0
1
1
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HAO_ORLIN_H |
|
| 20 |
#define LEMON_HAO_ORLIN_H |
|
| 21 |
|
|
| 22 |
#include <vector> |
|
| 23 |
#include <list> |
|
| 24 |
#include <limits> |
|
| 25 |
|
|
| 26 |
#include <lemon/maps.h> |
|
| 27 |
#include <lemon/core.h> |
|
| 28 |
#include <lemon/tolerance.h> |
|
| 29 |
|
|
| 30 |
/// \file |
|
| 31 |
/// \ingroup min_cut |
|
| 32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
|
| 33 |
/// |
|
| 34 |
/// Implementation of the Hao-Orlin algorithm class for testing network |
|
| 35 |
/// reliability. |
|
| 36 |
|
|
| 37 |
namespace lemon {
|
|
| 38 |
|
|
| 39 |
/// \ingroup min_cut |
|
| 40 |
/// |
|
| 41 |
/// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs. |
|
| 42 |
/// |
|
| 43 |
/// Hao-Orlin calculates a minimum cut in a directed graph |
|
| 44 |
/// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and |
|
| 45 |
/// consists of two phases: in the first phase it determines a |
|
| 46 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
|
| 47 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal |
|
| 48 |
/// out-degree) and in the second phase it determines a minimum cut |
|
| 49 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
|
| 50 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal |
|
| 51 |
/// out-degree). Obviously, the smaller of these two cuts will be a |
|
| 52 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
|
| 53 |
/// push-relabel preflow algorithm and our implementation calculates |
|
| 54 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
|
|
| 55 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
|
| 56 |
/// purpose of such algorithm is testing network reliability. For an |
|
| 57 |
/// undirected graph you can run just the first phase of the |
|
| 58 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki |
|
| 59 |
/// which solves the undirected problem in |
|
| 60 |
/// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the |
|
| 61 |
/// NagamochiIbaraki algorithm class. |
|
| 62 |
/// |
|
| 63 |
/// \param _Digraph is the graph type of the algorithm. |
|
| 64 |
/// \param _CapacityMap is an edge map of capacities which should |
|
| 65 |
/// be any numreric type. The default type is _Digraph::ArcMap<int>. |
|
| 66 |
/// \param _Tolerance is the handler of the inexact computation. The |
|
| 67 |
/// default type for this is Tolerance<CapacityMap::Value>. |
|
| 68 |
#ifdef DOXYGEN |
|
| 69 |
template <typename _Digraph, typename _CapacityMap, typename _Tolerance> |
|
| 70 |
#else |
|
| 71 |
template <typename _Digraph, |
|
| 72 |
typename _CapacityMap = typename _Digraph::template ArcMap<int>, |
|
| 73 |
typename _Tolerance = Tolerance<typename _CapacityMap::Value> > |
|
| 74 |
#endif |
|
| 75 |
class HaoOrlin {
|
|
| 76 |
private: |
|
| 77 |
|
|
| 78 |
typedef _Digraph Digraph; |
|
| 79 |
typedef _CapacityMap CapacityMap; |
|
| 80 |
typedef _Tolerance Tolerance; |
|
| 81 |
|
|
| 82 |
typedef typename CapacityMap::Value Value; |
|
| 83 |
|
|
| 84 |
TEMPLATE_GRAPH_TYPEDEFS(Digraph); |
|
| 85 |
|
|
| 86 |
const Digraph& _graph; |
|
| 87 |
const CapacityMap* _capacity; |
|
| 88 |
|
|
| 89 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 90 |
FlowMap* _flow; |
|
| 91 |
|
|
| 92 |
Node _source; |
|
| 93 |
|
|
| 94 |
int _node_num; |
|
| 95 |
|
|
| 96 |
// Bucketing structure |
|
| 97 |
std::vector<Node> _first, _last; |
|
| 98 |
typename Digraph::template NodeMap<Node>* _next; |
|
| 99 |
typename Digraph::template NodeMap<Node>* _prev; |
|
| 100 |
typename Digraph::template NodeMap<bool>* _active; |
|
| 101 |
typename Digraph::template NodeMap<int>* _bucket; |
|
| 102 |
|
|
| 103 |
std::vector<bool> _dormant; |
|
| 104 |
|
|
| 105 |
std::list<std::list<int> > _sets; |
|
| 106 |
std::list<int>::iterator _highest; |
|
| 107 |
|
|
| 108 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 109 |
ExcessMap* _excess; |
|
| 110 |
|
|
| 111 |
typedef typename Digraph::template NodeMap<bool> SourceSetMap; |
|
| 112 |
SourceSetMap* _source_set; |
|
| 113 |
|
|
| 114 |
Value _min_cut; |
|
| 115 |
|
|
| 116 |
typedef typename Digraph::template NodeMap<bool> MinCutMap; |
|
| 117 |
MinCutMap* _min_cut_map; |
|
| 118 |
|
|
| 119 |
Tolerance _tolerance; |
|
| 120 |
|
