0
3
0
... | ... |
@@ -958,442 +958,443 @@ |
958 | 958 |
delete _pcost; |
959 | 959 |
delete _psupply; |
960 | 960 |
_plower = NULL; |
961 | 961 |
_pupper = NULL; |
962 | 962 |
_pcost = NULL; |
963 | 963 |
_psupply = NULL; |
964 | 964 |
_pstsup = false; |
965 | 965 |
_ptype = GEQ; |
966 | 966 |
if (_local_flow) delete _flow_map; |
967 | 967 |
if (_local_potential) delete _potential_map; |
968 | 968 |
_flow_map = NULL; |
969 | 969 |
_potential_map = NULL; |
970 | 970 |
_local_flow = false; |
971 | 971 |
_local_potential = false; |
972 | 972 |
|
973 | 973 |
return *this; |
974 | 974 |
} |
975 | 975 |
|
976 | 976 |
/// @} |
977 | 977 |
|
978 | 978 |
/// \name Query Functions |
979 | 979 |
/// The results of the algorithm can be obtained using these |
980 | 980 |
/// functions.\n |
981 | 981 |
/// The \ref run() function must be called before using them. |
982 | 982 |
|
983 | 983 |
/// @{ |
984 | 984 |
|
985 | 985 |
/// \brief Return the total cost of the found flow. |
986 | 986 |
/// |
987 | 987 |
/// This function returns the total cost of the found flow. |
988 | 988 |
/// The complexity of the function is O(e). |
989 | 989 |
/// |
990 | 990 |
/// \note The return type of the function can be specified as a |
991 | 991 |
/// template parameter. For example, |
992 | 992 |
/// \code |
993 | 993 |
/// ns.totalCost<double>(); |
994 | 994 |
/// \endcode |
995 | 995 |
/// It is useful if the total cost cannot be stored in the \c Cost |
996 | 996 |
/// type of the algorithm, which is the default return type of the |
997 | 997 |
/// function. |
998 | 998 |
/// |
999 | 999 |
/// \pre \ref run() must be called before using this function. |
1000 | 1000 |
template <typename Num> |
1001 | 1001 |
Num totalCost() const { |
1002 | 1002 |
Num c = 0; |
1003 | 1003 |
if (_pcost) { |
1004 | 1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
1005 | 1005 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
1006 | 1006 |
} else { |
1007 | 1007 |
for (ArcIt e(_graph); e != INVALID; ++e) |
1008 | 1008 |
c += (*_flow_map)[e]; |
1009 | 1009 |
} |
1010 | 1010 |
return c; |
1011 | 1011 |
} |
1012 | 1012 |
|
1013 | 1013 |
#ifndef DOXYGEN |
1014 | 1014 |
Cost totalCost() const { |
1015 | 1015 |
return totalCost<Cost>(); |
1016 | 1016 |
} |
1017 | 1017 |
#endif |
1018 | 1018 |
|
1019 | 1019 |
/// \brief Return the flow on the given arc. |
1020 | 1020 |
/// |
1021 | 1021 |
/// This function returns the flow on the given arc. |
1022 | 1022 |
/// |
1023 | 1023 |
/// \pre \ref run() must be called before using this function. |
1024 | 1024 |
Flow flow(const Arc& a) const { |
1025 | 1025 |
return (*_flow_map)[a]; |
1026 | 1026 |
} |
1027 | 1027 |
|
1028 | 1028 |
/// \brief Return a const reference to the flow map. |
1029 | 1029 |
/// |
1030 | 1030 |
/// This function returns a const reference to an arc map storing |
1031 | 1031 |
/// the found flow. |
1032 | 1032 |
/// |
1033 | 1033 |
/// \pre \ref run() must be called before using this function. |
1034 | 1034 |
const FlowMap& flowMap() const { |
1035 | 1035 |
return *_flow_map; |
1036 | 1036 |
} |
1037 | 1037 |
|
1038 | 1038 |
/// \brief Return the potential (dual value) of the given node. |
1039 | 1039 |
/// |
1040 | 1040 |
/// This function returns the potential (dual value) of the |
1041 | 1041 |
/// given node. |
1042 | 1042 |
/// |
1043 | 1043 |
/// \pre \ref run() must be called before using this function. |
1044 | 1044 |
Cost potential(const Node& n) const { |
1045 | 1045 |
return (*_potential_map)[n]; |
1046 | 1046 |
} |
1047 | 1047 |
|
1048 | 1048 |
/// \brief Return a const reference to the potential map |
1049 | 1049 |
/// (the dual solution). |
1050 | 1050 |
/// |
1051 | 1051 |
/// This function returns a const reference to a node map storing |
1052 | 1052 |
/// the found potentials, which form the dual solution of the |
1053 | 1053 |
/// \ref min_cost_flow "minimum cost flow" problem. |
1054 | 1054 |
/// |
1055 | 1055 |
/// \pre \ref run() must be called before using this function. |
1056 | 1056 |
const PotentialMap& potentialMap() const { |
1057 | 1057 |
return *_potential_map; |
1058 | 1058 |
} |
1059 | 1059 |
|
1060 | 1060 |
/// @} |
1061 | 1061 |
|
1062 | 1062 |
private: |
1063 | 1063 |
|
1064 | 1064 |
// Initialize internal data structures |
1065 | 1065 |
bool init() { |
1066 | 1066 |
// Initialize result maps |
1067 | 1067 |
if (!_flow_map) { |
1068 | 1068 |
_flow_map = new FlowMap(_graph); |
1069 | 1069 |
_local_flow = true; |
1070 | 1070 |
} |
1071 | 1071 |
if (!_potential_map) { |
1072 | 1072 |
_potential_map = new PotentialMap(_graph); |
1073 | 1073 |
_local_potential = true; |
1074 | 1074 |
} |
1075 | 1075 |
|
1076 | 1076 |
// Initialize vectors |
1077 | 1077 |
_node_num = countNodes(_graph); |
1078 | 1078 |
