| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_HAO_ORLIN_H |
| 20 | 20 |
#define LEMON_HAO_ORLIN_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <list> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/maps.h> |
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/tolerance.h> |
| 29 | 29 |
|
| 30 | 30 |
/// \file |
| 31 | 31 |
/// \ingroup min_cut |
| 32 | 32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
| 35 | 35 |
/// in a digraph. |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
/// \ingroup min_cut |
| 40 | 40 |
/// |
| 41 | 41 |
/// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
/// This class implements the Hao-Orlin algorithm for finding a minimum |
| 44 | 44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
| 45 | 45 |
/// It takes a fixed node \f$ source \in V \f$ and |
| 46 | 46 |
/// consists of two phases: in the first phase it determines a |
| 47 | 47 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
| 48 | 48 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
| 49 | 49 |
/// capacity) and in the second phase it determines a minimum cut |
| 50 | 50 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
| 51 | 51 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing |
| 52 | 52 |
/// capacity). Obviously, the smaller of these two cuts will be a |
| 53 | 53 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
| 54 | 54 |
/// preflow push-relabel algorithm. Our implementation calculates |
| 55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
|
| 56 | 56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
| 57 | 57 |
/// purpose of such algorithm is e.g. testing network reliability. |
| 58 | 58 |
/// |
| 59 | 59 |
/// For an undirected graph you can run just the first phase of the |
| 60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
| 61 | 61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
| 62 | 62 |
/// time. It is implemented in the NagamochiIbaraki algorithm class. |
| 63 | 63 |
/// |
| 64 | 64 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 65 | 65 |
/// \tparam CAP The type of the arc map containing the capacities, |
| 66 | 66 |
/// which can be any numreric type. The default map type is |
| 67 | 67 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 68 | 68 |
/// \tparam TOL Tolerance class for handling inexact computations. The |
| 69 | 69 |
/// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>". |
| 70 | 70 |
#ifdef DOXYGEN |
| 71 | 71 |
template <typename GR, typename CAP, typename TOL> |
| 72 | 72 |
#else |
| 73 | 73 |
template <typename GR, |
| 74 | 74 |
typename CAP = typename GR::template ArcMap<int>, |
| 75 | 75 |
typename TOL = Tolerance<typename CAP::Value> > |
| 76 | 76 |
#endif |
| 77 | 77 |
class HaoOrlin {
|
| 78 | 78 |
public: |
| 79 | 79 |
|
| 80 | 80 |
/// The digraph type of the algorithm |
| 81 | 81 |
typedef GR Digraph; |
| 82 | 82 |
/// The capacity map type of the algorithm |
| 83 | 83 |
