gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Exploit that the standard maps are reference maps (#190)
0 9 0
default
9 files changed:
↑ Collapse diff ↑
Ignore white space 768 line context
... ...
@@ -72,682 +72,682 @@
72 72
    /// The type of the map that stores the flow values.
73 73
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
74 74
    typedef typename Digraph::template ArcMap<Value> FlowMap;
75 75

	
76 76
    /// \brief Instantiates a FlowMap.
77 77
    ///
78 78
    /// This function instantiates a \ref FlowMap.
79 79
    /// \param digraph The digraph, to which we would like to define
80 80
    /// the flow map.
81 81
    static FlowMap* createFlowMap(const Digraph& digraph) {
82 82
      return new FlowMap(digraph);
83 83
    }
84 84

	
85 85
    /// \brief The elevator type used by the algorithm.
86 86
    ///
87 87
    /// The elevator type used by the algorithm.
88 88
    ///
89 89
    /// \sa Elevator
90 90
    /// \sa LinkedElevator
91 91
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
92 92

	
93 93
    /// \brief Instantiates an Elevator.
94 94
    ///
95 95
    /// This function instantiates an \ref Elevator.
96 96
    /// \param digraph The digraph, to which we would like to define
97 97
    /// the elevator.
98 98
    /// \param max_level The maximum level of the elevator.
99 99
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
100 100
      return new Elevator(digraph, max_level);
101 101
    }
102 102

	
103 103
    /// \brief The tolerance used by the algorithm
104 104
    ///
105 105
    /// The tolerance used by the algorithm to handle inexact computation.
106 106
    typedef lemon::Tolerance<Value> Tolerance;
107 107

	
108 108
  };
109 109

	
110 110
  /**
111 111
     \brief Push-relabel algorithm for the network circulation problem.
112 112

	
113 113
     \ingroup max_flow
114 114
     This class implements a push-relabel algorithm for the network
115 115
     circulation problem.
116 116
     It is to find a feasible circulation when lower and upper bounds
117 117
     are given for the flow values on the arcs and lower bounds
118 118
     are given for the supply values of the nodes.
119 119

	
120 120
     The exact formulation of this problem is the following.
121 121
     Let \f$G=(V,A)\f$ be a digraph,
122 122
     \f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$,
123 123
     \f$delta: V\rightarrow\mathbf{R}\f$. Find a feasible circulation
124 124
     \f$f: A\rightarrow\mathbf{R}^+_0\f$ so that
125 125
     \f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a)
126 126
     \geq delta(v) \quad \forall v\in V, \f]
127 127
     \f[ lower(a)\leq f(a) \leq upper(a) \quad \forall a\in A. \f]
128 128
     \note \f$delta(v)\f$ specifies a lower bound for the supply of node
129 129
     \f$v\f$. It can be either positive or negative, however note that
130 130
     \f$\sum_{v\in V}delta(v)\f$ should be zero or negative in order to
131 131
     have a feasible solution.
132 132

	
133 133
     \note A special case of this problem is when
134 134
     \f$\sum_{v\in V}delta(v) = 0\f$. Then the supply of each node \f$v\f$
135 135
     will be \e equal \e to \f$delta(v)\f$, if a circulation can be found.
136 136
     Thus a feasible solution for the
137 137
     \ref min_cost_flow "minimum cost flow" problem can be calculated
138 138
     in this way.
139 139

	
140 140
     \tparam GR The type of the digraph the algorithm runs on.
141 141
     \tparam LM The type of the lower bound capacity map. The default
142 142
     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
143 143
     \tparam UM The type of the upper bound capacity map. The default
144 144
     map type is \c LM.
145 145
     \tparam DM The type of the map that stores the lower bound
146 146
     for the supply of the nodes. The default map type is
147 147
     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
148 148
  */
149 149
#ifdef DOXYGEN
150 150
template< typename GR,
151 151
          typename LM,
152 152
          typename UM,
153 153
          typename DM,
154 154
          typename TR >
155 155
#else
156 156
template< typename GR,
157 157
          typename LM = typename GR::template ArcMap<int>,
158 158
          typename UM = LM,
159 159
          typename DM = typename GR::template NodeMap<typename UM::Value>,
160 160
          typename TR = CirculationDefaultTraits<GR, LM, UM, DM> >
161 161
#endif
162 162
  class Circulation {
163 163
  public:
164 164

	
165 165
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
166 166
    typedef TR Traits;
167 167
    ///The type of the digraph the algorithm runs on.
168 168
    typedef typename Traits::Digraph Digraph;
169 169
    ///The type of the flow values.
170 170
    typedef typename Traits::Value Value;
171 171

	
172 172
    /// The type of the lower bound capacity map.
173 173
    typedef typename Traits::LCapMap LCapMap;
174 174
    /// The type of the upper bound capacity map.
175 175
    typedef typename Traits::UCapMap UCapMap;
176 176
    /// \brief The type of the map that stores the lower bound for
177 177
    /// the supply of the nodes.
178 178
    typedef typename Traits::DeltaMap DeltaMap;
179 179
    ///The type of the flow map.
180 180
    typedef typename Traits::FlowMap FlowMap;
181 181

	
182 182
    ///The type of the elevator.
183 183
    typedef typename Traits::Elevator Elevator;
184 184
    ///The type of the tolerance.
185 185
    typedef typename Traits::Tolerance Tolerance;
186 186

	
187 187
  private:
188 188

	
189 189
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
190 190

	
191 191
    const Digraph &_g;
192 192
    int _node_num;
193 193

	
194 194
    const LCapMap *_lo;
195 195
    const UCapMap *_up;
196 196
    const DeltaMap *_delta;
197 197

	
198 198
    FlowMap *_flow;
199 199
    bool _local_flow;
200 200

	
201 201
    Elevator* _level;
202 202
    bool _local_level;
203 203

	
204 204
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
205 205
    ExcessMap* _excess;
206 206

	
207 207
    Tolerance _tol;
208 208
    int _el;
209 209

	
210 210
  public:
211 211

	
212 212
    typedef Circulation Create;
213 213

	
214 214
    ///\name Named Template Parameters
215 215

	
216 216
    ///@{
217 217

	
218 218
    template <typename T>
219 219
    struct SetFlowMapTraits : public Traits {
220 220
      typedef T FlowMap;
221 221
      static FlowMap *createFlowMap(const Digraph&) {
222 222
        LEMON_ASSERT(false, "FlowMap is not initialized");
223 223
        return 0; // ignore warnings
224 224
      }
225 225
    };
226 226

	
227 227
    /// \brief \ref named-templ-param "Named parameter" for setting
228 228
    /// FlowMap type
229 229
    ///
230 230
    /// \ref named-templ-param "Named parameter" for setting FlowMap
231 231
    /// type.
232 232
    template <typename T>
233 233
    struct SetFlowMap
234 234
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
235 235
                           SetFlowMapTraits<T> > {
236 236
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
237 237
                          SetFlowMapTraits<T> > Create;
238 238
    };
239 239

	
240 240
    template <typename T>
241 241
    struct SetElevatorTraits : public Traits {
242 242
      typedef T Elevator;
243 243
      static Elevator *createElevator(const Digraph&, int) {
244 244
        LEMON_ASSERT(false, "Elevator is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248

	
249 249
    /// \brief \ref named-templ-param "Named parameter" for setting
250 250
    /// Elevator type
251 251
    ///
252 252
    /// \ref named-templ-param "Named parameter" for setting Elevator
253 253
    /// type. If this named parameter is used, then an external
254 254
    /// elevator object must be passed to the algorithm using the
255 255
    /// \ref elevator(Elevator&) "elevator()" function before calling
256 256
    /// \ref run() or \ref init().
257 257
    /// \sa SetStandardElevator
258 258
    template <typename T>
259 259
    struct SetElevator
260 260
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
261 261
                           SetElevatorTraits<T> > {
262 262
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
263 263
                          SetElevatorTraits<T> > Create;
264 264
    };
265 265

	
266 266
    template <typename T>
267 267
    struct SetStandardElevatorTraits : public Traits {
268 268
      typedef T Elevator;
269 269
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
270 270
        return new Elevator(digraph, max_level);
271 271
      }
272 272
    };
273 273

	
274 274
    /// \brief \ref named-templ-param "Named parameter" for setting
275 275
    /// Elevator type with automatic allocation
276 276
    ///
277 277
    /// \ref named-templ-param "Named parameter" for setting Elevator
278 278
    /// type with automatic allocation.
279 279
    /// The Elevator should have standard constructor interface to be
280 280
    /// able to automatically created by the algorithm (i.e. the
281 281
    /// digraph and the maximum level should be passed to it).
282 282
    /// However an external elevator object could also be passed to the
283 283
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
284 284
    /// before calling \ref run() or \ref init().
285 285
    /// \sa SetElevator
286 286
    template <typename T>
287 287
    struct SetStandardElevator
288 288
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
289 289
                       SetStandardElevatorTraits<T> > {
290 290
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
291 291
                      SetStandardElevatorTraits<T> > Create;
292 292
    };
293 293

	
294 294
    /// @}
295 295

	
296 296
  protected:
297 297

	
298 298
    Circulation() {}
299 299

	
300 300
  public:
301 301

	
302 302
    /// The constructor of the class.
303 303

	
304 304
    /// The constructor of the class.
305 305
    /// \param g The digraph the algorithm runs on.
306 306
    /// \param lo The lower bound capacity of the arcs.
307 307
    /// \param up The upper bound capacity of the arcs.
308 308
    /// \param delta The lower bound for the supply of the nodes.
309 309
    Circulation(const Digraph &g,const LCapMap &lo,
310 310
                const UCapMap &up,const DeltaMap &delta)
311 311
      : _g(g), _node_num(),
312 312
        _lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false),
313 313
        _level(0), _local_level(false), _excess(0), _el() {}
314 314

	
315 315
    /// Destructor.
316 316
    ~Circulation() {
317 317
      destroyStructures();
318 318
    }
319 319

	
320 320

	
321 321
  private:
322 322

	
323 323
    void createStructures() {
324 324
      _node_num = _el = countNodes(_g);
325 325

	
326 326
      if (!_flow) {
327 327
        _flow = Traits::createFlowMap(_g);
328 328
        _local_flow = true;
329 329
      }
330 330
      if (!_level) {
331 331
        _level = Traits::createElevator(_g, _node_num);
332 332
        _local_level = true;
333 333
      }
334 334
      if (!_excess) {
335 335
        _excess = new ExcessMap(_g);
336 336
      }
337 337
    }
338 338

	
339 339
    void destroyStructures() {
340 340
      if (_local_flow) {
341 341
        delete _flow;
342 342
      }
343 343
      if (_local_level) {
344 344
        delete _level;
345 345
      }
346 346
      if (_excess) {
347 347
        delete _excess;
348 348
      }
349 349
    }
350 350

	
351 351
  public:
352 352

	
353 353
    /// Sets the lower bound capacity map.
354 354

	
355 355
    /// Sets the lower bound capacity map.
356 356
    /// \return <tt>(*this)</tt>
357 357
    Circulation& lowerCapMap(const LCapMap& map) {
358 358
      _lo = &map;
359 359
      return *this;
360 360
    }
361 361

	
362 362
    /// Sets the upper bound capacity map.
363 363

	
364 364
    /// Sets the upper bound capacity map.
365 365
    /// \return <tt>(*this)</tt>
366 366
    Circulation& upperCapMap(const LCapMap& map) {
367 367
      _up = &map;
368 368
      return *this;
369 369
    }
370 370

	
371 371
    /// Sets the lower bound map for the supply of the nodes.
372 372

	
373 373
    /// Sets the lower bound map for the supply of the nodes.
374 374
    /// \return <tt>(*this)</tt>
375 375
    Circulation& deltaMap(const DeltaMap& map) {
376 376
      _delta = &map;
377 377
      return *this;
378 378
    }
379 379

	
380 380
    /// \brief Sets the flow map.
381 381
    ///
382 382
    /// Sets the flow map.
383 383
    /// If you don't use this function before calling \ref run() or
384 384
    /// \ref init(), an instance will be allocated automatically.
385 385
    /// The destructor deallocates this automatically allocated map,
386 386
    /// of course.
387 387
    /// \return <tt>(*this)</tt>
388 388
    Circulation& flowMap(FlowMap& map) {
389 389
      if (_local_flow) {
390 390
        delete _flow;
391 391
        _local_flow = false;
392 392
      }
393 393
      _flow = &map;
394 394
      return *this;
395 395
    }
396 396

	
397 397
    /// \brief Sets the elevator used by algorithm.
398 398
    ///
399 399
    /// Sets the elevator used by algorithm.
400 400
    /// If you don't use this function before calling \ref run() or
401 401
    /// \ref init(), an instance will be allocated automatically.
402 402
    /// The destructor deallocates this automatically allocated elevator,
403 403
    /// of course.
404 404
    /// \return <tt>(*this)</tt>
405 405
    Circulation& elevator(Elevator& elevator) {
406 406
      if (_local_level) {
407 407
        delete _level;
408 408
        _local_level = false;
409 409
      }
410 410
      _level = &elevator;
411 411
      return *this;
412 412
    }
413 413

	
414 414
    /// \brief Returns a const reference to the elevator.
415 415
    ///
416 416
    /// Returns a const reference to the elevator.
417 417
    ///
418 418
    /// \pre Either \ref run() or \ref init() must be called before
419 419
    /// using this function.
420 420
    const Elevator& elevator() const {
421 421
      return *_level;
422 422
    }
423 423

	
424 424
    /// \brief Sets the tolerance used by algorithm.
425 425
    ///
426 426
    /// Sets the tolerance used by algorithm.
427 427
    Circulation& tolerance(const Tolerance& tolerance) const {
428 428
      _tol = tolerance;
429 429
      return *this;
430 430
    }
431 431

	
432 432
    /// \brief Returns a const reference to the tolerance.
433 433
    ///
434 434
    /// Returns a const reference to the tolerance.
435 435
    const Tolerance& tolerance() const {
436 436
      return tolerance;
437 437
    }
438 438

	
439 439
    /// \name Execution Control
440 440
    /// The simplest way to execute the algorithm is to call \ref run().\n
441 441
    /// If you need more control on the initial solution or the execution,
442 442
    /// first you have to call one of the \ref init() functions, then
443 443
    /// the \ref start() function.
444 444

	
445 445
    ///@{
446 446

	
447 447
    /// Initializes the internal data structures.
448 448

	
449 449
    /// Initializes the internal data structures and sets all flow values
450 450
    /// to the lower bound.
451 451
    void init()
452 452
    {
453 453
      createStructures();
454 454

	
455 455
      for(NodeIt n(_g);n!=INVALID;++n) {
456
        _excess->set(n, (*_delta)[n]);
456
        (*_excess)[n] = (*_delta)[n];
457 457
      }
458 458

	
459 459
      for (ArcIt e(_g);e!=INVALID;++e) {
460 460
        _flow->set(e, (*_lo)[e]);
461
        _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]);
462
        _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]);
461
        (*_excess)[_g.target(e)] += (*_flow)[e];
462
        (*_excess)[_g.source(e)] -= (*_flow)[e];
463 463
      }
464 464

	
465 465
      // global relabeling tested, but in general case it provides
466 466
      // worse performance for random digraphs
467 467
      _level->initStart();
468 468
      for(NodeIt n(_g);n!=INVALID;++n)
469 469
        _level->initAddItem(n);
470 470
      _level->initFinish();
471 471
      for(NodeIt n(_g);n!=INVALID;++n)
472 472
        if(_tol.positive((*_excess)[n]))
473 473
          _level->activate(n);
474 474
    }
475 475

	
476 476
    /// Initializes the internal data structures using a greedy approach.
477 477

	
478 478
    /// Initializes the internal data structures using a greedy approach
479 479
    /// to construct the initial solution.
480 480
    void greedyInit()
481 481
    {
482 482
      createStructures();
483 483

	
484 484
      for(NodeIt n(_g);n!=INVALID;++n) {
485
        _excess->set(n, (*_delta)[n]);
485
        (*_excess)[n] = (*_delta)[n];
486 486
      }
487 487

	
488 488
      for (ArcIt e(_g);e!=INVALID;++e) {
489 489
        if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) {
490 490
          _flow->set(e, (*_up)[e]);
491
          _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]);
492
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]);
491
          (*_excess)[_g.target(e)] += (*_up)[e];
492
          (*_excess)[_g.source(e)] -= (*_up)[e];
493 493
        } else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
494 494
          _flow->set(e, (*_lo)[e]);
495
          _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]);
496
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]);
495
          (*_excess)[_g.target(e)] += (*_lo)[e];
496
          (*_excess)[_g.source(e)] -= (*_lo)[e];
497 497
        } else {
498 498
          Value fc = -(*_excess)[_g.target(e)];
499 499
          _flow->set(e, fc);
500
          _excess->set(_g.target(e), 0);
501
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc);
500
          (*_excess)[_g.target(e)] = 0;
501
          (*_excess)[_g.source(e)] -= fc;
502 502
        }
503 503
      }
504 504

	
505 505
      _level->initStart();
506 506
      for(NodeIt n(_g);n!=INVALID;++n)
507 507
        _level->initAddItem(n);
508 508
      _level->initFinish();
509 509
      for(NodeIt n(_g);n!=INVALID;++n)
510 510
        if(_tol.positive((*_excess)[n]))
511 511
          _level->activate(n);
512 512
    }
513 513

	
514 514
    ///Executes the algorithm
515 515

	
516 516
    ///This function executes the algorithm.
517 517
    ///
518 518
    ///\return \c true if a feasible circulation is found.
519 519
    ///
520 520
    ///\sa barrier()
521 521
    ///\sa barrierMap()
522 522
    bool start()
523 523
    {
524 524

	
525 525
      Node act;
526 526
      Node bact=INVALID;
527 527
      Node last_activated=INVALID;
528 528
      while((act=_level->highestActive())!=INVALID) {
529 529
        int actlevel=(*_level)[act];
530 530
        int mlevel=_node_num;
531 531
        Value exc=(*_excess)[act];
532 532

	
533 533
        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
534 534
          Node v = _g.target(e);
535 535
          Value fc=(*_up)[e]-(*_flow)[e];
536 536
          if(!_tol.positive(fc)) continue;
537 537
          if((*_level)[v]<actlevel) {
538 538
            if(!_tol.less(fc, exc)) {
539 539
              _flow->set(e, (*_flow)[e] + exc);
540
              _excess->set(v, (*_excess)[v] + exc);
540
              (*_excess)[v] += exc;
541 541
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
542 542
                _level->activate(v);
543
              _excess->set(act,0);
543
              (*_excess)[act] = 0;
544 544
              _level->deactivate(act);
545 545
              goto next_l;
546 546
            }
547 547
            else {
548 548
              _flow->set(e, (*_up)[e]);
549
              _excess->set(v, (*_excess)[v] + fc);
549
              (*_excess)[v] += fc;
550 550
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
551 551
                _level->activate(v);
552 552
              exc-=fc;
553 553
            }
554 554
          }
555 555
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
556 556
        }
557 557
        for(InArcIt e(_g,act);e!=INVALID; ++e) {
558 558
          Node v = _g.source(e);
559 559
          Value fc=(*_flow)[e]-(*_lo)[e];
560 560
          if(!_tol.positive(fc)) continue;
561 561
          if((*_level)[v]<actlevel) {
562 562
            if(!_tol.less(fc, exc)) {
563 563
              _flow->set(e, (*_flow)[e] - exc);
564
              _excess->set(v, (*_excess)[v] + exc);
564
              (*_excess)[v] += exc;
565 565
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
566 566
                _level->activate(v);
567
              _excess->set(act,0);
567
              (*_excess)[act] = 0;
568 568
              _level->deactivate(act);
569 569
              goto next_l;
570 570
            }
571 571
            else {
572 572
              _flow->set(e, (*_lo)[e]);
573
              _excess->set(v, (*_excess)[v] + fc);
573
              (*_excess)[v] += fc;
574 574
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
575 575
                _level->activate(v);
576 576
              exc-=fc;
577 577
            }
578 578
          }
579 579
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
580 580
        }
581 581

	
582
        _excess->set(act, exc);
582
        (*_excess)[act] = exc;
583 583
        if(!_tol.positive(exc)) _level->deactivate(act);
584 584
        else if(mlevel==_node_num) {
585 585
          _level->liftHighestActiveToTop();
586 586
          _el = _node_num;
587 587
          return false;
588 588
        }
589 589
        else {
590 590
          _level->liftHighestActive(mlevel+1);
591 591
          if(_level->onLevel(actlevel)==0) {
592 592
            _el = actlevel;
593 593
            return false;
594 594
          }
595 595
        }
596 596
      next_l:
597 597
        ;
598 598
      }
599 599
      return true;
600 600
    }
601 601

	
602 602
    /// Runs the algorithm.
603 603

	
604 604
    /// This function runs the algorithm.
605 605
    ///
606 606
    /// \return \c true if a feasible circulation is found.
607 607
    ///
608 608
    /// \note Apart from the return value, c.run() is just a shortcut of
609 609
    /// the following code.
610 610
    /// \code
611 611
    ///   c.greedyInit();
612 612
    ///   c.start();
613 613
    /// \endcode
614 614
    bool run() {
615 615
      greedyInit();
616 616
      return start();
617 617
    }
618 618

	
619 619
    /// @}
620 620

	
621 621
    /// \name Query Functions
622 622
    /// The results of the circulation algorithm can be obtained using
623 623
    /// these functions.\n
624 624
    /// Either \ref run() or \ref start() should be called before
625 625
    /// using them.
626 626

	
627 627
    ///@{
628 628

	
629 629
    /// \brief Returns the flow on the given arc.
630 630
    ///
631 631
    /// Returns the flow on the given arc.
632 632
    ///
633 633
    /// \pre Either \ref run() or \ref init() must be called before
634 634
    /// using this function.
635 635
    Value flow(const Arc& arc) const {
636 636
      return (*_flow)[arc];
637 637
    }
638 638

	
639 639
    /// \brief Returns a const reference to the flow map.
640 640
    ///
641 641
    /// Returns a const reference to the arc map storing the found flow.
642 642
    ///
643 643
    /// \pre Either \ref run() or \ref init() must be called before
644 644
    /// using this function.
645 645
    const FlowMap& flowMap() const {
646 646
      return *_flow;
647 647
    }
648 648

	
649 649
    /**
650 650
       \brief Returns \c true if the given node is in a barrier.
651 651

	
652 652
       Barrier is a set \e B of nodes for which
653 653

	
654 654
       \f[ \sum_{a\in\delta_{out}(B)} upper(a) -
655 655
           \sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f]
656 656

	
657 657
       holds. The existence of a set with this property prooves that a
658 658
       feasible circualtion cannot exist.
659 659

	
660 660
       This function returns \c true if the given node is in the found
661 661
       barrier. If a feasible circulation is found, the function
662 662
       gives back \c false for every node.
663 663

	
664 664
       \pre Either \ref run() or \ref init() must be called before
665 665
       using this function.
666 666

	
667 667
       \sa barrierMap()
668 668
       \sa checkBarrier()
669 669
    */
670 670
    bool barrier(const Node& node) const
671 671
    {
672 672
      return (*_level)[node] >= _el;
673 673
    }
674 674

	
675 675
    /// \brief Gives back a barrier.
676 676
    ///
677 677
    /// This function sets \c bar to the characteristic vector of the
678 678
    /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
679 679
    /// node map with \c bool (or convertible) value type.
680 680
    ///
681 681
    /// If a feasible circulation is found, the function gives back an
682 682
    /// empty set, so \c bar[v] will be \c false for all nodes \c v.
683 683
    ///
684 684
    /// \note This function calls \ref barrier() for each node,
685 685
    /// so it runs in O(n) time.
686 686
    ///
687 687
    /// \pre Either \ref run() or \ref init() must be called before
688 688
    /// using this function.
689 689
    ///
690 690
    /// \sa barrier()
691 691
    /// \sa checkBarrier()
692 692
    template<class BarrierMap>
693 693
    void barrierMap(BarrierMap &bar) const
694 694
    {
695 695
      for(NodeIt n(_g);n!=INVALID;++n)
696 696
        bar.set(n, (*_level)[n] >= _el);
697 697
    }
698 698

	
699 699
    /// @}
700 700

	
701 701
    /// \name Checker Functions
702 702
    /// The feasibility of the results can be checked using
703 703
    /// these functions.\n
704 704
    /// Either \ref run() or \ref start() should be called before
705 705
    /// using them.
706 706

	
707 707
    ///@{
708 708

	
709 709
    ///Check if the found flow is a feasible circulation
710 710

	
711 711
    ///Check if the found flow is a feasible circulation,
712 712
    ///
713 713
    bool checkFlow() const {
714 714
      for(ArcIt e(_g);e!=INVALID;++e)
715 715
        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
716 716
      for(NodeIt n(_g);n!=INVALID;++n)
717 717
        {
718 718
          Value dif=-(*_delta)[n];
719 719
          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
720 720
          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
721 721
          if(_tol.negative(dif)) return false;
722 722
        }
723 723
      return true;
724 724
    }
725 725

	
726 726
    ///Check whether or not the last execution provides a barrier
727 727

	
728 728
    ///Check whether or not the last execution provides a barrier.
729 729
    ///\sa barrier()
730 730
    ///\sa barrierMap()
731 731
    bool checkBarrier() const
732 732
    {
733 733
      Value delta=0;
734 734
      for(NodeIt n(_g);n!=INVALID;++n)
735 735
        if(barrier(n))
736 736
          delta-=(*_delta)[n];
737 737
      for(ArcIt e(_g);e!=INVALID;++e)
738 738
        {
739 739
          Node s=_g.source(e);
740 740
          Node t=_g.target(e);
741 741
          if(barrier(s)&&!barrier(t)) delta+=(*_up)[e];
742 742
          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
743 743
        }
744 744
      return _tol.negative(delta);
745 745
    }
746 746

	
747 747
    /// @}
748 748

	
749 749
  };
750 750

	
751 751
}
752 752

	
753 753
#endif
Ignore white space 6 line context
... ...
@@ -934,913 +934,913 @@
934 934
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
935 935
      _arc_maps;
936 936

	
937 937
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
938 938
      _edge_maps;
939 939

	
940 940
  };
941 941

	
942 942
  /// \brief Copy a graph to another graph.
943 943
  ///
944 944
  /// This function copies a graph to another graph.
945 945
  /// The complete usage of it is detailed in the GraphCopy class,
946 946
  /// but a short example shows a basic work:
947 947
  ///\code
948 948
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
949 949
  ///\endcode
950 950
  ///
951 951
  /// After the copy the \c nr map will contain the mapping from the
952 952
  /// nodes of the \c from graph to the nodes of the \c to graph and
953 953
  /// \c ecr will contain the mapping from the edges of the \c to graph
954 954
  /// to the edges of the \c from graph.
955 955
  ///
956 956
  /// \see GraphCopy
957 957
  template <typename From, typename To>
958 958
  GraphCopy<From, To>
959 959
  graphCopy(const From& from, To& to) {
960 960
    return GraphCopy<From, To>(from, to);
961 961
  }
962 962

	
963 963
  namespace _core_bits {
964 964

	
965 965
    template <typename Graph, typename Enable = void>
966 966
    struct FindArcSelector {
967 967
      typedef typename Graph::Node Node;
968 968
      typedef typename Graph::Arc Arc;
969 969
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
970 970
        if (e == INVALID) {
971 971
          g.firstOut(e, u);
972 972
        } else {
973 973
          g.nextOut(e);
974 974
        }
975 975
        while (e != INVALID && g.target(e) != v) {
976 976
          g.nextOut(e);
977 977
        }
978 978
        return e;
979 979
      }
980 980
    };
981 981

	
982 982
    template <typename Graph>
983 983
    struct FindArcSelector<
984 984
      Graph,
985 985
      typename enable_if<typename Graph::FindArcTag, void>::type>
986 986
    {
987 987
      typedef typename Graph::Node Node;
988 988
      typedef typename Graph::Arc Arc;
989 989
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
990 990
        return g.findArc(u, v, prev);
991 991
      }
992 992
    };
993 993
  }
994 994

	
995 995
  /// \brief Find an arc between two nodes of a digraph.
996 996
  ///
997 997
  /// This function finds an arc from node \c u to node \c v in the
998 998
  /// digraph \c g.
999 999
  ///
1000 1000
  /// If \c prev is \ref INVALID (this is the default value), then
1001 1001
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
1002 1002
  /// the next arc from \c u to \c v after \c prev.
1003 1003
  /// \return The found arc or \ref INVALID if there is no such an arc.
1004 1004
  ///
1005 1005
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
1006 1006
  ///\code
1007 1007
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1008 1008
  ///   ...
1009 1009
  /// }
1010 1010
  ///\endcode
1011 1011
  ///
1012 1012
  /// \note \ref ConArcIt provides iterator interface for the same
1013 1013
  /// functionality.
1014 1014
  ///
1015 1015
  ///\sa ConArcIt
1016 1016
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1017 1017
  template <typename Graph>
1018 1018
  inline typename Graph::Arc
1019 1019
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1020 1020
          typename Graph::Arc prev = INVALID) {
1021 1021
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1022 1022
  }
1023 1023

	
1024 1024
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1025 1025
  ///
1026 1026
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1027 1027
  /// a higher level interface for the \ref findArc() function. You can
1028 1028
  /// use it the following way:
1029 1029
  ///\code
1030 1030
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1031 1031
  ///   ...
1032 1032
  /// }
1033 1033
  ///\endcode
1034 1034
  ///
1035 1035
  ///\sa findArc()
1036 1036
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1037 1037
  template <typename GR>
1038 1038
  class ConArcIt : public GR::Arc {
1039 1039
  public:
1040 1040

	
1041 1041
    typedef GR Graph;
1042 1042
    typedef typename Graph::Arc Parent;
1043 1043

	
1044 1044
    typedef typename Graph::Arc Arc;
1045 1045
    typedef typename Graph::Node Node;
1046 1046

	
1047 1047
    /// \brief Constructor.
1048 1048
    ///
1049 1049
    /// Construct a new ConArcIt iterating on the arcs that
1050 1050
    /// connects nodes \c u and \c v.
1051 1051
    ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
1052 1052
      Parent::operator=(findArc(_graph, u, v));
1053 1053
    }
1054 1054

	
1055 1055
    /// \brief Constructor.
1056 1056
    ///
1057 1057
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
1058 1058
    ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
1059 1059

	
1060 1060
    /// \brief Increment operator.
1061 1061
    ///
1062 1062
    /// It increments the iterator and gives back the next arc.
1063 1063
    ConArcIt& operator++() {
1064 1064
      Parent::operator=(findArc(_graph, _graph.source(*this),
1065 1065
                                _graph.target(*this), *this));
1066 1066
      return *this;
1067 1067
    }
1068 1068
  private:
1069 1069
    const Graph& _graph;
1070 1070
  };
1071 1071

	
1072 1072
  namespace _core_bits {
1073 1073

	
1074 1074
    template <typename Graph, typename Enable = void>
1075 1075
    struct FindEdgeSelector {
1076 1076
      typedef typename Graph::Node Node;
1077 1077
      typedef typename Graph::Edge Edge;
1078 1078
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
1079 1079
        bool b;
1080 1080
        if (u != v) {
1081 1081
          if (e == INVALID) {
1082 1082
            g.firstInc(e, b, u);
1083 1083
          } else {
1084 1084
            b = g.u(e) == u;
1085 1085
            g.nextInc(e, b);
1086 1086
          }
1087 1087
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1088 1088
            g.nextInc(e, b);
1089 1089
          }
1090 1090
        } else {
1091 1091
          if (e == INVALID) {
1092 1092
            g.firstInc(e, b, u);
1093 1093
          } else {
1094 1094
            b = true;
1095 1095
            g.nextInc(e, b);
1096 1096
          }
1097 1097
          while (e != INVALID && (!b || g.v(e) != v)) {
1098 1098
            g.nextInc(e, b);
1099 1099
          }
1100 1100
        }
1101 1101
        return e;
1102 1102
      }
1103 1103
    };
1104 1104

	
1105 1105
    template <typename Graph>
1106 1106
    struct FindEdgeSelector<
1107 1107
      Graph,
1108 1108
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
1109 1109
    {
1110 1110
      typedef typename Graph::Node Node;
1111 1111
      typedef typename Graph::Edge Edge;
1112 1112
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1113 1113
        return g.findEdge(u, v, prev);
1114 1114
      }
1115 1115
    };
1116 1116
  }
1117 1117

	
1118 1118
  /// \brief Find an edge between two nodes of a graph.
1119 1119
  ///
1120 1120
  /// This function finds an edge from node \c u to node \c v in graph \c g.
1121 1121
  /// If node \c u and node \c v is equal then each loop edge
1122 1122
  /// will be enumerated once.
1123 1123
  ///
1124 1124
  /// If \c prev is \ref INVALID (this is the default value), then
1125 1125
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
1126 1126
  /// the next edge from \c u to \c v after \c prev.
1127 1127
  /// \return The found edge or \ref INVALID if there is no such an edge.
1128 1128
  ///
1129 1129
  /// Thus you can iterate through each edge between \c u and \c v
1130 1130
  /// as it follows.
1131 1131
  ///\code
1132 1132
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1133 1133
  ///   ...
1134 1134
  /// }
1135 1135
  ///\endcode
1136 1136
  ///
1137 1137
  /// \note \ref ConEdgeIt provides iterator interface for the same
1138 1138
  /// functionality.
1139 1139
  ///
1140 1140
  ///\sa ConEdgeIt
1141 1141
  template <typename Graph>
1142 1142
  inline typename Graph::Edge
1143 1143
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1144 1144
            typename Graph::Edge p = INVALID) {
1145 1145
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1146 1146
  }
1147 1147

	
1148 1148
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1149 1149
  ///
1150 1150
  /// Iterator for iterating on parallel edges connecting the same nodes.
1151 1151
  /// It is a higher level interface for the findEdge() function. You can
1152 1152
  /// use it the following way:
1153 1153
  ///\code
1154 1154
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1155 1155
  ///   ...
1156 1156
  /// }
1157 1157
  ///\endcode
1158 1158
  ///
1159 1159
  ///\sa findEdge()
1160 1160
  template <typename GR>
1161 1161
  class ConEdgeIt : public GR::Edge {
1162 1162
  public:
1163 1163

	
1164 1164
    typedef GR Graph;
1165 1165
    typedef typename Graph::Edge Parent;
1166 1166

	
1167 1167
    typedef typename Graph::Edge Edge;
1168 1168
    typedef typename Graph::Node Node;
1169 1169

	
1170 1170
    /// \brief Constructor.
1171 1171
    ///
1172 1172
    /// Construct a new ConEdgeIt iterating on the edges that
1173 1173
    /// connects nodes \c u and \c v.
1174 1174
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1175 1175
      Parent::operator=(findEdge(_graph, _u, _v));
1176 1176
    }
1177 1177

	
1178 1178
    /// \brief Constructor.
1179 1179
    ///
1180 1180
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1181 1181
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1182 1182

	
1183 1183
    /// \brief Increment operator.
1184 1184
    ///
1185 1185
    /// It increments the iterator and gives back the next edge.
1186 1186
    ConEdgeIt& operator++() {
1187 1187
      Parent::operator=(findEdge(_graph, _u, _v, *this));
1188 1188
      return *this;
1189 1189
    }
1190 1190
  private:
1191 1191
    const Graph& _graph;
1192 1192
    Node _u, _v;
1193 1193
  };
1194 1194

	
1195 1195

	
1196 1196
  ///Dynamic arc look-up between given endpoints.
1197 1197

	
1198 1198
  ///Using this class, you can find an arc in a digraph from a given
1199 1199
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1200 1200
  ///where <em>d</em> is the out-degree of the source node.
1201 1201
  ///
1202 1202
  ///It is possible to find \e all parallel arcs between two nodes with
1203 1203
  ///the \c operator() member.
1204 1204
  ///
1205 1205
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1206 1206
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
1207 1207
  ///
1208 1208
  ///This class uses a self-adjusting binary search tree, the Splay tree
1209 1209
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
1210 1210
  ///time bound for arc look-ups. This class also guarantees the
1211 1211
  ///optimal time bound in a constant factor for any distribution of
1212 1212
  ///queries.
1213 1213
  ///
1214 1214
  ///\tparam GR The type of the underlying digraph.
1215 1215
  ///
1216 1216
  ///\sa ArcLookUp
1217 1217
  ///\sa AllArcLookUp
1218 1218
  template <typename GR>
1219 1219
  class DynArcLookUp
1220 1220
    : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1221 1221
  {
1222 1222
  public:
1223 1223
    typedef typename ItemSetTraits<GR, typename GR::Arc>
1224 1224
    ::ItemNotifier::ObserverBase Parent;
1225 1225

