| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ELEVATOR_H |
| 20 | 20 |
#define LEMON_ELEVATOR_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup auxdat |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Elevator class |
| 25 | 25 |
/// |
| 26 | 26 |
///Elevator class implements an efficient data structure |
| 27 | 27 |
///for labeling items in push-relabel type algorithms. |
| 28 | 28 |
/// |
| 29 | 29 |
|
| 30 | 30 |
#include <test/test_tools.h> |
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
///Class for handling "labels" in push-relabel type algorithms. |
| 34 | 34 |
|
| 35 | 35 |
///A class for handling "labels" in push-relabel type algorithms. |
| 36 | 36 |
/// |
| 37 | 37 |
///\ingroup auxdat |
| 38 | 38 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
| 39 | 39 |
///to the edges or nodes of a graph, manipulate and query them through |
| 40 | 40 |
///operations typically arising in "push-relabel" type algorithms. |
| 41 | 41 |
/// |
| 42 | 42 |
///Each item is either \em active or not, and you can also choose a |
| 43 | 43 |
///highest level active item. |
| 44 | 44 |
/// |
| 45 | 45 |
///\sa LinkedElevator |
| 46 | 46 |
/// |
| 47 | 47 |
///\param Graph the underlying graph type |
| 48 | 48 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
| 49 | 49 |
///Graph::Edge, Graph::UEdge) |
| 50 | 50 |
template<class Graph, class Item> |
| 51 | 51 |
class Elevator |
| 52 | 52 |
{
|
| 53 | 53 |
public: |
| 54 | 54 |
|
| 55 | 55 |
typedef Item Key; |
| 56 | 56 |
typedef int Value; |
| 57 | 57 |
|
| 58 | 58 |
private: |
| 59 | 59 |
|
| 60 |
typedef |
|
| 60 |
typedef Item *Vit; |
|
| 61 | 61 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
| 62 | 62 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
| 63 | 63 |
|
| 64 | 64 |
const Graph &_g; |
| 65 | 65 |
int _max_level; |
| 66 | 66 |
int _item_num; |
| 67 | 67 |
VitMap _where; |
| 68 | 68 |
IntMap _level; |
| 69 | 69 |
std::vector<Item> _items; |
| 70 | 70 |
std::vector<Vit> _first; |
| 71 | 71 |
std::vector<Vit> _last_active; |
| 72 | 72 |
|
| 73 | 73 |
int _highest_active; |
| 74 | 74 |
|
| 75 | 75 |
void copy(Item i, Vit p) |
| 76 | 76 |
{
|
| 77 | 77 |
_where[*p=i]=p; |
| 78 | 78 |
} |
| 79 | 79 |
void copy(Vit s, Vit p) |
| 80 | 80 |
{
|
| 81 | 81 |
if(s!=p) |
| 82 | 82 |
{
|
| 83 | 83 |
Item i=*s; |
| 84 | 84 |
*p=i; |
| 85 | 85 |
_where[i]=p; |
| 86 | 86 |
} |
| 87 | 87 |
} |
| 88 | 88 |
void swap(Vit i, Vit j) |
| 89 | 89 |
{
|
| 90 | 90 |
Item ti=*i; |
| 91 | 91 |
Vit ct = _where[ti]; |
| 92 | 92 |
_where[ti]=_where[*i=*j]; |
| 93 | 93 |
_where[*j]=ct; |
| 94 | 94 |
*j=ti; |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
public: |
| 98 | 98 |
|
| 99 | 99 |
///Constructor with given maximum level. |
| 100 | 100 |
|
| 101 | 101 |
///Constructor with given maximum level. |
| 102 | 102 |
/// |
| 103 | 103 |
///\param g The underlying graph |
| 104 | 104 |
///\param max_level Set the range of the possible labels to |
| 105 | 105 |
///[0...\c max_level] |
| 106 | 106 |
Elevator(const Graph &g,int max_level) : |
| 107 | 107 |
_g(g), |
| 108 | 108 |
_max_level(max_level), |
| 109 | 109 |
_item_num(_max_level), |
| 110 | 110 |
_where(g), |
| 111 | 111 |
_level(g,0), |
| 112 | 112 |
_items(_max_level), |
| 113 | 113 |
_first(_max_level+2), |
| 114 | 114 |
_last_active(_max_level+2), |
| 115 | 115 |
_highest_active(-1) {}
|
| 116 | 116 |
///Constructor. |
| 117 | 117 |
|
| 118 | 118 |
///Constructor. |
| 119 | 119 |
/// |
| 120 | 120 |
///\param g The underlying graph |
| 121 | 121 |
///The range of the possible labels is [0...\c max_level], |
| 122 | 122 |
///where \c max_level is equal to the number of labeled items in the graph. |
| 123 | 123 |
Elevator(const Graph &g) : |
| 124 | 124 |
_g(g), |
| 125 | 125 |
_max_level(countItems<Graph, Item>(g)), |
| 126 | 126 |
_item_num(_max_level), |
| 127 | 127 |
_where(g), |
| 128 | 128 |
_level(g,0), |
| 129 | 129 |
_items(_max_level), |
| 130 | 130 |
_first(_max_level+2), |
| 131 | 131 |
_last_active(_max_level+2), |
| 132 | 132 |
_highest_active(-1) |
