0
25
6
1100
100
57
59
62
110
110
166
139
55
60
60
60
2
9
125
118
945
30
20
11
184
179
Changeset was too big and was cut off... Show full diff
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
| 20 |
#define LEMON_BELLMAN_FORD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Bellman-Ford algorithm. |
|
| 25 |
|
|
| 26 |
#include <lemon/bits/path_dump.h> |
|
| 27 |
#include <lemon/core.h> |
|
| 28 |
#include <lemon/error.h> |
|
| 29 |
#include <lemon/maps.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
|
|
| 32 |
#include <limits> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 37 |
/// |
|
| 38 |
/// This operation traits class defines all computational operations |
|
| 39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 40 |
/// The default implementation is based on the \c numeric_limits class. |
|
| 41 |
/// If the numeric type does not have infinity value, then the maximum |
|
| 42 |
/// value is used as extremal infinity value. |
|
| 43 |
template < |
|
| 44 |
typename V, |
|
| 45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
| 46 |
struct BellmanFordDefaultOperationTraits {
|
|
| 47 |
/// \e |
|
| 48 |
typedef V Value; |
|
| 49 |
/// \brief Gives back the zero value of the type. |
|
| 50 |
static Value zero() {
|
|
| 51 |
return static_cast<Value>(0); |
|
| 52 |
} |
|
| 53 |
/// \brief Gives back the positive infinity value of the type. |
|
| 54 |
static Value infinity() {
|
|
| 55 |
return std::numeric_limits<Value>::infinity(); |
|
| 56 |
} |
|
| 57 |
/// \brief Gives back the sum of the given two elements. |
|
| 58 |
static Value plus(const Value& left, const Value& right) {
|
|
| 59 |
return left + right; |
|
| 60 |
} |
|
| 61 |
/// \brief Gives back \c true only if the first value is less than |
|
| 62 |
/// the second. |
|
| 63 |
static bool less(const Value& left, const Value& right) {
|
|
| 64 |
return left < right; |
|
| 65 |
} |
|
| 66 |
}; |
|
| 67 |
|
|
| 68 |
template <typename V> |
|
| 69 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
| 70 |
typedef V Value; |
|
| 71 |
static Value zero() {
|
|
| 72 |
return static_cast<Value>(0); |
|
| 73 |
} |
|
| 74 |
static Value infinity() {
|
|
| 75 |
return std::numeric_limits<Value>::max(); |
|
| 76 |
} |
|
| 77 |
static Value plus(const Value& left, const Value& right) {
|
|
| 78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
| 79 |
return left + right; |
|
| 80 |
} |
|
| 81 |
static bool less(const Value& left, const Value& right) {
|
|
| 82 |
return left < right; |
|
| 83 |
} |
|
| 84 |
}; |
|
| 85 |
|
|
| 86 |
/// \brief Default traits class of BellmanFord class. |
|
| 87 |
/// |
|
| 88 |
/// Default traits class of BellmanFord class. |
|
| 89 |
/// \param GR The type of the digraph. |
|
| 90 |
/// \param LEN The type of the length map. |
|
| 91 |
template<typename GR, typename LEN> |
|
| 92 |
struct BellmanFordDefaultTraits {
|
|
| 93 |
/// The type of the digraph the algorithm runs on. |
|
| 94 |
typedef GR Digraph; |
|
| 95 |
|
|
| 96 |
/// \brief The type of the map that stores the arc lengths. |
|
| 97 |
/// |
|
| 98 |
/// The type of the map that stores the arc lengths. |
|
| 99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 100 |
typedef LEN LengthMap; |
|
| 101 |
|
|
| 102 |
/// The type of the arc lengths. |
|
| 103 |
typedef typename LEN::Value Value; |
|
| 104 |
|
|
| 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 106 |
/// |
|
| 107 |
/// It defines the used operations and the infinity value for the |
|
| 108 |
/// given \c Value type. |
|
| 109 |
/// \see BellmanFordDefaultOperationTraits |
|
| 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 111 |
|
|
| 112 |
/// \brief The type of the map that stores the last arcs of the |
|
| 113 |
/// shortest paths. |
|
| 114 |
/// |
|
| 115 |
/// The type of the map that stores the last |
|
| 116 |
/// arcs of the shortest paths. |
|
| 117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 119 |
|
|
| 120 |
/// \brief Instantiates a \c PredMap. |
|
| 121 |
/// |
|
| 122 |
/// This function instantiates a \ref PredMap. |
|
| 123 |
/// \param g is the digraph to which we would like to define the |
|
| 124 |
/// \ref PredMap. |
|
| 125 |
static PredMap *createPredMap(const GR& g) {
|
|
| 126 |
return new PredMap(g); |
|
| 127 |
} |
|
| 128 |
|
|
| 129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 130 |
/// |
|
| 131 |
/// The type of the map that stores the distances of the nodes. |
|
| 132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
| 134 |
|
|
| 135 |
/// \brief Instantiates a \c DistMap. |
|
| 136 |
/// |
|
| 137 |
/// This function instantiates a \ref DistMap. |
|
| 138 |
/// \param g is the digraph to which we would like to define the |
|
| 139 |
/// \ref DistMap. |
|
| 140 |
static DistMap *createDistMap(const GR& g) {
|
|
| 141 |
return new DistMap(g); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
}; |
|
| 145 |
|
|
| 146 |
/// \brief %BellmanFord algorithm class. |
|
| 147 |
/// |
|
| 148 |
/// \ingroup shortest_path |
|
| 149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
| 151 |
/// <tt>O(ne)</tt>. |
|
| 152 |
/// |
|
| 153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
| 154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
| 155 |
/// should not contain directed cycles with negative total length. |
|
| 156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
| 157 |
/// algorithm instead, since it is more efficient. |
|
| 158 |
/// |
|
| 159 |
/// The arc lengths are passed to the algorithm using a |
|
| 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 161 |
/// kind of length. The type of the length values is determined by the |
|
| 162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
| 163 |
/// |
|
| 164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
| 165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
| 166 |
/// it can be used easier. |
|
| 167 |
/// |
|
| 168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 169 |
/// The default type is \ref ListDigraph. |
|
| 170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
| 171 |
/// the lengths of the arcs. The default map type is |
|
| 172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 173 |
#ifdef DOXYGEN |
|
| 174 |
template <typename GR, typename LEN, typename TR> |
|
| 175 |
#else |
|
| 176 |
template <typename GR=ListDigraph, |
|
| 177 |
typename LEN=typename GR::template ArcMap<int>, |
|
| 178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
| 179 |
#endif |
|
| 180 |
class BellmanFord {
|
|
| 181 |
public: |
|
| 182 |
|
|
| 183 |
///The type of the underlying digraph. |
|
| 184 |
typedef typename TR::Digraph Digraph; |
|
| 185 |
|
|
| 186 |
/// \brief The type of the arc lengths. |
|
| 187 |
typedef typename TR::LengthMap::Value Value; |
|
| 188 |
/// \brief The type of the map that stores the arc lengths. |
|
| 189 |
typedef typename TR::LengthMap LengthMap; |
|
| 190 |
/// \brief The type of the map that stores the last |
|
| 191 |
/// arcs of the shortest paths. |
|
| 192 |
typedef typename TR::PredMap PredMap; |
|
| 193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 194 |
typedef typename TR::DistMap DistMap; |
|
| 195 |
/// The type of the paths. |
|
| 196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
| 198 |
/// "operation traits class" of the algorithm. |
|
| 199 |
typedef typename TR::OperationTraits OperationTraits; |
|
| 200 |
|
|
| 201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
| 202 |
typedef TR Traits; |
|
| 203 |
|
|
| 204 |
private: |
|
| 205 |
|
|
| 206 |
typedef typename Digraph::Node Node; |
|
| 207 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 208 |
typedef typename Digraph::Arc Arc; |
|
| 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 210 |
|
|
| 211 |
// Pointer to the underlying digraph. |
|
| 212 |
const Digraph *_gr; |
|
| 213 |
// Pointer to the length map |
|
| 214 |
const LengthMap *_length; |
|
| 215 |
// Pointer to the map of predecessors arcs. |
|
| 216 |
PredMap *_pred; |
|
| 217 |
// Indicates if _pred is locally allocated (true) or not. |
|
| 218 |
bool _local_pred; |
|
| 219 |
// Pointer to the map of distances. |