	
1226 1226
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1227 1227
    typedef GR Digraph;
1228 1228

	
1229 1229
  protected:
1230 1230

	
1231 1231
    class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
1232 1232
    public:
1233 1233

	
1234 1234
      typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1235 1235

	
1236 1236
      AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1237 1237

	
1238 1238
      virtual void add(const Node& node) {
1239 1239
        Parent::add(node);
1240 1240
        Parent::set(node, INVALID);
1241 1241
      }
1242 1242

	
1243 1243
      virtual void add(const std::vector<Node>& nodes) {
1244 1244
        Parent::add(nodes);
1245 1245
        for (int i = 0; i < int(nodes.size()); ++i) {
1246 1246
          Parent::set(nodes[i], INVALID);
1247 1247
        }
1248 1248
      }
1249 1249

	
1250 1250
      virtual void build() {
1251 1251
        Parent::build();
1252 1252
        Node it;
1253 1253
        typename Parent::Notifier* nf = Parent::notifier();
1254 1254
        for (nf->first(it); it != INVALID; nf->next(it)) {
1255 1255
          Parent::set(it, INVALID);
1256 1256
        }
1257 1257
      }
1258 1258
    };
1259 1259

	
1260 1260
    const Digraph &_g;
1261 1261
    AutoNodeMap _head;
1262 1262
    typename Digraph::template ArcMap<Arc> _parent;
1263 1263
    typename Digraph::template ArcMap<Arc> _left;
1264 1264
    typename Digraph::template ArcMap<Arc> _right;
1265 1265

	
1266 1266
    class ArcLess {
1267 1267
      const Digraph &g;
1268 1268
    public:
1269 1269
      ArcLess(const Digraph &_g) : g(_g) {}
1270 1270
      bool operator()(Arc a,Arc b) const
1271 1271
      {
1272 1272
        return g.target(a)<g.target(b);
1273 1273
      }
1274 1274
    };
1275 1275

	
1276 1276
  public:
1277 1277

	
1278 1278
    ///Constructor
1279 1279

	
1280 1280
    ///Constructor.
1281 1281
    ///
1282 1282
    ///It builds up the search database.
1283 1283
    DynArcLookUp(const Digraph &g)
1284 1284
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
1285 1285
    {
1286 1286
      Parent::attach(_g.notifier(typename Digraph::Arc()));
1287 1287
      refresh();
1288 1288
    }
1289 1289

	
1290 1290
  protected:
1291 1291

	
1292 1292
    virtual void add(const Arc& arc) {
1293 1293
      insert(arc);
1294 1294
    }
1295 1295

	
1296 1296
    virtual void add(const std::vector<Arc>& arcs) {
1297 1297
      for (int i = 0; i < int(arcs.size()); ++i) {
1298 1298
        insert(arcs[i]);
1299 1299
      }
1300 1300
    }
1301 1301

	
1302 1302
    virtual void erase(const Arc& arc) {
1303 1303
      remove(arc);
1304 1304
    }
1305 1305

	
1306 1306
    virtual void erase(const std::vector<Arc>& arcs) {
1307 1307
      for (int i = 0; i < int(arcs.size()); ++i) {
1308 1308
        remove(arcs[i]);
1309 1309
      }
1310 1310
    }
1311 1311

	
1312 1312
    virtual void build() {
1313 1313
      refresh();
1314 1314
    }
1315 1315

	
1316 1316
    virtual void clear() {
1317 1317
      for(NodeIt n(_g);n!=INVALID;++n) {
1318
        _head.set(n, INVALID);
1318
        _head[n] = INVALID;
1319 1319
      }
1320 1320
    }
1321 1321

	
1322 1322
    void insert(Arc arc) {
1323 1323
      Node s = _g.source(arc);
1324 1324
      Node t = _g.target(arc);
1325
      _left.set(arc, INVALID);
1326
      _right.set(arc, INVALID);
1325
      _left[arc] = INVALID;
1326
      _right[arc] = INVALID;
1327 1327

	
1328 1328
      Arc e = _head[s];
1329 1329
      if (e == INVALID) {
1330
        _head.set(s, arc);
1331
        _parent.set(arc, INVALID);
1330
        _head[s] = arc;
1331
        _parent[arc] = INVALID;
1332 1332
        return;
1333 1333
      }
1334 1334
      while (true) {
1335 1335
        if (t < _g.target(e)) {
1336 1336
          if (_left[e] == INVALID) {
1337
            _left.set(e, arc);
1338
            _parent.set(arc, e);
1337
            _left[e] = arc;
1338
            _parent[arc] = e;
1339 1339
            splay(arc);
1340 1340
            return;
1341 1341
          } else {
1342 1342
            e = _left[e];
1343 1343
          }
1344 1344
        } else {
1345 1345
          if (_right[e] == INVALID) {
1346
            _right.set(e, arc);
1347
            _parent.set(arc, e);
1346
            _right[e] = arc;
1347
            _parent[arc] = e;
1348 1348
            splay(arc);
1349 1349
            return;
1350 1350
          } else {
1351 1351
            e = _right[e];
1352 1352
          }
1353 1353
        }
1354 1354
      }
1355 1355
    }
1356 1356

	
1357 1357
    void remove(Arc arc) {
1358 1358
      if (_left[arc] == INVALID) {
1359 1359
        if (_right[arc] != INVALID) {
1360
          _parent.set(_right[arc], _parent[arc]);
1360
          _parent[_right[arc]] = _parent[arc];
1361 1361
        }
1362 1362
        if (_parent[arc] != INVALID) {
1363 1363
          if (_left[_parent[arc]] == arc) {
1364
            _left.set(_parent[arc], _right[arc]);
1364
            _left[_parent[arc]] = _right[arc];
1365 1365
          } else {
1366
            _right.set(_parent[arc], _right[arc]);
1366
            _right[_parent[arc]] = _right[arc];
1367 1367
          }
1368 1368
        } else {
1369
          _head.set(_g.source(arc), _right[arc]);
1369
          _head[_g.source(arc)] = _right[arc];
1370 1370
        }
1371 1371
      } else if (_right[arc] == INVALID) {
1372
        _parent.set(_left[arc], _parent[arc]);
1372
        _parent[_left[arc]] = _parent[arc];
1373 1373
        if (_parent[arc] != INVALID) {
1374 1374
          if (_left[_parent[arc]] == arc) {
1375
            _left.set(_parent[arc], _left[arc]);
1375
            _left[_parent[arc]] = _left[arc];
1376 1376
          } else {
1377
            _right.set(_parent[arc], _left[arc]);
1377
            _right[_parent[arc]] = _left[arc];
1378 1378
          }
1379 1379
        } else {
1380
          _head.set(_g.source(arc), _left[arc]);
1380
          _head[_g.source(arc)] = _left[arc];
1381 1381
        }
1382 1382
      } else {
1383 1383
        Arc e = _left[arc];
1384 1384
        if (_right[e] != INVALID) {
1385 1385
          e = _right[e];
1386 1386
          while (_right[e] != INVALID) {
1387 1387
            e = _right[e];
1388 1388
          }
1389 1389
          Arc s = _parent[e];
1390
          _right.set(_parent[e], _left[e]);
1390
          _right[_parent[e]] = _left[e];
1391 1391
          if (_left[e] != INVALID) {
1392
            _parent.set(_left[e], _parent[e]);
1392
            _parent[_left[e]] = _parent[e];
1393 1393
          }
1394 1394

	
1395
          _left.set(e, _left[arc]);
1396
          _parent.set(_left[arc], e);
1397
          _right.set(e, _right[arc]);
1398
          _parent.set(_right[arc], e);
1395
          _left[e] = _left[arc];
1396
          _parent[_left[arc]] = e;
1397
          _right[e] = _right[arc];
1398
          _parent[_right[arc]] = e;
1399 1399

	
1400
          _parent.set(e, _parent[arc]);
1400
          _parent[e] = _parent[arc];
1401 1401
          if (_parent[arc] != INVALID) {
1402 1402
            if (_left[_parent[arc]] == arc) {
1403
              _left.set(_parent[arc], e);
1403
              _left[_parent[arc]] = e;
1404 1404
            } else {
1405
              _right.set(_parent[arc], e);
1405
              _right[_parent[arc]] = e;
1406 1406
            }
1407 1407
          }
1408 1408
          splay(s);
1409 1409
        } else {
1410
          _right.set(e, _right[arc]);
1411
          _parent.set(_right[arc], e);
1412
          _parent.set(e, _parent[arc]);
1410
          _right[e] = _right[arc];
1411
          _parent[_right[arc]] = e;
1412
          _parent[e] = _parent[arc];
1413 1413

	
1414 1414
          if (_parent[arc] != INVALID) {
1415 1415
            if (_left[_parent[arc]] == arc) {
1416
              _left.set(_parent[arc], e);
1416
              _left[_parent[arc]] = e;
1417 1417
            } else {
1418
              _right.set(_parent[arc], e);
1418
              _right[_parent[arc]] = e;
1419 1419
            }
1420 1420
          } else {
1421
            _head.set(_g.source(arc), e);
1421
            _head[_g.source(arc)] = e;
1422 1422
          }
1423 1423
        }
1424 1424
      }
1425 1425
    }
1426 1426

	
1427 1427
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1428 1428
    {
1429 1429
      int m=(a+b)/2;
1430 1430
      Arc me=v[m];
1431 1431
      if (a < m) {
1432 1432
        Arc left = refreshRec(v,a,m-1);
1433
        _left.set(me, left);
1434
        _parent.set(left, me);
1433
        _left[me] = left;
1434
        _parent[left] = me;
1435 1435
      } else {
1436
        _left.set(me, INVALID);
1436
        _left[me] = INVALID;
1437 1437
      }
1438 1438
      if (m < b) {
1439 1439
        Arc right = refreshRec(v,m+1,b);
1440
        _right.set(me, right);
1441
        _parent.set(right, me);
1440
        _right[me] = right;
1441
        _parent[right] = me;
1442 1442
      } else {
1443
        _right.set(me, INVALID);
1443
        _right[me] = INVALID;
1444 1444
      }
1445 1445
      return me;
1446 1446
    }
1447 1447

	
1448 1448
    void refresh() {
1449 1449
      for(NodeIt n(_g);n!=INVALID;++n) {
1450 1450
        std::vector<Arc> v;
1451 1451
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1452 1452
        if (!v.empty()) {
1453 1453
          std::sort(v.begin(),v.end(),ArcLess(_g));
1454 1454
          Arc head = refreshRec(v,0,v.size()-1);
1455
          _head.set(n, head);
1456
          _parent.set(head, INVALID);
1455
          _head[n] = head;
1456
          _parent[head] = INVALID;
1457 1457
        }
1458
        else _head.set(n, INVALID);
1458
        else _head[n] = INVALID;
1459 1459
      }
1460 1460
    }
1461 1461

	
1462 1462
    void zig(Arc v) {
1463 1463
      Arc w = _parent[v];
1464
      _parent.set(v, _parent[w]);
1465
      _parent.set(w, v);
1466
      _left.set(w, _right[v]);
1467
      _right.set(v, w);
1464
      _parent[v] = _parent[w];
1465
      _parent[w] = v;
1466
      _left[w] = _right[v];
1467
      _right[v] = w;
1468 1468
      if (_parent[v] != INVALID) {
1469 1469
        if (_right[_parent[v]] == w) {
1470
          _right.set(_parent[v], v);
1470
          _right[_parent[v]] = v;
1471 1471
        } else {
1472
          _left.set(_parent[v], v);
1472
          _left[_parent[v]] = v;
1473 1473
        }
1474 1474
      }
1475 1475
      if (_left[w] != INVALID){
1476
        _parent.set(_left[w], w);
1476
        _parent[_left[w]] = w;
1477 1477
      }
1478 1478
    }
1479 1479

	
1480 1480
    void zag(Arc v) {
1481 1481
      Arc w = _parent[v];
1482
      _parent.set(v, _parent[w]);
1483
      _parent.set(w, v);
1484
      _right.set(w, _left[v]);
1485
      _left.set(v, w);
1482
      _parent[v] = _parent[w];
1483
      _parent[w] = v;
1484
      _right[w] = _left[v];
1485
      _left[v] = w;
1486 1486
      if (_parent[v] != INVALID){
1487 1487
        if (_left[_parent[v]] == w) {
1488
          _left.set(_parent[v], v);
1488
          _left[_parent[v]] = v;
1489 1489
        } else {
1490
          _right.set(_parent[v], v);
1490
          _right[_parent[v]] = v;
1491 1491
        }
1492 1492
      }
1493 1493
      if (_right[w] != INVALID){
1494
        _parent.set(_right[w], w);
1494
        _parent[_right[w]] = w;
1495 1495
      }
1496 1496
    }
1497 1497

	
1498 1498
    void splay(Arc v) {
1499 1499
      while (_parent[v] != INVALID) {
1500 1500
        if (v == _left[_parent[v]]) {
1501 1501
          if (_parent[_parent[v]] == INVALID) {
1502 1502
            zig(v);
1503 1503
          } else {
1504 1504
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1505 1505
              zig(_parent[v]);
1506 1506
              zig(v);
1507 1507
            } else {
1508 1508
              zig(v);
1509 1509
              zag(v);
1510 1510
            }
1511 1511
          }
1512 1512
        } else {
1513 1513
          if (_parent[_parent[v]] == INVALID) {
1514 1514
            zag(v);
1515 1515
          } else {
1516 1516
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1517 1517
              zag(v);
1518 1518
              zig(v);
1519 1519
            } else {
1520 1520
              zag(_parent[v]);
1521 1521
              zag(v);
1522 1522
            }
1523 1523
          }
1524 1524
        }
1525 1525
      }
1526 1526
      _head[_g.source(v)] = v;
1527 1527
    }
1528 1528

	
1529 1529

	
1530 1530
  public:
1531 1531

	
1532 1532
    ///Find an arc between two nodes.
1533 1533

	
1534 1534
    ///Find an arc between two nodes.
1535 1535
    ///\param s The source node.
1536 1536
    ///\param t The target node.
1537 1537
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
1538 1538
    ///not given, the operator finds the first appropriate arc.
1539 1539
    ///\return An arc from \c s to \c t after \c p or
1540 1540
    ///\ref INVALID if there is no more.
1541 1541
    ///
1542 1542
    ///For example, you can count the number of arcs from \c u to \c v in the
1543 1543
    ///following way.
1544 1544
    ///\code
1545 1545
    ///DynArcLookUp<ListDigraph> ae(g);
1546 1546
    ///...
1547 1547
    ///int n = 0;
1548 1548
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1549 1549
    ///\endcode
1550 1550
    ///
1551 1551
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1552 1552
    ///amortized time, specifically, the time complexity of the lookups
1553 1553
    ///is equal to the optimal search tree implementation for the
1554 1554
    ///current query distribution in a constant factor.
1555 1555
    ///
1556 1556
    ///\note This is a dynamic data structure, therefore the data
1557 1557
    ///structure is updated after each graph alteration. Thus although
1558 1558
    ///this data structure is theoretically faster than \ref ArcLookUp
1559 1559
    ///and \ref AllArcLookUp, it often provides worse performance than
1560 1560
    ///them.
1561 1561
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
1562 1562
      if (p == INVALID) {
1563 1563
        Arc a = _head[s];
1564 1564
        if (a == INVALID) return INVALID;
1565 1565
        Arc r = INVALID;
1566 1566
        while (true) {
1567 1567
          if (_g.target(a) < t) {
1568 1568
            if (_right[a] == INVALID) {
1569 1569
              const_cast<DynArcLookUp&>(*this).splay(a);
1570 1570
              return r;
1571 1571
            } else {
1572 1572
              a = _right[a];
1573 1573
            }
1574 1574
          } else {
1575 1575
            if (_g.target(a) == t) {
1576 1576
              r = a;
1577 1577
            }
1578 1578
            if (_left[a] == INVALID) {
1579 1579
              const_cast<DynArcLookUp&>(*this).splay(a);
1580 1580
              return r;
1581 1581
            } else {
1582 1582
              a = _left[a];
1583 1583
            }
1584 1584
          }
1585 1585
        }
1586 1586
      } else {
1587 1587
        Arc a = p;
1588 1588
        if (_right[a] != INVALID) {
1589 1589
          a = _right[a];
1590 1590
          while (_left[a] != INVALID) {
1591 1591
            a = _left[a];
1592 1592
          }
1593 1593
          const_cast<DynArcLookUp&>(*this).splay(a);
1594 1594
        } else {
1595 1595
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1596 1596
            a = _parent[a];
1597 1597
          }
1598 1598
          if (_parent[a] == INVALID) {
1599 1599
            return INVALID;
1600 1600
          } else {
1601 1601
            a = _parent[a];
1602 1602
            const_cast<DynArcLookUp&>(*this).splay(a);
1603 1603
          }
1604 1604
        }
1605 1605
        if (_g.target(a) == t) return a;
1606 1606
        else return INVALID;
1607 1607
      }
1608 1608
    }
1609 1609

	
1610 1610
  };
1611 1611

	
1612 1612
  ///Fast arc look-up between given endpoints.
1613 1613

	
1614 1614
  ///Using this class, you can find an arc in a digraph from a given
1615 1615
  ///source to a given target in time <em>O</em>(log<em>d</em>),
1616 1616
  ///where <em>d</em> is the out-degree of the source node.
1617 1617
  ///
1618 1618
  ///It is not possible to find \e all parallel arcs between two nodes.
1619 1619
  ///Use \ref AllArcLookUp for this purpose.
1620 1620
  ///
1621 1621
  ///\warning This class is static, so you should call refresh() (or at
1622 1622
  ///least refresh(Node)) to refresh this data structure whenever the
1623 1623
  ///digraph changes. This is a time consuming (superlinearly proportional
1624 1624
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1625 1625
  ///
1626 1626
  ///\tparam GR The type of the underlying digraph.
1627 1627
  ///
1628 1628
  ///\sa DynArcLookUp
1629 1629
  ///\sa AllArcLookUp
1630 1630
  template<class GR>
1631 1631
  class ArcLookUp
1632 1632
  {
1633 1633
  public:
1634 1634
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1635 1635
    typedef GR Digraph;
1636 1636

	
1637 1637
  protected:
1638 1638
    const Digraph &_g;
1639 1639
    typename Digraph::template NodeMap<Arc> _head;
1640 1640
    typename Digraph::template ArcMap<Arc> _left;
1641 1641
    typename Digraph::template ArcMap<Arc> _right;
1642 1642

	
1643 1643
    class ArcLess {
1644 1644
      const Digraph &g;
1645 1645
    public:
1646 1646
      ArcLess(const Digraph &_g) : g(_g) {}
1647 1647
      bool operator()(Arc a,Arc b) const
1648 1648
      {
1649 1649
        return g.target(a)<g.target(b);
1650 1650
      }
1651 1651
    };
1652 1652

	
1653 1653
  public:
1654 1654

	
1655 1655
    ///Constructor
1656 1656

	
1657 1657
    ///Constructor.
1658 1658
    ///
1659 1659
    ///It builds up the search database, which remains valid until the digraph
1660 1660
    ///changes.
1661 1661
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1662 1662

	
1663 1663
  private:
1664 1664
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1665 1665
    {
1666 1666
      int m=(a+b)/2;
1667 1667
      Arc me=v[m];
1668 1668
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1669 1669
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1670 1670
      return me;
1671 1671
    }
1672 1672
  public:
1673 1673
    ///Refresh the search data structure at a node.
1674 1674

	
1675 1675
    ///Build up the search database of node \c n.
1676 1676
    ///
1677 1677
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1678 1678
    ///is the number of the outgoing arcs of \c n.
1679 1679
    void refresh(Node n)
1680 1680
    {
1681 1681
      std::vector<Arc> v;
1682 1682
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1683 1683
      if(v.size()) {
1684 1684
        std::sort(v.begin(),v.end(),ArcLess(_g));
1685 1685
        _head[n]=refreshRec(v,0,v.size()-1);
1686 1686
      }
1687 1687
      else _head[n]=INVALID;
1688 1688
    }
1689 1689
    ///Refresh the full data structure.
1690 1690

	
1691 1691
    ///Build up the full search database. In fact, it simply calls
1692 1692
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1693 1693
    ///
1694 1694
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1695 1695
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1696 1696
    ///out-degree of the digraph.
1697 1697
    void refresh()
1698 1698
    {
1699 1699
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1700 1700
    }
1701 1701

	
1702 1702
    ///Find an arc between two nodes.
1703 1703

	
1704 1704
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1705 1705
    ///where <em>d</em> is the number of outgoing arcs of \c s.
1706 1706
    ///\param s The source node.
1707 1707
    ///\param t The target node.
1708 1708
    ///\return An arc from \c s to \c t if there exists,
1709 1709
    ///\ref INVALID otherwise.
1710 1710
    ///
1711 1711
    ///\warning If you change the digraph, refresh() must be called before using
1712 1712
    ///this operator. If you change the outgoing arcs of
1713 1713
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1714 1714
    Arc operator()(Node s, Node t) const
1715 1715
    {
1716 1716
      Arc e;
1717 1717
      for(e=_head[s];
1718 1718
          e!=INVALID&&_g.target(e)!=t;
1719 1719
          e = t < _g.target(e)?_left[e]:_right[e]) ;
1720 1720
      return e;
1721 1721
    }
1722 1722

	
1723 1723
  };
1724 1724

	
1725 1725
  ///Fast look-up of all arcs between given endpoints.
1726 1726

	
1727 1727
  ///This class is the same as \ref ArcLookUp, with the addition
1728 1728
  ///that it makes it possible to find all parallel arcs between given
1729 1729
  ///endpoints.
1730 1730
  ///
1731 1731
  ///\warning This class is static, so you should call refresh() (or at
1732 1732
  ///least refresh(Node)) to refresh this data structure whenever the
1733 1733
  ///digraph changes. This is a time consuming (superlinearly proportional
1734 1734
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1735 1735
  ///
1736 1736
  ///\tparam GR The type of the underlying digraph.
1737 1737
  ///
1738 1738
  ///\sa DynArcLookUp
1739 1739
  ///\sa ArcLookUp
1740 1740
  template<class GR>
1741 1741
  class AllArcLookUp : public ArcLookUp<GR>
1742 1742
  {
1743 1743
    using ArcLookUp<GR>::_g;
1744 1744
    using ArcLookUp<GR>::_right;
1745 1745
    using ArcLookUp<GR>::_left;
1746 1746
    using ArcLookUp<GR>::_head;
1747 1747

	
1748 1748
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1749 1749
    typedef GR Digraph;
1750 1750

	
1751 1751
    typename Digraph::template ArcMap<Arc> _next;
1752 1752

	
1753 1753
    Arc refreshNext(Arc head,Arc next=INVALID)
1754 1754
    {
1755 1755
      if(head==INVALID) return next;
1756 1756
      else {
1757 1757
        next=refreshNext(_right[head],next);
1758 1758
        _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1759 1759
          ? next : INVALID;
1760 1760
        return refreshNext(_left[head],head);
1761 1761
      }
1762 1762
    }
1763 1763

	
1764 1764
    void refreshNext()
1765 1765
    {
1766 1766
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1767 1767
    }
1768 1768

	
1769 1769
  public:
1770 1770
    ///Constructor
1771 1771

	
1772 1772
    ///Constructor.
1773 1773
    ///
1774 1774
    ///It builds up the search database, which remains valid until the digraph
1775 1775
    ///changes.
1776 1776
    AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
1777 1777

	
1778 1778
    ///Refresh the data structure at a node.
1779 1779

	
1780 1780
    ///Build up the search database of node \c n.
1781 1781
    ///
1782 1782
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1783 1783
    ///the number of the outgoing arcs of \c n.
1784 1784
    void refresh(Node n)
1785 1785
    {
1786 1786
      ArcLookUp<GR>::refresh(n);
1787 1787
      refreshNext(_head[n]);
1788 1788
    }
1789 1789

	
1790 1790
    ///Refresh the full data structure.
1791 1791

	
1792 1792
    ///Build up the full search database. In fact, it simply calls
1793 1793
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1794 1794
    ///
1795 1795
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1796 1796
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1797 1797
    ///out-degree of the digraph.
1798 1798
    void refresh()
1799 1799
    {
1800 1800
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1801 1801
    }
1802 1802

	
1803 1803
    ///Find an arc between two nodes.
1804 1804

	
1805 1805
    ///Find an arc between two nodes.
1806 1806
    ///\param s The source node.
1807 1807
    ///\param t The target node.
1808 1808
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1809 1809
    ///not given, the operator finds the first appropriate arc.
1810 1810
    ///\return An arc from \c s to \c t after \c prev or
1811 1811
    ///\ref INVALID if there is no more.
1812 1812
    ///
1813 1813
    ///For example, you can count the number of arcs from \c u to \c v in the
1814 1814
    ///following way.
1815 1815
    ///\code
1816 1816
    ///AllArcLookUp<ListDigraph> ae(g);
1817 1817
    ///...
1818 1818
    ///int n = 0;
1819 1819
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1820 1820
    ///\endcode
1821 1821
    ///
1822 1822
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1823 1823
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1824 1824
    ///consecutive arcs are found in constant time.
1825 1825
    ///
1826 1826
    ///\warning If you change the digraph, refresh() must be called before using
1827 1827
    ///this operator. If you change the outgoing arcs of
1828 1828
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1829 1829
    ///
1830 1830
#ifdef DOXYGEN
1831 1831
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1832 1832
#else
1833 1833
    using ArcLookUp<GR>::operator() ;
1834 1834
    Arc operator()(Node s, Node t, Arc prev) const
1835 1835
    {
1836 1836
      return prev==INVALID?(*this)(s,t):_next[prev];
1837 1837
    }
1838 1838
#endif
1839 1839

	
1840 1840
  };
1841 1841

	
1842 1842
  /// @}
1843 1843

	
1844 1844
} //namespace lemon
1845 1845

	
1846 1846
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_ELEVATOR_H
20 20
#define LEMON_ELEVATOR_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Elevator class
25 25
///
26 26
///Elevator class implements an efficient data structure
27 27
///for labeling items in push-relabel type algorithms.
28 28
///
29 29

	
30 30
#include <lemon/core.h>
31 31
#include <lemon/bits/traits.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Class for handling "labels" in push-relabel type algorithms.
36 36

	
37 37
  ///A class for handling "labels" in push-relabel type algorithms.
38 38
  ///
39 39
  ///\ingroup auxdat
40 40
  ///Using this class you can assign "labels" (nonnegative integer numbers)
41 41
  ///to the edges or nodes of a graph, manipulate and query them through
42 42
  ///operations typically arising in "push-relabel" type algorithms.
43 43
  ///
44 44
  ///Each item is either \em active or not, and you can also choose a
45 45
  ///highest level active item.
46 46
  ///
47 47
  ///\sa LinkedElevator
48 48
  ///
49 49
  ///\param GR Type of the underlying graph.
50 50
  ///\param Item Type of the items the data is assigned to (\c GR::Node,
51 51
  ///\c GR::Arc or \c GR::Edge).
52 52
  template<class GR, class Item>
53 53
  class Elevator
54 54
  {
55 55
  public:
56 56

	
57 57
    typedef Item Key;
58 58
    typedef int Value;
59 59

	
60 60
  private:
61 61

	
62 62
    typedef Item *Vit;
63 63
    typedef typename ItemSetTraits<GR,Item>::template Map<Vit>::Type VitMap;
64 64
    typedef typename ItemSetTraits<GR,Item>::template Map<int>::Type IntMap;
65 65

	
66 66
    const GR &_g;
67 67
    int _max_level;
68 68
    int _item_num;
69 69
    VitMap _where;
70 70
    IntMap _level;
71 71
    std::vector<Item> _items;
72 72
    std::vector<Vit> _first;
73 73
    std::vector<Vit> _last_active;
74 74

	
75 75
    int _highest_active;
76 76

	
77 77
    void copy(Item i, Vit p)
78 78
    {
79
      _where.set(*p=i,p);
79
      _where[*p=i] = p;
80 80
    }
81 81
    void copy(Vit s, Vit p)
82 82
    {
83 83
      if(s!=p)
84 84
        {
85 85
          Item i=*s;
86 86
          *p=i;
87
          _where.set(i,p);
87
          _where[i] = p;
88 88
        }
89 89
    }
90 90
    void swap(Vit i, Vit j)
91 91
    {
92 92
      Item ti=*i;
93 93
      Vit ct = _where[ti];
94
      _where.set(ti,_where[*i=*j]);
95
      _where.set(*j,ct);
94
      _where[ti] = _where[*i=*j];
95
      _where[*j] = ct;
96 96
      *j=ti;
97 97
    }
98 98

	
99 99
  public:
100 100

	
101 101
    ///Constructor with given maximum level.
102 102

	
103 103
    ///Constructor with given maximum level.
104 104
    ///
105 105
    ///\param graph The underlying graph.
106 106
    ///\param max_level The maximum allowed level.
107 107
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>.
108 108
    Elevator(const GR &graph,int max_level) :
109 109
      _g(graph),
110 110
      _max_level(max_level),
111 111
      _item_num(_max_level),
112 112
      _where(graph),
113 113
      _level(graph,0),
114 114
      _items(_max_level),
115 115
      _first(_max_level+2),
116 116
      _last_active(_max_level+2),
117 117
      _highest_active(-1) {}
118 118
    ///Constructor.
119 119

	
120 120
    ///Constructor.
121 121
    ///
122 122
    ///\param graph The underlying graph.
123 123
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>,
124 124
    ///where \c max_level is equal to the number of labeled items in the graph.
125 125
    Elevator(const GR &graph) :
126 126
      _g(graph),
127 127
      _max_level(countItems<GR, Item>(graph)),
128 128
      _item_num(_max_level),
129 129
      _where(graph),
130 130
      _level(graph,0),
131 131
      _items(_max_level),
132 132
      _first(_max_level+2),
133 133
      _last_active(_max_level+2),
134 134
      _highest_active(-1)
135 135
    {
136 136
    }
137 137

	
138 138
    ///Activate item \c i.
139 139

	
140 140
    ///Activate item \c i.
141 141
    ///\pre Item \c i shouldn't be active before.
142 142
    void activate(Item i)
143 143
    {
144 144
      const int l=_level[i];
145 145
      swap(_where[i],++_last_active[l]);
146 146
      if(l>_highest_active) _highest_active=l;
147 147
    }
148 148

	
149 149
    ///Deactivate item \c i.
150 150

	
151 151
    ///Deactivate item \c i.
152 152
    ///\pre Item \c i must be active before.
153 153
    void deactivate(Item i)
154 154
    {
155 155
      swap(_where[i],_last_active[_level[i]]--);
156 156
      while(_highest_active>=0 &&
157 157
            _last_active[_highest_active]<_first[_highest_active])
158 158
        _highest_active--;
159 159
    }
160 160

	
161 161
    ///Query whether item \c i is active
162 162
    bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
163 163

	
164 164
    ///Return the level of item \c i.
165 165
    int operator[](Item i) const { return _level[i]; }
166 166

	
167 167
    ///Return the number of items on level \c l.
168 168
    int onLevel(int l) const
169 169
    {
170 170
      return _first[l+1]-_first[l];
171 171
    }
172 172
    ///Return true if level \c l is empty.
173 173
    bool emptyLevel(int l) const
174 174
    {
175 175
      return _first[l+1]-_first[l]==0;
176 176
    }
177 177
    ///Return the number of items above level \c l.
178 178
    int aboveLevel(int l) const
179 179
    {
180 180
      return _first[_max_level+1]-_first[l+1];
181 181
    }
182 182
    ///Return the number of active items on level \c l.
183 183
    int activesOnLevel(int l) const
184 184
    {
185 185
      return _last_active[l]-_first[l]+1;
186 186
    }
187 187
    ///Return true if there is no active item on level \c l.
188 188
    bool activeFree(int l) const
189 189
    {
190 190
      return _last_active[l]<_first[l];
191 191
    }
192 192
    ///Return the maximum allowed level.
193 193
    int maxLevel() const
194 194
    {
195 195
      return _max_level;
196 196
    }
197 197

	
198 198
    ///\name Highest Active Item
199 199
    ///Functions for working with the highest level
200 200
    ///active item.
201 201

	
202 202
    ///@{
203 203

	
204 204
    ///Return a highest level active item.
205 205

	
206 206
    ///Return a highest level active item or INVALID if there is no active
207 207
    ///item.
208 208
    Item highestActive() const
209 209
    {
210 210
      return _highest_active>=0?*_last_active[_highest_active]:INVALID;
211 211
    }
212 212

	
213 213
    ///Return the highest active level.
214 214

	
215 215
    ///Return the level of the highest active item or -1 if there is no active
216 216
    ///item.
217 217
    int highestActiveLevel() const
218 218
    {
219 219
      return _highest_active;
220 220
    }
221 221

	
222 222
    ///Lift the highest active item by one.
223 223

	
224 224
    ///Lift the item returned by highestActive() by one.
225 225
    ///
226 226
    void liftHighestActive()
227 227
    {
228 228
      Item it = *_last_active[_highest_active];
229
      _level.set(it,_level[it]+1);
229
      ++_level[it];
230 230
      swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
231 231
      --_first[++_highest_active];
232 232
    }
233 233

	
234 234
    ///Lift the highest active item to the given level.
235 235

	
236 236
    ///Lift the item returned by highestActive() to level \c new_level.
237 237
    ///
238 238
    ///\warning \c new_level must be strictly higher
239 239
    ///than the current level.
240 240
    ///
241 241
    void liftHighestActive(int new_level)
242 242
    {
243 243
      const Item li = *_last_active[_highest_active];
244 244

	
245 245
      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
246 246
      for(int l=_highest_active+1;l<new_level;l++)
247 247
        {
248 248
          copy(--_first[l+1],_first[l]);
249 249
          --_last_active[l];
250 250
        }
251 251
      copy(li,_first[new_level]);
252
      _level.set(li,new_level);
252
      _level[li] = new_level;
253 253
      _highest_active=new_level;
254 254
    }
255 255

	
256 256
    ///Lift the highest active item to the top level.
257 257

	
258 258
    ///Lift the item returned by highestActive() to the top level and
259 259
    ///deactivate it.
260 260
    void liftHighestActiveToTop()
261 261
    {
262 262
      const Item li = *_last_active[_highest_active];
263 263

	
264 264
      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
265 265
      for(int l=_highest_active+1;l<_max_level;l++)
266 266
        {
267 267
          copy(--_first[l+1],_first[l]);
268 268
          --_last_active[l];
269 269
        }
270 270
      copy(li,_first[_max_level]);
271 271
      --_last_active[_max_level];
272
      _level.set(li,_max_level);
272
      _level[li] = _max_level;
273 273

	
274 274
      while(_highest_active>=0 &&
275 275
            _last_active[_highest_active]<_first[_highest_active])
276 276
        _highest_active--;
277 277
    }
278 278

	
279 279
    ///@}
280 280

	
281 281
    ///\name Active Item on Certain Level
282 282
    ///Functions for working with the active items.
283 283

	
284 284
    ///@{
285 285

	
286 286
    ///Return an active item on level \c l.
287 287

	
288 288
    ///Return an active item on level \c l or \ref INVALID if there is no such
289 289
    ///an item. (\c l must be from the range [0...\c max_level].
290 290
    Item activeOn(int l) const
291 291
    {
292 292
      return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
293 293
    }
294 294

	
295 295
    ///Lift the active item returned by \c activeOn(level) by one.
296 296

	
297 297
    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
298 298
    ///by one.
299 299
    Item liftActiveOn(int level)
300 300
    {
301 301
      Item it =*_last_active[level];
302
      _level.set(it,_level[it]+1);
302
      ++_level[it];
303 303
      swap(_last_active[level]--, --_first[level+1]);
304 304
      if (level+1>_highest_active) ++_highest_active;
305 305
    }
306 306

	
307 307
    ///Lift the active item returned by \c activeOn(level) to the given level.
308 308

	
309 309
    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
310 310
    ///to the given level.
311 311
    void liftActiveOn(int level, int new_level)
312 312
    {
313 313
      const Item ai = *_last_active[level];
314 314

	
315 315
      copy(--_first[level+1], _last_active[level]--);
316 316
      for(int l=level+1;l<new_level;l++)
317 317
        {
318 318
          copy(_last_active[l],_first[l]);
319 319
          copy(--_first[l+1], _last_active[l]--);
320 320
        }
321 321
      copy(ai,_first[new_level]);
322
      _level.set(ai,new_level);
322
      _level[ai] = new_level;
323 323
      if (new_level>_highest_active) _highest_active=new_level;
324 324
    }
325 325