|
| 121 |
public: |
|
| 122 |
|
|
| 123 |
/// \brief Constructor |
|
| 124 |
/// |
|
| 125 |
/// Constructor of the algorithm class. |
|
| 126 |
HaoOrlin(const Digraph& graph, const CapacityMap& capacity, |
|
| 127 |
const Tolerance& tolerance = Tolerance()) : |
|
| 128 |
_graph(graph), _capacity(&capacity), _flow(0), _source(), |
|
| 129 |
_node_num(), _first(), _last(), _next(0), _prev(0), |
|
| 130 |
_active(0), _bucket(0), _dormant(), _sets(), _highest(), |
|
| 131 |
_excess(0), _source_set(0), _min_cut(), _min_cut_map(0), |
|
| 132 |
_tolerance(tolerance) {}
|
|
| 133 |
|
|
| 134 |
~HaoOrlin() {
|
|
| 135 |
if (_min_cut_map) {
|
|
| 136 |
delete _min_cut_map; |
|
| 137 |
} |
|
| 138 |
if (_source_set) {
|
|
| 139 |
delete _source_set; |
|
| 140 |
} |
|
| 141 |
if (_excess) {
|
|
| 142 |
delete _excess; |
|
| 143 |
} |
|
| 144 |
if (_next) {
|
|
| 145 |
delete _next; |
|
| 146 |
} |
|
| 147 |
if (_prev) {
|
|
| 148 |
delete _prev; |
|
| 149 |
} |
|
| 150 |
if (_active) {
|
|
| 151 |
delete _active; |
|
| 152 |
} |
|
| 153 |
if (_bucket) {
|
|
| 154 |
delete _bucket; |
|
| 155 |
} |
|
| 156 |
if (_flow) {
|
|
| 157 |
delete _flow; |
|
| 158 |
} |
|
| 159 |
} |
|
| 160 |
|
|
| 161 |
private: |
|
| 162 |
|
|
| 163 |
void activate(const Node& i) {
|
|
| 164 |
_active->set(i, true); |
|
| 165 |
|
|
| 166 |
int bucket = (*_bucket)[i]; |
|
| 167 |
|
|
| 168 |
if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return; |
|
| 169 |
//unlace |
|
| 170 |
_next->set((*_prev)[i], (*_next)[i]); |
|
| 171 |
if ((*_next)[i] != INVALID) {
|
|
| 172 |
_prev->set((*_next)[i], (*_prev)[i]); |
|
| 173 |
} else {
|
|
| 174 |
_last[bucket] = (*_prev)[i]; |
|
| 175 |
} |
|
| 176 |
//lace |
|
| 177 |
_next->set(i, _first[bucket]); |
|
| 178 |
_prev->set(_first[bucket], i); |
|
| 179 |
_prev->set(i, INVALID); |
|
| 180 |
_first[bucket] = i; |
|
| 181 |
} |
|
| 182 |
|
|
| 183 |
void deactivate(const Node& i) {
|
|
| 184 |
_active->set(i, false); |
|
| 185 |
int bucket = (*_bucket)[i]; |
|
| 186 |
|
|
| 187 |
if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return; |
|
| 188 |
|
|
| 189 |
//unlace |
|
| 190 |
_prev->set((*_next)[i], (*_prev)[i]); |
|
| 191 |
if ((*_prev)[i] != INVALID) {
|
|
| 192 |
_next->set((*_prev)[i], (*_next)[i]); |
|
| 193 |
} else {
|
|
| 194 |
_first[bucket] = (*_next)[i]; |
|
| 195 |
} |
|
| 196 |
//lace |
|
| 197 |
_prev->set(i, _last[bucket]); |
|
| 198 |
_next->set(_last[bucket], i); |
|
| 199 |
_next->set(i, INVALID); |
|
| 200 |
_last[bucket] = i; |
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
void addItem(const Node& i, int bucket) {
|
|
| 204 |
(*_bucket)[i] = bucket; |
|
| 205 |
if (_last[bucket] != INVALID) {
|
|
| 206 |
_prev->set(i, _last[bucket]); |
|
| 207 |
_next->set(_last[bucket], i); |
|
| 208 |
_next->set(i, INVALID); |
|
| 209 |
_last[bucket] = i; |
|
| 210 |
} else {
|
|
| 211 |
_prev->set(i, INVALID); |
|
| 212 |
_first[bucket] = i; |
|
| 213 |
_next->set(i, INVALID); |
|
| 214 |
_last[bucket] = i; |
|
| 215 |
} |
|
| 216 |
} |
|
| 217 |
|
|
| 218 |
void findMinCutOut() {
|
|
| 219 |
|
|
| 220 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 221 |
_excess->set(n, 0); |
|
| 222 |
} |
|
| 223 |
|
|
| 224 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 225 |
_flow->set(a, 0); |
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
int bucket_num = 1; |
|
| 229 |
|
|
| 230 |
{
|
|
| 231 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
|
| 232 |
|
|
| 233 |
reached.set(_source, true); |
|
| 234 |
|
|
| 235 |
bool first_set = true; |
|
| 236 |
|
|
| 237 |
for (NodeIt t(_graph); t != INVALID; ++t) {
|
|
| 238 |
if (reached[t]) continue; |
|
| 239 |
_sets.push_front(std::list<int>()); |
|
| 240 |
_sets.front().push_front(bucket_num); |
|
| 241 |
_dormant[bucket_num] = !first_set; |
|
| 242 |
|
|
| 243 |
_bucket->set(t, bucket_num); |
|
| 244 |
_first[bucket_num] = _last[bucket_num] = t; |
|
| 245 |
_next->set(t, INVALID); |
|
| 246 |
_prev->set(t, INVALID); |
|
| 247 |
|
|
| 248 |
++bucket_num; |
|
| 249 |
|
|
| 250 |
std::vector<Node> queue; |
|
| 251 |
queue.push_back(t); |
|
| 252 |
reached.set(t, true); |
|
| 253 |
|
|
| 254 |
while (!queue.empty()) {
|
|
| 255 |
_sets.front().push_front(bucket_num); |
|
| 256 |