_arc_num = countArcs(_graph); |
1079 | 1079 |
int all_node_num = _node_num + 1; |
1080 | 1080 |
int all_arc_num = _arc_num + _node_num; |
1081 | 1081 |
if (_node_num == 0) return false; |
1082 | 1082 |
|
1083 | 1083 |
_arc_ref.resize(_arc_num); |
1084 | 1084 |
_source.resize(all_arc_num); |
1085 | 1085 |
_target.resize(all_arc_num); |
1086 | 1086 |
|
1087 | 1087 |
_cap.resize(all_arc_num); |
1088 | 1088 |
_cost.resize(all_arc_num); |
1089 | 1089 |
_supply.resize(all_node_num); |
1090 | 1090 |
_flow.resize(all_arc_num); |
1091 | 1091 |
_pi.resize(all_node_num); |
1092 | 1092 |
|
1093 | 1093 |
_parent.resize(all_node_num); |
1094 | 1094 |
_pred.resize(all_node_num); |
1095 | 1095 |
_forward.resize(all_node_num); |
1096 | 1096 |
_thread.resize(all_node_num); |
1097 | 1097 |
_rev_thread.resize(all_node_num); |
1098 | 1098 |
_succ_num.resize(all_node_num); |
1099 | 1099 |
_last_succ.resize(all_node_num); |
1100 | 1100 |
_state.resize(all_arc_num); |
1101 | 1101 |
|
1102 | 1102 |
// Initialize node related data |
1103 | 1103 |
bool valid_supply = true; |
1104 | 1104 |
Flow sum_supply = 0; |
1105 | 1105 |
if (!_pstsup && !_psupply) { |
1106 | 1106 |
_pstsup = true; |
1107 | 1107 |
_psource = _ptarget = NodeIt(_graph); |
1108 | 1108 |
_pstflow = 0; |
1109 | 1109 |
} |
1110 | 1110 |
if (_psupply) { |
1111 | 1111 |
int i = 0; |
1112 | 1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1113 | 1113 |
_node_id[n] = i; |
1114 | 1114 |
_supply[i] = (*_psupply)[n]; |
1115 | 1115 |
sum_supply += _supply[i]; |
1116 | 1116 |
} |
1117 | 1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
1118 | 1118 |
(_ptype == LEQ && sum_supply >= 0); |
1119 | 1119 |
} else { |
1120 | 1120 |
int i = 0; |
1121 | 1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1122 | 1122 |
_node_id[n] = i; |
1123 | 1123 |
_supply[i] = 0; |
1124 | 1124 |
} |
1125 | 1125 |
_supply[_node_id[_psource]] = _pstflow; |
1126 | 1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
1127 | 1127 |
} |
1128 | 1128 |
if (!valid_supply) return false; |
1129 | 1129 |
|
1130 | 1130 |
// Infinite capacity value |
1131 | 1131 |
Flow inf_cap = |
1132 | 1132 |
std::numeric_limits<Flow>::has_infinity ? |
1133 | 1133 |
std::numeric_limits<Flow>::infinity() : |
1134 | 1134 |
std::numeric_limits<Flow>::max(); |
1135 | 1135 |
|
1136 | 1136 |
// Initialize artifical cost |
1137 | 1137 |
Cost art_cost; |
1138 | 1138 |
if (std::numeric_limits<Cost>::is_exact) { |
1139 | 1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
1140 | 1140 |
} else { |
1141 | 1141 |
art_cost = std::numeric_limits<Cost>::min(); |
1142 | 1142 |
for (int i = 0; i != _arc_num; ++i) { |
1143 | 1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
1144 | 1144 |
} |
1145 | 1145 |
art_cost = (art_cost + 1) * _node_num; |
1146 | 1146 |
} |
1147 | 1147 |
|
1148 | 1148 |
// Run Circulation to check if a feasible solution exists |
1149 | 1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
1150 | 1151 |
FlowNodeMap *csup = NULL; |
1151 | 1152 |
bool local_csup = false; |
1152 | 1153 |
if (_psupply) { |
1153 | 1154 |
csup = _psupply; |
1154 | 1155 |
} else { |
1155 | 1156 |
csup = new FlowNodeMap(_graph, 0); |
1156 | 1157 |
(*csup)[_psource] = _pstflow; |
1157 | 1158 |
(*csup)[_ptarget] = -_pstflow; |
1158 | 1159 |
local_csup = true; |
1159 | 1160 |
} |
1160 | 1161 |
bool circ_result = false; |
1161 | 1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
1162 | 1163 |
// GEQ problem type |
1163 | 1164 |
if (_plower) { |
1164 | 1165 |
if (_pupper) { |
1165 | 1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
1166 | 1167 |
circ(_graph, *_plower, *_pupper, *csup); |
1167 | 1168 |
circ_result = circ.run(); |
1168 | 1169 |
} else { |
1169 | 1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
1170 |
circ(_graph, *_plower, |
|
1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
1171 | 1172 |
circ_result = circ.run(); |
1172 | 1173 |
} |
1173 | 1174 |
} else { |
1174 | 1175 |
if (_pupper) { |
1175 | 1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
1176 |
circ(_graph, |
|
1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
1177 | 1178 |
circ_result = circ.run(); |
1178 | 1179 |
} else { |
1179 | 1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
1180 |
circ(_graph, |
|
1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
1181 | 1182 |
circ_result = circ.run(); |
1182 | 1183 |
} |
1183 | 1184 |
} |
1184 | 1185 |
} else { |
1185 | 1186 |
// LEQ problem type |
1186 | 1187 |
typedef ReverseDigraph<const GR> RevGraph; |
1187 | 1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
1188 | 1189 |
RevGraph rgraph(_graph); |
1189 | 1190 |
NegNodeMap neg_csup(*csup); |
1190 | 1191 |
if (_plower) { |
1191 | 1192 |
if (_pupper) { |
1192 | 1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
