gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Imporvements for the matching algorithms (#264)
0 3 0
default
3 files changed with 393 insertions and 188 deletions:
↑ Collapse diff ↑
Show white space 6 line context
... ...
@@ -437,5 +437,6 @@
437 437

	
438
This group contains algorithm objects and functions to calculate
438
This group contains the algorithms for calculating
439 439
matchings in graphs and bipartite graphs. The general matching problem is
440
finding a subset of the arcs which does not shares common endpoints.
440
finding a subset of the edges for which each node has at most one incident
441
edge.
441 442

	
Ignore white space 6 line context
... ...
@@ -39,21 +39,22 @@
39 39
  ///
40
  /// \brief Edmonds' alternating forest maximum matching algorithm.
40
  /// \brief Maximum cardinality matching in general graphs
41 41
  ///
42
  /// This class implements Edmonds' alternating forest matching
43
  /// algorithm. The algorithm can be started from an arbitrary initial
44
  /// matching (the default is the empty one)
42
  /// This class implements Edmonds' alternating forest matching algorithm
43
  /// for finding a maximum cardinality matching in a general graph. 
44
  /// It can be started from an arbitrary initial matching 
45
  /// (the default is the empty one).
45 46
  ///
46 47
  /// The dual solution of the problem is a map of the nodes to
47
  /// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c
48
  /// MATCHED/C showing the Gallai-Edmonds decomposition of the
49
  /// graph. The nodes in \c EVEN/D induce a graph with
50
  /// factor-critical components, the nodes in \c ODD/A form the
51
  /// barrier, and the nodes in \c MATCHED/C induce a graph having a
52
  /// perfect matching. The number of the factor-critical components
48
  /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
49
  /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
50
  /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
51
  /// with factor-critical components, the nodes in \c ODD/A form the
52
  /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
53
  /// a perfect matching. The number of the factor-critical components
53 54
  /// minus the number of barrier nodes is a lower bound on the
54 55
  /// unmatched nodes, and the matching is optimal if and only if this bound is
55
  /// tight. This decomposition can be attained by calling \c
56
  /// tight. This decomposition can be obtained by calling \c
56 57
  /// decomposition() after running the algorithm.
57 58
  ///
58
  /// \param GR The graph type the algorithm runs on.
59
  /// \tparam GR The graph type the algorithm runs on.
59 60
  template <typename GR>
... ...
@@ -62,2 +63,3 @@
62 63

	
64
    /// The graph type of the algorithm
63 65
    typedef GR Graph;
... ...
@@ -66,11 +68,18 @@
66 68

	
67
    ///\brief Indicates the Gallai-Edmonds decomposition of the graph.
69
    ///\brief Status constants for Gallai-Edmonds decomposition.
68 70
    ///
69
    ///Indicates the Gallai-Edmonds decomposition of the graph. The
70
    ///nodes with Status \c EVEN/D induce a graph with factor-critical
71
    ///components, the nodes in \c ODD/A form the canonical barrier,
72
    ///and the nodes in \c MATCHED/C induce a graph having a perfect
73
    ///matching.
71
    ///These constants are used for indicating the Gallai-Edmonds 
72
    ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
73
    ///induce a subgraph with factor-critical components, the nodes with
74
    ///status \c ODD (or \c A) form the canonical barrier, and the nodes
75
    ///with status \c MATCHED (or \c C) induce a subgraph having a 
76
    ///perfect matching.
74 77
    enum Status {
75
      EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2
78
      EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
79
      D = 1,
80
      MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
81
      C = 0,
82
      ODD = -1,       ///< = -1. (\c A is an alias for \c ODD.)
83
      A = -1,
84
      UNMATCHED = -2  ///< = -2.
76 85
    };
... ...
@@ -340,4 +349,2 @@
340 349

	
341

	
342

	
343 350
    void extendOnArc(const Arc& a) {
... ...
@@ -410,11 +417,9 @@
410 417

	
411
    /// \name Execution control
418
    /// \name Execution Control
412 419
    /// The simplest way to execute the algorithm is to use the
413
    /// \c run() member function.
414
    /// \n
415

	
416
    /// If you need better control on the execution, you must call
417
    /// \ref init(), \ref greedyInit() or \ref matchingInit()
418
    /// functions first, then you can start the algorithm with the \ref
419
    /// startSparse() or startDense() functions.
420
    /// \c run() member function.\n
421
    /// If you need better control on the execution, you have to call
422
    /// one of the functions \ref init(), \ref greedyInit() or
423
    /// \ref matchingInit() first, then you can start the algorithm with
424
    /// \ref startSparse() or \ref startDense().
420 425