typedef CAP CapacityMap; |
| 84 | 84 |
/// The tolerance type of the algorithm |
| 85 | 85 |
typedef TOL Tolerance; |
| 86 | 86 |
|
| 87 | 87 |
private: |
| 88 | 88 |
|
| 89 | 89 |
typedef typename CapacityMap::Value Value; |
| 90 | 90 |
|
| 91 | 91 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 92 | 92 |
|
| 93 | 93 |
const Digraph& _graph; |
| 94 | 94 |
const CapacityMap* _capacity; |
| 95 | 95 |
|
| 96 | 96 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 97 | 97 |
FlowMap* _flow; |
| 98 | 98 |
|
| 99 | 99 |
Node _source; |
| 100 | 100 |
|
| 101 | 101 |
int _node_num; |
| 102 | 102 |
|
| 103 | 103 |
// Bucketing structure |
| 104 | 104 |
std::vector<Node> _first, _last; |
| 105 | 105 |
typename Digraph::template NodeMap<Node>* _next; |
| 106 | 106 |
typename Digraph::template NodeMap<Node>* _prev; |
| 107 | 107 |
typename Digraph::template NodeMap<bool>* _active; |
| 108 | 108 |
typename Digraph::template NodeMap<int>* _bucket; |
| 109 | 109 |
|
| 110 | 110 |
std::vector<bool> _dormant; |
| 111 | 111 |
|
| 112 | 112 |
std::list<std::list<int> > _sets; |
| 113 | 113 |
std::list<int>::iterator _highest; |
| 114 | 114 |
|
| 115 | 115 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 116 | 116 |
ExcessMap* _excess; |
| 117 | 117 |
|
| 118 | 118 |
typedef typename Digraph::template NodeMap<bool> SourceSetMap; |
| 119 | 119 |
SourceSetMap* _source_set; |
| 120 | 120 |
|
| 121 | 121 |
Value _min_cut; |
| 122 | 122 |
|
| 123 | 123 |
typedef typename Digraph::template NodeMap<bool> MinCutMap; |
| 124 | 124 |
MinCutMap* _min_cut_map; |
| 125 | 125 |
|
| 126 | 126 |
Tolerance _tolerance; |
| 127 | 127 |
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
/// \brief Constructor |
| 131 | 131 |
/// |
| 132 | 132 |
/// Constructor of the algorithm class. |
| 133 | 133 |
HaoOrlin(const Digraph& graph, const CapacityMap& capacity, |
| 134 | 134 |
const Tolerance& tolerance = Tolerance()) : |
| 135 | 135 |
_graph(graph), _capacity(&capacity), _flow(0), _source(), |
| 136 | 136 |
_node_num(), _first(), _last(), _next(0), _prev(0), |
| 137 | 137 |
_active(0), _bucket(0), _dormant(), _sets(), _highest(), |
| 138 | 138 |
_excess(0), _source_set(0), _min_cut(), _min_cut_map(0), |
| 139 | 139 |
_tolerance(tolerance) {}
|
| 140 | 140 |
|
| 141 | 141 |
~HaoOrlin() {
|
| 142 | 142 |
if (_min_cut_map) {
|
| 143 | 143 |
delete _min_cut_map; |
| 144 | 144 |
} |
| 145 | 145 |
if (_source_set) {
|
| 146 | 146 |
delete _source_set; |
| 147 | 147 |
} |
| 148 | 148 |
if (_excess) {
|
| 149 | 149 |
delete _excess; |
| 150 | 150 |
} |
| 151 | 151 |
if (_next) {
|
| 152 | 152 |
delete _next; |
| 153 | 153 |
} |
| 154 | 154 |
if (_prev) {
|
| 155 | 155 |
delete _prev; |
| 156 | 156 |
} |
| 157 | 157 |
if (_active) {
|
| 158 | 158 |
delete _active; |
| 159 | 159 |
} |
| 160 | 160 |
if (_bucket) {
|
| 161 | 161 |
delete _bucket; |
| 162 | 162 |
} |
| 163 | 163 |
if (_flow) {
|
| 164 | 164 |
delete _flow; |
| 165 | 165 |
} |
| 166 | 166 |