1193 | 1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
1194 | 1195 |
circ_result = circ.run(); |
1195 | 1196 |
} else { |
1196 | 1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
1197 |
circ(rgraph, *_plower, |
|
1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
1198 | 1199 |
circ_result = circ.run(); |
1199 | 1200 |
} |
1200 | 1201 |
} else { |
1201 | 1202 |
if (_pupper) { |
1202 | 1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
1203 |
circ(rgraph, |
|
1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
1204 | 1205 |
circ_result = circ.run(); |
1205 | 1206 |
} else { |
1206 | 1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
1207 |
circ(rgraph, |
|
1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
1208 | 1209 |
circ_result = circ.run(); |
1209 | 1210 |
} |
1210 | 1211 |
} |
1211 | 1212 |
} |
1212 | 1213 |
if (local_csup) delete csup; |
1213 | 1214 |
if (!circ_result) return false; |
1214 | 1215 |
|
1215 | 1216 |
// Set data for the artificial root node |
1216 | 1217 |
_root = _node_num; |
1217 | 1218 |
_parent[_root] = -1; |
1218 | 1219 |
_pred[_root] = -1; |
1219 | 1220 |
_thread[_root] = 0; |
1220 | 1221 |
_rev_thread[0] = _root; |
1221 | 1222 |
_succ_num[_root] = all_node_num; |
1222 | 1223 |
_last_succ[_root] = _root - 1; |
1223 | 1224 |
_supply[_root] = -sum_supply; |
1224 | 1225 |
if (sum_supply < 0) { |
1225 | 1226 |
_pi[_root] = -art_cost; |
1226 | 1227 |
} else { |
1227 | 1228 |
_pi[_root] = art_cost; |
1228 | 1229 |
} |
1229 | 1230 |
|
1230 | 1231 |
// Store the arcs in a mixed order |
1231 | 1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
1232 | 1233 |
int i = 0; |
1233 | 1234 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1234 | 1235 |
_arc_ref[i] = e; |
1235 | 1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1236 | 1237 |
} |
1237 | 1238 |
|
1238 | 1239 |
// Initialize arc maps |
1239 | 1240 |
if (_pupper && _pcost) { |
1240 | 1241 |
for (int i = 0; i != _arc_num; ++i) { |
1241 | 1242 |
Arc e = _arc_ref[i]; |
1242 | 1243 |
_source[i] = _node_id[_graph.source(e)]; |
1243 | 1244 |
_target[i] = _node_id[_graph.target(e)]; |
1244 | 1245 |
_cap[i] = (*_pupper)[e]; |
1245 | 1246 |
_cost[i] = (*_pcost)[e]; |
1246 | 1247 |
_flow[i] = 0; |
1247 | 1248 |
_state[i] = STATE_LOWER; |
1248 | 1249 |
} |
1249 | 1250 |
} else { |
1250 | 1251 |
for (int i = 0; i != _arc_num; ++i) { |
1251 | 1252 |
Arc e = _arc_ref[i]; |
1252 | 1253 |
_source[i] = _node_id[_graph.source(e)]; |
1253 | 1254 |
_target[i] = _node_id[_graph.target(e)]; |
1254 | 1255 |
_flow[i] = 0; |
1255 | 1256 |
_state[i] = STATE_LOWER; |
1256 | 1257 |
} |
1257 | 1258 |
if (_pupper) { |
1258 | 1259 |
for (int i = 0; i != _arc_num; ++i) |
1259 | 1260 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1260 | 1261 |
} else { |
1261 | 1262 |
for (int i = 0; i != _arc_num; ++i) |
1262 | 1263 |
_cap[i] = inf_cap; |
1263 | 1264 |
} |
1264 | 1265 |
if (_pcost) { |
1265 | 1266 |
for (int i = 0; i != _arc_num; ++i) |
1266 | 1267 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1267 | 1268 |
} else { |
1268 | 1269 |
for (int i = 0; i != _arc_num; ++i) |
1269 | 1270 |
_cost[i] = 1; |
1270 | 1271 |
} |
1271 | 1272 |
} |
1272 | 1273 |
|
1273 | 1274 |
// Remove non-zero lower bounds |
1274 | 1275 |
if (_plower) { |
1275 | 1276 |
for (int i = 0; i != _arc_num; ++i) { |
1276 | 1277 |
Flow c = (*_plower)[_arc_ref[i]]; |
1277 | 1278 |
if (c != 0) { |
1278 | 1279 |
_cap[i] -= c; |
1279 | 1280 |
_supply[_source[i]] -= c; |
1280 | 1281 |
_supply[_target[i]] += c; |
1281 | 1282 |
} |
1282 | 1283 |
} |
1283 | 1284 |
} |
1284 | 1285 |
|
1285 | 1286 |
// Add artificial arcs and initialize the spanning tree data structure |
1286 | 1287 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1287 | 1288 |
_thread[u] = u + 1; |
1288 | 1289 |
_rev_thread[u + 1] = u; |
1289 | 1290 |
_succ_num[u] = 1; |
1290 | 1291 |
_last_succ[u] = u; |
1291 | 1292 |
_parent[u] = _root; |
1292 | 1293 |
_pred[u] = e; |
1293 | 1294 |
_cost[e] = art_cost; |
1294 | 1295 |
_cap[e] = inf_cap; |
1295 | 1296 |
_state[e] = STATE_TREE; |
1296 | 1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) { |
1297 | 1298 |
_flow[e] = _supply[u]; |
1298 | 1299 |
_forward[u] = true; |
1299 | 1300 |
_pi[u] = -art_cost + _pi[_root]; |
1300 | 1301 |
} else { |
1301 | 1302 |
_flow[e] = -_supply[u]; |
1302 | 1303 |
_forward[u] = false; |
1303 | 1304 |
_pi[u] = art_cost + _pi[_root]; |
1304 | 1305 |
} |
1305 | 1306 |
} |
1306 | 1307 |
|
1307 | 1308 |
return true; |
1308 | 1309 |
} |
1309 | 1310 |
|
1310 | 1311 |
// Find the join node |
1311 | 1312 |
void findJoinNode() { |
1312 | 1313 |
int u = _source[in_arc]; |
1313 | 1314 |
int v = _target[in_arc]; |
1314 | 1315 |
while (u != v) { |