| 133 | 133 |
{
|
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
///Activate item \c i. |
| 137 | 137 |
|
| 138 | 138 |
///Activate item \c i. |
| 139 | 139 |
///\pre Item \c i shouldn't be active before. |
| 140 | 140 |
void activate(Item i) |
| 141 | 141 |
{
|
| 142 | 142 |
const int l=_level[i]; |
| 143 | 143 |
swap(_where[i],++_last_active[l]); |
| 144 | 144 |
if(l>_highest_active) _highest_active=l; |
| 145 | 145 |
} |
| 146 | 146 |
|
| 147 | 147 |
///Deactivate item \c i. |
| 148 | 148 |
|
| 149 | 149 |
///Deactivate item \c i. |
| 150 | 150 |
///\pre Item \c i must be active before. |
| 151 | 151 |
void deactivate(Item i) |
| 152 | 152 |
{
|
| 153 | 153 |
swap(_where[i],_last_active[_level[i]]--); |
| 154 | 154 |
while(_highest_active>=0 && |
| 155 | 155 |
_last_active[_highest_active]<_first[_highest_active]) |
| 156 | 156 |
_highest_active--; |
| 157 | 157 |
} |
| 158 | 158 |
|
| 159 | 159 |
///Query whether item \c i is active |
| 160 | 160 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
|
| 161 | 161 |
|
| 162 | 162 |
///Return the level of item \c i. |
| 163 | 163 |
int operator[](Item i) const { return _level[i]; }
|
| 164 | 164 |
|
| 165 | 165 |
///Return the number of items on level \c l. |
| 166 | 166 |
int onLevel(int l) const |
| 167 | 167 |
{
|
| 168 | 168 |
return _first[l+1]-_first[l]; |
| 169 | 169 |
} |
| 170 | 170 |
///Return true if the level is empty. |
| 171 | 171 |
bool emptyLevel(int l) const |
| 172 | 172 |
{
|
| 173 | 173 |
return _first[l+1]-_first[l]==0; |
| 174 | 174 |
} |
| 175 | 175 |
///Return the number of items above level \c l. |
| 176 | 176 |
int aboveLevel(int l) const |
| 177 | 177 |
{
|
| 178 | 178 |
return _first[_max_level+1]-_first[l+1]; |
| 179 | 179 |
} |
| 180 | 180 |
///Return the number of active items on level \c l. |
| 181 | 181 |
int activesOnLevel(int l) const |
| 182 | 182 |
{
|
| 183 | 183 |
return _last_active[l]-_first[l]+1; |
| 184 | 184 |
} |
| 185 | 185 |
///Return true if there is not active item on level \c l. |
| 186 | 186 |
bool activeFree(int l) const |
| 187 | 187 |
{
|
| 188 | 188 |
return _last_active[l]<_first[l]; |
| 189 | 189 |
} |
| 190 | 190 |
///Return the maximum allowed level. |
| 191 | 191 |
int maxLevel() const |
| 192 | 192 |
{
|
| 193 | 193 |
return _max_level; |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
///\name Highest Active Item |
| 197 | 197 |
///Functions for working with the highest level |
| 198 | 198 |
///active item. |
| 199 | 199 |
|
| 200 | 200 |
///@{
|
| 201 | 201 |
|
| 202 | 202 |
///Return a highest level active item. |
| 203 | 203 |
|
| 204 | 204 |
///Return a highest level active item. |
| 205 | 205 |
/// |
| 206 | 206 |
///\return the highest level active item or INVALID if there is no active |
| 207 | 207 |
///item. |
| 208 | 208 |
Item highestActive() const |
| 209 | 209 |
{
|
| 210 | 210 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
///Return a highest active level. |
| 214 | 214 |
|
| 215 | 215 |
///Return a highest active level. |
| 216 | 216 |
/// |
| 217 | 217 |
///\return the level of the highest active item or -1 if there is no active |
| 218 | 218 |
///item. |
| 219 | 219 |
int highestActiveLevel() const |
| 220 | 220 |
{
|
| 221 | 221 |
return _highest_active; |
| 222 | 222 |
} |
| 223 | 223 |
|
| 224 | 224 |
///Lift the highest active item by one. |
| 225 | 225 |
|
| 226 | 226 |
///Lift the item returned by highestActive() by one. |
| 227 | 227 |
/// |
| 228 | 228 |
void liftHighestActive() |
| 229 | 229 |
{
|
| 230 | 230 |
++_level[*_last_active[_highest_active]]; |
| 231 | 231 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
| 232 | 232 |
--_first[++_highest_active]; |
| 233 | 233 |
} |
| 234 | 234 |
|
| 235 | 235 |
///Lift the highest active item. |
| 236 | 236 |
|
| 237 | 237 |
///Lift the item returned by highestActive() to level \c new_level. |
| 238 | 238 |
/// |
| 239 | 239 |
///\warning \c new_level must be strictly higher |
| 240 | 240 |
///than the current level. |
| 241 | 241 |
/// |
| 242 | 242 |
void liftHighestActive(int new_level) |