} |
| 167 | 167 |
|
| 168 |
/// \brief Set the tolerance used by the algorithm. |
|
| 169 |
/// |
|
| 170 |
/// This function sets the tolerance object used by the algorithm. |
|
| 171 |
/// \return <tt>(*this)</tt> |
|
| 172 |
HaoOrlin& tolerance(const Tolerance& tolerance) {
|
|
| 173 |
_tolerance = tolerance; |
|
| 174 |
return *this; |
|
| 175 |
} |
|
| 176 |
|
|
| 177 |
/// \brief Returns a const reference to the tolerance. |
|
| 178 |
/// |
|
| 179 |
/// This function returns a const reference to the tolerance object |
|
| 180 |
/// used by the algorithm. |
|
| 181 |
const Tolerance& tolerance() const {
|
|
| 182 |
return _tolerance; |
|
| 183 |
} |
|
| 184 |
|
|
| 168 | 185 |
private: |
| 169 | 186 |
|
| 170 | 187 |
void activate(const Node& i) {
|
| 171 | 188 |
(*_active)[i] = true; |
| 172 | 189 |
|
| 173 | 190 |
int bucket = (*_bucket)[i]; |
| 174 | 191 |
|
| 175 | 192 |
if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return; |
| 176 | 193 |
//unlace |
| 177 | 194 |
(*_next)[(*_prev)[i]] = (*_next)[i]; |
| 178 | 195 |
if ((*_next)[i] != INVALID) {
|
| 179 | 196 |
(*_prev)[(*_next)[i]] = (*_prev)[i]; |
| 180 | 197 |
} else {
|
| 181 | 198 |
_last[bucket] = (*_prev)[i]; |
| 182 | 199 |
} |
| 183 | 200 |
//lace |
| 184 | 201 |
(*_next)[i] = _first[bucket]; |
| 185 | 202 |
(*_prev)[_first[bucket]] = i; |
| 186 | 203 |
(*_prev)[i] = INVALID; |
| 187 | 204 |
_first[bucket] = i; |
| 188 | 205 |
} |
| 189 | 206 |
|
| 190 | 207 |
void deactivate(const Node& i) {
|
| 191 | 208 |
(*_active)[i] = false; |
| 192 | 209 |
int bucket = (*_bucket)[i]; |
| 193 | 210 |
|
| 194 | 211 |
if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return; |
| 195 | 212 |
|
| 196 | 213 |
//unlace |
| 197 | 214 |
(*_prev)[(*_next)[i]] = (*_prev)[i]; |
| 198 | 215 |
if ((*_prev)[i] != INVALID) {
|
| 199 | 216 |
(*_next)[(*_prev)[i]] = (*_next)[i]; |
| 200 | 217 |
} else {
|
| 201 | 218 |
_first[bucket] = (*_next)[i]; |
| 202 | 219 |
} |
| 203 | 220 |
//lace |
| 204 | 221 |
(*_prev)[i] = _last[bucket]; |
| 205 | 222 |
(*_next)[_last[bucket]] = i; |
| 206 | 223 |
(*_next)[i] = INVALID; |
| 207 | 224 |
_last[bucket] = i; |
| 208 | 225 |
} |
| 209 | 226 |
|
| 210 | 227 |
void addItem(const Node& i, int bucket) {
|
| 211 | 228 |
(*_bucket)[i] = bucket; |
| 212 | 229 |
if (_last[bucket] != INVALID) {
|
| 213 | 230 |
(*_prev)[i] = _last[bucket]; |
| 214 | 231 |
(*_next)[_last[bucket]] = i; |
| 215 | 232 |
(*_next)[i] = INVALID; |
| 216 | 233 |
_last[bucket] = i; |
| 217 | 234 |
} else {
|
| 218 | 235 |
(*_prev)[i] = INVALID; |
| 219 | 236 |
_first[bucket] = i; |
| 220 | 237 |
(*_next)[i] = INVALID; |
| 221 | 238 |
_last[bucket] = i; |
| 222 | 239 |
} |
| 223 | 240 |
} |
| 224 | 241 |
|
| 225 | 242 |
void findMinCutOut() {
|
| 226 | 243 |
|
| 227 | 244 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 228 | 245 |
(*_excess)[n] = 0; |
| 229 | 246 |
(*_source_set)[n] = false; |
| 230 | 247 |
} |
| 231 | 248 |
|
