con1 == con2 && con2 == con3 && con3 == con4, |
96 | 96 |
"Different results.") |
97 | 97 |
check(con1 != INVALID, "There is no connecting arc."); |
98 | 98 |
check(fg.source(con1) == src, "Wrong source."); |
99 | 99 |
check(fg.target(con1) == trg, "Wrong target."); |
100 | 100 |
check(al3(src, trg, con3) == INVALID, |
101 | 101 |
"There is more connecting arc."); |
102 | 102 |
check(findArc(fg, src, trg, con4) == INVALID, |
103 | 103 |
"There is more connecting arc."); |
104 | 104 |
} |
105 | 105 |
} |
106 | 106 |
} |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
template <typename Graph> |
110 | 110 |
void checkFindEdges() { |
111 | 111 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
112 | 112 |
Graph graph; |
113 | 113 |
for (int i = 0; i < 10; ++i) { |
114 | 114 |
graph.addNode(); |
115 | 115 |
} |
116 | 116 |
DescriptorMap<Graph, Node> nodes(graph); |
117 | 117 |
typename DescriptorMap<Graph, Node>::InverseMap invNodes(nodes); |
118 | 118 |
for (int i = 0; i < 100; ++i) { |
119 | 119 |
int src = rnd[invNodes.size()]; |
120 | 120 |
int trg = rnd[invNodes.size()]; |
121 | 121 |
graph.addEdge(invNodes[src], invNodes[trg]); |
122 | 122 |
} |
123 | 123 |
typename Graph::template EdgeMap<int> found(graph, 0); |
124 | 124 |
DescriptorMap<Graph, Edge> edges(graph); |
125 | 125 |
for (NodeIt src(graph); src != INVALID; ++src) { |
126 | 126 |
for (NodeIt trg(graph); trg != INVALID; ++trg) { |
127 | 127 |
for (ConEdgeIt<Graph> con(graph, src, trg); con != INVALID; ++con) { |
128 | 128 |
check( (graph.u(con) == src && graph.v(con) == trg) || |
129 | 129 |
(graph.v(con) == src && graph.u(con) == trg), |
130 | 130 |
"Wrong end nodes."); |
131 | 131 |
++found[con]; |
132 | 132 |
check(found[con] <= 2, "The edge found more than twice."); |
133 | 133 |
} |
134 | 134 |
} |
135 | 135 |
} |
136 | 136 |
for (EdgeIt it(graph); it != INVALID; ++it) { |
137 | 137 |
check( (graph.u(it) != graph.v(it) && found[it] == 2) || |
138 | 138 |
(graph.u(it) == graph.v(it) && found[it] == 1), |
139 | 139 |
"The edge is not found correctly."); |
140 | 140 |
} |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
template <class Digraph> |
144 | 144 |
void checkDeg() |
145 | 145 |
{ |
146 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
147 | 147 |
|
148 | 148 |
const int nodeNum = 10; |
149 | 149 |
const int arcNum = 100; |
150 | 150 |
Digraph digraph; |
151 | 151 |
InDegMap<Digraph> inDeg(digraph); |
152 | 152 |
OutDegMap<Digraph> outDeg(digraph); |
153 | 153 |
std::vector<Node> nodes(nodeNum); |
154 | 154 |
for (int i = 0; i < nodeNum; ++i) { |
155 | 155 |
nodes[i] = digraph.addNode(); |
156 | 156 |
} |
157 | 157 |
std::vector<Arc> arcs(arcNum); |
158 | 158 |
for (int i = 0; i < arcNum; ++i) { |
159 | 159 |
arcs[i] = digraph.addArc(nodes[rnd[nodeNum]], nodes[rnd[nodeNum]]); |
160 | 160 |
} |
161 | 161 |
for (int i = 0; i < nodeNum; ++i) { |
162 | 162 |
check(inDeg[nodes[i]] == countInArcs(digraph, nodes[i]), |
163 | 163 |
"Wrong in degree map"); |
164 | 164 |
} |
165 | 165 |
for (int i = 0; i < nodeNum; ++i) { |
166 | 166 |
check(outDeg[nodes[i]] == countOutArcs(digraph, nodes[i]), |
167 | 167 |
"Wrong out degree map"); |
168 | 168 |
} |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
template <class Digraph> |
172 | 172 |
void checkSnapDeg() |
173 | 173 |
{ |
174 | 174 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
175 | 175 |
|
176 | 176 |
Digraph g; |
177 | 177 |
Node n1=g.addNode(); |
178 | 178 |
Node n2=g.addNode(); |
179 | 179 |
|
180 | 180 |
InDegMap<Digraph> ind(g); |
181 | 181 |
|
182 | 182 |
g.addArc(n1,n2); |
183 | 183 |
|
184 | 184 |
typename Digraph::Snapshot snap(g); |
185 | 185 |
|
186 | 186 |
OutDegMap<Digraph> outd(g); |
187 | 187 |
|
188 | 188 |
check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value."); |
189 | 189 |
check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value."); |
190 | 190 |
|
191 | 191 |
g.addArc(n1,n2); |
192 | 192 |
g.addArc(n2,n1); |
193 | 193 |
|
194 | 194 |
check(ind[n1]==1 && ind[n2]==2, "Wrong InDegMap value."); |
195 | 195 |
check(outd[n1]==2 && outd[n2]==1, "Wrong OutDegMap value."); |
196 | 196 |
|
197 | 197 |
snap.restore(); |
198 | 198 |
|
199 | 199 |
check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value."); |
200 | 200 |
check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value."); |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
int main() { |
204 | 204 |
// Checking ConArcIt, ConEdgeIt, ArcLookUp, AllArcLookUp, and DynArcLookUp |
205 | 205 |
checkFindArcs<ListDigraph>(); |
206 | 206 |
checkFindArcs<SmartDigraph>(); |
207 | 207 |
checkFindEdges<ListGraph>(); |
208 | 208 |
checkFindEdges<SmartGraph>(); |
209 | 209 |
|
210 | 210 |
// Checking In/OutDegMap (and Snapshot feature) |
211 | 211 |
checkDeg<ListDigraph>(); |
212 | 212 |
checkDeg<SmartDigraph>(); |
213 | 213 |
checkSnapDeg<ListDigraph>(); |
214 | 214 |
checkSnapDeg<SmartDigraph>(); |
215 | 215 |
|
216 | 216 |
return 0; |
217 | 217 |
} |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BITS_INVALID_H |
|
20 |
#define LEMON_BITS_INVALID_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\brief Definition of INVALID. |
|
24 |
|
|
25 |
namespace lemon { |
|
26 |
|
|
27 |
/// \brief Dummy type to make it easier to create invalid iterators. |
|
28 |
/// |
|
29 |
/// Dummy type to make it easier to create invalid iterators. |
|
30 |
/// See \ref INVALID for the usage. |
|
31 |
struct Invalid { |
|
32 |
public: |
|
33 |
bool operator==(Invalid) { return true; } |
|
34 |
bool operator!=(Invalid) { return false; } |
|
35 |
bool operator< (Invalid) { return false; } |
|
36 |
}; |
|
37 |
|
|
38 |
/// \brief Invalid iterators. |
|
39 |
/// |
|
40 |
/// \ref Invalid is a global type that converts to each iterator |
|
41 |
/// in such a way that the value of the target iterator will be invalid. |
|
42 |
|
|
43 |
//Some people didn't like this: |
|
44 |
//const Invalid &INVALID = *(Invalid *)0; |
|
45 |
|
|
46 |
#ifdef LEMON_ONLY_TEMPLATES |
|
47 |
const Invalid INVALID = Invalid(); |
|
48 |
#else |
|
49 |
extern const Invalid INVALID; |
|
50 |
#endif |
|
51 |
|
|
52 |
} //namespace lemon |
|
53 |
|
|
54 |
#endif |
|
55 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
// This file contains a modified version of the enable_if library from BOOST. |
|
20 |
// See the appropriate copyright notice below. |
|
21 |
|
|
22 |
// Boost enable_if library |
|
23 |
|
|
24 |
// Copyright 2003 (c) The Trustees of Indiana University. |
|
25 |
|
|
26 |
// Use, modification, and distribution is subject to the Boost Software |
|
27 |
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
|
28 |
// http://www.boost.org/LICENSE_1_0.txt) |
|
29 |
|
|
30 |
// Authors: Jaakko Jarvi (jajarvi at osl.iu.edu) |
|
31 |
// Jeremiah Willcock (jewillco at osl.iu.edu) |
|
32 |
// Andrew Lumsdaine (lums at osl.iu.edu) |
|
33 |
|
|
34 |
|
|
35 |
#ifndef LEMON_BITS_UTILITY_H |
|
36 |
#define LEMON_BITS_UTILITY_H |
|
37 |
|
|
38 |
///\file |
|
39 |
///\brief Miscellaneous basic utilities |
|
40 |
/// |
|
41 |
///\todo Please rethink the organisation of the basic files like this. |
|
42 |
///E.g. this file might be merged with invalid.h. |
|
43 |
|
|
44 |
|
|
45 |
namespace lemon |
|
46 |
{ |
|
47 |
|
|
48 |
/// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
49 |
|
|
50 |
/// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
51 |
/// |
|
52 |
///\sa False |
|
53 |
/// |
|
54 |
/// \todo This should go to a separate "basic_types.h" (or something) |
|
55 |
/// file. |
|
56 |
struct True { |
|
57 |
///\e |
|
58 |
static const bool value = true; |
|
59 |
}; |
|
60 |
|
|
61 |
/// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
62 |
|
|
63 |
/// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
64 |
/// |
|
65 |
///\sa True |
|
66 |
struct False { |
|
67 |
///\e |
|
68 |
static const bool value = false; |
|
69 |
}; |
|
70 |
|
|
71 |
|
|
72 |
struct InvalidType { |
|
73 |
}; |
|
74 |
|
|
75 |
template <typename T> |
|
76 |
struct Wrap { |
|
77 |
const T &value; |
|
78 |
Wrap(const T &t) : value(t) {} |
|
79 |
}; |
|
80 |
|
|
81 |
/**************** dummy class to avoid ambiguity ****************/ |
|
82 |
|
|
83 |
template<int T> struct dummy { dummy(int) {} }; |
|
84 |
|
|
85 |
/**************** enable_if from BOOST ****************/ |
|
86 |
|
|
87 |
template <typename Type, typename T = void> |
|
88 |
struct exists { |
|
89 |
typedef T type; |
|
90 |
}; |
|
91 |
|
|
92 |
|
|
93 |
template <bool B, class T = void> |
|
94 |
struct enable_if_c { |
|
95 |
typedef T type; |
|
96 |
}; |
|
97 |
|
|
98 |
template <class T> |
|
99 |
struct enable_if_c<false, T> {}; |
|
100 |
|
|
101 |
template <class Cond, class T = void> |
|
102 |
struct enable_if : public enable_if_c<Cond::value, T> {}; |
|
103 |
|
|
104 |
template <bool B, class T> |
|
105 |
struct lazy_enable_if_c { |
|
106 |
typedef typename T::type type; |
|
107 |
}; |
|
108 |
|
|
109 |
template <class T> |
|
110 |
struct lazy_enable_if_c<false, T> {}; |
|
111 |
|
|
112 |
template <class Cond, class T> |
|
113 |
struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {}; |
|
114 |
|
|
115 |
|
|
116 |
template <bool B, class T = void> |
|
117 |
struct disable_if_c { |
|
118 |
typedef T type; |
|
119 |
}; |
|
120 |
|
|
121 |
template <class T> |
|
122 |
struct disable_if_c<true, T> {}; |
|
123 |
|
|
124 |
template <class Cond, class T = void> |
|
125 |
struct disable_if : public disable_if_c<Cond::value, T> {}; |
|
126 |
|
|
127 |
template <bool B, class T> |
|
128 |
struct lazy_disable_if_c { |
|
129 |
typedef typename T::type type; |
|
130 |
}; |
|
131 |
|
|
132 |
template <class T> |
|
133 |
struct lazy_disable_if_c<true, T> {}; |
|
134 |
|
|
135 |
template <class Cond, class T> |
|
136 |
struct lazy_disable_if : public lazy_disable_if_c<Cond::value, T> {}; |
|
137 |
|
|
138 |
} // namespace lemon |
|
139 |
|
|
140 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_GRAPH_UTILS_H |
|
20 |
#define LEMON_GRAPH_UTILS_H |
|
21 |
|
|
22 |
#include <iterator> |
|
23 |
#include <vector> |
|
24 |
#include <map> |
|
25 |
#include <cmath> |
|
26 |
#include <algorithm> |
|
27 |
|
|
28 |
#include <lemon/bits/invalid.h> |
|
29 |
#include <lemon/bits/utility.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
#include <lemon/bits/traits.h> |
|
32 |
|
|
33 |
#include <lemon/bits/alteration_notifier.h> |
|
34 |
#include <lemon/bits/default_map.h> |
|
35 |
|
|
36 |
///\ingroup gutils |
|
37 |
///\file |
|
38 |
///\brief Graph utilities. |
|
39 |
|
|
40 |
namespace lemon { |
|
41 |
|
|
42 |
/// \addtogroup gutils |
|
43 |
/// @{ |
|
44 |
|
|
45 |
///Creates convenience typedefs for the digraph types and iterators |
|
46 |
|
|
47 |
///This \c \#define creates convenience typedefs for the following types |
|
48 |
///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
|
49 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
|
50 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
|
51 |
/// |
|
52 |
///\note If the graph type is a dependent type, ie. the graph type depend |
|
53 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
|
54 |
///macro. |
|
55 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
|
56 |
typedef Digraph::Node Node; \ |
|
57 |
typedef Digraph::NodeIt NodeIt; \ |
|
58 |
typedef Digraph::Arc Arc; \ |
|
59 |
typedef Digraph::ArcIt ArcIt; \ |
|
60 |
typedef Digraph::InArcIt InArcIt; \ |
|
61 |
typedef Digraph::OutArcIt OutArcIt; \ |
|
62 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
|
63 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
|
64 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
|
65 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
|
66 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
|
67 |
typedef Digraph::ArcMap<double> DoubleArcMap |
|
68 |
|
|
69 |
///Creates convenience typedefs for the digraph types and iterators |
|
70 |
|
|
71 |
///\see DIGRAPH_TYPEDEFS |
|
72 |
/// |
|
73 |
///\note Use this macro, if the graph type is a dependent type, |
|
74 |
///ie. the graph type depend on a template parameter. |
|
75 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
|
76 |
typedef typename Digraph::Node Node; \ |
|
77 |
typedef typename Digraph::NodeIt NodeIt; \ |
|
78 |
typedef typename Digraph::Arc Arc; \ |
|
79 |
typedef typename Digraph::ArcIt ArcIt; \ |
|
80 |
typedef typename Digraph::InArcIt InArcIt; \ |
|
81 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
|
82 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
|
83 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
|
84 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
|
85 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
|
86 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
|
87 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
|
88 |
|
|
89 |
///Creates convenience typedefs for the graph types and iterators |
|
90 |
|
|
91 |
///This \c \#define creates the same convenience typedefs as defined |
|
92 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
|
93 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
|
94 |
///\c DoubleEdgeMap. |
|
95 |
/// |
|
96 |
///\note If the graph type is a dependent type, ie. the graph type depend |
|
97 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
|
98 |
///macro. |
|
99 |
#define GRAPH_TYPEDEFS(Graph) \ |
|
100 |
DIGRAPH_TYPEDEFS(Graph); \ |
|
101 |