	
326 326
    ///Lift the active item returned by \c activeOn(level) to the top level.
327 327

	
328 328
    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
329 329
    ///to the top level and deactivate it.
330 330
    void liftActiveToTop(int level)
331 331
    {
332 332
      const Item ai = *_last_active[level];
333 333

	
334 334
      copy(--_first[level+1],_last_active[level]--);
335 335
      for(int l=level+1;l<_max_level;l++)
336 336
        {
337 337
          copy(_last_active[l],_first[l]);
338 338
          copy(--_first[l+1], _last_active[l]--);
339 339
        }
340 340
      copy(ai,_first[_max_level]);
341 341
      --_last_active[_max_level];
342
      _level.set(ai,_max_level);
342
      _level[ai] = _max_level;
343 343

	
344 344
      if (_highest_active==level) {
345 345
        while(_highest_active>=0 &&
346 346
              _last_active[_highest_active]<_first[_highest_active])
347 347
          _highest_active--;
348 348
      }
349 349
    }
350 350

	
351 351
    ///@}
352 352

	
353 353
    ///Lift an active item to a higher level.
354 354

	
355 355
    ///Lift an active item to a higher level.
356 356
    ///\param i The item to be lifted. It must be active.
357 357
    ///\param new_level The new level of \c i. It must be strictly higher
358 358
    ///than the current level.
359 359
    ///
360 360
    void lift(Item i, int new_level)
361 361
    {
362 362
      const int lo = _level[i];
363 363
      const Vit w = _where[i];
364 364

	
365 365
      copy(_last_active[lo],w);
366 366
      copy(--_first[lo+1],_last_active[lo]--);
367 367
      for(int l=lo+1;l<new_level;l++)
368 368
        {
369 369
          copy(_last_active[l],_first[l]);
370 370
          copy(--_first[l+1],_last_active[l]--);
371 371
        }
372 372
      copy(i,_first[new_level]);
373
      _level.set(i,new_level);
373
      _level[i] = new_level;
374 374
      if(new_level>_highest_active) _highest_active=new_level;
375 375
    }
376 376

	
377 377
    ///Move an inactive item to the top but one level (in a dirty way).
378 378

	
379 379
    ///This function moves an inactive item from the top level to the top
380 380
    ///but one level (in a dirty way).
381 381
    ///\warning It makes the underlying datastructure corrupt, so use it
382 382
    ///only if you really know what it is for.
383 383
    ///\pre The item is on the top level.
384 384
    void dirtyTopButOne(Item i) {
385
      _level.set(i,_max_level - 1);
385
      _level[i] = _max_level - 1;
386 386
    }
387 387

	
388 388
    ///Lift all items on and above the given level to the top level.
389 389

	
390 390
    ///This function lifts all items on and above level \c l to the top
391 391
    ///level and deactivates them.
392 392
    void liftToTop(int l)
393 393
    {
394 394
      const Vit f=_first[l];
395 395
      const Vit tl=_first[_max_level];
396 396
      for(Vit i=f;i!=tl;++i)
397
        _level.set(*i,_max_level);
397
        _level[*i] = _max_level;
398 398
      for(int i=l;i<=_max_level;i++)
399 399
        {
400 400
          _first[i]=f;
401 401
          _last_active[i]=f-1;
402 402
        }
403 403
      for(_highest_active=l-1;
404 404
          _highest_active>=0 &&
405 405
            _last_active[_highest_active]<_first[_highest_active];
406 406
          _highest_active--) ;
407 407
    }
408 408

	
409 409
  private:
410 410
    int _init_lev;
411 411
    Vit _init_num;
412 412

	
413 413
  public:
414 414

	
415 415
    ///\name Initialization
416 416
    ///Using these functions you can initialize the levels of the items.
417 417
    ///\n
418 418
    ///The initialization must be started with calling \c initStart().
419 419
    ///Then the items should be listed level by level starting with the
420 420
    ///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
421 421
    ///Finally \c initFinish() must be called.
422 422
    ///The items not listed are put on the highest level.
423 423
    ///@{
424 424

	
425 425
    ///Start the initialization process.
426 426
    void initStart()
427 427
    {
428 428
      _init_lev=0;
429 429
      _init_num=&_items[0];
430 430
      _first[0]=&_items[0];
431 431
      _last_active[0]=&_items[0]-1;
432 432
      Vit n=&_items[0];
433 433
      for(typename ItemSetTraits<GR,Item>::ItemIt i(_g);i!=INVALID;++i)
434 434
        {
435 435
          *n=i;
436
          _where.set(i,n);
437
          _level.set(i,_max_level);
436
          _where[i] = n;
437
          _level[i] = _max_level;
438 438
          ++n;
439 439
        }
440 440
    }
441 441

	
442 442
    ///Add an item to the current level.
443 443
    void initAddItem(Item i)
444 444
    {
445 445
      swap(_where[i],_init_num);
446
      _level.set(i,_init_lev);
446
      _level[i] = _init_lev;
447 447
      ++_init_num;
448 448
    }
449 449

	
450 450
    ///Start a new level.
451 451

	
452 452
    ///Start a new level.
453 453
    ///It shouldn't be used before the items on level 0 are listed.
454 454
    void initNewLevel()
455 455
    {
456 456
      _init_lev++;
457 457
      _first[_init_lev]=_init_num;
458 458
      _last_active[_init_lev]=_init_num-1;
459 459
    }
460 460

	
461 461
    ///Finalize the initialization process.
462 462
    void initFinish()
463 463
    {
464 464
      for(_init_lev++;_init_lev<=_max_level;_init_lev++)
465 465
        {
466 466
          _first[_init_lev]=_init_num;
467 467
          _last_active[_init_lev]=_init_num-1;
468 468
        }
469 469
      _first[_max_level+1]=&_items[0]+_item_num;
470 470
      _last_active[_max_level+1]=&_items[0]+_item_num-1;
471 471
      _highest_active = -1;
472 472
    }
473 473

	
474 474
    ///@}
475 475

	
476 476
  };
477 477

	
478 478
  ///Class for handling "labels" in push-relabel type algorithms.
479 479

	
480 480
  ///A class for handling "labels" in push-relabel type algorithms.
481 481
  ///
482 482
  ///\ingroup auxdat
483 483
  ///Using this class you can assign "labels" (nonnegative integer numbers)
484 484
  ///to the edges or nodes of a graph, manipulate and query them through
485 485
  ///operations typically arising in "push-relabel" type algorithms.
486 486
  ///
487 487
  ///Each item is either \em active or not, and you can also choose a
488 488
  ///highest level active item.
489 489
  ///
490 490
  ///\sa Elevator
491 491
  ///
492 492
  ///\param GR Type of the underlying graph.
493 493
  ///\param Item Type of the items the data is assigned to (\c GR::Node,
494 494
  ///\c GR::Arc or \c GR::Edge).
495 495
  template <class GR, class Item>
496 496
  class LinkedElevator {
497 497
  public:
498 498

	
499 499
    typedef Item Key;
500 500
    typedef int Value;
501 501

	
502 502
  private:
503 503

	
504 504
    typedef typename ItemSetTraits<GR,Item>::
505 505
    template Map<Item>::Type ItemMap;
506 506
    typedef typename ItemSetTraits<GR,Item>::
507 507
    template Map<int>::Type IntMap;
508 508
    typedef typename ItemSetTraits<GR,Item>::
509 509
    template Map<bool>::Type BoolMap;
510 510

	
511 511
    const GR &_graph;
512 512
    int _max_level;
513 513
    int _item_num;
514 514
    std::vector<Item> _first, _last;
515 515
    ItemMap _prev, _next;
516 516
    int _highest_active;
517 517
    IntMap _level;
518 518
    BoolMap _active;
519 519

	
520 520
  public:
521 521
    ///Constructor with given maximum level.
522 522

	
523 523
    ///Constructor with given maximum level.
524 524
    ///
525 525
    ///\param graph The underlying graph.
526 526
    ///\param max_level The maximum allowed level.
527 527
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>.
528 528
    LinkedElevator(const GR& graph, int max_level)
529 529
      : _graph(graph), _max_level(max_level), _item_num(_max_level),
530 530
        _first(_max_level + 1), _last(_max_level + 1),
531 531
        _prev(graph), _next(graph),
532 532
        _highest_active(-1), _level(graph), _active(graph) {}
533 533

	
534 534
    ///Constructor.
535 535

	
536 536
    ///Constructor.
537 537
    ///
538 538
    ///\param graph The underlying graph.
539 539
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>,
540 540
    ///where \c max_level is equal to the number of labeled items in the graph.
541 541
    LinkedElevator(const GR& graph)
542 542
      : _graph(graph), _max_level(countItems<GR, Item>(graph)),
543 543
        _item_num(_max_level),
544 544
        _first(_max_level + 1), _last(_max_level + 1),
545 545
        _prev(graph, INVALID), _next(graph, INVALID),
546 546
        _highest_active(-1), _level(graph), _active(graph) {}
547 547

	
548 548

	
549 549
    ///Activate item \c i.
550 550

	
551 551
    ///Activate item \c i.
552 552
    ///\pre Item \c i shouldn't be active before.
553 553
    void activate(Item i) {
554
      _active.set(i, true);
554
      _active[i] = true;
555 555

	
556 556
      int level = _level[i];
557 557
      if (level > _highest_active) {
558 558
        _highest_active = level;
559 559
      }
560 560

	
561 561
      if (_prev[i] == INVALID || _active[_prev[i]]) return;
562 562
      //unlace
563
      _next.set(_prev[i], _next[i]);
563
      _next[_prev[i]] = _next[i];
564 564
      if (_next[i] != INVALID) {
565
        _prev.set(_next[i], _prev[i]);
565
        _prev[_next[i]] = _prev[i];
566 566
      } else {
567 567
        _last[level] = _prev[i];
568 568
      }
569 569
      //lace
570
      _next.set(i, _first[level]);
571
      _prev.set(_first[level], i);
572
      _prev.set(i, INVALID);
570
      _next[i] = _first[level];
571
      _prev[_first[level]] = i;
572
      _prev[i] = INVALID;
573 573
      _first[level] = i;
574 574

	
575 575
    }
576 576

	
577 577
    ///Deactivate item \c i.
578 578

	
579 579
    ///Deactivate item \c i.
580 580
    ///\pre Item \c i must be active before.
581 581
    void deactivate(Item i) {
582
      _active.set(i, false);
582
      _active[i] = false;
583 583
      int level = _level[i];
584 584

	
585 585
      if (_next[i] == INVALID || !_active[_next[i]])
586 586
        goto find_highest_level;
587 587

	
588 588
      //unlace
589
      _prev.set(_next[i], _prev[i]);
589
      _prev[_next[i]] = _prev[i];
590 590
      if (_prev[i] != INVALID) {
591
        _next.set(_prev[i], _next[i]);
591
        _next[_prev[i]] = _next[i];
592 592
      } else {
593 593
        _first[_level[i]] = _next[i];
594 594
      }
595 595
      //lace
596
      _prev.set(i, _last[level]);
597
      _next.set(_last[level], i);
598
      _next.set(i, INVALID);
596
      _prev[i] = _last[level];
597
      _next[_last[level]] = i;
598
      _next[i] = INVALID;
599 599
      _last[level] = i;
600 600

	
601 601
    find_highest_level:
602 602
      if (level == _highest_active) {
603 603
        while (_highest_active >= 0 && activeFree(_highest_active))
604 604
          --_highest_active;
605 605
      }
606 606
    }
607 607

	
608 608
    ///Query whether item \c i is active
609 609
    bool active(Item i) const { return _active[i]; }
610 610

	
611 611
    ///Return the level of item \c i.
612 612
    int operator[](Item i) const { return _level[i]; }
613 613

	
614 614
    ///Return the number of items on level \c l.
615 615
    int onLevel(int l) const {
616 616
      int num = 0;
617 617
      Item n = _first[l];
618 618
      while (n != INVALID) {
619 619
        ++num;
620 620
        n = _next[n];
621 621
      }
622 622
      return num;
623 623
    }
624 624

	
625 625
    ///Return true if the level is empty.
626 626
    bool emptyLevel(int l) const {
627 627
      return _first[l] == INVALID;
628 628
    }
629 629

	
630 630
    ///Return the number of items above level \c l.
631 631
    int aboveLevel(int l) const {
632 632
      int num = 0;
633 633
      for (int level = l + 1; level < _max_level; ++level)
634 634
        num += onLevel(level);
635 635
      return num;
636 636
    }
637 637

	
638 638
    ///Return the number of active items on level \c l.
639 639
    int activesOnLevel(int l) const {
640 640
      int num = 0;
641 641
      Item n = _first[l];
642 642
      while (n != INVALID && _active[n]) {
643 643
        ++num;
644 644
        n = _next[n];
645 645
      }
646 646
      return num;
647 647
    }
648 648

	
649 649
    ///Return true if there is no active item on level \c l.
650 650
    bool activeFree(int l) const {
651 651
      return _first[l] == INVALID || !_active[_first[l]];
652 652
    }
653 653

	
654 654
    ///Return the maximum allowed level.
655 655
    int maxLevel() const {
656 656
      return _max_level;
657 657
    }
658 658

	
659 659
    ///\name Highest Active Item
660 660
    ///Functions for working with the highest level
661 661
    ///active item.
662 662

	
663 663
    ///@{
664 664

	
665 665
    ///Return a highest level active item.
666 666

	
667 667
    ///Return a highest level active item or INVALID if there is no active
668 668
    ///item.
669 669
    Item highestActive() const {
670 670
      return _highest_active >= 0 ? _first[_highest_active] : INVALID;
671 671
    }
672 672

	
673 673
    ///Return the highest active level.
674 674

	
675 675
    ///Return the level of the highest active item or -1 if there is no active
676 676
    ///item.
677 677
    int highestActiveLevel() const {
678 678
      return _highest_active;
679 679
    }
680 680

	
681 681
    ///Lift the highest active item by one.
682 682

	
683 683
    ///Lift the item returned by highestActive() by one.
684 684
    ///
685 685
    void liftHighestActive() {
686 686
      Item i = _first[_highest_active];
687 687
      if (_next[i] != INVALID) {
688
        _prev.set(_next[i], INVALID);
688
        _prev[_next[i]] = INVALID;
689 689
        _first[_highest_active] = _next[i];
690 690
      } else {
691 691
        _first[_highest_active] = INVALID;
692 692
        _last[_highest_active] = INVALID;
693 693
      }
694
      _level.set(i, ++_highest_active);
694
      _level[i] = ++_highest_active;
695 695
      if (_first[_highest_active] == INVALID) {
696 696
        _first[_highest_active] = i;
697 697
        _last[_highest_active] = i;
698
        _prev.set(i, INVALID);
699
        _next.set(i, INVALID);
698
        _prev[i] = INVALID;
699
        _next[i] = INVALID;
700 700
      } else {
701
        _prev.set(_first[_highest_active], i);
702
        _next.set(i, _first[_highest_active]);
701
        _prev[_first[_highest_active]] = i;
702
        _next[i] = _first[_highest_active];
703 703
        _first[_highest_active] = i;
704 704
      }
705 705
    }
706 706

	
707 707
    ///Lift the highest active item to the given level.
708 708

	
709 709
    ///Lift the item returned by highestActive() to level \c new_level.
710 710
    ///
711 711
    ///\warning \c new_level must be strictly higher
712 712
    ///than the current level.
713 713
    ///
714 714
    void liftHighestActive(int new_level) {
715 715
      Item i = _first[_highest_active];
716 716
      if (_next[i] != INVALID) {
717
        _prev.set(_next[i], INVALID);
717
        _prev[_next[i]] = INVALID;
718 718
        _first[_highest_active] = _next[i];
719 719
      } else {
720 720
        _first[_highest_active] = INVALID;
721 721
        _last[_highest_active] = INVALID;
722 722
      }
723
      _level.set(i, _highest_active = new_level);
723
      _level[i] = _highest_active = new_level;
724 724
      if (_first[_highest_active] == INVALID) {
725 725
        _first[_highest_active] = _last[_highest_active] = i;
726
        _prev.set(i, INVALID);
727
        _next.set(i, INVALID);
726
        _prev[i] = INVALID;
727
        _next[i] = INVALID;
728 728
      } else {
729
        _prev.set(_first[_highest_active], i);
730
        _next.set(i, _first[_highest_active]);
729
        _prev[_first[_highest_active]] = i;
730
        _next[i] = _first[_highest_active];
731 731
        _first[_highest_active] = i;
732 732
      }
733 733
    }
734 734

	
735 735
    ///Lift the highest active item to the top level.
736 736

	
737 737
    ///Lift the item returned by highestActive() to the top level and
738 738
    ///deactivate it.
739 739
    void liftHighestActiveToTop() {
740 740
      Item i = _first[_highest_active];
741
      _level.set(i, _max_level);
741
      _level[i] = _max_level;
742 742
      if (_next[i] != INVALID) {
743
        _prev.set(_next[i], INVALID);
743
        _prev[_next[i]] = INVALID;
744 744
        _first[_highest_active] = _next[i];
745 745
      } else {
746 746
        _first[_highest_active] = INVALID;
747 747
        _last[_highest_active] = INVALID;
748 748
      }
749 749
      while (_highest_active >= 0 && activeFree(_highest_active))
750 750
        --_highest_active;
751 751
    }
752 752

	
753 753
    ///@}
754 754

	
755 755
    ///\name Active Item on Certain Level
756 756
    ///Functions for working with the active items.
757 757

	
758 758
    ///@{
759 759

	
760 760
    ///Return an active item on level \c l.
761 761

	
762 762
    ///Return an active item on level \c l or \ref INVALID if there is no such
763 763
    ///an item. (\c l must be from the range [0...\c max_level].
764 764
    Item activeOn(int l) const
765 765
    {
766 766
      return _active[_first[l]] ? _first[l] : INVALID;
767 767
    }
768 768

	
769 769
    ///Lift the active item returned by \c activeOn(l) by one.
770 770

	
771 771
    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
772 772
    ///by one.
773 773
    Item liftActiveOn(int l)
774 774
    {
775 775
      Item i = _first[l];
776 776
      if (_next[i] != INVALID) {
777
        _prev.set(_next[i], INVALID);
777
        _prev[_next[i]] = INVALID;
778 778
        _first[l] = _next[i];
779 779
      } else {
780 780
        _first[l] = INVALID;
781 781
        _last[l] = INVALID;
782 782
      }
783
      _level.set(i, ++l);
783
      _level[i] = ++l;
784 784
      if (_first[l] == INVALID) {
785 785
        _first[l] = _last[l] = i;
786
        _prev.set(i, INVALID);
787
        _next.set(i, INVALID);
786
        _prev[i] = INVALID;
787
        _next[i] = INVALID;
788 788
      } else {
789
        _prev.set(_first[l], i);
790
        _next.set(i, _first[l]);
789
        _prev[_first[l]] = i;
790
        _next[i] = _first[l];
791 791
        _first[l] = i;
792 792
      }
793 793
      if (_highest_active < l) {
794 794
        _highest_active = l;
795 795
      }
796 796
    }
797 797

	
798 798
    ///Lift the active item returned by \c activeOn(l) to the given level.
799 799

	
800 800
    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
801 801
    ///to the given level.
802 802
    void liftActiveOn(int l, int new_level)
803 803
    {
804 804
      Item i = _first[l];
805 805
      if (_next[i] != INVALID) {
806
        _prev.set(_next[i], INVALID);
806
        _prev[_next[i]] = INVALID;
807 807
        _first[l] = _next[i];
808 808
      } else {
809 809
        _first[l] = INVALID;
810 810
        _last[l] = INVALID;
811 811
      }
812
      _level.set(i, l = new_level);
812
      _level[i] = l = new_level;
813 813
      if (_first[l] == INVALID) {
814 814
        _first[l] = _last[l] = i;
815
        _prev.set(i, INVALID);
816
        _next.set(i, INVALID);
815
        _prev[i] = INVALID;
816
        _next[i] = INVALID;
817 817
      } else {
818
        _prev.set(_first[l], i);
819
        _next.set(i, _first[l]);
818
        _prev[_first[l]] = i;
819
        _next[i] = _first[l];
820 820
        _first[l] = i;
821 821
      }
822 822
      if (_highest_active < l) {
823 823
        _highest_active = l;
824 824
      }
825 825
    }
826 826

	
827 827
    ///Lift the active item returned by \c activeOn(l) to the top level.
828 828

	
829 829
    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
830 830
    ///to the top level and deactivate it.
831 831
    void liftActiveToTop(int l)
832 832
    {
833 833
      Item i = _first[l];
834 834
      if (_next[i] != INVALID) {
835
        _prev.set(_next[i], INVALID);
835
        _prev[_next[i]] = INVALID;
836 836
        _first[l] = _next[i];
837 837
      } else {
838 838
        _first[l] = INVALID;
839 839
        _last[l] = INVALID;
840 840
      }
841
      _level.set(i, _max_level);
841
      _level[i] = _max_level;
842 842
      if (l == _highest_active) {
843 843
        while (_highest_active >= 0 && activeFree(_highest_active))
844 844
          --_highest_active;
845 845
      }
846 846
    }
847 847

	
848 848
    ///@}
849 849

	
850 850
    /// \brief Lift an active item to a higher level.
851 851
    ///
852 852
    /// Lift an active item to a higher level.
853 853
    /// \param i The item to be lifted. It must be active.
854 854
    /// \param new_level The new level of \c i. It must be strictly higher
855 855
    /// than the current level.
856 856
    ///
857 857
    void lift(Item i, int new_level) {
858 858
      if (_next[i] != INVALID) {
859
        _prev.set(_next[i], _prev[i]);
859
        _prev[_next[i]] = _prev[i];
860 860
      } else {
861 861
        _last[new_level] = _prev[i];
862 862
      }
863 863
      if (_prev[i] != INVALID) {
864
        _next.set(_prev[i], _next[i]);
864
        _next[_prev[i]] = _next[i];
865 865
      } else {
866 866
        _first[new_level] = _next[i];
867 867
      }
868
      _level.set(i, new_level);
868
      _level[i] = new_level;
869 869
      if (_first[new_level] == INVALID) {
870 870
        _first[new_level] = _last[new_level] = i;
871
        _prev.set(i, INVALID);
872
        _next.set(i, INVALID);
871
        _prev[i] = INVALID;
872
        _next[i] = INVALID;
873 873
      } else {
874
        _prev.set(_first[new_level], i);
875
        _next.set(i, _first[new_level]);
874
        _prev[_first[new_level]] = i;
875
        _next[i] = _first[new_level];
876 876
        _first[new_level] = i;
877 877
      }
878 878
      if (_highest_active < new_level) {
879 879
        _highest_active = new_level;
880 880
      }
881 881
    }
882 882

	
883 883
    ///Move an inactive item to the top but one level (in a dirty way).
884 884

	
885 885
    ///This function moves an inactive item from the top level to the top
886 886
    ///but one level (in a dirty way).
887 887
    ///\warning It makes the underlying datastructure corrupt, so use it
888 888
    ///only if you really know what it is for.
889 889
    ///\pre The item is on the top level.
890 890
    void dirtyTopButOne(Item i) {
891
      _level.set(i, _max_level - 1);
891
      _level[i] = _max_level - 1;
892 892
    }
893 893

	
894 894
    ///Lift all items on and above the given level to the top level.
895 895

	
896 896
    ///This function lifts all items on and above level \c l to the top
897 897
    ///level and deactivates them.
898 898
    void liftToTop(int l)  {
899 899
      for (int i = l + 1; _first[i] != INVALID; ++i) {
900 900
        Item n = _first[i];
901 901
        while (n != INVALID) {
902
          _level.set(n, _max_level);
902
          _level[n] = _max_level;
903 903
          n = _next[n];
904 904
        }
905 905
        _first[i] = INVALID;
906 906
        _last[i] = INVALID;
907 907
      }
908 908
      if (_highest_active > l - 1) {
909 909
        _highest_active = l - 1;
910 910
        while (_highest_active >= 0 && activeFree(_highest_active))
911 911
          --_highest_active;
912 912
      }
913 913
    }
914 914

	
915 915
  private:
916 916

	
917 917
    int _init_level;
918 918

	
919 919
  public:
920 920

	
921 921
    ///\name Initialization
922 922
    ///Using these functions you can initialize the levels of the items.
923 923
    ///\n
924 924
    ///The initialization must be started with calling \c initStart().
925 925
    ///Then the items should be listed level by level starting with the
926 926
    ///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
927 927
    ///Finally \c initFinish() must be called.
928 928
    ///The items not listed are put on the highest level.
929 929
    ///@{
930 930

	
931 931
    ///Start the initialization process.
932 932
    void initStart() {
933 933

	
934 934
      for (int i = 0; i <= _max_level; ++i) {
935 935
        _first[i] = _last[i] = INVALID;
936 936
      }
937 937
      _init_level = 0;
938 938
      for(typename ItemSetTraits<GR,Item>::ItemIt i(_graph);
939 939
          i != INVALID; ++i) {
940
        _level.set(i, _max_level);
941
        _active.set(i, false);
940
        _level[i] = _max_level;
941
        _active[i] = false;
942 942
      }
943 943
    }
944 944

	
945 945
    ///Add an item to the current level.
946 946
    void initAddItem(Item i) {
947
      _level.set(i, _init_level);
947
      _level[i] = _init_level;
948 948
      if (_last[_init_level] == INVALID) {
949 949
        _first[_init_level] = i;
950 950
        _last[_init_level] = i;
951
        _prev.set(i, INVALID);
952
        _next.set(i, INVALID);
951
        _prev[i] = INVALID;
952
        _next[i] = INVALID;
953 953
      } else {
954
        _prev.set(i, _last[_init_level]);
955
        _next.set(i, INVALID);
956
        _next.set(_last[_init_level], i);
954
        _prev[i] = _last[_init_level];
955
        _next[i] = INVALID;
956
        _next[_last[_init_level]] = i;
957 957
        _last[_init_level] = i;
958 958
      }
959 959
    }
960 960

	
961 961
    ///Start a new level.
962 962

	
963 963
    ///Start a new level.
964 964
    ///It shouldn't be used before the items on level 0 are listed.
965 965
    void initNewLevel() {
966 966
      ++_init_level;
967 967
    }
968 968

	
969 969
    ///Finalize the initialization process.
970 970
    void initFinish() {
971 971
      _highest_active = -1;
972 972
    }
973 973

	
974 974
    ///@}
975 975

	
976 976
  };
977 977

	
978 978

	
979 979
} //END OF NAMESPACE LEMON
980 980

	
981 981
#endif
982 982

	
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GOMORY_HU_TREE_H
20 20
#define LEMON_GOMORY_HU_TREE_H
21 21

	
22 22
#include <limits>
23 23

	
24 24
#include <lemon/core.h>
25 25
#include <lemon/preflow.h>
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
/// \ingroup min_cut
30 30
/// \file 
31 31
/// \brief Gomory-Hu cut tree in graphs.
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  /// \ingroup min_cut
36 36
  ///
37 37
  /// \brief Gomory-Hu cut tree algorithm
38 38
  ///
39 39
  /// The Gomory-Hu tree is a tree on the node set of a given graph, but it
40 40
  /// may contain edges which are not in the original graph. It has the
41 41
  /// property that the minimum capacity edge of the path between two nodes 
42 42
  /// in this tree has the same weight as the minimum cut in the graph
43 43
  /// between these nodes. Moreover the components obtained by removing
44 44
  /// this edge from the tree determine the corresponding minimum cut.
45 45
  ///
46 46
  /// Therefore once this tree is computed, the minimum cut between any pair
47 47
  /// of nodes can easily be obtained.
48 48
  /// 
49 49
  /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
50 50
  /// the \ref Preflow algorithm), therefore the algorithm has
51 51
  /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
52 52
  /// rooted Gomory-Hu tree, its structure and the weights can be obtained
53 53
  /// by \c predNode(), \c predValue() and \c rootDist().
54 54
  /// 
55 55
  /// The members \c minCutMap() and \c minCutValue() calculate
56 56
  /// the minimum cut and the minimum cut value between any two nodes
57 57
  /// in the graph. You can also list (iterate on) the nodes and the
58 58
  /// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt.
59 59
  ///
60 60
  /// \tparam GR The type of the undirected graph the algorithm runs on.
61 61
  /// \tparam CAP The type of the edge map describing the edge capacities.
62 62
  /// It is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>" by default.
63 63
#ifdef DOXYGEN
64 64
  template <typename GR,
65 65
	    typename CAP>
66 66
#else
67 67
  template <typename GR,
68 68
	    typename CAP = typename GR::template EdgeMap<int> >
69 69
#endif
70 70
  class GomoryHu {
71 71
  public:
72 72

	
73 73
    /// The graph type
74 74
    typedef GR Graph;
75 75
    /// The type of the edge capacity map
76 76
    typedef CAP Capacity;
77 77
    /// The value type of capacities
78 78
    typedef typename Capacity::Value Value;
79 79
    
80 80
  private:
81 81

	
82 82
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
83 83

	
84 84
    const Graph& _graph;
85 85
    const Capacity& _capacity;
86 86

	
87 87
    Node _root;
88 88
    typename Graph::template NodeMap<Node>* _pred;
89 89
    typename Graph::template NodeMap<Value>* _weight;
90 90
    typename Graph::template NodeMap<int>* _order;
91 91

	
92 92
    void createStructures() {
93 93
      if (!_pred) {
94 94
	_pred = new typename Graph::template NodeMap<Node>(_graph);
95 95
      }
96 96
      if (!_weight) {
97 97
	_weight = new typename Graph::template NodeMap<Value>(_graph);
98 98
      }
99 99
      if (!_order) {
100 100
	_order = new typename Graph::template NodeMap<int>(_graph);
101 101
      }
102 102
    }
103 103

	
104 104
    void destroyStructures() {
105 105
      if (_pred) {
106 106
	delete _pred;
107 107
      }
108 108
      if (_weight) {
109 109
	delete _weight;
110 110
      }
111 111
      if (_order) {
112 112
	delete _order;
113 113
      }
114 114
    }
115 115
  
116 116
  public:
117 117

	
118 118
    /// \brief Constructor
119 119
    ///
120 120
    /// Constructor
121 121
    /// \param graph The undirected graph the algorithm runs on.
122 122
    /// \param capacity The edge capacity map.
123 123
    GomoryHu(const Graph& graph, const Capacity& capacity) 
124 124
      : _graph(graph), _capacity(capacity),
125 125
	_pred(0), _weight(0), _order(0) 
126 126
    {
127 127
      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
128 128
    }
129 129

	
130 130

	
131 131
    /// \brief Destructor
132 132
    ///
133 133
    /// Destructor
134 134
    ~GomoryHu() {
135 135
      destroyStructures();
136 136
    }
137 137

	
138 138
  private:
139 139
  
140 140
    // Initialize the internal data structures
141 141
    void init() {
142 142
      createStructures();
143 143

	
144 144
      _root = NodeIt(_graph);
145 145
      for (NodeIt n(_graph); n != INVALID; ++n) {
146
	_pred->set(n, _root);
147
	_order->set(n, -1);
146
        (*_pred)[n] = _root;
147
        (*_order)[n] = -1;
148 148
      }
149
      _pred->set(_root, INVALID);
150
      _weight->set(_root, std::numeric_limits<Value>::max()); 
149
      (*_pred)[_root] = INVALID;
150
      (*_weight)[_root] = std::numeric_limits<Value>::max(); 
151 151
    }
152 152

	
153 153

	
154 154
    // Start the algorithm
155 155
    void start() {
156 156
      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
157 157

	
158 158
      for (NodeIt n(_graph); n != INVALID; ++n) {
159 159
	if (n == _root) continue;
160 160

	
161 161
	Node pn = (*_pred)[n];
162 162
	fa.source(n);
163 163
	fa.target(pn);
164 164

	
165 165
	fa.runMinCut();
166 166

	
167
	_weight->set(n, fa.flowValue());
167
	(*_weight)[n] = fa.flowValue();
168 168

	
169 169
	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
170 170
	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
171
	    _pred->set(nn, n);
171
	    (*_pred)[nn] = n;
172 172
	  }
173 173
	}
174 174
	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
175
	  _pred->set(n, (*_pred)[pn]);
176
	  _pred->set(pn, n);
177
	  _weight->set(n, (*_weight)[pn]);
178
	  _weight->set(pn, fa.flowValue());	
175
	  (*_pred)[n] = (*_pred)[pn];
176
	  (*_pred)[pn] = n;
177
	  (*_weight)[n] = (*_weight)[pn];
178
	  (*_weight)[pn] = fa.flowValue();
179 179
	}
180 180
      }
181 181

	
182
      _order->set(_root, 0);
182
      (*_order)[_root] = 0;
183 183
      int index = 1;
184 184

	
185 185
      for (NodeIt n(_graph); n != INVALID; ++n) {
186 186
	std::vector<Node> st;
187 187
	Node nn = n;
188 188
	while ((*_order)[nn] == -1) {
189 189
	  st.push_back(nn);
190 190
	  nn = (*_pred)[nn];
191 191
	}
192 192
	while (!st.empty()) {
193
	  _order->set(st.back(), index++);
193
	  (*_order)[st.back()] = index++;
194 194
	  st.pop_back();
195 195
	}
196 196
      }
197 197
    }
198 198

	
199 199
  public:
200 200

	
201 201
    ///\name Execution Control
202 202
 
203 203
    ///@{
204 204

	
205 205
    /// \brief Run the Gomory-Hu algorithm.
206 206
    ///
207 207
    /// This function runs the Gomory-Hu algorithm.
208 208
    void run() {
209 209
      init();
210 210
      start();
211 211
    }
212 212
    
213 213
    /// @}
214 214

	
215 215
    ///\name Query Functions
216 216
    ///The results of the algorithm can be obtained using these
217 217
    ///functions.\n
218 218
    ///\ref run() "run()" should be called before using them.\n
219 219
    ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
220 220

	
221 221
    ///@{
222 222

	
223 223
    /// \brief Return the predecessor node in the Gomory-Hu tree.
224 224
    ///
225 225
    /// This function returns the predecessor node in the Gomory-Hu tree.
226 226
    /// If the node is
227 227
    /// the root of the Gomory-Hu tree, then it returns \c INVALID.
228 228
    Node predNode(const Node& node) {
229 229
      return (*_pred)[node];
230 230
    }
231 231

	
232 232
    /// \brief Return the distance from the root node in the Gomory-Hu tree.
233 233
    ///
234 234
    /// This function returns the distance of \c node from the root node
235 235
    /// in the Gomory-Hu tree.
236 236
    int rootDist(const Node& node) {
237 237
      return (*_order)[node];
238 238
    }
239 239

	
240 240
    /// \brief Return the weight of the predecessor edge in the
241 241
    /// Gomory-Hu tree.
242 242
    ///
243 243
    /// This function returns the weight of the predecessor edge in the
244 244
    /// Gomory-Hu tree.  If the node is the root, the result is undefined.
245 245
    Value predValue(const Node& node) {
246 246
      return (*_weight)[node];
247 247
    }
248 248

	
249 249
    /// \brief Return the minimum cut value between two nodes
250 250
    ///
251 251
    /// This function returns the minimum cut value between two nodes. The
252 252
    /// algorithm finds the nearest common ancestor in the Gomory-Hu
253 253
    /// tree and calculates the minimum weight edge on the paths to
254 254
    /// the ancestor.
255 255
    Value minCutValue(const Node& s, const Node& t) const {
256 256
      Node sn = s, tn = t;
257 257
      Value value = std::numeric_limits<Value>::max();
258 258
      
259 259
      while (sn != tn) {
260 260
	if ((*_order)[sn] < (*_order)[tn]) {
261 261
	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
262 262
	  tn = (*_pred)[tn];
263 263
	} else {
264 264
	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
265 265
	  sn = (*_pred)[sn];
266 266
	}
267 267
      }
268 268
      return value;
269 269
    }
270 270

	
271 271
    /// \brief Return the minimum cut between two nodes
272 272
    ///
273 273
    /// This function returns the minimum cut between the nodes \c s and \c t
274 274
    /// in the \c cutMap parameter by setting the nodes in the component of
275 275
    /// \c s to \c true and the other nodes to \c false.
276 276
    ///
277 277
    /// For higher level interfaces, see MinCutNodeIt and MinCutEdgeIt.
278 278
    template <typename CutMap>
279 279
    Value minCutMap(const Node& s, ///< The base node.
280 280
                    const Node& t,
281 281
                    ///< The node you want to separate from node \c s.
282 282
                    CutMap& cutMap
283 283
                    ///< The cut will be returned in this map.
284 284
                    /// It must be a \c bool (or convertible) 
285 285
                    /// \ref concepts::ReadWriteMap "ReadWriteMap"
286 286
                    /// on the graph nodes.
287 287
                    ) const {
288 288
      Node sn = s, tn = t;
289 289
      bool s_root=false;
290 290
      Node rn = INVALID;
291 291
      Value value = std::numeric_limits<Value>::max();
292 292
      