| 243 | 243 |
{
|
| 244 | 244 |
const Item li = *_last_active[_highest_active]; |
| 245 | 245 |
|
| 246 | 246 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
| 247 | 247 |
for(int l=_highest_active+1;l<new_level;l++) |
| 248 | 248 |
{
|
| 249 | 249 |
copy(--_first[l+1],_first[l]); |
| 250 | 250 |
--_last_active[l]; |
| 251 | 251 |
} |
| 252 | 252 |
copy(li,_first[new_level]); |
| 253 | 253 |
_level[li]=new_level; |
| 254 | 254 |
_highest_active=new_level; |
| 255 | 255 |
} |
| 256 | 256 |
|
| 257 | 257 |
///Lift the highest active item. |
| 258 | 258 |
|
| 259 | 259 |
///Lift the item returned by highestActive() to the top level and |
| 260 | 260 |
///deactivates it. |
| 261 | 261 |
/// |
| 262 | 262 |
///\warning \c new_level must be strictly higher |
| 263 | 263 |
///than the current level. |
| 264 | 264 |
/// |
| 265 | 265 |
void liftHighestActiveToTop() |
| 266 | 266 |
{
|
| 267 | 267 |
const Item li = *_last_active[_highest_active]; |
| 268 | 268 |
|
| 269 | 269 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
| 270 | 270 |
for(int l=_highest_active+1;l<_max_level;l++) |
| 271 | 271 |
{
|
| 272 | 272 |
copy(--_first[l+1],_first[l]); |
| 273 | 273 |
--_last_active[l]; |
| 274 | 274 |
} |
| 275 | 275 |
copy(li,_first[_max_level]); |
| 276 | 276 |
--_last_active[_max_level]; |
| 277 | 277 |
_level[li]=_max_level; |
| 278 | 278 |
|
| 279 | 279 |
while(_highest_active>=0 && |
| 280 | 280 |
_last_active[_highest_active]<_first[_highest_active]) |
| 281 | 281 |
_highest_active--; |
| 282 | 282 |
} |
| 283 | 283 |
|
| 284 | 284 |
///@} |
| 285 | 285 |
|
| 286 | 286 |
///\name Active Item on Certain Level |
| 287 | 287 |
///Functions for working with the active items. |
| 288 | 288 |
|
| 289 | 289 |
///@{
|
| 290 | 290 |
|
| 291 | 291 |
///Returns an active item on level \c l. |
| 292 | 292 |
|
| 293 | 293 |
///Returns an active item on level \c l. |
| 294 | 294 |
/// |
| 295 | 295 |
///Returns an active item on level \c l or \ref INVALID if there is no such |
| 296 | 296 |
///an item. (\c l must be from the range [0...\c max_level]. |
| 297 | 297 |
Item activeOn(int l) const |
| 298 | 298 |
{
|
| 299 | 299 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
| 300 | 300 |
} |
| 301 | 301 |
|
| 302 | 302 |
///Lifts the active item returned by \c activeOn() member function. |
| 303 | 303 |
|
| 304 | 304 |
///Lifts the active item returned by \c activeOn() member function |
| 305 | 305 |
///by one. |
| 306 | 306 |
Item liftActiveOn(int level) |
| 307 | 307 |
{
|
| 308 | 308 |
++_level[*_last_active[level]]; |
| 309 | 309 |
swap(_last_active[level]--, --_first[level+1]); |
| 310 | 310 |
if (level+1>_highest_active) ++_highest_active; |
| 311 | 311 |
} |
| 312 | 312 |
|
| 313 | 313 |
///Lifts the active item returned by \c activeOn() member function. |
| 314 | 314 |
|
| 315 | 315 |
///Lifts the active item returned by \c activeOn() member function |
| 316 | 316 |
///to the given level. |
| 317 | 317 |
void liftActiveOn(int level, int new_level) |
| 318 | 318 |
{
|
| 319 | 319 |
const Item ai = *_last_active[level]; |
| 320 | 320 |
|
| 321 | 321 |
copy(--_first[level+1], _last_active[level]--); |
| 322 | 322 |
for(int l=level+1;l<new_level;l++) |
| 323 | 323 |
{
|
| 324 | 324 |
copy(_last_active[l],_first[l]); |
| 325 | 325 |
copy(--_first[l+1], _last_active[l]--); |
| 326 | 326 |
} |
| 327 | 327 |
copy(ai,_first[new_level]); |
| 328 | 328 |
_level[ai]=new_level; |
| 329 | 329 |
if (new_level>_highest_active) _highest_active=new_level; |
| 330 | 330 |
} |
| 331 | 331 |
|
| 332 | 332 |
///Lifts the active item returned by \c activeOn() member function. |
| 333 | 333 |
|
| 334 | 334 |
///Lifts the active item returned by \c activeOn() member function |
| 335 | 335 |
///to the top level. |
| 336 | 336 |
void liftActiveToTop(int level) |
| 337 | 337 |
{
|
| 338 | 338 |
const Item ai = *_last_active[level]; |
| 339 | 339 |
|
| 340 | 340 |
copy(--_first[level+1],_last_active[level]--); |
| 341 | 341 |
for(int l=level+1;l<_max_level;l++) |
| 342 | 342 |
{
|
| 343 | 343 |