1315 | 1316 |
if (_succ_num[u] < _succ_num[v]) { |
1316 | 1317 |
u = _parent[u]; |
1317 | 1318 |
} else { |
1318 | 1319 |
v = _parent[v]; |
1319 | 1320 |
} |
1320 | 1321 |
} |
1321 | 1322 |
join = u; |
1322 | 1323 |
} |
1323 | 1324 |
|
1324 | 1325 |
// Find the leaving arc of the cycle and returns true if the |
1325 | 1326 |
// leaving arc is not the same as the entering arc |
1326 | 1327 |
bool findLeavingArc() { |
1327 | 1328 |
// Initialize first and second nodes according to the direction |
1328 | 1329 |
// of the cycle |
1329 | 1330 |
if (_state[in_arc] == STATE_LOWER) { |
1330 | 1331 |
first = _source[in_arc]; |
1331 | 1332 |
second = _target[in_arc]; |
1332 | 1333 |
} else { |
1333 | 1334 |
first = _target[in_arc]; |
1334 | 1335 |
second = _source[in_arc]; |
1335 | 1336 |
} |
1336 | 1337 |
delta = _cap[in_arc]; |
1337 | 1338 |
int result = 0; |
1338 | 1339 |
Flow d; |
1339 | 1340 |
int e; |
1340 | 1341 |
|
1341 | 1342 |
// Search the cycle along the path form the first node to the root |
1342 | 1343 |
for (int u = first; u != join; u = _parent[u]) { |
1343 | 1344 |
e = _pred[u]; |
1344 | 1345 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
1345 | 1346 |
if (d < delta) { |
1346 | 1347 |
delta = d; |
1347 | 1348 |
u_out = u; |
1348 | 1349 |
result = 1; |
1349 | 1350 |
} |
1350 | 1351 |
} |
1351 | 1352 |
// Search the cycle along the path form the second node to the root |
1352 | 1353 |
for (int u = second; u != join; u = _parent[u]) { |
1353 | 1354 |
e = _pred[u]; |
1354 | 1355 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
1355 | 1356 |
if (d <= delta) { |
1356 | 1357 |
delta = d; |
1357 | 1358 |
u_out = u; |
1358 | 1359 |
result = 2; |
1359 | 1360 |
} |
1360 | 1361 |
} |
1361 | 1362 |
|
1362 | 1363 |
if (result == 1) { |
1363 | 1364 |
u_in = first; |
1364 | 1365 |
v_in = second; |
1365 | 1366 |
} else { |
1366 | 1367 |
u_in = second; |
1367 | 1368 |
v_in = first; |
1368 | 1369 |
} |
1369 | 1370 |
return result != 0; |
1370 | 1371 |
} |
1371 | 1372 |
|
1372 | 1373 |
// Change _flow and _state vectors |
1373 | 1374 |
void changeFlow(bool change) { |
1374 | 1375 |
// Augment along the cycle |
1375 | 1376 |
if (delta > 0) { |
1376 | 1377 |
Flow val = _state[in_arc] * delta; |
1377 | 1378 |
_flow[in_arc] += val; |
1378 | 1379 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1379 | 1380 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1380 | 1381 |
} |
1381 | 1382 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1382 | 1383 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1383 | 1384 |
} |
1384 | 1385 |
} |
1385 | 1386 |
// Update the state of the entering and leaving arcs |
1386 | 1387 |
if (change) { |
1387 | 1388 |
_state[in_arc] = STATE_TREE; |
1388 | 1389 |
_state[_pred[u_out]] = |
1389 | 1390 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1390 | 1391 |
} else { |
1391 | 1392 |
_state[in_arc] = -_state[in_arc]; |
1392 | 1393 |
} |
1393 | 1394 |
} |
1394 | 1395 |
|
1395 | 1396 |
// Update the tree structure |
1396 | 1397 |
void updateTreeStructure() { |
1397 | 1398 |
int u, w; |
1398 | 1399 |
int old_rev_thread = _rev_thread[u_out]; |
1399 | 1400 |
int old_succ_num = _succ_num[u_out]; |
... | ... |
@@ -44,296 +44,291 @@ |
44 | 44 |
" 8 0 0 0 0 3\n" |
45 | 45 |
" 9 3 0 0 0 0\n" |
46 | 46 |
" 10 -2 0 0 -7 -2\n" |
47 | 47 |
" 11 0 0 0 -10 0\n" |
48 | 48 |
" 12 -20 -27 0 -30 -20\n" |
49 | 49 |
"\n" |
50 | 50 |
"@arcs\n" |
51 | 51 |
" cost cap low1 low2\n" |
52 | 52 |
" 1 2 70 11 0 8\n" |
53 | 53 |
" 1 3 150 3 0 1\n" |
54 | 54 |
" 1 4 80 15 0 2\n" |
55 | 55 |
" 2 8 80 12 0 0\n" |
56 | 56 |
" 3 5 140 5 0 3\n" |
57 | 57 |
" 4 6 60 10 0 1\n" |
58 | 58 |
" 4 7 80 2 0 0\n" |
59 | 59 |
" 4 8 110 3 0 0\n" |
60 | 60 |
" 5 7 60 14 0 0\n" |
61 | 61 |
" 5 11 120 12 0 0\n" |
62 | 62 |
" 6 3 0 3 0 0\n" |
63 | 63 |
" 6 9 140 4 0 0\n" |
64 | 64 |
" 6 10 90 8 0 0\n" |
65 | 65 |
" 7 1 30 5 0 0\n" |
66 | 66 |
" 8 12 60 16 0 4\n" |
67 | 67 |
" 9 12 50 6 0 0\n" |
68 | 68 |
"10 12 70 13 0 5\n" |
69 | 69 |
"10 2 100 7 0 0\n" |
70 | 70 |
"10 7 60 10 0 0\n" |
71 | 71 |
"11 10 20 14 0 6\n" |
72 | 72 |
"12 11 30 10 0 0\n" |
73 | 73 |
"\n" |
74 | 74 |
"@attributes\n" |
75 | 75 |
"source 1\n" |
76 | 76 |
"target 12\n"; |
77 | 77 |
|
78 | 78 |
|
79 | 79 |
enum ProblemType { |
80 | 80 |
EQ, |
81 | 81 |
GEQ, |
82 | 82 |
LEQ |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
// Check the interface of an MCF algorithm |
86 | 86 |
template <typename GR, typename Flow, typename Cost> |
87 | 87 |
class McfClassConcept |
88 | 88 |
{ |
89 | 89 |
public: |
90 | 90 |
|
91 | 91 |
template <typename MCF> |
92 | 92 |
struct Constraints { |
93 | 93 |
void constraints() { |
94 | 94 |
checkConcept<concepts::Digraph, GR>(); |
95 | 95 |
|
96 | 96 |
MCF mcf(g); |
97 | 97 |
|