|
| 220 |
DistMap *_dist; |
|
| 221 |
// Indicates if _dist is locally allocated (true) or not. |
|
| 222 |
bool _local_dist; |
|
| 223 |
|
|
| 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
| 225 |
MaskMap *_mask; |
|
| 226 |
|
|
| 227 |
std::vector<Node> _process; |
|
| 228 |
|
|
| 229 |
// Creates the maps if necessary. |
|
| 230 |
void create_maps() {
|
|
| 231 |
if(!_pred) {
|
|
| 232 |
_local_pred = true; |
|
| 233 |
_pred = Traits::createPredMap(*_gr); |
|
| 234 |
} |
|
| 235 |
if(!_dist) {
|
|
| 236 |
_local_dist = true; |
|
| 237 |
_dist = Traits::createDistMap(*_gr); |
|
| 238 |
} |
|
| 239 |
_mask = new MaskMap(*_gr, false); |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
public : |
|
| 243 |
|
|
| 244 |
typedef BellmanFord Create; |
|
| 245 |
|
|
| 246 |
/// \name Named Template Parameters |
|
| 247 |
|
|
| 248 |
///@{
|
|
| 249 |
|
|
| 250 |
template <class T> |
|
| 251 |
struct SetPredMapTraits : public Traits {
|
|
| 252 |
typedef T PredMap; |
|
| 253 |
static PredMap *createPredMap(const Digraph&) {
|
|
| 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
| 255 |
return 0; // ignore warnings |
|
| 256 |
} |
|
| 257 |
}; |
|
| 258 |
|
|
| 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 260 |
/// \c PredMap type. |
|
| 261 |
/// |
|
| 262 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 263 |
/// \c PredMap type. |
|
| 264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 265 |
template <class T> |
|
| 266 |
struct SetPredMap |
|
| 267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
| 268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
| 269 |
}; |
|
| 270 |
|
|
| 271 |
template <class T> |
|
| 272 |
struct SetDistMapTraits : public Traits {
|
|
| 273 |
typedef T DistMap; |
|
| 274 |
static DistMap *createDistMap(const Digraph&) {
|
|
| 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
| 276 |
return 0; // ignore warnings |
|
| 277 |
} |
|
| 278 |
}; |
|
| 279 |
|
|
| 280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 281 |
/// \c DistMap type. |
|
| 282 |
/// |
|
| 283 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 284 |
/// \c DistMap type. |
|
| 285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 286 |
template <class T> |
|
| 287 |
struct SetDistMap |
|
| 288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
| 289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
| 290 |
}; |
|
| 291 |
|
|
| 292 |
template <class T> |
|
| 293 |
struct SetOperationTraitsTraits : public Traits {
|
|
| 294 |
typedef T OperationTraits; |
|
| 295 |
}; |
|
| 296 |
|
|
| 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 298 |
/// \c OperationTraits type. |
|
| 299 |
/// |
|
| 300 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 301 |
/// \c OperationTraits type. |
|
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 303 |
template <class T> |
|
| 304 |
struct SetOperationTraits |
|
| 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
| 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
| 307 |
Create; |
|
| 308 |
}; |
|
| 309 |
|
|
| 310 |
///@} |
|
| 311 |
|
|
| 312 |
protected: |
|
| 313 |
|
|
| 314 |
BellmanFord() {}
|
|
| 315 |
|
|
| 316 |
public: |
|
| 317 |
|
|
| 318 |
/// \brief Constructor. |
|
| 319 |
/// |
|
| 320 |
/// Constructor. |
|
| 321 |
/// \param g The digraph the algorithm runs on. |
|
| 322 |
/// \param length The length map used by the algorithm. |
|
| 323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
| 324 |
_gr(&g), _length(&length), |
|
| 325 |
_pred(0), _local_pred(false), |
|
| 326 |
_dist(0), _local_dist(false), _mask(0) {}
|
|
| 327 |
|
|
| 328 |
///Destructor. |
|
| 329 |
~BellmanFord() {
|
|
| 330 |
if(_local_pred) delete _pred; |
|
| 331 |
if(_local_dist) delete _dist; |
|
| 332 |
if(_mask) delete _mask; |
|
| 333 |
} |
|
| 334 |
|
|
| 335 |
/// \brief Sets the length map. |
|
| 336 |
/// |
|
| 337 |
/// Sets the length map. |
|
| 338 |
/// \return <tt>(*this)</tt> |
|
| 339 |
BellmanFord &lengthMap(const LengthMap &map) {
|
|
| 340 |
_length = ↦ |
|
| 341 |
return *this; |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
| 345 |
/// |
|
| 346 |
/// Sets the map that stores the predecessor arcs. |
|
| 347 |
/// If you don't use this function before calling \ref run() |
|
| 348 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 349 |
/// The destructor deallocates this automatically allocated map, |
|
| 350 |
/// of course. |
|
| 351 |
/// \return <tt>(*this)</tt> |
|
| 352 |
BellmanFord &predMap(PredMap &map) {
|
|
| 353 |
if(_local_pred) {
|
|
| 354 |
delete _pred; |
|
| 355 |
_local_pred=false; |
|
| 356 |
} |
|
| 357 |
_pred = ↦ |
|
| 358 |
return *this; |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
| 362 |
/// |
|
| 363 |
/// Sets the map that stores the distances of the nodes calculated |
|
| 364 |
/// by the algorithm. |
|
| 365 |
/// If you don't use this function before calling \ref run() |
|
| 366 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 367 |
/// The destructor deallocates this automatically allocated map, |
|
| 368 |
/// of course. |
|
| 369 |
/// \return <tt>(*this)</tt> |
|
| 370 |
BellmanFord &distMap(DistMap &map) {
|
|
| 371 |
if(_local_dist) {
|
|
| 372 |
delete _dist; |
|
| 373 |
_local_dist=false; |
|
| 374 |
} |
|
| 375 |
_dist = ↦ |
|
| 376 |
return *this; |
|
| 377 |
} |
|
| 378 |
|
|
| 379 |
/// \name Execution Control |
|
| 380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
| 381 |
/// one of the member functions called \ref run().\n |
|
| 382 |
/// If you need better control on the execution, you have to call |
|
| 383 |
/// \ref init() first, then you can add several source nodes |
|
| 384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
| 385 |
/// performed with \ref start(), \ref checkedStart() or |
|
| 386 |
/// \ref limitedStart(). |
|
| 387 |
|
|
| 388 |
///@{
|
|
| 389 |
|
|
| 390 |
/// \brief Initializes the internal data structures. |
|
| 391 |
/// |
|
| 392 |
/// Initializes the internal data structures. The optional parameter |
|
| 393 |
/// is the initial distance of each node. |
|
| 394 |
void init(const Value value = OperationTraits::infinity()) {
|
|
| 395 |
create_maps(); |
|
| 396 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 397 |
_pred->set(it, INVALID); |
|
| 398 |
_dist->set(it, value); |
|
| 399 |
} |
|
| 400 |
_process.clear(); |
|
| 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
| 402 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 403 |
_process.push_back(it); |
|
| 404 |
_mask->set(it, true); |
|
| 405 |
} |
|
| 406 |
} |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
/// \brief Adds a new source node. |
|
| 410 |
/// |
|
| 411 |
/// This function adds a new source node. The optional second parameter |
|
| 412 |
/// is the initial distance of the node. |
|
| 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
| 414 |
_dist->set(source, dst); |
|
| 415 |
if (!(*_mask)[source]) {
|
|
| 416 |
_process.push_back(source); |
|
| 417 |
_mask->set(source, true); |
|
| 418 |
} |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
| 422 |
/// |
|
| 423 |
/// If the algoritm calculated the distances in the previous round |
|
| 424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
| 425 |
/// will calculate the distances exactly for the paths of at most |
|
| 426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
| 427 |
/// calculates the shortest path distances exactly for the paths |
|
| 428 |
/// consisting of at most \c k arcs. |
|
| 429 |
/// |
|
| 430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 432 |
/// need the shortest paths and not only the distances, you should |
|
| 433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 434 |
/// and build the path manually. |
|
| 435 |
/// |
|
| 436 |
/// \return \c true when the algorithm have not found more shorter |
|
| 437 |
/// paths. |
|
| 438 |
/// |
|
| 439 |
/// \see ActiveIt |
|
| 440 |
bool processNextRound() {
|
|
| 441 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 442 |
_mask->set(_process[i], false); |
|
| 443 |
} |
|
| 444 |
std::vector<Node> nextProcess; |
|
| 445 |