| 232 | 249 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 233 | 250 |
(*_flow)[a] = 0; |
| 234 | 251 |
} |
| 235 | 252 |
|
| 236 | 253 |
int bucket_num = 0; |
| 237 | 254 |
std::vector<Node> queue(_node_num); |
| 238 | 255 |
int qfirst = 0, qlast = 0, qsep = 0; |
| 239 | 256 |
|
| 240 | 257 |
{
|
| 241 | 258 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 242 | 259 |
|
| 243 | 260 |
reached[_source] = true; |
| 244 | 261 |
bool first_set = true; |
| 245 | 262 |
|
| 246 | 263 |
for (NodeIt t(_graph); t != INVALID; ++t) {
|
| 247 | 264 |
if (reached[t]) continue; |
| 248 | 265 |
_sets.push_front(std::list<int>()); |
| 249 | 266 |
|
| 250 | 267 |
queue[qlast++] = t; |
| 251 | 268 |
reached[t] = true; |
| 252 | 269 |
|
| 253 | 270 |
while (qfirst != qlast) {
|
| 254 | 271 |
if (qsep == qfirst) {
|
| 255 | 272 |
++bucket_num; |
| 256 | 273 |
_sets.front().push_front(bucket_num); |
| 257 | 274 |
_dormant[bucket_num] = !first_set; |
| 258 | 275 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
| 259 | 276 |
qsep = qlast; |
| 260 | 277 |
} |
| 261 | 278 |
|
| 262 | 279 |
Node n = queue[qfirst++]; |
| 263 | 280 |
addItem(n, bucket_num); |
| 264 | 281 |
|
| 265 | 282 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
| 266 | 283 |
Node u = _graph.source(a); |
| 267 | 284 |
if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
|
| 268 | 285 |
reached[u] = true; |
| 269 | 286 |
queue[qlast++] = u; |
| 270 | 287 |
} |
| 271 | 288 |
} |
| 272 | 289 |
} |
| 273 | 290 |
first_set = false; |
| 274 | 291 |
} |
| 275 | 292 |
|
| 276 | 293 |
++bucket_num; |
| 277 | 294 |
(*_bucket)[_source] = 0; |
| 278 | 295 |
_dormant[0] = true; |
| 279 | 296 |
} |
| 280 | 297 |
(*_source_set)[_source] = true; |
| 281 | 298 |
|
| 282 | 299 |
Node target = _last[_sets.back().back()]; |
| 283 | 300 |
{
|
| 284 | 301 |
for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
|
| 285 | 302 |
if (_tolerance.positive((*_capacity)[a])) {
|
| 286 | 303 |
Node u = _graph.target(a); |
| 287 | 304 |
(*_flow)[a] = (*_capacity)[a]; |
| 288 | 305 |
(*_excess)[u] += (*_capacity)[a]; |
| 289 | 306 |
if (!(*_active)[u] && u != _source) {
|
| 290 | 307 |
activate(u); |
| 291 | 308 |
} |
| 292 | 309 |
} |
| 293 | 310 |
} |
| 294 | 311 |
|
| 295 | 312 |
if ((*_active)[target]) {
|
| 296 | 313 |
deactivate(target); |
| 297 | 314 |
} |
| 298 | 315 |
|
| 299 | 316 |
_highest = _sets.back().begin(); |
| 300 | 317 |
while (_highest != _sets.back().end() && |
| 301 | 318 |
!(*_active)[_first[*_highest]]) {
|
| 302 | 319 |
++_highest; |
| 303 | 320 |
} |
| 304 | 321 |
} |
| 305 | 322 |
|
| 306 | 323 |
while (true) {
|
| 307 | 324 |
while (_highest != _sets.back().end()) {
|
| 308 | 325 |
Node n = _first[*_highest]; |
| 309 | 326 |
Value excess = (*_excess)[n]; |
| 310 | 327 |
int next_bucket = _node_num; |
| 311 | 328 |
|
| 312 | 329 |
int under_bucket; |
| 313 | 330 |
if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
|
| 314 | 331 |
under_bucket = -1; |
| 315 | 332 |