98 | 98 |
b = mcf.reset() |
99 | 99 |
.lowerMap(lower) |
100 | 100 |
.upperMap(upper) |
101 | 101 |
.capacityMap(upper) |
102 | 102 |
.boundMaps(lower, upper) |
103 | 103 |
.costMap(cost) |
104 | 104 |
.supplyMap(sup) |
105 | 105 |
.stSupply(n, n, k) |
106 | 106 |
.flowMap(flow) |
107 | 107 |
.potentialMap(pot) |
108 | 108 |
.run(); |
109 | 109 |
|
110 | 110 |
const MCF& const_mcf = mcf; |
111 | 111 |
|
112 | 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
113 | 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
114 | 114 |
|
115 | 115 |
v = const_mcf.totalCost(); |
116 | 116 |
double x = const_mcf.template totalCost<double>(); |
117 | 117 |
v = const_mcf.flow(a); |
118 | 118 |
v = const_mcf.potential(n); |
119 | 119 |
|
120 | 120 |
ignore_unused_variable_warning(fm); |
121 | 121 |
ignore_unused_variable_warning(pm); |
122 | 122 |
ignore_unused_variable_warning(x); |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
typedef typename GR::Node Node; |
126 | 126 |
typedef typename GR::Arc Arc; |
127 | 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
128 | 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
129 | 129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
130 | 130 |
|
131 | 131 |
const GR &g; |
132 | 132 |
const FAM &lower; |
133 | 133 |
const FAM &upper; |
134 | 134 |
const CAM &cost; |
135 | 135 |
const NM ⊃ |
136 | 136 |
const Node &n; |
137 | 137 |
const Arc &a; |
138 | 138 |
const Flow &k; |
139 | 139 |
Flow v; |
140 | 140 |
bool b; |
141 | 141 |
|
142 | 142 |
typename MCF::FlowMap &flow; |
143 | 143 |
typename MCF::PotentialMap &pot; |
144 | 144 |
}; |
145 | 145 |
|
146 | 146 |
}; |
147 | 147 |
|
148 | 148 |
|
149 | 149 |
// Check the feasibility of the given flow (primal soluiton) |
150 | 150 |
template < typename GR, typename LM, typename UM, |
151 | 151 |
typename SM, typename FM > |
152 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
153 | 153 |
const SM& supply, const FM& flow, |
154 | 154 |
ProblemType type = EQ ) |
155 | 155 |
{ |
156 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
157 | 157 |
|
158 | 158 |
for (ArcIt e(gr); e != INVALID; ++e) { |
159 | 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
for (NodeIt n(gr); n != INVALID; ++n) { |
163 | 163 |
typename SM::Value sum = 0; |
164 | 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
165 | 165 |
sum += flow[e]; |
166 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
167 | 167 |
sum -= flow[e]; |
168 | 168 |
bool b = (type == EQ && sum == supply[n]) || |
169 | 169 |
(type == GEQ && sum >= supply[n]) || |
170 | 170 |
(type == LEQ && sum <= supply[n]); |
171 | 171 |
if (!b) return false; |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
return true; |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
178 | 178 |
// using the "Complementary Slackness" optimality condition |
179 | 179 |
template < typename GR, typename LM, typename UM, |
180 | 180 |
typename CM, typename SM, typename FM, typename PM > |
181 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
182 | 182 |
const CM& cost, const SM& supply, const FM& flow, |
183 | 183 |
const PM& pi ) |
184 | 184 |
{ |
185 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
186 | 186 |
|
187 | 187 |
bool opt = true; |
188 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
189 | 189 |
typename CM::Value red_cost = |
190 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
191 | 191 |
opt = red_cost == 0 || |
192 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
193 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
197 | 197 |
typename SM::Value sum = 0; |
198 | 198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
199 | 199 |
sum += flow[e]; |
200 | 200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
201 | 201 |
sum -= flow[e]; |
202 | 202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
203 | 203 |
} |
204 | 204 |
|
205 | 205 |
return opt; |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
// Run a minimum cost flow algorithm and check the results |
209 | 209 |
template < typename MCF, typename GR, |
210 | 210 |
typename LM, typename UM, |
211 | 211 |
typename CM, typename SM > |
212 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
213 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
214 | 214 |
const CM& cost, const SM& supply, |
215 | 215 |
bool result, typename CM::Value total, |
216 | 216 |
const std::string &test_id = "", |
217 | 217 |
ProblemType type = EQ ) |
218 | 218 |
{ |
219 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
220 | 220 |
if (result) { |
221 | 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
222 | 222 |
"The flow is not feasible " + test_id); |
223 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