293 293
      while (sn != tn) {
294 294
	if ((*_order)[sn] < (*_order)[tn]) {
295 295
	  if ((*_weight)[tn] <= value) {
296 296
	    rn = tn;
297 297
            s_root = false;
298 298
	    value = (*_weight)[tn];
299 299
	  }
300 300
	  tn = (*_pred)[tn];
301 301
	} else {
302 302
	  if ((*_weight)[sn] <= value) {
303 303
	    rn = sn;
304 304
            s_root = true;
305 305
	    value = (*_weight)[sn];
306 306
	  }
307 307
	  sn = (*_pred)[sn];
308 308
	}
309 309
      }
310 310

	
311 311
      typename Graph::template NodeMap<bool> reached(_graph, false);
312
      reached.set(_root, true);
312
      reached[_root] = true;
313 313
      cutMap.set(_root, !s_root);
314
      reached.set(rn, true);
314
      reached[rn] = true;
315 315
      cutMap.set(rn, s_root);
316 316

	
317 317
      std::vector<Node> st;
318 318
      for (NodeIt n(_graph); n != INVALID; ++n) {
319 319
	st.clear();
320 320
        Node nn = n;
321 321
	while (!reached[nn]) {
322 322
	  st.push_back(nn);
323 323
	  nn = (*_pred)[nn];
324 324
	}
325 325
	while (!st.empty()) {
326 326
	  cutMap.set(st.back(), cutMap[nn]);
327 327
	  st.pop_back();
328 328
	}
329 329
      }
330 330
      
331 331
      return value;
332 332
    }
333 333

	
334 334
    ///@}
335 335

	
336 336
    friend class MinCutNodeIt;
337 337

	
338 338
    /// Iterate on the nodes of a minimum cut
339 339
    
340 340
    /// This iterator class lists the nodes of a minimum cut found by
341 341
    /// GomoryHu. Before using it, you must allocate a GomoryHu class,
342 342
    /// and call its \ref GomoryHu::run() "run()" method.
343 343
    ///
344 344
    /// This example counts the nodes in the minimum cut separating \c s from
345 345
    /// \c t.
346 346
    /// \code
347 347
    /// GomoruHu<Graph> gom(g, capacities);
348 348
    /// gom.run();
349 349
    /// int cnt=0;
350 350
    /// for(GomoruHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
351 351
    /// \endcode
352 352
    class MinCutNodeIt
353 353
    {
354 354
      bool _side;
355 355
      typename Graph::NodeIt _node_it;
356 356
      typename Graph::template NodeMap<bool> _cut;
357 357
    public:
358 358
      /// Constructor
359 359

	
360 360
      /// Constructor.
361 361
      ///
362 362
      MinCutNodeIt(GomoryHu const &gomory,
363 363
                   ///< The GomoryHu class. You must call its
364 364
                   ///  run() method
365 365
                   ///  before initializing this iterator.
366 366
                   const Node& s, ///< The base node.
367 367
                   const Node& t,
368 368
                   ///< The node you want to separate from node \c s.
369 369
                   bool side=true
370 370
                   ///< If it is \c true (default) then the iterator lists
371 371
                   ///  the nodes of the component containing \c s,
372 372
                   ///  otherwise it lists the other component.
373 373
                   /// \note As the minimum cut is not always unique,
374 374
                   /// \code
375 375
                   /// MinCutNodeIt(gomory, s, t, true);
376 376
                   /// \endcode
377 377
                   /// and
378 378
                   /// \code
379 379
                   /// MinCutNodeIt(gomory, t, s, false);
380 380
                   /// \endcode
381 381
                   /// does not necessarily give the same set of nodes.
382 382
                   /// However it is ensured that
383 383
                   /// \code
384 384
                   /// MinCutNodeIt(gomory, s, t, true);
385 385
                   /// \endcode
386 386
                   /// and
387 387
                   /// \code
388 388
                   /// MinCutNodeIt(gomory, s, t, false);
389 389
                   /// \endcode
390 390
                   /// together list each node exactly once.
391 391
                   )
392 392
        : _side(side), _cut(gomory._graph)
393 393
      {
394 394
        gomory.minCutMap(s,t,_cut);
395 395
        for(_node_it=typename Graph::NodeIt(gomory._graph);
396 396
            _node_it!=INVALID && _cut[_node_it]!=_side;
397 397
            ++_node_it) {}
398 398
      }
399 399
      /// Conversion to \c Node
400 400

	
401 401
      /// Conversion to \c Node.
402 402
      ///
403 403
      operator typename Graph::Node() const
404 404
      {
405 405
        return _node_it;
406 406
      }
407 407
      bool operator==(Invalid) { return _node_it==INVALID; }
408 408
      bool operator!=(Invalid) { return _node_it!=INVALID; }
409 409
      /// Next node
410 410

	
411 411
      /// Next node.
412 412
      ///
413 413
      MinCutNodeIt &operator++()
414 414
      {
415 415
        for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
416 416
        return *this;
417 417
      }
418 418
      /// Postfix incrementation
419 419

	
420 420
      /// Postfix incrementation.
421 421
      ///
422 422
      /// \warning This incrementation
423 423
      /// returns a \c Node, not a \c MinCutNodeIt, as one may
424 424
      /// expect.
425 425
      typename Graph::Node operator++(int)
426 426
      {
427 427
        typename Graph::Node n=*this;
428 428
        ++(*this);
429 429
        return n;
430 430
      }
431 431
    };
432 432
    
433 433
    friend class MinCutEdgeIt;
434 434
    
435 435
    /// Iterate on the edges of a minimum cut
436 436
    
437 437
    /// This iterator class lists the edges of a minimum cut found by
438 438
    /// GomoryHu. Before using it, you must allocate a GomoryHu class,
439 439
    /// and call its \ref GomoryHu::run() "run()" method.
440 440
    ///
441 441
    /// This example computes the value of the minimum cut separating \c s from
442 442
    /// \c t.
443 443
    /// \code
444 444
    /// GomoruHu<Graph> gom(g, capacities);
445 445
    /// gom.run();
446 446
    /// int value=0;
447 447
    /// for(GomoruHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
448 448
    ///   value+=capacities[e];
449 449
    /// \endcode
450 450
    /// the result will be the same as it is returned by
451 451
    /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)"
452 452
    class MinCutEdgeIt
453 453
    {
454 454
      bool _side;
455 455
      const Graph &_graph;
456 456
      typename Graph::NodeIt _node_it;
457 457
      typename Graph::OutArcIt _arc_it;
458 458
      typename Graph::template NodeMap<bool> _cut;
459 459
      void step()
460 460
      {
461 461
        ++_arc_it;
462 462
        while(_node_it!=INVALID && _arc_it==INVALID)
463 463
          {
464 464
            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
465 465
            if(_node_it!=INVALID)
466 466
              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
467 467
          }
468 468
      }
469 469
      
470 470
    public:
471 471
      MinCutEdgeIt(GomoryHu const &gomory,
472 472
                   ///< The GomoryHu class. You must call its
473 473
                   ///  run() method
474 474
                   ///  before initializing this iterator.
475 475
                   const Node& s,  ///< The base node.
476 476
                   const Node& t,
477 477
                   ///< The node you want to separate from node \c s.
478 478
                   bool side=true
479 479
                   ///< If it is \c true (default) then the listed arcs
480 480
                   ///  will be oriented from the
481 481
                   ///  the nodes of the component containing \c s,
482 482
                   ///  otherwise they will be oriented in the opposite
483 483
                   ///  direction.
484 484
                   )
485 485
        : _graph(gomory._graph), _cut(_graph)
486 486
      {
487 487
        gomory.minCutMap(s,t,_cut);
488 488
        if(!side)
489 489
          for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
490 490
            _cut[n]=!_cut[n];
491 491

	
492 492
        for(_node_it=typename Graph::NodeIt(_graph);
493 493
            _node_it!=INVALID && !_cut[_node_it];
494 494
            ++_node_it) {}
495 495
        _arc_it = _node_it!=INVALID ?
496 496
          typename Graph::OutArcIt(_graph,_node_it) : INVALID;
497 497
        while(_node_it!=INVALID && _arc_it == INVALID)
498 498
          {
499 499
            for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
500 500
            if(_node_it!=INVALID)
501 501
              _arc_it= typename Graph::OutArcIt(_graph,_node_it);
502 502
          }
503 503
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
504 504
      }
505 505
      /// Conversion to \c Arc
506 506

	
507 507
      /// Conversion to \c Arc.
508 508
      ///
509 509
      operator typename Graph::Arc() const
510 510
      {
511 511
        return _arc_it;
512 512
      }
513 513
      /// Conversion to \c Edge
514 514

	
515 515
      /// Conversion to \c Edge.
516 516
      ///
517 517
      operator typename Graph::Edge() const
518 518
      {
519 519
        return _arc_it;
520 520
      }
521 521
      bool operator==(Invalid) { return _node_it==INVALID; }
522 522
      bool operator!=(Invalid) { return _node_it!=INVALID; }
523 523
      /// Next edge
524 524

	
525 525
      /// Next edge.
526 526
      ///
527 527
      MinCutEdgeIt &operator++()
528 528
      {
529 529
        step();
530 530
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
531 531
        return *this;
532 532
      }
533 533
      /// Postfix incrementation
534 534
      
535 535
      /// Postfix incrementation.
536 536
      ///
537 537
      /// \warning This incrementation
538 538
      /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
539 539
      typename Graph::Arc operator++(int)
540 540
      {
541 541
        typename Graph::Arc e=*this;
542 542
        ++(*this);
543 543
        return e;
544 544
      }
545 545
    };
546 546

	
547 547
  };
548 548

	
549 549
}
550 550

	
551 551
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_HAO_ORLIN_H
20 20
#define LEMON_HAO_ORLIN_H
21 21

	
22 22
#include <vector>
23 23
#include <list>
24 24
#include <limits>
25 25

	
26 26
#include <lemon/maps.h>
27 27
#include <lemon/core.h>
28 28
#include <lemon/tolerance.h>
29 29

	
30 30
/// \file
31 31
/// \ingroup min_cut
32 32
/// \brief Implementation of the Hao-Orlin algorithm.
33 33
///
34 34
/// Implementation of the Hao-Orlin algorithm class for testing network
35 35
/// reliability.
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \ingroup min_cut
40 40
  ///
41 41
  /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
42 42
  ///
43 43
  /// Hao-Orlin calculates a minimum cut in a directed graph
44 44
  /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
45 45
  /// consists of two phases: in the first phase it determines a
46 46
  /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
47 47
  /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
48 48
  /// out-degree) and in the second phase it determines a minimum cut
49 49
  /// with \f$ source \f$ on the sink-side (i.e. a set
50 50
  /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
51 51
  /// out-degree). Obviously, the smaller of these two cuts will be a
52 52
  /// minimum cut of \f$ D \f$. The algorithm is a modified
53 53
  /// push-relabel preflow algorithm and our implementation calculates
54 54
  /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
55 55
  /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
56 56
  /// purpose of such algorithm is testing network reliability. For an
57 57
  /// undirected graph you can run just the first phase of the
58 58
  /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
59 59
  /// which solves the undirected problem in
60 60
  /// \f$ O(nm + n^2 \log n) \f$ time: it is implemented in the
61 61
  /// NagamochiIbaraki algorithm class.
62 62
  ///
63 63
  /// \param GR The digraph class the algorithm runs on.
64 64
  /// \param CAP An arc map of capacities which can be any numreric type.
65 65
  /// The default type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
66 66
  /// \param TOL Tolerance class for handling inexact computations. The
67 67
  /// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>".
68 68
#ifdef DOXYGEN
69 69
  template <typename GR, typename CAP, typename TOL>
70 70
#else
71 71
  template <typename GR,
72 72
            typename CAP = typename GR::template ArcMap<int>,
73 73
            typename TOL = Tolerance<typename CAP::Value> >
74 74
#endif
75 75
  class HaoOrlin {
76 76
  private:
77 77

	
78 78
    typedef GR Digraph;
79 79
    typedef CAP CapacityMap;
80 80
    typedef TOL Tolerance;
81 81

	
82 82
    typedef typename CapacityMap::Value Value;
83 83

	
84 84
    TEMPLATE_GRAPH_TYPEDEFS(Digraph);
85 85

	
86 86
    const Digraph& _graph;
87 87
    const CapacityMap* _capacity;
88 88

	
89 89
    typedef typename Digraph::template ArcMap<Value> FlowMap;
90 90
    FlowMap* _flow;
91 91

	
92 92
    Node _source;
93 93

	
94 94
    int _node_num;
95 95

	
96 96
    // Bucketing structure
97 97
    std::vector<Node> _first, _last;
98 98
    typename Digraph::template NodeMap<Node>* _next;
99 99
    typename Digraph::template NodeMap<Node>* _prev;
100 100
    typename Digraph::template NodeMap<bool>* _active;
101 101
    typename Digraph::template NodeMap<int>* _bucket;
102 102

	
103 103
    std::vector<bool> _dormant;
104 104

	
105 105
    std::list<std::list<int> > _sets;
106 106
    std::list<int>::iterator _highest;
107 107

	
108 108
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
109 109
    ExcessMap* _excess;
110 110

	
111 111
    typedef typename Digraph::template NodeMap<bool> SourceSetMap;
112 112
    SourceSetMap* _source_set;
113 113

	
114 114
    Value _min_cut;
115 115

	
116 116
    typedef typename Digraph::template NodeMap<bool> MinCutMap;
117 117
    MinCutMap* _min_cut_map;
118 118

	
119 119
    Tolerance _tolerance;
120 120

	
121 121
  public:
122 122

	
123 123
    /// \brief Constructor
124 124
    ///
125 125
    /// Constructor of the algorithm class.
126 126
    HaoOrlin(const Digraph& graph, const CapacityMap& capacity,
127 127
             const Tolerance& tolerance = Tolerance()) :
128 128
      _graph(graph), _capacity(&capacity), _flow(0), _source(),
129 129
      _node_num(), _first(), _last(), _next(0), _prev(0),
130 130
      _active(0), _bucket(0), _dormant(), _sets(), _highest(),
131 131
      _excess(0), _source_set(0), _min_cut(), _min_cut_map(0),
132 132
      _tolerance(tolerance) {}
133 133

	
134 134
    ~HaoOrlin() {
135 135
      if (_min_cut_map) {
136 136
        delete _min_cut_map;
137 137
      }
138 138
      if (_source_set) {
139 139
        delete _source_set;
140 140
      }
141 141
      if (_excess) {
142 142
        delete _excess;
143 143
      }
144 144
      if (_next) {
145 145
        delete _next;
146 146
      }
147 147
      if (_prev) {
148 148
        delete _prev;
149 149
      }
150 150
      if (_active) {
151 151
        delete _active;
152 152
      }
153 153
      if (_bucket) {
154 154
        delete _bucket;
155 155
      }
156 156
      if (_flow) {
157 157
        delete _flow;
158 158
      }
159 159
    }
160 160

	
161 161
  private:
162 162

	
163 163
    void activate(const Node& i) {
164
      _active->set(i, true);
164
      (*_active)[i] = true;
165 165

	
166 166
      int bucket = (*_bucket)[i];
167 167

	
168 168
      if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
169 169
      //unlace
170
      _next->set((*_prev)[i], (*_next)[i]);
170
      (*_next)[(*_prev)[i]] = (*_next)[i];
171 171
      if ((*_next)[i] != INVALID) {
172
        _prev->set((*_next)[i], (*_prev)[i]);
172
        (*_prev)[(*_next)[i]] = (*_prev)[i];
173 173
      } else {
174 174
        _last[bucket] = (*_prev)[i];
175 175
      }
176 176
      //lace
177
      _next->set(i, _first[bucket]);
178
      _prev->set(_first[bucket], i);
179
      _prev->set(i, INVALID);
177
      (*_next)[i] = _first[bucket];
178
      (*_prev)[_first[bucket]] = i;
179
      (*_prev)[i] = INVALID;
180 180
      _first[bucket] = i;
181 181
    }
182 182

	
183 183
    void deactivate(const Node& i) {
184
      _active->set(i, false);
184
      (*_active)[i] = false;
185 185
      int bucket = (*_bucket)[i];
186 186

	
187 187
      if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
188 188

	
189 189
      //unlace
190
      _prev->set((*_next)[i], (*_prev)[i]);
190
      (*_prev)[(*_next)[i]] = (*_prev)[i];
191 191
      if ((*_prev)[i] != INVALID) {
192
        _next->set((*_prev)[i], (*_next)[i]);
192
        (*_next)[(*_prev)[i]] = (*_next)[i];
193 193
      } else {
194 194
        _first[bucket] = (*_next)[i];
195 195
      }
196 196
      //lace
197
      _prev->set(i, _last[bucket]);
198
      _next->set(_last[bucket], i);
199
      _next->set(i, INVALID);
197
      (*_prev)[i] = _last[bucket];
198
      (*_next)[_last[bucket]] = i;
199
      (*_next)[i] = INVALID;
200 200
      _last[bucket] = i;
201 201
    }
202 202

	
203 203
    void addItem(const Node& i, int bucket) {
204 204
      (*_bucket)[i] = bucket;
205 205
      if (_last[bucket] != INVALID) {
206
        _prev->set(i, _last[bucket]);
207
        _next->set(_last[bucket], i);
208
        _next->set(i, INVALID);
206
        (*_prev)[i] = _last[bucket];
207
        (*_next)[_last[bucket]] = i;
208
        (*_next)[i] = INVALID;
209 209
        _last[bucket] = i;
210 210
      } else {
211
        _prev->set(i, INVALID);
211
        (*_prev)[i] = INVALID;
212 212
        _first[bucket] = i;
213
        _next->set(i, INVALID);
213
        (*_next)[i] = INVALID;
214 214
        _last[bucket] = i;
215 215
      }
216 216
    }
217 217

	
218 218
    void findMinCutOut() {
219 219

	
220 220
      for (NodeIt n(_graph); n != INVALID; ++n) {
221
        _excess->set(n, 0);
221
        (*_excess)[n] = 0;
222 222
      }
223 223

	
224 224
      for (ArcIt a(_graph); a != INVALID; ++a) {
225
        _flow->set(a, 0);
225
        (*_flow)[a] = 0;
226 226
      }
227 227

	
228 228
      int bucket_num = 0;
229 229
      std::vector<Node> queue(_node_num);
230 230
      int qfirst = 0, qlast = 0, qsep = 0;
231 231

	
232 232
      {
233 233
        typename Digraph::template NodeMap<bool> reached(_graph, false);
234 234

	
235
        reached.set(_source, true);
235
        reached[_source] = true;
236 236
        bool first_set = true;
237 237

	
238 238
        for (NodeIt t(_graph); t != INVALID; ++t) {
239 239
          if (reached[t]) continue;
240 240
          _sets.push_front(std::list<int>());
241 241

	
242 242
          queue[qlast++] = t;
243
          reached.set(t, true);
243
          reached[t] = true;
244 244

	
245 245
          while (qfirst != qlast) {
246 246
            if (qsep == qfirst) {
247 247
              ++bucket_num;
248 248
              _sets.front().push_front(bucket_num);
249 249
              _dormant[bucket_num] = !first_set;
250 250
              _first[bucket_num] = _last[bucket_num] = INVALID;
251 251
              qsep = qlast;
252 252
            }
253 253

	
254 254
            Node n = queue[qfirst++];
255 255
            addItem(n, bucket_num);
256 256

	
257 257
            for (InArcIt a(_graph, n); a != INVALID; ++a) {
258 258
              Node u = _graph.source(a);
259 259
              if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
260
                reached.set(u, true);
260
                reached[u] = true;
261 261
                queue[qlast++] = u;
262 262
              }
263 263
            }
264 264
          }
265 265
          first_set = false;
266 266
        }
267 267

	
268 268
        ++bucket_num;
269
        _bucket->set(_source, 0);
269
        (*_bucket)[_source] = 0;
270 270
        _dormant[0] = true;
271 271
      }
272
      _source_set->set(_source, true);
272
      (*_source_set)[_source] = true;
273 273

	
274 274
      Node target = _last[_sets.back().back()];
275 275
      {
276 276
        for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
277 277
          if (_tolerance.positive((*_capacity)[a])) {
278 278
            Node u = _graph.target(a);
279
            _flow->set(a, (*_capacity)[a]);
280
            _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
279
            (*_flow)[a] = (*_capacity)[a];
280
            (*_excess)[u] += (*_capacity)[a];
281 281
            if (!(*_active)[u] && u != _source) {
282 282
              activate(u);
283 283
            }
284 284
          }
285 285
        }
286 286

	
287 287
        if ((*_active)[target]) {
288 288
          deactivate(target);
289 289
        }
290 290

	
291 291
        _highest = _sets.back().begin();
292 292
        while (_highest != _sets.back().end() &&
293 293
               !(*_active)[_first[*_highest]]) {
294 294
          ++_highest;
295 295
        }
296 296
      }
297 297

	
298 298
      while (true) {
299 299
        while (_highest != _sets.back().end()) {
300 300
          Node n = _first[*_highest];
301 301
          Value excess = (*_excess)[n];
302 302
          int next_bucket = _node_num;
303 303

	
304 304
          int under_bucket;
305 305
          if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
306 306
            under_bucket = -1;
307 307
          } else {
308 308
            under_bucket = *(++std::list<int>::iterator(_highest));
309 309
          }
310 310

	
311 311
          for (OutArcIt a(_graph, n); a != INVALID; ++a) {
312 312
            Node v = _graph.target(a);
313 313
            if (_dormant[(*_bucket)[v]]) continue;
314 314
            Value rem = (*_capacity)[a] - (*_flow)[a];
315 315
            if (!_tolerance.positive(rem)) continue;
316 316
            if ((*_bucket)[v] == under_bucket) {
317 317
              if (!(*_active)[v] && v != target) {
318 318
                activate(v);
319 319
              }
320 320
              if (!_tolerance.less(rem, excess)) {
321
                _flow->set(a, (*_flow)[a] + excess);
322
                _excess->set(v, (*_excess)[v] + excess);
321
                (*_flow)[a] += excess;
322
                (*_excess)[v] += excess;
323 323
                excess = 0;
324 324
                goto no_more_push;
325 325
              } else {
326 326
                excess -= rem;
327
                _excess->set(v, (*_excess)[v] + rem);
328
                _flow->set(a, (*_capacity)[a]);
327
                (*_excess)[v] += rem;
328
                (*_flow)[a] = (*_capacity)[a];
329 329
              }
330 330
            } else if (next_bucket > (*_bucket)[v]) {
331 331
              next_bucket = (*_bucket)[v];
332 332
            }
333 333
          }
334 334

	
335 335
          for (InArcIt a(_graph, n); a != INVALID; ++a) {
336 336
            Node v = _graph.source(a);
337 337
            if (_dormant[(*_bucket)[v]]) continue;
338 338
            Value rem = (*_flow)[a];
339 339
            if (!_tolerance.positive(rem)) continue;
340 340
            if ((*_bucket)[v] == under_bucket) {
341 341
              if (!(*_active)[v] && v != target) {
342 342
                activate(v);
343 343
              }
344 344
              if (!_tolerance.less(rem, excess)) {
345
                _flow->set(a, (*_flow)[a] - excess);
346
                _excess->set(v, (*_excess)[v] + excess);
345
                (*_flow)[a] -= excess;
346
                (*_excess)[v] += excess;
347 347
                excess = 0;
348 348
                goto no_more_push;
349 349
              } else {
350 350
                excess -= rem;
351
                _excess->set(v, (*_excess)[v] + rem);
352
                _flow->set(a, 0);
351
                (*_excess)[v] += rem;
352
                (*_flow)[a] = 0;
353 353
              }
354 354
            } else if (next_bucket > (*_bucket)[v]) {
355 355
              next_bucket = (*_bucket)[v];
356 356
            }
357 357
          }
358 358

	
359 359
        no_more_push:
360 360

	
361
          _excess->set(n, excess);
361
          (*_excess)[n] = excess;
362 362

	
363 363
          if (excess != 0) {
364 364
            if ((*_next)[n] == INVALID) {
365 365
              typename std::list<std::list<int> >::iterator new_set =
366 366
                _sets.insert(--_sets.end(), std::list<int>());
367 367
              new_set->splice(new_set->end(), _sets.back(),
368 368
                              _sets.back().begin(), ++_highest);
369 369
              for (std::list<int>::iterator it = new_set->begin();
370 370
                   it != new_set->end(); ++it) {
371 371
                _dormant[*it] = true;
372 372
              }
373 373
              while (_highest != _sets.back().end() &&
374 374
                     !(*_active)[_first[*_highest]]) {
375 375
                ++_highest;
376 376
              }
377 377
            } else if (next_bucket == _node_num) {
378 378
              _first[(*_bucket)[n]] = (*_next)[n];
379
              _prev->set((*_next)[n], INVALID);
379
              (*_prev)[(*_next)[n]] = INVALID;
380 380

	
381 381
              std::list<std::list<int> >::iterator new_set =
382 382
                _sets.insert(--_sets.end(), std::list<int>());
383 383

	
384 384
              new_set->push_front(bucket_num);
385
              _bucket->set(n, bucket_num);
385
              (*_bucket)[n] = bucket_num;
386 386
              _first[bucket_num] = _last[bucket_num] = n;
387
              _next->set(n, INVALID);
388
              _prev->set(n, INVALID);
387
              (*_next)[n] = INVALID;
388
              (*_prev)[n] = INVALID;
389 389
              _dormant[bucket_num] = true;
390 390
              ++bucket_num;
391 391

	
392 392
              while (_highest != _sets.back().end() &&
393 393
                     !(*_active)[_first[*_highest]]) {
394 394
                ++_highest;
395 395
              }
396 396
            } else {
397 397
              _first[*_highest] = (*_next)[n];
398
              _prev->set((*_next)[n], INVALID);
398
              (*_prev)[(*_next)[n]] = INVALID;
399 399

	
400 400
              while (next_bucket != *_highest) {
401 401
                --_highest;
402 402
              }
403 403

	
404 404
              if (_highest == _sets.back().begin()) {
405 405
                _sets.back().push_front(bucket_num);
406 406
                _dormant[bucket_num] = false;
407 407
                _first[bucket_num] = _last[bucket_num] = INVALID;
408 408
                ++bucket_num;
409 409
              }
410 410
              --_highest;
411 411

	
412
              _bucket->set(n, *_highest);
413
              _next->set(n, _first[*_highest]);
412
              (*_bucket)[n] = *_highest;
413
              (*_next)[n] = _first[*_highest];
414 414
              if (_first[*_highest] != INVALID) {
415
                _prev->set(_first[*_highest], n);
415
                (*_prev)[_first[*_highest]] = n;
416 416
              } else {
417 417
                _last[*_highest] = n;
418 418
              }
419 419
              _first[*_highest] = n;
420 420
            }
421 421
          } else {
422 422

	
423 423
            deactivate(n);
424 424
            if (!(*_active)[_first[*_highest]]) {
425 425
              ++_highest;
426 426
              if (_highest != _sets.back().end() &&
427 427
                  !(*_active)[_first[*_highest]]) {
428 428
                _highest = _sets.back().end();
429 429
              }
430 430
            }
431 431
          }
432 432
        }
433 433

	
434 434
        if ((*_excess)[target] < _min_cut) {
435 435
          _min_cut = (*_excess)[target];
436 436
          for (NodeIt i(_graph); i != INVALID; ++i) {
437
            _min_cut_map->set(i, true);
437
            (*_min_cut_map)[i] = true;
438 438
          }
439 439
          for (std::list<int>::iterator it = _sets.back().begin();
440 440
               it != _sets.back().end(); ++it) {
441 441
            Node n = _first[*it];
442 442
            while (n != INVALID) {
443
              _min_cut_map->set(n, false);
443
              (*_min_cut_map)[n] = false;
444 444
              n = (*_next)[n];
445 445
            }
446 446
          }
447 447
        }
448 448

	
449 449
        {
450 450
          Node new_target;
451 451
          if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
452 452
            if ((*_next)[target] == INVALID) {
453 453
              _last[(*_bucket)[target]] = (*_prev)[target];
454 454
              new_target = (*_prev)[target];
455 455
            } else {
456
              _prev->set((*_next)[target], (*_prev)[target]);
456
              (*_prev)[(*_next)[target]] = (*_prev)[target];
457 457
              new_target = (*_next)[target];
458 458
            }
459 459
            if ((*_prev)[target] == INVALID) {
460 460
              _first[(*_bucket)[target]] = (*_next)[target];
461 461
            } else {
462
              _next->set((*_prev)[target], (*_next)[target]);
462
              (*_next)[(*_prev)[target]] = (*_next)[target];
463 463
            }
464 464
          } else {
465 465
            _sets.back().pop_back();
466 466
            if (_sets.back().empty()) {
467 467
              _sets.pop_back();
468 468
              if (_sets.empty())
469 469
                break;
470 470
              for (std::list<int>::iterator it = _sets.back().begin();
471 471
                   it != _sets.back().end(); ++it) {
472 472
                _dormant[*it] = false;
473 473
              }
474 474
            }
475 475
            new_target = _last[_sets.back().back()];
476 476
          }
477 477

	
478
          _bucket->set(target, 0);
478
          (*_bucket)[target] = 0;
479 479

	
480
          _source_set->set(target, true);
480
          (*_source_set)[target] = true;
481 481
          for (OutArcIt a(_graph, target); a != INVALID; ++a) {
482 482
            Value rem = (*_capacity)[a] - (*_flow)[a];
483 483
            if (!_tolerance.positive(rem)) continue;
484 484
            Node v = _graph.target(a);
485 485
            if (!(*_active)[v] && !(*_source_set)[v]) {
486 486
              activate(v);
487 487
            }
488
            _excess->set(v, (*_excess)[v] + rem);
489
            _flow->set(a, (*_capacity)[a]);
488
            (*_excess)[v] += rem;
489
            (*_flow)[a] = (*_capacity)[a];
490 490
          }
491 491

	
492 492
          for (InArcIt a(_graph, target); a != INVALID; ++a) {
493 493
            Value rem = (*_flow)[a];
494 494
            if (!_tolerance.positive(rem)) continue;
495 495
            Node v = _graph.source(a);
496 496
            if (!(*_active)[v] && !(*_source_set)[v]) {
497 497
              activate(v);
498 498
            }
499
            _excess->set(v, (*_excess)[v] + rem);
500
            _flow->set(a, 0);
499
            (*_excess)[v] += rem;
500
            (*_flow)[a] = 0;
501 501
          }
502 502

	
503 503
          target = new_target;
504 504
          if ((*_active)[target]) {
505 505
            deactivate(target);
506 506
          }
507 507

	
508 508
          _highest = _sets.back().begin();
509 509
          while (_highest != _sets.back().end() &&
510 510
                 !(*_active)[_first[*_highest]]) {
511 511
            ++_highest;
512 512
          }
513 513
        }
514 514
      }
515 515
    }
516 516

	
517 517
    void findMinCutIn() {
518 518

	
519 519
      for (NodeIt n(_graph); n != INVALID; ++n) {
520
        _excess->set(n, 0);
520
        (*_excess)[n] = 0;
521 521
      }
522 522

	
523 523
      for (ArcIt a(_graph); a != INVALID; ++a) {
524
        _flow->set(a, 0);
524
        (*_flow)[a] = 0;
525 525
      }
526 526

	
527 527
      int bucket_num = 0;
528 528
      std::vector<Node> queue(_node_num);
529 529
      int qfirst = 0, qlast = 0, qsep = 0;
530 530

	
531 531
      {
532 532
        typename Digraph::template NodeMap<bool> reached(_graph, false);
533 533

	
534
        reached.set(_source, true);
534
        reached[_source] = true;
535 535

	
536 536
        bool first_set = true;
537 537

	
538 538
        for (NodeIt t(_graph); t != INVALID; ++t) {
539 539
          if (reached[t]) continue;
540 540
          _sets.push_front(std::list<int>());
541 541

	
542 542
          queue[qlast++] = t;
543
          reached.set(t, true);
543
          reached[t] = true;
544 544

	
545 545
          while (qfirst != qlast) {
546 546
            if (qsep == qfirst) {
547 547
              ++bucket_num;
548 548
              _sets.front().push_front(bucket_num);
549 549
              _dormant[bucket_num] = !first_set;
550 550
              _first[bucket_num] = _last[bucket_num] = INVALID;
551 551
              qsep = qlast;
552 552
            }
553 553

	
554 554
            Node n = queue[qfirst++];
555 555
            addItem(n, bucket_num);
556 556

	
557 557
            for (OutArcIt a(_graph, n); a != INVALID; ++a) {
558 558
              Node u = _graph.target(a);
559 559
              if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
560
                reached.set(u, true);
560
                reached[u] = true;
561 561
                queue[qlast++] = u;
562 562
              }
563 563
            }
564 564
          }
565 565
          first_set = false;
566 566
        }
567 567

	
568 568
        ++bucket_num;
569
        _bucket->set(_source, 0);
569
        (*_bucket)[_source] = 0;
570 570
        _dormant[0] = true;
571 571
      }
572
      _source_set->set(_source, true);
572
      (*_source_set)[_source] = true;
573 573

	
574 574
      Node target = _last[_sets.back().back()];
575 575
      {
576 576
        for (InArcIt a(_graph, _source); a != INVALID; ++a) {
577 577
          if (_tolerance.positive((*_capacity)[a])) {
578 578
            Node u = _graph.source(a);
579
            _flow->set(a, (*_capacity)[a]);
580
            _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
579
            (*_flow)[a] = (*_capacity)[a];
580
            (*_excess)[u] += (*_capacity)[a];
581 581
            if (!(*_active)[u] && u != _source) {
582 582
              activate(u);
583 583
            }
584 584
          }
585 585
        }
586 586
        if ((*_active)[target]) {
587 587
          deactivate(target);
588 588
        }
589 589

	
590 590
        _highest = _sets.back().begin();
591 591
        while (_highest != _sets.back().end() &&
592 592
               !(*_active)[_first[*_highest]]) {
593 593
          ++_highest;
594 594
        }
595 595
      }
596 596

	
597 597

	
598 598
      while (true) {
599 599
        while (_highest != _sets.back().end()) {
600 600
          Node n = _first[*_highest];
601 601
          Value excess = (*_excess)[n];
602 602
          int next_bucket = _node_num;
603 603

	
604 604
          int under_bucket;
605 605
          if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
606 606
            under_bucket = -1;
607 607
          } else {
608 608
            under_bucket = *(++std::list<int>::iterator(_highest));
609 609
          }
610 610

	
611 611
          for (InArcIt a(_graph, n); a != INVALID; ++a) {
612 612
            Node v = _graph.source(a);
613 613
            if (_dormant[(*_bucket)[v]]) continue;
614 614
            Value rem = (*_capacity)[a] - (*_flow)[a];
615 615
            if (!_tolerance.positive(rem)) continue;
616 616
            if ((*_bucket)[v] == under_bucket) {
617 617
              if (!(*_active)[v] && v != target) {
618 618
                activate(v);
619 619
              }
620 620
              if (!_tolerance.less(rem, excess)) {
621
                _flow->set(a, (*_flow)[a] + excess);
622
                _excess->set(v, (*_excess)[v] + excess);
621
                (*_flow)[a] += excess;
622
                (*_excess)[v] += excess;
623 623
                excess = 0;
624 624
                goto no_more_push;
625 625
              } else {
626 626
                excess -= rem;
627
                _excess->set(v, (*_excess)[v] + rem);
628
                _flow->set(a, (*_capacity)[a]);
627
                (*_excess)[v] += rem;
628
                (*_flow)[a] = (*_capacity)[a];
629 629
              }
630 630
            } else if (next_bucket > (*_bucket)[v]) {
631 631
              next_bucket = (*_bucket)[v];
632 632
            }
633 633
          }
634 634

