gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 1 0
merge default
0 files changed with 2 insertions and 3 deletions:
↑ Collapse diff ↑
Ignore white space 192 line context
... ...
@@ -207,127 +207,126 @@
207 207
        }
208 208

	
209 209
        std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
210 210
        return KruskalOutputSelector<Graph, Sequence, Out>::
211 211
          kruskal(graph, seq, out);
212 212
      }
213 213
    };
214 214

	
215 215
    template <typename T>
216 216
    struct RemoveConst {
217 217
      typedef T type;
218 218
    };
219 219

	
220 220
    template <typename T>
221 221
    struct RemoveConst<const T> {
222 222
      typedef T type;
223 223
    };
224 224

	
225 225
    template <typename Graph, typename In, typename Out>
226 226
    struct KruskalOutputSelector<Graph, In, Out,
227 227
      typename enable_if<SequenceOutputIndicator<Out>, void>::type >
228 228
    {
229 229
      typedef typename In::value_type::second_type Value;
230 230

	
231 231
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
232 232
        typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
233 233
        Map map(out);
234 234
        return _kruskal_bits::kruskal(graph, in, map);
235 235
      }
236 236

	
237 237
    };
238 238

	
239 239
    template <typename Graph, typename In, typename Out>
240 240
    struct KruskalOutputSelector<Graph, In, Out,
241 241
      typename enable_if<MapOutputIndicator<Out>, void>::type >
242 242
    {
243 243
      typedef typename In::value_type::second_type Value;
244 244

	
245 245
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
246 246
        return _kruskal_bits::kruskal(graph, in, out);
247 247
      }
248 248
    };
249 249

	
250 250
  }
251 251

	
252 252
  /// \ingroup spantree
253 253
  ///
254 254
  /// \brief Kruskal algorithm to find a minimum cost spanning tree of
255 255
  /// a graph.
256 256
  ///
257 257
  /// This function runs Kruskal's algorithm to find a minimum cost
258 258
  /// spanning tree.
259 259
  /// Due to some C++ hacking, it accepts various input and output types.
260 260
  ///
261 261
  /// \param g The graph the algorithm runs on.
262 262
  /// It can be either \ref concepts::Digraph "directed" or
263 263
  /// \ref concepts::Graph "undirected".
264 264
  /// If the graph is directed, the algorithm consider it to be
265 265
  /// undirected by disregarding the direction of the arcs.
266 266
  ///
267 267
  /// \param in This object is used to describe the arc/edge costs.
268 268
  /// It can be one of the following choices.
269 269
  /// - An STL compatible 'Forward Container' with
270 270
  /// <tt>std::pair<GR::Arc,X></tt> or
271 271
  /// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where
272 272
  /// \c X is the type of the costs. The pairs indicates the arcs/edges
273 273
  /// along with the assigned cost. <em>They must be in a
274 274
  /// cost-ascending order.</em>
275 275
  /// - Any readable arc/edge map. The values of the map indicate the
276 276
  /// arc/edge costs.
277 277
  ///
278 278
  /// \retval out Here we also have a choice.
279 279
  /// - It can be a writable \c bool arc/edge map. After running the
280 280
  /// algorithm it will contain the found minimum cost spanning
281 281
  /// tree: the value of an arc/edge will be set to \c true if it belongs
282 282
  /// to the tree, otherwise it will be set to \c false. The value of
283 283
  /// each arc/edge will be set exactly once.
284 284
  /// - It can also be an iteraror of an STL Container with
285 285
  /// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
286 286
  /// <tt>value_type</tt>.  The algorithm copies the elements of the
287 287
  /// found tree into this sequence.  For example, if we know that the
288 288
  /// spanning tree of the graph \c g has say 53 arcs, then we can
289 289
  /// put its arcs into an STL vector \c tree with a code like this.
290 290
  ///\code
291 291
  /// std::vector<Arc> tree(53);
292 292
  /// kruskal(g,cost,tree.begin());
293 293
  ///\endcode
294 294
  /// Or if we don't know in advance the size of the tree, we can
295 295
  /// write this.
296 296
  ///\code
297 297
  /// std::vector<Arc> tree;
298 298
  /// kruskal(g,cost,std::back_inserter(tree));
299 299
  ///\endcode
300 300
  ///
301 301
  /// \return The total cost of the found spanning tree.
302 302
  ///
303
  /// \warning If Kruskal runs on an be consistent of using the same
304
  /// Arc type for input and output.
305
  ///
303
  /// \note If the input graph is not (weakly) connected, a spanning 
304
  /// forest is calculated instead of a spanning tree.
306 305

	
307 306
#ifdef DOXYGEN
308 307
  template <class Graph, class In, class Out>
309 308
  Value kruskal(GR const& g, const In& in, Out& out)
310 309
#else
311 310
  template <class Graph, class In, class Out>
312 311
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
313 312
  kruskal(const Graph& graph, const In& in, Out& out)
314 313
#endif
315 314
  {
316 315
    return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
317 316
      kruskal(graph, in, out);
318 317
  }
319 318

	
320 319

	
321 320

	
322 321

	
323 322
  template <class Graph, class In, class Out>
324 323
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
325 324
  kruskal(const Graph& graph, const In& in, const Out& out)
326 325
  {
327 326
    return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
328 327
      kruskal(graph, in, out);
329 328
  }
330 329

	
331 330
} //namespace lemon
332 331

	
333 332
#endif //LEMON_KRUSKAL_H
0 comments (0 inline)