_dormant[bucket_num] = !first_set; |
|
| 257 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
| 258 |
|
|
| 259 |
std::vector<Node> nqueue; |
|
| 260 |
for (int i = 0; i < int(queue.size()); ++i) {
|
|
| 261 |
Node n = queue[i]; |
|
| 262 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 263 |
Node u = _graph.source(a); |
|
| 264 |
if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
|
|
| 265 |
reached.set(u, true); |
|
| 266 |
addItem(u, bucket_num); |
|
| 267 |
nqueue.push_back(u); |
|
| 268 |
} |
|
| 269 |
} |
|
| 270 |
} |
|
| 271 |
queue.swap(nqueue); |
|
| 272 |
++bucket_num; |
|
| 273 |
} |
|
| 274 |
_sets.front().pop_front(); |
|
| 275 |
--bucket_num; |
|
| 276 |
first_set = false; |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
_bucket->set(_source, 0); |
|
| 280 |
_dormant[0] = true; |
|
| 281 |
} |
|
| 282 |
_source_set->set(_source, true); |
|
| 283 |
|
|
| 284 |
Node target = _last[_sets.back().back()]; |
|
| 285 |
{
|
|
| 286 |
for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
|
|
| 287 |
if (_tolerance.positive((*_capacity)[a])) {
|
|
| 288 |
Node u = _graph.target(a); |
|
| 289 |
_flow->set(a, (*_capacity)[a]); |
|
| 290 |
_excess->set(u, (*_excess)[u] + (*_capacity)[a]); |
|
| 291 |
if (!(*_active)[u] && u != _source) {
|
|
| 292 |
activate(u); |
|
| 293 |
} |
|
| 294 |
} |
|
| 295 |
} |
|
| 296 |
|
|
| 297 |
if ((*_active)[target]) {
|
|
| 298 |
deactivate(target); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
_highest = _sets.back().begin(); |
|
| 302 |
while (_highest != _sets.back().end() && |
|
| 303 |
!(*_active)[_first[*_highest]]) {
|
|
| 304 |
++_highest; |
|
| 305 |
} |
|
| 306 |
} |
|
| 307 |
|
|
| 308 |
while (true) {
|
|
| 309 |
while (_highest != _sets.back().end()) {
|
|
| 310 |
Node n = _first[*_highest]; |
|
| 311 |
Value excess = (*_excess)[n]; |
|
| 312 |
int next_bucket = _node_num; |
|
| 313 |
|
|
| 314 |
int under_bucket; |
|
| 315 |
if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
|
|
| 316 |
under_bucket = -1; |
|
| 317 |
} else {
|
|
| 318 |
under_bucket = *(++std::list<int>::iterator(_highest)); |
|
| 319 |
} |
|
| 320 |
|
|
| 321 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 322 |
Node v = _graph.target(a); |
|
| 323 |
if (_dormant[(*_bucket)[v]]) continue; |
|
| 324 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
| 325 |
if (!_tolerance.positive(rem)) continue; |
|
| 326 |
if ((*_bucket)[v] == under_bucket) {
|
|
| 327 |
if (!(*_active)[v] && v != target) {
|
|
| 328 |
activate(v); |
|
| 329 |
} |
|
| 330 |
if (!_tolerance.less(rem, excess)) {
|
|
| 331 |
_flow->set(a, (*_flow)[a] + excess); |
|
| 332 |
_excess->set(v, (*_excess)[v] + excess); |
|
| 333 |
excess = 0; |
|
| 334 |
goto no_more_push; |
|
| 335 |
} else {
|
|
| 336 |
excess -= rem; |
|
| 337 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 338 |
_flow->set(a, (*_capacity)[a]); |
|
| 339 |
} |
|
| 340 |
} else if (next_bucket > (*_bucket)[v]) {
|
|
| 341 |
next_bucket = (*_bucket)[v]; |
|
| 342 |
} |
|
| 343 |
} |
|
| 344 |
|
|
| 345 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 346 |
Node v = _graph.source(a); |
|
| 347 |
if (_dormant[(*_bucket)[v]]) continue; |
|
| 348 |
Value rem = (*_flow)[a]; |
|
| 349 |
if (!_tolerance.positive(rem)) continue; |
|
| 350 |
if ((*_bucket)[v] == under_bucket) {
|
|
| 351 |
if (!(*_active)[v] && v != target) {
|
|
| 352 |
activate(v); |
|
| 353 |
} |
|
| 354 |
if (!_tolerance.less(rem, excess)) {
|
|
| 355 |
_flow->set(a, (*_flow)[a] - excess); |
|
| 356 |
_excess->set(v, (*_excess)[v] + excess); |
|
| 357 |
excess = 0; |
|
| 358 |
goto no_more_push; |
|
| 359 |
} else {
|
|
| 360 |
excess -= rem; |
|
| 361 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 362 |
_flow->set(a, 0); |
|
| 363 |
} |
|
| 364 |
} else if (next_bucket > (*_bucket)[v]) {
|
|
| 365 |
next_bucket = (*_bucket)[v]; |
|
| 366 |
} |
|
| 367 |
} |
|
| 368 |
|
|
| 369 |
no_more_push: |
|
| 370 |
|
|
| 371 |
_excess->set(n, excess); |
|
| 372 |
|
|
| 373 |
if (excess != 0) {
|
|
| 374 |
if ((*_next)[n] == INVALID) {
|
|
| 375 |
typename std::list<std::list<int> >::iterator new_set = |
|
| 376 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
| 377 |
new_set->splice(new_set->end(), _sets.back(), |
|
| 378 |