copy(_last_active[l],_first[l]); |
| 344 | 344 |
copy(--_first[l+1], _last_active[l]--); |
| 345 | 345 |
} |
| 346 | 346 |
copy(ai,_first[_max_level]); |
| 347 | 347 |
--_last_active[_max_level]; |
| 348 | 348 |
_level[ai]=_max_level; |
| 349 | 349 |
|
| 350 | 350 |
if (_highest_active==level) {
|
| 351 | 351 |
while(_highest_active>=0 && |
| 352 | 352 |
_last_active[_highest_active]<_first[_highest_active]) |
| 353 | 353 |
_highest_active--; |
| 354 | 354 |
} |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
///@} |
| 358 | 358 |
|
| 359 | 359 |
///Lift an active item to a higher level. |
| 360 | 360 |
|
| 361 | 361 |
///Lift an active item to a higher level. |
| 362 | 362 |
///\param i The item to be lifted. It must be active. |
| 363 | 363 |
///\param new_level The new level of \c i. It must be strictly higher |
| 364 | 364 |
///than the current level. |
| 365 | 365 |
/// |
| 366 | 366 |
void lift(Item i, int new_level) |
| 367 | 367 |
{
|
| 368 | 368 |
const int lo = _level[i]; |
| 369 | 369 |
const Vit w = _where[i]; |
| 370 | 370 |
|
| 371 | 371 |
copy(_last_active[lo],w); |
| 372 | 372 |
copy(--_first[lo+1],_last_active[lo]--); |
| 373 | 373 |
for(int l=lo+1;l<new_level;l++) |
| 374 | 374 |
{
|
| 375 | 375 |
copy(_last_active[l],_first[l]); |
| 376 | 376 |
copy(--_first[l+1],_last_active[l]--); |
| 377 | 377 |
} |
| 378 | 378 |
copy(i,_first[new_level]); |
| 379 | 379 |
_level[i]=new_level; |
| 380 | 380 |
if(new_level>_highest_active) _highest_active=new_level; |
| 381 | 381 |
} |
| 382 | 382 |
|
| 383 | 383 |
///Move an inactive item to the top but one level (in a dirty way). |
| 384 | 384 |
|
| 385 | 385 |
///This function moves an inactive item to the top but one level. |
| 386 | 386 |
///It makes the underlying datastructure corrupt, so use is only if |
| 387 | 387 |
///you really know what it is for. |
| 388 | 388 |
///\pre The item is on the top level. |
| 389 | 389 |
void dirtyTopButOne(Item i) {
|
| 390 | 390 |
_level[i] = _max_level - 1; |
| 391 | 391 |
} |
| 392 | 392 |
|
| 393 | 393 |
///Lift all items on and above a level to the top (and deactivate them). |
| 394 | 394 |
|
| 395 | 395 |
///This function lifts all items on and above level \c l to \c |
| 396 | 396 |
///maxLevel(), and also deactivates them. |
| 397 | 397 |
void liftToTop(int l) |
| 398 | 398 |
{
|
| 399 | 399 |
const Vit f=_first[l]; |
| 400 | 400 |
const Vit tl=_first[_max_level]; |
| 401 | 401 |
for(Vit i=f;i!=tl;++i) |
| 402 | 402 |
_level[*i]=_max_level; |
| 403 | 403 |
for(int i=l;i<=_max_level;i++) |
| 404 | 404 |
{
|
| 405 | 405 |
_first[i]=f; |
| 406 | 406 |
_last_active[i]=f-1; |
| 407 | 407 |
} |
| 408 | 408 |
for(_highest_active=l-1; |
| 409 | 409 |
_highest_active>=0 && |
| 410 | 410 |
_last_active[_highest_active]<_first[_highest_active]; |
| 411 | 411 |
_highest_active--) ; |
| 412 | 412 |
} |
| 413 | 413 |
|
| 414 | 414 |
private: |
| 415 | 415 |
int _init_lev; |
| 416 | 416 |
Vit _init_num; |
| 417 | 417 |
|
| 418 | 418 |
public: |
| 419 | 419 |
|
| 420 | 420 |
///\name Initialization |
| 421 | 421 |
///Using this function you can initialize the levels of the item. |
| 422 | 422 |
///\n |
| 423 | 423 |
///This initializatios is started with calling \c initStart(). |
| 424 | 424 |
///Then the |
| 425 | 425 |
///items should be listed levels by levels statring with the lowest one |
| 426 | 426 |
///(with level 0). This is done by using \c initAddItem() |
| 427 | 427 |
///and \c initNewLevel(). Finally \c initFinish() must be called. |
| 428 | 428 |
///The items not listed will be put on the highest level. |
| 429 | 429 |
///@{
|
| 430 | 430 |
|
| 431 | 431 |
///Start the initialization process. |
| 432 | 432 |
|
| 433 | 433 |
void initStart() |
| 434 | 434 |
{
|
| 435 | 435 |
_init_lev=0; |
| 436 |
_init_num=_items.begin(); |
|
| 437 |
_first[0]=_items.begin(); |
|
| 438 |
_last_active[0]=_items.begin()-1; |
|
| 439 |
Vit n=_items.begin(); |
|
| 436 |
_init_num=&_items[0]; |
|
| 437 |
_first[0]=&_items[0]; |
|
| 438 |
_last_active[0]=&_items[0]-1; |
|
| 439 |
Vit n=&_items[0]; |
|