	
... ...
@@ -422,6 +427,5 @@
422 427

	
423
    /// \brief Sets the actual matching to the empty matching.
428
    /// \brief Set the initial matching to the empty matching.
424 429
    ///
425
    /// Sets the actual matching to the empty matching.
426
    ///
430
    /// This function sets the initial matching to the empty matching.
427 431
    void init() {
... ...
@@ -434,5 +438,5 @@
434 438

	
435
    ///\brief Finds an initial matching in a greedy way
439
    /// \brief Find an initial matching in a greedy way.
436 440
    ///
437
    ///It finds an initial matching in a greedy way.
441
    /// This function finds an initial matching in a greedy way.
438 442
    void greedyInit() {
... ...
@@ -460,7 +464,7 @@
460 464

	
461
    /// \brief Initialize the matching from a map containing.
465
    /// \brief Initialize the matching from a map.
462 466
    ///
463
    /// Initialize the matching from a \c bool valued \c Edge map. This
464
    /// map must have the property that there are no two incident edges
465
    /// with true value, ie. it contains a matching.
467
    /// This function initializes the matching from a \c bool valued edge
468
    /// map. This map should have the property that there are no two incident
469
    /// edges with \c true value, i.e. it really contains a matching.
466 470
    /// \return \c true if the map contains a matching.
... ...
@@ -491,5 +495,8 @@
491 495

	
492
    /// \brief Starts Edmonds' algorithm
496
    /// \brief Start Edmonds' algorithm
493 497
    ///
494
    /// If runs the original Edmonds' algorithm.
498
    /// This function runs the original Edmonds' algorithm.
499
    ///
500
    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
501
    /// called before using this function.
495 502
    void startSparse() {
... ...
@@ -505,6 +512,10 @@
505 512

	
506
    /// \brief Starts Edmonds' algorithm.
513
    /// \brief Start Edmonds' algorithm with a heuristic improvement 
514
    /// for dense graphs
507 515
    ///
508
    /// It runs Edmonds' algorithm with a heuristic of postponing
516
    /// This function runs Edmonds' algorithm with a heuristic of postponing
509 517
    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
518
    ///
519
    /// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be
520
    /// called before using this function.
510 521
    void startDense() {
... ...
@@ -521,7 +532,7 @@
521 532

	
522
    /// \brief Runs Edmonds' algorithm
533
    /// \brief Run Edmonds' algorithm
523 534
    ///
524
    /// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>)
525
    /// or Edmonds' algorithm with a heuristic of
526
    /// postponing shrinks for dense graphs.
535
    /// This function runs Edmonds' algorithm. An additional heuristic of 
536
    /// postponing shrinks is used for relatively dense graphs 
537
    /// (for which <tt>m>=2*n</tt> holds).
527 538
    void run() {
... ...
@@ -538,4 +549,4 @@
538 549

	
539
    /// \name Primal solution
540
    /// Functions to get the primal solution, ie. the matching.
550
    /// \name Primal Solution
551
    /// Functions to get the primal solution, i.e. the maximum matching.
541 552

	
... ...
@@ -543,6 +554,6 @@
543 554

	
544
    ///\brief Returns the size of the current matching.
555
    /// \brief Return the size (cardinality) of the matching.
545 556
    ///
546
    ///Returns the size of the current matching. After \ref
547
    ///run() it returns the size of the maximum matching in the graph.
557
    /// This function returns the size (cardinality) of the current matching. 
558
    /// After run() it returns the size of the maximum matching in the graph.
548 559
    int matchingSize() const {
... ...
@@ -557,5 +568,6 @@
557 568

	
558
    /// \brief Returns true when the edge is in the matching.
569
    /// \brief Return \c true if the given edge is in the matching.
559 570
    ///
560
    /// Returns true when the edge is in the matching.
571
    /// This function returns \c true if the given edge is in the current 
572
    /// matching.
561 573
    bool matching(const Edge& edge) const {
... ...
@@ -564,6 +576,7 @@
564 576

	
565
    /// \brief Returns the matching edge incident to the given node.
577
    /// \brief Return the matching arc (or edge) incident to the given node.
566 578
    ///
567
    /// Returns the matching edge of a \c node in the actual matching or
568
    /// INVALID if the \c node is not covered by the actual matching.
579
    /// This function returns the matching arc (or edge) incident to the
580
    /// given node in the current matching or \c INVALID if the node is 
581
    /// not covered by the matching.
569 582
    Arc matching(const Node& n) const {
... ...
@@ -572,6 +585,6 @@
572 585