std::vector<Value> values(_process.size()); |
|
| 446 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 447 |
values[i] = (*_dist)[_process[i]]; |
|
| 448 |
} |
|
| 449 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 451 |
Node target = _gr->target(it); |
|
| 452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 454 |
_pred->set(target, it); |
|
| 455 |
_dist->set(target, relaxed); |
|
| 456 |
if (!(*_mask)[target]) {
|
|
| 457 |
_mask->set(target, true); |
|
| 458 |
nextProcess.push_back(target); |
|
| 459 |
} |
|
| 460 |
} |
|
| 461 |
} |
|
| 462 |
} |
|
| 463 |
_process.swap(nextProcess); |
|
| 464 |
return _process.empty(); |
|
| 465 |
} |
|
| 466 |
|
|
| 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
| 468 |
/// |
|
| 469 |
/// If the algorithm calculated the distances in the previous round |
|
| 470 |
/// at least for the paths of at most \c k arcs, then this function |
|
| 471 |
/// will calculate the distances at least for the paths of at most |
|
| 472 |
/// <tt>k+1</tt> arcs. |
|
| 473 |
/// This function does not make it possible to calculate the shortest |
|
| 474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
| 475 |
/// this is why it is called weak round. |
|
| 476 |
/// |
|
| 477 |
/// \return \c true when the algorithm have not found more shorter |
|
| 478 |
/// paths. |
|
| 479 |
/// |
|
| 480 |
/// \see ActiveIt |
|
| 481 |
bool processNextWeakRound() {
|
|
| 482 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 483 |
_mask->set(_process[i], false); |
|
| 484 |
} |
|
| 485 |
std::vector<Node> nextProcess; |
|
| 486 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 488 |
Node target = _gr->target(it); |
|
| 489 |
Value relaxed = |
|
| 490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 492 |
_pred->set(target, it); |
|
| 493 |
_dist->set(target, relaxed); |
|
| 494 |
if (!(*_mask)[target]) {
|
|
| 495 |
_mask->set(target, true); |
|
| 496 |
nextProcess.push_back(target); |
|
| 497 |
} |
|
| 498 |
} |
|
| 499 |
} |
|
| 500 |
} |
|
| 501 |
_process.swap(nextProcess); |
|
| 502 |
return _process.empty(); |
|
| 503 |
} |
|
| 504 |
|
|
| 505 |
/// \brief Executes the algorithm. |
|
| 506 |
/// |
|
| 507 |
/// Executes the algorithm. |
|
| 508 |
/// |
|
| 509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 510 |
/// in order to compute the shortest path to each node. |
|
| 511 |
/// |
|
| 512 |
/// The algorithm computes |
|
| 513 |
/// - the shortest path tree (forest), |
|
| 514 |
/// - the distance of each node from the root(s). |
|
| 515 |
/// |
|
| 516 |
/// \pre init() must be called and at least one root node should be |
|
| 517 |
/// added with addSource() before using this function. |
|
| 518 |
void start() {
|
|
| 519 |
int num = countNodes(*_gr) - 1; |
|
| 520 |
for (int i = 0; i < num; ++i) {
|
|
| 521 |
if (processNextWeakRound()) break; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
|
|
| 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
| 526 |
/// |
|
| 527 |
/// Executes the algorithm and checks the negative cycles. |
|
| 528 |
/// |
|
| 529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 530 |
/// in order to compute the shortest path to each node and also checks |
|
| 531 |
/// if the digraph contains cycles with negative total length. |
|
| 532 |
/// |
|
| 533 |
/// The algorithm computes |
|
| 534 |
/// - the shortest path tree (forest), |
|
| 535 |
/// - the distance of each node from the root(s). |
|
| 536 |
/// |
|
| 537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
| 538 |
/// |
|
| 539 |
/// \pre init() must be called and at least one root node should be |
|
| 540 |
/// added with addSource() before using this function. |
|
| 541 |
bool checkedStart() {
|
|
| 542 |
int num = countNodes(*_gr); |
|
| 543 |
for (int i = 0; i < num; ++i) {
|
|
| 544 |
if (processNextWeakRound()) return true; |
|
| 545 |
} |
|
| 546 |
return _process.empty(); |
|
| 547 |
} |
|
| 548 |
|
|
| 549 |
/// \brief Executes the algorithm with arc number limit. |
|
| 550 |
/// |
|
| 551 |
/// Executes the algorithm with arc number limit. |
|
| 552 |
/// |
|
| 553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 554 |
/// in order to compute the shortest path distance for each node |
|
| 555 |
/// using only the paths consisting of at most \c num arcs. |
|
| 556 |
/// |
|
| 557 |
/// The algorithm computes |
|
| 558 |
/// - the limited distance of each node from the root(s), |
|
| 559 |
/// - the predecessor arc for each node. |
|
| 560 |
/// |
|
| 561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 563 |
/// need the shortest paths and not only the distances, you should |
|
| 564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 565 |
/// and build the path manually. |
|
| 566 |
/// |
|
| 567 |
/// \pre init() must be called and at least one root node should be |
|
| 568 |
/// added with addSource() before using this function. |
|
| 569 |
void limitedStart(int num) {
|
|
| 570 |
for (int i = 0; i < num; ++i) {
|
|
| 571 |
if (processNextRound()) break; |
|
| 572 |
} |
|
| 573 |
} |
|
| 574 |
|
|
| 575 |
/// \brief Runs the algorithm from the given root node. |
|
| 576 |
/// |
|
| 577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 578 |
/// node \c s in order to compute the shortest path to each node. |
|
| 579 |
/// |
|
| 580 |
/// The algorithm computes |
|
| 581 |
/// - the shortest path tree (forest), |
|
| 582 |
/// - the distance of each node from the root(s). |
|
| 583 |
/// |
|
| 584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
| 585 |
/// \code |
|
| 586 |
/// bf.init(); |
|
| 587 |
/// bf.addSource(s); |
|
| 588 |
/// bf.start(); |
|
| 589 |
/// \endcode |
|
| 590 |
void run(Node s) {
|
|
| 591 |
init(); |
|
| 592 |
addSource(s); |
|
| 593 |
start(); |
|
| 594 |
} |
|
| 595 |
|
|
| 596 |
/// \brief Runs the algorithm from the given root node with arc |
|
| 597 |
/// number limit. |
|
| 598 |
/// |
|
| 599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 600 |
/// node \c s in order to compute the shortest path distance for each |
|
| 601 |
/// node using only the paths consisting of at most \c num arcs. |
|
| 602 |
/// |
|
| 603 |
/// The algorithm computes |
|
| 604 |
/// - the limited distance of each node from the root(s), |
|
| 605 |
/// - the predecessor arc for each node. |
|
| 606 |
/// |
|
| 607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 609 |
/// need the shortest paths and not only the distances, you should |
|
| 610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 611 |
/// and build the path manually. |
|
| 612 |
/// |
|
| 613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
| 614 |
/// \code |
|
| 615 |
/// bf.init(); |
|
| 616 |
/// bf.addSource(s); |
|
| 617 |
/// bf.limitedStart(num); |
|
| 618 |
/// \endcode |
|
| 619 |
void run(Node s, int num) {
|
|
| 620 |
init(); |
|
| 621 |
addSource(s); |
|
| 622 |
limitedStart(num); |
|
| 623 |
} |
|
| 624 |
|
|
| 625 |
///@} |
|
| 626 |
|
|
| 627 |
/// \brief LEMON iterator for getting the active nodes. |
|
| 628 |
/// |
|
| 629 |
/// This class provides a common style LEMON iterator that traverses |
|
| 630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
| 631 |
/// phase. These nodes should be checked in the next phase to |
|
| 632 |
/// find augmenting arcs outgoing from them. |
|
| 633 |
class ActiveIt {
|
|
| 634 |
public: |
|
| 635 |
|
|
| 636 |
/// \brief Constructor. |
|
| 637 |
/// |
|
| 638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
| 639 |
/// instance. |
|
| 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
| 641 |
{
|
|
| 642 |
_index = _algorithm->_process.size() - 1; |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
/// \brief Invalid constructor. |
|
| 646 |
/// |
|
| 647 |
/// Invalid constructor. |
|
| 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
| 649 |
|
|
| 650 |
/// \brief Conversion to \c Node. |
|
| 651 |
/// |
|
| 652 |
/// Conversion to \c Node. |
|
| 653 |
operator Node() const {
|
|
| 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
| 655 |
} |
|
| 656 |
|
|
| 657 |
/// \brief Increment operator. |
|
| 658 |
/// |
|
| 659 |
/// Increment operator. |
|
| 660 |