typedef Graph::Edge Edge; \ |
|
102 |
typedef Graph::EdgeIt EdgeIt; \ |
|
103 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
|
104 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
|
105 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
|
106 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
|
107 |
|
|
108 |
///Creates convenience typedefs for the graph types and iterators |
|
109 |
|
|
110 |
///\see GRAPH_TYPEDEFS |
|
111 |
/// |
|
112 |
///\note Use this macro, if the graph type is a dependent type, |
|
113 |
///ie. the graph type depend on a template parameter. |
|
114 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
|
115 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
|
116 |
typedef typename Graph::Edge Edge; \ |
|
117 |
typedef typename Graph::EdgeIt EdgeIt; \ |
|
118 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
|
119 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
|
120 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
|
121 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
|
122 |
|
|
123 |
/// \brief Function to count the items in the graph. |
|
124 |
/// |
|
125 |
/// This function counts the items (nodes, arcs etc) in the graph. |
|
126 |
/// The complexity of the function is O(n) because |
|
127 |
/// it iterates on all of the items. |
|
128 |
template <typename Graph, typename Item> |
|
129 |
inline int countItems(const Graph& g) { |
|
130 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
|
131 |
int num = 0; |
|
132 |
for (ItemIt it(g); it != INVALID; ++it) { |
|
133 |
++num; |
|
134 |
} |
|
135 |
return num; |
|
136 |
} |
|
137 |
|
|
138 |
// Node counting: |
|
139 |
|
|
140 |
namespace _graph_utils_bits { |
|
141 |
|
|
142 |
template <typename Graph, typename Enable = void> |
|
143 |
struct CountNodesSelector { |
|
144 |
static int count(const Graph &g) { |
|
145 |
return countItems<Graph, typename Graph::Node>(g); |
|
146 |
} |
|
147 |
}; |
|
148 |
|
|
149 |
template <typename Graph> |
|
150 |
struct CountNodesSelector< |
|
151 |
Graph, typename |
|
152 |
enable_if<typename Graph::NodeNumTag, void>::type> |
|
153 |
{ |
|
154 |
static int count(const Graph &g) { |
|
155 |
return g.nodeNum(); |
|
156 |
} |
|
157 |
}; |
|
158 |
} |
|
159 |
|
|
160 |
/// \brief Function to count the nodes in the graph. |
|
161 |
/// |
|
162 |
/// This function counts the nodes in the graph. |
|
163 |
/// The complexity of the function is O(n) but for some |
|
164 |
/// graph structures it is specialized to run in O(1). |
|
165 |
/// |
|
166 |
/// If the graph contains a \e nodeNum() member function and a |
|
167 |
/// \e NodeNumTag tag then this function calls directly the member |
|
168 |
/// function to query the cardinality of the node set. |
|
169 |
template <typename Graph> |
|
170 |
inline int countNodes(const Graph& g) { |
|
171 |
return _graph_utils_bits::CountNodesSelector<Graph>::count(g); |
|
172 |
} |
|
173 |
|
|
174 |
// Arc counting: |
|
175 |
|
|
176 |
namespace _graph_utils_bits { |
|
177 |
|
|
178 |
template <typename Graph, typename Enable = void> |
|
179 |
struct CountArcsSelector { |
|
180 |
static int count(const Graph &g) { |
|
181 |
return countItems<Graph, typename Graph::Arc>(g); |
|
182 |
} |
|
183 |
}; |
|
184 |
|
|
185 |
template <typename Graph> |
|
186 |
struct CountArcsSelector< |
|
187 |
Graph, |
|
188 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
|
189 |
{ |
|
190 |
static int count(const Graph &g) { |
|
191 |
return g.arcNum(); |
|
192 |
} |
|
193 |
}; |
|
194 |
} |
|
195 |
|
|
196 |
/// \brief Function to count the arcs in the graph. |
|
197 |
/// |
|
198 |
/// This function counts the arcs in the graph. |
|
199 |
/// The complexity of the function is O(e) but for some |
|
200 |
/// graph structures it is specialized to run in O(1). |
|
201 |
/// |
|
202 |
/// If the graph contains a \e arcNum() member function and a |
|
203 |
/// \e EdgeNumTag tag then this function calls directly the member |
|
204 |
/// function to query the cardinality of the arc set. |
|
205 |
template <typename Graph> |
|
206 |
inline int countArcs(const Graph& g) { |
|
207 |
return _graph_utils_bits::CountArcsSelector<Graph>::count(g); |
|
208 |
} |
|
209 |
|
|
210 |
// Edge counting: |
|
211 |
namespace _graph_utils_bits { |
|
212 |
|
|
213 |
template <typename Graph, typename Enable = void> |
|
214 |
struct CountEdgesSelector { |
|
215 |
static int count(const Graph &g) { |
|
216 |
return countItems<Graph, typename Graph::Edge>(g); |
|
217 |
} |
|
218 |
}; |
|
219 |
|
|
220 |
template <typename Graph> |
|
221 |
struct CountEdgesSelector< |
|
222 |
Graph, |
|
223 |
typename enable_if<typename Graph::EdgeNumTag, void>::type> |
|
224 |
{ |
|
225 |
static int count(const Graph &g) { |
|
226 |
return g.edgeNum(); |
|
227 |
} |
|
228 |
}; |
|
229 |
} |
|
230 |
|
|
231 |
/// \brief Function to count the edges in the graph. |
|
232 |
/// |
|
233 |
/// This function counts the edges in the graph. |
|
234 |
/// The complexity of the function is O(m) but for some |
|
235 |
/// graph structures it is specialized to run in O(1). |
|
236 |
/// |
|
237 |
/// If the graph contains a \e edgeNum() member function and a |
|
238 |
/// \e EdgeNumTag tag then this function calls directly the member |
|
239 |
/// function to query the cardinality of the edge set. |
|
240 |
template <typename Graph> |
|
241 |
inline int countEdges(const Graph& g) { |
|
242 |
return _graph_utils_bits::CountEdgesSelector<Graph>::count(g); |
|
243 |
|
|
244 |
} |
|
245 |
|
|
246 |
|
|
247 |
template <typename Graph, typename DegIt> |
|
248 |
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
|
249 |
int num = 0; |
|
250 |
for (DegIt it(_g, _n); it != INVALID; ++it) { |
|
251 |
++num; |
|
252 |
} |
|
253 |
return num; |
|
254 |
} |
|
255 |
|
|
256 |
/// \brief Function to count the number of the out-arcs from node \c n. |
|
257 |
/// |
|
258 |
/// This function counts the number of the out-arcs from node \c n |
|
259 |
/// in the graph. |
|
260 |
template <typename Graph> |
|
261 |
inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) { |
|
262 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n); |
|
263 |
} |
|
264 |
|
|
265 |
/// \brief Function to count the number of the in-arcs to node \c n. |
|
266 |
/// |
|
267 |
/// This function counts the number of the in-arcs to node \c n |
|
268 |
/// in the graph. |
|
269 |
template <typename Graph> |
|
270 |
inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) { |
|
271 |
return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n); |
|
272 |
} |
|
273 |
|
|
274 |
/// \brief Function to count the number of the inc-edges to node \c n. |
|
275 |
/// |
|
276 |
/// This function counts the number of the inc-edges to node \c n |
|
277 |
/// in the graph. |
|
278 |
template <typename Graph> |
|
279 |
inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) { |
|
280 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n); |
|
281 |
} |
|
282 |
|
|
283 |
namespace _graph_utils_bits { |
|
284 |
|
|
285 |
template <typename Graph, typename Enable = void> |
|
286 |
struct FindArcSelector { |
|
287 |
typedef typename Graph::Node Node; |
|
288 |
typedef typename Graph::Arc Arc; |
|
289 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
|
290 |
if (e == INVALID) { |
|
291 |
g.firstOut(e, u); |
|
292 |
} else { |
|
293 |
g.nextOut(e); |
|
294 |
} |
|
295 |
while (e != INVALID && g.target(e) != v) { |
|
296 |
g.nextOut(e); |
|
297 |
} |
|
298 |
return e; |
|
299 |
} |
|
300 |
}; |
|
301 |
|
|
302 |
template <typename Graph> |
|
303 |
struct FindArcSelector< |
|
304 |
Graph, |
|
305 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
|
306 |
{ |
|
307 |
typedef typename Graph::Node Node; |
|
308 |
typedef typename Graph::Arc Arc; |
|
309 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
|
310 |
return g.findArc(u, v, prev); |
|
311 |
} |
|
312 |
}; |
|
313 |
} |
|
314 |
|
|
315 |
/// \brief Finds an arc between two nodes of a graph. |
|
316 |
/// |
|
317 |
/// Finds an arc from node \c u to node \c v in graph \c g. |
|
318 |
/// |
|
319 |
/// If \c prev is \ref INVALID (this is the default value), then |
|
320 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
|
321 |
/// the next arc from \c u to \c v after \c prev. |
|
322 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
|
323 |
/// |
|
324 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
|
325 |
///\code |
|
326 |
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) { |
|
327 |
/// ... |
|
328 |
/// } |
|
329 |
///\endcode |
|
330 |
/// |
|
331 |
///\sa ArcLookUp |
|
332 |
///\sa AllArcLookUp |
|
333 |
///\sa DynArcLookUp |
|
334 |
///\sa ConArcIt |
|
335 |
template <typename Graph> |
|
336 |
inline typename Graph::Arc |
|
337 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
|
338 |
typename Graph::Arc prev = INVALID) { |
|
339 |
return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
|
340 |
} |
|
341 |
|
|
342 |
/// \brief Iterator for iterating on arcs connected the same nodes. |
|
343 |
/// |
|
344 |
/// Iterator for iterating on arcs connected the same nodes. It is |
|
345 |
/// higher level interface for the findArc() function. You can |
|
346 |
/// use it the following way: |
|
347 |
///\code |
|
348 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
|
349 |
/// ... |
|
350 |
/// } |
|
351 |
///\endcode |
|
352 |
/// |
|
353 |
///\sa findArc() |
|
354 |
///\sa ArcLookUp |
|
355 |
///\sa AllArcLookUp |
|
356 |
///\sa DynArcLookUp |
|
357 |
template <typename _Graph> |
|
358 |
class ConArcIt : public _Graph::Arc { |
|
359 |
public: |
|
360 |
|
|
361 |
typedef _Graph Graph; |
|
362 |
typedef typename Graph::Arc Parent; |
|
363 |
|
|
364 |
typedef typename Graph::Arc Arc; |
|
365 |
typedef typename Graph::Node Node; |
|
366 |
|
|
367 |
/// \brief Constructor. |
|
368 |
/// |
|
369 |
/// Construct a new ConArcIt iterating on the arcs which |
|
370 |
/// connects the \c u and \c v node. |
|
371 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
|
372 |
Parent::operator=(findArc(_graph, u, v)); |
|
373 |
} |
|
374 |
|
|
375 |
/// \brief Constructor. |
|
376 |
/// |
|
377 |
/// Construct a new ConArcIt which continues the iterating from |
|
378 |
/// the \c e arc. |
|
379 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
|
380 |
|
|
381 |
/// \brief Increment operator. |
|
382 |
/// |
|
383 |
/// It increments the iterator and gives back the next arc. |
|
384 |
ConArcIt& operator++() { |
|
385 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
|
386 |
_graph.target(*this), *this)); |
|
387 |
return *this; |
|
388 |
} |
|
389 |
private: |
|
390 |
const Graph& _graph; |
|
391 |
}; |
|
392 |
|
|
393 |
namespace _graph_utils_bits { |
|
394 |
|
|
395 |
template <typename Graph, typename Enable = void> |
|
396 |
struct FindEdgeSelector { |
|
397 |
typedef typename Graph::Node Node; |
|
398 |
typedef typename Graph::Edge Edge; |
|
399 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
|
400 |
bool b; |
|
401 |
if (u != v) { |
|
402 |
if (e == INVALID) { |
|
403 |
g.firstInc(e, b, u); |
|
404 |
} else { |
|
405 |
b = g.u(e) == u; |
|
406 |
g.nextInc(e, b); |
|
407 |
} |
|
408 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
|
409 |
g.nextInc(e, b); |
|
410 |
} |
|
411 |
} else { |
|
412 |
if (e == INVALID) { |
|
413 |
g.firstInc(e, b, u); |
|
414 |
} else { |
|
415 |
b = true; |
|
416 |
g.nextInc(e, b); |
|
417 |
} |
|
418 |
while (e != INVALID && (!b || g.v(e) != v)) { |
|
419 |
g.nextInc(e, b); |
|
420 |
} |
|
421 |
} |
|
422 |
return e; |
|
423 |
} |
|
424 |
}; |
|
425 |
|
|
426 |
template <typename Graph> |
|
427 |
struct FindEdgeSelector< |
|
428 |
Graph, |
|
429 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
|
430 |
{ |
|
431 |
typedef typename Graph::Node Node; |
|
432 |
typedef typename Graph::Edge Edge; |
|
433 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
|
434 |
return g.findEdge(u, v, prev); |
|
435 |
} |
|
436 |
}; |
|
437 |
} |
|
438 |
|
|
439 |
/// \brief Finds an edge between two nodes of a graph. |
|
440 |
/// |
|
441 |
/// Finds an edge from node \c u to node \c v in graph \c g. |
|
442 |
/// If the node \c u and node \c v is equal then each loop edge |
|
443 |
/// will be enumerated once. |
|
444 |
/// |
|
445 |
/// If \c prev is \ref INVALID (this is the default value), then |
|
446 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
|
447 |
/// the next arc from \c u to \c v after \c prev. |
|
448 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
|
449 |
/// |
|
450 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
|
451 |
///\code |
|
452 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; |
|
453 |
/// e = findEdge(g,u,v,e)) { |
|
454 |
/// ... |
|
455 |
/// } |
|
456 |
///\endcode |
|
457 |
/// |
|
458 |
///\sa ConEdgeIt |
|
459 |
|
|
460 |
template <typename Graph> |
|
461 |
inline typename Graph::Edge |
|
462 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
|
463 |
typename Graph::Edge p = INVALID) { |
|
464 |
return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Iterator for iterating on edges connected the same nodes. |
|
468 |
/// |
|
469 |
/// Iterator for iterating on edges connected the same nodes. It is |
|
470 |
/// higher level interface for the findEdge() function. You can |
|
471 |
/// use it the following way: |
|
472 |
///\code |
|
473 |
/// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
|
474 |
/// ... |
|
475 |
/// } |
|
476 |
///\endcode |
|
477 |
/// |
|
478 |
///\sa findEdge() |
|
479 |
template <typename _Graph> |
|
480 |
class ConEdgeIt : public _Graph::Edge { |
|
481 |
public: |
|
482 |
|
|
483 |
typedef _Graph Graph; |
|
484 |
typedef typename Graph::Edge Parent; |
|
485 |
|
|
486 |
typedef typename Graph::Edge Edge; |
|
487 |
typedef typename Graph::Node Node; |
|
488 |
|
|
489 |
/// \brief Constructor. |
|
490 |
/// |
|
491 |
/// Construct a new ConEdgeIt iterating on the edges which |
|
492 |
/// connects the \c u and \c v node. |
|
493 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { |
|
494 |
Parent::operator=(findEdge(_graph, u, v)); |
|
495 |
} |
|
496 |
|
|
497 |
/// \brief Constructor. |
|
498 |
/// |
|
499 |
/// Construct a new ConEdgeIt which continues the iterating from |
|
500 |
/// the \c e edge. |
|
501 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
|
502 |
|
|
503 |
/// \brief Increment operator. |
|
504 |
/// |
|
505 |
/// It increments the iterator and gives back the next edge. |
|
506 |
ConEdgeIt& operator++() { |
|
507 |
Parent::operator=(findEdge(_graph, _graph.u(*this), |
|
508 |
_graph.v(*this), *this)); |
|
509 |
return *this; |
|
510 |
} |
|
511 |
private: |
|
512 |
const Graph& _graph; |
|
513 |
}; |
|
514 |
|
|
515 |
namespace _graph_utils_bits { |
|
516 |
|
|
517 |
template <typename Digraph, typename Item, typename RefMap> |
|
518 |
class MapCopyBase { |
|
519 |
public: |
|
520 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
|
521 |
|
|
522 |
virtual ~MapCopyBase() {} |
|
523 |
}; |
|
524 |
|
|
525 |
template <typename Digraph, typename Item, typename RefMap, |
|
526 |
typename ToMap, typename FromMap> |
|
527 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
528 |
public: |
|
529 |
|
|
530 |
MapCopy(ToMap& tmap, const FromMap& map) |
|
531 |
: _tmap(tmap), _map(map) {} |
|
532 |
|
|
533 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
|
534 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
|
535 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
|
536 |
_tmap.set(refMap[it], _map[it]); |
|
537 |
} |
|
538 |
} |
|
539 |
|
|
540 |
private: |
|
541 |
ToMap& _tmap; |
|
542 |
const FromMap& _map; |
|
543 |
}; |
|
544 |
|
|
545 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
|
546 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
547 |
public: |
|
548 |
|
|
549 |
ItemCopy(It& it, const Item& item) : _it(it), _item(item) {} |
|
550 |
|
|
551 |
virtual void copy(const Digraph&, const RefMap& refMap) { |
|
552 |
_it = refMap[_item]; |
|
553 |
} |
|
554 |
|
|
555 |
private: |
|
556 |
It& _it; |
|
557 |
Item _item; |
|
558 |
}; |
|
559 |
|
|
560 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
|
561 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
562 |
public: |
|
563 |
|
|
564 |
RefCopy(Ref& map) : _map(map) {} |
|
565 |
|
|
566 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
|
567 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
|
568 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
|
569 |
_map.set(it, refMap[it]); |
|
570 |
} |
|
571 |
} |
|
572 |
|
|
573 |
private: |
|
574 |
Ref& _map; |
|
575 |
}; |
|
576 |
|
|
577 |
template <typename Digraph, typename Item, typename RefMap, |
|
578 |
typename CrossRef> |
|
579 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
|
580 |
public: |
|
581 |
|
|
582 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
|
583 |
|
|
584 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
|
585 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
|
586 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
|
587 |
_cmap.set(refMap[it], it); |
|
588 |
} |
|
589 |
} |
|
590 |
|
|
591 |
private: |
|
592 |
CrossRef& _cmap; |
|
593 |
}; |
|
594 |
|
|
595 |
template <typename Digraph, typename Enable = void> |
|
596 |
struct DigraphCopySelector { |
|
597 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
|
598 |
static void copy(Digraph &to, const From& from, |
|
599 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
|
600 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
|
601 |
nodeRefMap[it] = to.addNode(); |
|
602 |
} |
|
603 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
|
604 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
|
605 |
nodeRefMap[from.target(it)]); |
|
606 |
} |
|
607 |
} |
|
608 |
}; |
|
609 |
|
|
610 |
template <typename Digraph> |
|
611 |
struct DigraphCopySelector< |
|
612 |
Digraph, |
|
613 |
typename enable_if<typename Digraph::BuildTag, void>::type> |
|
614 |
{ |
|
615 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
|
616 |
static void copy(Digraph &to, const From& from, |
|
617 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
|
618 |
to.build(from, nodeRefMap, arcRefMap); |
|
619 |
} |
|
620 |
}; |
|
621 |
|
|
622 |
template <typename Graph, typename Enable = void> |
|
623 |
struct GraphCopySelector { |
|
624 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
|
625 |
static void copy(Graph &to, const From& from, |
|
626 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
|
627 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
|
628 |
nodeRefMap[it] = to.addNode(); |
|
629 |
} |
|
630 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
|
631 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
|
632 |
nodeRefMap[from.v(it)]); |
|
633 |
} |
|
634 |
} |
|
635 |
}; |
|
636 |
|
|
637 |
template <typename Graph> |
|
638 |
struct GraphCopySelector< |
|
639 |
Graph, |
|
640 |
typename enable_if<typename Graph::BuildTag, void>::type> |
|
641 |
{ |
|
642 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
|
643 |
static void copy(Graph &to, const From& from, |
|
644 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
|
645 |
to.build(from, nodeRefMap, edgeRefMap); |
|
646 |
} |
|
647 |
}; |
|
648 |
|
|
649 |
} |
|
650 |
|
|
651 |
/// \brief Class to copy a digraph. |
|
652 |
/// |
|
653 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
|
654 |
/// simplest way of using it is through the \c copyDigraph() function. |
|
655 |
/// |
|
656 |
/// This class not just make a copy of a graph, but it can create |
|
657 |
/// references and cross references between the nodes and arcs of |
|
658 |
/// the two graphs, it can copy maps for use with the newly created |
|
659 |
/// graph and copy nodes and arcs. |
|
660 |
/// |
|
661 |
/// To make a copy from a graph, first an instance of DigraphCopy |
|
662 |
/// should be created, then the data belongs to the graph should |
|
663 |
/// assigned to copy. In the end, the \c run() member should be |
|
664 |
/// called. |
|
665 |
/// |
|
666 |
/// The next code copies a graph with several data: |
|
667 |
///\code |
|
668 |
/// DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph); |
|
669 |
/// // create a reference for the nodes |
|
670 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
|
671 |
/// dc.nodeRef(nr); |
|
672 |
/// // create a cross reference (inverse) for the arcs |
|
673 |
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
|
674 |
/// dc.arcCrossRef(acr); |
|
675 |
/// // copy an arc map |
|
676 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
|
677 |
/// NewGraph::ArcMap<double> namap(new_graph); |
|
678 |
/// dc.arcMap(namap, oamap); |
|
679 |
/// // copy a node |
|
680 |
/// OrigGraph::Node on; |
|
681 |
/// NewGraph::Node nn; |
|
682 |
/// dc.node(nn, on); |
|
683 |
/// // Executions of copy |
|
684 |
/// dc.run(); |
|
685 |
///\endcode |
|
686 |
template <typename To, typename From> |
|
687 |
class DigraphCopy { |
|
688 |
private: |
|
689 |
|
|
690 |
typedef typename From::Node Node; |
|
691 |
typedef typename From::NodeIt NodeIt; |
|
692 |
typedef typename From::Arc Arc; |
|
693 |
typedef typename From::ArcIt ArcIt; |
|
694 |
|
|
695 |
typedef typename To::Node TNode; |
|
696 |
typedef typename To::Arc TArc; |
|
697 |
|
|
698 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
|
699 |
typedef typename From::template ArcMap<TArc> ArcRefMap; |
|
700 |
|
|
701 |
|
|
702 |
public: |
|
703 |
|
|
704 |
|
|
705 |
/// \brief Constructor for the DigraphCopy. |
|
706 |
/// |
|
707 |
/// It copies the content of the \c _from digraph into the |
|
708 |
/// \c _to digraph. |
|
709 |
DigraphCopy(To& to, const From& from) |
|
710 |
: _from(from), _to(to) {} |
|
711 |
|
|
712 |
/// \brief Destructor of the DigraphCopy |
|
713 |
/// |
|
714 |
/// Destructor of the DigraphCopy |
|
715 |
~DigraphCopy() { |
|
716 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
717 |
delete _node_maps[i]; |
|
718 |
} |
|
719 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
720 |
delete _arc_maps[i]; |
|
721 |
} |
|
722 |
|
|
723 |
} |
|
724 |
|
|
725 |
/// \brief Copies the node references into the given map. |
|
726 |
/// |
|
727 |
/// Copies the node references into the given map. The parameter |
|
728 |
/// should be a map, which key type is the Node type of the source |
|
729 |
/// graph, while the value type is the Node type of the |
|
730 |
/// destination graph. |
|
731 |
template <typename NodeRef> |
|
732 |
DigraphCopy& nodeRef(NodeRef& map) { |
|
733 |
_node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, |
|
734 |
NodeRefMap, NodeRef>(map)); |
|
735 |
return *this; |
|
736 |
} |
|
737 |
|
|
738 |
/// \brief Copies the node cross references into the given map. |
|
739 |
/// |
|
740 |
/// Copies the node cross references (reverse references) into |
|
741 |
/// the given map. The parameter should be a map, which key type |
|
742 |
/// is the Node type of the destination graph, while the value type is |
|
743 |
/// the Node type of the source graph. |
|
744 |
template <typename NodeCrossRef> |
|
745 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) { |
|
746 |
_node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node, |
|
747 |
NodeRefMap, NodeCrossRef>(map)); |
|
748 |
return *this; |
|
749 |
} |
|
750 |
|
|
751 |
/// \brief Make copy of the given map. |
|
752 |
/// |
|
753 |
/// Makes copy of the given map for the newly created digraph. |
|
754 |
/// The new map's key type is the destination graph's node type, |
|
755 |
/// and the copied map's key type is the source graph's node type. |
|
756 |
template <typename ToMap, typename FromMap> |
|
757 |
DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
|
758 |
_node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, |
|
759 |
NodeRefMap, ToMap, FromMap>(tmap, map)); |
|
760 |
return *this; |
|
761 |
} |
|
762 |
|
|
763 |
/// \brief Make a copy of the given node. |
|
764 |
/// |
|
765 |
/// Make a copy of the given node. |
|
766 |
DigraphCopy& node(TNode& tnode, const Node& snode) { |
|
767 |
_node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, |
|
768 |
NodeRefMap, TNode>(tnode, snode)); |
|
769 |
return *this; |
|
770 |
} |
|
771 |
|
|
772 |
/// \brief Copies the arc references into the given map. |
|
773 |
/// |
|
774 |
/// Copies the arc references into the given map. |
|
775 |
template <typename ArcRef> |
|
776 |
DigraphCopy& arcRef(ArcRef& map) { |
|
777 |
_arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, |
|
778 |
ArcRefMap, ArcRef>(map)); |
|
779 |
return *this; |
|
780 |
} |
|
781 |
|
|
782 |
/// \brief Copies the arc cross references into the given map. |
|
783 |
/// |
|
784 |
/// Copies the arc cross references (reverse references) into |
|
785 |
/// the given map. |
|
786 |
template <typename ArcCrossRef> |
|
787 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) { |
|
788 |
_arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc, |
|
789 |
ArcRefMap, ArcCrossRef>(map)); |
|
790 |
return *this; |
|
791 |
} |
|
792 |
|
|
793 |
/// \brief Make copy of the given map. |
|
794 |
/// |
|
795 |
/// Makes copy of the given map for the newly created digraph. |
|
796 |
/// The new map's key type is the to digraph's arc type, |
|
797 |
/// and the copied map's key type is the from digraph's arc |
|
798 |
/// type. |
|
799 |
template <typename ToMap, typename FromMap> |
|
800 |
DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) { |
|
801 |
_arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, |
|
802 |
ArcRefMap, ToMap, FromMap>(tmap, map)); |
|
803 |
return *this; |
|
804 |
} |
|
805 |
|
|
806 |
/// \brief Make a copy of the given arc. |
|
807 |
/// |
|
808 |
/// Make a copy of the given arc. |
|
809 |
DigraphCopy& arc(TArc& tarc, const Arc& sarc) { |
|
810 |
_arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, |
|
811 |
ArcRefMap, TArc>(tarc, sarc)); |
|
812 |
return *this; |
|
813 |
} |
|
814 |
|
|
815 |
/// \brief Executes the copies. |
|
816 |
/// |
|
817 |
/// Executes the copies. |
|
818 |
void run() { |
|
819 |
NodeRefMap nodeRefMap(_from); |
|
820 |
ArcRefMap arcRefMap(_from); |
|
821 |
_graph_utils_bits::DigraphCopySelector<To>:: |
|
822 |
copy(_to, _from, nodeRefMap, arcRefMap); |
|
823 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
824 |
_node_maps[i]->copy(_from, nodeRefMap); |
|
825 |
} |
|
826 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
827 |
_arc_maps[i]->copy(_from, arcRefMap); |
|
828 |
} |
|
829 |
} |
|
830 |
|
|
831 |
protected: |
|
832 |
|
|
833 |
|
|
834 |
const From& _from; |
|
835 |
To& _to; |
|
836 |
|
|
837 |
std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > |
|
838 |
_node_maps; |
|
839 |
|
|
840 |