	
573
    ///\brief Returns the mate of a node in the actual matching.
586
    /// \brief Return the mate of the given node.
574 587
    ///
575
    ///Returns the mate of a \c node in the actual matching or
576
    ///INVALID if the \c node is not covered by the actual matching.
588
    /// This function returns the mate of the given node in the current 
589
    /// matching or \c INVALID if the node is not covered by the matching.
577 590
    Node mate(const Node& n) const {
... ...
@@ -583,4 +596,5 @@
583 596

	
584
    /// \name Dual solution
585
    /// Functions to get the dual solution, ie. the decomposition.
597
    /// \name Dual Solution
598
    /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
599
    /// decomposition.
586 600

	
... ...
@@ -588,7 +602,7 @@
588 602

	
589
    /// \brief Returns the class of the node in the Edmonds-Gallai
603
    /// \brief Return the status of the given node in the Edmonds-Gallai
590 604
    /// decomposition.
591 605
    ///
592
    /// Returns the class of the node in the Edmonds-Gallai
593
    /// decomposition.
606
    /// This function returns the \ref Status "status" of the given node
607
    /// in the Edmonds-Gallai decomposition.
594 608
    Status decomposition(const Node& n) const {
... ...
@@ -597,5 +611,5 @@
597 611

	
598
    /// \brief Returns true when the node is in the barrier.
612
    /// \brief Return \c true if the given node is in the barrier.
599 613
    ///
600
    /// Returns true when the node is in the barrier.
614
    /// This function returns \c true if the given node is in the barrier.
601 615
    bool barrier(const Node& n) const {
... ...
@@ -617,6 +631,6 @@
617 631
  ///
618
  /// The maximum weighted matching problem is to find undirected
619
  /// edges in the graph with maximum overall weight and no two of
620
  /// them shares their ends. The problem can be formulated with the
621
  /// following linear program.
632
  /// The maximum weighted matching problem is to find a subset of the 
633
  /// edges in an undirected graph with maximum overall weight for which 
634
  /// each node has at most one incident edge.
635
  /// It can be formulated with the following linear program.
622 636
  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
... ...
@@ -634,2 +648,3 @@
634 648
  /// the result of the algorithm. The dual linear problem is the
649
  /// following.
635 650
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
... ...
@@ -641,12 +656,19 @@
641 656
  ///
642
  /// The algorithm can be executed with \c run() or the \c init() and
643
  /// then the \c start() member functions. After it the matching can
644
  /// be asked with \c matching() or mate() functions. The dual
645
  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
646
  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
647
  /// "BlossomIt" nested class, which is able to iterate on the nodes
648
  /// of a blossom. If the value type is integral then the dual
649
  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
657
  /// The algorithm can be executed with the run() function. 
658
  /// After it the matching (the primal solution) and the dual solution
659
  /// can be obtained using the query functions and the 
660
  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
661
  /// which is able to iterate on the nodes of a blossom. 
662
  /// If the value type is integer, then the dual solution is multiplied
663
  /// by \ref MaxWeightedMatching::dualScale "4".
664
  ///
665
  /// \tparam GR The graph type the algorithm runs on.
666
  /// \tparam WM The type edge weight map. The default type is 
667
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
668
#ifdef DOXYGEN
669
  template <typename GR, typename WM>
670
#else
650 671
  template <typename GR,
651 672
            typename WM = typename GR::template EdgeMap<int> >
673
#endif
652 674
  class MaxWeightedMatching {
... ...
@@ -654,12 +676,15 @@
654 676

	
655
    ///\e
677
    /// The graph type of the algorithm
656 678
    typedef GR Graph;
657
    ///\e
679
    /// The type of the edge weight map
658 680
    typedef WM WeightMap;
659
    ///\e
681
    /// The value type of the edge weights
660 682
    typedef typename WeightMap::Value Value;
661 683

	
684
    typedef typename Graph::template NodeMap<typename Graph::Arc>
685
    MatchingMap;
686

	
662 687
    /// \brief Scaling factor for dual solution
663 688
    ///
664
    /// Scaling factor for dual solution, it is equal to 4 or 1
689
    /// Scaling factor for dual solution. It is equal to 4 or 1
665 690
    /// according to the value type.
... ...
@@ -668,5 +693,2 @@
668 693

	
669
    typedef typename Graph::template NodeMap<typename Graph::Arc>
670
    MatchingMap;
671

	
672 694
  private:
... ...
@@ -1633,5 +1655,5 @@
1633 1655

	
1634
    /// \name Execution control
1656
    /// \name Execution Control
1635 1657
    /// The simplest way to execute the algorithm is to use the
1636
    /// \c run() member function.
1658
    /// \ref run() member function.
1637 1659

	
... ...
@@ -1641,3 +1663,3 @@
1641 1663
    ///
1642
    /// Initialize the algorithm
1664
    /// This function initializes the algorithm.
1643 1665
    void init() {
... ...
@@ -1693,5 +1715,7 @@
1693 1715