ActiveIt& operator++() {
|
|
| 661 |
--_index; |
|
| 662 |
return *this; |
|
| 663 |
} |
|
| 664 |
|
|
| 665 |
bool operator==(const ActiveIt& it) const {
|
|
| 666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 667 |
} |
|
| 668 |
bool operator!=(const ActiveIt& it) const {
|
|
| 669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 670 |
} |
|
| 671 |
bool operator<(const ActiveIt& it) const {
|
|
| 672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 673 |
} |
|
| 674 |
|
|
| 675 |
private: |
|
| 676 |
const BellmanFord* _algorithm; |
|
| 677 |
int _index; |
|
| 678 |
}; |
|
| 679 |
|
|
| 680 |
/// \name Query Functions |
|
| 681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
| 682 |
/// functions.\n |
|
| 683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
| 684 |
|
|
| 685 |
///@{
|
|
| 686 |
|
|
| 687 |
/// \brief The shortest path to the given node. |
|
| 688 |
/// |
|
| 689 |
/// Gives back the shortest path to the given node from the root(s). |
|
| 690 |
/// |
|
| 691 |
/// \warning \c t should be reached from the root(s). |
|
| 692 |
/// |
|
| 693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 694 |
/// using this function. |
|
| 695 |
Path path(Node t) const |
|
| 696 |
{
|
|
| 697 |
return Path(*_gr, *_pred, t); |
|
| 698 |
} |
|
| 699 |
|
|
| 700 |
/// \brief The distance of the given node from the root(s). |
|
| 701 |
/// |
|
| 702 |
/// Returns the distance of the given node from the root(s). |
|
| 703 |
/// |
|
| 704 |
/// \warning If node \c v is not reached from the root(s), then |
|
| 705 |
/// the return value of this function is undefined. |
|
| 706 |
/// |
|
| 707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 708 |
/// using this function. |
|
| 709 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 710 |
|
|
| 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
| 712 |
/// the given node. |
|
| 713 |
/// |
|
| 714 |
/// This function returns the 'previous arc' of the shortest path |
|
| 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
| 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 717 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 718 |
/// |
|
| 719 |
/// The shortest path tree used here is equal to the shortest path |
|
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 721 |
/// |
|
| 722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 723 |
/// using this function. |
|
| 724 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 725 |
|
|
| 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
| 727 |
/// the given node. |
|
| 728 |
/// |
|
| 729 |
/// This function returns the 'previous node' of the shortest path |
|
| 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
| 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 732 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 733 |
/// |
|
| 734 |
/// The shortest path tree used here is equal to the shortest path |
|
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 736 |
/// |
|
| 737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 738 |
/// using this function. |
|
| 739 |
Node predNode(Node v) const {
|
|
| 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 741 |
} |
|
| 742 |
|
|
| 743 |
/// \brief Returns a const reference to the node map that stores the |
|
| 744 |
/// distances of the nodes. |
|
| 745 |
/// |
|
| 746 |
/// Returns a const reference to the node map that stores the distances |
|
| 747 |
/// of the nodes calculated by the algorithm. |
|
| 748 |
/// |
|
| 749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 750 |
/// using this function. |
|
| 751 |
const DistMap &distMap() const { return *_dist;}
|
|
| 752 |
|
|
| 753 |
/// \brief Returns a const reference to the node map that stores the |
|
| 754 |
/// predecessor arcs. |
|
| 755 |
/// |
|
| 756 |
/// Returns a const reference to the node map that stores the predecessor |
|
| 757 |
/// arcs, which form the shortest path tree (forest). |
|
| 758 |
/// |
|
| 759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 760 |
/// using this function. |
|
| 761 |
const PredMap &predMap() const { return *_pred; }
|
|
| 762 |
|
|
| 763 |
/// \brief Checks if a node is reached from the root(s). |
|
| 764 |
/// |
|
| 765 |
/// Returns \c true if \c v is reached from the root(s). |
|
| 766 |
/// |
|
| 767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 768 |
/// using this function. |
|
| 769 |
bool reached(Node v) const {
|
|
| 770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
| 771 |
} |
|
| 772 |
|
|
| 773 |
/// \brief Gives back a negative cycle. |
|
| 774 |
/// |
|
| 775 |
/// This function gives back a directed cycle with negative total |
|
| 776 |
/// length if the algorithm has already found one. |
|
| 777 |
/// Otherwise it gives back an empty path. |
|
| 778 |
lemon::Path<Digraph> negativeCycle() {
|
|
| 779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
| 780 |
lemon::Path<Digraph> cycle; |
|
| 781 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 782 |
if (state[_process[i]] != -1) continue; |
|
| 783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
| 784 |
v = _gr->source((*_pred)[v])) {
|
|
| 785 |
if (state[v] == i) {
|
|
| 786 |
cycle.addFront((*_pred)[v]); |
|
| 787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
| 788 |
u = _gr->source((*_pred)[u])) {
|
|
| 789 |
cycle.addFront((*_pred)[u]); |
|
| 790 |
} |
|
| 791 |
return cycle; |
|
| 792 |
} |
|
| 793 |
else if (state[v] >= 0) {
|
|
| 794 |
break; |
|
| 795 |
} |
|
| 796 |
state[v] = i; |
|
| 797 |
} |
|
| 798 |
} |
|
| 799 |
return cycle; |
|
| 800 |
} |
|
| 801 |
|
|
| 802 |
///@} |
|
| 803 |
}; |
|
| 804 |
|
|
| 805 |
/// \brief Default traits class of bellmanFord() function. |
|
| 806 |
/// |
|
| 807 |
/// Default traits class of bellmanFord() function. |
|
| 808 |
/// \tparam GR The type of the digraph. |
|
| 809 |
/// \tparam LEN The type of the length map. |
|
| 810 |
template <typename GR, typename LEN> |
|
| 811 |
struct BellmanFordWizardDefaultTraits {
|
|
| 812 |
/// The type of the digraph the algorithm runs on. |
|
| 813 |
typedef GR Digraph; |
|
| 814 |
|
|
| 815 |
/// \brief The type of the map that stores the arc lengths. |
|
| 816 |
/// |
|
| 817 |
/// The type of the map that stores the arc lengths. |
|
| 818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 819 |
typedef LEN LengthMap; |
|
| 820 |
|
|
| 821 |
/// The type of the arc lengths. |
|
| 822 |
typedef typename LEN::Value Value; |
|
| 823 |
|
|
| 824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 825 |
/// |
|
| 826 |
/// It defines the used operations and the infinity value for the |
|
| 827 |
/// given \c Value type. |
|
| 828 |
/// \see BellmanFordDefaultOperationTraits |
|
| 829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 830 |
|
|
| 831 |
/// \brief The type of the map that stores the last |
|
| 832 |
/// arcs of the shortest paths. |
|
| 833 |
/// |
|
| 834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
| 835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 837 |
|
|
| 838 |
/// \brief Instantiates a \c PredMap. |
|
| 839 |
/// |
|
| 840 |
/// This function instantiates a \ref PredMap. |
|
| 841 |
/// \param g is the digraph to which we would like to define the |
|
| 842 |
/// \ref PredMap. |
|
| 843 |
static PredMap *createPredMap(const GR &g) {
|
|
| 844 |
return new PredMap(g); |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 848 |
/// |
|
| 849 |
/// The type of the map that stores the distances of the nodes. |
|
| 850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
| 852 |
|
|
| 853 |
/// \brief Instantiates a \c DistMap. |
|
| 854 |
/// |
|
| 855 |
/// This function instantiates a \ref DistMap. |
|
| 856 |
/// \param g is the digraph to which we would like to define the |
|
| 857 |
/// \ref DistMap. |
|
| 858 |
static DistMap *createDistMap(const GR &g) {
|
|
| 859 |
return new DistMap(g); |
|
| 860 |
} |
|
| 861 |
|
|
| 862 |
///The type of the shortest paths. |
|
| 863 |
|
|
| 864 |
///The type of the shortest paths. |
|
| 865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
| 866 |
typedef lemon::Path<Digraph> Path; |
|
| 867 |
}; |
|
| 868 |
|
|