224 | 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
225 | 225 |
mcf.potentialMap()), |
226 | 226 |
"Wrong potentials " + test_id); |
227 | 227 |
} |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
int main() |
231 | 231 |
{ |
232 | 232 |
// Check the interfaces |
233 | 233 |
{ |
234 | 234 |
typedef int Flow; |
235 | 235 |
typedef int Cost; |
236 |
// TODO: This typedef should be enabled if the standard maps are |
|
237 |
// reference maps in the graph concepts (See #190). |
|
238 |
/**/ |
|
239 |
//typedef concepts::Digraph GR; |
|
240 |
typedef ListDigraph GR; |
|
241 |
/**/ |
|
236 |
typedef concepts::Digraph GR; |
|
242 | 237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
243 | 238 |
NetworkSimplex<GR, Flow, Cost> >(); |
244 | 239 |
} |
245 | 240 |
|
246 | 241 |
// Run various MCF tests |
247 | 242 |
typedef ListDigraph Digraph; |
248 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
249 | 244 |
|
250 | 245 |
// Read the test digraph |
251 | 246 |
Digraph gr; |
252 | 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
253 | 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
254 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
255 | 250 |
Node v, w; |
256 | 251 |
|
257 | 252 |
std::istringstream input(test_lgf); |
258 | 253 |
DigraphReader<Digraph>(gr, input) |
259 | 254 |
.arcMap("cost", c) |
260 | 255 |
.arcMap("cap", u) |
261 | 256 |
.arcMap("low1", l1) |
262 | 257 |
.arcMap("low2", l2) |
263 | 258 |
.nodeMap("sup1", s1) |
264 | 259 |
.nodeMap("sup2", s2) |
265 | 260 |
.nodeMap("sup3", s3) |
266 | 261 |
.nodeMap("sup4", s4) |
267 | 262 |
.nodeMap("sup5", s5) |
268 | 263 |
.node("source", v) |
269 | 264 |
.node("target", w) |
270 | 265 |
.run(); |
271 | 266 |
|
272 | 267 |
// A. Test NetworkSimplex with the default pivot rule |
273 | 268 |
{ |
274 | 269 |
NetworkSimplex<Digraph> mcf(gr); |
275 | 270 |
|
276 | 271 |
// Check the equality form |
277 | 272 |
mcf.upperMap(u).costMap(c); |
278 | 273 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
279 | 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
280 | 275 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
281 | 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
282 | 277 |
mcf.lowerMap(l2); |
283 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
284 | 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
285 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
286 | 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
287 | 282 |
mcf.reset(); |
288 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
289 | 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
290 | 285 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
291 | 286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
292 | 287 |
mcf.reset(); |
293 | 288 |
checkMcf(mcf, mcf.run(), |
294 | 289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
295 | 290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
296 | 291 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
297 | 292 |
|
298 | 293 |
// Check the GEQ form |
299 | 294 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
300 | 295 |
checkMcf(mcf, mcf.run(), |
301 | 296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
302 | 297 |
mcf.problemType(mcf.GEQ); |
303 | 298 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
304 | 299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
305 | 300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
306 | 301 |
checkMcf(mcf, mcf.run(), |
307 | 302 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
308 | 303 |
|
309 | 304 |
// Check the LEQ form |
310 | 305 |
mcf.reset().problemType(mcf.LEQ); |
311 | 306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
312 | 307 |
checkMcf(mcf, mcf.run(), |
313 | 308 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
314 | 309 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
315 | 310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
316 | 311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
317 | 312 |
checkMcf(mcf, mcf.run(), |
318 | 313 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
319 | 314 |
} |
320 | 315 |
|
321 | 316 |
// B. Test NetworkSimplex with each pivot rule |
322 | 317 |
{ |
323 | 318 |
NetworkSimplex<Digraph> mcf(gr); |
324 | 319 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
325 | 320 |
|
326 | 321 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
327 | 322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
328 | 323 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
329 | 324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
330 | 325 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
331 | 326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
332 | 327 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