	
1694
    /// \brief Starts the algorithm
1716
    /// \brief Start the algorithm
1695 1717
    ///
1696
    /// Starts the algorithm
1718
    /// This function starts the algorithm.
1719
    ///
1720
    /// \pre \ref init() must be called before using this function.
1697 1721
    void start() {
... ...
@@ -1778,5 +1802,5 @@
1778 1802

	
1779
    /// \brief Runs %MaxWeightedMatching algorithm.
1803
    /// \brief Run the algorithm.
1780 1804
    ///
1781
    /// This method runs the %MaxWeightedMatching algorithm.
1805
    /// This method runs the \c %MaxWeightedMatching algorithm.
1782 1806
    ///
... ...
@@ -1794,4 +1818,7 @@
1794 1818

	
1795
    /// \name Primal solution
1796
    /// Functions to get the primal solution, ie. the matching.
1819
    /// \name Primal Solution
1820
    /// Functions to get the primal solution, i.e. the maximum weighted 
1821
    /// matching.\n
1822
    /// Either \ref run() or \ref start() function should be called before
1823
    /// using them.
1797 1824

	
... ...
@@ -1799,5 +1826,7 @@
1799 1826

	
1800
    /// \brief Returns the weight of the matching.
1827
    /// \brief Return the weight of the matching.
1801 1828
    ///
1802
    /// Returns the weight of the matching.
1829
    /// This function returns the weight of the found matching.
1830
    ///
1831
    /// \pre Either run() or start() must be called before using this function.
1803 1832
    Value matchingValue() const {
... ...
@@ -1812,5 +1841,7 @@
1812 1841

	
1813
    /// \brief Returns the cardinality of the matching.
1842
    /// \brief Return the size (cardinality) of the matching.
1814 1843
    ///
1815
    /// Returns the cardinality of the matching.
1844
    /// This function returns the size (cardinality) of the found matching.
1845
    ///
1846
    /// \pre Either run() or start() must be called before using this function.
1816 1847
    int matchingSize() const {
... ...
@@ -1825,5 +1856,8 @@
1825 1856

	
1826
    /// \brief Returns true when the edge is in the matching.
1857
    /// \brief Return \c true if the given edge is in the matching.
1827 1858
    ///
1828
    /// Returns true when the edge is in the matching.
1859
    /// This function returns \c true if the given edge is in the found 
1860
    /// matching.
1861
    ///
1862
    /// \pre Either run() or start() must be called before using this function.
1829 1863
    bool matching(const Edge& edge) const {
... ...
@@ -1832,6 +1866,9 @@
1832 1866

	
1833
    /// \brief Returns the incident matching arc.
1867
    /// \brief Return the matching arc (or edge) incident to the given node.
1834 1868
    ///
1835
    /// Returns the incident matching arc from given node. If the
1836
    /// node is not matched then it gives back \c INVALID.
1869
    /// This function returns the matching arc (or edge) incident to the
1870
    /// given node in the found matching or \c INVALID if the node is 
1871
    /// not covered by the matching.
1872
    ///
1873
    /// \pre Either run() or start() must be called before using this function.
1837 1874
    Arc matching(const Node& node) const {
... ...
@@ -1840,6 +1877,8 @@
1840 1877

	
1841
    /// \brief Returns the mate of the node.
1878
    /// \brief Return the mate of the given node.
1842 1879
    ///
1843
    /// Returns the adjancent node in a mathcing arc. If the node is
1844
    /// not matched then it gives back \c INVALID.
1880
    /// This function returns the mate of the given node in the found 
1881
    /// matching or \c INVALID if the node is not covered by the matching.
1882
    ///
1883
    /// \pre Either run() or start() must be called before using this function.
1845 1884
    Node mate(const Node& node) const {
... ...
@@ -1851,4 +1890,6 @@
1851 1890

	
1852
    /// \name Dual solution
1853
    /// Functions to get the dual solution.
1891
    /// \name Dual Solution
1892
    /// Functions to get the dual solution.\n
1893
    /// Either \ref run() or \ref start() function should be called before
1894
    /// using them.
1854 1895

	
... ...
@@ -1856,6 +1897,9 @@
1856 1897

	
1857
    /// \brief Returns the value of the dual solution.
1898
    /// \brief Return the value of the dual solution.
1858 1899
    ///
1859
    /// Returns the value of the dual solution. It should be equal to
1860
    /// the primal value scaled by \ref dualScale "dual scale".
1900
    /// This function returns the value of the dual solution. 
1901
    /// It should be equal to the primal value scaled by \ref dualScale 
1902
    /// "dual scale".
1903
    ///
1904
    /// \pre Either run() or start() must be called before using this function.
1861 1905
    Value dualValue() const {
... ...
@@ -1871,5 +1915,7 @@
1871 1915