| 869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
| 870 |
/// |
|
| 871 |
/// Default traits class used by BellmanFordWizard. |
|
| 872 |
/// \tparam GR The type of the digraph. |
|
| 873 |
/// \tparam LEN The type of the length map. |
|
| 874 |
template <typename GR, typename LEN> |
|
| 875 |
class BellmanFordWizardBase |
|
| 876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
| 877 |
|
|
| 878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
| 879 |
protected: |
|
| 880 |
// Type of the nodes in the digraph. |
|
| 881 |
typedef typename Base::Digraph::Node Node; |
|
| 882 |
|
|
| 883 |
// Pointer to the underlying digraph. |
|
| 884 |
void *_graph; |
|
| 885 |
// Pointer to the length map |
|
| 886 |
void *_length; |
|
| 887 |
// Pointer to the map of predecessors arcs. |
|
| 888 |
void *_pred; |
|
| 889 |
// Pointer to the map of distances. |
|
| 890 |
void *_dist; |
|
| 891 |
//Pointer to the shortest path to the target node. |
|
| 892 |
void *_path; |
|
| 893 |
//Pointer to the distance of the target node. |
|
| 894 |
void *_di; |
|
| 895 |
|
|
| 896 |
public: |
|
| 897 |
/// Constructor. |
|
| 898 |
|
|
| 899 |
/// This constructor does not require parameters, it initiates |
|
| 900 |
/// all of the attributes to default values \c 0. |
|
| 901 |
BellmanFordWizardBase() : |
|
| 902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 903 |
|
|
| 904 |
/// Constructor. |
|
| 905 |
|
|
| 906 |
/// This constructor requires two parameters, |
|
| 907 |
/// others are initiated to \c 0. |
|
| 908 |
/// \param gr The digraph the algorithm runs on. |
|
| 909 |
/// \param len The length map. |
|
| 910 |
BellmanFordWizardBase(const GR& gr, |
|
| 911 |
const LEN& len) : |
|
| 912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 914 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 915 |
|
|
| 916 |
}; |
|
| 917 |
|
|
| 918 |
/// \brief Auxiliary class for the function-type interface of the |
|
| 919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 920 |
/// |
|
| 921 |
/// This auxiliary class is created to implement the |
|
| 922 |
/// \ref bellmanFord() "function-type interface" of the |
|
| 923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 924 |
/// It does not have own \ref run() method, it uses the |
|
| 925 |
/// functions and features of the plain \ref BellmanFord. |
|
| 926 |
/// |
|
| 927 |
/// This class should only be used through the \ref bellmanFord() |
|
| 928 |
/// function, which makes it easier to use the algorithm. |
|
| 929 |
template<class TR> |
|
| 930 |
class BellmanFordWizard : public TR {
|
|
| 931 |
typedef TR Base; |
|
| 932 |
|
|
| 933 |
typedef typename TR::Digraph Digraph; |
|
| 934 |
|
|
| 935 |
typedef typename Digraph::Node Node; |
|
| 936 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 937 |
typedef typename Digraph::Arc Arc; |
|
| 938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
| 939 |
|
|
| 940 |
typedef typename TR::LengthMap LengthMap; |
|
| 941 |
typedef typename LengthMap::Value Value; |
|
| 942 |
typedef typename TR::PredMap PredMap; |
|
| 943 |
typedef typename TR::DistMap DistMap; |
|
| 944 |
typedef typename TR::Path Path; |
|
| 945 |
|
|
| 946 |
public: |
|
| 947 |
/// Constructor. |
|
| 948 |
BellmanFordWizard() : TR() {}
|
|
| 949 |
|
|
| 950 |
/// \brief Constructor that requires parameters. |
|
| 951 |
/// |
|
| 952 |
/// Constructor that requires parameters. |
|
| 953 |
/// These parameters will be the default values for the traits class. |
|
| 954 |
/// \param gr The digraph the algorithm runs on. |
|
| 955 |
/// \param len The length map. |
|
| 956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 957 |
: TR(gr, len) {}
|
|
| 958 |
|
|
| 959 |
/// \brief Copy constructor |
|
| 960 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
| 961 |
|
|
| 962 |
~BellmanFordWizard() {}
|
|
| 963 |
|
|
| 964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
| 965 |
/// |
|
| 966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
| 967 |
/// node in order to compute the shortest path to each node. |
|
| 968 |
void run(Node s) {
|
|
| 969 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 974 |
bf.run(s); |
|
| 975 |
} |
|
| 976 |
|
|
| 977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
| 978 |
/// between \c s and \c t. |
|
| 979 |
/// |
|
| 980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
| 981 |
/// in order to compute the shortest path to node \c t. |
|
| 982 |
/// Actually, it computes the shortest path to each node, but using |
|
| 983 |
/// this function you can retrieve the distance and the shortest path |
|
| 984 |
/// for a single target node easier. |
|
| 985 |
/// |
|
| 986 |
/// \return \c true if \c t is reachable form \c s. |
|
| 987 |
bool run(Node s, Node t) {
|
|
| 988 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 993 |
bf.run(s); |
|
| 994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
| 995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
| 996 |
return bf.reached(t); |
|
| 997 |
} |
|
| 998 |
|
|
| 999 |
template<class T> |
|
| 1000 |
struct SetPredMapBase : public Base {
|
|
| 1001 |
typedef T PredMap; |
|
| 1002 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
| 1003 |
SetPredMapBase(const TR &b) : TR(b) {}
|
|
| 1004 |
}; |
|
| 1005 |
|
|
| 1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1007 |
/// the predecessor map. |
|
| 1008 |
/// |
|
| 1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
| 1011 |
template<class T> |
|
| 1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
| 1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
| 1015 |
} |
|
| 1016 |
|
|
| 1017 |
template<class T> |
|
| 1018 |
struct SetDistMapBase : public Base {
|
|
| 1019 |
typedef T DistMap; |
|
| 1020 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
| 1021 |
SetDistMapBase(const TR &b) : TR(b) {}
|
|
| 1022 |
}; |
|
| 1023 |
|
|
| 1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1025 |
/// the distance map. |
|
| 1026 |
/// |
|
| 1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1028 |
/// the map that stores the distances of the nodes calculated |
|
| 1029 |
/// by the algorithm. |
|
| 1030 |
template<class T> |
|
| 1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
| 1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
| 1034 |
} |
|
| 1035 |
|
|
| 1036 |
template<class T> |
|
| 1037 |
struct SetPathBase : public Base {
|
|
| 1038 |
typedef T Path; |
|
| 1039 |
SetPathBase(const TR &b) : TR(b) {}
|
|
| 1040 |
}; |
|
| 1041 |
|
|
| 1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1043 |
/// the shortest path to the target node. |
|
| 1044 |
/// |
|
| 1045 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1046 |
/// the shortest path to the target node. |
|
| 1047 |
template<class T> |
|
| 1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
| 1049 |
{
|
|
| 1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
| 1052 |
} |
|
| 1053 |
|
|
| 1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1055 |
/// the distance of the target node. |
|
| 1056 |
/// |
|
| 1057 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1058 |
/// the distance of the target node. |
|
| 1059 |
BellmanFordWizard dist(const Value &d) |
|
| 1060 |
{
|
|
| 1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
| 1062 |
return *this; |
|
| 1063 |
} |
|
| 1064 |
|
|
| 1065 |
}; |
|
| 1066 |
|
|
| 1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1068 |
/// algorithm. |
|
| 1069 |
/// |
|
| 1070 |
/// \ingroup shortest_path |
|
| 1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1072 |
/// algorithm. |
|
| 1073 |
/// |
|
| 1074 |
/// This function also has several \ref named-templ-func-param |
|
| 1075 |
/// "named parameters", they are declared as the members of class |
|
| 1076 |
/// \ref BellmanFordWizard. |
|
| 1077 |
/// The following examples show how to use these parameters. |
|
| 1078 |
/// \code |
|
| 1079 |
/// // Compute shortest path from node s to each node |
|
| 1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
| 1081 |
/// |
|
| 1082 |
/// // Compute shortest path from s to t |
|
| 1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