	
635 635
          for (OutArcIt a(_graph, n); a != INVALID; ++a) {
636 636
            Node v = _graph.target(a);
637 637
            if (_dormant[(*_bucket)[v]]) continue;
638 638
            Value rem = (*_flow)[a];
639 639
            if (!_tolerance.positive(rem)) continue;
640 640
            if ((*_bucket)[v] == under_bucket) {
641 641
              if (!(*_active)[v] && v != target) {
642 642
                activate(v);
643 643
              }
644 644
              if (!_tolerance.less(rem, excess)) {
645
                _flow->set(a, (*_flow)[a] - excess);
646
                _excess->set(v, (*_excess)[v] + excess);
645
                (*_flow)[a] -= excess;
646
                (*_excess)[v] += excess;
647 647
                excess = 0;
648 648
                goto no_more_push;
649 649
              } else {
650 650
                excess -= rem;
651
                _excess->set(v, (*_excess)[v] + rem);
652
                _flow->set(a, 0);
651
                (*_excess)[v] += rem;
652
                (*_flow)[a] = 0;
653 653
              }
654 654
            } else if (next_bucket > (*_bucket)[v]) {
655 655
              next_bucket = (*_bucket)[v];
656 656
            }
657 657
          }
658 658

	
659 659
        no_more_push:
660 660

	
661
          _excess->set(n, excess);
661
          (*_excess)[n] = excess;
662 662

	
663 663
          if (excess != 0) {
664 664
            if ((*_next)[n] == INVALID) {
665 665
              typename std::list<std::list<int> >::iterator new_set =
666 666
                _sets.insert(--_sets.end(), std::list<int>());
667 667
              new_set->splice(new_set->end(), _sets.back(),
668 668
                              _sets.back().begin(), ++_highest);
669 669
              for (std::list<int>::iterator it = new_set->begin();
670 670
                   it != new_set->end(); ++it) {
671 671
                _dormant[*it] = true;
672 672
              }
673 673
              while (_highest != _sets.back().end() &&
674 674
                     !(*_active)[_first[*_highest]]) {
675 675
                ++_highest;
676 676
              }
677 677
            } else if (next_bucket == _node_num) {
678 678
              _first[(*_bucket)[n]] = (*_next)[n];
679
              _prev->set((*_next)[n], INVALID);
679
              (*_prev)[(*_next)[n]] = INVALID;
680 680

	
681 681
              std::list<std::list<int> >::iterator new_set =
682 682
                _sets.insert(--_sets.end(), std::list<int>());
683 683

	
684 684
              new_set->push_front(bucket_num);
685
              _bucket->set(n, bucket_num);
685
              (*_bucket)[n] = bucket_num;
686 686
              _first[bucket_num] = _last[bucket_num] = n;
687
              _next->set(n, INVALID);
688
              _prev->set(n, INVALID);
687
              (*_next)[n] = INVALID;
688
              (*_prev)[n] = INVALID;
689 689
              _dormant[bucket_num] = true;
690 690
              ++bucket_num;
691 691

	
692 692
              while (_highest != _sets.back().end() &&
693 693
                     !(*_active)[_first[*_highest]]) {
694 694
                ++_highest;
695 695
              }
696 696
            } else {
697 697
              _first[*_highest] = (*_next)[n];
698
              _prev->set((*_next)[n], INVALID);
698
              (*_prev)[(*_next)[n]] = INVALID;
699 699

	
700 700
              while (next_bucket != *_highest) {
701 701
                --_highest;
702 702
              }
703 703
              if (_highest == _sets.back().begin()) {
704 704
                _sets.back().push_front(bucket_num);
705 705
                _dormant[bucket_num] = false;
706 706
                _first[bucket_num] = _last[bucket_num] = INVALID;
707 707
                ++bucket_num;
708 708
              }
709 709
              --_highest;
710 710

	
711
              _bucket->set(n, *_highest);
712
              _next->set(n, _first[*_highest]);
711
              (*_bucket)[n] = *_highest;
712
              (*_next)[n] = _first[*_highest];
713 713
              if (_first[*_highest] != INVALID) {
714
                _prev->set(_first[*_highest], n);
714
                (*_prev)[_first[*_highest]] = n;
715 715
              } else {
716 716
                _last[*_highest] = n;
717 717
              }
718 718
              _first[*_highest] = n;
719 719
            }
720 720
          } else {
721 721

	
722 722
            deactivate(n);
723 723
            if (!(*_active)[_first[*_highest]]) {
724 724
              ++_highest;
725 725
              if (_highest != _sets.back().end() &&
726 726
                  !(*_active)[_first[*_highest]]) {
727 727
                _highest = _sets.back().end();
728 728
              }
729 729
            }
730 730
          }
731 731
        }
732 732

	
733 733
        if ((*_excess)[target] < _min_cut) {
734 734
          _min_cut = (*_excess)[target];
735 735
          for (NodeIt i(_graph); i != INVALID; ++i) {
736
            _min_cut_map->set(i, false);
736
            (*_min_cut_map)[i] = false;
737 737
          }
738 738
          for (std::list<int>::iterator it = _sets.back().begin();
739 739
               it != _sets.back().end(); ++it) {
740 740
            Node n = _first[*it];
741 741
            while (n != INVALID) {
742
              _min_cut_map->set(n, true);
742
              (*_min_cut_map)[n] = true;
743 743
              n = (*_next)[n];
744 744
            }
745 745
          }
746 746
        }
747 747

	
748 748
        {
749 749
          Node new_target;
750 750
          if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
751 751
            if ((*_next)[target] == INVALID) {
752 752
              _last[(*_bucket)[target]] = (*_prev)[target];
753 753
              new_target = (*_prev)[target];
754 754
            } else {
755
              _prev->set((*_next)[target], (*_prev)[target]);
755
              (*_prev)[(*_next)[target]] = (*_prev)[target];
756 756
              new_target = (*_next)[target];
757 757
            }
758 758
            if ((*_prev)[target] == INVALID) {
759 759
              _first[(*_bucket)[target]] = (*_next)[target];
760 760
            } else {
761
              _next->set((*_prev)[target], (*_next)[target]);
761
              (*_next)[(*_prev)[target]] = (*_next)[target];
762 762
            }
763 763
          } else {
764 764
            _sets.back().pop_back();
765 765
            if (_sets.back().empty()) {
766 766
              _sets.pop_back();
767 767
              if (_sets.empty())
768 768
                break;
769 769
              for (std::list<int>::iterator it = _sets.back().begin();
770 770
                   it != _sets.back().end(); ++it) {
771 771
                _dormant[*it] = false;
772 772
              }
773 773
            }
774 774
            new_target = _last[_sets.back().back()];
775 775
          }
776 776

	
777
          _bucket->set(target, 0);
777
          (*_bucket)[target] = 0;
778 778

	
779
          _source_set->set(target, true);
779
          (*_source_set)[target] = true;
780 780
          for (InArcIt a(_graph, target); a != INVALID; ++a) {
781 781
            Value rem = (*_capacity)[a] - (*_flow)[a];
782 782
            if (!_tolerance.positive(rem)) continue;
783 783
            Node v = _graph.source(a);
784 784
            if (!(*_active)[v] && !(*_source_set)[v]) {
785 785
              activate(v);
786 786
            }
787
            _excess->set(v, (*_excess)[v] + rem);
788
            _flow->set(a, (*_capacity)[a]);
787
            (*_excess)[v] += rem;
788
            (*_flow)[a] = (*_capacity)[a];
789 789
          }
790 790

	
791 791
          for (OutArcIt a(_graph, target); a != INVALID; ++a) {
792 792
            Value rem = (*_flow)[a];
793 793
            if (!_tolerance.positive(rem)) continue;
794 794
            Node v = _graph.target(a);
795 795
            if (!(*_active)[v] && !(*_source_set)[v]) {
796 796
              activate(v);
797 797
            }
798
            _excess->set(v, (*_excess)[v] + rem);
799
            _flow->set(a, 0);
798
            (*_excess)[v] += rem;
799
            (*_flow)[a] = 0;
800 800
          }
801 801

	
802 802
          target = new_target;
803 803
          if ((*_active)[target]) {
804 804
            deactivate(target);
805 805
          }
806 806

	
807 807
          _highest = _sets.back().begin();
808 808
          while (_highest != _sets.back().end() &&
809 809
                 !(*_active)[_first[*_highest]]) {
810 810
            ++_highest;
811 811
          }
812 812
        }
813 813
      }
814 814
    }
815 815

	
816 816
  public:
817 817

	
818 818
    /// \name Execution control
819 819
    /// The simplest way to execute the algorithm is to use
820 820
    /// one of the member functions called \ref run().
821 821
    /// \n
822 822
    /// If you need more control on the execution,
823 823
    /// first you must call \ref init(), then the \ref calculateIn() or
824 824
    /// \ref calculateOut() functions.
825 825

	
826 826
    /// @{
827 827

	
828 828
    /// \brief Initializes the internal data structures.
829 829
    ///
830 830
    /// Initializes the internal data structures. It creates
831 831
    /// the maps, residual graph adaptors and some bucket structures
832 832
    /// for the algorithm.
833 833
    void init() {
834 834
      init(NodeIt(_graph));
835 835
    }
836 836

	
837 837
    /// \brief Initializes the internal data structures.
838 838
    ///
839 839
    /// Initializes the internal data structures. It creates
840 840
    /// the maps, residual graph adaptor and some bucket structures
841 841
    /// for the algorithm. Node \c source  is used as the push-relabel
842 842
    /// algorithm's source.
843 843
    void init(const Node& source) {
844 844
      _source = source;
845 845

	
846 846
      _node_num = countNodes(_graph);
847 847

	
848 848
      _first.resize(_node_num);
849 849
      _last.resize(_node_num);
850 850

	
851 851
      _dormant.resize(_node_num);
852 852

	
853 853
      if (!_flow) {
854 854
        _flow = new FlowMap(_graph);
855 855
      }
856 856
      if (!_next) {
857 857
        _next = new typename Digraph::template NodeMap<Node>(_graph);
858 858
      }
859 859
      if (!_prev) {
860 860
        _prev = new typename Digraph::template NodeMap<Node>(_graph);
861 861
      }
862 862
      if (!_active) {
863 863
        _active = new typename Digraph::template NodeMap<bool>(_graph);
864 864
      }
865 865
      if (!_bucket) {
866 866
        _bucket = new typename Digraph::template NodeMap<int>(_graph);
867 867
      }
868 868
      if (!_excess) {
869 869
        _excess = new ExcessMap(_graph);
870 870
      }
871 871
      if (!_source_set) {
872 872
        _source_set = new SourceSetMap(_graph);
873 873
      }
874 874
      if (!_min_cut_map) {
875 875
        _min_cut_map = new MinCutMap(_graph);
876 876
      }
877 877

	
878 878
      _min_cut = std::numeric_limits<Value>::max();
879 879
    }
880 880

	
881 881

	
882 882
    /// \brief Calculates a minimum cut with \f$ source \f$ on the
883 883
    /// source-side.
884 884
    ///
885 885
    /// Calculates a minimum cut with \f$ source \f$ on the
886 886
    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with
887 887
    /// \f$ source \in X \f$ and minimal out-degree).
888 888
    void calculateOut() {
889 889
      findMinCutOut();
890 890
    }
891 891

	
892 892
    /// \brief Calculates a minimum cut with \f$ source \f$ on the
893 893
    /// target-side.
894 894
    ///
895 895
    /// Calculates a minimum cut with \f$ source \f$ on the
896 896
    /// target-side (i.e. a set \f$ X\subsetneq V \f$ with
897 897
    /// \f$ source \in X \f$ and minimal out-degree).
898 898
    void calculateIn() {
899 899
      findMinCutIn();
900 900
    }
901 901

	
902 902

	
903 903
    /// \brief Runs the algorithm.
904 904
    ///
905 905
    /// Runs the algorithm. It finds nodes \c source and \c target
906 906
    /// arbitrarily and then calls \ref init(), \ref calculateOut()
907 907
    /// and \ref calculateIn().
908 908
    void run() {
909 909
      init();
910 910
      calculateOut();
911 911
      calculateIn();
912 912
    }
913 913

	
914 914
    /// \brief Runs the algorithm.
915 915
    ///
916 916
    /// Runs the algorithm. It uses the given \c source node, finds a
917 917
    /// proper \c target and then calls the \ref init(), \ref
918 918
    /// calculateOut() and \ref calculateIn().
919 919
    void run(const Node& s) {
920 920
      init(s);
921 921
      calculateOut();
922 922
      calculateIn();
923 923
    }
924 924

	
925 925
    /// @}
926 926

	
927 927
    /// \name Query Functions
928 928
    /// The result of the %HaoOrlin algorithm
929 929
    /// can be obtained using these functions.
930 930
    /// \n
931 931
    /// Before using these functions, either \ref run(), \ref
932 932
    /// calculateOut() or \ref calculateIn() must be called.
933 933

	
934 934
    /// @{
935 935

	
936 936
    /// \brief Returns the value of the minimum value cut.
937 937
    ///
938 938
    /// Returns the value of the minimum value cut.
939 939
    Value minCutValue() const {
940 940
      return _min_cut;
941 941
    }
942 942

	
943 943

	
944 944
    /// \brief Returns a minimum cut.
945 945
    ///
946 946
    /// Sets \c nodeMap to the characteristic vector of a minimum
947 947
    /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
948 948
    /// with minimal out-degree (i.e. \c nodeMap will be true exactly
949 949
    /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
950 950
    /// bool-valued node-map.
951 951
    template <typename NodeMap>
952 952
    Value minCutMap(NodeMap& nodeMap) const {
953 953
      for (NodeIt it(_graph); it != INVALID; ++it) {
954 954
        nodeMap.set(it, (*_min_cut_map)[it]);
955 955
      }
956 956
      return _min_cut;
957 957
    }
958 958

	
959 959
    /// @}
960 960

	
961 961
  }; //class HaoOrlin
962 962

	
963 963

	
964 964
} //namespace lemon
965 965

	
966 966
#endif //LEMON_HAO_ORLIN_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAX_MATCHING_H
20 20
#define LEMON_MAX_MATCHING_H
21 21

	
22 22
#include <vector>
23 23
#include <queue>
24 24
#include <set>
25 25
#include <limits>
26 26

	
27 27
#include <lemon/core.h>
28 28
#include <lemon/unionfind.h>
29 29
#include <lemon/bin_heap.h>
30 30
#include <lemon/maps.h>
31 31

	
32 32
///\ingroup matching
33 33
///\file
34 34
///\brief Maximum matching algorithms in general graphs.
35 35

	
36 36
namespace lemon {
37 37

	
38 38
  /// \ingroup matching
39 39
  ///
40 40
  /// \brief Edmonds' alternating forest maximum matching algorithm.
41 41
  ///
42 42
  /// This class implements Edmonds' alternating forest matching
43 43
  /// algorithm. The algorithm can be started from an arbitrary initial
44 44
  /// matching (the default is the empty one)
45 45
  ///
46 46
  /// The dual solution of the problem is a map of the nodes to
47 47
  /// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c
48 48
  /// MATCHED/C showing the Gallai-Edmonds decomposition of the
49 49
  /// graph. The nodes in \c EVEN/D induce a graph with
50 50
  /// factor-critical components, the nodes in \c ODD/A form the
51 51
  /// barrier, and the nodes in \c MATCHED/C induce a graph having a
52 52
  /// perfect matching. The number of the factor-critical components
53 53
  /// minus the number of barrier nodes is a lower bound on the
54 54
  /// unmatched nodes, and the matching is optimal if and only if this bound is
55 55
  /// tight. This decomposition can be attained by calling \c
56 56
  /// decomposition() after running the algorithm.
57 57
  ///
58 58
  /// \param GR The graph type the algorithm runs on.
59 59
  template <typename GR>
60 60
  class MaxMatching {
61 61
  public:
62 62

	
63 63
    typedef GR Graph;
64 64
    typedef typename Graph::template NodeMap<typename Graph::Arc>
65 65
    MatchingMap;
66 66

	
67 67
    ///\brief Indicates the Gallai-Edmonds decomposition of the graph.
68 68
    ///
69 69
    ///Indicates the Gallai-Edmonds decomposition of the graph. The
70 70
    ///nodes with Status \c EVEN/D induce a graph with factor-critical
71 71
    ///components, the nodes in \c ODD/A form the canonical barrier,
72 72
    ///and the nodes in \c MATCHED/C induce a graph having a perfect
73 73
    ///matching.
74 74
    enum Status {
75 75
      EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2
76 76
    };
77 77

	
78 78
    typedef typename Graph::template NodeMap<Status> StatusMap;
79 79

	
80 80
  private:
81 81

	
82 82
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
83 83

	
84 84
    typedef UnionFindEnum<IntNodeMap> BlossomSet;
85 85
    typedef ExtendFindEnum<IntNodeMap> TreeSet;
86 86
    typedef RangeMap<Node> NodeIntMap;
87 87
    typedef MatchingMap EarMap;
88 88
    typedef std::vector<Node> NodeQueue;
89 89

	
90 90
    const Graph& _graph;
91 91
    MatchingMap* _matching;
92 92
    StatusMap* _status;
93 93

	
94 94
    EarMap* _ear;
95 95

	
96 96
    IntNodeMap* _blossom_set_index;
97 97
    BlossomSet* _blossom_set;
98 98
    NodeIntMap* _blossom_rep;
99 99

	
100 100
    IntNodeMap* _tree_set_index;
101 101
    TreeSet* _tree_set;
102 102

	
103 103
    NodeQueue _node_queue;
104 104
    int _process, _postpone, _last;
105 105

	
106 106
    int _node_num;
107 107

	
108 108
  private:
109 109

	
110 110
    void createStructures() {
111 111
      _node_num = countNodes(_graph);
112 112
      if (!_matching) {
113 113
        _matching = new MatchingMap(_graph);
114 114
      }
115 115
      if (!_status) {
116 116
        _status = new StatusMap(_graph);
117 117
      }
118 118
      if (!_ear) {
119 119
        _ear = new EarMap(_graph);
120 120
      }
121 121
      if (!_blossom_set) {
122 122
        _blossom_set_index = new IntNodeMap(_graph);
123 123
        _blossom_set = new BlossomSet(*_blossom_set_index);
124 124
      }
125 125
      if (!_blossom_rep) {
126 126
        _blossom_rep = new NodeIntMap(_node_num);
127 127
      }
128 128
      if (!_tree_set) {
129 129
        _tree_set_index = new IntNodeMap(_graph);
130 130
        _tree_set = new TreeSet(*_tree_set_index);
131 131
      }
132 132
      _node_queue.resize(_node_num);
133 133
    }
134 134

	
135 135
    void destroyStructures() {
136 136
      if (_matching) {
137 137
        delete _matching;
138 138
      }
139 139
      if (_status) {
140 140
        delete _status;
141 141
      }
142 142
      if (_ear) {
143 143
        delete _ear;
144 144
      }
145 145
      if (_blossom_set) {
146 146
        delete _blossom_set;
147 147
        delete _blossom_set_index;
148 148
      }
149 149
      if (_blossom_rep) {
150 150
        delete _blossom_rep;
151 151
      }
152 152
      if (_tree_set) {
153 153
        delete _tree_set_index;
154 154
        delete _tree_set;
155 155
      }
156 156
    }
157 157

	
158 158
    void processDense(const Node& n) {
159 159
      _process = _postpone = _last = 0;
160 160
      _node_queue[_last++] = n;
161 161

	
162 162
      while (_process != _last) {
163 163
        Node u = _node_queue[_process++];
164 164
        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
165 165
          Node v = _graph.target(a);
166 166
          if ((*_status)[v] == MATCHED) {
167 167
            extendOnArc(a);
168 168
          } else if ((*_status)[v] == UNMATCHED) {
169 169
            augmentOnArc(a);
170 170
            return;
171 171
          }
172 172
        }
173 173
      }
174 174

	
175 175
      while (_postpone != _last) {
176 176
        Node u = _node_queue[_postpone++];
177 177

	
178 178
        for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
179 179
          Node v = _graph.target(a);
180 180

	
181 181
          if ((*_status)[v] == EVEN) {
182 182
            if (_blossom_set->find(u) != _blossom_set->find(v)) {
183 183
              shrinkOnEdge(a);
184 184
            }
185 185
          }
186 186

	
187 187
          while (_process != _last) {
188 188
            Node w = _node_queue[_process++];
189 189
            for (OutArcIt b(_graph, w); b != INVALID; ++b) {
190 190
              Node x = _graph.target(b);
191 191
              if ((*_status)[x] == MATCHED) {
192 192
                extendOnArc(b);
193 193
              } else if ((*_status)[x] == UNMATCHED) {
194 194
                augmentOnArc(b);
195 195
                return;
196 196
              }
197 197
            }
198 198
          }
199 199
        }
200 200
      }
201 201
    }
202 202

	
203 203
    void processSparse(const Node& n) {
204 204
      _process = _last = 0;
205 205
      _node_queue[_last++] = n;
206 206
      while (_process != _last) {
207 207
        Node u = _node_queue[_process++];
208 208
        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
209 209
          Node v = _graph.target(a);
210 210

	
211 211
          if ((*_status)[v] == EVEN) {
212 212
            if (_blossom_set->find(u) != _blossom_set->find(v)) {
213 213
              shrinkOnEdge(a);
214 214
            }
215 215
          } else if ((*_status)[v] == MATCHED) {
216 216
            extendOnArc(a);
217 217
          } else if ((*_status)[v] == UNMATCHED) {
218 218
            augmentOnArc(a);
219 219
            return;
220 220
          }
221 221
        }
222 222
      }
223 223
    }
224 224

	
225 225
    void shrinkOnEdge(const Edge& e) {
226 226
      Node nca = INVALID;
227 227

	
228 228
      {
229 229
        std::set<Node> left_set, right_set;
230 230

	
231 231
        Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
232 232
        left_set.insert(left);
233 233

	
234 234
        Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
235 235
        right_set.insert(right);
236 236

	
237 237
        while (true) {
238 238
          if ((*_matching)[left] == INVALID) break;
239 239
          left = _graph.target((*_matching)[left]);
240 240
          left = (*_blossom_rep)[_blossom_set->
241 241
                                 find(_graph.target((*_ear)[left]))];
242 242
          if (right_set.find(left) != right_set.end()) {
243 243
            nca = left;
244 244
            break;
245 245
          }
246 246
          left_set.insert(left);
247 247

	
248 248
          if ((*_matching)[right] == INVALID) break;
249 249
          right = _graph.target((*_matching)[right]);
250 250
          right = (*_blossom_rep)[_blossom_set->
251 251
                                  find(_graph.target((*_ear)[right]))];
252 252
          if (left_set.find(right) != left_set.end()) {
253 253
            nca = right;
254 254
            break;
255 255
          }
256 256
          right_set.insert(right);
257 257
        }
258 258

	
259 259
        if (nca == INVALID) {
260 260
          if ((*_matching)[left] == INVALID) {
261 261
            nca = right;
262 262
            while (left_set.find(nca) == left_set.end()) {
263 263
              nca = _graph.target((*_matching)[nca]);
264 264
              nca =(*_blossom_rep)[_blossom_set->
265 265
                                   find(_graph.target((*_ear)[nca]))];
266 266
            }
267 267
          } else {
268 268
            nca = left;
269 269
            while (right_set.find(nca) == right_set.end()) {
270 270
              nca = _graph.target((*_matching)[nca]);
271 271
              nca = (*_blossom_rep)[_blossom_set->
272 272
                                   find(_graph.target((*_ear)[nca]))];
273 273
            }
274 274
          }
275 275
        }
276 276
      }
277 277

	
278 278
      {
279 279

	
280 280
        Node node = _graph.u(e);
281 281
        Arc arc = _graph.direct(e, true);
282 282
        Node base = (*_blossom_rep)[_blossom_set->find(node)];
283 283

	
284 284
        while (base != nca) {
285
          _ear->set(node, arc);
285
          (*_ear)[node] = arc;
286 286

	
287 287
          Node n = node;
288 288
          while (n != base) {
289 289
            n = _graph.target((*_matching)[n]);
290 290
            Arc a = (*_ear)[n];
291 291
            n = _graph.target(a);
292
            _ear->set(n, _graph.oppositeArc(a));
292
            (*_ear)[n] = _graph.oppositeArc(a);
293 293
          }
294 294
          node = _graph.target((*_matching)[base]);
295 295
          _tree_set->erase(base);
296 296
          _tree_set->erase(node);
297 297
          _blossom_set->insert(node, _blossom_set->find(base));
298
          _status->set(node, EVEN);
298
          (*_status)[node] = EVEN;
299 299
          _node_queue[_last++] = node;
300 300
          arc = _graph.oppositeArc((*_ear)[node]);
301 301
          node = _graph.target((*_ear)[node]);
302 302
          base = (*_blossom_rep)[_blossom_set->find(node)];
303 303
          _blossom_set->join(_graph.target(arc), base);
304 304
        }
305 305
      }
306 306

	
307
      _blossom_rep->set(_blossom_set->find(nca), nca);
307
      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
308 308

	
309 309
      {
310 310

	
311 311
        Node node = _graph.v(e);
312 312
        Arc arc = _graph.direct(e, false);
313 313
        Node base = (*_blossom_rep)[_blossom_set->find(node)];
314 314

	
315 315
        while (base != nca) {
316
          _ear->set(node, arc);
316
          (*_ear)[node] = arc;
317 317

	
318 318
          Node n = node;
319 319
          while (n != base) {
320 320
            n = _graph.target((*_matching)[n]);
321 321
            Arc a = (*_ear)[n];
322 322
            n = _graph.target(a);
323
            _ear->set(n, _graph.oppositeArc(a));
323
            (*_ear)[n] = _graph.oppositeArc(a);
324 324
          }
325 325
          node = _graph.target((*_matching)[base]);
326 326
          _tree_set->erase(base);
327 327
          _tree_set->erase(node);
328 328
          _blossom_set->insert(node, _blossom_set->find(base));
329
          _status->set(node, EVEN);
329
          (*_status)[node] = EVEN;
330 330
          _node_queue[_last++] = node;
331 331
          arc = _graph.oppositeArc((*_ear)[node]);
332 332
          node = _graph.target((*_ear)[node]);
333 333
          base = (*_blossom_rep)[_blossom_set->find(node)];
334 334
          _blossom_set->join(_graph.target(arc), base);
335 335
        }
336 336
      }
337 337

	
338
      _blossom_rep->set(_blossom_set->find(nca), nca);
338
      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
339 339
    }
340 340

	
341 341

	
342 342

	
343 343
    void extendOnArc(const Arc& a) {
344 344
      Node base = _graph.source(a);
345 345
      Node odd = _graph.target(a);
346 346

	
347
      _ear->set(odd, _graph.oppositeArc(a));
347
      (*_ear)[odd] = _graph.oppositeArc(a);
348 348
      Node even = _graph.target((*_matching)[odd]);
349
      _blossom_rep->set(_blossom_set->insert(even), even);
350
      _status->set(odd, ODD);
351
      _status->set(even, EVEN);
349
      (*_blossom_rep)[_blossom_set->insert(even)] = even;
350
      (*_status)[odd] = ODD;
351
      (*_status)[even] = EVEN;
352 352
      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
353 353
      _tree_set->insert(odd, tree);
354 354
      _tree_set->insert(even, tree);
355 355
      _node_queue[_last++] = even;
356 356

	
357 357
    }
358 358

	
359 359
    void augmentOnArc(const Arc& a) {
360 360
      Node even = _graph.source(a);
361 361
      Node odd = _graph.target(a);
362 362

	
363 363
      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
364 364

	
365
      _matching->set(odd, _graph.oppositeArc(a));
366
      _status->set(odd, MATCHED);
365
      (*_matching)[odd] = _graph.oppositeArc(a);
366
      (*_status)[odd] = MATCHED;
367 367

	
368 368
      Arc arc = (*_matching)[even];
369
      _matching->set(even, a);
369
      (*_matching)[even] = a;
370 370

	
371 371
      while (arc != INVALID) {
372 372
        odd = _graph.target(arc);
373 373
        arc = (*_ear)[odd];
374 374
        even = _graph.target(arc);
375
        _matching->set(odd, arc);
375
        (*_matching)[odd] = arc;
376 376
        arc = (*_matching)[even];
377
        _matching->set(even, _graph.oppositeArc((*_matching)[odd]));
377
        (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
378 378
      }
379 379

	
380 380
      for (typename TreeSet::ItemIt it(*_tree_set, tree);
381 381
           it != INVALID; ++it) {
382 382
        if ((*_status)[it] == ODD) {
383
          _status->set(it, MATCHED);
383
          (*_status)[it] = MATCHED;
384 384
        } else {
385 385
          int blossom = _blossom_set->find(it);
386 386
          for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
387 387
               jt != INVALID; ++jt) {
388
            _status->set(jt, MATCHED);
388
            (*_status)[jt] = MATCHED;
389 389
          }
390 390
          _blossom_set->eraseClass(blossom);
391 391
        }
392 392
      }
393 393
      _tree_set->eraseClass(tree);
394 394

	
395 395
    }
396 396

	
397 397
  public:
398 398

	
399 399
    /// \brief Constructor
400 400
    ///
401 401
    /// Constructor.
402 402
    MaxMatching(const Graph& graph)
403 403
      : _graph(graph), _matching(0), _status(0), _ear(0),
404 404
        _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
405 405
        _tree_set_index(0), _tree_set(0) {}
406 406

	
407 407
    ~MaxMatching() {
408 408
      destroyStructures();
409 409
    }
410 410

	
411 411
    /// \name Execution control
412 412
    /// The simplest way to execute the algorithm is to use the
413 413
    /// \c run() member function.
414 414
    /// \n
415 415

	
416 416
    /// If you need better control on the execution, you must call
417 417
    /// \ref init(), \ref greedyInit() or \ref matchingInit()
418 418
    /// functions first, then you can start the algorithm with the \ref
419 419
    /// startSparse() or startDense() functions.
420 420

	
421 421
    ///@{
422 422

	
423 423
    /// \brief Sets the actual matching to the empty matching.
424 424
    ///
425 425
    /// Sets the actual matching to the empty matching.
426 426
    ///
427 427
    void init() {
428 428
      createStructures();
429 429
      for(NodeIt n(_graph); n != INVALID; ++n) {
430
        _matching->set(n, INVALID);
431
        _status->set(n, UNMATCHED);
430
        (*_matching)[n] = INVALID;
431
        (*_status)[n] = UNMATCHED;
432 432
      }
433 433
    }
434 434

	
435 435
    ///\brief Finds an initial matching in a greedy way
436 436
    ///
437 437
    ///It finds an initial matching in a greedy way.
438 438
    void greedyInit() {
439 439
      createStructures();
440 440
      for (NodeIt n(_graph); n != INVALID; ++n) {
441
        _matching->set(n, INVALID);
442
        _status->set(n, UNMATCHED);
441
        (*_matching)[n] = INVALID;
442
        (*_status)[n] = UNMATCHED;
443 443
      }
444 444
      for (NodeIt n(_graph); n != INVALID; ++n) {
445 445
        if ((*_matching)[n] == INVALID) {
446 446
          for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
447 447
            Node v = _graph.target(a);
448 448
            if ((*_matching)[v] == INVALID && v != n) {
449
              _matching->set(n, a);
450
              _status->set(n, MATCHED);
451
              _matching->set(v, _graph.oppositeArc(a));
452
              _status->set(v, MATCHED);
449
              (*_matching)[n] = a;
450
              (*_status)[n] = MATCHED;
451
              (*_matching)[v] = _graph.oppositeArc(a);
452
              (*_status)[v] = MATCHED;
453 453
              break;
454 454
            }
455 455
          }
456 456
        }
457 457
      }
458 458
    }
459 459

	
460 460

	
461 461
    /// \brief Initialize the matching from a map containing.
462 462
    ///
463 463
    /// Initialize the matching from a \c bool valued \c Edge map. This
464 464
    /// map must have the property that there are no two incident edges
465 465
    /// with true value, ie. it contains a matching.
466 466
    /// \return \c true if the map contains a matching.
467 467
    template <typename MatchingMap>
468 468
    bool matchingInit(const MatchingMap& matching) {
469 469
      createStructures();
470 470

	
471 471
      for (NodeIt n(_graph); n != INVALID; ++n) {
472
        _matching->set(n, INVALID);
473
        _status->set(n, UNMATCHED);
472
        (*_matching)[n] = INVALID;
473
        (*_status)[n] = UNMATCHED;
474 474
      }
475 475
      for(EdgeIt e(_graph); e!=INVALID; ++e) {
476 476
        if (matching[e]) {
477 477

	
478 478
          Node u = _graph.u(e);
479 479
          if ((*_matching)[u] != INVALID) return false;
480
          _matching->set(u, _graph.direct(e, true));
481
          _status->set(u, MATCHED);
480
          (*_matching)[u] = _graph.direct(e, true);
481
          (*_status)[u] = MATCHED;
482 482

	
483 483
          Node v = _graph.v(e);
484 484
          if ((*_matching)[v] != INVALID) return false;
485
          _matching->set(v, _graph.direct(e, false));
486
          _status->set(v, MATCHED);
485
          (*_matching)[v] = _graph.direct(e, false);
486
          (*_status)[v] = MATCHED;
487 487
        }
488 488
      }
489 489
      return true;
490 490
    }
491 491

	
492 492
    /// \brief Starts Edmonds' algorithm
493 493
    ///
494 494
    /// If runs the original Edmonds' algorithm.
495 495
    void startSparse() {
496 496
      for(NodeIt n(_graph); n != INVALID; ++n) {
497 497
        if ((*_status)[n] == UNMATCHED) {
498 498
          (*_blossom_rep)[_blossom_set->insert(n)] = n;
499 499
          _tree_set->insert(n);
500
          _status->set(n, EVEN);
500
          (*_status)[n] = EVEN;
501 501
          processSparse(n);
502 502
        }
503 503
      }
504 504
    }
505 505

	
506 506
    /// \brief Starts Edmonds' algorithm.
507 507
    ///
508 508
    /// It runs Edmonds' algorithm with a heuristic of postponing
509 509
    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
510 510
    void startDense() {
511 511
      for(NodeIt n(_graph); n != INVALID; ++n) {
512 512
        if ((*_status)[n] == UNMATCHED) {
513 513
          (*_blossom_rep)[_blossom_set->insert(n)] = n;
514 514
          _tree_set->insert(n);
515
          _status->set(n, EVEN);
515
          (*_status)[n] = EVEN;
516 516
          processDense(n);
517 517
        }
518 518
      }
519 519
    }
520 520

	
521 521

	
522 522
    /// \brief Runs Edmonds' algorithm
523 523
    ///
524 524
    /// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>)
525 525
    /// or Edmonds' algorithm with a heuristic of
526 526
    /// postponing shrinks for dense graphs.
527 527
    void run() {
528 528
      if (countEdges(_graph) < 2 * countNodes(_graph)) {
529 529
        greedyInit();
530 530
        startSparse();
531 531
      } else {
532 532
        init();
533 533
        startDense();
534 534
      }
535 535
    }
536 536

	
537 537
    /// @}
538 538

	
539 539
    /// \name Primal solution
540 540
    /// Functions to get the primal solution, ie. the matching.
541 541

	
542 542
    /// @{
543 543

	
544 544
    ///\brief Returns the size of the current matching.
545 545
    ///
546 546
    ///Returns the size of the current matching. After \ref
547 547
    ///run() it returns the size of the maximum matching in the graph.
548 548
    int matchingSize() const {
549 549
      int size = 0;
550 550
      for (NodeIt n(_graph); n != INVALID; ++n) {
551 551
        if ((*_matching)[n] != INVALID) {
552 552
          ++size;
553 553
        }
554 554
      }
555 555
      return size / 2;
556 556
    }
557 557

	
558 558
    /// \brief Returns true when the edge is in the matching.
559 559
    ///
560 560
    /// Returns true when the edge is in the matching.
561 561
    bool matching(const Edge& edge) const {
562 562
      return edge == (*_matching)[_graph.u(edge)];
563 563
    }
564 564

	
565 565
    /// \brief Returns the matching edge incident to the given node.
566 566
    ///
567 567
    /// Returns the matching edge of a \c node in the actual matching or
568 568
    /// INVALID if the \c node is not covered by the actual matching.
569 569
    Arc matching(const Node& n) const {
570 570
      return (*_matching)[n];
571 571
    }
572 572

	
573 573
    ///\brief Returns the mate of a node in the actual matching.
574 574
    ///
575 575
    ///Returns the mate of a \c node in the actual matching or
576 576
    ///INVALID if the \c node is not covered by the actual matching.
577 577
    Node mate(const Node& n) const {
578 578
      return (*_matching)[n] != INVALID ?
579 579
        _graph.target((*_matching)[n]) : INVALID;
580 580
    }
581 581

	
582 582
    /// @}
583 583

	
584 584
    /// \name Dual solution
585 585
    /// Functions to get the dual solution, ie. the decomposition.
586 586