| 440 | 440 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
| 441 | 441 |
{
|
| 442 | 442 |
*n=i; |
| 443 | 443 |
_where[i]=n; |
| 444 | 444 |
_level[i]=_max_level; |
| 445 | 445 |
++n; |
| 446 | 446 |
} |
| 447 | 447 |
} |
| 448 | 448 |
|
| 449 | 449 |
///Add an item to the current level. |
| 450 | 450 |
|
| 451 | 451 |
void initAddItem(Item i) |
| 452 | 452 |
{
|
| 453 | 453 |
swap(_where[i],_init_num); |
| 454 | 454 |
_level[i]=_init_lev; |
| 455 | 455 |
++_init_num; |
| 456 | 456 |
} |
| 457 | 457 |
|
| 458 | 458 |
///Start a new level. |
| 459 | 459 |
|
| 460 | 460 |
///Start a new level. |
| 461 | 461 |
///It shouldn't be used before the items on level 0 are listed. |
| 462 | 462 |
void initNewLevel() |
| 463 | 463 |
{
|
| 464 | 464 |
_init_lev++; |
| 465 | 465 |
_first[_init_lev]=_init_num; |
| 466 | 466 |
_last_active[_init_lev]=_init_num-1; |
| 467 | 467 |
} |
| 468 | 468 |
|
| 469 | 469 |
///Finalize the initialization process. |
| 470 | 470 |
|
| 471 | 471 |
void initFinish() |
| 472 | 472 |
{
|
| 473 | 473 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
| 474 | 474 |
{
|
| 475 | 475 |
_first[_init_lev]=_init_num; |
| 476 | 476 |
_last_active[_init_lev]=_init_num-1; |
| 477 | 477 |
} |
| 478 |
_first[_max_level+1]=_items.begin()+_item_num; |
|
| 479 |
_last_active[_max_level+1]=_items.begin()+_item_num-1; |
|
| 478 |
_first[_max_level+1]=&_items[0]+_item_num; |
|
| 479 |
_last_active[_max_level+1]=&_items[0]+_item_num-1; |
|
| 480 | 480 |
_highest_active = -1; |
| 481 | 481 |
} |
| 482 | 482 |
|
| 483 | 483 |
///@} |
| 484 | 484 |
|
| 485 | 485 |
}; |
| 486 | 486 |
|
| 487 | 487 |
///Class for handling "labels" in push-relabel type algorithms. |
| 488 | 488 |
|
| 489 | 489 |
///A class for handling "labels" in push-relabel type algorithms. |
| 490 | 490 |
/// |
| 491 | 491 |
///\ingroup auxdat |
| 492 | 492 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
| 493 | 493 |
///to the edges or nodes of a graph, manipulate and query them through |
| 494 | 494 |
///operations typically arising in "push-relabel" type algorithms. |
| 495 | 495 |
/// |
| 496 | 496 |
///Each item is either \em active or not, and you can also choose a |
| 497 | 497 |
///highest level active item. |
| 498 | 498 |
/// |
| 499 | 499 |
///\sa Elevator |
| 500 | 500 |
/// |
| 501 | 501 |
///\param Graph the underlying graph type |
| 502 | 502 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
| 503 | 503 |
///Graph::Edge, Graph::UEdge) |
| 504 | 504 |
template <class Graph, class Item> |
| 505 | 505 |
class LinkedElevator {
|
| 506 | 506 |
public: |
| 507 | 507 |
|
| 508 | 508 |
typedef Item Key; |
| 509 | 509 |
typedef int Value; |
| 510 | 510 |
|
| 511 | 511 |
private: |
| 512 | 512 |
|
| 513 | 513 |
typedef typename ItemSetTraits<Graph,Item>:: |
| 514 | 514 |
template Map<Item>::Type ItemMap; |
| 515 | 515 |
typedef typename ItemSetTraits<Graph,Item>:: |
| 516 | 516 |
template Map<int>::Type IntMap; |
| 517 | 517 |
typedef typename ItemSetTraits<Graph,Item>:: |
| 518 | 518 |
template Map<bool>::Type BoolMap; |
| 519 | 519 |
|
| 520 | 520 |
const Graph &_graph; |
| 521 | 521 |
int _max_level; |
| 522 | 522 |
int _item_num; |
| 523 | 523 |
std::vector<Item> _first, _last; |
| 524 | 524 |
ItemMap _prev, _next; |
| 525 | 525 |
int _highest_active; |
| 526 | 526 |
IntMap _level; |
| 527 | 527 |
BoolMap _active; |
| 528 | 528 |
|
| 529 | 529 |
public: |
| 530 | 530 |
///Constructor with given maximum level. |
| 531 | 531 |
|
| 532 | 532 |
///Constructor with given maximum level. |
| 533 | 533 |
/// |
| 534 | 534 |
///\param g The underlying graph |
| 535 | 535 |
///\param max_level Set the range of the possible labels to |
| 536 | 536 |
///[0...\c max_level] |
| 537 | 537 |
LinkedElevator(const Graph& graph, int max_level) |
| 538 | 538 |
: _graph(graph), _max_level(max_level), _item_num(_max_level), |
| 539 | 539 |
_first(_max_level + 1), _last(_max_level + 1), |
| 540 | 540 |
_prev(graph), _next(graph), |
| 541 | 541 |
_highest_active(-1), _level(graph), _active(graph) {}
|
| 542 | 542 |
|
| 543 | 543 |
///Constructor. |