} else {
|
| 316 | 333 |
under_bucket = *(++std::list<int>::iterator(_highest)); |
| 317 | 334 |
} |
| 318 | 335 |
|
| 319 | 336 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
|
| 320 | 337 |
Node v = _graph.target(a); |
| 321 | 338 |
if (_dormant[(*_bucket)[v]]) continue; |
| 322 | 339 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
| 323 | 340 |
if (!_tolerance.positive(rem)) continue; |
| 324 | 341 |
if ((*_bucket)[v] == under_bucket) {
|
| 325 | 342 |
if (!(*_active)[v] && v != target) {
|
| 326 | 343 |
activate(v); |
| 327 | 344 |
} |
| 328 | 345 |
if (!_tolerance.less(rem, excess)) {
|
| 329 | 346 |
(*_flow)[a] += excess; |
| 330 | 347 |
(*_excess)[v] += excess; |
| 331 | 348 |
excess = 0; |
| 332 | 349 |
goto no_more_push; |
| 333 | 350 |
} else {
|
| 334 | 351 |
excess -= rem; |
| 335 | 352 |
(*_excess)[v] += rem; |
| 336 | 353 |
(*_flow)[a] = (*_capacity)[a]; |
| 337 | 354 |
} |
| 338 | 355 |
} else if (next_bucket > (*_bucket)[v]) {
|
| 339 | 356 |
next_bucket = (*_bucket)[v]; |
| 340 | 357 |
} |
| 341 | 358 |
} |
| 342 | 359 |
|
| 343 | 360 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
| 344 | 361 |
Node v = _graph.source(a); |
| 345 | 362 |
if (_dormant[(*_bucket)[v]]) continue; |
| 346 | 363 |
Value rem = (*_flow)[a]; |
| 347 | 364 |
if (!_tolerance.positive(rem)) continue; |
| 348 | 365 |
if ((*_bucket)[v] == under_bucket) {
|
| 349 | 366 |
if (!(*_active)[v] && v != target) {
|
| 350 | 367 |
activate(v); |
| 351 | 368 |
} |
| 352 | 369 |
if (!_tolerance.less(rem, excess)) {
|
| 353 | 370 |
(*_flow)[a] -= excess; |
| 354 | 371 |
(*_excess)[v] += excess; |
| 355 | 372 |
excess = 0; |
| 356 | 373 |
goto no_more_push; |
| 357 | 374 |
} else {
|
| 358 | 375 |
excess -= rem; |
| 359 | 376 |
(*_excess)[v] += rem; |
| 360 | 377 |
(*_flow)[a] = 0; |
| 361 | 378 |
} |
| 362 | 379 |
} else if (next_bucket > (*_bucket)[v]) {
|
| 363 | 380 |
next_bucket = (*_bucket)[v]; |
| 364 | 381 |
} |
| 365 | 382 |
} |
| 366 | 383 |
|
| 367 | 384 |
no_more_push: |
| 368 | 385 |
|
| 369 | 386 |
(*_excess)[n] = excess; |
| 370 | 387 |
|
| 371 | 388 |
if (excess != 0) {
|
| 372 | 389 |
if ((*_next)[n] == INVALID) {
|
| 373 | 390 |
typename std::list<std::list<int> >::iterator new_set = |
| 374 | 391 |
_sets.insert(--_sets.end(), std::list<int>()); |
| 375 | 392 |
new_set->splice(new_set->end(), _sets.back(), |
| 376 | 393 |
_sets.back().begin(), ++_highest); |
| 377 | 394 |
for (std::list<int>::iterator it = new_set->begin(); |
| 378 | 395 |
it != new_set->end(); ++it) {
|
| 379 | 396 |
_dormant[*it] = true; |
| 380 | 397 |
} |
| 381 | 398 |
while (_highest != _sets.back().end() && |
| 382 | 399 |
!(*_active)[_first[*_highest]]) {
|
| 383 | 400 |
++_highest; |
| 384 | 401 |
} |
| 385 | 402 |
} else if (next_bucket == _node_num) {
|
| 386 | 403 |
_first[(*_bucket)[n]] = (*_next)[n]; |
| 387 | 404 |
(*_prev)[(*_next)[n]] = INVALID; |
| 388 | 405 |
|
| 389 | 406 |
std::list<std::list<int> >::iterator new_set = |