	
1872
    /// \brief Returns the value of the node.
1916
    /// \brief Return the dual value (potential) of the given node.
1873 1917
    ///
1874
    /// Returns the the value of the node.
1918
    /// This function returns the dual value (potential) of the given node.
1919
    ///
1920
    /// \pre Either run() or start() must be called before using this function.
1875 1921
    Value nodeValue(const Node& n) const {
... ...
@@ -1878,5 +1924,7 @@
1878 1924

	
1879
    /// \brief Returns the number of the blossoms in the basis.
1925
    /// \brief Return the number of the blossoms in the basis.
1880 1926
    ///
1881
    /// Returns the number of the blossoms in the basis.
1927
    /// This function returns the number of the blossoms in the basis.
1928
    ///
1929
    /// \pre Either run() or start() must be called before using this function.
1882 1930
    /// \see BlossomIt
... ...
@@ -1886,6 +1934,8 @@
1886 1934

	
1887

	
1888
    /// \brief Returns the number of the nodes in the blossom.
1935
    /// \brief Return the number of the nodes in the given blossom.
1889 1936
    ///
1890
    /// Returns the number of the nodes in the blossom.
1937
    /// This function returns the number of the nodes in the given blossom.
1938
    ///
1939
    /// \pre Either run() or start() must be called before using this function.
1940
    /// \see BlossomIt
1891 1941
    int blossomSize(int k) const {
... ...
@@ -1894,6 +1944,7 @@
1894 1944

	
1895
    /// \brief Returns the value of the blossom.
1945
    /// \brief Return the dual value (ptential) of the given blossom.
1896 1946
    ///
1897
    /// Returns the the value of the blossom.
1898
    /// \see BlossomIt
1947
    /// This function returns the dual value (ptential) of the given blossom.
1948
    ///
1949
    /// \pre Either run() or start() must be called before using this function.
1899 1950
    Value blossomValue(int k) const {
... ...
@@ -1902,7 +1953,8 @@
1902 1953

	
1903
    /// \brief Iterator for obtaining the nodes of the blossom.
1954
    /// \brief Iterator for obtaining the nodes of a blossom.
1904 1955
    ///
1905
    /// Iterator for obtaining the nodes of the blossom. This class
1906
    /// provides a common lemon style iterator for listing a
1907
    /// subset of the nodes.
1956
    /// This class provides an iterator for obtaining the nodes of the 
1957
    /// given blossom. It lists a subset of the nodes.
1958
    /// Before using this iterator, you must allocate a 
1959
    /// MaxWeightedMatching class and execute it.
1908 1960
    class BlossomIt {
... ...
@@ -1912,3 +1964,7 @@
1912 1964
      ///
1913
      /// Constructor to get the nodes of the variable.
1965
      /// Constructor to get the nodes of the given variable.
1966
      ///
1967
      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
1968
      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
1969
      /// called before initializing this iterator.
1914 1970
      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
... ...
@@ -1920,5 +1976,5 @@
1920 1976

	
1921
      /// \brief Conversion to node.
1977
      /// \brief Conversion to \c Node.
1922 1978
      ///
1923
      /// Conversion to node.
1979
      /// Conversion to \c Node.
1924 1980
      operator Node() const {
... ...
@@ -1964,6 +2020,6 @@
1964 2020
  ///
1965
  /// The maximum weighted matching problem is to find undirected
1966
  /// edges in the graph with maximum overall weight and no two of
1967
  /// them shares their ends and covers all nodes. The problem can be
1968
  /// formulated with the following linear program.
2021
  /// The maximum weighted perfect matching problem is to find a subset of 
2022
  /// the edges in an undirected graph with maximum overall weight for which 
2023
  /// each node has exactly one incident edge.
2024
  /// It can be formulated with the following linear program.
1969 2025
  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
... ...
@@ -1981,2 +2037,3 @@
1981 2037
  /// the result of the algorithm. The dual linear problem is the
2038
  /// following.
1982 2039
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
... ...
@@ -1987,12 +2044,19 @@
1987 2044
  ///
1988
  /// The algorithm can be executed with \c run() or the \c init() and
1989
  /// then the \c start() member functions. After it the matching can
1990
  /// be asked with \c matching() or mate() functions. The dual
1991
  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
1992
  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
1993
  /// "BlossomIt" nested class which is able to iterate on the nodes
1994
  /// of a blossom. If the value type is integral then the dual
1995
  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
2045
  /// The algorithm can be executed with the run() function. 
2046
  /// After it the matching (the primal solution) and the dual solution
2047
  /// can be obtained using the query functions and the 
2048
  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
2049
  /// which is able to iterate on the nodes of a blossom. 
2050
  /// If the value type is integer, then the dual solution is multiplied
2051
  /// by \ref MaxWeightedMatching::dualScale "4".
2052
  ///
2053
  /// \tparam GR The graph type the algorithm runs on.
2054
  /// \tparam WM The type edge weight map. The default type is 
2055
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
2056
#ifdef DOXYGEN
2057
  template <typename GR, typename WM>
2058
#else
1996 2059
  template <typename GR,
1997 2060
            typename WM = typename GR::template EdgeMap<int> >
2061
#endif
1998 2062
  class MaxWeightedPerfectMatching {
... ...
@@ -2000,4 +2064,7 @@
2000 2064