std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
|
841 |
_arc_maps; |
|
842 |
|
|
843 |
}; |
|
844 |
|
|
845 |
/// \brief Copy a digraph to another digraph. |
|
846 |
/// |
|
847 |
/// Copy a digraph to another digraph. The complete usage of the |
|
848 |
/// function is detailed in the DigraphCopy class, but a short |
|
849 |
/// example shows a basic work: |
|
850 |
///\code |
|
851 |
/// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); |
|
852 |
///\endcode |
|
853 |
/// |
|
854 |
/// After the copy the \c nr map will contain the mapping from the |
|
855 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and |
|
856 |
/// \c ecr will contain the mapping from the arcs of the \c to digraph |
|
857 |
/// to the arcs of the \c from digraph. |
|
858 |
/// |
|
859 |
/// \see DigraphCopy |
|
860 |
template <typename To, typename From> |
|
861 |
DigraphCopy<To, From> copyDigraph(To& to, const From& from) { |
|
862 |
return DigraphCopy<To, From>(to, from); |
|
863 |
} |
|
864 |
|
|
865 |
/// \brief Class to copy a graph. |
|
866 |
/// |
|
867 |
/// Class to copy a graph to another graph (duplicate a graph). The |
|
868 |
/// simplest way of using it is through the \c copyGraph() function. |
|
869 |
/// |
|
870 |
/// This class not just make a copy of a graph, but it can create |
|
871 |
/// references and cross references between the nodes, edges and arcs of |
|
872 |
/// the two graphs, it can copy maps for use with the newly created |
|
873 |
/// graph and copy nodes, edges and arcs. |
|
874 |
/// |
|
875 |
/// To make a copy from a graph, first an instance of GraphCopy |
|
876 |
/// should be created, then the data belongs to the graph should |
|
877 |
/// assigned to copy. In the end, the \c run() member should be |
|
878 |
/// called. |
|
879 |
/// |
|
880 |
/// The next code copies a graph with several data: |
|
881 |
///\code |
|
882 |
/// GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph); |
|
883 |
/// // create a reference for the nodes |
|
884 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
|
885 |
/// dc.nodeRef(nr); |
|
886 |
/// // create a cross reference (inverse) for the edges |
|
887 |
/// NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph); |
|
888 |
/// dc.edgeCrossRef(ecr); |
|
889 |
/// // copy an arc map |
|
890 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
|
891 |
/// NewGraph::ArcMap<double> namap(new_graph); |
|
892 |
/// dc.arcMap(namap, oamap); |
|
893 |
/// // copy a node |
|
894 |
/// OrigGraph::Node on; |
|
895 |
/// NewGraph::Node nn; |
|
896 |
/// dc.node(nn, on); |
|
897 |
/// // Executions of copy |
|
898 |
/// dc.run(); |
|
899 |
///\endcode |
|
900 |
template <typename To, typename From> |
|
901 |
class GraphCopy { |
|
902 |
private: |
|
903 |
|
|
904 |
typedef typename From::Node Node; |
|
905 |
typedef typename From::NodeIt NodeIt; |
|
906 |
typedef typename From::Arc Arc; |
|
907 |
typedef typename From::ArcIt ArcIt; |
|
908 |
typedef typename From::Edge Edge; |
|
909 |
typedef typename From::EdgeIt EdgeIt; |
|
910 |
|
|
911 |
typedef typename To::Node TNode; |
|
912 |
typedef typename To::Arc TArc; |
|
913 |
typedef typename To::Edge TEdge; |
|
914 |
|
|
915 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
|
916 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
|
917 |
|
|
918 |
struct ArcRefMap { |
|
919 |
ArcRefMap(const To& to, const From& from, |
|
920 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
|
921 |
: _to(to), _from(from), |
|
922 |
_edge_ref(edge_ref), _node_ref(node_ref) {} |
|
923 |
|
|
924 |
typedef typename From::Arc Key; |
|
925 |
typedef typename To::Arc Value; |
|
926 |
|
|
927 |
Value operator[](const Key& key) const { |
|
928 |
bool forward = _from.u(key) != _from.v(key) ? |
|
929 |
_node_ref[_from.source(key)] == |
|
930 |
_to.source(_to.direct(_edge_ref[key], true)) : |
|
931 |
_from.direction(key); |
|
932 |
return _to.direct(_edge_ref[key], forward); |
|
933 |
} |
|
934 |
|
|
935 |
const To& _to; |
|
936 |
const From& _from; |
|
937 |
const EdgeRefMap& _edge_ref; |
|
938 |
const NodeRefMap& _node_ref; |
|
939 |
}; |
|
940 |
|
|
941 |
|
|
942 |
public: |
|
943 |
|
|
944 |
|
|
945 |
/// \brief Constructor for the GraphCopy. |
|
946 |
/// |
|
947 |
/// It copies the content of the \c _from graph into the |
|
948 |
/// \c _to graph. |
|
949 |
GraphCopy(To& to, const From& from) |
|
950 |
: _from(from), _to(to) {} |
|
951 |
|
|
952 |
/// \brief Destructor of the GraphCopy |
|
953 |
/// |
|
954 |
/// Destructor of the GraphCopy |
|
955 |
~GraphCopy() { |
|
956 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
957 |
delete _node_maps[i]; |
|
958 |
} |
|
959 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
960 |
delete _arc_maps[i]; |
|
961 |
} |
|
962 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
|
963 |
delete _edge_maps[i]; |
|
964 |
} |
|
965 |
|
|
966 |
} |
|
967 |
|
|
968 |
/// \brief Copies the node references into the given map. |
|
969 |
/// |
|
970 |
/// Copies the node references into the given map. |
|
971 |
template <typename NodeRef> |
|
972 |
GraphCopy& nodeRef(NodeRef& map) { |
|
973 |
_node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, |
|
974 |
NodeRefMap, NodeRef>(map)); |
|
975 |
return *this; |
|
976 |
} |
|
977 |
|
|
978 |
/// \brief Copies the node cross references into the given map. |
|
979 |
/// |
|
980 |
/// Copies the node cross references (reverse references) into |
|
981 |
/// the given map. |
|
982 |
template <typename NodeCrossRef> |
|
983 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
|
984 |
_node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node, |
|
985 |
NodeRefMap, NodeCrossRef>(map)); |
|
986 |
return *this; |
|
987 |
} |
|
988 |
|
|
989 |
/// \brief Make copy of the given map. |
|
990 |
/// |
|
991 |
/// Makes copy of the given map for the newly created graph. |
|
992 |
/// The new map's key type is the to graph's node type, |
|
993 |
/// and the copied map's key type is the from graph's node |
|
994 |
/// type. |
|
995 |
template <typename ToMap, typename FromMap> |
|
996 |
GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
|
997 |
_node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, |
|
998 |
NodeRefMap, ToMap, FromMap>(tmap, map)); |
|
999 |
return *this; |
|
1000 |
} |
|
1001 |
|
|
1002 |
/// \brief Make a copy of the given node. |
|
1003 |
/// |
|
1004 |
/// Make a copy of the given node. |
|
1005 |
GraphCopy& node(TNode& tnode, const Node& snode) { |
|
1006 |
_node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, |
|
1007 |
NodeRefMap, TNode>(tnode, snode)); |
|
1008 |
return *this; |
|
1009 |
} |
|
1010 |
|
|
1011 |
/// \brief Copies the arc references into the given map. |
|
1012 |
/// |
|
1013 |
/// Copies the arc references into the given map. |
|
1014 |
template <typename ArcRef> |
|
1015 |
GraphCopy& arcRef(ArcRef& map) { |
|
1016 |
_arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, |
|
1017 |
ArcRefMap, ArcRef>(map)); |
|
1018 |
return *this; |
|
1019 |
} |
|
1020 |
|
|
1021 |
/// \brief Copies the arc cross references into the given map. |
|
1022 |
/// |
|
1023 |
/// Copies the arc cross references (reverse references) into |
|
1024 |
/// the given map. |
|
1025 |
template <typename ArcCrossRef> |
|
1026 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
|
1027 |
_arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc, |
|
1028 |
ArcRefMap, ArcCrossRef>(map)); |
|
1029 |
return *this; |
|
1030 |
} |
|
1031 |
|
|
1032 |
/// \brief Make copy of the given map. |
|
1033 |
/// |
|
1034 |
/// Makes copy of the given map for the newly created graph. |
|
1035 |
/// The new map's key type is the to graph's arc type, |
|
1036 |
/// and the copied map's key type is the from graph's arc |
|
1037 |
/// type. |
|
1038 |
template <typename ToMap, typename FromMap> |
|
1039 |
GraphCopy& arcMap(ToMap& tmap, const FromMap& map) { |
|
1040 |
_arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, |
|
1041 |
ArcRefMap, ToMap, FromMap>(tmap, map)); |
|
1042 |
return *this; |
|
1043 |
} |
|
1044 |
|
|
1045 |
/// \brief Make a copy of the given arc. |
|
1046 |
/// |
|
1047 |
/// Make a copy of the given arc. |
|
1048 |
GraphCopy& arc(TArc& tarc, const Arc& sarc) { |
|
1049 |
_arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, |
|
1050 |
ArcRefMap, TArc>(tarc, sarc)); |
|
1051 |
return *this; |
|
1052 |
} |
|
1053 |
|
|
1054 |
/// \brief Copies the edge references into the given map. |
|
1055 |
/// |
|
1056 |
/// Copies the edge references into the given map. |
|
1057 |
template <typename EdgeRef> |
|
1058 |
GraphCopy& edgeRef(EdgeRef& map) { |
|
1059 |
_edge_maps.push_back(new _graph_utils_bits::RefCopy<From, Edge, |
|
1060 |
EdgeRefMap, EdgeRef>(map)); |
|
1061 |
return *this; |
|
1062 |
} |
|
1063 |
|
|
1064 |
/// \brief Copies the edge cross references into the given map. |
|
1065 |
/// |
|
1066 |
/// Copies the edge cross references (reverse |
|
1067 |
/// references) into the given map. |
|
1068 |
template <typename EdgeCrossRef> |
|
1069 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
|
1070 |
_edge_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, |
|
1071 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
|
1072 |
return *this; |
|
1073 |
} |
|
1074 |
|
|
1075 |
/// \brief Make copy of the given map. |
|
1076 |
/// |
|
1077 |
/// Makes copy of the given map for the newly created graph. |
|
1078 |
/// The new map's key type is the to graph's edge type, |
|
1079 |
/// and the copied map's key type is the from graph's edge |
|
1080 |
/// type. |
|
1081 |
template <typename ToMap, typename FromMap> |
|
1082 |
GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { |
|
1083 |
_edge_maps.push_back(new _graph_utils_bits::MapCopy<From, Edge, |
|
1084 |
EdgeRefMap, ToMap, FromMap>(tmap, map)); |
|
1085 |
return *this; |
|
1086 |
} |
|
1087 |
|
|
1088 |
/// \brief Make a copy of the given edge. |
|
1089 |
/// |
|
1090 |
/// Make a copy of the given edge. |
|
1091 |
GraphCopy& edge(TEdge& tedge, const Edge& sedge) { |
|
1092 |
_edge_maps.push_back(new _graph_utils_bits::ItemCopy<From, Edge, |
|
1093 |
EdgeRefMap, TEdge>(tedge, sedge)); |
|
1094 |
return *this; |
|
1095 |
} |
|
1096 |
|
|
1097 |
/// \brief Executes the copies. |
|
1098 |
/// |
|
1099 |
/// Executes the copies. |
|
1100 |
void run() { |
|
1101 |
NodeRefMap nodeRefMap(_from); |
|
1102 |
EdgeRefMap edgeRefMap(_from); |
|
1103 |
ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap); |
|
1104 |
_graph_utils_bits::GraphCopySelector<To>:: |
|
1105 |
copy(_to, _from, nodeRefMap, edgeRefMap); |
|
1106 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
|
1107 |
_node_maps[i]->copy(_from, nodeRefMap); |
|
1108 |
} |
|
1109 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
|
1110 |
_edge_maps[i]->copy(_from, edgeRefMap); |
|
1111 |
} |
|
1112 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
|
1113 |
_arc_maps[i]->copy(_from, arcRefMap); |
|
1114 |
} |
|
1115 |
} |
|
1116 |
|
|
1117 |
private: |
|
1118 |
|
|
1119 |
const From& _from; |
|
1120 |
To& _to; |
|
1121 |
|
|
1122 |
std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > |
|
1123 |
_node_maps; |
|
1124 |
|
|
1125 |
std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
|
1126 |
_arc_maps; |
|
1127 |
|
|
1128 |
std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
|
1129 |
_edge_maps; |
|
1130 |
|
|
1131 |
}; |
|
1132 |
|
|
1133 |
/// \brief Copy a graph to another graph. |
|
1134 |
/// |
|
1135 |
/// Copy a graph to another graph. The complete usage of the |
|
1136 |
/// function is detailed in the GraphCopy class, but a short |
|
1137 |
/// example shows a basic work: |
|
1138 |
///\code |
|
1139 |
/// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); |
|
1140 |
///\endcode |
|
1141 |
/// |
|
1142 |
/// After the copy the \c nr map will contain the mapping from the |
|
1143 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
|
1144 |
/// \c ecr will contain the mapping from the arcs of the \c to graph |
|
1145 |
/// to the arcs of the \c from graph. |
|
1146 |
/// |
|
1147 |
/// \see GraphCopy |
|
1148 |
template <typename To, typename From> |
|
1149 |
GraphCopy<To, From> |
|
1150 |
copyGraph(To& to, const From& from) { |
|
1151 |
return GraphCopy<To, From>(to, from); |
|
1152 |
} |
|
1153 |
|
|
1154 |
/// @} |
|
1155 |
|
|
1156 |
/// \addtogroup graph_maps |
|
1157 |
/// @{ |
|
1158 |
|
|
1159 |
/// Provides an immutable and unique id for each item in the graph. |
|
1160 |
|
|
1161 |
/// The IdMap class provides a unique and immutable id for each item of the |
|
1162 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
|
1163 |
/// different items (nodes) get different ids <li>\b immutable: the id of an |
|
1164 |
/// item (node) does not change (even if you delete other nodes). </ul> |
|
1165 |
/// Through this map you get access (i.e. can read) the inner id values of |
|
1166 |
/// the items stored in the graph. This map can be inverted with its member |
|
1167 |
/// class \c InverseMap or with the \c operator() member. |
|
1168 |
/// |
|
1169 |
template <typename _Graph, typename _Item> |
|
1170 |
class IdMap { |
|
1171 |
public: |
|
1172 |
typedef _Graph Graph; |
|
1173 |
typedef int Value; |
|
1174 |
typedef _Item Item; |
|
1175 |
typedef _Item Key; |
|
1176 |
|
|
1177 |
/// \brief Constructor. |
|
1178 |
/// |
|
1179 |
/// Constructor of the map. |