| 390 | 407 |
_sets.insert(--_sets.end(), std::list<int>()); |
| 391 | 408 |
|
| 392 | 409 |
new_set->push_front(bucket_num); |
| 393 | 410 |
(*_bucket)[n] = bucket_num; |
| 394 | 411 |
_first[bucket_num] = _last[bucket_num] = n; |
| 395 | 412 |
(*_next)[n] = INVALID; |
| 396 | 413 |
(*_prev)[n] = INVALID; |
| 397 | 414 |
_dormant[bucket_num] = true; |
| 398 | 415 |
++bucket_num; |
| 399 | 416 |
|
| 400 | 417 |
while (_highest != _sets.back().end() && |
| 401 | 418 |
!(*_active)[_first[*_highest]]) {
|
| 402 | 419 |
++_highest; |
| 403 | 420 |
} |
| 404 | 421 |
} else {
|
| 405 | 422 |
_first[*_highest] = (*_next)[n]; |
| 406 | 423 |
(*_prev)[(*_next)[n]] = INVALID; |
| 407 | 424 |
|
| 408 | 425 |
while (next_bucket != *_highest) {
|
| 409 | 426 |
--_highest; |
| 410 | 427 |
} |
| 411 | 428 |
|
| 412 | 429 |
if (_highest == _sets.back().begin()) {
|
| 413 | 430 |
_sets.back().push_front(bucket_num); |
| 414 | 431 |
_dormant[bucket_num] = false; |
| 415 | 432 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
| 416 | 433 |
++bucket_num; |
| 417 | 434 |
} |
| 418 | 435 |
--_highest; |
| 419 | 436 |
|
| 420 | 437 |
(*_bucket)[n] = *_highest; |
| 421 | 438 |
(*_next)[n] = _first[*_highest]; |
| 422 | 439 |
if (_first[*_highest] != INVALID) {
|
| 423 | 440 |
(*_prev)[_first[*_highest]] = n; |
| 424 | 441 |
} else {
|
| 425 | 442 |
_last[*_highest] = n; |
| 426 | 443 |
} |
| 427 | 444 |
_first[*_highest] = n; |
| 428 | 445 |
} |
| 429 | 446 |
} else {
|
| 430 | 447 |
|
| 431 | 448 |
deactivate(n); |
| 432 | 449 |
if (!(*_active)[_first[*_highest]]) {
|
| 433 | 450 |
++_highest; |
| 434 | 451 |
if (_highest != _sets.back().end() && |
| 435 | 452 |
!(*_active)[_first[*_highest]]) {
|
| 436 | 453 |
_highest = _sets.back().end(); |
| 437 | 454 |
} |
| 438 | 455 |
} |
| 439 | 456 |
} |
| 440 | 457 |
} |
| 441 | 458 |
|
| 442 | 459 |
if ((*_excess)[target] < _min_cut) {
|
| 443 | 460 |
_min_cut = (*_excess)[target]; |
| 444 | 461 |
for (NodeIt i(_graph); i != INVALID; ++i) {
|
| 445 | 462 |
(*_min_cut_map)[i] = true; |
| 446 | 463 |
} |
| 447 | 464 |
for (std::list<int>::iterator it = _sets.back().begin(); |
| 448 | 465 |
it != _sets.back().end(); ++it) {
|
| 449 | 466 |
Node n = _first[*it]; |
| 450 | 467 |
while (n != INVALID) {
|
| 451 | 468 |
(*_min_cut_map)[n] = false; |
| 452 | 469 |
n = (*_next)[n]; |
| 453 | 470 |
} |
| 454 | 471 |
} |
| 455 | 472 |
} |
| 456 | 473 |
|
| 457 | 474 |
{
|
| 458 | 475 |
Node new_target; |
| 459 | 476 |
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
|
| 460 | 477 |
if ((*_next)[target] == INVALID) {
|
| 461 | 478 |
_last[(*_bucket)[target]] = (*_prev)[target]; |
| 462 | 479 |
new_target = (*_prev)[target]; |
| 463 | 480 |
} else {
|
| 464 | 481 |
(*_prev)[(*_next)[target]] = (*_prev)[target]; |
| 465 | 482 |
new_target = (*_next)[target]; |
| 466 | 483 |
} |
| 467 | 484 |
if ((*_prev)[target] == INVALID) {
|
| 468 | 485 |
_first[(*_bucket)[target]] = (*_next)[target]; |