_sets.back().begin(), ++_highest); |
|
| 379 |
for (std::list<int>::iterator it = new_set->begin(); |
|
| 380 |
it != new_set->end(); ++it) {
|
|
| 381 |
_dormant[*it] = true; |
|
| 382 |
} |
|
| 383 |
while (_highest != _sets.back().end() && |
|
| 384 |
!(*_active)[_first[*_highest]]) {
|
|
| 385 |
++_highest; |
|
| 386 |
} |
|
| 387 |
} else if (next_bucket == _node_num) {
|
|
| 388 |
_first[(*_bucket)[n]] = (*_next)[n]; |
|
| 389 |
_prev->set((*_next)[n], INVALID); |
|
| 390 |
|
|
| 391 |
std::list<std::list<int> >::iterator new_set = |
|
| 392 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
| 393 |
|
|
| 394 |
new_set->push_front(bucket_num); |
|
| 395 |
_bucket->set(n, bucket_num); |
|
| 396 |
_first[bucket_num] = _last[bucket_num] = n; |
|
| 397 |
_next->set(n, INVALID); |
|
| 398 |
_prev->set(n, INVALID); |
|
| 399 |
_dormant[bucket_num] = true; |
|
| 400 |
++bucket_num; |
|
| 401 |
|
|
| 402 |
while (_highest != _sets.back().end() && |
|
| 403 |
!(*_active)[_first[*_highest]]) {
|
|
| 404 |
++_highest; |
|
| 405 |
} |
|
| 406 |
} else {
|
|
| 407 |
_first[*_highest] = (*_next)[n]; |
|
| 408 |
_prev->set((*_next)[n], INVALID); |
|
| 409 |
|
|
| 410 |
while (next_bucket != *_highest) {
|
|
| 411 |
--_highest; |
|
| 412 |
} |
|
| 413 |
|
|
| 414 |
if (_highest == _sets.back().begin()) {
|
|
| 415 |
_sets.back().push_front(bucket_num); |
|
| 416 |
_dormant[bucket_num] = false; |
|
| 417 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
| 418 |
++bucket_num; |
|
| 419 |
} |
|
| 420 |
--_highest; |
|
| 421 |
|
|
| 422 |
_bucket->set(n, *_highest); |
|
| 423 |
_next->set(n, _first[*_highest]); |
|
| 424 |
if (_first[*_highest] != INVALID) {
|
|
| 425 |
_prev->set(_first[*_highest], n); |
|
| 426 |
} else {
|
|
| 427 |
_last[*_highest] = n; |
|
| 428 |
} |
|
| 429 |
_first[*_highest] = n; |
|
| 430 |
} |
|
| 431 |
} else {
|
|
| 432 |
|
|
| 433 |
deactivate(n); |
|
| 434 |
if (!(*_active)[_first[*_highest]]) {
|
|
| 435 |
++_highest; |
|
| 436 |
if (_highest != _sets.back().end() && |
|
| 437 |
!(*_active)[_first[*_highest]]) {
|
|
| 438 |
_highest = _sets.back().end(); |
|
| 439 |
} |
|
| 440 |
} |
|
| 441 |
} |
|
| 442 |
} |
|
| 443 |
|
|
| 444 |
if ((*_excess)[target] < _min_cut) {
|
|
| 445 |
_min_cut = (*_excess)[target]; |
|
| 446 |
for (NodeIt i(_graph); i != INVALID; ++i) {
|
|
| 447 |
_min_cut_map->set(i, true); |
|
| 448 |
} |
|
| 449 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
| 450 |
it != _sets.back().end(); ++it) {
|
|
| 451 |
Node n = _first[*it]; |
|
| 452 |
while (n != INVALID) {
|
|
| 453 |
_min_cut_map->set(n, false); |
|
| 454 |
n = (*_next)[n]; |
|
| 455 |
} |
|
| 456 |
} |
|
| 457 |
} |
|
| 458 |
|
|
| 459 |
{
|
|
| 460 |
Node new_target; |
|
| 461 |
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
|
|
| 462 |
if ((*_next)[target] == INVALID) {
|
|
| 463 |
_last[(*_bucket)[target]] = (*_prev)[target]; |
|
| 464 |
new_target = (*_prev)[target]; |
|
| 465 |
} else {
|
|
| 466 |
_prev->set((*_next)[target], (*_prev)[target]); |
|
| 467 |
new_target = (*_next)[target]; |
|
| 468 |
} |
|
| 469 |
if ((*_prev)[target] == INVALID) {
|
|
| 470 |
_first[(*_bucket)[target]] = (*_next)[target]; |
|
| 471 |
} else {
|
|
| 472 |
_next->set((*_prev)[target], (*_next)[target]); |
|
| 473 |
} |
|
| 474 |
} else {
|
|
| 475 |
_sets.back().pop_back(); |
|
| 476 |
if (_sets.back().empty()) {
|
|
| 477 |
_sets.pop_back(); |
|
| 478 |
if (_sets.empty()) |
|
| 479 |
break; |
|
| 480 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
| 481 |
it != _sets.back().end(); ++it) {
|
|
| 482 |
_dormant[*it] = false; |
|
| 483 |
} |
|
| 484 |
} |
|
| 485 |
new_target = _last[_sets.back().back()]; |
|
| 486 |
} |
|
| 487 |
|
|
| 488 |
_bucket->set(target, 0); |
|
| 489 |
|
|
| 490 |
_source_set->set(target, true); |
|
| 491 |
for (OutArcIt a(_graph, target); a != INVALID; ++a) {
|
|
| 492 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
| 493 |
if (!_tolerance.positive(rem)) continue; |
|
| 494 |
Node v = _graph.target(a); |
|
| 495 |
if (!(*_active)[v] && !(*_source_set)[v]) {
|
|
| 496 |
activate(v); |
|
| 497 |
} |
|
| 498 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 499 |
_flow->set(a, (*_capacity)[a]); |
|
| 500 |
} |
|
| 501 |
|
|
| 502 |