|
1180 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
|
1181 |
|
|
1182 |
/// \brief Gives back the \e id of the item. |
|
1183 |
/// |
|
1184 |
/// Gives back the immutable and unique \e id of the item. |
|
1185 |
int operator[](const Item& item) const { return _graph->id(item);} |
|
1186 |
|
|
1187 |
/// \brief Gives back the item by its id. |
|
1188 |
/// |
|
1189 |
/// Gives back the item by its id. |
|
1190 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
|
1191 |
|
|
1192 |
private: |
|
1193 |
const Graph* _graph; |
|
1194 |
|
|
1195 |
public: |
|
1196 |
|
|
1197 |
/// \brief The class represents the inverse of its owner (IdMap). |
|
1198 |
/// |
|
1199 |
/// The class represents the inverse of its owner (IdMap). |
|
1200 |
/// \see inverse() |
|
1201 |
class InverseMap { |
|
1202 |
public: |
|
1203 |
|
|
1204 |
/// \brief Constructor. |
|
1205 |
/// |
|
1206 |
/// Constructor for creating an id-to-item map. |
|
1207 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
|
1208 |
|
|
1209 |
/// \brief Constructor. |
|
1210 |
/// |
|
1211 |
/// Constructor for creating an id-to-item map. |
|
1212 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
|
1213 |
|
|
1214 |
/// \brief Gives back the given item from its id. |
|
1215 |
/// |
|
1216 |
/// Gives back the given item from its id. |
|
1217 |
/// |
|
1218 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
|
1219 |
|
|
1220 |
private: |
|
1221 |
const Graph* _graph; |
|
1222 |
}; |
|
1223 |
|
|
1224 |
/// \brief Gives back the inverse of the map. |
|
1225 |
/// |
|
1226 |
/// Gives back the inverse of the IdMap. |
|
1227 |
InverseMap inverse() const { return InverseMap(*_graph);} |
|
1228 |
|
|
1229 |
}; |
|
1230 |
|
|
1231 |
|
|
1232 |
/// \brief General invertable graph-map type. |
|
1233 |
|
|
1234 |
/// This type provides simple invertable graph-maps. |
|
1235 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
|
1236 |
/// and if a key is set to a new value then store it |
|
1237 |
/// in the inverse map. |
|
1238 |
/// |
|
1239 |
/// The values of the map can be accessed |
|
1240 |
/// with stl compatible forward iterator. |
|
1241 |
/// |
|
1242 |
/// \tparam _Graph The graph type. |
|
1243 |
/// \tparam _Item The item type of the graph. |
|
1244 |
/// \tparam _Value The value type of the map. |
|
1245 |
/// |
|
1246 |
/// \see IterableValueMap |
|
1247 |
template <typename _Graph, typename _Item, typename _Value> |
|
1248 |
class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> { |
|
1249 |
private: |
|
1250 |
|
|
1251 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
|
1252 |
typedef _Graph Graph; |
|
1253 |
|
|
1254 |
typedef std::map<_Value, _Item> Container; |
|
1255 |
Container _inv_map; |
|
1256 |
|
|
1257 |
public: |
|
1258 |
|
|
1259 |
/// The key type of InvertableMap (Node, Arc, Edge). |
|
1260 |
typedef typename Map::Key Key; |
|
1261 |
/// The value type of the InvertableMap. |
|
1262 |
typedef typename Map::Value Value; |
|
1263 |
|
|
1264 |
|
|
1265 |
|
|
1266 |
/// \brief Constructor. |
|
1267 |
/// |
|
1268 |
/// Construct a new InvertableMap for the graph. |
|
1269 |
/// |
|
1270 |
explicit InvertableMap(const Graph& graph) : Map(graph) {} |
|
1271 |
|
|
1272 |
/// \brief Forward iterator for values. |
|
1273 |
/// |
|
1274 |
/// This iterator is an stl compatible forward |
|
1275 |
/// iterator on the values of the map. The values can |
|
1276 |
/// be accessed in the [beginValue, endValue) range. |
|
1277 |
/// |
|
1278 |
class ValueIterator |
|
1279 |
: public std::iterator<std::forward_iterator_tag, Value> { |
|
1280 |
friend class InvertableMap; |
|
1281 |
private: |
|
1282 |
ValueIterator(typename Container::const_iterator _it) |
|
1283 |
: it(_it) {} |
|
1284 |
public: |
|
1285 |
|
|
1286 |
ValueIterator() {} |
|
1287 |
|
|
1288 |
ValueIterator& operator++() { ++it; return *this; } |
|
1289 |
ValueIterator operator++(int) { |
|
1290 |
ValueIterator tmp(*this); |
|
1291 |
operator++(); |
|
1292 |
return tmp; |
|
1293 |
} |
|
1294 |
|
|
1295 |
const Value& operator*() const { return it->first; } |
|
1296 |
const Value* operator->() const { return &(it->first); } |
|
1297 |
|
|
1298 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
1299 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
1300 |
|
|
1301 |
private: |
|
1302 |
typename Container::const_iterator it; |
|
1303 |
}; |
|
1304 |
|
|
1305 |
/// \brief Returns an iterator to the first value. |
|
1306 |
/// |
|
1307 |
/// Returns an stl compatible iterator to the |
|
1308 |
/// first value of the map. The values of the |
|
1309 |
/// map can be accessed in the [beginValue, endValue) |
|
1310 |
/// range. |
|
1311 |
ValueIterator beginValue() const { |
|
1312 |
return ValueIterator(_inv_map.begin()); |
|
1313 |
} |
|
1314 |
|
|
1315 |
/// \brief Returns an iterator after the last value. |
|
1316 |
/// |
|
1317 |
/// Returns an stl compatible iterator after the |
|
1318 |
/// last value of the map. The values of the |
|
1319 |
/// map can be accessed in the [beginValue, endValue) |
|
1320 |
/// range. |
|
1321 |
ValueIterator endValue() const { |
|
1322 |
return ValueIterator(_inv_map.end()); |
|
1323 |
} |
|
1324 |
|
|
1325 |
/// \brief The setter function of the map. |
|
1326 |
/// |
|
1327 |
/// Sets the mapped value. |
|
1328 |
void set(const Key& key, const Value& val) { |
|
1329 |
Value oldval = Map::operator[](key); |
|
1330 |
typename Container::iterator it = _inv_map.find(oldval); |
|
1331 |
if (it != _inv_map.end() && it->second == key) { |
|
1332 |
_inv_map.erase(it); |
|
1333 |
} |
|
1334 |
_inv_map.insert(make_pair(val, key)); |
|
1335 |
Map::set(key, val); |
|
1336 |
} |
|
1337 |
|
|
1338 |
/// \brief The getter function of the map. |
|
1339 |
/// |
|
1340 |
/// It gives back the value associated with the key. |
|
1341 |
typename MapTraits<Map>::ConstReturnValue |
|
1342 |
operator[](const Key& key) const { |
|
1343 |
return Map::operator[](key); |
|
1344 |
} |
|
1345 |
|
|
1346 |
/// \brief Gives back the item by its value. |
|
1347 |
/// |
|
1348 |
/// Gives back the item by its value. |
|
1349 |
Key operator()(const Value& key) const { |
|
1350 |
typename Container::const_iterator it = _inv_map.find(key); |
|
1351 |
return it != _inv_map.end() ? it->second : INVALID; |
|
1352 |
} |
|
1353 |
|
|
1354 |
protected: |
|
1355 |
|
|
1356 |
/// \brief Erase the key from the map. |
|
1357 |
/// |
|
1358 |
/// Erase the key to the map. It is called by the |
|
1359 |
/// \c AlterationNotifier. |
|
1360 |
virtual void erase(const Key& key) { |
|
1361 |
Value val = Map::operator[](key); |
|
1362 |
typename Container::iterator it = _inv_map.find(val); |
|
1363 |
if (it != _inv_map.end() && it->second == key) { |
|
1364 |
_inv_map.erase(it); |
|
1365 |
} |
|
1366 |
Map::erase(key); |
|
1367 |
} |
|
1368 |
|
|
1369 |
/// \brief Erase more keys from the map. |
|
1370 |
/// |
|
1371 |
/// Erase more keys from the map. It is called by the |
|
1372 |
/// \c AlterationNotifier. |
|
1373 |
virtual void erase(const std::vector<Key>& keys) { |
|
1374 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
1375 |
Value val = Map::operator[](keys[i]); |
|
1376 |
typename Container::iterator it = _inv_map.find(val); |
|
1377 |
if (it != _inv_map.end() && it->second == keys[i]) { |
|
1378 |
_inv_map.erase(it); |
|
1379 |
} |
|
1380 |
} |
|
1381 |
Map::erase(keys); |
|
1382 |
} |
|
1383 |
|
|
1384 |
/// \brief Clear the keys from the map and inverse map. |
|
1385 |
/// |
|
1386 |
/// Clear the keys from the map and inverse map. It is called by the |
|
1387 |
/// \c AlterationNotifier. |
|
1388 |
virtual void clear() { |
|
1389 |
_inv_map.clear(); |
|
1390 |
Map::clear(); |
|
1391 |
} |
|
1392 |
|
|
1393 |
public: |
|
1394 |
|
|
1395 |
/// \brief The inverse map type. |
|
1396 |
/// |
|
1397 |
/// The inverse of this map. The subscript operator of the map |
|
1398 |
/// gives back always the item what was last assigned to the value. |
|
1399 |
class InverseMap { |
|
1400 |
public: |
|
1401 |
/// \brief Constructor of the InverseMap. |
|
1402 |
/// |
|
1403 |
/// Constructor of the InverseMap. |
|
1404 |
explicit InverseMap(const InvertableMap& inverted) |
|
1405 |
: _inverted(inverted) {} |
|
1406 |
|
|
1407 |
/// The value type of the InverseMap. |
|
1408 |
typedef typename InvertableMap::Key Value; |
|
1409 |
/// The key type of the InverseMap. |
|
1410 |
typedef typename InvertableMap::Value Key; |
|
1411 |
|
|
1412 |
/// \brief Subscript operator. |
|
1413 |
/// |
|
1414 |
/// Subscript operator. It gives back always the item |
|
1415 |
/// what was last assigned to the value. |
|
1416 |
Value operator[](const Key& key) const { |
|
1417 |
return _inverted(key); |
|
1418 |
} |
|
1419 |
|
|
1420 |
private: |
|
1421 |
const InvertableMap& _inverted; |
|
1422 |
}; |
|
1423 |
|
|
1424 |
/// \brief It gives back the just readable inverse map. |
|
1425 |
/// |
|
1426 |
/// It gives back the just readable inverse map. |
|
1427 |
InverseMap inverse() const { |
|
1428 |
return InverseMap(*this); |
|
1429 |
} |
|
1430 |
|
|
1431 |
|
|
1432 |
|
|
1433 |
}; |
|
1434 |
|
|
1435 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
|
1436 |
/// item in the graph. |
|
1437 |
/// |
|
1438 |
/// The DescriptorMap class provides a unique and continuous (but mutable) |
|
1439 |
/// descriptor (id) for each item of the same type (e.g. node) in the |
|
1440 |
/// graph. This id is <ul><li>\b unique: different items (nodes) get |
|
1441 |
/// different ids <li>\b continuous: the range of the ids is the set of |
|
1442 |
/// integers between 0 and \c n-1, where \c n is the number of the items of |
|
1443 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an |
|
1444 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted |
|
1445 |
/// with its member class \c InverseMap, or with the \c operator() member. |
|
1446 |
/// |
|
1447 |
/// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
|
1448 |
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
|
1449 |
/// Edge. |
|
1450 |
template <typename _Graph, typename _Item> |
|
1451 |
class DescriptorMap : protected DefaultMap<_Graph, _Item, int> { |
|
1452 |
|
|
1453 |
typedef _Item Item; |
|
1454 |
typedef DefaultMap<_Graph, _Item, int> Map; |
|
1455 |
|
|
1456 |
public: |
|
1457 |
/// The graph class of DescriptorMap. |
|
1458 |
typedef _Graph Graph; |
|
1459 |
|
|
1460 |
/// The key type of DescriptorMap (Node, Arc, Edge). |
|
1461 |
typedef typename Map::Key Key; |
|
1462 |
/// The value type of DescriptorMap. |
|
1463 |
typedef typename Map::Value Value; |
|
1464 |
|
|
1465 |
/// \brief Constructor. |
|
1466 |
/// |
|
1467 |
/// Constructor for descriptor map. |
|
1468 |
explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
|
1469 |
Item it; |
|
1470 |
const typename Map::Notifier* nf = Map::notifier(); |
|
1471 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
1472 |
Map::set(it, _inv_map.size()); |
|
1473 |
_inv_map.push_back(it); |
|
1474 |
} |
|
1475 |
} |
|
1476 |
|
|
1477 |
protected: |
|
1478 |
|
|
1479 |
/// \brief Add a new key to the map. |
|
1480 |
/// |
|
1481 |
/// Add a new key to the map. It is called by the |
|
1482 |
/// \c AlterationNotifier. |
|
1483 |
virtual void add(const Item& item) { |
|
1484 |
Map::add(item); |
|
1485 |
Map::set(item, _inv_map.size()); |
|
1486 |
_inv_map.push_back(item); |
|
1487 |
} |
|
1488 |
|
|
1489 |
/// \brief Add more new keys to the map. |
|
1490 |
/// |
|
1491 |
/// Add more new keys to the map. It is called by the |
|
1492 |
/// \c AlterationNotifier. |
|
1493 |
virtual void add(const std::vector<Item>& items) { |
|
1494 |
Map::add(items); |
|
1495 |
for (int i = 0; i < int(items.size()); ++i) { |
|
1496 |
Map::set(items[i], _inv_map.size()); |
|
1497 |
_inv_map.push_back(items[i]); |
|
1498 |
} |
|
1499 |
} |
|
1500 |
|
|
1501 |
/// \brief Erase the key from the map. |
|
1502 |
/// |
|
1503 |
/// Erase the key from the map. It is called by the |
|
1504 |
/// \c AlterationNotifier. |
|
1505 |
virtual void erase(const Item& item) { |
|
1506 |
Map::set(_inv_map.back(), Map::operator[](item)); |
|
1507 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
|
1508 |
_inv_map.pop_back(); |
|
1509 |
Map::erase(item); |
|
1510 |
} |
|
1511 |
|
|
1512 |
/// \brief Erase more keys from the map. |
|
1513 |
/// |
|
1514 |
/// Erase more keys from the map. It is called by the |
|
1515 |
/// \c AlterationNotifier. |
|
1516 |
virtual void erase(const std::vector<Item>& items) { |
|
1517 |
for (int i = 0; i < int(items.size()); ++i) { |
|
1518 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
|
1519 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
|
1520 |
_inv_map.pop_back(); |
|
1521 |
} |
|
1522 |
Map::erase(items); |
|
1523 |
} |
|
1524 |
|
|
1525 |
/// \brief Build the unique map. |
|
1526 |
/// |
|
1527 |
/// Build the unique map. It is called by the |
|
1528 |
/// \c AlterationNotifier. |
|
1529 |
virtual void build() { |
|
1530 |
Map::build(); |
|
1531 |
Item it; |
|
1532 |
const typename Map::Notifier* nf = Map::notifier(); |
|
1533 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
1534 |
Map::set(it, _inv_map.size()); |
|
1535 |
_inv_map.push_back(it); |
|
1536 |
} |
|
1537 |
} |
|
1538 |
|
|
1539 |
/// \brief Clear the keys from the map. |
|
1540 |
/// |
|
1541 |
/// Clear the keys from the map. It is called by the |
|
1542 |