| 544 | 544 |
|
| 545 | 545 |
///Constructor. |
| 546 | 546 |
/// |
| 547 | 547 |
///\param g The underlying graph |
| 548 | 548 |
///The range of the possible labels is [0...\c max_level], |
| 549 | 549 |
///where \c max_level is equal to the number of labeled items in the graph. |
| 550 | 550 |
LinkedElevator(const Graph& graph) |
| 551 | 551 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
| 552 | 552 |
_item_num(_max_level), |
| 553 | 553 |
_first(_max_level + 1), _last(_max_level + 1), |
| 554 | 554 |
_prev(graph, INVALID), _next(graph, INVALID), |
| 555 | 555 |
_highest_active(-1), _level(graph), _active(graph) {}
|
| 556 | 556 |
|
| 557 | 557 |
|
| 558 | 558 |
///Activate item \c i. |
| 559 | 559 |
|
| 560 | 560 |
///Activate item \c i. |
| 561 | 561 |
///\pre Item \c i shouldn't be active before. |
| 562 | 562 |
void activate(Item i) {
|
| 563 | 563 |
_active.set(i, true); |
| 564 | 564 |
|
| 565 | 565 |
int level = _level[i]; |
| 566 | 566 |
if (level > _highest_active) {
|
| 567 | 567 |
_highest_active = level; |
| 568 | 568 |
} |
| 569 | 569 |
|
| 570 | 570 |
if (_prev[i] == INVALID || _active[_prev[i]]) return; |
| 571 | 571 |
//unlace |
| 572 | 572 |
_next.set(_prev[i], _next[i]); |
| 573 | 573 |
if (_next[i] != INVALID) {
|
| 574 | 574 |
_prev.set(_next[i], _prev[i]); |
| 575 | 575 |
} else {
|
| 576 | 576 |
_last[level] = _prev[i]; |
| 577 | 577 |
} |
| 578 | 578 |
//lace |
| 579 | 579 |
_next.set(i, _first[level]); |
| 580 | 580 |
_prev.set(_first[level], i); |
| 581 | 581 |
_prev.set(i, INVALID); |
| 582 | 582 |
_first[level] = i; |
| 583 | 583 |
|
| 584 | 584 |
} |
| 585 | 585 |
|
| 586 | 586 |
///Deactivate item \c i. |
| 587 | 587 |
|
| 588 | 588 |
///Deactivate item \c i. |
| 589 | 589 |
///\pre Item \c i must be active before. |
| 590 | 590 |
void deactivate(Item i) {
|
| 591 | 591 |
_active.set(i, false); |
| 592 | 592 |
int level = _level[i]; |
| 593 | 593 |
|
| 594 | 594 |
if (_next[i] == INVALID || !_active[_next[i]]) |
| 595 | 595 |
goto find_highest_level; |
| 596 | 596 |
|
| 597 | 597 |
//unlace |
| 598 | 598 |
_prev.set(_next[i], _prev[i]); |
| 599 | 599 |
if (_prev[i] != INVALID) {
|
| 600 | 600 |
_next.set(_prev[i], _next[i]); |
| 601 | 601 |
} else {
|
| 602 | 602 |
_first[_level[i]] = _next[i]; |
| 603 | 603 |
} |
| 604 | 604 |
//lace |
| 605 | 605 |
_prev.set(i, _last[level]); |
| 606 | 606 |
_next.set(_last[level], i); |
| 607 | 607 |
_next.set(i, INVALID); |
| 608 | 608 |
_last[level] = i; |
| 609 | 609 |
|
| 610 | 610 |
find_highest_level: |
| 611 | 611 |
if (level == _highest_active) {
|
| 612 | 612 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| 613 | 613 |
--_highest_active; |
| 614 | 614 |
} |
| 615 | 615 |
} |
| 616 | 616 |
|
| 617 | 617 |
///Query whether item \c i is active |
| 618 | 618 |
bool active(Item i) const { return _active[i]; }
|
| 619 | 619 |
|
| 620 | 620 |
///Return the level of item \c i. |
| 621 | 621 |
int operator[](Item i) const { return _level[i]; }
|
| 622 | 622 |
|
| 623 | 623 |
///Return the number of items on level \c l. |
| 624 | 624 |
int onLevel(int l) const {
|
| 625 | 625 |
int num = 0; |
| 626 | 626 |
Item n = _first[l]; |
| 627 | 627 |
while (n != INVALID) {
|
| 628 | 628 |
++num; |
| 629 | 629 |
n = _next[n]; |
| 630 | 630 |
} |
| 631 | 631 |
return num; |
| 632 | 632 |
} |
| 633 | 633 |
|
| 634 | 634 |
///Return true if the level is empty. |
| 635 | 635 |
bool emptyLevel(int l) const {
|
| 636 | 636 |
return _first[l] == INVALID; |
| 637 | 637 |
} |
| 638 | 638 |
|
| 639 | 639 |
///Return the number of items above level \c l. |
| 640 | 640 |
int aboveLevel(int l) const {
|
| 641 | 641 |
int num = 0; |
| 642 | 642 |
for (int level = l + 1; level < _max_level; ++level) |
| 643 | 643 |
num += onLevel(level); |
| 644 | 644 |
return num; |
| 645 | 645 |
} |
| 646 | 646 |
|
| 647 | 647 |
///Return the number of active items on level \c l. |
| 648 | 648 |
int activesOnLevel(int l) const {
|
| 649 | 649 |
int num = 0; |
| 650 | 650 |
Item n = _first[l]; |
| 651 | 651 |
while (n != INVALID && _active[n]) {