	
587 587
    /// @{
588 588

	
589 589
    /// \brief Returns the class of the node in the Edmonds-Gallai
590 590
    /// decomposition.
591 591
    ///
592 592
    /// Returns the class of the node in the Edmonds-Gallai
593 593
    /// decomposition.
594 594
    Status decomposition(const Node& n) const {
595 595
      return (*_status)[n];
596 596
    }
597 597

	
598 598
    /// \brief Returns true when the node is in the barrier.
599 599
    ///
600 600
    /// Returns true when the node is in the barrier.
601 601
    bool barrier(const Node& n) const {
602 602
      return (*_status)[n] == ODD;
603 603
    }
604 604

	
605 605
    /// @}
606 606

	
607 607
  };
608 608

	
609 609
  /// \ingroup matching
610 610
  ///
611 611
  /// \brief Weighted matching in general graphs
612 612
  ///
613 613
  /// This class provides an efficient implementation of Edmond's
614 614
  /// maximum weighted matching algorithm. The implementation is based
615 615
  /// on extensive use of priority queues and provides
616 616
  /// \f$O(nm\log n)\f$ time complexity.
617 617
  ///
618 618
  /// The maximum weighted matching problem is to find undirected
619 619
  /// edges in the graph with maximum overall weight and no two of
620 620
  /// them shares their ends. The problem can be formulated with the
621 621
  /// following linear program.
622 622
  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
623 623
  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
624 624
      \quad \forall B\in\mathcal{O}\f] */
625 625
  /// \f[x_e \ge 0\quad \forall e\in E\f]
626 626
  /// \f[\max \sum_{e\in E}x_ew_e\f]
627 627
  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
628 628
  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
629 629
  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
630 630
  /// subsets of the nodes.
631 631
  ///
632 632
  /// The algorithm calculates an optimal matching and a proof of the
633 633
  /// optimality. The solution of the dual problem can be used to check
634 634
  /// the result of the algorithm. The dual linear problem is the
635 635
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
636 636
      z_B \ge w_{uv} \quad \forall uv\in E\f] */
637 637
  /// \f[y_u \ge 0 \quad \forall u \in V\f]
638 638
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
639 639
  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
640 640
      \frac{\vert B \vert - 1}{2}z_B\f] */
641 641
  ///
642 642
  /// The algorithm can be executed with \c run() or the \c init() and
643 643
  /// then the \c start() member functions. After it the matching can
644 644
  /// be asked with \c matching() or mate() functions. The dual
645 645
  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
646 646
  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
647 647
  /// "BlossomIt" nested class, which is able to iterate on the nodes
648 648
  /// of a blossom. If the value type is integral then the dual
649 649
  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
650 650
  template <typename GR,
651 651
            typename WM = typename GR::template EdgeMap<int> >
652 652
  class MaxWeightedMatching {
653 653
  public:
654 654

	
655 655
    ///\e
656 656
    typedef GR Graph;
657 657
    ///\e
658 658
    typedef WM WeightMap;
659 659
    ///\e
660 660
    typedef typename WeightMap::Value Value;
661 661

	
662 662
    /// \brief Scaling factor for dual solution
663 663
    ///
664 664
    /// Scaling factor for dual solution, it is equal to 4 or 1
665 665
    /// according to the value type.
666 666
    static const int dualScale =
667 667
      std::numeric_limits<Value>::is_integer ? 4 : 1;
668 668

	
669 669
    typedef typename Graph::template NodeMap<typename Graph::Arc>
670 670
    MatchingMap;
671 671

	
672 672
  private:
673 673

	
674 674
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
675 675

	
676 676
    typedef typename Graph::template NodeMap<Value> NodePotential;
677 677
    typedef std::vector<Node> BlossomNodeList;
678 678

	
679 679
    struct BlossomVariable {
680 680
      int begin, end;
681 681
      Value value;
682 682

	
683 683
      BlossomVariable(int _begin, int _end, Value _value)
684 684
        : begin(_begin), end(_end), value(_value) {}
685 685

	
686 686
    };
687 687

	
688 688
    typedef std::vector<BlossomVariable> BlossomPotential;
689 689

	
690 690
    const Graph& _graph;
691 691
    const WeightMap& _weight;
692 692

	
693 693
    MatchingMap* _matching;
694 694

	
695 695
    NodePotential* _node_potential;
696 696

	
697 697
    BlossomPotential _blossom_potential;
698 698
    BlossomNodeList _blossom_node_list;
699 699

	
700 700
    int _node_num;
701 701
    int _blossom_num;
702 702

	
703 703
    typedef RangeMap<int> IntIntMap;
704 704

	
705 705
    enum Status {
706 706
      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
707 707
    };
708 708

	
709 709
    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
710 710
    struct BlossomData {
711 711
      int tree;
712 712
      Status status;
713 713
      Arc pred, next;
714 714
      Value pot, offset;
715 715
      Node base;
716 716
    };
717 717

	
718 718
    IntNodeMap *_blossom_index;
719 719
    BlossomSet *_blossom_set;
720 720
    RangeMap<BlossomData>* _blossom_data;
721 721

	
722 722
    IntNodeMap *_node_index;
723 723
    IntArcMap *_node_heap_index;
724 724

	
725 725
    struct NodeData {
726 726

	
727 727
      NodeData(IntArcMap& node_heap_index)
728 728
        : heap(node_heap_index) {}
729 729

	
730 730
      int blossom;
731 731
      Value pot;
732 732
      BinHeap<Value, IntArcMap> heap;
733 733
      std::map<int, Arc> heap_index;
734 734

	
735 735
      int tree;
736 736
    };
737 737

	
738 738
    RangeMap<NodeData>* _node_data;
739 739

	
740 740
    typedef ExtendFindEnum<IntIntMap> TreeSet;
741 741

	
742 742
    IntIntMap *_tree_set_index;
743 743
    TreeSet *_tree_set;
744 744

	
745 745
    IntNodeMap *_delta1_index;
746 746
    BinHeap<Value, IntNodeMap> *_delta1;
747 747

	
748 748
    IntIntMap *_delta2_index;
749 749
    BinHeap<Value, IntIntMap> *_delta2;
750 750

	
751 751
    IntEdgeMap *_delta3_index;
752 752
    BinHeap<Value, IntEdgeMap> *_delta3;
753 753

	
754 754
    IntIntMap *_delta4_index;
755 755
    BinHeap<Value, IntIntMap> *_delta4;
756 756

	
757 757
    Value _delta_sum;
758 758

	
759 759
    void createStructures() {
760 760
      _node_num = countNodes(_graph);
761 761
      _blossom_num = _node_num * 3 / 2;
762 762

	
763 763
      if (!_matching) {
764 764
        _matching = new MatchingMap(_graph);
765 765
      }
766 766
      if (!_node_potential) {
767 767
        _node_potential = new NodePotential(_graph);
768 768
      }
769 769
      if (!_blossom_set) {
770 770
        _blossom_index = new IntNodeMap(_graph);
771 771
        _blossom_set = new BlossomSet(*_blossom_index);
772 772
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
773 773
      }
774 774

	
775 775
      if (!_node_index) {
776 776
        _node_index = new IntNodeMap(_graph);
777 777
        _node_heap_index = new IntArcMap(_graph);
778 778
        _node_data = new RangeMap<NodeData>(_node_num,
779 779
                                              NodeData(*_node_heap_index));
780 780
      }
781 781

	
782 782
      if (!_tree_set) {
783 783
        _tree_set_index = new IntIntMap(_blossom_num);
784 784
        _tree_set = new TreeSet(*_tree_set_index);
785 785
      }
786 786
      if (!_delta1) {
787 787
        _delta1_index = new IntNodeMap(_graph);
788 788
        _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
789 789
      }
790 790
      if (!_delta2) {
791 791
        _delta2_index = new IntIntMap(_blossom_num);
792 792
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
793 793
      }
794 794
      if (!_delta3) {
795 795
        _delta3_index = new IntEdgeMap(_graph);
796 796
        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
797 797
      }
798 798
      if (!_delta4) {
799 799
        _delta4_index = new IntIntMap(_blossom_num);
800 800
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
801 801
      }
802 802
    }
803 803

	
804 804
    void destroyStructures() {
805 805
      _node_num = countNodes(_graph);
806 806
      _blossom_num = _node_num * 3 / 2;
807 807

	
808 808
      if (_matching) {
809 809
        delete _matching;
810 810
      }
811 811
      if (_node_potential) {
812 812
        delete _node_potential;
813 813
      }
814 814
      if (_blossom_set) {
815 815
        delete _blossom_index;
816 816
        delete _blossom_set;
817 817
        delete _blossom_data;
818 818
      }
819 819

	
820 820
      if (_node_index) {
821 821
        delete _node_index;
822 822
        delete _node_heap_index;
823 823
        delete _node_data;
824 824
      }
825 825

	
826 826
      if (_tree_set) {
827 827
        delete _tree_set_index;
828 828
        delete _tree_set;
829 829
      }
830 830
      if (_delta1) {
831 831
        delete _delta1_index;
832 832
        delete _delta1;
833 833
      }
834 834
      if (_delta2) {
835 835
        delete _delta2_index;
836 836
        delete _delta2;
837 837
      }
838 838
      if (_delta3) {
839 839
        delete _delta3_index;
840 840
        delete _delta3;
841 841
      }
842 842
      if (_delta4) {
843 843
        delete _delta4_index;
844 844
        delete _delta4;
845 845
      }
846 846
    }
847 847

	
848 848
    void matchedToEven(int blossom, int tree) {
849 849
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
850 850
        _delta2->erase(blossom);
851 851
      }
852 852

	
853 853
      if (!_blossom_set->trivial(blossom)) {
854 854
        (*_blossom_data)[blossom].pot -=
855 855
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
856 856
      }
857 857

	
858 858
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
859 859
           n != INVALID; ++n) {
860 860

	
861 861
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
862 862
        int ni = (*_node_index)[n];
863 863

	
864 864
        (*_node_data)[ni].heap.clear();
865 865
        (*_node_data)[ni].heap_index.clear();
866 866

	
867 867
        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
868 868

	
869 869
        _delta1->push(n, (*_node_data)[ni].pot);
870 870

	
871 871
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
872 872
          Node v = _graph.source(e);
873 873
          int vb = _blossom_set->find(v);
874 874
          int vi = (*_node_index)[v];
875 875

	
876 876
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
877 877
            dualScale * _weight[e];
878 878

	
879 879
          if ((*_blossom_data)[vb].status == EVEN) {
880 880
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
881 881
              _delta3->push(e, rw / 2);
882 882
            }
883 883
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
884 884
            if (_delta3->state(e) != _delta3->IN_HEAP) {
885 885
              _delta3->push(e, rw);
886 886
            }
887 887
          } else {
888 888
            typename std::map<int, Arc>::iterator it =
889 889
              (*_node_data)[vi].heap_index.find(tree);
890 890

	
891 891
            if (it != (*_node_data)[vi].heap_index.end()) {
892 892
              if ((*_node_data)[vi].heap[it->second] > rw) {
893 893
                (*_node_data)[vi].heap.replace(it->second, e);
894 894
                (*_node_data)[vi].heap.decrease(e, rw);
895 895
                it->second = e;
896 896
              }
897 897
            } else {
898 898
              (*_node_data)[vi].heap.push(e, rw);
899 899
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
... ...
@@ -1167,887 +1167,887 @@
1167 1167
          } else if ((*_blossom_data)[vb].status == EVEN) {
1168 1168

	
1169 1169
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1170 1170
              _delta3->erase(e);
1171 1171
            }
1172 1172

	
1173 1173
            int vt = _tree_set->find(vb);
1174 1174

	
1175 1175
            Arc r = _graph.oppositeArc(e);
1176 1176

	
1177 1177
            typename std::map<int, Arc>::iterator it =
1178 1178
              (*_node_data)[ni].heap_index.find(vt);
1179 1179

	
1180 1180
            if (it != (*_node_data)[ni].heap_index.end()) {
1181 1181
              if ((*_node_data)[ni].heap[it->second] > rw) {
1182 1182
                (*_node_data)[ni].heap.replace(it->second, r);
1183 1183
                (*_node_data)[ni].heap.decrease(r, rw);
1184 1184
                it->second = r;
1185 1185
              }
1186 1186
            } else {
1187 1187
              (*_node_data)[ni].heap.push(r, rw);
1188 1188
              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1189 1189
            }
1190 1190

	
1191 1191
            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1192 1192
              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1193 1193

	
1194 1194
              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1195 1195
                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1196 1196
                             (*_blossom_data)[blossom].offset);
1197 1197
              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
1198 1198
                         (*_blossom_data)[blossom].offset){
1199 1199
                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1200 1200
                                 (*_blossom_data)[blossom].offset);
1201 1201
              }
1202 1202
            }
1203 1203

	
1204 1204
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1205 1205
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1206 1206
              _delta3->erase(e);
1207 1207
            }
1208 1208
          }
1209 1209
        }
1210 1210
      }
1211 1211
    }
1212 1212

	
1213 1213
    void alternatePath(int even, int tree) {
1214 1214
      int odd;
1215 1215

	
1216 1216
      evenToMatched(even, tree);
1217 1217
      (*_blossom_data)[even].status = MATCHED;
1218 1218

	
1219 1219
      while ((*_blossom_data)[even].pred != INVALID) {
1220 1220
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
1221 1221
        (*_blossom_data)[odd].status = MATCHED;
1222 1222
        oddToMatched(odd);
1223 1223
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
1224 1224

	
1225 1225
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
1226 1226
        (*_blossom_data)[even].status = MATCHED;
1227 1227
        evenToMatched(even, tree);
1228 1228
        (*_blossom_data)[even].next =
1229 1229
          _graph.oppositeArc((*_blossom_data)[odd].pred);
1230 1230
      }
1231 1231

	
1232 1232
    }
1233 1233

	
1234 1234
    void destroyTree(int tree) {
1235 1235
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
1236 1236
        if ((*_blossom_data)[b].status == EVEN) {
1237 1237
          (*_blossom_data)[b].status = MATCHED;
1238 1238
          evenToMatched(b, tree);
1239 1239
        } else if ((*_blossom_data)[b].status == ODD) {
1240 1240
          (*_blossom_data)[b].status = MATCHED;
1241 1241
          oddToMatched(b);
1242 1242
        }
1243 1243
      }
1244 1244
      _tree_set->eraseClass(tree);
1245 1245
    }
1246 1246

	
1247 1247

	
1248 1248
    void unmatchNode(const Node& node) {
1249 1249
      int blossom = _blossom_set->find(node);
1250 1250
      int tree = _tree_set->find(blossom);
1251 1251

	
1252 1252
      alternatePath(blossom, tree);
1253 1253
      destroyTree(tree);
1254 1254

	
1255 1255
      (*_blossom_data)[blossom].status = UNMATCHED;
1256 1256
      (*_blossom_data)[blossom].base = node;
1257 1257
      matchedToUnmatched(blossom);
1258 1258
    }
1259 1259

	
1260 1260

	
1261 1261
    void augmentOnEdge(const Edge& edge) {
1262 1262

	
1263 1263
      int left = _blossom_set->find(_graph.u(edge));
1264 1264
      int right = _blossom_set->find(_graph.v(edge));
1265 1265

	
1266 1266
      if ((*_blossom_data)[left].status == EVEN) {
1267 1267
        int left_tree = _tree_set->find(left);
1268 1268
        alternatePath(left, left_tree);
1269 1269
        destroyTree(left_tree);
1270 1270
      } else {
1271 1271
        (*_blossom_data)[left].status = MATCHED;
1272 1272
        unmatchedToMatched(left);
1273 1273
      }
1274 1274

	
1275 1275
      if ((*_blossom_data)[right].status == EVEN) {
1276 1276
        int right_tree = _tree_set->find(right);
1277 1277
        alternatePath(right, right_tree);
1278 1278
        destroyTree(right_tree);
1279 1279
      } else {
1280 1280
        (*_blossom_data)[right].status = MATCHED;
1281 1281
        unmatchedToMatched(right);
1282 1282
      }
1283 1283

	
1284 1284
      (*_blossom_data)[left].next = _graph.direct(edge, true);
1285 1285
      (*_blossom_data)[right].next = _graph.direct(edge, false);
1286 1286
    }
1287 1287

	
1288 1288
    void extendOnArc(const Arc& arc) {
1289 1289
      int base = _blossom_set->find(_graph.target(arc));
1290 1290
      int tree = _tree_set->find(base);
1291 1291

	
1292 1292
      int odd = _blossom_set->find(_graph.source(arc));
1293 1293
      _tree_set->insert(odd, tree);
1294 1294
      (*_blossom_data)[odd].status = ODD;
1295 1295
      matchedToOdd(odd);
1296 1296
      (*_blossom_data)[odd].pred = arc;
1297 1297

	
1298 1298
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
1299 1299
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
1300 1300
      _tree_set->insert(even, tree);
1301 1301
      (*_blossom_data)[even].status = EVEN;
1302 1302
      matchedToEven(even, tree);
1303 1303
    }
1304 1304

	
1305 1305
    void shrinkOnEdge(const Edge& edge, int tree) {
1306 1306
      int nca = -1;
1307 1307
      std::vector<int> left_path, right_path;
1308 1308

	
1309 1309
      {
1310 1310
        std::set<int> left_set, right_set;
1311 1311
        int left = _blossom_set->find(_graph.u(edge));
1312 1312
        left_path.push_back(left);
1313 1313
        left_set.insert(left);
1314 1314

	
1315 1315
        int right = _blossom_set->find(_graph.v(edge));
1316 1316
        right_path.push_back(right);
1317 1317
        right_set.insert(right);
1318 1318

	
1319 1319
        while (true) {
1320 1320

	
1321 1321
          if ((*_blossom_data)[left].pred == INVALID) break;
1322 1322

	
1323 1323
          left =
1324 1324
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1325 1325
          left_path.push_back(left);
1326 1326
          left =
1327 1327
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1328 1328
          left_path.push_back(left);
1329 1329

	
1330 1330
          left_set.insert(left);
1331 1331

	
1332 1332
          if (right_set.find(left) != right_set.end()) {
1333 1333
            nca = left;
1334 1334
            break;
1335 1335
          }
1336 1336

	
1337 1337
          if ((*_blossom_data)[right].pred == INVALID) break;
1338 1338

	
1339 1339
          right =
1340 1340
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
1341 1341
          right_path.push_back(right);
1342 1342
          right =
1343 1343
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
1344 1344
          right_path.push_back(right);
1345 1345

	
1346 1346
          right_set.insert(right);
1347 1347

	
1348 1348
          if (left_set.find(right) != left_set.end()) {
1349 1349
            nca = right;
1350 1350
            break;
1351 1351
          }
1352 1352

	
1353 1353
        }
1354 1354

	
1355 1355
        if (nca == -1) {
1356 1356
          if ((*_blossom_data)[left].pred == INVALID) {
1357 1357
            nca = right;
1358 1358
            while (left_set.find(nca) == left_set.end()) {
1359 1359
              nca =
1360 1360
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1361 1361
              right_path.push_back(nca);
1362 1362
              nca =
1363 1363
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1364 1364
              right_path.push_back(nca);
1365 1365
            }
1366 1366
          } else {
1367 1367
            nca = left;
1368 1368
            while (right_set.find(nca) == right_set.end()) {
1369 1369
              nca =
1370 1370
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1371 1371
              left_path.push_back(nca);
1372 1372
              nca =
1373 1373
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1374 1374
              left_path.push_back(nca);
1375 1375
            }
1376 1376
          }
1377 1377
        }
1378 1378
      }
1379 1379

	
1380 1380
      std::vector<int> subblossoms;
1381 1381
      Arc prev;
1382 1382

	
1383 1383
      prev = _graph.direct(edge, true);
1384 1384
      for (int i = 0; left_path[i] != nca; i += 2) {
1385 1385
        subblossoms.push_back(left_path[i]);
1386 1386
        (*_blossom_data)[left_path[i]].next = prev;
1387 1387
        _tree_set->erase(left_path[i]);
1388 1388

	
1389 1389
        subblossoms.push_back(left_path[i + 1]);
1390 1390
        (*_blossom_data)[left_path[i + 1]].status = EVEN;
1391 1391
        oddToEven(left_path[i + 1], tree);
1392 1392
        _tree_set->erase(left_path[i + 1]);
1393 1393
        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
1394 1394
      }
1395 1395

	
1396 1396
      int k = 0;
1397 1397
      while (right_path[k] != nca) ++k;
1398 1398

	
1399 1399
      subblossoms.push_back(nca);
1400 1400
      (*_blossom_data)[nca].next = prev;
1401 1401

	
1402 1402
      for (int i = k - 2; i >= 0; i -= 2) {
1403 1403
        subblossoms.push_back(right_path[i + 1]);
1404 1404
        (*_blossom_data)[right_path[i + 1]].status = EVEN;
1405 1405
        oddToEven(right_path[i + 1], tree);
1406 1406
        _tree_set->erase(right_path[i + 1]);
1407 1407

	
1408 1408
        (*_blossom_data)[right_path[i + 1]].next =
1409 1409
          (*_blossom_data)[right_path[i + 1]].pred;
1410 1410

	
1411 1411
        subblossoms.push_back(right_path[i]);
1412 1412
        _tree_set->erase(right_path[i]);
1413 1413
      }
1414 1414

	
1415 1415
      int surface =
1416 1416
        _blossom_set->join(subblossoms.begin(), subblossoms.end());
1417 1417

	
1418 1418
      for (int i = 0; i < int(subblossoms.size()); ++i) {
1419 1419
        if (!_blossom_set->trivial(subblossoms[i])) {
1420 1420
          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
1421 1421
        }
1422 1422
        (*_blossom_data)[subblossoms[i]].status = MATCHED;
1423 1423
      }
1424 1424

	
1425 1425
      (*_blossom_data)[surface].pot = -2 * _delta_sum;
1426 1426
      (*_blossom_data)[surface].offset = 0;
1427 1427
      (*_blossom_data)[surface].status = EVEN;
1428 1428
      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
1429 1429
      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
1430 1430

	
1431 1431
      _tree_set->insert(surface, tree);
1432 1432
      _tree_set->erase(nca);
1433 1433
    }
1434 1434

	
1435 1435
    void splitBlossom(int blossom) {
1436 1436
      Arc next = (*_blossom_data)[blossom].next;
1437 1437
      Arc pred = (*_blossom_data)[blossom].pred;
1438 1438

	
1439 1439
      int tree = _tree_set->find(blossom);
1440 1440

	
1441 1441
      (*_blossom_data)[blossom].status = MATCHED;
1442 1442
      oddToMatched(blossom);
1443 1443
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1444 1444
        _delta2->erase(blossom);
1445 1445
      }
1446 1446

	
1447 1447
      std::vector<int> subblossoms;
1448 1448
      _blossom_set->split(blossom, std::back_inserter(subblossoms));
1449 1449

	
1450 1450
      Value offset = (*_blossom_data)[blossom].offset;
1451 1451
      int b = _blossom_set->find(_graph.source(pred));
1452 1452
      int d = _blossom_set->find(_graph.source(next));
1453 1453

	
1454 1454
      int ib = -1, id = -1;
1455 1455
      for (int i = 0; i < int(subblossoms.size()); ++i) {
1456 1456
        if (subblossoms[i] == b) ib = i;
1457 1457
        if (subblossoms[i] == d) id = i;
1458 1458

	
1459 1459
        (*_blossom_data)[subblossoms[i]].offset = offset;
1460 1460
        if (!_blossom_set->trivial(subblossoms[i])) {
1461 1461
          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
1462 1462
        }
1463 1463
        if (_blossom_set->classPrio(subblossoms[i]) !=
1464 1464
            std::numeric_limits<Value>::max()) {
1465 1465
          _delta2->push(subblossoms[i],
1466 1466
                        _blossom_set->classPrio(subblossoms[i]) -
1467 1467
                        (*_blossom_data)[subblossoms[i]].offset);
1468 1468
        }
1469 1469
      }
1470 1470

	
1471 1471
      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
1472 1472
        for (int i = (id + 1) % subblossoms.size();
1473 1473
             i != ib; i = (i + 2) % subblossoms.size()) {
1474 1474
          int sb = subblossoms[i];
1475 1475
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1476 1476
          (*_blossom_data)[sb].next =
1477 1477
            _graph.oppositeArc((*_blossom_data)[tb].next);
1478 1478
        }
1479 1479

	
1480 1480
        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
1481 1481
          int sb = subblossoms[i];
1482 1482
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1483 1483
          int ub = subblossoms[(i + 2) % subblossoms.size()];
1484 1484

	
1485 1485
          (*_blossom_data)[sb].status = ODD;
1486 1486
          matchedToOdd(sb);
1487 1487
          _tree_set->insert(sb, tree);
1488 1488
          (*_blossom_data)[sb].pred = pred;
1489 1489
          (*_blossom_data)[sb].next =
1490 1490
                           _graph.oppositeArc((*_blossom_data)[tb].next);
1491 1491

	
1492 1492
          pred = (*_blossom_data)[ub].next;
1493 1493

	
1494 1494
          (*_blossom_data)[tb].status = EVEN;
1495 1495
          matchedToEven(tb, tree);
1496 1496
          _tree_set->insert(tb, tree);
1497 1497
          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
1498 1498
        }
1499 1499

	
1500 1500
        (*_blossom_data)[subblossoms[id]].status = ODD;
1501 1501
        matchedToOdd(subblossoms[id]);
1502 1502
        _tree_set->insert(subblossoms[id], tree);
1503 1503
        (*_blossom_data)[subblossoms[id]].next = next;
1504 1504
        (*_blossom_data)[subblossoms[id]].pred = pred;
1505 1505

	
1506 1506
      } else {
1507 1507

	
1508 1508
        for (int i = (ib + 1) % subblossoms.size();
1509 1509
             i != id; i = (i + 2) % subblossoms.size()) {
1510 1510
          int sb = subblossoms[i];
1511 1511
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1512 1512
          (*_blossom_data)[sb].next =
1513 1513
            _graph.oppositeArc((*_blossom_data)[tb].next);
1514 1514
        }
1515 1515

	
1516 1516
        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
1517 1517
          int sb = subblossoms[i];
1518 1518
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1519 1519
          int ub = subblossoms[(i + 2) % subblossoms.size()];
1520 1520

	
1521 1521
          (*_blossom_data)[sb].status = ODD;
1522 1522
          matchedToOdd(sb);
1523 1523
          _tree_set->insert(sb, tree);
1524 1524
          (*_blossom_data)[sb].next = next;
1525 1525
          (*_blossom_data)[sb].pred =
1526 1526
            _graph.oppositeArc((*_blossom_data)[tb].next);
1527 1527

	
1528 1528
          (*_blossom_data)[tb].status = EVEN;
1529 1529
          matchedToEven(tb, tree);
1530 1530
          _tree_set->insert(tb, tree);
1531 1531
          (*_blossom_data)[tb].pred =
1532 1532
            (*_blossom_data)[tb].next =
1533 1533
            _graph.oppositeArc((*_blossom_data)[ub].next);
1534 1534
          next = (*_blossom_data)[ub].next;
1535 1535
        }
1536 1536

	
1537 1537
        (*_blossom_data)[subblossoms[ib]].status = ODD;
1538 1538
        matchedToOdd(subblossoms[ib]);
1539 1539
        _tree_set->insert(subblossoms[ib], tree);
1540 1540
        (*_blossom_data)[subblossoms[ib]].next = next;
1541 1541
        (*_blossom_data)[subblossoms[ib]].pred = pred;
1542 1542
      }
1543 1543
      _tree_set->erase(blossom);
1544 1544
    }
1545 1545

	
1546 1546
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
1547 1547
      if (_blossom_set->trivial(blossom)) {
1548 1548
        int bi = (*_node_index)[base];
1549 1549
        Value pot = (*_node_data)[bi].pot;
1550 1550

	
1551
        _matching->set(base, matching);
1551
        (*_matching)[base] = matching;
1552 1552
        _blossom_node_list.push_back(base);
1553
        _node_potential->set(base, pot);
1553
        (*_node_potential)[base] = pot;
1554 1554
      } else {
1555 1555

	
1556 1556
        Value pot = (*_blossom_data)[blossom].pot;
1557 1557
        int bn = _blossom_node_list.size();
1558 1558

	
1559 1559
        std::vector<int> subblossoms;
1560 1560
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
1561 1561
        int b = _blossom_set->find(base);
1562 1562
        int ib = -1;
1563 1563
        for (int i = 0; i < int(subblossoms.size()); ++i) {
1564 1564
          if (subblossoms[i] == b) { ib = i; break; }
1565 1565
        }
1566 1566

	
1567 1567
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
1568 1568
          int sb = subblossoms[(ib + i) % subblossoms.size()];
1569 1569
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
1570 1570

	
1571 1571
          Arc m = (*_blossom_data)[tb].next;
1572 1572
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
1573 1573
          extractBlossom(tb, _graph.source(m), m);
1574 1574
        }
1575 1575
        extractBlossom(subblossoms[ib], base, matching);
1576 1576

	
1577 1577
        int en = _blossom_node_list.size();
1578 1578

	
1579 1579
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
1580 1580
      }
1581 1581
    }
1582 1582

	
1583 1583
    void extractMatching() {
1584 1584
      std::vector<int> blossoms;
1585 1585
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
1586 1586
        blossoms.push_back(c);
1587 1587
      }
1588 1588

	
1589 1589
      for (int i = 0; i < int(blossoms.size()); ++i) {
1590 1590
        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
1591 1591

	
1592 1592
          Value offset = (*_blossom_data)[blossoms[i]].offset;
1593 1593
          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
1594 1594
          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
1595 1595
               n != INVALID; ++n) {
1596 1596
            (*_node_data)[(*_node_index)[n]].pot -= offset;
1597 1597
          }
1598 1598

	
1599 1599
          Arc matching = (*_blossom_data)[blossoms[i]].next;
1600 1600
          Node base = _graph.source(matching);
1601 1601
          extractBlossom(blossoms[i], base, matching);
1602 1602
        } else {
1603 1603
          Node base = (*_blossom_data)[blossoms[i]].base;
1604 1604
          extractBlossom(blossoms[i], base, INVALID);
1605 1605
        }
1606 1606
      }
1607 1607
    }
1608 1608

	
1609 1609
  public:
1610 1610

	
1611 1611
    /// \brief Constructor
1612 1612
    ///
1613 1613
    /// Constructor.
1614 1614
    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
1615 1615
      : _graph(graph), _weight(weight), _matching(0),
1616 1616
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
1617 1617
        _node_num(0), _blossom_num(0),
1618 1618

	
1619 1619
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
1620 1620
        _node_index(0), _node_heap_index(0), _node_data(0),
1621 1621
        _tree_set_index(0), _tree_set(0),
1622 1622

	
1623 1623
        _delta1_index(0), _delta1(0),
1624 1624
        _delta2_index(0), _delta2(0),
1625 1625
        _delta3_index(0), _delta3(0),
1626 1626
        _delta4_index(0), _delta4(0),
1627 1627

	
1628 1628
        _delta_sum() {}
1629 1629

	
1630 1630
    ~MaxWeightedMatching() {
1631 1631
      destroyStructures();
1632 1632
    }
1633 1633

	
1634 1634
    /// \name Execution control
1635 1635
    /// The simplest way to execute the algorithm is to use the
1636 1636
    /// \c run() member function.
1637 1637

	
1638 1638
    ///@{
1639 1639

	
1640 1640
    /// \brief Initialize the algorithm
1641 1641
    ///
1642 1642
    /// Initialize the algorithm
1643 1643
    void init() {
1644 1644
      createStructures();
1645 1645

	
1646 1646
      for (ArcIt e(_graph); e != INVALID; ++e) {
1647
        _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
1647
        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
1648 1648
      }
1649 1649
      for (NodeIt n(_graph); n != INVALID; ++n) {
1650
        _delta1_index->set(n, _delta1->PRE_HEAP);
1650
        (*_delta1_index)[n] = _delta1->PRE_HEAP;
1651 1651
      }
1652 1652
      for (EdgeIt e(_graph); e != INVALID; ++e) {
1653
        _delta3_index->set(e, _delta3->PRE_HEAP);
1653
        (*_delta3_index)[e] = _delta3->PRE_HEAP;
1654 1654
      }
1655 1655
      for (int i = 0; i < _blossom_num; ++i) {
1656
        _delta2_index->set(i, _delta2->PRE_HEAP);
1657
        _delta4_index->set(i, _delta4->PRE_HEAP);
1656
        (*_delta2_index)[i] = _delta2->PRE_HEAP;
1657
        (*_delta4_index)[i] = _delta4->PRE_HEAP;
1658 1658
      }
1659 1659

	
1660 1660
      int index = 0;
1661 1661
      for (NodeIt n(_graph); n != INVALID; ++n) {
1662 1662
        Value max = 0;
1663 1663
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1664 1664
          if (_graph.target(e) == n) continue;
1665 1665
          if ((dualScale * _weight[e]) / 2 > max) {
1666 1666
            max = (dualScale * _weight[e]) / 2;
1667 1667
          }
1668 1668
        }
1669
        _node_index->set(n, index);
1669
        (*_node_index)[n] = index;
1670 1670
        (*_node_data)[index].pot = max;
1671 1671
        _delta1->push(n, max);
1672 1672
        int blossom =
1673 1673
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
1674 1674

	
1675 1675
        _tree_set->insert(blossom);
1676 1676

	
1677 1677
        (*_blossom_data)[blossom].status = EVEN;
1678 1678
        (*_blossom_data)[blossom].pred = INVALID;
1679 1679
        (*_blossom_data)[blossom].next = INVALID;
1680 1680
        (*_blossom_data)[blossom].pot = 0;
1681 1681
        (*_blossom_data)[blossom].offset = 0;
1682 1682
        ++index;
1683 1683
      }
1684 1684
      for (EdgeIt e(_graph); e != INVALID; ++e) {
1685 1685
        int si = (*_node_index)[_graph.u(e)];
1686 1686
        int ti = (*_node_index)[_graph.v(e)];
1687 1687
        if (_graph.u(e) != _graph.v(e)) {
1688 1688
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
1689 1689
                            dualScale * _weight[e]) / 2);
1690 1690
        }
1691 1691
      }
1692 1692
    }
1693 1693

	
1694 1694
    /// \brief Starts the algorithm
1695 1695
    ///
1696 1696
    /// Starts the algorithm
1697 1697
    void start() {
1698 1698
      enum OpType {
1699 1699
        D1, D2, D3, D4
1700 1700
      };
1701 1701

	
1702 1702
      int unmatched = _node_num;
1703 1703
      while (unmatched > 0) {
1704 1704
        Value d1 = !_delta1->empty() ?
1705 1705
          _delta1->prio() : std::numeric_limits<Value>::max();
1706 1706

	
1707 1707
        Value d2 = !_delta2->empty() ?
1708 1708
          _delta2->prio() : std::numeric_limits<Value>::max();
1709 1709

	
1710 1710
        Value d3 = !_delta3->empty() ?
1711 1711
          _delta3->prio() : std::numeric_limits<Value>::max();
1712 1712

	
1713 1713
        Value d4 = !_delta4->empty() ?
1714 1714
          _delta4->prio() : std::numeric_limits<Value>::max();
1715 1715

	
1716 1716
        _delta_sum = d1; OpType ot = D1;
1717 1717
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
1718 1718
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
1719 1719
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
1720 1720

	
1721 1721

	
1722 1722
        switch (ot) {
1723 1723
        case D1:
1724 1724
          {
1725 1725
            Node n = _delta1->top();
1726 1726
            unmatchNode(n);
1727 1727
            --unmatched;
1728 1728
          }
1729 1729
          break;
1730 1730
        case D2:
1731 1731
          {
1732 1732
            int blossom = _delta2->top();
1733 1733
            Node n = _blossom_set->classTop(blossom);
1734 1734
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
1735 1735
            extendOnArc(e);
1736 1736
          }
1737 1737
          break;
1738 1738
        case D3:
1739 1739
          {
1740 1740
            Edge e = _delta3->top();
1741 1741

	
1742 1742
            int left_blossom = _blossom_set->find(_graph.u(e));
1743 1743
            int right_blossom = _blossom_set->find(_graph.v(e));
1744 1744

	
1745 1745
            if (left_blossom == right_blossom) {
1746 1746
              _delta3->pop();
1747 1747
            } else {
1748 1748
              int left_tree;
1749 1749
              if ((*_blossom_data)[left_blossom].status == EVEN) {
1750 1750
                left_tree = _tree_set->find(left_blossom);
1751 1751
              } else {
1752 1752
                left_tree = -1;
1753 1753
                ++unmatched;
1754 1754
              }
1755 1755
              int right_tree;
1756 1756
              if ((*_blossom_data)[right_blossom].status == EVEN) {
1757 1757
                right_tree = _tree_set->find(right_blossom);
1758 1758
              } else {
1759 1759
                right_tree = -1;
1760 1760
                ++unmatched;
1761 1761
              }
1762 1762