/// \c AlterationNotifier. |
|
1543 |
virtual void clear() { |
|
1544 |
_inv_map.clear(); |
|
1545 |
Map::clear(); |
|
1546 |
} |
|
1547 |
|
|
1548 |
public: |
|
1549 |
|
|
1550 |
/// \brief Returns the maximal value plus one. |
|
1551 |
/// |
|
1552 |
/// Returns the maximal value plus one in the map. |
|
1553 |
unsigned int size() const { |
|
1554 |
return _inv_map.size(); |
|
1555 |
} |
|
1556 |
|
|
1557 |
/// \brief Swaps the position of the two items in the map. |
|
1558 |
/// |
|
1559 |
/// Swaps the position of the two items in the map. |
|
1560 |
void swap(const Item& p, const Item& q) { |
|
1561 |
int pi = Map::operator[](p); |
|
1562 |
int qi = Map::operator[](q); |
|
1563 |
Map::set(p, qi); |
|
1564 |
_inv_map[qi] = p; |
|
1565 |
Map::set(q, pi); |
|
1566 |
_inv_map[pi] = q; |
|
1567 |
} |
|
1568 |
|
|
1569 |
/// \brief Gives back the \e descriptor of the item. |
|
1570 |
/// |
|
1571 |
/// Gives back the mutable and unique \e descriptor of the map. |
|
1572 |
int operator[](const Item& item) const { |
|
1573 |
return Map::operator[](item); |
|
1574 |
} |
|
1575 |
|
|
1576 |
/// \brief Gives back the item by its descriptor. |
|
1577 |
/// |
|
1578 |
/// Gives back th item by its descriptor. |
|
1579 |
Item operator()(int id) const { |
|
1580 |
return _inv_map[id]; |
|
1581 |
} |
|
1582 |
|
|
1583 |
private: |
|
1584 |
|
|
1585 |
typedef std::vector<Item> Container; |
|
1586 |
Container _inv_map; |
|
1587 |
|
|
1588 |
public: |
|
1589 |
/// \brief The inverse map type of DescriptorMap. |
|
1590 |
/// |
|
1591 |
/// The inverse map type of DescriptorMap. |
|
1592 |
class InverseMap { |
|
1593 |
public: |
|
1594 |
/// \brief Constructor of the InverseMap. |
|
1595 |
/// |
|
1596 |
/// Constructor of the InverseMap. |
|
1597 |
explicit InverseMap(const DescriptorMap& inverted) |
|
1598 |
: _inverted(inverted) {} |
|
1599 |
|
|
1600 |
|
|
1601 |
/// The value type of the InverseMap. |
|
1602 |
typedef typename DescriptorMap::Key Value; |
|
1603 |
/// The key type of the InverseMap. |
|
1604 |
typedef typename DescriptorMap::Value Key; |
|
1605 |
|
|
1606 |
/// \brief Subscript operator. |
|
1607 |
/// |
|
1608 |
/// Subscript operator. It gives back the item |
|
1609 |
/// that the descriptor belongs to currently. |
|
1610 |
Value operator[](const Key& key) const { |
|
1611 |
return _inverted(key); |
|
1612 |
} |
|
1613 |
|
|
1614 |
/// \brief Size of the map. |
|
1615 |
/// |
|
1616 |
/// Returns the size of the map. |
|
1617 |
unsigned int size() const { |
|
1618 |
return _inverted.size(); |
|
1619 |
} |
|
1620 |
|
|
1621 |
private: |
|
1622 |
const DescriptorMap& _inverted; |
|
1623 |
}; |
|
1624 |
|
|
1625 |
/// \brief Gives back the inverse of the map. |
|
1626 |
/// |
|
1627 |
/// Gives back the inverse of the map. |
|
1628 |
const InverseMap inverse() const { |
|
1629 |
return InverseMap(*this); |
|
1630 |
} |
|
1631 |
}; |
|
1632 |
|
|
1633 |
/// \brief Returns the source of the given arc. |
|
1634 |
/// |
|
1635 |
/// The SourceMap gives back the source Node of the given arc. |
|
1636 |
/// \see TargetMap |
|
1637 |
template <typename Digraph> |
|
1638 |
class SourceMap { |
|
1639 |
public: |
|
1640 |
|
|
1641 |
typedef typename Digraph::Node Value; |
|
1642 |
typedef typename Digraph::Arc Key; |
|
1643 |
|
|
1644 |
/// \brief Constructor |
|
1645 |
/// |
|
1646 |
/// Constructor |
|
1647 |
/// \param _digraph The digraph that the map belongs to. |
|
1648 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
|
1649 |
|
|
1650 |
/// \brief The subscript operator. |
|
1651 |
/// |
|
1652 |
/// The subscript operator. |
|
1653 |
/// \param arc The arc |
|
1654 |
/// \return The source of the arc |
|
1655 |
Value operator[](const Key& arc) const { |
|
1656 |
return _digraph.source(arc); |
|
1657 |
} |
|
1658 |
|
|
1659 |
private: |
|
1660 |
const Digraph& _digraph; |
|
1661 |
}; |
|
1662 |
|
|
1663 |
/// \brief Returns a \ref SourceMap class. |
|
1664 |
/// |
|
1665 |
/// This function just returns an \ref SourceMap class. |
|
1666 |
/// \relates SourceMap |
|
1667 |
template <typename Digraph> |
|
1668 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
|
1669 |
return SourceMap<Digraph>(digraph); |
|
1670 |
} |
|
1671 |
|
|
1672 |
/// \brief Returns the target of the given arc. |
|
1673 |
/// |
|
1674 |
/// The TargetMap gives back the target Node of the given arc. |
|
1675 |
/// \see SourceMap |
|
1676 |
template <typename Digraph> |
|
1677 |
class TargetMap { |
|
1678 |
public: |
|
1679 |
|
|
1680 |
typedef typename Digraph::Node Value; |
|
1681 |
typedef typename Digraph::Arc Key; |
|
1682 |
|
|
1683 |
/// \brief Constructor |
|
1684 |
/// |
|
1685 |
/// Constructor |
|
1686 |
/// \param _digraph The digraph that the map belongs to. |
|
1687 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
|
1688 |
|
|
1689 |
/// \brief The subscript operator. |
|
1690 |
/// |
|
1691 |
/// The subscript operator. |
|
1692 |
/// \param e The arc |
|
1693 |
/// \return The target of the arc |
|
1694 |
Value operator[](const Key& e) const { |
|
1695 |
return _digraph.target(e); |
|
1696 |
} |
|
1697 |
|
|
1698 |
private: |
|
1699 |
const Digraph& _digraph; |
|
1700 |
}; |
|
1701 |
|
|
1702 |
/// \brief Returns a \ref TargetMap class. |
|
1703 |
/// |
|
1704 |
/// This function just returns a \ref TargetMap class. |
|
1705 |
/// \relates TargetMap |
|
1706 |
template <typename Digraph> |
|
1707 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
|
1708 |
return TargetMap<Digraph>(digraph); |
|
1709 |
} |
|
1710 |
|
|
1711 |
/// \brief Returns the "forward" directed arc view of an edge. |
|
1712 |
/// |
|
1713 |
/// Returns the "forward" directed arc view of an edge. |
|
1714 |
/// \see BackwardMap |
|
1715 |
template <typename Graph> |
|
1716 |
class ForwardMap { |
|
1717 |
public: |
|
1718 |
|
|
1719 |
typedef typename Graph::Arc Value; |
|
1720 |
typedef typename Graph::Edge Key; |
|
1721 |
|
|
1722 |
/// \brief Constructor |
|
1723 |
/// |
|
1724 |
/// Constructor |
|
1725 |
/// \param _graph The graph that the map belongs to. |
|
1726 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
|
1727 |
|
|
1728 |
/// \brief The subscript operator. |
|
1729 |
/// |
|
1730 |
/// The subscript operator. |
|
1731 |
/// \param key An edge |
|
1732 |
/// \return The "forward" directed arc view of edge |
|
1733 |
Value operator[](const Key& key) const { |
|
1734 |
return _graph.direct(key, true); |
|
1735 |
} |
|
1736 |
|
|
1737 |
private: |
|
1738 |
const Graph& _graph; |
|
1739 |
}; |
|
1740 |
|
|
1741 |
/// \brief Returns a \ref ForwardMap class. |
|
1742 |
/// |
|
1743 |
/// This function just returns an \ref ForwardMap class. |
|
1744 |
/// \relates ForwardMap |
|
1745 |
template <typename Graph> |
|
1746 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
|
1747 |
return ForwardMap<Graph>(graph); |
|
1748 |
} |
|
1749 |
|
|
1750 |
/// \brief Returns the "backward" directed arc view of an edge. |
|
1751 |
/// |
|
1752 |
/// Returns the "backward" directed arc view of an edge. |
|
1753 |
/// \see ForwardMap |
|
1754 |
template <typename Graph> |
|
1755 |
class BackwardMap { |
|
1756 |
public: |
|
1757 |
|
|
1758 |
typedef typename Graph::Arc Value; |
|
1759 |
typedef typename Graph::Edge Key; |
|
1760 |
|
|
1761 |
/// \brief Constructor |
|
1762 |
/// |
|
1763 |
/// Constructor |
|
1764 |
/// \param _graph The graph that the map belongs to. |
|
1765 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
|
1766 |
|
|
1767 |
/// \brief The subscript operator. |
|
1768 |
/// |
|
1769 |
/// The subscript operator. |
|
1770 |
/// \param key An edge |
|
1771 |
/// \return The "backward" directed arc view of edge |
|
1772 |
Value operator[](const Key& key) const { |
|
1773 |
return _graph.direct(key, false); |
|
1774 |
} |
|
1775 |
|
|
1776 |
private: |
|
1777 |
const Graph& _graph; |
|
1778 |
}; |
|
1779 |
|
|
1780 |
/// \brief Returns a \ref BackwardMap class |
|
1781 |
|
|
1782 |
/// This function just returns a \ref BackwardMap class. |
|
1783 |
/// \relates BackwardMap |
|
1784 |
template <typename Graph> |
|
1785 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
|
1786 |
return BackwardMap<Graph>(graph); |
|
1787 |
} |
|
1788 |
|
|
1789 |
/// \brief Potential difference map |
|
1790 |
/// |
|
1791 |
/// If there is an potential map on the nodes then we |
|
1792 |
/// can get an arc map as we get the substraction of the |
|
1793 |
/// values of the target and source. |
|
1794 |
template <typename Digraph, typename NodeMap> |
|
1795 |
class PotentialDifferenceMap { |
|
1796 |
public: |
|
1797 |
typedef typename Digraph::Arc Key; |
|
1798 |
typedef typename NodeMap::Value Value; |
|
1799 |
|
|
1800 |
/// \brief Constructor |
|
1801 |
/// |
|
1802 |
/// Contructor of the map |
|
1803 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
|
1804 |
const NodeMap& potential) |
|
1805 |
: _digraph(digraph), _potential(potential) {} |
|
1806 |
|
|
1807 |
/// \brief Const subscription operator |
|
1808 |
/// |
|
1809 |
/// Const subscription operator |
|
1810 |
Value operator[](const Key& arc) const { |
|
1811 |
return _potential[_digraph.target(arc)] - |
|
1812 |
_potential[_digraph.source(arc)]; |
|
1813 |
} |
|
1814 |
|
|
1815 |
private: |
|
1816 |
const Digraph& _digraph; |
|
1817 |
const NodeMap& _potential; |
|
1818 |
}; |
|
1819 |
|
|
1820 |
/// \brief Returns a PotentialDifferenceMap. |
|
1821 |
/// |
|
1822 |
/// This function just returns a PotentialDifferenceMap. |
|
1823 |
/// \relates PotentialDifferenceMap |
|
1824 |
template <typename Digraph, typename NodeMap> |
|
1825 |
PotentialDifferenceMap<Digraph, NodeMap> |
|
1826 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) { |
|
1827 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential); |
|
1828 |
} |
|
1829 |
|
|
1830 |
/// \brief Map of the node in-degrees. |
|
1831 |
/// |
|
1832 |
/// This map returns the in-degree of a node. Once it is constructed, |
|
1833 |
/// the degrees are stored in a standard NodeMap, so each query is done |
|
1834 |
/// in constant time. On the other hand, the values are updated automatically |
|
1835 |
/// whenever the digraph changes. |
|
1836 |
/// |
|
1837 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
|
1838 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap |
|
1839 |
/// is not guarantied if these additional features are used. For example |
|
1840 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
|
1841 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
|
1842 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
|
1843 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
|
1844 |
/// |
|
1845 |
/// \sa OutDegMap |
|
1846 |
|
|
1847 |
template <typename _Digraph> |
|
1848 |
class InDegMap |
|
1849 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
|
1850 |
::ItemNotifier::ObserverBase { |
|
1851 |
|
|
1852 |
public: |
|
1853 |
|
|
1854 |
typedef _Digraph Digraph; |
|
1855 |
typedef int Value; |
|
1856 |
typedef typename Digraph::Node Key; |
|
1857 |
|
|
1858 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|
1859 |
::ItemNotifier::ObserverBase Parent; |
|
1860 |
|
|
1861 |
private: |
|
1862 |
|
|
1863 |
class AutoNodeMap : public DefaultMap<Digraph, Key, int> { |
|
1864 |
public: |
|
1865 |
|
|
1866 |
typedef DefaultMap<Digraph, Key, int> Parent; |
|
1867 |
|
|
1868 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|
1869 |
|
|
1870 |
virtual void add(const Key& key) { |
|
1871 |
Parent::add(key); |
|
1872 |
Parent::set(key, 0); |
|
1873 |
} |
|
1874 |
|
|
1875 |
virtual void add(const std::vector<Key>& keys) { |
|
1876 |
Parent::add(keys); |
|
1877 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
1878 |
Parent::set(keys[i], 0); |
|
1879 |
} |
|
1880 |
} |
|
1881 |
|
|
1882 |
virtual void build() { |
|
1883 |
Parent::build(); |
|
1884 |
Key it; |
|
1885 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
1886 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
1887 |
Parent::set(it, 0); |
|
1888 |
} |
|
1889 |
} |
|
1890 |
}; |
|
1891 |
|
|
1892 |
public: |
|
1893 |
|
|
1894 |
/// \brief Constructor. |
|
1895 |
/// |
|
1896 |
/// Constructor for creating in-degree map. |
|
1897 |
explicit InDegMap(const Digraph& digraph) |
|
1898 |
: _digraph(digraph), _deg(digraph) { |
|
1899 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|
1900 |
|
|
1901 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
1902 |
_deg[it] = countInArcs(_digraph, it); |
|
1903 |
} |
|
1904 |
} |
|
1905 |
|
|
1906 |
/// Gives back the in-degree of a Node. |
|
1907 |
int operator[](const Key& key) const { |
|
1908 |
return _deg[key]; |
|
1909 |
} |
|
1910 |
|
|
1911 |
protected: |
|
1912 |
|
|
1913 |
typedef typename Digraph::Arc Arc; |
|
1914 |
|
|
1915 |
virtual void add(const Arc& arc) { |
|
1916 |
++_deg[_digraph.target(arc)]; |
|
1917 |
} |
|
1918 |
|
|
1919 |
virtual void add(const std::vector<Arc>& arcs) { |
|
1920 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
1921 |
++_deg[_digraph.target(arcs[i])]; |
|
1922 |
} |
|
1923 |
} |
|
1924 |
|
|
1925 |
virtual void erase(const Arc& arc) { |
|
1926 |
--_deg[_digraph.target(arc)]; |
|
1927 |
} |
|
1928 |
|
|
1929 |
virtual void erase(const std::vector<Arc>& arcs) { |
|
1930 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
1931 |
--_deg[_digraph.target(arcs[i])]; |
|
1932 |
} |
|
1933 |
} |
|
1934 |
|
|
1935 |