	
2065
    /// The graph type of the algorithm
2001 2066
    typedef GR Graph;
2067
    /// The type of the edge weight map
2002 2068
    typedef WM WeightMap;
2069
    /// The value type of the edge weights
2003 2070
    typedef typename WeightMap::Value Value;
... ...
@@ -2820,5 +2887,5 @@
2820 2887

	
2821
    /// \name Execution control
2888
    /// \name Execution Control
2822 2889
    /// The simplest way to execute the algorithm is to use the
2823
    /// \c run() member function.
2890
    /// \ref run() member function.
2824 2891

	
... ...
@@ -2828,3 +2895,3 @@
2828 2895
    ///
2829
    /// Initialize the algorithm
2896
    /// This function initializes the algorithm.
2830 2897
    void init() {
... ...
@@ -2876,5 +2943,7 @@
2876 2943

	
2877
    /// \brief Starts the algorithm
2944
    /// \brief Start the algorithm
2878 2945
    ///
2879
    /// Starts the algorithm
2946
    /// This function starts the algorithm.
2947
    ///
2948
    /// \pre \ref init() must be called before using this function.
2880 2949
    bool start() {
... ...
@@ -2942,10 +3011,10 @@
2942 3011

	
2943
    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
3012
    /// \brief Run the algorithm.
2944 3013
    ///
2945
    /// This method runs the %MaxWeightedPerfectMatching algorithm.
3014
    /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
2946 3015
    ///
2947
    /// \note mwm.run() is just a shortcut of the following code.
3016
    /// \note mwpm.run() is just a shortcut of the following code.
2948 3017
    /// \code
2949
    ///   mwm.init();
2950
    ///   mwm.start();
3018
    ///   mwpm.init();
3019
    ///   mwpm.start();
2951 3020
    /// \endcode
... ...
@@ -2958,4 +3027,7 @@
2958 3027

	
2959
    /// \name Primal solution
2960
    /// Functions to get the primal solution, ie. the matching.
3028
    /// \name Primal Solution
3029
    /// Functions to get the primal solution, i.e. the maximum weighted 
3030
    /// perfect matching.\n
3031
    /// Either \ref run() or \ref start() function should be called before
3032
    /// using them.
2961 3033

	
... ...
@@ -2963,5 +3035,7 @@
2963 3035

	
2964
    /// \brief Returns the matching value.
3036
    /// \brief Return the weight of the matching.
2965 3037
    ///
2966
    /// Returns the matching value.
3038
    /// This function returns the weight of the found matching.
3039
    ///
3040
    /// \pre Either run() or start() must be called before using this function.
2967 3041
    Value matchingValue() const {
... ...
@@ -2976,5 +3050,8 @@
2976 3050

	
2977
    /// \brief Returns true when the edge is in the matching.
3051
    /// \brief Return \c true if the given edge is in the matching.
2978 3052
    ///
2979
    /// Returns true when the edge is in the matching.
3053
    /// This function returns \c true if the given edge is in the found 
3054
    /// matching.
3055
    ///
3056
    /// \pre Either run() or start() must be called before using this function.
2980 3057
    bool matching(const Edge& edge) const {
... ...
@@ -2983,5 +3060,9 @@
2983 3060

	
2984
    /// \brief Returns the incident matching edge.
3061
    /// \brief Return the matching arc (or edge) incident to the given node.
2985 3062
    ///
2986
    /// Returns the incident matching arc from given edge.
3063
    /// This function returns the matching arc (or edge) incident to the
3064
    /// given node in the found matching or \c INVALID if the node is 
3065
    /// not covered by the matching.
3066
    ///
3067
    /// \pre Either run() or start() must be called before using this function.
2987 3068
    Arc matching(const Node& node) const {
... ...
@@ -2990,5 +3071,8 @@
2990 3071