for (InArcIt a(_graph, target); a != INVALID; ++a) {
|
|
| 503 |
Value rem = (*_flow)[a]; |
|
| 504 |
if (!_tolerance.positive(rem)) continue; |
|
| 505 |
Node v = _graph.source(a); |
|
| 506 |
if (!(*_active)[v] && !(*_source_set)[v]) {
|
|
| 507 |
activate(v); |
|
| 508 |
} |
|
| 509 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 510 |
_flow->set(a, 0); |
|
| 511 |
} |
|
| 512 |
|
|
| 513 |
target = new_target; |
|
| 514 |
if ((*_active)[target]) {
|
|
| 515 |
deactivate(target); |
|
| 516 |
} |
|
| 517 |
|
|
| 518 |
_highest = _sets.back().begin(); |
|
| 519 |
while (_highest != _sets.back().end() && |
|
| 520 |
!(*_active)[_first[*_highest]]) {
|
|
| 521 |
++_highest; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
} |
|
| 525 |
} |
|
| 526 |
|
|
| 527 |
void findMinCutIn() {
|
|
| 528 |
|
|
| 529 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 530 |
_excess->set(n, 0); |
|
| 531 |
} |
|
| 532 |
|
|
| 533 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 534 |
_flow->set(a, 0); |
|
| 535 |
} |
|
| 536 |
|
|
| 537 |
int bucket_num = 1; |
|
| 538 |
|
|
| 539 |
{
|
|
| 540 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
|
| 541 |
|
|
| 542 |
reached.set(_source, true); |
|
| 543 |
|
|
| 544 |
bool first_set = true; |
|
| 545 |
|
|
| 546 |
for (NodeIt t(_graph); t != INVALID; ++t) {
|
|
| 547 |
if (reached[t]) continue; |
|
| 548 |
_sets.push_front(std::list<int>()); |
|
| 549 |
_sets.front().push_front(bucket_num); |
|
| 550 |
_dormant[bucket_num] = !first_set; |
|
| 551 |
|
|
| 552 |
_bucket->set(t, bucket_num); |
|
| 553 |
_first[bucket_num] = _last[bucket_num] = t; |
|
| 554 |
_next->set(t, INVALID); |
|
| 555 |
_prev->set(t, INVALID); |
|
| 556 |
|
|
| 557 |
++bucket_num; |
|
| 558 |
|
|
| 559 |
std::vector<Node> queue; |
|
| 560 |
queue.push_back(t); |
|
| 561 |
reached.set(t, true); |
|
| 562 |
|
|
| 563 |
while (!queue.empty()) {
|
|
| 564 |
_sets.front().push_front(bucket_num); |
|
| 565 |
_dormant[bucket_num] = !first_set; |
|
| 566 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
| 567 |
|
|
| 568 |
std::vector<Node> nqueue; |
|
| 569 |
for (int i = 0; i < int(queue.size()); ++i) {
|
|
| 570 |
Node n = queue[i]; |
|
| 571 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 572 |
Node u = _graph.target(a); |
|
| 573 |
if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
|
|
| 574 |
reached.set(u, true); |
|
| 575 |
addItem(u, bucket_num); |
|
| 576 |
nqueue.push_back(u); |
|
| 577 |
} |
|
| 578 |
} |
|
| 579 |
} |
|
| 580 |
queue.swap(nqueue); |
|
| 581 |
++bucket_num; |
|
| 582 |
} |
|
| 583 |
_sets.front().pop_front(); |
|
| 584 |
--bucket_num; |
|
| 585 |
first_set = false; |
|
| 586 |
} |
|
| 587 |
|
|
| 588 |
_bucket->set(_source, 0); |
|
| 589 |
_dormant[0] = true; |
|
| 590 |
} |
|
| 591 |
_source_set->set(_source, true); |
|
| 592 |
|
|
| 593 |
Node target = _last[_sets.back().back()]; |
|
| 594 |
{
|
|
| 595 |
for (InArcIt a(_graph, _source); a != INVALID; ++a) {
|
|
| 596 |
if (_tolerance.positive((*_capacity)[a])) {
|
|
| 597 |
Node u = _graph.source(a); |
|
| 598 |
_flow->set(a, (*_capacity)[a]); |
|
| 599 |
_excess->set(u, (*_excess)[u] + (*_capacity)[a]); |
|
| 600 |
if (!(*_active)[u] && u != _source) {
|
|
| 601 |
activate(u); |
|
| 602 |
} |
|
| 603 |
} |
|
| 604 |
} |
|
| 605 |
if ((*_active)[target]) {
|
|
| 606 |
deactivate(target); |
|
| 607 |
} |
|
| 608 |
|
|
| 609 |
_highest = _sets.back().begin(); |
|
| 610 |
while (_highest != _sets.back().end() && |
|
| 611 |
!(*_active)[_first[*_highest]]) {
|
|
| 612 |
++_highest; |
|
| 613 |
} |
|
| 614 |
} |
|
| 615 |
|
|
| 616 |
|
|
| 617 |
while (true) {
|
|
| 618 |
while (_highest != _sets.back().end()) {
|
|
| 619 |
Node n = _first[*_highest]; |
|
| 620 |
Value excess = (*_excess)[n]; |
|
| 621 |
int next_bucket = _node_num; |
|
| 622 |
|
|
| 623 |
int under_bucket; |
|
| 624 |
if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
|
|
| 625 |
under_bucket = -1; |
|
| 626 |
} else {
|
|
| 627 |
under_bucket = *(++std::list<int>::iterator(_highest)); |
|
| 628 |
} |
|
| 629 |
|
|
| 630 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 631 |
Node v = _graph.source(a); |
|
| 632 |
if (_dormant[(*_bucket)[v]]) continue; |
|
| 633 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