virtual void build() { |
|
1936 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
1937 |
_deg[it] = countInArcs(_digraph, it); |
|
1938 |
} |
|
1939 |
} |
|
1940 |
|
|
1941 |
virtual void clear() { |
|
1942 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
1943 |
_deg[it] = 0; |
|
1944 |
} |
|
1945 |
} |
|
1946 |
private: |
|
1947 |
|
|
1948 |
const Digraph& _digraph; |
|
1949 |
AutoNodeMap _deg; |
|
1950 |
}; |
|
1951 |
|
|
1952 |
/// \brief Map of the node out-degrees. |
|
1953 |
/// |
|
1954 |
/// This map returns the out-degree of a node. Once it is constructed, |
|
1955 |
/// the degrees are stored in a standard NodeMap, so each query is done |
|
1956 |
/// in constant time. On the other hand, the values are updated automatically |
|
1957 |
/// whenever the digraph changes. |
|
1958 |
/// |
|
1959 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
|
1960 |
/// alternative ways to modify the digraph. The correct behavior of OutDegMap |
|
1961 |
/// is not guarantied if these additional features are used. For example |
|
1962 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
|
1963 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
|
1964 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
|
1965 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
|
1966 |
/// |
|
1967 |
/// \sa InDegMap |
|
1968 |
|
|
1969 |
template <typename _Digraph> |
|
1970 |
class OutDegMap |
|
1971 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
|
1972 |
::ItemNotifier::ObserverBase { |
|
1973 |
|
|
1974 |
public: |
|
1975 |
|
|
1976 |
typedef _Digraph Digraph; |
|
1977 |
typedef int Value; |
|
1978 |
typedef typename Digraph::Node Key; |
|
1979 |
|
|
1980 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
|
1981 |
::ItemNotifier::ObserverBase Parent; |
|
1982 |
|
|
1983 |
private: |
|
1984 |
|
|
1985 |
class AutoNodeMap : public DefaultMap<Digraph, Key, int> { |
|
1986 |
public: |
|
1987 |
|
|
1988 |
typedef DefaultMap<Digraph, Key, int> Parent; |
|
1989 |
|
|
1990 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
|
1991 |
|
|
1992 |
virtual void add(const Key& key) { |
|
1993 |
Parent::add(key); |
|
1994 |
Parent::set(key, 0); |
|
1995 |
} |
|
1996 |
virtual void add(const std::vector<Key>& keys) { |
|
1997 |
Parent::add(keys); |
|
1998 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
1999 |
Parent::set(keys[i], 0); |
|
2000 |
} |
|
2001 |
} |
|
2002 |
virtual void build() { |
|
2003 |
Parent::build(); |
|
2004 |
Key it; |
|
2005 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2006 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2007 |
Parent::set(it, 0); |
|
2008 |
} |
|
2009 |
} |
|
2010 |
}; |
|
2011 |
|
|
2012 |
public: |
|
2013 |
|
|
2014 |
/// \brief Constructor. |
|
2015 |
/// |
|
2016 |
/// Constructor for creating out-degree map. |
|
2017 |
explicit OutDegMap(const Digraph& digraph) |
|
2018 |
: _digraph(digraph), _deg(digraph) { |
|
2019 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
|
2020 |
|
|
2021 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2022 |
_deg[it] = countOutArcs(_digraph, it); |
|
2023 |
} |
|
2024 |
} |
|
2025 |
|
|
2026 |
/// Gives back the out-degree of a Node. |
|
2027 |
int operator[](const Key& key) const { |
|
2028 |
return _deg[key]; |
|
2029 |
} |
|
2030 |
|
|
2031 |
protected: |
|
2032 |
|
|
2033 |
typedef typename Digraph::Arc Arc; |
|
2034 |
|
|
2035 |
virtual void add(const Arc& arc) { |
|
2036 |
++_deg[_digraph.source(arc)]; |
|
2037 |
} |
|
2038 |
|
|
2039 |
virtual void add(const std::vector<Arc>& arcs) { |
|
2040 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2041 |
++_deg[_digraph.source(arcs[i])]; |
|
2042 |
} |
|
2043 |
} |
|
2044 |
|
|
2045 |
virtual void erase(const Arc& arc) { |
|
2046 |
--_deg[_digraph.source(arc)]; |
|
2047 |
} |
|
2048 |
|
|
2049 |
virtual void erase(const std::vector<Arc>& arcs) { |
|
2050 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2051 |
--_deg[_digraph.source(arcs[i])]; |
|
2052 |
} |
|
2053 |
} |
|
2054 |
|
|
2055 |
virtual void build() { |
|
2056 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2057 |
_deg[it] = countOutArcs(_digraph, it); |
|
2058 |
} |
|
2059 |
} |
|
2060 |
|
|
2061 |
virtual void clear() { |
|
2062 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
|
2063 |
_deg[it] = 0; |
|
2064 |
} |
|
2065 |
} |
|
2066 |
private: |
|
2067 |
|
|
2068 |
const Digraph& _digraph; |
|
2069 |
AutoNodeMap _deg; |
|
2070 |
}; |
|
2071 |
|
|
2072 |
|
|
2073 |
///Dynamic arc look up between given endpoints. |
|
2074 |
|
|
2075 |
///\ingroup gutils |
|
2076 |
///Using this class, you can find an arc in a digraph from a given |
|
2077 |
///source to a given target in amortized time <em>O(log d)</em>, |
|
2078 |
///where <em>d</em> is the out-degree of the source node. |
|
2079 |
/// |
|
2080 |
///It is possible to find \e all parallel arcs between two nodes with |
|
2081 |
///the \c findFirst() and \c findNext() members. |
|
2082 |
/// |
|
2083 |
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your |
|
2084 |
///digraph is not changed so frequently. |
|
2085 |
/// |
|
2086 |
///This class uses a self-adjusting binary search tree, Sleator's |
|
2087 |
///and Tarjan's Splay tree for guarantee the logarithmic amortized |
|
2088 |
///time bound for arc lookups. This class also guarantees the |
|
2089 |
///optimal time bound in a constant factor for any distribution of |
|
2090 |
///queries. |
|
2091 |
/// |
|
2092 |
///\tparam G The type of the underlying digraph. |
|
2093 |
/// |
|
2094 |
///\sa ArcLookUp |
|
2095 |
///\sa AllArcLookUp |
|
2096 |
template<class G> |
|
2097 |
class DynArcLookUp |
|
2098 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
|
2099 |
{ |
|
2100 |
public: |
|
2101 |
typedef typename ItemSetTraits<G, typename G::Arc> |
|
2102 |
::ItemNotifier::ObserverBase Parent; |
|
2103 |
|
|
2104 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
|
2105 |
typedef G Digraph; |
|
2106 |
|
|
2107 |
protected: |
|
2108 |
|
|
2109 |
class AutoNodeMap : public DefaultMap<G, Node, Arc> { |
|
2110 |
public: |
|
2111 |
|
|
2112 |
typedef DefaultMap<G, Node, Arc> Parent; |
|
2113 |
|
|
2114 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
|
2115 |
|
|
2116 |
virtual void add(const Node& node) { |
|
2117 |
Parent::add(node); |
|
2118 |
Parent::set(node, INVALID); |
|
2119 |
} |
|
2120 |
|
|
2121 |
virtual void add(const std::vector<Node>& nodes) { |
|
2122 |
Parent::add(nodes); |
|
2123 |
for (int i = 0; i < int(nodes.size()); ++i) { |
|
2124 |
Parent::set(nodes[i], INVALID); |
|
2125 |
} |
|
2126 |
} |
|
2127 |
|
|
2128 |
virtual void build() { |
|
2129 |
Parent::build(); |
|
2130 |
Node it; |
|
2131 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2132 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2133 |
Parent::set(it, INVALID); |
|
2134 |
} |
|
2135 |
} |
|
2136 |
}; |
|
2137 |
|
|
2138 |
const Digraph &_g; |
|
2139 |
AutoNodeMap _head; |
|
2140 |
typename Digraph::template ArcMap<Arc> _parent; |
|
2141 |
typename Digraph::template ArcMap<Arc> _left; |
|
2142 |
typename Digraph::template ArcMap<Arc> _right; |
|
2143 |
|
|
2144 |
class ArcLess { |
|
2145 |
const Digraph &g; |
|
2146 |
public: |
|
2147 |
ArcLess(const Digraph &_g) : g(_g) {} |
|
2148 |
bool operator()(Arc a,Arc b) const |
|
2149 |
{ |
|
2150 |
return g.target(a)<g.target(b); |
|
2151 |
} |
|
2152 |
}; |
|
2153 |
|
|
2154 |
public: |
|
2155 |
|
|
2156 |
///Constructor |
|
2157 |
|
|
2158 |
///Constructor. |
|
2159 |
/// |
|
2160 |
///It builds up the search database. |
|
2161 |
DynArcLookUp(const Digraph &g) |
|
2162 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
|
2163 |
{ |
|
2164 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
|
2165 |
refresh(); |
|
2166 |
} |
|
2167 |
|
|
2168 |
protected: |
|
2169 |
|
|
2170 |
virtual void add(const Arc& arc) { |
|
2171 |
insert(arc); |
|
2172 |
} |
|
2173 |
|
|
2174 |
virtual void add(const std::vector<Arc>& arcs) { |
|
2175 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2176 |
insert(arcs[i]); |
|
2177 |
} |
|
2178 |
} |
|
2179 |
|
|
2180 |
virtual void erase(const Arc& arc) { |
|
2181 |
remove(arc); |
|
2182 |
} |
|
2183 |
|
|
2184 |
virtual void erase(const std::vector<Arc>& arcs) { |
|
2185 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
2186 |
remove(arcs[i]); |
|
2187 |
} |
|
2188 |
} |
|
2189 |
|
|
2190 |
virtual void build() { |
|
2191 |
refresh(); |
|
2192 |
} |
|
2193 |
|
|
2194 |
virtual void clear() { |
|
2195 |
for(NodeIt n(_g);n!=INVALID;++n) { |
|
2196 |
_head.set(n, INVALID); |
|
2197 |
} |
|
2198 |
} |
|
2199 |
|
|
2200 |
void insert(Arc arc) { |
|
2201 |
Node s = _g.source(arc); |
|
2202 |
Node t = _g.target(arc); |
|
2203 |
_left.set(arc, INVALID); |
|
2204 |
_right.set(arc, INVALID); |
|
2205 |
|
|
2206 |
Arc e = _head[s]; |
|
2207 |
if (e == INVALID) { |
|
2208 |
_head.set(s, arc); |
|
2209 |
_parent.set(arc, INVALID); |
|
2210 |
return; |
|
2211 |
} |
|
2212 |
while (true) { |
|
2213 |
if (t < _g.target(e)) { |
|
2214 |
if (_left[e] == INVALID) { |
|
2215 |
_left.set(e, arc); |
|
2216 |
_parent.set(arc, e); |
|
2217 |
splay(arc); |
|
2218 |
return; |
|
2219 |
} else { |
|
2220 |
e = _left[e]; |
|
2221 |
} |
|
2222 |
} else { |
|
2223 |
if (_right[e] == INVALID) { |
|
2224 |
_right.set(e, arc); |
|
2225 |
_parent.set(arc, e); |
|
2226 |
splay(arc); |
|
2227 |
return; |
|
2228 |
} else { |
|
2229 |
e = _right[e]; |
|
2230 |
} |
|
2231 |
} |
|
2232 |
} |
|
2233 |
} |
|
2234 |
|
|
2235 |
void remove(Arc arc) { |
|
2236 |
if (_left[arc] == INVALID) { |
|
2237 |
if (_right[arc] != INVALID) { |
|
2238 |
_parent.set(_right[arc], _parent[arc]); |
|
2239 |
} |
|
2240 |
if (_parent[arc] != INVALID) { |
|
2241 |
if (_left[_parent[arc]] == arc) { |
|
2242 |
_left.set(_parent[arc], _right[arc]); |
|
2243 |
} else { |
|
2244 |
_right.set(_parent[arc], _right[arc]); |
|
2245 |
} |
|
2246 |
} else { |
|
2247 |
_head.set(_g.source(arc), _right[arc]); |
|
2248 |
} |
|
2249 |
} else if (_right[arc] == INVALID) { |
|
2250 |
_parent.set(_left[arc], _parent[arc]); |
|
2251 |
if (_parent[arc] != INVALID) { |
|
2252 |
if (_left[_parent[arc]] == arc) { |
|
2253 |
_left.set(_parent[arc], _left[arc]); |
|
2254 |
} else { |
|
2255 |
_right.set(_parent[arc], _left[arc]); |
|
2256 |
} |
|
2257 |
} else { |
|
2258 |
_head.set(_g.source(arc), _left[arc]); |
|
2259 |
} |
|
2260 |
} else { |
|
2261 |
Arc e = _left[arc]; |
|
2262 |
if (_right[e] != INVALID) { |
|
2263 |
e = _right[e]; |
|
2264 |
while (_right[e] != INVALID) { |
|
2265 |
e = _right[e]; |
|
2266 |
} |
|
2267 |
Arc s = _parent[e]; |
|
2268 |
_right.set(_parent[e], _left[e]); |
|
2269 |
if (_left[e] != INVALID) { |
|
2270 |
_parent.set(_left[e], _parent[e]); |
|
2271 |
} |
|
2272 |
|
|
2273 |
_left.set(e, _left[arc]); |
|
2274 |
_parent.set(_left[arc], e); |
|
2275 |
_right.set(e, _right[arc]); |
|
2276 |
_parent.set(_right[arc], e); |
|
2277 |
|
|
2278 |
_parent.set(e, _parent[arc]); |
|
2279 |
if (_parent[arc] != INVALID) { |
|
2280 |
if (_left[_parent[arc]] == arc) { |
|
2281 |
_left.set(_parent[arc], e); |
|
2282 |
} else { |
|
2283 |
_right.set(_parent[arc], e); |
|
2284 |
} |
|
2285 |
} |
|
2286 |
splay(s); |
|
2287 |
} else { |
|
2288 |
_right.set(e, _right[arc]); |
|
2289 |
_parent.set(_right[arc], e); |
|
2290 |
|
|
2291 |
if (_parent[arc] != INVALID) { |
|
2292 |
if (_left[_parent[arc]] == arc) { |
|
2293 |
_left.set(_parent[arc], e); |
|
2294 |
} else { |
|
2295 |
_right.set(_parent[arc], e); |
|
2296 |
} |
|
2297 |
} else { |
|
2298 |
_head.set(_g.source(arc), e); |
|
2299 |
} |
|
2300 |
} |
|
2301 |
} |
|
2302 |
} |
|
2303 |
|
|
2304 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
|
2305 |
{ |
|
2306 |
int m=(a+b)/2; |
|
2307 |
Arc me=v[m]; |
|
2308 |
if (a < m) { |
|
2309 |
Arc left = refreshRec(v,a,m-1); |
|
2310 |
_left.set(me, left); |
|
2311 |
_parent.set(left, me); |
|
2312 |
} else { |
|
2313 |
_left.set(me, INVALID); |
|
2314 |
} |
|
2315 |
if (m < b) { |
|
2316 |
Arc right = refreshRec(v,m+1,b); |
|
2317 |
_right.set(me, right); |
|
2318 |
_parent.set(right, me); |
|
2319 |
} else { |
|
2320 |
_right.set(me, INVALID); |
|
2321 |
} |
|
2322 |
return me; |
|
2323 |
} |
|
2324 |
|
|
2325 |
void refresh() { |
|
2326 |
for(NodeIt n(_g);n!=INVALID;++n) { |
|
2327 |
std::vector<Arc> v; |
|
2328 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
|
2329 |
if(v.size()) { |
|
2330 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
|
2331 |
Arc head = refreshRec(v,0,v.size()-1); |
|
2332 |
_head.set(n, head); |
|
2333 |
_parent.set(head, INVALID); |
|
2334 |
} |
|
2335 |
else _head.set(n, INVALID); |
|
2336 |
} |
|
2337 |
} |
|
2338 |
|
|
2339 |
void zig(Arc v) { |
|
2340 |
Arc w = _parent[v]; |
|
2341 |
_parent.set(v, _parent[w]); |
|
2342 |
_parent.set(w, v); |
|
2343 |
_left.set(w, _right[v]); |
|
2344 |
_right.set(v, w); |
|
2345 |
if (_parent[v] != INVALID) { |
|
2346 |
if (_right[_parent[v]] == w) { |
|
2347 |
_right.set(_parent[v], v); |
|
2348 |
} else { |
|
2349 |
_left.set(_parent[v], v); |
|
2350 |
} |
|
2351 |
} |
|
2352 |
if (_left[w] != INVALID){ |
|
2353 |
_parent.set(_left[w], w); |
|
2354 |
} |
|
2355 |
} |
|
2356 |
|
|
2357 |
void zag(Arc v) { |
|
2358 |
Arc w = _parent[v]; |
|
2359 |
_parent.set(v, _parent[w]); |
|
2360 |
_parent.set(w, v); |
|
2361 |
_right.set(w, _left[v]); |
|
2362 |
_left.set(v, w); |
|
2363 |