|
| 652 | 652 |
++num; |
| 653 | 653 |
n = _next[n]; |
| 654 | 654 |
} |
| 655 | 655 |
return num; |
| 656 | 656 |
} |
| 657 | 657 |
|
| 658 | 658 |
///Return true if there is not active item on level \c l. |
| 659 | 659 |
bool activeFree(int l) const {
|
| 660 | 660 |
return _first[l] == INVALID || !_active[_first[l]]; |
| 661 | 661 |
} |
| 662 | 662 |
|
| 663 | 663 |
///Return the maximum allowed level. |
| 664 | 664 |
int maxLevel() const {
|
| 665 | 665 |
return _max_level; |
| 666 | 666 |
} |
| 667 | 667 |
|
| 668 | 668 |
///\name Highest Active Item |
| 669 | 669 |
///Functions for working with the highest level |
| 670 | 670 |
///active item. |
| 671 | 671 |
|
| 672 | 672 |
///@{
|
| 673 | 673 |
|
| 674 | 674 |
///Return a highest level active item. |
| 675 | 675 |
|
| 676 | 676 |
///Return a highest level active item. |
| 677 | 677 |
/// |
| 678 | 678 |
///\return the highest level active item or INVALID if there is no |
| 679 | 679 |
///active item. |
| 680 | 680 |
Item highestActive() const {
|
| 681 | 681 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
| 682 | 682 |
} |
| 683 | 683 |
|
| 684 | 684 |
///Return a highest active level. |
| 685 | 685 |
|
| 686 | 686 |
///Return a highest active level. |
| 687 | 687 |
/// |
| 688 | 688 |
///\return the level of the highest active item or -1 if there is |
| 689 | 689 |
///no active item. |
| 690 | 690 |
int highestActiveLevel() const {
|
| 691 | 691 |
return _highest_active; |
| 692 | 692 |
} |
| 693 | 693 |
|
| 694 | 694 |
///Lift the highest active item by one. |
| 695 | 695 |
|
| 696 | 696 |
///Lift the item returned by highestActive() by one. |
| 697 | 697 |
/// |
| 698 | 698 |
void liftHighestActive() {
|
| 699 | 699 |
Item i = _first[_highest_active]; |
| 700 | 700 |
if (_next[i] != INVALID) {
|
| 701 | 701 |
_prev.set(_next[i], INVALID); |
| 702 | 702 |
_first[_highest_active] = _next[i]; |
| 703 | 703 |
} else {
|
| 704 | 704 |
_first[_highest_active] = INVALID; |
| 705 | 705 |
_last[_highest_active] = INVALID; |
| 706 | 706 |
} |
| 707 | 707 |
_level.set(i, ++_highest_active); |
| 708 | 708 |
if (_first[_highest_active] == INVALID) {
|
| 709 | 709 |
_first[_highest_active] = i; |
| 710 | 710 |
_last[_highest_active] = i; |
| 711 | 711 |
_prev.set(i, INVALID); |
| 712 | 712 |
_next.set(i, INVALID); |
| 713 | 713 |
} else {
|
| 714 | 714 |
_prev.set(_first[_highest_active], i); |
| 715 | 715 |
_next.set(i, _first[_highest_active]); |
| 716 | 716 |
_first[_highest_active] = i; |
| 717 | 717 |
} |
| 718 | 718 |
} |
| 719 | 719 |
|
| 720 | 720 |
///Lift the highest active item. |
| 721 | 721 |
|
| 722 | 722 |
///Lift the item returned by highestActive() to level \c new_level. |
| 723 | 723 |
/// |
| 724 | 724 |
///\warning \c new_level must be strictly higher |
| 725 | 725 |
///than the current level. |
| 726 | 726 |
/// |
| 727 | 727 |
void liftHighestActive(int new_level) {
|
| 728 | 728 |
Item i = _first[_highest_active]; |
| 729 | 729 |
if (_next[i] != INVALID) {
|
| 730 | 730 |
_prev.set(_next[i], INVALID); |
| 731 | 731 |
_first[_highest_active] = _next[i]; |
| 732 | 732 |
} else {
|
| 733 | 733 |
_first[_highest_active] = INVALID; |
| 734 | 734 |
_last[_highest_active] = INVALID; |
| 735 | 735 |
} |
| 736 | 736 |
_level.set(i, _highest_active = new_level); |
| 737 | 737 |
if (_first[_highest_active] == INVALID) {
|
| 738 | 738 |
_first[_highest_active] = _last[_highest_active] = i; |
| 739 | 739 |
_prev.set(i, INVALID); |
| 740 | 740 |
_next.set(i, INVALID); |
| 741 | 741 |
} else {
|
| 742 | 742 |
_prev.set(_first[_highest_active], i); |
| 743 | 743 |
_next.set(i, _first[_highest_active]); |
| 744 | 744 |
_first[_highest_active] = i; |
| 745 | 745 |
} |
| 746 | 746 |
} |
| 747 | 747 |
|
| 748 | 748 |
///Lift the highest active to top. |
| 749 | 749 |
|
| 750 | 750 |
///Lift the item returned by highestActive() to the top level and |
| 751 | 751 |
///deactivates the item. |
| 752 | 752 |
/// |
| 753 | 753 |
void liftHighestActiveToTop() {
|
| 754 | 754 |
Item i = _first[_highest_active]; |
| 755 | 755 |
_level.set(i, _max_level); |