| 634 |
if (!_tolerance.positive(rem)) continue; |
|
| 635 |
if ((*_bucket)[v] == under_bucket) {
|
|
| 636 |
if (!(*_active)[v] && v != target) {
|
|
| 637 |
activate(v); |
|
| 638 |
} |
|
| 639 |
if (!_tolerance.less(rem, excess)) {
|
|
| 640 |
_flow->set(a, (*_flow)[a] + excess); |
|
| 641 |
_excess->set(v, (*_excess)[v] + excess); |
|
| 642 |
excess = 0; |
|
| 643 |
goto no_more_push; |
|
| 644 |
} else {
|
|
| 645 |
excess -= rem; |
|
| 646 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 647 |
_flow->set(a, (*_capacity)[a]); |
|
| 648 |
} |
|
| 649 |
} else if (next_bucket > (*_bucket)[v]) {
|
|
| 650 |
next_bucket = (*_bucket)[v]; |
|
| 651 |
} |
|
| 652 |
} |
|
| 653 |
|
|
| 654 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 655 |
Node v = _graph.target(a); |
|
| 656 |
if (_dormant[(*_bucket)[v]]) continue; |
|
| 657 |
Value rem = (*_flow)[a]; |
|
| 658 |
if (!_tolerance.positive(rem)) continue; |
|
| 659 |
if ((*_bucket)[v] == under_bucket) {
|
|
| 660 |
if (!(*_active)[v] && v != target) {
|
|
| 661 |
activate(v); |
|
| 662 |
} |
|
| 663 |
if (!_tolerance.less(rem, excess)) {
|
|
| 664 |
_flow->set(a, (*_flow)[a] - excess); |
|
| 665 |
_excess->set(v, (*_excess)[v] + excess); |
|
| 666 |
excess = 0; |
|
| 667 |
goto no_more_push; |
|
| 668 |
} else {
|
|
| 669 |
excess -= rem; |
|
| 670 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 671 |
_flow->set(a, 0); |
|
| 672 |
} |
|
| 673 |
} else if (next_bucket > (*_bucket)[v]) {
|
|
| 674 |
next_bucket = (*_bucket)[v]; |
|
| 675 |
} |
|
| 676 |
} |
|
| 677 |
|
|
| 678 |
no_more_push: |
|
| 679 |
|
|
| 680 |
_excess->set(n, excess); |
|
| 681 |
|
|
| 682 |
if (excess != 0) {
|
|
| 683 |
if ((*_next)[n] == INVALID) {
|
|
| 684 |
typename std::list<std::list<int> >::iterator new_set = |
|
| 685 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
| 686 |
new_set->splice(new_set->end(), _sets.back(), |
|
| 687 |
_sets.back().begin(), ++_highest); |
|
| 688 |
for (std::list<int>::iterator it = new_set->begin(); |
|
| 689 |
it != new_set->end(); ++it) {
|
|
| 690 |
_dormant[*it] = true; |
|
| 691 |
} |
|
| 692 |
while (_highest != _sets.back().end() && |
|
| 693 |
!(*_active)[_first[*_highest]]) {
|
|
| 694 |
++_highest; |
|
| 695 |
} |
|
| 696 |
} else if (next_bucket == _node_num) {
|
|
| 697 |
_first[(*_bucket)[n]] = (*_next)[n]; |
|
| 698 |
_prev->set((*_next)[n], INVALID); |
|
| 699 |
|
|
| 700 |
std::list<std::list<int> >::iterator new_set = |
|
| 701 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
| 702 |
|
|
| 703 |
new_set->push_front(bucket_num); |
|
| 704 |
_bucket->set(n, bucket_num); |
|
| 705 |
_first[bucket_num] = _last[bucket_num] = n; |
|
| 706 |
_next->set(n, INVALID); |
|
| 707 |
_prev->set(n, INVALID); |
|
| 708 |
_dormant[bucket_num] = true; |
|
| 709 |
++bucket_num; |
|
| 710 |
|
|
| 711 |
while (_highest != _sets.back().end() && |
|
| 712 |
!(*_active)[_first[*_highest]]) {
|
|
| 713 |
++_highest; |
|
| 714 |
} |
|
| 715 |
} else {
|
|
| 716 |
_first[*_highest] = (*_next)[n]; |
|
| 717 |
_prev->set((*_next)[n], INVALID); |
|
| 718 |
|
|
| 719 |
while (next_bucket != *_highest) {
|
|
| 720 |
--_highest; |
|
| 721 |
} |
|
| 722 |
if (_highest == _sets.back().begin()) {
|
|
| 723 |
_sets.back().push_front(bucket_num); |
|
| 724 |
_dormant[bucket_num] = false; |
|
| 725 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
| 726 |
++bucket_num; |
|
| 727 |
} |
|
| 728 |
--_highest; |
|
| 729 |
|
|
| 730 |
_bucket->set(n, *_highest); |
|
| 731 |
_next->set(n, _first[*_highest]); |
|
| 732 |
if (_first[*_highest] != INVALID) {
|
|
| 733 |
_prev->set(_first[*_highest], n); |
|
| 734 |
} else {
|
|
| 735 |
_last[*_highest] = n; |
|
| 736 |
} |
|
| 737 |
_first[*_highest] = n; |
|
| 738 |
} |
|
| 739 |
} else {
|
|
| 740 |
|
|
| 741 |
deactivate(n); |
|
| 742 |
if (!(*_active)[_first[*_highest]]) {
|
|
| 743 |
++_highest; |
|
| 744 |
if (_highest != _sets.back().end() && |
|
| 745 |
!(*_active)[_first[*_highest]]) {
|
|
| 746 |
_highest = _sets.back().end(); |
|
| 747 |
} |
|
| 748 |
} |
|
| 749 |
} |
|
| 750 |
} |
|
| 751 |
|
|
| 752 |
if ((*_excess)[target] < _min_cut) {
|
|
| 753 |
_min_cut = (*_excess)[target]; |
|
| 754 |
for (NodeIt i(_graph); i != INVALID; ++i) {
|
|
| 755 |