if (_parent[v] != INVALID){ |
|
2364 |
if (_left[_parent[v]] == w) { |
|
2365 |
_left.set(_parent[v], v); |
|
2366 |
} else { |
|
2367 |
_right.set(_parent[v], v); |
|
2368 |
} |
|
2369 |
} |
|
2370 |
if (_right[w] != INVALID){ |
|
2371 |
_parent.set(_right[w], w); |
|
2372 |
} |
|
2373 |
} |
|
2374 |
|
|
2375 |
void splay(Arc v) { |
|
2376 |
while (_parent[v] != INVALID) { |
|
2377 |
if (v == _left[_parent[v]]) { |
|
2378 |
if (_parent[_parent[v]] == INVALID) { |
|
2379 |
zig(v); |
|
2380 |
} else { |
|
2381 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
|
2382 |
zig(_parent[v]); |
|
2383 |
zig(v); |
|
2384 |
} else { |
|
2385 |
zig(v); |
|
2386 |
zag(v); |
|
2387 |
} |
|
2388 |
} |
|
2389 |
} else { |
|
2390 |
if (_parent[_parent[v]] == INVALID) { |
|
2391 |
zag(v); |
|
2392 |
} else { |
|
2393 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
|
2394 |
zag(v); |
|
2395 |
zig(v); |
|
2396 |
} else { |
|
2397 |
zag(_parent[v]); |
|
2398 |
zag(v); |
|
2399 |
} |
|
2400 |
} |
|
2401 |
} |
|
2402 |
} |
|
2403 |
_head[_g.source(v)] = v; |
|
2404 |
} |
|
2405 |
|
|
2406 |
|
|
2407 |
public: |
|
2408 |
|
|
2409 |
///Find an arc between two nodes. |
|
2410 |
|
|
2411 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
|
2412 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
|
2413 |
///\param s The source node |
|
2414 |
///\param t The target node |
|
2415 |
///\return An arc from \c s to \c t if there exists, |
|
2416 |
///\ref INVALID otherwise. |
|
2417 |
Arc operator()(Node s, Node t) const |
|
2418 |
{ |
|
2419 |
Arc a = _head[s]; |
|
2420 |
while (true) { |
|
2421 |
if (_g.target(a) == t) { |
|
2422 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2423 |
return a; |
|
2424 |
} else if (t < _g.target(a)) { |
|
2425 |
if (_left[a] == INVALID) { |
|
2426 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2427 |
return INVALID; |
|
2428 |
} else { |
|
2429 |
a = _left[a]; |
|
2430 |
} |
|
2431 |
} else { |
|
2432 |
if (_right[a] == INVALID) { |
|
2433 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2434 |
return INVALID; |
|
2435 |
} else { |
|
2436 |
a = _right[a]; |
|
2437 |
} |
|
2438 |
} |
|
2439 |
} |
|
2440 |
} |
|
2441 |
|
|
2442 |
///Find the first arc between two nodes. |
|
2443 |
|
|
2444 |
///Find the first arc between two nodes in time |
|
2445 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
|
2446 |
/// outgoing arcs of \c s. |
|
2447 |
///\param s The source node |
|
2448 |
///\param t The target node |
|
2449 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
|
2450 |
/// otherwise. |
|
2451 |
Arc findFirst(Node s, Node t) const |
|
2452 |
{ |
|
2453 |
Arc a = _head[s]; |
|
2454 |
Arc r = INVALID; |
|
2455 |
while (true) { |
|
2456 |
if (_g.target(a) < t) { |
|
2457 |
if (_right[a] == INVALID) { |
|
2458 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2459 |
return r; |
|
2460 |
} else { |
|
2461 |
a = _right[a]; |
|
2462 |
} |
|
2463 |
} else { |
|
2464 |
if (_g.target(a) == t) { |
|
2465 |
r = a; |
|
2466 |
} |
|
2467 |
if (_left[a] == INVALID) { |
|
2468 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2469 |
return r; |
|
2470 |
} else { |
|
2471 |
a = _left[a]; |
|
2472 |
} |
|
2473 |
} |
|
2474 |
} |
|
2475 |
} |
|
2476 |
|
|
2477 |
///Find the next arc between two nodes. |
|
2478 |
|
|
2479 |
///Find the next arc between two nodes in time |
|
2480 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
|
2481 |
/// outgoing arcs of \c s. |
|
2482 |
///\param s The source node |
|
2483 |
///\param t The target node |
|
2484 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
|
2485 |
/// otherwise. |
|
2486 |
|
|
2487 |
///\note If \c e is not the result of the previous \c findFirst() |
|
2488 |
///operation then the amorized time bound can not be guaranteed. |
|
2489 |
#ifdef DOXYGEN |
|
2490 |
Arc findNext(Node s, Node t, Arc a) const |
|
2491 |
#else |
|
2492 |
Arc findNext(Node, Node t, Arc a) const |
|
2493 |
#endif |
|
2494 |
{ |
|
2495 |
if (_right[a] != INVALID) { |
|
2496 |
a = _right[a]; |
|
2497 |
while (_left[a] != INVALID) { |
|
2498 |
a = _left[a]; |
|
2499 |
} |
|
2500 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2501 |
} else { |
|
2502 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
|
2503 |
a = _parent[a]; |
|
2504 |
} |
|
2505 |
if (_parent[a] == INVALID) { |
|
2506 |
return INVALID; |
|
2507 |
} else { |
|
2508 |
a = _parent[a]; |
|
2509 |
const_cast<DynArcLookUp&>(*this).splay(a); |
|
2510 |
} |
|
2511 |
} |
|
2512 |
if (_g.target(a) == t) return a; |
|
2513 |
else return INVALID; |
|
2514 |
} |
|
2515 |
|
|
2516 |
}; |
|
2517 |
|
|
2518 |
///Fast arc look up between given endpoints. |
|
2519 |
|
|
2520 |
///\ingroup gutils |
|
2521 |
///Using this class, you can find an arc in a digraph from a given |
|
2522 |
///source to a given target in time <em>O(log d)</em>, |
|
2523 |
///where <em>d</em> is the out-degree of the source node. |
|
2524 |
/// |
|
2525 |
///It is not possible to find \e all parallel arcs between two nodes. |
|
2526 |
///Use \ref AllArcLookUp for this purpose. |
|
2527 |
/// |
|
2528 |
///\warning This class is static, so you should refresh() (or at least |
|
2529 |
///refresh(Node)) this data structure |
|
2530 |
///whenever the digraph changes. This is a time consuming (superlinearly |
|
2531 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
|
2532 |
/// |
|
2533 |
///\tparam G The type of the underlying digraph. |
|
2534 |
/// |
|
2535 |
///\sa DynArcLookUp |
|
2536 |
///\sa AllArcLookUp |
|
2537 |
template<class G> |
|
2538 |
class ArcLookUp |
|
2539 |
{ |
|
2540 |
public: |
|
2541 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
|
2542 |
typedef G Digraph; |
|
2543 |
|
|
2544 |
protected: |
|
2545 |
const Digraph &_g; |
|
2546 |
typename Digraph::template NodeMap<Arc> _head; |
|
2547 |
typename Digraph::template ArcMap<Arc> _left; |
|
2548 |
typename Digraph::template ArcMap<Arc> _right; |
|
2549 |
|
|
2550 |
class ArcLess { |
|
2551 |
const Digraph &g; |
|
2552 |
public: |
|
2553 |
ArcLess(const Digraph &_g) : g(_g) {} |
|
2554 |
bool operator()(Arc a,Arc b) const |
|
2555 |
{ |
|
2556 |
return g.target(a)<g.target(b); |
|
2557 |
} |
|
2558 |
}; |
|
2559 |
|
|
2560 |
public: |
|
2561 |
|
|
2562 |
///Constructor |
|
2563 |
|
|
2564 |
///Constructor. |
|
2565 |
/// |
|
2566 |
///It builds up the search database, which remains valid until the digraph |
|
2567 |
///changes. |
|
2568 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
|
2569 |
|
|
2570 |
private: |
|
2571 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
|
2572 |
{ |
|
2573 |
int m=(a+b)/2; |
|
2574 |
Arc me=v[m]; |
|
2575 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
|
2576 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
|
2577 |
return me; |
|
2578 |
} |
|
2579 |
public: |
|
2580 |
///Refresh the data structure at a node. |
|
2581 |
|
|
2582 |
///Build up the search database of node \c n. |
|
2583 |
/// |
|
2584 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
|
2585 |
///the number of the outgoing arcs of \c n. |
|
2586 |
void refresh(Node n) |
|
2587 |
{ |
|
2588 |
std::vector<Arc> v; |
|
2589 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
|
2590 |
if(v.size()) { |
|
2591 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
|
2592 |
_head[n]=refreshRec(v,0,v.size()-1); |
|
2593 |
} |
|
2594 |
else _head[n]=INVALID; |
|
2595 |
} |
|
2596 |
///Refresh the full data structure. |
|
2597 |
|
|
2598 |
///Build up the full search database. In fact, it simply calls |
|
2599 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
|
2600 |
/// |
|
2601 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
|
2602 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
|
2603 |
///out-degree of the digraph. |
|
2604 |
|
|
2605 |
void refresh() |
|
2606 |
{ |
|
2607 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
|
2608 |
} |
|
2609 |
|
|
2610 |
///Find an arc between two nodes. |
|
2611 |
|
|
2612 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
|
2613 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
|
2614 |
///\param s The source node |
|
2615 |
///\param t The target node |
|
2616 |
///\return An arc from \c s to \c t if there exists, |
|
2617 |
///\ref INVALID otherwise. |
|
2618 |
/// |
|
2619 |
///\warning If you change the digraph, refresh() must be called before using |
|
2620 |
///this operator. If you change the outgoing arcs of |
|
2621 |
///a single node \c n, then |
|
2622 |
///\ref refresh(Node) "refresh(n)" is enough. |
|
2623 |
/// |
|
2624 |
Arc operator()(Node s, Node t) const |
|
2625 |
{ |
|
2626 |
Arc e; |
|
2627 |
for(e=_head[s]; |
|
2628 |
e!=INVALID&&_g.target(e)!=t; |
|
2629 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
|
2630 |
return e; |
|
2631 |
} |
|
2632 |
|
|
2633 |
}; |
|
2634 |
|
|
2635 |
///Fast look up of all arcs between given endpoints. |
|
2636 |
|
|
2637 |
///\ingroup gutils |
|
2638 |
///This class is the same as \ref ArcLookUp, with the addition |
|
2639 |
///that it makes it possible to find all arcs between given endpoints. |
|
2640 |
/// |
|
2641 |
///\warning This class is static, so you should refresh() (or at least |
|
2642 |
///refresh(Node)) this data structure |
|
2643 |
///whenever the digraph changes. This is a time consuming (superlinearly |
|
2644 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
|
2645 |
/// |
|
2646 |
///\tparam G The type of the underlying digraph. |
|
2647 |
/// |
|
2648 |
///\sa DynArcLookUp |
|
2649 |
///\sa ArcLookUp |
|
2650 |
template<class G> |
|
2651 |
class AllArcLookUp : public ArcLookUp<G> |
|
2652 |
{ |
|
2653 |
using ArcLookUp<G>::_g; |
|
2654 |
using ArcLookUp<G>::_right; |
|
2655 |
using ArcLookUp<G>::_left; |
|
2656 |
using ArcLookUp<G>::_head; |
|
2657 |
|
|
2658 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
|
2659 |
typedef G Digraph; |
|
2660 |
|
|
2661 |
typename Digraph::template ArcMap<Arc> _next; |
|
2662 |
|
|
2663 |
Arc refreshNext(Arc head,Arc next=INVALID) |
|
2664 |
{ |
|
2665 |
if(head==INVALID) return next; |
|
2666 |
else { |
|
2667 |
next=refreshNext(_right[head],next); |
|
2668 |
// _next[head]=next; |
|
2669 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
|
2670 |
? next : INVALID; |
|
2671 |
return refreshNext(_left[head],head); |
|
2672 |
} |
|
2673 |
} |
|
2674 |
|
|
2675 |
void refreshNext() |
|
2676 |
{ |
|
2677 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
|
2678 |
} |
|
2679 |
|
|
2680 |
public: |
|
2681 |
///Constructor |
|
2682 |
|
|
2683 |
///Constructor. |
|
2684 |
/// |
|
2685 |
///It builds up the search database, which remains valid until the digraph |
|
2686 |
///changes. |
|
2687 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
|
2688 |
|
|
2689 |
///Refresh the data structure at a node. |
|
2690 |
|
|
2691 |
///Build up the search database of node \c n. |
|
2692 |
/// |
|
2693 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
|
2694 |
///the number of the outgoing arcs of \c n. |
|
2695 |
|
|
2696 |
void refresh(Node n) |
|
2697 |
{ |
|
2698 |
ArcLookUp<G>::refresh(n); |
|
2699 |
refreshNext(_head[n]); |
|
2700 |
} |
|
2701 |
|
|
2702 |
///Refresh the full data structure. |
|
2703 |
|
|
2704 |
///Build up the full search database. In fact, it simply calls |
|
2705 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
|
2706 |
/// |
|
2707 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
|
2708 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
|
2709 |
///out-degree of the digraph. |
|
2710 |
|
|
2711 |
void refresh() |
|
2712 |
{ |
|
2713 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
|
2714 |
} |
|
2715 |
|
|
2716 |
///Find an arc between two nodes. |
|
2717 |
|
|
2718 |
///Find an arc between two nodes. |
|
2719 |
///\param s The source node |
|
2720 |
///\param t The target node |
|
2721 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
|
2722 |
///not given, the operator finds the first appropriate arc. |
|
2723 |
///\return An arc from \c s to \c t after \c prev or |
|
2724 |
///\ref INVALID if there is no more. |
|
2725 |
/// |
|
2726 |
///For example, you can count the number of arcs from \c u to \c v in the |
|
2727 |
///following way. |
|
2728 |
///\code |
|
2729 |
///AllArcLookUp<ListDigraph> ae(g); |
|
2730 |
///... |
|
2731 |
///int n=0; |
|
2732 |
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; |
|
2733 |
///\endcode |
|
2734 |
/// |
|
2735 |
///Finding the first arc take <em>O(</em>log<em>d)</em> time, where |
|
2736 |
/// <em>d</em> is the number of outgoing arcs of \c s. Then, the |
|
2737 |
///consecutive arcs are found in constant time. |
|
2738 |
/// |
|
2739 |
///\warning If you change the digraph, refresh() must be called before using |
|
2740 |
///this operator. If you change the outgoing arcs of |
|
2741 |
///a single node \c n, then |
|
2742 |
///\ref refresh(Node) "refresh(n)" is enough. |
|
2743 |
/// |
|
2744 |
#ifdef DOXYGEN |
|
2745 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
|
2746 |
#else |
|
2747 |
using ArcLookUp<G>::operator() ; |
|
2748 |
Arc operator()(Node s, Node t, Arc prev) const |
|
2749 |
{ |
|
2750 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
|
2751 |
} |
|
2752 |
#endif |
|
2753 |
|
|
2754 |
}; |
|
2755 |
|
|
2756 |
/// @} |
|
2757 |
|
|
2758 |
} //END OF NAMESPACE LEMON |
|
2759 |
|
|
2760 |
#endif |
0 comments (0 inline)