	
2991
    /// \brief Returns the mate of the node.
3072
    /// \brief Return the mate of the given node.
2992 3073
    ///
2993
    /// Returns the adjancent node in a mathcing arc.
3074
    /// This function returns the mate of the given node in the found 
3075
    /// matching or \c INVALID if the node is not covered by the matching.
3076
    ///
3077
    /// \pre Either run() or start() must be called before using this function.
2994 3078
    Node mate(const Node& node) const {
... ...
@@ -2999,4 +3083,6 @@
2999 3083

	
3000
    /// \name Dual solution
3001
    /// Functions to get the dual solution.
3084
    /// \name Dual Solution
3085
    /// Functions to get the dual solution.\n
3086
    /// Either \ref run() or \ref start() function should be called before
3087
    /// using them.
3002 3088

	
... ...
@@ -3004,6 +3090,9 @@
3004 3090

	
3005
    /// \brief Returns the value of the dual solution.
3091
    /// \brief Return the value of the dual solution.
3006 3092
    ///
3007
    /// Returns the value of the dual solution. It should be equal to
3008
    /// the primal value scaled by \ref dualScale "dual scale".
3093
    /// This function returns the value of the dual solution. 
3094
    /// It should be equal to the primal value scaled by \ref dualScale 
3095
    /// "dual scale".
3096
    ///
3097
    /// \pre Either run() or start() must be called before using this function.
3009 3098
    Value dualValue() const {
... ...
@@ -3019,5 +3108,7 @@
3019 3108

	
3020
    /// \brief Returns the value of the node.
3109
    /// \brief Return the dual value (potential) of the given node.
3021 3110
    ///
3022
    /// Returns the the value of the node.
3111
    /// This function returns the dual value (potential) of the given node.
3112
    ///
3113
    /// \pre Either run() or start() must be called before using this function.
3023 3114
    Value nodeValue(const Node& n) const {
... ...
@@ -3026,5 +3117,7 @@
3026 3117

	
3027
    /// \brief Returns the number of the blossoms in the basis.
3118
    /// \brief Return the number of the blossoms in the basis.
3028 3119
    ///
3029
    /// Returns the number of the blossoms in the basis.
3120
    /// This function returns the number of the blossoms in the basis.
3121
    ///
3122
    /// \pre Either run() or start() must be called before using this function.
3030 3123
    /// \see BlossomIt
... ...
@@ -3034,6 +3127,8 @@
3034 3127

	
3035

	
3036
    /// \brief Returns the number of the nodes in the blossom.
3128
    /// \brief Return the number of the nodes in the given blossom.
3037 3129
    ///
3038
    /// Returns the number of the nodes in the blossom.
3130
    /// This function returns the number of the nodes in the given blossom.
3131
    ///
3132
    /// \pre Either run() or start() must be called before using this function.
3133
    /// \see BlossomIt
3039 3134
    int blossomSize(int k) const {
... ...
@@ -3042,6 +3137,7 @@
3042 3137

	
3043
    /// \brief Returns the value of the blossom.
3138
    /// \brief Return the dual value (ptential) of the given blossom.
3044 3139
    ///
3045
    /// Returns the the value of the blossom.
3046
    /// \see BlossomIt
3140
    /// This function returns the dual value (ptential) of the given blossom.
3141
    ///
3142
    /// \pre Either run() or start() must be called before using this function.
3047 3143
    Value blossomValue(int k) const {
... ...
@@ -3050,7 +3146,8 @@
3050 3146

	
3051
    /// \brief Iterator for obtaining the nodes of the blossom.
3147
    /// \brief Iterator for obtaining the nodes of a blossom.
3052 3148
    ///
3053
    /// Iterator for obtaining the nodes of the blossom. This class
3054
    /// provides a common lemon style iterator for listing a
3055
    /// subset of the nodes.
3149
    /// This class provides an iterator for obtaining the nodes of the 
3150
    /// given blossom. It lists a subset of the nodes.
3151
    /// Before using this iterator, you must allocate a 
3152
    /// MaxWeightedPerfectMatching class and execute it.
3056 3153
    class BlossomIt {
... ...
@@ -3060,3 +3157,7 @@
3060 3157
      ///
3061
      /// Constructor to get the nodes of the variable.
3158
      /// Constructor to get the nodes of the given variable.
3159
      ///
3160
      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
3161
      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
3162
      /// must be called before initializing this iterator.
3062 3163
      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
... ...
@@ -3068,5 +3169,5 @@
3068 3169