_min_cut_map->set(i, false); |
|
| 756 |
} |
|
| 757 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
| 758 |
it != _sets.back().end(); ++it) {
|
|
| 759 |
Node n = _first[*it]; |
|
| 760 |
while (n != INVALID) {
|
|
| 761 |
_min_cut_map->set(n, true); |
|
| 762 |
n = (*_next)[n]; |
|
| 763 |
} |
|
| 764 |
} |
|
| 765 |
} |
|
| 766 |
|
|
| 767 |
{
|
|
| 768 |
Node new_target; |
|
| 769 |
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
|
|
| 770 |
if ((*_next)[target] == INVALID) {
|
|
| 771 |
_last[(*_bucket)[target]] = (*_prev)[target]; |
|
| 772 |
new_target = (*_prev)[target]; |
|
| 773 |
} else {
|
|
| 774 |
_prev->set((*_next)[target], (*_prev)[target]); |
|
| 775 |
new_target = (*_next)[target]; |
|
| 776 |
} |
|
| 777 |
if ((*_prev)[target] == INVALID) {
|
|
| 778 |
_first[(*_bucket)[target]] = (*_next)[target]; |
|
| 779 |
} else {
|
|
| 780 |
_next->set((*_prev)[target], (*_next)[target]); |
|
| 781 |
} |
|
| 782 |
} else {
|
|
| 783 |
_sets.back().pop_back(); |
|
| 784 |
if (_sets.back().empty()) {
|
|
| 785 |
_sets.pop_back(); |
|
| 786 |
if (_sets.empty()) |
|
| 787 |
break; |
|
| 788 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
| 789 |
it != _sets.back().end(); ++it) {
|
|
| 790 |
_dormant[*it] = false; |
|
| 791 |
} |
|
| 792 |
} |
|
| 793 |
new_target = _last[_sets.back().back()]; |
|
| 794 |
} |
|
| 795 |
|
|
| 796 |
_bucket->set(target, 0); |
|
| 797 |
|
|
| 798 |
_source_set->set(target, true); |
|
| 799 |
for (InArcIt a(_graph, target); a != INVALID; ++a) {
|
|
| 800 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
| 801 |
if (!_tolerance.positive(rem)) continue; |
|
| 802 |
Node v = _graph.source(a); |
|
| 803 |
if (!(*_active)[v] && !(*_source_set)[v]) {
|
|
| 804 |
activate(v); |
|
| 805 |
} |
|
| 806 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 807 |
_flow->set(a, (*_capacity)[a]); |
|
| 808 |
} |
|
| 809 |
|
|
| 810 |
for (OutArcIt a(_graph, target); a != INVALID; ++a) {
|
|
| 811 |
Value rem = (*_flow)[a]; |
|
| 812 |
if (!_tolerance.positive(rem)) continue; |
|
| 813 |
Node v = _graph.target(a); |
|
| 814 |
if (!(*_active)[v] && !(*_source_set)[v]) {
|
|
| 815 |
activate(v); |
|
| 816 |
} |
|
| 817 |
_excess->set(v, (*_excess)[v] + rem); |
|
| 818 |
_flow->set(a, 0); |
|
| 819 |
} |
|
| 820 |
|
|
| 821 |
target = new_target; |
|
| 822 |
if ((*_active)[target]) {
|
|
| 823 |
deactivate(target); |
|
| 824 |
} |
|
| 825 |
|
|
| 826 |
_highest = _sets.back().begin(); |
|
| 827 |
while (_highest != _sets.back().end() && |
|
| 828 |
!(*_active)[_first[*_highest]]) {
|
|
| 829 |
++_highest; |
|
| 830 |
} |
|
| 831 |
} |
|
| 832 |
} |
|
| 833 |
} |
|
| 834 |
|
|
| 835 |
public: |
|
| 836 |
|
|
| 837 |
/// \name Execution control |
|
| 838 |
/// The simplest way to execute the algorithm is to use |
|
| 839 |
/// one of the member functions called \c run(...). |
|
| 840 |
/// \n |
|
| 841 |
/// If you need more control on the execution, |
|
| 842 |
/// first you must call \ref init(), then the \ref calculateIn() or |
|
| 843 |
/// \ref calculateIn() functions. |
|
| 844 |
|
|
| 845 |
/// @{
|
|
| 846 |
|
|
| 847 |
/// \brief Initializes the internal data structures. |
|
| 848 |
/// |
|
| 849 |
/// Initializes the internal data structures. It creates |
|
| 850 |
/// the maps, residual graph adaptors and some bucket structures |
|
| 851 |
/// for the algorithm. |
|
| 852 |
void init() {
|
|
| 853 |
init(NodeIt(_graph)); |
|
| 854 |
} |
|
| 855 |
|
|
| 856 |
/// \brief Initializes the internal data structures. |
|
| 857 |
/// |
|
| 858 |
/// Initializes the internal data structures. It creates |
|
| 859 |
/// the maps, residual graph adaptor and some bucket structures |
|
| 860 |
/// for the algorithm. Node \c source is used as the push-relabel |
|
| 861 |
/// algorithm's source. |
|
| 862 |
void init(const Node& source) {
|
|
| 863 |
_source = source; |
|
| 864 |
|
|
| 865 |
_node_num = countNodes(_graph); |
|
| 866 |
|
|
| 867 |
_first.resize(_node_num + 1); |
|
| 868 |
_last.resize(_node_num + 1); |
|
| 869 |
|
|
| 870 |
_dormant.resize(_node_num + 1); |
|
| 871 |
|
|
| 872 |
if (!_flow) {
|
|
| 873 |
_flow = new FlowMap(_graph); |
|
| 874 |
} |
|
| 875 |
if (!_next) {
|
|
| 876 |
_next = new typename Digraph::template NodeMap<Node>(_graph); |
|