	
1763 1763
              if (left_tree == right_tree) {
1764 1764
                shrinkOnEdge(e, left_tree);
1765 1765
              } else {
1766 1766
                augmentOnEdge(e);
1767 1767
                unmatched -= 2;
1768 1768
              }
1769 1769
            }
1770 1770
          } break;
1771 1771
        case D4:
1772 1772
          splitBlossom(_delta4->top());
1773 1773
          break;
1774 1774
        }
1775 1775
      }
1776 1776
      extractMatching();
1777 1777
    }
1778 1778

	
1779 1779
    /// \brief Runs %MaxWeightedMatching algorithm.
1780 1780
    ///
1781 1781
    /// This method runs the %MaxWeightedMatching algorithm.
1782 1782
    ///
1783 1783
    /// \note mwm.run() is just a shortcut of the following code.
1784 1784
    /// \code
1785 1785
    ///   mwm.init();
1786 1786
    ///   mwm.start();
1787 1787
    /// \endcode
1788 1788
    void run() {
1789 1789
      init();
1790 1790
      start();
1791 1791
    }
1792 1792

	
1793 1793
    /// @}
1794 1794

	
1795 1795
    /// \name Primal solution
1796 1796
    /// Functions to get the primal solution, ie. the matching.
1797 1797

	
1798 1798
    /// @{
1799 1799

	
1800 1800
    /// \brief Returns the weight of the matching.
1801 1801
    ///
1802 1802
    /// Returns the weight of the matching.
1803 1803
    Value matchingValue() const {
1804 1804
      Value sum = 0;
1805 1805
      for (NodeIt n(_graph); n != INVALID; ++n) {
1806 1806
        if ((*_matching)[n] != INVALID) {
1807 1807
          sum += _weight[(*_matching)[n]];
1808 1808
        }
1809 1809
      }
1810 1810
      return sum /= 2;
1811 1811
    }
1812 1812

	
1813 1813
    /// \brief Returns the cardinality of the matching.
1814 1814
    ///
1815 1815
    /// Returns the cardinality of the matching.
1816 1816
    int matchingSize() const {
1817 1817
      int num = 0;
1818 1818
      for (NodeIt n(_graph); n != INVALID; ++n) {
1819 1819
        if ((*_matching)[n] != INVALID) {
1820 1820
          ++num;
1821 1821
        }
1822 1822
      }
1823 1823
      return num /= 2;
1824 1824
    }
1825 1825

	
1826 1826
    /// \brief Returns true when the edge is in the matching.
1827 1827
    ///
1828 1828
    /// Returns true when the edge is in the matching.
1829 1829
    bool matching(const Edge& edge) const {
1830 1830
      return edge == (*_matching)[_graph.u(edge)];
1831 1831
    }
1832 1832

	
1833 1833
    /// \brief Returns the incident matching arc.
1834 1834
    ///
1835 1835
    /// Returns the incident matching arc from given node. If the
1836 1836
    /// node is not matched then it gives back \c INVALID.
1837 1837
    Arc matching(const Node& node) const {
1838 1838
      return (*_matching)[node];
1839 1839
    }
1840 1840

	
1841 1841
    /// \brief Returns the mate of the node.
1842 1842
    ///
1843 1843
    /// Returns the adjancent node in a mathcing arc. If the node is
1844 1844
    /// not matched then it gives back \c INVALID.
1845 1845
    Node mate(const Node& node) const {
1846 1846
      return (*_matching)[node] != INVALID ?
1847 1847
        _graph.target((*_matching)[node]) : INVALID;
1848 1848
    }
1849 1849

	
1850 1850
    /// @}
1851 1851

	
1852 1852
    /// \name Dual solution
1853 1853
    /// Functions to get the dual solution.
1854 1854

	
1855 1855
    /// @{
1856 1856

	
1857 1857
    /// \brief Returns the value of the dual solution.
1858 1858
    ///
1859 1859
    /// Returns the value of the dual solution. It should be equal to
1860 1860
    /// the primal value scaled by \ref dualScale "dual scale".
1861 1861
    Value dualValue() const {
1862 1862
      Value sum = 0;
1863 1863
      for (NodeIt n(_graph); n != INVALID; ++n) {
1864 1864
        sum += nodeValue(n);
1865 1865
      }
1866 1866
      for (int i = 0; i < blossomNum(); ++i) {
1867 1867
        sum += blossomValue(i) * (blossomSize(i) / 2);
1868 1868
      }
1869 1869
      return sum;
1870 1870
    }
1871 1871

	
1872 1872
    /// \brief Returns the value of the node.
1873 1873
    ///
1874 1874
    /// Returns the the value of the node.
1875 1875
    Value nodeValue(const Node& n) const {
1876 1876
      return (*_node_potential)[n];
1877 1877
    }
1878 1878

	
1879 1879
    /// \brief Returns the number of the blossoms in the basis.
1880 1880
    ///
1881 1881
    /// Returns the number of the blossoms in the basis.
1882 1882
    /// \see BlossomIt
1883 1883
    int blossomNum() const {
1884 1884
      return _blossom_potential.size();
1885 1885
    }
1886 1886

	
1887 1887

	
1888 1888
    /// \brief Returns the number of the nodes in the blossom.
1889 1889
    ///
1890 1890
    /// Returns the number of the nodes in the blossom.
1891 1891
    int blossomSize(int k) const {
1892 1892
      return _blossom_potential[k].end - _blossom_potential[k].begin;
1893 1893
    }
1894 1894

	
1895 1895
    /// \brief Returns the value of the blossom.
1896 1896
    ///
1897 1897
    /// Returns the the value of the blossom.
1898 1898
    /// \see BlossomIt
1899 1899
    Value blossomValue(int k) const {
1900 1900
      return _blossom_potential[k].value;
1901 1901
    }
1902 1902

	
1903 1903
    /// \brief Iterator for obtaining the nodes of the blossom.
1904 1904
    ///
1905 1905
    /// Iterator for obtaining the nodes of the blossom. This class
1906 1906
    /// provides a common lemon style iterator for listing a
1907 1907
    /// subset of the nodes.
1908 1908
    class BlossomIt {
1909 1909
    public:
1910 1910

	
1911 1911
      /// \brief Constructor.
1912 1912
      ///
1913 1913
      /// Constructor to get the nodes of the variable.
1914 1914
      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
1915 1915
        : _algorithm(&algorithm)
1916 1916
      {
1917 1917
        _index = _algorithm->_blossom_potential[variable].begin;
1918 1918
        _last = _algorithm->_blossom_potential[variable].end;
1919 1919
      }
1920 1920

	
1921 1921
      /// \brief Conversion to node.
1922 1922
      ///
1923 1923
      /// Conversion to node.
1924 1924
      operator Node() const {
1925 1925
        return _algorithm->_blossom_node_list[_index];
1926 1926
      }
1927 1927

	
1928 1928
      /// \brief Increment operator.
1929 1929
      ///
1930 1930
      /// Increment operator.
1931 1931
      BlossomIt& operator++() {
1932 1932
        ++_index;
1933 1933
        return *this;
1934 1934
      }
1935 1935

	
1936 1936
      /// \brief Validity checking
1937 1937
      ///
1938 1938
      /// Checks whether the iterator is invalid.
1939 1939
      bool operator==(Invalid) const { return _index == _last; }
1940 1940

	
1941 1941
      /// \brief Validity checking
1942 1942
      ///
1943 1943
      /// Checks whether the iterator is valid.
1944 1944
      bool operator!=(Invalid) const { return _index != _last; }
1945 1945

	
1946 1946
    private:
1947 1947
      const MaxWeightedMatching* _algorithm;
1948 1948
      int _last;
1949 1949
      int _index;
1950 1950
    };
1951 1951

	
1952 1952
    /// @}
1953 1953

	
1954 1954
  };
1955 1955

	
1956 1956
  /// \ingroup matching
1957 1957
  ///
1958 1958
  /// \brief Weighted perfect matching in general graphs
1959 1959
  ///
1960 1960
  /// This class provides an efficient implementation of Edmond's
1961 1961
  /// maximum weighted perfect matching algorithm. The implementation
1962 1962
  /// is based on extensive use of priority queues and provides
1963 1963
  /// \f$O(nm\log n)\f$ time complexity.
1964 1964
  ///
1965 1965
  /// The maximum weighted matching problem is to find undirected
1966 1966
  /// edges in the graph with maximum overall weight and no two of
1967 1967
  /// them shares their ends and covers all nodes. The problem can be
1968 1968
  /// formulated with the following linear program.
1969 1969
  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
1970 1970
  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
1971 1971
      \quad \forall B\in\mathcal{O}\f] */
1972 1972
  /// \f[x_e \ge 0\quad \forall e\in E\f]
1973 1973
  /// \f[\max \sum_{e\in E}x_ew_e\f]
1974 1974
  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
1975 1975
  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
1976 1976
  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
1977 1977
  /// subsets of the nodes.
1978 1978
  ///
1979 1979
  /// The algorithm calculates an optimal matching and a proof of the
1980 1980
  /// optimality. The solution of the dual problem can be used to check
1981 1981
  /// the result of the algorithm. The dual linear problem is the
1982 1982
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
1983 1983
      w_{uv} \quad \forall uv\in E\f] */
1984 1984
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
1985 1985
  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
1986 1986
      \frac{\vert B \vert - 1}{2}z_B\f] */
1987 1987
  ///
1988 1988
  /// The algorithm can be executed with \c run() or the \c init() and
1989 1989
  /// then the \c start() member functions. After it the matching can
1990 1990
  /// be asked with \c matching() or mate() functions. The dual
1991 1991
  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
1992 1992
  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
1993 1993
  /// "BlossomIt" nested class which is able to iterate on the nodes
1994 1994
  /// of a blossom. If the value type is integral then the dual
1995 1995
  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
1996 1996
  template <typename GR,
1997 1997
            typename WM = typename GR::template EdgeMap<int> >
1998 1998
  class MaxWeightedPerfectMatching {
1999 1999
  public:
2000 2000

	
2001 2001
    typedef GR Graph;
2002 2002
    typedef WM WeightMap;
2003 2003
    typedef typename WeightMap::Value Value;
2004 2004

	
2005 2005
    /// \brief Scaling factor for dual solution
2006 2006
    ///
2007 2007
    /// Scaling factor for dual solution, it is equal to 4 or 1
2008 2008
    /// according to the value type.
2009 2009
    static const int dualScale =
2010 2010
      std::numeric_limits<Value>::is_integer ? 4 : 1;
2011 2011

	
2012 2012
    typedef typename Graph::template NodeMap<typename Graph::Arc>
2013 2013
    MatchingMap;
2014 2014

	
2015 2015
  private:
2016 2016

	
2017 2017
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
2018 2018

	
2019 2019
    typedef typename Graph::template NodeMap<Value> NodePotential;
2020 2020
    typedef std::vector<Node> BlossomNodeList;
2021 2021

	
2022 2022
    struct BlossomVariable {
2023 2023
      int begin, end;
2024 2024
      Value value;
2025 2025

	
2026 2026
      BlossomVariable(int _begin, int _end, Value _value)
2027 2027
        : begin(_begin), end(_end), value(_value) {}
2028 2028

	
2029 2029
    };
2030 2030

	
2031 2031
    typedef std::vector<BlossomVariable> BlossomPotential;
2032 2032

	
2033 2033
    const Graph& _graph;
2034 2034
    const WeightMap& _weight;
2035 2035

	
2036 2036
    MatchingMap* _matching;
2037 2037

	
2038 2038
    NodePotential* _node_potential;
2039 2039

	
2040 2040
    BlossomPotential _blossom_potential;
2041 2041
    BlossomNodeList _blossom_node_list;
2042 2042

	
2043 2043
    int _node_num;
2044 2044
    int _blossom_num;
2045 2045

	
2046 2046
    typedef RangeMap<int> IntIntMap;
2047 2047

	
2048 2048
    enum Status {
2049 2049
      EVEN = -1, MATCHED = 0, ODD = 1
2050 2050
    };
2051 2051

	
2052 2052
    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
2053 2053
    struct BlossomData {
... ...
@@ -2360,748 +2360,748 @@
2360 2360
        _delta4->erase(blossom);
2361 2361
      }
2362 2362
    }
2363 2363

	
2364 2364
    void oddToEven(int blossom, int tree) {
2365 2365
      if (!_blossom_set->trivial(blossom)) {
2366 2366
        _delta4->erase(blossom);
2367 2367
        (*_blossom_data)[blossom].pot -=
2368 2368
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
2369 2369
      }
2370 2370

	
2371 2371
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2372 2372
           n != INVALID; ++n) {
2373 2373
        int ni = (*_node_index)[n];
2374 2374

	
2375 2375
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
2376 2376

	
2377 2377
        (*_node_data)[ni].heap.clear();
2378 2378
        (*_node_data)[ni].heap_index.clear();
2379 2379
        (*_node_data)[ni].pot +=
2380 2380
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
2381 2381

	
2382 2382
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
2383 2383
          Node v = _graph.source(e);
2384 2384
          int vb = _blossom_set->find(v);
2385 2385
          int vi = (*_node_index)[v];
2386 2386

	
2387 2387
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2388 2388
            dualScale * _weight[e];
2389 2389

	
2390 2390
          if ((*_blossom_data)[vb].status == EVEN) {
2391 2391
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
2392 2392
              _delta3->push(e, rw / 2);
2393 2393
            }
2394 2394
          } else {
2395 2395

	
2396 2396
            typename std::map<int, Arc>::iterator it =
2397 2397
              (*_node_data)[vi].heap_index.find(tree);
2398 2398

	
2399 2399
            if (it != (*_node_data)[vi].heap_index.end()) {
2400 2400
              if ((*_node_data)[vi].heap[it->second] > rw) {
2401 2401
                (*_node_data)[vi].heap.replace(it->second, e);
2402 2402
                (*_node_data)[vi].heap.decrease(e, rw);
2403 2403
                it->second = e;
2404 2404
              }
2405 2405
            } else {
2406 2406
              (*_node_data)[vi].heap.push(e, rw);
2407 2407
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
2408 2408
            }
2409 2409

	
2410 2410
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
2411 2411
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
2412 2412

	
2413 2413
              if ((*_blossom_data)[vb].status == MATCHED) {
2414 2414
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
2415 2415
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
2416 2416
                               (*_blossom_data)[vb].offset);
2417 2417
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
2418 2418
                           (*_blossom_data)[vb].offset) {
2419 2419
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
2420 2420
                                   (*_blossom_data)[vb].offset);
2421 2421
                }
2422 2422
              }
2423 2423
            }
2424 2424
          }
2425 2425
        }
2426 2426
      }
2427 2427
      (*_blossom_data)[blossom].offset = 0;
2428 2428
    }
2429 2429

	
2430 2430
    void alternatePath(int even, int tree) {
2431 2431
      int odd;
2432 2432

	
2433 2433
      evenToMatched(even, tree);
2434 2434
      (*_blossom_data)[even].status = MATCHED;
2435 2435

	
2436 2436
      while ((*_blossom_data)[even].pred != INVALID) {
2437 2437
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
2438 2438
        (*_blossom_data)[odd].status = MATCHED;
2439 2439
        oddToMatched(odd);
2440 2440
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
2441 2441

	
2442 2442
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
2443 2443
        (*_blossom_data)[even].status = MATCHED;
2444 2444
        evenToMatched(even, tree);
2445 2445
        (*_blossom_data)[even].next =
2446 2446
          _graph.oppositeArc((*_blossom_data)[odd].pred);
2447 2447
      }
2448 2448

	
2449 2449
    }
2450 2450

	
2451 2451
    void destroyTree(int tree) {
2452 2452
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
2453 2453
        if ((*_blossom_data)[b].status == EVEN) {
2454 2454
          (*_blossom_data)[b].status = MATCHED;
2455 2455
          evenToMatched(b, tree);
2456 2456
        } else if ((*_blossom_data)[b].status == ODD) {
2457 2457
          (*_blossom_data)[b].status = MATCHED;
2458 2458
          oddToMatched(b);
2459 2459
        }
2460 2460
      }
2461 2461
      _tree_set->eraseClass(tree);
2462 2462
    }
2463 2463

	
2464 2464
    void augmentOnEdge(const Edge& edge) {
2465 2465

	
2466 2466
      int left = _blossom_set->find(_graph.u(edge));
2467 2467
      int right = _blossom_set->find(_graph.v(edge));
2468 2468

	
2469 2469
      int left_tree = _tree_set->find(left);
2470 2470
      alternatePath(left, left_tree);
2471 2471
      destroyTree(left_tree);
2472 2472

	
2473 2473
      int right_tree = _tree_set->find(right);
2474 2474
      alternatePath(right, right_tree);
2475 2475
      destroyTree(right_tree);
2476 2476

	
2477 2477
      (*_blossom_data)[left].next = _graph.direct(edge, true);
2478 2478
      (*_blossom_data)[right].next = _graph.direct(edge, false);
2479 2479
    }
2480 2480

	
2481 2481
    void extendOnArc(const Arc& arc) {
2482 2482
      int base = _blossom_set->find(_graph.target(arc));
2483 2483
      int tree = _tree_set->find(base);
2484 2484

	
2485 2485
      int odd = _blossom_set->find(_graph.source(arc));
2486 2486
      _tree_set->insert(odd, tree);
2487 2487
      (*_blossom_data)[odd].status = ODD;
2488 2488
      matchedToOdd(odd);
2489 2489
      (*_blossom_data)[odd].pred = arc;
2490 2490

	
2491 2491
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
2492 2492
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
2493 2493
      _tree_set->insert(even, tree);
2494 2494
      (*_blossom_data)[even].status = EVEN;
2495 2495
      matchedToEven(even, tree);
2496 2496
    }
2497 2497

	
2498 2498
    void shrinkOnEdge(const Edge& edge, int tree) {
2499 2499
      int nca = -1;
2500 2500
      std::vector<int> left_path, right_path;
2501 2501

	
2502 2502
      {
2503 2503
        std::set<int> left_set, right_set;
2504 2504
        int left = _blossom_set->find(_graph.u(edge));
2505 2505
        left_path.push_back(left);
2506 2506
        left_set.insert(left);
2507 2507

	
2508 2508
        int right = _blossom_set->find(_graph.v(edge));
2509 2509
        right_path.push_back(right);
2510 2510
        right_set.insert(right);
2511 2511

	
2512 2512
        while (true) {
2513 2513

	
2514 2514
          if ((*_blossom_data)[left].pred == INVALID) break;
2515 2515

	
2516 2516
          left =
2517 2517
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
2518 2518
          left_path.push_back(left);
2519 2519
          left =
2520 2520
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
2521 2521
          left_path.push_back(left);
2522 2522

	
2523 2523
          left_set.insert(left);
2524 2524

	
2525 2525
          if (right_set.find(left) != right_set.end()) {
2526 2526
            nca = left;
2527 2527
            break;
2528 2528
          }
2529 2529

	
2530 2530
          if ((*_blossom_data)[right].pred == INVALID) break;
2531 2531

	
2532 2532
          right =
2533 2533
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
2534 2534
          right_path.push_back(right);
2535 2535
          right =
2536 2536
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
2537 2537
          right_path.push_back(right);
2538 2538

	
2539 2539
          right_set.insert(right);
2540 2540

	
2541 2541
          if (left_set.find(right) != left_set.end()) {
2542 2542
            nca = right;
2543 2543
            break;
2544 2544
          }
2545 2545

	
2546 2546
        }
2547 2547

	
2548 2548
        if (nca == -1) {
2549 2549
          if ((*_blossom_data)[left].pred == INVALID) {
2550 2550
            nca = right;
2551 2551
            while (left_set.find(nca) == left_set.end()) {
2552 2552
              nca =
2553 2553
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2554 2554
              right_path.push_back(nca);
2555 2555
              nca =
2556 2556
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2557 2557
              right_path.push_back(nca);
2558 2558
            }
2559 2559
          } else {
2560 2560
            nca = left;
2561 2561
            while (right_set.find(nca) == right_set.end()) {
2562 2562
              nca =
2563 2563
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2564 2564
              left_path.push_back(nca);
2565 2565
              nca =
2566 2566
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2567 2567
              left_path.push_back(nca);
2568 2568
            }
2569 2569
          }
2570 2570
        }
2571 2571
      }
2572 2572

	
2573 2573
      std::vector<int> subblossoms;
2574 2574
      Arc prev;
2575 2575

	
2576 2576
      prev = _graph.direct(edge, true);
2577 2577
      for (int i = 0; left_path[i] != nca; i += 2) {
2578 2578
        subblossoms.push_back(left_path[i]);
2579 2579
        (*_blossom_data)[left_path[i]].next = prev;
2580 2580
        _tree_set->erase(left_path[i]);
2581 2581

	
2582 2582
        subblossoms.push_back(left_path[i + 1]);
2583 2583
        (*_blossom_data)[left_path[i + 1]].status = EVEN;
2584 2584
        oddToEven(left_path[i + 1], tree);
2585 2585
        _tree_set->erase(left_path[i + 1]);
2586 2586
        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
2587 2587
      }
2588 2588

	
2589 2589
      int k = 0;
2590 2590
      while (right_path[k] != nca) ++k;
2591 2591

	
2592 2592
      subblossoms.push_back(nca);
2593 2593
      (*_blossom_data)[nca].next = prev;
2594 2594

	
2595 2595
      for (int i = k - 2; i >= 0; i -= 2) {
2596 2596
        subblossoms.push_back(right_path[i + 1]);
2597 2597
        (*_blossom_data)[right_path[i + 1]].status = EVEN;
2598 2598
        oddToEven(right_path[i + 1], tree);
2599 2599
        _tree_set->erase(right_path[i + 1]);
2600 2600

	
2601 2601
        (*_blossom_data)[right_path[i + 1]].next =
2602 2602
          (*_blossom_data)[right_path[i + 1]].pred;
2603 2603

	
2604 2604
        subblossoms.push_back(right_path[i]);
2605 2605
        _tree_set->erase(right_path[i]);
2606 2606
      }
2607 2607

	
2608 2608
      int surface =
2609 2609
        _blossom_set->join(subblossoms.begin(), subblossoms.end());
2610 2610

	
2611 2611
      for (int i = 0; i < int(subblossoms.size()); ++i) {
2612 2612
        if (!_blossom_set->trivial(subblossoms[i])) {
2613 2613
          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
2614 2614
        }
2615 2615
        (*_blossom_data)[subblossoms[i]].status = MATCHED;
2616 2616
      }
2617 2617

	
2618 2618
      (*_blossom_data)[surface].pot = -2 * _delta_sum;
2619 2619
      (*_blossom_data)[surface].offset = 0;
2620 2620
      (*_blossom_data)[surface].status = EVEN;
2621 2621
      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
2622 2622
      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
2623 2623

	
2624 2624
      _tree_set->insert(surface, tree);
2625 2625
      _tree_set->erase(nca);
2626 2626
    }
2627 2627

	
2628 2628
    void splitBlossom(int blossom) {
2629 2629
      Arc next = (*_blossom_data)[blossom].next;
2630 2630
      Arc pred = (*_blossom_data)[blossom].pred;
2631 2631

	
2632 2632
      int tree = _tree_set->find(blossom);
2633 2633

	
2634 2634
      (*_blossom_data)[blossom].status = MATCHED;
2635 2635
      oddToMatched(blossom);
2636 2636
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2637 2637
        _delta2->erase(blossom);
2638 2638
      }
2639 2639

	
2640 2640
      std::vector<int> subblossoms;
2641 2641
      _blossom_set->split(blossom, std::back_inserter(subblossoms));
2642 2642

	
2643 2643
      Value offset = (*_blossom_data)[blossom].offset;
2644 2644
      int b = _blossom_set->find(_graph.source(pred));
2645 2645
      int d = _blossom_set->find(_graph.source(next));
2646 2646

	
2647 2647
      int ib = -1, id = -1;
2648 2648
      for (int i = 0; i < int(subblossoms.size()); ++i) {
2649 2649
        if (subblossoms[i] == b) ib = i;
2650 2650
        if (subblossoms[i] == d) id = i;
2651 2651

	
2652 2652
        (*_blossom_data)[subblossoms[i]].offset = offset;
2653 2653
        if (!_blossom_set->trivial(subblossoms[i])) {
2654 2654
          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
2655 2655
        }
2656 2656
        if (_blossom_set->classPrio(subblossoms[i]) !=
2657 2657
            std::numeric_limits<Value>::max()) {
2658 2658
          _delta2->push(subblossoms[i],
2659 2659
                        _blossom_set->classPrio(subblossoms[i]) -
2660 2660
                        (*_blossom_data)[subblossoms[i]].offset);
2661 2661
        }
2662 2662
      }
2663 2663

	
2664 2664
      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
2665 2665
        for (int i = (id + 1) % subblossoms.size();
2666 2666
             i != ib; i = (i + 2) % subblossoms.size()) {
2667 2667
          int sb = subblossoms[i];
2668 2668
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2669 2669
          (*_blossom_data)[sb].next =
2670 2670
            _graph.oppositeArc((*_blossom_data)[tb].next);
2671 2671
        }
2672 2672

	
2673 2673
        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
2674 2674
          int sb = subblossoms[i];
2675 2675
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2676 2676
          int ub = subblossoms[(i + 2) % subblossoms.size()];
2677 2677

	
2678 2678
          (*_blossom_data)[sb].status = ODD;
2679 2679
          matchedToOdd(sb);
2680 2680
          _tree_set->insert(sb, tree);
2681 2681
          (*_blossom_data)[sb].pred = pred;
2682 2682
          (*_blossom_data)[sb].next =
2683 2683
                           _graph.oppositeArc((*_blossom_data)[tb].next);
2684 2684

	
2685 2685
          pred = (*_blossom_data)[ub].next;
2686 2686

	
2687 2687
          (*_blossom_data)[tb].status = EVEN;
2688 2688
          matchedToEven(tb, tree);
2689 2689
          _tree_set->insert(tb, tree);
2690 2690
          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
2691 2691
        }
2692 2692

	
2693 2693
        (*_blossom_data)[subblossoms[id]].status = ODD;
2694 2694
        matchedToOdd(subblossoms[id]);
2695 2695
        _tree_set->insert(subblossoms[id], tree);
2696 2696
        (*_blossom_data)[subblossoms[id]].next = next;
2697 2697
        (*_blossom_data)[subblossoms[id]].pred = pred;
2698 2698

	
2699 2699
      } else {
2700 2700

	
2701 2701
        for (int i = (ib + 1) % subblossoms.size();
2702 2702
             i != id; i = (i + 2) % subblossoms.size()) {
2703 2703
          int sb = subblossoms[i];
2704 2704
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2705 2705
          (*_blossom_data)[sb].next =
2706 2706
            _graph.oppositeArc((*_blossom_data)[tb].next);
2707 2707
        }
2708 2708

	
2709 2709
        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
2710 2710
          int sb = subblossoms[i];
2711 2711
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2712 2712
          int ub = subblossoms[(i + 2) % subblossoms.size()];
2713 2713

	
2714 2714
          (*_blossom_data)[sb].status = ODD;
2715 2715
          matchedToOdd(sb);
2716 2716
          _tree_set->insert(sb, tree);
2717 2717
          (*_blossom_data)[sb].next = next;
2718 2718
          (*_blossom_data)[sb].pred =
2719 2719
            _graph.oppositeArc((*_blossom_data)[tb].next);
2720 2720

	
2721 2721
          (*_blossom_data)[tb].status = EVEN;
2722 2722
          matchedToEven(tb, tree);
2723 2723
          _tree_set->insert(tb, tree);
2724 2724
          (*_blossom_data)[tb].pred =
2725 2725
            (*_blossom_data)[tb].next =
2726 2726
            _graph.oppositeArc((*_blossom_data)[ub].next);
2727 2727
          next = (*_blossom_data)[ub].next;
2728 2728
        }
2729 2729

	
2730 2730
        (*_blossom_data)[subblossoms[ib]].status = ODD;
2731 2731
        matchedToOdd(subblossoms[ib]);
2732 2732
        _tree_set->insert(subblossoms[ib], tree);
2733 2733
        (*_blossom_data)[subblossoms[ib]].next = next;
2734 2734
        (*_blossom_data)[subblossoms[ib]].pred = pred;
2735 2735
      }
2736 2736
      _tree_set->erase(blossom);
2737 2737
    }
2738 2738

	
2739 2739
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
2740 2740
      if (_blossom_set->trivial(blossom)) {
2741 2741
        int bi = (*_node_index)[base];
2742 2742
        Value pot = (*_node_data)[bi].pot;
2743 2743

	
2744
        _matching->set(base, matching);
2744
        (*_matching)[base] = matching;
2745 2745
        _blossom_node_list.push_back(base);
2746
        _node_potential->set(base, pot);
2746
        (*_node_potential)[base] = pot;
2747 2747
      } else {
2748 2748

	
2749 2749
        Value pot = (*_blossom_data)[blossom].pot;
2750 2750
        int bn = _blossom_node_list.size();
2751 2751

	
2752 2752
        std::vector<int> subblossoms;
2753 2753
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
2754 2754
        int b = _blossom_set->find(base);
2755 2755
        int ib = -1;
2756 2756
        for (int i = 0; i < int(subblossoms.size()); ++i) {
2757 2757
          if (subblossoms[i] == b) { ib = i; break; }
2758 2758
        }
2759 2759

	
2760 2760
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
2761 2761
          int sb = subblossoms[(ib + i) % subblossoms.size()];
2762 2762
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
2763 2763

	
2764 2764
          Arc m = (*_blossom_data)[tb].next;
2765 2765
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
2766 2766
          extractBlossom(tb, _graph.source(m), m);
2767 2767
        }
2768 2768
        extractBlossom(subblossoms[ib], base, matching);
2769 2769

	
2770 2770
        int en = _blossom_node_list.size();
2771 2771

	
2772 2772
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
2773 2773
      }
2774 2774
    }
2775 2775

	
2776 2776
    void extractMatching() {
2777 2777
      std::vector<int> blossoms;
2778 2778
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
2779 2779
        blossoms.push_back(c);
2780 2780
      }
2781 2781

	
2782 2782
      for (int i = 0; i < int(blossoms.size()); ++i) {
2783 2783

	
2784 2784
        Value offset = (*_blossom_data)[blossoms[i]].offset;
2785 2785
        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
2786 2786
        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
2787 2787
             n != INVALID; ++n) {
2788 2788
          (*_node_data)[(*_node_index)[n]].pot -= offset;
2789 2789
        }
2790 2790

	
2791 2791
        Arc matching = (*_blossom_data)[blossoms[i]].next;
2792 2792
        Node base = _graph.source(matching);
2793 2793
        extractBlossom(blossoms[i], base, matching);
2794 2794
      }
2795 2795
    }
2796 2796

	
2797 2797
  public:
2798 2798

	
2799 2799
    /// \brief Constructor
2800 2800
    ///
2801 2801
    /// Constructor.
2802 2802
    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
2803 2803
      : _graph(graph), _weight(weight), _matching(0),
2804 2804
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
2805 2805
        _node_num(0), _blossom_num(0),
2806 2806

	
2807 2807
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
2808 2808
        _node_index(0), _node_heap_index(0), _node_data(0),
2809 2809
        _tree_set_index(0), _tree_set(0),
2810 2810

	
2811 2811
        _delta2_index(0), _delta2(0),
2812 2812
        _delta3_index(0), _delta3(0),
2813 2813
        _delta4_index(0), _delta4(0),
2814 2814

	
2815 2815
        _delta_sum() {}
2816 2816

	
2817 2817
    ~MaxWeightedPerfectMatching() {
2818 2818
      destroyStructures();
2819 2819
    }
2820 2820

	
2821 2821
    /// \name Execution control
2822 2822
    /// The simplest way to execute the algorithm is to use the
2823 2823
    /// \c run() member function.
2824 2824

	
2825 2825
    ///@{
2826 2826

	
2827 2827
    /// \brief Initialize the algorithm
2828 2828
    ///
2829 2829
    /// Initialize the algorithm
2830 2830
    void init() {
2831 2831
      createStructures();
2832 2832

	
2833 2833
      for (ArcIt e(_graph); e != INVALID; ++e) {
2834
        _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
2834
        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
2835 2835
      }
2836 2836
      for (EdgeIt e(_graph); e != INVALID; ++e) {
2837
        _delta3_index->set(e, _delta3->PRE_HEAP);
2837
        (*_delta3_index)[e] = _delta3->PRE_HEAP;
2838 2838
      }
2839 2839
      for (int i = 0; i < _blossom_num; ++i) {
2840
        _delta2_index->set(i, _delta2->PRE_HEAP);
2841
        _delta4_index->set(i, _delta4->PRE_HEAP);
2840
        (*_delta2_index)[i] = _delta2->PRE_HEAP;
2841
        (*_delta4_index)[i] = _delta4->PRE_HEAP;
2842 2842
      }
2843 2843

	
2844 2844
      int index = 0;
2845 2845
      for (NodeIt n(_graph); n != INVALID; ++n) {
2846 2846
        Value max = - std::numeric_limits<Value>::max();
2847 2847
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
2848 2848
          if (_graph.target(e) == n) continue;
2849 2849
          if ((dualScale * _weight[e]) / 2 > max) {
2850 2850
            max = (dualScale * _weight[e]) / 2;
2851 2851
          }
2852 2852
        }
2853
        _node_index->set(n, index);
2853
        (*_node_index)[n] = index;
2854 2854
        (*_node_data)[index].pot = max;
2855 2855
        int blossom =
2856 2856
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
2857 2857

	
2858 2858
        _tree_set->insert(blossom);
2859 2859

	
2860 2860
        (*_blossom_data)[blossom].status = EVEN;
2861 2861
        (*_blossom_data)[blossom].pred = INVALID;
2862 2862
        (*_blossom_data)[blossom].next = INVALID;
2863 2863
        (*_blossom_data)[blossom].pot = 0;
2864 2864
        (*_blossom_data)[blossom].offset = 0;
2865 2865
        ++index;
2866 2866
      }
2867 2867
      for (EdgeIt e(_graph); e != INVALID; ++e) {
2868 2868
        int si = (*_node_index)[_graph.u(e)];
2869 2869
        int ti = (*_node_index)[_graph.v(e)];
2870 2870
        if (_graph.u(e) != _graph.v(e)) {
2871 2871
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
2872 2872
                            dualScale * _weight[e]) / 2);
2873 2873
        }
2874 2874
      }
2875 2875
    }
2876 2876

	
2877 2877
    /// \brief Starts the algorithm
2878 2878
    ///
2879 2879
    /// Starts the algorithm
2880 2880
    bool start() {
2881 2881
      enum OpType {
2882 2882
        D2, D3, D4
2883 2883
      };
2884 2884

	
2885 2885
      int unmatched = _node_num;
2886 2886
      while (unmatched > 0) {
2887 2887
        Value d2 = !_delta2->empty() ?
2888 2888
          _delta2->prio() : std::numeric_limits<Value>::max();
2889 2889

	
2890 2890
        Value d3 = !_delta3->empty() ?
2891 2891
          _delta3->prio() : std::numeric_limits<Value>::max();
2892 2892

	
2893 2893
        Value d4 = !_delta4->empty() ?
2894 2894
          _delta4->prio() : std::numeric_limits<Value>::max();
2895 2895

	
2896 2896
        _delta_sum = d2; OpType ot = D2;
2897 2897
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
2898 2898
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
2899 2899

	
2900 2900
        if (_delta_sum == std::numeric_limits<Value>::max()) {
2901 2901
          return false;
2902 2902
        }
2903 2903

	
2904 2904
        switch (ot) {
2905 2905
        case D2:
2906 2906
          {
2907 2907
            int blossom = _delta2->top();
2908 2908
            Node n = _blossom_set->classTop(blossom);
2909 2909
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
2910 2910
            extendOnArc(e);
2911 2911
          }
2912 2912
          break;
2913 2913
        case D3:
2914 2914
          {
2915 2915
            Edge e = _delta3->top();
2916 2916

	
2917 2917
            int left_blossom = _blossom_set->find(_graph.u(e));
2918 2918
            int right_blossom = _blossom_set->find(_graph.v(e));
2919 2919