| 756 | 756 |
if (_next[i] != INVALID) {
|
| 757 | 757 |
_prev.set(_next[i], INVALID); |
| 758 | 758 |
_first[_highest_active] = _next[i]; |
| 759 | 759 |
} else {
|
| 760 | 760 |
_first[_highest_active] = INVALID; |
| 761 | 761 |
_last[_highest_active] = INVALID; |
| 762 | 762 |
} |
| 763 | 763 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| 764 | 764 |
--_highest_active; |
| 765 | 765 |
} |
| 766 | 766 |
|
| 767 | 767 |
///@} |
| 768 | 768 |
|
| 769 | 769 |
///\name Active Item on Certain Level |
| 770 | 770 |
///Functions for working with the active items. |
| 771 | 771 |
|
| 772 | 772 |
///@{
|
| 773 | 773 |
|
| 774 | 774 |
///Returns an active item on level \c l. |
| 775 | 775 |
|
| 776 | 776 |
///Returns an active item on level \c l. |
| 777 | 777 |
/// |
| 778 | 778 |
///Returns an active item on level \c l or \ref INVALID if there is no such |
| 779 | 779 |
///an item. (\c l must be from the range [0...\c max_level]. |
| 780 | 780 |
Item activeOn(int l) const |
| 781 | 781 |
{
|
| 782 | 782 |
return _active[_first[l]] ? _first[l] : INVALID; |
| 783 | 783 |
} |
| 784 | 784 |
|
| 785 | 785 |
///Lifts the active item returned by \c activeOn() member function. |
| 786 | 786 |
|
| 787 | 787 |
///Lifts the active item returned by \c activeOn() member function |
| 788 | 788 |
///by one. |
| 789 | 789 |
Item liftActiveOn(int l) |
| 790 | 790 |
{
|
| 791 | 791 |
Item i = _first[l]; |
| 792 | 792 |
if (_next[i] != INVALID) {
|
| 793 | 793 |
_prev.set(_next[i], INVALID); |
| 794 | 794 |
_first[l] = _next[i]; |
| 795 | 795 |
} else {
|
| 796 | 796 |
_first[l] = INVALID; |
| 797 | 797 |
_last[l] = INVALID; |
| 798 | 798 |
} |
| 799 | 799 |
_level.set(i, ++l); |
| 800 | 800 |
if (_first[l] == INVALID) {
|
| 801 | 801 |
_first[l] = _last[l] = i; |
| 802 | 802 |
_prev.set(i, INVALID); |
| 803 | 803 |
_next.set(i, INVALID); |
| 804 | 804 |
} else {
|
| 805 | 805 |
_prev.set(_first[l], i); |
| 806 | 806 |
_next.set(i, _first[l]); |
| 807 | 807 |
_first[l] = i; |
| 808 | 808 |
} |
| 809 | 809 |
if (_highest_active < l) {
|
| 810 | 810 |
_highest_active = l; |
| 811 | 811 |
} |
| 812 | 812 |
} |
| 813 | 813 |
|
| 814 | 814 |
/// \brief Lifts the active item returned by \c activeOn() member function. |
| 815 | 815 |
/// |
| 816 | 816 |
/// Lifts the active item returned by \c activeOn() member function |
| 817 | 817 |
/// to the given level. |
| 818 | 818 |
void liftActiveOn(int l, int new_level) |
| 819 | 819 |
{
|
| 820 | 820 |
Item i = _first[l]; |
| 821 | 821 |
if (_next[i] != INVALID) {
|
| 822 | 822 |
_prev.set(_next[i], INVALID); |
| 823 | 823 |
_first[l] = _next[i]; |
| 824 | 824 |
} else {
|
| 825 | 825 |
_first[l] = INVALID; |
| 826 | 826 |
_last[l] = INVALID; |
| 827 | 827 |
} |
| 828 | 828 |
_level.set(i, l = new_level); |
| 829 | 829 |
if (_first[l] == INVALID) {
|
| 830 | 830 |
_first[l] = _last[l] = i; |
| 831 | 831 |
_prev.set(i, INVALID); |
| 832 | 832 |
_next.set(i, INVALID); |
| 833 | 833 |
} else {
|
| 834 | 834 |
_prev.set(_first[l], i); |
| 835 | 835 |
_next.set(i, _first[l]); |
| 836 | 836 |
_first[l] = i; |
| 837 | 837 |
} |
| 838 | 838 |
if (_highest_active < l) {
|
| 839 | 839 |
_highest_active = l; |
| 840 | 840 |
} |
| 841 | 841 |
} |
| 842 | 842 |
|
| 843 | 843 |
///Lifts the active item returned by \c activeOn() member function. |
| 844 | 844 |
|
| 845 | 845 |
///Lifts the active item returned by \c activeOn() member function |
| 846 | 846 |
///to the top level. |
| 847 | 847 |
void liftActiveToTop(int l) |
| 848 | 848 |
{
|
| 849 | 849 |
Item i = _first[l]; |
| 850 | 850 |
if (_next[i] != INVALID) {
|
| 851 | 851 |
_prev.set(_next[i], INVALID); |
| 852 | 852 |
_first[l] = _next[i]; |
| 853 | 853 |
} else {
|
| 854 | 854 |
_first[l] = INVALID; |
| 855 | 855 |
_last[l] = INVALID; |
| 856 | 856 |
} |
| 857 | 857 |
_level.set(i, _max_level); |
| 858 | 858 |
if (l == _highest_active) {
|
| 859 | 859 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| 860 | 860 |
--_highest_active; |
| 861 | 861 |
} |
| 862 | 862 |
} |
| 863 | 863 |
|
0 comments (0 inline)