| 469 | 486 |
} else {
|
| 470 | 487 |
(*_next)[(*_prev)[target]] = (*_next)[target]; |
| 471 | 488 |
} |
| 472 | 489 |
} else {
|
| 473 | 490 |
_sets.back().pop_back(); |
| 474 | 491 |
if (_sets.back().empty()) {
|
| 475 | 492 |
_sets.pop_back(); |
| 476 | 493 |
if (_sets.empty()) |
| 477 | 494 |
break; |
| 478 | 495 |
for (std::list<int>::iterator it = _sets.back().begin(); |
| 479 | 496 |
it != _sets.back().end(); ++it) {
|
| 480 | 497 |
_dormant[*it] = false; |
| 481 | 498 |
} |
| 482 | 499 |
} |
| 483 | 500 |
new_target = _last[_sets.back().back()]; |
| 484 | 501 |
} |
| 485 | 502 |
|
| 486 | 503 |
(*_bucket)[target] = 0; |
| 487 | 504 |
|
| 488 | 505 |
(*_source_set)[target] = true; |
| 489 | 506 |
for (OutArcIt a(_graph, target); a != INVALID; ++a) {
|
| 490 | 507 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
| 491 | 508 |
if (!_tolerance.positive(rem)) continue; |
| 492 | 509 |
Node v = _graph.target(a); |
| 493 | 510 |
if (!(*_active)[v] && !(*_source_set)[v]) {
|
| 494 | 511 |
activate(v); |
| 495 | 512 |
} |
| 496 | 513 |
(*_excess)[v] += rem; |
| 497 | 514 |
(*_flow)[a] = (*_capacity)[a]; |
| 498 | 515 |
} |
| 499 | 516 |
|
| 500 | 517 |
for (InArcIt a(_graph, target); a != INVALID; ++a) {
|
| 501 | 518 |
Value rem = (*_flow)[a]; |
| 502 | 519 |
if (!_tolerance.positive(rem)) continue; |
| 503 | 520 |
Node v = _graph.source(a); |
| 504 | 521 |
if (!(*_active)[v] && !(*_source_set)[v]) {
|
| 505 | 522 |
activate(v); |
| 506 | 523 |
} |
| 507 | 524 |
(*_excess)[v] += rem; |
| 508 | 525 |
(*_flow)[a] = 0; |
| 509 | 526 |
} |
| 510 | 527 |
|
| 511 | 528 |
target = new_target; |
| 512 | 529 |
if ((*_active)[target]) {
|
| 513 | 530 |
deactivate(target); |
| 514 | 531 |
} |
| 515 | 532 |
|
| 516 | 533 |
_highest = _sets.back().begin(); |
| 517 | 534 |
while (_highest != _sets.back().end() && |
| 518 | 535 |
!(*_active)[_first[*_highest]]) {
|
| 519 | 536 |
++_highest; |
| 520 | 537 |
} |
| 521 | 538 |
} |
| 522 | 539 |
} |
| 523 | 540 |
} |
| 524 | 541 |
|
| 525 | 542 |
void findMinCutIn() {
|
| 526 | 543 |
|
| 527 | 544 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 528 | 545 |
(*_excess)[n] = 0; |
| 529 | 546 |
(*_source_set)[n] = false; |
| 530 | 547 |
} |
| 531 | 548 |
|
| 532 | 549 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 533 | 550 |
(*_flow)[a] = 0; |
| 534 | 551 |
} |
| 535 | 552 |
|
| 536 | 553 |
int bucket_num = 0; |
| 537 | 554 |
std::vector<Node> queue(_node_num); |
| 538 | 555 |
int qfirst = 0, qlast = 0, qsep = 0; |
| 539 | 556 |
|
| 540 | 557 |
{
|
| 541 | 558 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 542 | 559 |
|
| 543 | 560 |
reached[_source] = true; |
| 544 | 561 |
|
| 545 | 562 |
bool first_set = true; |
| 546 | 563 |
|
| 547 | 564 |
for (NodeIt t(_graph); t != INVALID; ++t) {
|
| 548 | 565 |
if (reached[t]) continue; |
| 549 | 566 |
_sets.push_front(std::list<int>()); |
| 550 | 567 |
|
| 551 | 568 |
queue[qlast++] = t; |
0 comments (0 inline)