| 877 |
} |
|
| 878 |
if (!_prev) {
|
|
| 879 |
_prev = new typename Digraph::template NodeMap<Node>(_graph); |
|
| 880 |
} |
|
| 881 |
if (!_active) {
|
|
| 882 |
_active = new typename Digraph::template NodeMap<bool>(_graph); |
|
| 883 |
} |
|
| 884 |
if (!_bucket) {
|
|
| 885 |
_bucket = new typename Digraph::template NodeMap<int>(_graph); |
|
| 886 |
} |
|
| 887 |
if (!_excess) {
|
|
| 888 |
_excess = new ExcessMap(_graph); |
|
| 889 |
} |
|
| 890 |
if (!_source_set) {
|
|
| 891 |
_source_set = new SourceSetMap(_graph); |
|
| 892 |
} |
|
| 893 |
if (!_min_cut_map) {
|
|
| 894 |
_min_cut_map = new MinCutMap(_graph); |
|
| 895 |
} |
|
| 896 |
|
|
| 897 |
_min_cut = std::numeric_limits<Value>::max(); |
|
| 898 |
} |
|
| 899 |
|
|
| 900 |
|
|
| 901 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
|
| 902 |
/// source-side. |
|
| 903 |
/// |
|
| 904 |
/// Calculates a minimum cut with \f$ source \f$ on the |
|
| 905 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
| 906 |
/// \in X \f$ and minimal out-degree). |
|
| 907 |
void calculateOut() {
|
|
| 908 |
findMinCutOut(); |
|
| 909 |
} |
|
| 910 |
|
|
| 911 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
|
| 912 |
/// target-side. |
|
| 913 |
/// |
|
| 914 |
/// Calculates a minimum cut with \f$ source \f$ on the |
|
| 915 |
/// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
| 916 |
/// \in X \f$ and minimal out-degree). |
|
| 917 |
void calculateIn() {
|
|
| 918 |
findMinCutIn(); |
|
| 919 |
} |
|
| 920 |
|
|
| 921 |
|
|
| 922 |
/// \brief Runs the algorithm. |
|
| 923 |
/// |
|
| 924 |
/// Runs the algorithm. It finds nodes \c source and \c target |
|
| 925 |
/// arbitrarily and then calls \ref init(), \ref calculateOut() |
|
| 926 |
/// and \ref calculateIn(). |
|
| 927 |
void run() {
|
|
| 928 |
init(); |
|
| 929 |
calculateOut(); |
|
| 930 |
calculateIn(); |
|
| 931 |
} |
|
| 932 |
|
|
| 933 |
/// \brief Runs the algorithm. |
|
| 934 |
/// |
|
| 935 |
/// Runs the algorithm. It uses the given \c source node, finds a |
|
| 936 |
/// proper \c target and then calls the \ref init(), \ref |
|
| 937 |
/// calculateOut() and \ref calculateIn(). |
|
| 938 |
void run(const Node& s) {
|
|
| 939 |
init(s); |
|
| 940 |
calculateOut(); |
|
| 941 |
calculateIn(); |
|
| 942 |
} |
|
| 943 |
|
|
| 944 |
/// @} |
|
| 945 |
|
|
| 946 |
/// \name Query Functions |
|
| 947 |
/// The result of the %HaoOrlin algorithm |
|
| 948 |
/// can be obtained using these functions. |
|
| 949 |
/// \n |
|
| 950 |
/// Before using these functions, either \ref run(), \ref |
|
| 951 |
/// calculateOut() or \ref calculateIn() must be called. |
|
| 952 |
|
|
| 953 |
/// @{
|
|
| 954 |
|
|
| 955 |
/// \brief Returns the value of the minimum value cut. |
|
| 956 |
/// |
|
| 957 |
/// Returns the value of the minimum value cut. |
|
| 958 |
Value minCutValue() const {
|
|
| 959 |
return _min_cut; |
|
| 960 |
} |
|
| 961 |
|
|
| 962 |
|
|
| 963 |
/// \brief Returns a minimum cut. |
|
| 964 |
/// |
|
| 965 |
/// Sets \c nodeMap to the characteristic vector of a minimum |
|
| 966 |
/// value cut: it will give a nonempty set \f$ X\subsetneq V \f$ |
|
| 967 |
/// with minimal out-degree (i.e. \c nodeMap will be true exactly |
|
| 968 |
/// for the nodes of \f$ X \f$). \pre nodeMap should be a |
|
| 969 |
/// bool-valued node-map. |
|
| 970 |
template <typename NodeMap> |
|
| 971 |
Value minCutMap(NodeMap& nodeMap) const {
|
|
| 972 |
for (NodeIt it(_graph); it != INVALID; ++it) {
|
|
| 973 |
nodeMap.set(it, (*_min_cut_map)[it]); |
|
| 974 |
} |
|
| 975 |
return _min_cut; |
|
| 976 |
} |
|
| 977 |
|
|
| 978 |
/// @} |
|
| 979 |
|
|
| 980 |
}; //class HaoOrlin |
|
| 981 |
|
|
| 982 |
|
|
| 983 |
} //namespace lemon |
|
| 984 |
|
|
| 985 |
#endif //LEMON_HAO_ORLIN_H |
| ... | ... |
@@ -33,12 +33,13 @@ |
| 33 | 33 |
lemon/error.h \ |
| 34 | 34 |
lemon/full_graph.h \ |
| 35 | 35 |
lemon/graph_to_eps.h \ |
| 36 | 36 |
lemon/grid_graph.h \ |
| 37 | 37 |
lemon/hypercube_graph.h \ |
| 38 | 38 |
lemon/kruskal.h \ |
| 39 |
lemon/hao_orlin.h \ |
|
| 39 | 40 |
lemon/lgf_reader.h \ |
| 40 | 41 |
lemon/lgf_writer.h \ |
| 41 | 42 |
lemon/list_graph.h \ |
| 42 | 43 |
lemon/maps.h \ |
| 43 | 44 |
lemon/math.h \ |
| 44 | 45 |
lemon/max_matching.h \ |
0 comments (0 inline)