333 | 328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
334 | 329 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
335 | 330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
336 | 331 |
} |
337 | 332 |
|
338 | 333 |
return 0; |
339 | 334 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS problem solver. |
22 | 22 |
/// |
23 | 23 |
/// This program solves various problems given in DIMACS format. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 | 26 |
/// \code |
27 | 27 |
/// dimacs-solver --help |
28 | 28 |
/// \endcode |
29 | 29 |
/// for more info on usage. |
30 | 30 |
|
31 | 31 |
#include <iostream> |
32 | 32 |
#include <fstream> |
33 | 33 |
#include <cstring> |
34 | 34 |
|
35 | 35 |
#include <lemon/smart_graph.h> |
36 | 36 |
#include <lemon/dimacs.h> |
37 | 37 |
#include <lemon/lgf_writer.h> |
38 | 38 |
#include <lemon/time_measure.h> |
39 | 39 |
|
40 | 40 |
#include <lemon/arg_parser.h> |
41 | 41 |
#include <lemon/error.h> |
42 | 42 |
|
43 | 43 |
#include <lemon/dijkstra.h> |
44 | 44 |
#include <lemon/preflow.h> |
45 | 45 |
#include <lemon/matching.h> |
46 | 46 |
#include <lemon/network_simplex.h> |
47 | 47 |
|
48 | 48 |
using namespace lemon; |
49 | 49 |
typedef SmartDigraph Digraph; |
50 | 50 |
DIGRAPH_TYPEDEFS(Digraph); |
51 | 51 |
typedef SmartGraph Graph; |
52 | 52 |
|
53 | 53 |
template<class Value> |
54 | 54 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
55 | 55 |
DimacsDescriptor &desc) |
56 | 56 |
{ |
57 | 57 |
bool report = !ap.given("q"); |
58 | 58 |
Digraph g; |
59 | 59 |
Node s; |
60 | 60 |
Digraph::ArcMap<Value> len(g); |
61 | 61 |
Timer t; |
62 | 62 |
t.restart(); |
63 | 63 |
readDimacsSp(is, g, len, s, desc); |
64 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
65 | 65 |
t.restart(); |
66 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
67 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
68 | 68 |
t.restart(); |
69 | 69 |
dij.run(s); |
70 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
template<class Value> |
74 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
75 | 75 |
Value infty, DimacsDescriptor &desc) |
76 | 76 |
{ |
77 | 77 |
bool report = !ap.given("q"); |
78 | 78 |
Digraph g; |
79 | 79 |
Node s,t; |
80 | 80 |
Digraph::ArcMap<Value> cap(g); |
81 | 81 |
Timer ti; |
82 | 82 |
ti.restart(); |
83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
85 | 85 |
ti.restart(); |
86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
88 | 88 |
ti.restart(); |
89 | 89 |
pre.run(); |
90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
91 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
template<class Value> |
95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
96 |
DimacsDescriptor &desc) |
|
96 |
Value infty, DimacsDescriptor &desc) |
|
97 | 97 |
{ |
98 | 98 |
bool report = !ap.given("q"); |
99 | 99 |
Digraph g; |
100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
101 | 101 |
Digraph::NodeMap<Value> sup(g); |
102 | 102 |
Timer ti; |
103 |
|
|
103 | 104 |
ti.restart(); |
104 |
readDimacsMin(is, g, lower, cap, cost, sup, |
|
105 |
readDimacsMin(is, g, lower, cap, cost, sup, infty, desc); |
|
106 |
ti.stop(); |
|
107 |
Value sum_sup = 0; |
|
108 |
for (Digraph::NodeIt n(g); n != INVALID; ++n) { |
|
109 |
sum_sup += sup[n]; |
|
110 |
} |
|
111 |
if (report) { |
|
112 |
std::cerr << "Sum of supply values: " << sum_sup << "\n"; |
|
113 |
if (sum_sup <= 0) |
|
114 |
std::cerr << "GEQ supply contraints are used for NetworkSimplex\n\n"; |
|
115 |
else |
|
116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
|
117 |
} |
|
105 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
119 |
|
|
106 | 120 |
ti.restart(); |
107 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
108 | 122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
109 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
110 | 125 |
ti.restart(); |
111 |
ns.run(); |
|
112 |
if (report) std::cerr << "Run NetworkSimplex: " << ti << '\n'; |
|
113 |
|
|
126 |
bool res = ns.run(); |
|
127 |
if (report) { |
|
128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
|
129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
|
130 |
if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; |
|
131 |
} |
|
114 | 132 |
} |
115 | 133 |
|
116 | 134 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
117 | 135 |
DimacsDescriptor &desc) |
118 | 136 |
{ |
119 | 137 |
bool report = !ap.given("q"); |
120 | 138 |
Graph g; |
121 | 139 |
Timer ti; |
122 | 140 |
ti.restart(); |
123 | 141 |
readDimacsMat(is, g, desc); |
124 | 142 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
125 | 143 |
ti.restart(); |
126 | 144 |
MaxMatching<Graph> mat(g); |
127 | 145 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