	
2920 2920
            if (left_blossom == right_blossom) {
2921 2921
              _delta3->pop();
2922 2922
            } else {
2923 2923
              int left_tree = _tree_set->find(left_blossom);
2924 2924
              int right_tree = _tree_set->find(right_blossom);
2925 2925

	
2926 2926
              if (left_tree == right_tree) {
2927 2927
                shrinkOnEdge(e, left_tree);
2928 2928
              } else {
2929 2929
                augmentOnEdge(e);
2930 2930
                unmatched -= 2;
2931 2931
              }
2932 2932
            }
2933 2933
          } break;
2934 2934
        case D4:
2935 2935
          splitBlossom(_delta4->top());
2936 2936
          break;
2937 2937
        }
2938 2938
      }
2939 2939
      extractMatching();
2940 2940
      return true;
2941 2941
    }
2942 2942

	
2943 2943
    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
2944 2944
    ///
2945 2945
    /// This method runs the %MaxWeightedPerfectMatching algorithm.
2946 2946
    ///
2947 2947
    /// \note mwm.run() is just a shortcut of the following code.
2948 2948
    /// \code
2949 2949
    ///   mwm.init();
2950 2950
    ///   mwm.start();
2951 2951
    /// \endcode
2952 2952
    bool run() {
2953 2953
      init();
2954 2954
      return start();
2955 2955
    }
2956 2956

	
2957 2957
    /// @}
2958 2958

	
2959 2959
    /// \name Primal solution
2960 2960
    /// Functions to get the primal solution, ie. the matching.
2961 2961

	
2962 2962
    /// @{
2963 2963

	
2964 2964
    /// \brief Returns the matching value.
2965 2965
    ///
2966 2966
    /// Returns the matching value.
2967 2967
    Value matchingValue() const {
2968 2968
      Value sum = 0;
2969 2969
      for (NodeIt n(_graph); n != INVALID; ++n) {
2970 2970
        if ((*_matching)[n] != INVALID) {
2971 2971
          sum += _weight[(*_matching)[n]];
2972 2972
        }
2973 2973
      }
2974 2974
      return sum /= 2;
2975 2975
    }
2976 2976

	
2977 2977
    /// \brief Returns true when the edge is in the matching.
2978 2978
    ///
2979 2979
    /// Returns true when the edge is in the matching.
2980 2980
    bool matching(const Edge& edge) const {
2981 2981
      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
2982 2982
    }
2983 2983

	
2984 2984
    /// \brief Returns the incident matching edge.
2985 2985
    ///
2986 2986
    /// Returns the incident matching arc from given edge.
2987 2987
    Arc matching(const Node& node) const {
2988 2988
      return (*_matching)[node];
2989 2989
    }
2990 2990

	
2991 2991
    /// \brief Returns the mate of the node.
2992 2992
    ///
2993 2993
    /// Returns the adjancent node in a mathcing arc.
2994 2994
    Node mate(const Node& node) const {
2995 2995
      return _graph.target((*_matching)[node]);
2996 2996
    }
2997 2997

	
2998 2998
    /// @}
2999 2999

	
3000 3000
    /// \name Dual solution
3001 3001
    /// Functions to get the dual solution.
3002 3002

	
3003 3003
    /// @{
3004 3004

	
3005 3005
    /// \brief Returns the value of the dual solution.
3006 3006
    ///
3007 3007
    /// Returns the value of the dual solution. It should be equal to
3008 3008
    /// the primal value scaled by \ref dualScale "dual scale".
3009 3009
    Value dualValue() const {
3010 3010
      Value sum = 0;
3011 3011
      for (NodeIt n(_graph); n != INVALID; ++n) {
3012 3012
        sum += nodeValue(n);
3013 3013
      }
3014 3014
      for (int i = 0; i < blossomNum(); ++i) {
3015 3015
        sum += blossomValue(i) * (blossomSize(i) / 2);
3016 3016
      }
3017 3017
      return sum;
3018 3018
    }
3019 3019

	
3020 3020
    /// \brief Returns the value of the node.
3021 3021
    ///
3022 3022
    /// Returns the the value of the node.
3023 3023
    Value nodeValue(const Node& n) const {
3024 3024
      return (*_node_potential)[n];
3025 3025
    }
3026 3026

	
3027 3027
    /// \brief Returns the number of the blossoms in the basis.
3028 3028
    ///
3029 3029
    /// Returns the number of the blossoms in the basis.
3030 3030
    /// \see BlossomIt
3031 3031
    int blossomNum() const {
3032 3032
      return _blossom_potential.size();
3033 3033
    }
3034 3034

	
3035 3035

	
3036 3036
    /// \brief Returns the number of the nodes in the blossom.
3037 3037
    ///
3038 3038
    /// Returns the number of the nodes in the blossom.
3039 3039
    int blossomSize(int k) const {
3040 3040
      return _blossom_potential[k].end - _blossom_potential[k].begin;
3041 3041
    }
3042 3042

	
3043 3043
    /// \brief Returns the value of the blossom.
3044 3044
    ///
3045 3045
    /// Returns the the value of the blossom.
3046 3046
    /// \see BlossomIt
3047 3047
    Value blossomValue(int k) const {
3048 3048
      return _blossom_potential[k].value;
3049 3049
    }
3050 3050

	
3051 3051
    /// \brief Iterator for obtaining the nodes of the blossom.
3052 3052
    ///
3053 3053
    /// Iterator for obtaining the nodes of the blossom. This class
3054 3054
    /// provides a common lemon style iterator for listing a
3055 3055
    /// subset of the nodes.
3056 3056
    class BlossomIt {
3057 3057
    public:
3058 3058

	
3059 3059
      /// \brief Constructor.
3060 3060
      ///
3061 3061
      /// Constructor to get the nodes of the variable.
3062 3062
      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
3063 3063
        : _algorithm(&algorithm)
3064 3064
      {
3065 3065
        _index = _algorithm->_blossom_potential[variable].begin;
3066 3066
        _last = _algorithm->_blossom_potential[variable].end;
3067 3067
      }
3068 3068

	
3069 3069
      /// \brief Conversion to node.
3070 3070
      ///
3071 3071
      /// Conversion to node.
3072 3072
      operator Node() const {
3073 3073
        return _algorithm->_blossom_node_list[_index];
3074 3074
      }
3075 3075

	
3076 3076
      /// \brief Increment operator.
3077 3077
      ///
3078 3078
      /// Increment operator.
3079 3079
      BlossomIt& operator++() {
3080 3080
        ++_index;
3081 3081
        return *this;
3082 3082
      }
3083 3083

	
3084 3084
      /// \brief Validity checking
3085 3085
      ///
3086 3086
      /// Checks whether the iterator is invalid.
3087 3087
      bool operator==(Invalid) const { return _index == _last; }
3088 3088

	
3089 3089
      /// \brief Validity checking
3090 3090
      ///
3091 3091
      /// Checks whether the iterator is valid.
3092 3092
      bool operator!=(Invalid) const { return _index != _last; }
3093 3093

	
3094 3094
    private:
3095 3095
      const MaxWeightedPerfectMatching* _algorithm;
3096 3096
      int _last;
3097 3097
      int _index;
3098 3098
    };
3099 3099

	
3100 3100
    /// @}
3101 3101

	
3102 3102
  };
3103 3103

	
3104 3104

	
3105 3105
} //END OF NAMESPACE LEMON
3106 3106

	
3107 3107
#endif //LEMON_MAX_MATCHING_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MIN_COST_ARBORESCENCE_H
20 20
#define LEMON_MIN_COST_ARBORESCENCE_H
21 21

	
22 22
///\ingroup spantree
23 23
///\file
24 24
///\brief Minimum Cost Arborescence algorithm.
25 25

	
26 26
#include <vector>
27 27

	
28 28
#include <lemon/list_graph.h>
29 29
#include <lemon/bin_heap.h>
30 30
#include <lemon/assert.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34

	
35 35
  /// \brief Default traits class for MinCostArborescence class.
36 36
  ///
37 37
  /// Default traits class for MinCostArborescence class.
38 38
  /// \param GR Digraph type.
39 39
  /// \param CM Type of cost map.
40 40
  template <class GR, class CM>
41 41
  struct MinCostArborescenceDefaultTraits{
42 42

	
43 43
    /// \brief The digraph type the algorithm runs on.
44 44
    typedef GR Digraph;
45 45

	
46 46
    /// \brief The type of the map that stores the arc costs.
47 47
    ///
48 48
    /// The type of the map that stores the arc costs.
49 49
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
50 50
    typedef CM CostMap;
51 51

	
52 52
    /// \brief The value type of the costs.
53 53
    ///
54 54
    /// The value type of the costs.
55 55
    typedef typename CostMap::Value Value;
56 56

	
57 57
    /// \brief The type of the map that stores which arcs are in the
58 58
    /// arborescence.
59 59
    ///
60 60
    /// The type of the map that stores which arcs are in the
61 61
    /// arborescence.  It must meet the \ref concepts::WriteMap
62 62
    /// "WriteMap" concept.  Initially it will be set to false on each
63 63
    /// arc. After it will set all arborescence arcs once.
64 64
    typedef typename Digraph::template ArcMap<bool> ArborescenceMap;
65 65

	
66 66
    /// \brief Instantiates a \c ArborescenceMap.
67 67
    ///
68 68
    /// This function instantiates a \c ArborescenceMap.
69 69
    /// \param digraph is the graph, to which we would like to
70 70
    /// calculate the \c ArborescenceMap.
71 71
    static ArborescenceMap *createArborescenceMap(const Digraph &digraph){
72 72
      return new ArborescenceMap(digraph);
73 73
    }
74 74

	
75 75
    /// \brief The type of the \c PredMap
76 76
    ///
77 77
    /// The type of the \c PredMap. It is a node map with an arc value type.
78 78
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
79 79

	
80 80
    /// \brief Instantiates a \c PredMap.
81 81
    ///
82 82
    /// This function instantiates a \c PredMap.
83 83
    /// \param digraph The digraph to which we would like to define the
84 84
    /// \c PredMap.
85 85
    static PredMap *createPredMap(const Digraph &digraph){
86 86
      return new PredMap(digraph);
87 87
    }
88 88

	
89 89
  };
90 90

	
91 91
  /// \ingroup spantree
92 92
  ///
93 93
  /// \brief %MinCostArborescence algorithm class.
94 94
  ///
95 95
  /// This class provides an efficient implementation of
96 96
  /// %MinCostArborescence algorithm. The arborescence is a tree
97 97
  /// which is directed from a given source node of the digraph. One or
98 98
  /// more sources should be given for the algorithm and it will calculate
99 99
  /// the minimum cost subgraph which are union of arborescences with the
100 100
  /// given sources and spans all the nodes which are reachable from the
101 101
  /// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e).
102 102
  ///
103 103
  /// The algorithm provides also an optimal dual solution, therefore
104 104
  /// the optimality of the solution can be checked.
105 105
  ///
106 106
  /// \param GR The digraph type the algorithm runs on. The default value
107 107
  /// is \ref ListDigraph.
108 108
  /// \param CM This read-only ArcMap determines the costs of the
109 109
  /// arcs. It is read once for each arc, so the map may involve in
110 110
  /// relatively time consuming process to compute the arc cost if
111 111
  /// it is necessary. The default map type is \ref
112 112
  /// concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
113 113
  /// \param TR Traits class to set various data types used
114 114
  /// by the algorithm. The default traits class is
115 115
  /// \ref MinCostArborescenceDefaultTraits
116 116
  /// "MinCostArborescenceDefaultTraits<GR, CM>".  See \ref
117 117
  /// MinCostArborescenceDefaultTraits for the documentation of a
118 118
  /// MinCostArborescence traits class.
119 119
#ifndef DOXYGEN
120 120
  template <typename GR = ListDigraph,
121 121
            typename CM = typename GR::template ArcMap<int>,
122 122
            typename TR =
123 123
              MinCostArborescenceDefaultTraits<GR, CM> >
124 124
#else
125 125
  template <typename GR, typename CM, typedef TR>
126 126
#endif
127 127
  class MinCostArborescence {
128 128
  public:
129 129

	
130 130
    /// The traits.
131 131
    typedef TR Traits;
132 132
    /// The type of the underlying digraph.
133 133
    typedef typename Traits::Digraph Digraph;
134 134
    /// The type of the map that stores the arc costs.
135 135
    typedef typename Traits::CostMap CostMap;
136 136
    ///The type of the costs of the arcs.
137 137
    typedef typename Traits::Value Value;
138 138
    ///The type of the predecessor map.
139 139
    typedef typename Traits::PredMap PredMap;
140 140
    ///The type of the map that stores which arcs are in the arborescence.
141 141
    typedef typename Traits::ArborescenceMap ArborescenceMap;
142 142

	
143 143
    typedef MinCostArborescence Create;
144 144

	
145 145
  private:
146 146

	
147 147
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
148 148

	
149 149
    struct CostArc {
150 150

	
151 151
      Arc arc;
152 152
      Value value;
153 153

	
154 154
      CostArc() {}
155 155
      CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {}
156 156

	
157 157
    };
158 158

	
159 159
    const Digraph *_digraph;
160 160
    const CostMap *_cost;
161 161

	
162 162
    PredMap *_pred;
163 163
    bool local_pred;
164 164

	
165 165
    ArborescenceMap *_arborescence;
166 166
    bool local_arborescence;
167 167

	
168 168
    typedef typename Digraph::template ArcMap<int> ArcOrder;
169 169
    ArcOrder *_arc_order;
170 170

	
171 171
    typedef typename Digraph::template NodeMap<int> NodeOrder;
172 172
    NodeOrder *_node_order;
173 173

	
174 174
    typedef typename Digraph::template NodeMap<CostArc> CostArcMap;
175 175
    CostArcMap *_cost_arcs;
176 176

	
177 177
    struct StackLevel {
178 178

	
179 179
      std::vector<CostArc> arcs;
180 180
      int node_level;
181 181

	
182 182
    };
183 183

	
184 184
    std::vector<StackLevel> level_stack;
185 185
    std::vector<Node> queue;
186 186

	
187 187
    typedef std::vector<typename Digraph::Node> DualNodeList;
188 188

	
189 189
    DualNodeList _dual_node_list;
190 190

	
191 191
    struct DualVariable {
192 192
      int begin, end;
193 193
      Value value;
194 194

	
195 195
      DualVariable(int _begin, int _end, Value _value)
196 196
        : begin(_begin), end(_end), value(_value) {}
197 197

	
198 198
    };
199 199

	
200 200
    typedef std::vector<DualVariable> DualVariables;
201 201

	
202 202
    DualVariables _dual_variables;
203 203

	
204 204
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
205 205

	
206 206
    HeapCrossRef *_heap_cross_ref;
207 207

	
208 208
    typedef BinHeap<int, HeapCrossRef> Heap;
209 209

	
210 210
    Heap *_heap;
211 211

	
212 212
  protected:
213 213

	
214 214
    MinCostArborescence() {}
215 215

	
216 216
  private:
217 217

	
218 218
    void createStructures() {
219 219
      if (!_pred) {
220 220
        local_pred = true;
221 221
        _pred = Traits::createPredMap(*_digraph);
222 222
      }
223 223
      if (!_arborescence) {
224 224
        local_arborescence = true;
225 225
        _arborescence = Traits::createArborescenceMap(*_digraph);
226 226
      }
227 227
      if (!_arc_order) {
228 228
        _arc_order = new ArcOrder(*_digraph);
229 229
      }
230 230
      if (!_node_order) {
231 231
        _node_order = new NodeOrder(*_digraph);
232 232
      }
233 233
      if (!_cost_arcs) {
234 234
        _cost_arcs = new CostArcMap(*_digraph);
235 235
      }
236 236
      if (!_heap_cross_ref) {
237 237
        _heap_cross_ref = new HeapCrossRef(*_digraph, -1);
238 238
      }
239 239
      if (!_heap) {
240 240
        _heap = new Heap(*_heap_cross_ref);
241 241
      }
242 242
    }
243 243

	
244 244
    void destroyStructures() {
245 245
      if (local_arborescence) {
246 246
        delete _arborescence;
247 247
      }
248 248
      if (local_pred) {
249 249
        delete _pred;
250 250
      }
251 251
      if (_arc_order) {
252 252
        delete _arc_order;
253 253
      }
254 254
      if (_node_order) {
255 255
        delete _node_order;
256 256
      }
257 257
      if (_cost_arcs) {
258 258
        delete _cost_arcs;
259 259
      }
260 260
      if (_heap) {
261 261
        delete _heap;
262 262
      }
263 263
      if (_heap_cross_ref) {
264 264
        delete _heap_cross_ref;
265 265
      }
266 266
    }
267 267

	
268 268
    Arc prepare(Node node) {
269 269
      std::vector<Node> nodes;
270 270
      (*_node_order)[node] = _dual_node_list.size();
271 271
      StackLevel level;
272 272
      level.node_level = _dual_node_list.size();
273 273
      _dual_node_list.push_back(node);
274 274
      for (InArcIt it(*_digraph, node); it != INVALID; ++it) {
275 275
        Arc arc = it;
276 276
        Node source = _digraph->source(arc);
277 277
        Value value = (*_cost)[it];
278 278
        if (source == node || (*_node_order)[source] == -3) continue;
279 279
        if ((*_cost_arcs)[source].arc == INVALID) {
280 280
          (*_cost_arcs)[source].arc = arc;
281 281
          (*_cost_arcs)[source].value = value;
282 282
          nodes.push_back(source);
283 283
        } else {
284 284
          if ((*_cost_arcs)[source].value > value) {
285 285
            (*_cost_arcs)[source].arc = arc;
286 286
            (*_cost_arcs)[source].value = value;
287 287
          }
288 288
        }
289 289
      }
290 290
      CostArc minimum = (*_cost_arcs)[nodes[0]];
291 291
      for (int i = 1; i < int(nodes.size()); ++i) {
292 292
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
293 293
          minimum = (*_cost_arcs)[nodes[i]];
294 294
        }
295 295
      }
296
      _arc_order->set(minimum.arc, _dual_variables.size());
296
      (*_arc_order)[minimum.arc] = _dual_variables.size();
297 297
      DualVariable var(_dual_node_list.size() - 1,
298 298
                       _dual_node_list.size(), minimum.value);
299 299
      _dual_variables.push_back(var);
300 300
      for (int i = 0; i < int(nodes.size()); ++i) {
301 301
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
302 302
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
303 303
        (*_cost_arcs)[nodes[i]].arc = INVALID;
304 304
      }
305 305
      level_stack.push_back(level);
306 306
      return minimum.arc;
307 307
    }
308 308

	
309 309
    Arc contract(Node node) {
310 310
      int node_bottom = bottom(node);
311 311
      std::vector<Node> nodes;
312 312
      while (!level_stack.empty() &&
313 313
             level_stack.back().node_level >= node_bottom) {
314 314
        for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) {
315 315
          Arc arc = level_stack.back().arcs[i].arc;
316 316
          Node source = _digraph->source(arc);
317 317
          Value value = level_stack.back().arcs[i].value;
318 318
          if ((*_node_order)[source] >= node_bottom) continue;
319 319
          if ((*_cost_arcs)[source].arc == INVALID) {
320 320
            (*_cost_arcs)[source].arc = arc;
321 321
            (*_cost_arcs)[source].value = value;
322 322
            nodes.push_back(source);
323 323
          } else {
324 324
            if ((*_cost_arcs)[source].value > value) {
325 325
              (*_cost_arcs)[source].arc = arc;
326 326
              (*_cost_arcs)[source].value = value;
327 327
            }
328 328
          }
329 329
        }
330 330
        level_stack.pop_back();
331 331
      }
332 332
      CostArc minimum = (*_cost_arcs)[nodes[0]];
333 333
      for (int i = 1; i < int(nodes.size()); ++i) {
334 334
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
335 335
          minimum = (*_cost_arcs)[nodes[i]];
336 336
        }
337 337
      }
338
      _arc_order->set(minimum.arc, _dual_variables.size());
338
      (*_arc_order)[minimum.arc] = _dual_variables.size();
339 339
      DualVariable var(node_bottom, _dual_node_list.size(), minimum.value);
340 340
      _dual_variables.push_back(var);
341 341
      StackLevel level;
342 342
      level.node_level = node_bottom;
343 343
      for (int i = 0; i < int(nodes.size()); ++i) {
344 344
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
345 345
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
346 346
        (*_cost_arcs)[nodes[i]].arc = INVALID;
347 347
      }
348 348
      level_stack.push_back(level);
349 349
      return minimum.arc;
350 350
    }
351 351

	
352 352
    int bottom(Node node) {
353 353
      int k = level_stack.size() - 1;
354 354
      while (level_stack[k].node_level > (*_node_order)[node]) {
355 355
        --k;
356 356
      }
357 357
      return level_stack[k].node_level;
358 358
    }
359 359

	
360 360
    void finalize(Arc arc) {
361 361
      Node node = _digraph->target(arc);
362 362
      _heap->push(node, (*_arc_order)[arc]);
363 363
      _pred->set(node, arc);
364 364
      while (!_heap->empty()) {
365 365
        Node source = _heap->top();
366 366
        _heap->pop();
367
        _node_order->set(source, -1);
367
        (*_node_order)[source] = -1;
368 368
        for (OutArcIt it(*_digraph, source); it != INVALID; ++it) {
369 369
          if ((*_arc_order)[it] < 0) continue;
370 370
          Node target = _digraph->target(it);
371 371
          switch(_heap->state(target)) {
372 372
          case Heap::PRE_HEAP:
373 373
            _heap->push(target, (*_arc_order)[it]);
374 374
            _pred->set(target, it);
375 375
            break;
376 376
          case Heap::IN_HEAP:
377 377
            if ((*_arc_order)[it] < (*_heap)[target]) {
378 378
              _heap->decrease(target, (*_arc_order)[it]);
379 379
              _pred->set(target, it);
380 380
            }
381 381
            break;
382 382
          case Heap::POST_HEAP:
383 383
            break;
384 384
          }
385 385
        }
386 386
        _arborescence->set((*_pred)[source], true);
387 387
      }
388 388
    }
389 389

	
390 390

	
391 391
  public:
392 392

	
393 393
    /// \name Named template parameters
394 394

	
395 395
    /// @{
396 396

	
397 397
    template <class T>
398 398
    struct DefArborescenceMapTraits : public Traits {
399 399
      typedef T ArborescenceMap;
400 400
      static ArborescenceMap *createArborescenceMap(const Digraph &)
401 401
      {
402 402
        LEMON_ASSERT(false, "ArborescenceMap is not initialized");
403 403
        return 0; // ignore warnings
404 404
      }
405 405
    };
406 406

	
407 407
    /// \brief \ref named-templ-param "Named parameter" for
408 408
    /// setting ArborescenceMap type
409 409
    ///
410 410
    /// \ref named-templ-param "Named parameter" for setting
411 411
    /// ArborescenceMap type
412 412
    template <class T>
413 413
    struct DefArborescenceMap
414 414
      : public MinCostArborescence<Digraph, CostMap,
415 415
                                   DefArborescenceMapTraits<T> > {
416 416
    };
417 417

	
418 418
    template <class T>
419 419
    struct DefPredMapTraits : public Traits {
420 420
      typedef T PredMap;
421 421
      static PredMap *createPredMap(const Digraph &)
422 422
      {
423 423
        LEMON_ASSERT(false, "PredMap is not initialized");
424 424
      }
425 425
    };
426 426

	
427 427
    /// \brief \ref named-templ-param "Named parameter" for
428 428
    /// setting PredMap type
429 429
    ///
430 430
    /// \ref named-templ-param "Named parameter" for setting
431 431
    /// PredMap type
432 432
    template <class T>
433 433
    struct DefPredMap
434 434
      : public MinCostArborescence<Digraph, CostMap, DefPredMapTraits<T> > {
435 435
    };
436 436

	
437 437
    /// @}
438 438

	
439 439
    /// \brief Constructor.
440 440
    ///
441 441
    /// \param digraph The digraph the algorithm will run on.
442 442
    /// \param cost The cost map used by the algorithm.
443 443
    MinCostArborescence(const Digraph& digraph, const CostMap& cost)
444 444
      : _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false),
445 445
        _arborescence(0), local_arborescence(false),
446 446
        _arc_order(0), _node_order(0), _cost_arcs(0),
447 447
        _heap_cross_ref(0), _heap(0) {}
448 448

	
449 449
    /// \brief Destructor.
450 450
    ~MinCostArborescence() {
451 451
      destroyStructures();
452 452
    }
453 453

	
454 454
    /// \brief Sets the arborescence map.
455 455
    ///
456 456
    /// Sets the arborescence map.
457 457
    /// \return <tt>(*this)</tt>
458 458
    MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
459 459
      if (local_arborescence) {
460 460
        delete _arborescence;
461 461
      }
462 462
      local_arborescence = false;
463 463
      _arborescence = &m;
464 464
      return *this;
465 465
    }
466 466

	
467 467
    /// \brief Sets the arborescence map.
468 468
    ///
469 469
    /// Sets the arborescence map.
470 470
    /// \return <tt>(*this)</tt>
471 471
    MinCostArborescence& predMap(PredMap& m) {
472 472
      if (local_pred) {
473 473
        delete _pred;
474 474
      }
475 475
      local_pred = false;
476 476
      _pred = &m;
477 477
      return *this;
478 478
    }
479 479

	
480 480
    /// \name Query Functions
481 481
    /// The result of the %MinCostArborescence algorithm can be obtained
482 482
    /// using these functions.\n
483 483
    /// Before the use of these functions,
484 484
    /// either run() or start() must be called.
485 485

	
486 486
    /// @{
487 487

	
488 488
    /// \brief Returns a reference to the arborescence map.
489 489
    ///
490 490
    /// Returns a reference to the arborescence map.
491 491
    const ArborescenceMap& arborescenceMap() const {
492 492
      return *_arborescence;
493 493
    }
494 494

	
495 495
    /// \brief Returns true if the arc is in the arborescence.
496 496
    ///
497 497
    /// Returns true if the arc is in the arborescence.
498 498
    /// \param arc The arc of the digraph.
499 499
    /// \pre \ref run() must be called before using this function.
500 500
    bool arborescence(Arc arc) const {
501 501
      return (*_pred)[_digraph->target(arc)] == arc;
502 502
    }
503 503

	
504 504
    /// \brief Returns a reference to the pred map.
505 505
    ///
506 506
    /// Returns a reference to the pred map.
507 507
    const PredMap& predMap() const {
508 508
      return *_pred;
509 509
    }
510 510

	
511 511
    /// \brief Returns the predecessor arc of the given node.
512 512
    ///
513 513
    /// Returns the predecessor arc of the given node.
514 514
    Arc pred(Node node) const {
515 515
      return (*_pred)[node];
516 516
    }
517 517

	
518 518
    /// \brief Returns the cost of the arborescence.
519 519
    ///
520 520
    /// Returns the cost of the arborescence.
521 521
    Value arborescenceValue() const {
522 522
      Value sum = 0;
523 523
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
524 524
        if (arborescence(it)) {
525 525
          sum += (*_cost)[it];
526 526
        }
527 527
      }
528 528
      return sum;
529 529
    }
530 530

	
531 531
    /// \brief Indicates that a node is reachable from the sources.
532 532
    ///
533 533
    /// Indicates that a node is reachable from the sources.
534 534
    bool reached(Node node) const {
535 535
      return (*_node_order)[node] != -3;
536 536
    }
537 537

	
538 538
    /// \brief Indicates that a node is processed.
539 539
    ///
540 540
    /// Indicates that a node is processed. The arborescence path exists
541 541
    /// from the source to the given node.
542 542
    bool processed(Node node) const {
543 543
      return (*_node_order)[node] == -1;
544 544
    }
545 545

	
546 546
    /// \brief Returns the number of the dual variables in basis.
547 547
    ///
548 548
    /// Returns the number of the dual variables in basis.
549 549
    int dualNum() const {
550 550
      return _dual_variables.size();
551 551
    }
552 552

	
553 553
    /// \brief Returns the value of the dual solution.
554 554
    ///
555 555
    /// Returns the value of the dual solution. It should be
556 556
    /// equal to the arborescence value.
557 557
    Value dualValue() const {
558 558
      Value sum = 0;
559 559
      for (int i = 0; i < int(_dual_variables.size()); ++i) {
560 560
        sum += _dual_variables[i].value;
561 561
      }
562 562
      return sum;
563 563
    }
564 564

	
565 565
    /// \brief Returns the number of the nodes in the dual variable.
566 566
    ///
567 567
    /// Returns the number of the nodes in the dual variable.
568 568
    int dualSize(int k) const {
569 569
      return _dual_variables[k].end - _dual_variables[k].begin;
570 570
    }
571 571

	
572 572
    /// \brief Returns the value of the dual variable.
573 573
    ///
574 574
    /// Returns the the value of the dual variable.
575 575
    const Value& dualValue(int k) const {
576 576
      return _dual_variables[k].value;
577 577
    }
578 578

	
579 579
    /// \brief Lemon iterator for get a dual variable.
580 580
    ///
581 581
    /// Lemon iterator for get a dual variable. This class provides
582 582
    /// a common style lemon iterator which gives back a subset of
583 583
    /// the nodes.
584 584
    class DualIt {
585 585
    public:
586 586

	
587 587
      /// \brief Constructor.
588 588
      ///
589 589
      /// Constructor for get the nodeset of the variable.
590 590
      DualIt(const MinCostArborescence& algorithm, int variable)
591 591
        : _algorithm(&algorithm)
592 592
      {
593 593
        _index = _algorithm->_dual_variables[variable].begin;
594 594
        _last = _algorithm->_dual_variables[variable].end;
595 595
      }
596 596

	
597 597
      /// \brief Conversion to node.
598 598
      ///
599 599
      /// Conversion to node.
600 600
      operator Node() const {
601 601
        return _algorithm->_dual_node_list[_index];
602 602
      }
603 603

	
604 604
      /// \brief Increment operator.
605 605
      ///
606 606
      /// Increment operator.
607 607
      DualIt& operator++() {
608 608
        ++_index;
609 609
        return *this;
610 610
      }
611 611

	
612 612
      /// \brief Validity checking
613 613
      ///
614 614
      /// Checks whether the iterator is invalid.
615 615
      bool operator==(Invalid) const {
616 616
        return _index == _last;
617 617
      }
618 618

	
619 619
      /// \brief Validity checking
620 620
      ///
621 621
      /// Checks whether the iterator is valid.
622 622
      bool operator!=(Invalid) const {
623 623
        return _index != _last;
624 624
      }
625 625

	
626 626
    private:
627 627
      const MinCostArborescence* _algorithm;
628 628
      int _index, _last;
629 629
    };
630 630

	
631 631
    /// @}
632 632

	
633 633
    /// \name Execution control
634 634
    /// The simplest way to execute the algorithm is to use
635 635
    /// one of the member functions called \c run(...). \n
636 636
    /// If you need more control on the execution,
637 637
    /// first you must call \ref init(), then you can add several
638 638
    /// source nodes with \ref addSource().
639 639
    /// Finally \ref start() will perform the arborescence
640 640
    /// computation.
641 641

	
642 642
    ///@{
643 643

	
644 644
    /// \brief Initializes the internal data structures.
645 645
    ///
646 646
    /// Initializes the internal data structures.
647 647
    ///
648 648
    void init() {
649 649
      createStructures();
650 650
      _heap->clear();
651 651
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
652 652
        (*_cost_arcs)[it].arc = INVALID;
653
        _node_order->set(it, -3);
654
        _heap_cross_ref->set(it, Heap::PRE_HEAP);
653
        (*_node_order)[it] = -3;
654
        (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
655 655
        _pred->set(it, INVALID);
656 656
      }
657 657
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
658 658
        _arborescence->set(it, false);
659
        _arc_order->set(it, -1);
659
        (*_arc_order)[it] = -1;
660 660
      }
661 661
      _dual_node_list.clear();
662 662
      _dual_variables.clear();
663 663
    }
664 664

	
665 665
    /// \brief Adds a new source node.
666 666
    ///
667 667
    /// Adds a new source node to the algorithm.
668 668
    void addSource(Node source) {
669 669
      std::vector<Node> nodes;
670 670
      nodes.push_back(source);
671 671
      while (!nodes.empty()) {
672 672
        Node node = nodes.back();
673 673
        nodes.pop_back();
674 674
        for (OutArcIt it(*_digraph, node); it != INVALID; ++it) {
675 675
          Node target = _digraph->target(it);
676 676
          if ((*_node_order)[target] == -3) {
677 677
            (*_node_order)[target] = -2;
678 678
            nodes.push_back(target);
679 679
            queue.push_back(target);
680 680
          }
681 681
        }
682 682
      }
683 683
      (*_node_order)[source] = -1;
684 684
    }
685 685

	
686 686
    /// \brief Processes the next node in the priority queue.
687 687
    ///
688 688
    /// Processes the next node in the priority queue.
689 689
    ///
690 690
    /// \return The processed node.
691 691
    ///
692 692
    /// \warning The queue must not be empty!
693 693
    Node processNextNode() {
694 694
      Node node = queue.back();
695 695
      queue.pop_back();
696 696
      if ((*_node_order)[node] == -2) {
697 697
        Arc arc = prepare(node);
698 698
        Node source = _digraph->source(arc);
699 699
        while ((*_node_order)[source] != -1) {
700 700
          if ((*_node_order)[source] >= 0) {
701 701
            arc = contract(source);
702 702
          } else {
703 703
            arc = prepare(source);
704 704
          }
705 705
          source = _digraph->source(arc);
706 706
        }
707 707
        finalize(arc);
708 708
        level_stack.clear();
709 709
      }
710 710
      return node;
711 711
    }
712 712

	
713 713
    /// \brief Returns the number of the nodes to be processed.
714 714
    ///
715 715
    /// Returns the number of the nodes to be processed.
716 716
    int queueSize() const {
717 717
      return queue.size();
718 718
    }
719 719

	
720 720
    /// \brief Returns \c false if there are nodes to be processed.
721 721
    ///
722 722
    /// Returns \c false if there are nodes to be processed.
723 723
    bool emptyQueue() const {
724 724
      return queue.empty();
725 725
    }
726 726

	
727 727
    /// \brief Executes the algorithm.
728 728
    ///
729 729
    /// Executes the algorithm.
730 730
    ///
731 731
    /// \pre init() must be called and at least one node should be added
732 732
    /// with addSource() before using this function.
733 733
    ///
734 734
    ///\note mca.start() is just a shortcut of the following code.
735 735
    ///\code
736 736
    ///while (!mca.emptyQueue()) {
737 737
    ///  mca.processNextNode();
738 738
    ///}
739 739
    ///\endcode
740 740
    void start() {
741 741
      while (!emptyQueue()) {
742 742
        processNextNode();
743 743
      }
744 744
    }
745 745

	
746 746
    /// \brief Runs %MinCostArborescence algorithm from node \c s.
747 747
    ///
748 748
    /// This method runs the %MinCostArborescence algorithm from
749 749
    /// a root node \c s.
750 750
    ///
751 751
    /// \note mca.run(s) is just a shortcut of the following code.
752 752
    /// \code
753 753
    /// mca.init();
754 754
    /// mca.addSource(s);
755 755
    /// mca.start();
756 756
    /// \endcode
757 757
    void run(Node node) {
758 758
      init();
759 759
      addSource(node);
760 760
      start();
761 761
    }
762 762

	
763 763
    ///@}
764 764

	
765 765
  };
766 766

	
767 767
  /// \ingroup spantree
768 768
  ///
769 769
  /// \brief Function type interface for MinCostArborescence algorithm.
770 770
  ///
771 771
  /// Function type interface for MinCostArborescence algorithm.
772 772
  /// \param digraph The Digraph that the algorithm runs on.
773 773
  /// \param cost The CostMap of the arcs.
774 774
  /// \param source The source of the arborescence.
775 775
  /// \retval arborescence The bool ArcMap which stores the arborescence.
776 776
  /// \return The cost of the arborescence.
777 777
  ///
778 778
  /// \sa MinCostArborescence
779 779
  template <typename Digraph, typename CostMap, typename ArborescenceMap>
780 780
  typename CostMap::Value minCostArborescence(const Digraph& digraph,
781 781
                                              const CostMap& cost,
782 782
                                              typename Digraph::Node source,
783 783
                                              ArborescenceMap& arborescence) {
784 784
    typename MinCostArborescence<Digraph, CostMap>
785 785
      ::template DefArborescenceMap<ArborescenceMap>
786 786
      ::Create mca(digraph, cost);
787 787
    mca.arborescenceMap(arborescence);
788 788
    mca.run(source);
789 789
    return mca.arborescenceValue();
790 790
  }
791 791

	
792 792
}
793 793

	
794 794
#endif

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)