| 1084 |
/// \endcode |
|
| 1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
| 1086 |
/// to the end of the parameter list. |
|
| 1087 |
/// \sa BellmanFordWizard |
|
| 1088 |
/// \sa BellmanFord |
|
| 1089 |
template<typename GR, typename LEN> |
|
| 1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
| 1091 |
bellmanFord(const GR& digraph, |
|
| 1092 |
const LEN& length) |
|
| 1093 |
{
|
|
| 1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
| 1095 |
} |
|
| 1096 |
|
|
| 1097 |
} //END OF NAMESPACE LEMON |
|
| 1098 |
|
|
| 1099 |
#endif |
|
| 1100 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BINOM_HEAP_H |
|
| 20 |
#define LEMON_BINOM_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Binomial Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
#include <lemon/counter.h> |
|
| 31 |
|
|
| 32 |
namespace lemon {
|
|
| 33 |
|
|
| 34 |
/// \ingroup heaps |
|
| 35 |
/// |
|
| 36 |
///\brief Binomial heap data structure. |
|
| 37 |
/// |
|
| 38 |
/// This class implements the \e binomial \e heap data structure. |
|
| 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 40 |
/// |
|
| 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 42 |
/// in a binomial heap. In case of many calls of these operations, |
|
| 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 44 |
/// "binary heap". |
|
| 45 |
/// |
|
| 46 |
/// \tparam PR Type of the priorities of the items. |
|
| 47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 48 |
/// internally to handle the cross references. |
|
| 49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 50 |
/// The default is \c std::less<PR>. |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class BinomHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Functor type for comparing the priorities. |
|
| 65 |
typedef CMP Compare; |
|
| 66 |
|
|
| 67 |
/// \brief Type to represent the states of the items. |
|
| 68 |
/// |
|
| 69 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 |
/// heap's point of view, but may be useful to the user. |
|
| 72 |
/// |
|
| 73 |
/// The item-int map must be initialized in such way that it assigns |
|
| 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 75 |
enum State {
|
|
| 76 |
IN_HEAP = 0, ///< = 0. |
|
| 77 |
PRE_HEAP = -1, ///< = -1. |
|
| 78 |
POST_HEAP = -2 ///< = -2. |
|
| 79 |
}; |
|
| 80 |
|
|
| 81 |
private: |
|
| 82 |
class Store; |
|
| 83 |
|
|
| 84 |
std::vector<Store> _data; |
|
| 85 |
int _min, _head; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
Compare _comp; |
|
| 88 |
int _num_items; |
|
| 89 |
|
|
| 90 |
public: |
|
| 91 |
/// \brief Constructor. |
|
| 92 |
/// |
|
| 93 |
/// Constructor. |
|
| 94 |
/// \param map A map that assigns \c int values to the items. |
|
| 95 |
/// It is used internally to handle the cross references. |
|
| 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 97 |
explicit BinomHeap(ItemIntMap &map) |
|
| 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {}
|
|
| 99 |
|
|
| 100 |
/// \brief Constructor. |
|
| 101 |
/// |
|
| 102 |
/// Constructor. |
|
| 103 |
/// \param map A map that assigns \c int values to the items. |
|
| 104 |
/// It is used internally to handle the cross references. |
|
| 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 106 |
/// \param comp The function object used for comparing the priorities. |
|
| 107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
| 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 109 |
|
|
| 110 |
/// \brief The number of items stored in the heap. |
|
| 111 |
/// |
|
| 112 |
/// This function returns the number of items stored in the heap. |
|
| 113 |
int size() const { return _num_items; }
|
|
| 114 |
|
|
| 115 |
/// \brief Check if the heap is empty. |
|
| 116 |
/// |
|
| 117 |
/// This function returns \c true if the heap is empty. |
|
| 118 |
bool empty() const { return _num_items==0; }
|
|
| 119 |
|
|
| 120 |
/// \brief Make the heap empty. |
|
| 121 |
/// |
|
| 122 |
/// This functon makes the heap empty. |
|
| 123 |
/// It does not change the cross reference map. If you want to reuse |
|
| 124 |
/// a heap that is not surely empty, you should first clear it and |
|
| 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 126 |
/// for each item. |
|
| 127 |
void clear() {
|
|
| 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 132 |
/// not stored in the heap. |
|
| 133 |
/// |
|
| 134 |
/// This method sets the priority of the given item if it is |
|
| 135 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 136 |
/// item into the heap with the given priority. |
|
| 137 |
/// \param item The item. |
|
| 138 |
/// \param value The priority. |
|
| 139 |
void set (const Item& item, const Prio& value) {
|
|
| 140 |
int i=_iim[item]; |
|
| 141 |
if ( i >= 0 && _data[i].in ) {
|
|
| 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 144 |
} else push(item, value); |
|
| 145 |
} |
|
| 146 |
|
|
| 147 |
/// \brief Insert an item into the heap with the given priority. |
|
| 148 |
/// |
|
| 149 |
/// This function inserts the given item into the heap with the |
|
| 150 |
/// given priority. |
|
| 151 |
/// \param item The item to insert. |
|
| 152 |
/// \param value The priority of the item. |
|
| 153 |
/// \pre \e item must not be stored in the heap. |
|
| 154 |
void push (const Item& item, const Prio& value) {
|
|
| 155 |
int i=_iim[item]; |
|
| 156 |
if ( i<0 ) {
|
|
| 157 |
int s=_data.size(); |
|
| 158 |
_iim.set( item,s ); |
|
| 159 |
Store st; |
|
| 160 |
st.name=item; |
|
| 161 |
st.prio=value; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} |
|
| 165 |
else {
|
|
| 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
_data[i].prio=value; |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
if( 0==_num_items ) {
|
|
| 173 |
_head=i; |
|
| 174 |
_min=i; |
|
| 175 |
} else {
|
|
| 176 |
merge(i); |
|
| 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
| 178 |
} |
|
| 179 |
++_num_items; |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
/// \brief Return the item having minimum priority. |
|
| 183 |
/// |
|
| 184 |
/// This function returns the item having minimum priority. |
|
| 185 |
/// \pre The heap must be non-empty. |
|
| 186 |
Item top() const { return _data[_min].name; }
|
|
| 187 |
|
|
| 188 |
/// \brief The minimum priority. |
|
| 189 |
/// |
|
| 190 |
/// This function returns the minimum priority. |
|
| 191 |
/// \pre The heap must be non-empty. |
|
| 192 |
Prio prio() const { return _data[_min].prio; }
|
|
| 193 |
|
|
| 194 |
/// \brief The priority of the given item. |
|
| 195 |
/// |
|
| 196 |
/// This function returns the priority of the given item. |
|
| 197 |
/// \param item The item. |
|
| 198 |
/// \pre \e item must be in the heap. |
|
| 199 |
const Prio& operator[](const Item& item) const {
|
|
| 200 |
return _data[_iim[item]].prio; |
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
/// \brief Remove the item having minimum priority. |
|
| 204 |
/// |
|
| 205 |
/// This function removes the item having minimum priority. |
|
| 206 |
/// \pre The heap must be non-empty. |
|
| 207 |
void pop() {
|
|
| 208 |
_data[_min].in=false; |
|
| 209 |
|
|
| 210 |
int head_child=-1; |
|
| 211 |
if ( _data[_min].child!=-1 ) {
|
|
| 212 |
int child=_data[_min].child; |
|
| 213 |
int neighb; |
|
| 214 |
while( child!=-1 ) {
|
|
| 215 |
neighb=_data[child].right_neighbor; |
|
| 216 |
_data[child].parent=-1; |
|
| 217 |
_data[child].right_neighbor=head_child; |
|
| 218 |
head_child=child; |
|
| 219 |
child=neighb; |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
if ( _data[_head].right_neighbor==-1 ) {
|
|
| 224 |
// there was only one root |
|
| 225 |
_head=head_child; |
|
| 226 |
} |
|
| 227 |
else {
|
|
| 228 |
// there were more roots |
|
| 229 |
if( _head!=_min ) { unlace(_min); }
|
|
| 230 |
else { _head=_data[_head].right_neighbor; }
|
|
| 231 |
merge(head_child); |
|
| 232 |
} |
|
| 233 |
_min=findMin(); |
|
| 234 |
--_num_items; |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
/// \brief Remove the given item from the heap. |
|
| 238 |
/// |
|
| 239 |
/// This function removes the given item from the heap if it is |
|