128 | 146 |
ti.restart(); |
129 | 147 |
mat.run(); |
130 | 148 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
131 | 149 |
if(report) std::cerr << "\nCardinality of max matching: " |
132 | 150 |
<< mat.matchingSize() << '\n'; |
133 | 151 |
} |
134 | 152 |
|
135 | 153 |
|
136 | 154 |
template<class Value> |
137 | 155 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
138 | 156 |
DimacsDescriptor &desc) |
139 | 157 |
{ |
140 | 158 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
141 | 159 |
Value infty; |
142 | 160 |
iss >> infty; |
143 | 161 |
if(iss.fail()) |
144 | 162 |
{ |
145 | 163 |
std::cerr << "Cannot interpret '" |
146 | 164 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
147 | 165 |
<< std::endl; |
148 | 166 |
exit(1); |
149 | 167 |
} |
150 | 168 |
|
151 | 169 |
switch(desc.type) |
152 | 170 |
{ |
153 | 171 |
case DimacsDescriptor::MIN: |
154 |
solve_min<Value>(ap,is,os,desc); |
|
172 |
solve_min<Value>(ap,is,os,infty,desc); |
|
155 | 173 |
break; |
156 | 174 |
case DimacsDescriptor::MAX: |
157 | 175 |
solve_max<Value>(ap,is,os,infty,desc); |
158 | 176 |
break; |
159 | 177 |
case DimacsDescriptor::SP: |
160 | 178 |
solve_sp<Value>(ap,is,os,desc); |
161 | 179 |
break; |
162 | 180 |
case DimacsDescriptor::MAT: |
163 | 181 |
solve_mat(ap,is,os,desc); |
164 | 182 |
break; |
165 | 183 |
default: |
166 | 184 |
break; |
167 | 185 |
} |
168 | 186 |
} |
169 | 187 |
|
170 | 188 |
int main(int argc, const char *argv[]) { |
171 | 189 |
typedef SmartDigraph Digraph; |
172 | 190 |
|
173 | 191 |
typedef Digraph::Arc Arc; |
174 | 192 |
|
175 | 193 |
std::string inputName; |
176 | 194 |
std::string outputName; |
177 | 195 |
|
178 | 196 |
ArgParser ap(argc, argv); |
179 | 197 |
ap.other("[INFILE [OUTFILE]]", |
180 | 198 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
181 | 199 |
" input/output will be used instead.") |
182 | 200 |
.boolOption("q", "Do not print any report") |
183 | 201 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)") |
184 | 202 |
.optionGroup("datatype","int") |
185 | 203 |
#ifdef HAVE_LONG_LONG |
186 | 204 |
.boolOption("long","Use 'long long' for capacities, costs etc.") |
187 | 205 |
.optionGroup("datatype","long") |
188 | 206 |
#endif |
189 | 207 |
.boolOption("double","Use 'double' for capacities, costs etc.") |
190 | 208 |
.optionGroup("datatype","double") |
191 | 209 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.") |
192 | 210 |
.optionGroup("datatype","ldouble") |
193 | 211 |
.onlyOneGroup("datatype") |
194 | 212 |
.stringOption("infcap","Value used for 'very high' capacities","0") |
195 | 213 |
.run(); |
196 | 214 |
|
197 | 215 |
std::ifstream input; |
198 | 216 |
std::ofstream output; |
199 | 217 |
|
200 | 218 |
switch(ap.files().size()) |
201 | 219 |
{ |
202 | 220 |
case 2: |
203 | 221 |
output.open(ap.files()[1].c_str()); |
204 | 222 |
if (!output) { |
205 | 223 |
throw IoError("Cannot open the file for writing", ap.files()[1]); |
206 | 224 |
} |
207 | 225 |
case 1: |
208 | 226 |
input.open(ap.files()[0].c_str()); |
209 | 227 |
if (!input) { |
210 | 228 |
throw IoError("File cannot be found", ap.files()[0]); |
211 | 229 |
} |
212 | 230 |
case 0: |
213 | 231 |
break; |
214 | 232 |
default: |
215 | 233 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
216 | 234 |
return 1; |
217 | 235 |
} |
218 | 236 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
219 | 237 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
220 | 238 |
|
221 | 239 |
DimacsDescriptor desc = dimacsType(is); |
222 | 240 |
|
223 | 241 |
if(!ap.given("q")) |
224 | 242 |
{ |
225 | 243 |
std::cout << "Problem type: "; |
226 | 244 |
switch(desc.type) |
227 | 245 |
{ |
228 | 246 |
case DimacsDescriptor::MIN: |
229 | 247 |
std::cout << "min"; |
230 | 248 |
break; |
231 | 249 |
case DimacsDescriptor::MAX: |
232 | 250 |
std::cout << "max"; |
233 | 251 |
break; |
234 | 252 |
case DimacsDescriptor::SP: |
235 | 253 |
std::cout << "sp"; |
236 | 254 |
case DimacsDescriptor::MAT: |
237 | 255 |
std::cout << "mat"; |
238 | 256 |
break; |
239 | 257 |
default: |
240 | 258 |
exit(1); |
241 | 259 |
break; |
242 | 260 |
} |
243 | 261 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
244 | 262 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
245 | 263 |
std::cout << "\n\n"; |
246 | 264 |
} |
247 | 265 |
|
248 | 266 |
if(ap.given("double")) |
249 | 267 |
solve<double>(ap,is,os,desc); |
250 | 268 |
else if(ap.given("ldouble")) |
251 | 269 |
solve<long double>(ap,is,os,desc); |
252 | 270 |
#ifdef HAVE_LONG_LONG |
253 | 271 |
else if(ap.given("long")) |
254 | 272 |
solve<long long>(ap,is,os,desc); |
255 | 273 |
#endif |
256 | 274 |
else solve<int>(ap,is,os,desc); |
257 | 275 |
|
258 | 276 |
return 0; |
259 | 277 |
} |
0 comments (0 inline)