	
3069
      /// \brief Conversion to node.
3170
      /// \brief Conversion to \c Node.
3070 3171
      ///
3071
      /// Conversion to node.
3172
      /// Conversion to \c Node.
3072 3173
      operator Node() const {
... ...
@@ -3085,3 +3186,3 @@
3085 3186
      ///
3086
      /// Checks whether the iterator is invalid.
3187
      /// This function checks whether the iterator is invalid.
3087 3188
      bool operator==(Invalid) const { return _index == _last; }
... ...
@@ -3090,3 +3191,3 @@
3090 3191
      ///
3091
      /// Checks whether the iterator is valid.
3192
      /// This function checks whether the iterator is valid.
3092 3193
      bool operator!=(Invalid) const { return _index != _last; }
... ...
@@ -3103,3 +3204,2 @@
3103 3204

	
3104

	
3105 3205
} //END OF NAMESPACE LEMON
Ignore white space 6 line context
... ...
@@ -22,3 +22,2 @@
22 22
#include <queue>
23
#include <lemon/math.h>
24 23
#include <cstdlib>
... ...
@@ -27,3 +26,6 @@
27 26
#include <lemon/smart_graph.h>
27
#include <lemon/concepts/graph.h>
28
#include <lemon/concepts/maps.h>
28 29
#include <lemon/lgf_reader.h>
30
#include <lemon/math.h>
29 31

	
... ...
@@ -112,2 +114,104 @@
112 114

	
115
void checkMaxMatchingCompile()
116
{
117
  typedef concepts::Graph Graph;
118
  typedef Graph::Node Node;
119
  typedef Graph::Edge Edge;
120
  typedef Graph::EdgeMap<bool> MatMap;
121

	
122
  Graph g;
123
  Node n;
124
  Edge e;
125
  MatMap mat(g);
126

	
127
  MaxMatching<Graph> mat_test(g);
128
  const MaxMatching<Graph>&
129
    const_mat_test = mat_test;
130

	
131
  mat_test.init();
132
  mat_test.greedyInit();
133
  mat_test.matchingInit(mat);
134
  mat_test.startSparse();
135
  mat_test.startDense();
136
  mat_test.run();
137
  
138
  const_mat_test.matchingSize();
139
  const_mat_test.matching(e);
140
  const_mat_test.matching(n);
141
  const_mat_test.mate(n);
142

	
143
  MaxMatching<Graph>::Status stat = 
144
    const_mat_test.decomposition(n);
145
  const_mat_test.barrier(n);
146
  
147
  ignore_unused_variable_warning(stat);
148
}
149

	
150
void checkMaxWeightedMatchingCompile()
151
{
152
  typedef concepts::Graph Graph;
153
  typedef Graph::Node Node;
154
  typedef Graph::Edge Edge;
155
  typedef Graph::EdgeMap<int> WeightMap;
156

	
157
  Graph g;
158
  Node n;
159
  Edge e;
160
  WeightMap w(g);
161

	
162
  MaxWeightedMatching<Graph> mat_test(g, w);
163
  const MaxWeightedMatching<Graph>&
164
    const_mat_test = mat_test;
165

	
166
  mat_test.init();
167
  mat_test.start();
168
  mat_test.run();
169
  
170
  const_mat_test.matchingValue();
171
  const_mat_test.matchingSize();
172
  const_mat_test.matching(e);
173
  const_mat_test.matching(n);
174
  const_mat_test.mate(n);
175
  
176
  int k = 0;
177
  const_mat_test.dualValue();
178
  const_mat_test.nodeValue(n);
179
  const_mat_test.blossomNum();
180
  const_mat_test.blossomSize(k);
181
  const_mat_test.blossomValue(k);
182
}
183

	
184
void checkMaxWeightedPerfectMatchingCompile()
185
{
186
  typedef concepts::Graph Graph;
187
  typedef Graph::Node Node;
188
  typedef Graph::Edge Edge;
189
  typedef Graph::EdgeMap<int> WeightMap;
190

	
191
  Graph g;
192
  Node n;
193
  Edge e;
194
  WeightMap w(g);
195

	
196
  MaxWeightedPerfectMatching<Graph> mat_test(g, w);
197
  const MaxWeightedPerfectMatching<Graph>&
198
    const_mat_test = mat_test;
199

	
200
  mat_test.init();
201
  mat_test.start();
202
  mat_test.run();
203
  
204
  const_mat_test.matchingValue();
205
  const_mat_test.matching(e);
206
  const_mat_test.matching(n);
207
  const_mat_test.mate(n);
208
  
209
  int k = 0;
210
  const_mat_test.dualValue();
211
  const_mat_test.nodeValue(n);
212
  const_mat_test.blossomNum();
213
  const_mat_test.blossomSize(k);
214
  const_mat_test.blossomValue(k);
215
}
216

	
113 217
void checkMatching(const SmartGraph& graph,
0 comments (0 inline)