| 240 |
/// already stored. |
|
| 241 |
/// \param item The item to delete. |
|
| 242 |
/// \pre \e item must be in the heap. |
|
| 243 |
void erase (const Item& item) {
|
|
| 244 |
int i=_iim[item]; |
|
| 245 |
if ( i >= 0 && _data[i].in ) {
|
|
| 246 |
decrease( item, _data[_min].prio-1 ); |
|
| 247 |
pop(); |
|
| 248 |
} |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Decrease the priority of an item to the given value. |
|
| 252 |
/// |
|
| 253 |
/// This function decreases the priority of an item to the given value. |
|
| 254 |
/// \param item The item. |
|
| 255 |
/// \param value The priority. |
|
| 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 257 |
void decrease (Item item, const Prio& value) {
|
|
| 258 |
int i=_iim[item]; |
|
| 259 |
int p=_data[i].parent; |
|
| 260 |
_data[i].prio=value; |
|
| 261 |
|
|
| 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
| 263 |
_data[i].name=_data[p].name; |
|
| 264 |
_data[i].prio=_data[p].prio; |
|
| 265 |
_data[p].name=item; |
|
| 266 |
_data[p].prio=value; |
|
| 267 |
_iim[_data[i].name]=i; |
|
| 268 |
i=p; |
|
| 269 |
p=_data[p].parent; |
|
| 270 |
} |
|
| 271 |
_iim[item]=i; |
|
| 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
/// \brief Increase the priority of an item to the given value. |
|
| 276 |
/// |
|
| 277 |
/// This function increases the priority of an item to the given value. |
|
| 278 |
/// \param item The item. |
|
| 279 |
/// \param value The priority. |
|
| 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 281 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
erase(item); |
|
| 283 |
push(item, value); |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Return the state of an item. |
|
| 287 |
/// |
|
| 288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 290 |
/// and \c POST_HEAP otherwise. |
|
| 291 |
/// In the latter case it is possible that the item will get back |
|
| 292 |
/// to the heap again. |
|
| 293 |
/// \param item The item. |
|
| 294 |
State state(const Item &item) const {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
if( i>=0 ) {
|
|
| 297 |
if ( _data[i].in ) i=0; |
|
| 298 |
else i=-2; |
|
| 299 |
} |
|
| 300 |
return State(i); |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Set the state of an item in the heap. |
|
| 304 |
/// |
|
| 305 |
/// This function sets the state of the given item in the heap. |
|
| 306 |
/// It can be used to manually clear the heap when it is important |
|
| 307 |
/// to achive better time complexity. |
|
| 308 |
/// \param i The item. |
|
| 309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 310 |
void state(const Item& i, State st) {
|
|
| 311 |
switch (st) {
|
|
| 312 |
case POST_HEAP: |
|
| 313 |
case PRE_HEAP: |
|
| 314 |
if (state(i) == IN_HEAP) {
|
|
| 315 |
erase(i); |
|
| 316 |
} |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
private: |
|
| 325 |
|
|
| 326 |
// Find the minimum of the roots |
|
| 327 |
int findMin() {
|
|
| 328 |
if( _head!=-1 ) {
|
|
| 329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
| 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
| 331 |
x=_data[x].right_neighbor ) {
|
|
| 332 |
if( _comp( _data[x].prio,min_val ) ) {
|
|
| 333 |
min_val=_data[x].prio; |
|
| 334 |
min_loc=x; |
|
| 335 |
} |
|
| 336 |
} |
|
| 337 |
return min_loc; |
|
| 338 |
} |
|
| 339 |
else return -1; |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
// Merge the heap with another heap starting at the given position |
|
| 343 |
void merge(int a) {
|
|
| 344 |
if( _head==-1 || a==-1 ) return; |
|
| 345 |
if( _data[a].right_neighbor==-1 && |
|
| 346 |
_data[a].degree<=_data[_head].degree ) {
|
|
| 347 |
_data[a].right_neighbor=_head; |
|
| 348 |
_head=a; |
|
| 349 |
} else {
|
|
| 350 |
interleave(a); |
|
| 351 |
} |
|
| 352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
| 353 |
|
|
| 354 |
int x=_head; |
|
| 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
| 356 |
while( x_next!=-1 ) {
|
|
| 357 |
if( _data[x].degree!=_data[x_next].degree || |
|
| 358 |
( _data[x_next].right_neighbor!=-1 && |
|
| 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
|
|
| 360 |
x_prev=x; |
|
| 361 |
x=x_next; |
|
| 362 |
} |
|
| 363 |
else {
|
|
| 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) {
|
|
| 365 |
if( x_prev==-1 ) {
|
|
| 366 |
_head=x_next; |
|
| 367 |
} else {
|
|
| 368 |
_data[x_prev].right_neighbor=x_next; |
|
| 369 |
} |
|
| 370 |
fuse(x,x_next); |
|
| 371 |
x=x_next; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
| 375 |
fuse(x_next,x); |
|
| 376 |
} |
|
| 377 |
} |
|
| 378 |
x_next=_data[x].right_neighbor; |
|
| 379 |
} |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
// Interleave the elements of the given list into the list of the roots |
|
| 383 |
void interleave(int a) {
|
|
| 384 |
int p=_head, q=a; |
|
| 385 |
int curr=_data.size(); |
|
| 386 |
_data.push_back(Store()); |
|
| 387 |
|
|
| 388 |
while( p!=-1 || q!=-1 ) {
|
|
| 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
|
|
| 390 |
_data[curr].right_neighbor=p; |
|
| 391 |
curr=p; |
|
| 392 |
p=_data[p].right_neighbor; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[curr].right_neighbor=q; |
|
| 396 |
curr=q; |
|
| 397 |
q=_data[q].right_neighbor; |
|
| 398 |
} |
|
| 399 |
} |
|
| 400 |
|
|
| 401 |
_head=_data.back().right_neighbor; |
|
| 402 |
_data.pop_back(); |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
// Lace node a under node b |
|
| 406 |
void fuse(int a, int b) {
|
|
| 407 |
_data[a].parent=b; |
|
| 408 |
_data[a].right_neighbor=_data[b].child; |
|
| 409 |
_data[b].child=a; |
|
| 410 |
|
|
| 411 |
++_data[b].degree; |
|
| 412 |
} |
|
| 413 |
|
|
| 414 |
// Unlace node a (if it has siblings) |
|
| 415 |
void unlace(int a) {
|
|
| 416 |
int neighb=_data[a].right_neighbor; |
|
| 417 |
int other=_head; |
|
| 418 |
|
|
| 419 |
while( _data[other].right_neighbor!=a ) |
|
| 420 |
other=_data[other].right_neighbor; |
|
| 421 |
_data[other].right_neighbor=neighb; |
|
| 422 |
} |
|
| 423 |
|
|
| 424 |
private: |
|
| 425 |
|
|
| 426 |
class Store {
|
|
| 427 |
friend class BinomHeap; |
|
| 428 |
|
|
| 429 |
Item name; |
|
| 430 |
int parent; |
|
| 431 |
int right_neighbor; |
|
| 432 |
int child; |
|
| 433 |
int degree; |
|
| 434 |
bool in; |
|
| 435 |
Prio prio; |
|
| 436 |
|
|
| 437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
| 438 |
in(true) {}
|
|
| 439 |
}; |
|
| 440 |
}; |
|
| 441 |
|
|
| 442 |
} //namespace lemon |
|
| 443 |
|
|
| 444 |
#endif //LEMON_BINOM_HEAP_H |
|
| 445 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
| 20 |
#define LEMON_FOURARY_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief Fourary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e fourary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
| 40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
| 41 |
/// but its nodes have at most four children, instead of two. |
|
| 42 |
/// |
|
| 43 |
/// \tparam PR Type of the priorities of the items. |
|
| 44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 45 |
/// internally to handle the cross references. |
|
| 46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 47 |
/// The default is \c std::less<PR>. |
|
| 48 |
/// |
|
| 49 |
///\sa BinHeap |
|
| 50 |
///\sa KaryHeap |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class FouraryHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Type of the item-priority pairs. |
|
| 65 |
typedef std::pair<Item,Prio> Pair; |
|
| 66 |
/// Functor type for comparing the priorities. |
|
| 67 |
typedef CMP Compare; |
|
| 68 |
|
|
| 69 |
/// \brief Type to represent the states of the items. |
|
| 70 |
/// |
|
| 71 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 73 |
/// heap's point of view, but may be useful to the user. |
|
| 74 |
/// |
|
| 75 |
/// The item-int map must be initialized in such way that it assigns |
|
| 76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 77 |
enum State {
|
|
| 78 |
IN_HEAP = 0, ///< = 0. |
|
| 79 |
PRE_HEAP = -1, ///< = -1. |
|
| 80 |
POST_HEAP = -2 ///< = -2. |
|
| 81 |
}; |
|
| 82 |
|
|
| 83 |
private: |
|
| 84 |
std::vector<Pair> _data; |
|
| 85 |
Compare _comp; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
|
|
| 88 |
public: |
|
| 89 |
/// \brief Constructor. |
|
| 90 |
/// |
|
| 91 |
/// Constructor. |
|
| 92 |
/// \param map A map that assigns \c int values to the items. |
|
| 93 |
/// It is used internally to handle the cross references. |
|
| 94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 96 |
|
|
| 97 |
/// \brief Constructor. |
|
| 98 |
/// |
|
| 99 |
/// Constructor. |
|
| 100 |
/// \param map A map that assigns \c int values to the items. |
|
| 101 |
/// It is used internally to handle the cross references. |
|
| 102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 103 |
/// \param comp The function object used for comparing the priorities. |
|
| 104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
| 105 |
: _iim(map), _comp(comp) {}
|
|
| 106 |
|
|
| 107 |
/// \brief The number of items stored in the heap. |
|
| 108 |
/// |
|
| 109 |
/// This function returns the number of items stored in the heap. |
|
| 110 |
int size() const { return _data.size(); }
|
|
| 111 |
|
|
| 112 |
/// \brief Check if the heap is empty. |
|
| 113 |
/// |
|
| 114 |
/// This function returns \c true if the heap is empty. |
|
| 115 |
bool empty() const { return _data.empty(); }
|
|
| 116 |
|
|
| 117 |
/// \brief Make the heap empty. |
|
| 118 |
/// |
|
| 119 |
/// This functon makes the heap empty. |
|
| 120 |
/// It does not change the cross reference map. If you want to reuse |
|
| 121 |
/// a heap that is not surely empty, you should first clear it and |
|
| 122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 123 |
/// for each item. |
|
| 124 |
void clear() { _data.clear(); }
|
|
| 125 |
|
|
| 126 |
private: |
|
| 127 |
static int parent(int i) { return (i-1)/4; }
|
|
| 128 |
static int firstChild(int i) { return 4*i+1; }
|
|
| 129 |
|
|
| 130 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 131 |
return _comp(p1.second, p2.second); |
|
| 132 |
} |
|
| 133 |
|
|
| 134 |
void bubbleUp(int hole, Pair p) {
|
|
| 135 |
int par = parent(hole); |
|
| 136 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 137 |
move(_data[par],hole); |
|
| 138 |
hole = par; |
|
| 139 |
par = parent(hole); |
|
| 140 |
} |
|
| 141 |
move(p, hole); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 145 |
if( length>1 ) {
|
|
| 146 |
int child = firstChild(hole); |
|
| 147 |
while( child+3<length ) {
|
|
| 148 |
int min=child; |
|
| 149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 152 |
if( !less(_data[min], p) ) |
|
| 153 |
goto ok; |
|
| 154 |
move(_data[min], hole); |
|
| 155 |
hole = min; |
|
| 156 |
child = firstChild(hole); |
|
| 157 |
} |
|
| 158 |
if ( child<length ) {
|
|
| 159 |
int min = child; |
|
| 160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 162 |
if( less(_data[min], p) ) {
|
|
| 163 |
move(_data[min], hole); |
|
| 164 |
hole = min; |
|
| 165 |
} |
|
| 166 |
} |
|
| 167 |
} |
|
| 168 |
ok: |
|
| 169 |
move(p, hole); |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
void move(const Pair &p, int i) {
|
|
| 173 |
_data[i] = p; |
|
| 174 |
_iim.set(p.first, i); |
|
| 175 |
} |
|
| 176 |
|
|
| 177 |
public: |
|
| 178 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 179 |
/// |
|
| 180 |
/// This function inserts \c p.first to the heap with priority |
|
| 181 |
/// \c p.second. |
|
| 182 |
/// \param p The pair to insert. |
|
| 183 |
/// \pre \c p.first must not be stored in the heap. |
|
| 184 |
void push(const Pair &p) {
|
|
| 185 |
int n = _data.size(); |
|
| 186 |
_data.resize(n+1); |
|
| 187 |
bubbleUp(n, p); |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
/// \brief Insert an item into the heap with the given priority. |
|
| 191 |
/// |
|
| 192 |
/// This function inserts the given item into the heap with the |
|
| 193 |
/// given priority. |
|
| 194 |
/// \param i The item to insert. |
|
| 195 |
/// \param p The priority of the item. |
|
| 196 |
/// \pre \e i must not be stored in the heap. |
|
| 197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 198 |
|
|
| 199 |
/// \brief Return the item having minimum priority. |
|
| 200 |
/// |
|
| 201 |
/// This function returns the item having minimum priority. |
|
| 202 |
/// \pre The heap must be non-empty. |
|
| 203 |
Item top() const { return _data[0].first; }
|
|
| 204 |
|
|
| 205 |
/// \brief The minimum priority. |
|
| 206 |
/// |
|
| 207 |
/// This function returns the minimum priority. |
|
| 208 |
/// \pre The heap must be non-empty. |
|
| 209 |
Prio prio() const { return _data[0].second; }
|
|
| 210 |
|
|
| 211 |
/// \brief Remove the item having minimum priority. |
|
| 212 |
/// |
|
| 213 |
/// This function removes the item having minimum priority. |
|
| 214 |
/// \pre The heap must be non-empty. |
|
| 215 |
void pop() {
|
|
| 216 |
int n = _data.size()-1; |
|
| 217 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 219 |
_data.pop_back(); |
|
| 220 |
} |
|
| 221 |
|
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 228 |
void erase(const Item &i) {
|
|
| 229 |
int h = _iim[i]; |
|
| 230 |
int n = _data.size()-1; |
|
| 231 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 232 |
if( h<n ) {
|
|
| 233 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 235 |
else |
|
| 236 |
bubbleUp(h, _data[n]); |
|
| 237 |
} |
|
| 238 |
_data.pop_back(); |
|
| 239 |
} |
|
| 240 |
|
|
| 241 |
/// \brief The priority of the given item. |
|
| 242 |
/// |
|
| 243 |
/// This function returns the priority of the given item. |
|
| 244 |
/// \param i The item. |
|
| 245 |
/// \pre \e i must be in the heap. |
|
| 246 |
Prio operator[](const Item &i) const {
|
|
| 247 |
int idx = _iim[i]; |
|
| 248 |
return _data[idx].second; |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 252 |
/// not stored in the heap. |
|
| 253 |
/// |
|
| 254 |
/// This method sets the priority of the given item if it is |
|
| 255 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 256 |
/// item into the heap with the given priority. |
|
| 257 |
/// \param i The item. |
|
| 258 |
/// \param p The priority. |
|
| 259 |
void set(const Item &i, const Prio &p) {
|
|
| 260 |
int idx = _iim[i]; |
|
| 261 |
if( idx < 0 ) |
|
| 262 |
push(i,p); |
|
| 263 |
else if( _comp(p, _data[idx].second) ) |
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 265 |
else |
|
| 266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 |
} |
|
| 268 |
|
|
| 269 |
/// \brief Decrease the priority of an item to the given value. |
|
| 270 |
/// |
|
| 271 |
/// This function decreases the priority of an item to the given value. |
|
| 272 |
/// \param i The item. |
|
| 273 |
/// \param p The priority. |
|
| 274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 275 |
void decrease(const Item &i, const Prio &p) {
|
|
| 276 |
int idx = _iim[i]; |
|
| 277 |
bubbleUp(idx, Pair(i,p)); |
|
| 278 |
} |
|
| 279 |
|
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 281 |
/// |
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param i The item. |
|
| 284 |
/// \param p The priority. |
|
| 285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 286 |
void increase(const Item &i, const Prio &p) {
|
|
| 287 |
int idx = _iim[i]; |
|
| 288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 289 |
} |
|
| 290 |
|
|
| 291 |
/// \brief Return the state of an item. |
|
| 292 |
/// |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param i The item. |
|
| 299 |
State state(const Item &i) const {
|
|
| 300 |
int s = _iim[i]; |
|
| 301 |
if (s>=0) s=0; |
|
| 302 |
return State(s); |
|
| 303 |
} |
|
| 304 |
|
|
| 305 |
/// \brief Set the state of an item in the heap. |
|
| 306 |
/// |
|
| 307 |
/// This function sets the state of the given item in the heap. |
|
| 308 |
/// It can be used to manually clear the heap when it is important |
|
| 309 |
/// to achive better time complexity. |
|
| 310 |
/// \param i The item. |
|
| 311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 312 |
void state(const Item& i, State st) {
|
|
| 313 |
switch (st) {
|
|
| 314 |
case POST_HEAP: |
|
| 315 |
case PRE_HEAP: |
|
| 316 |
if (state(i) == IN_HEAP) erase(i); |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
/// \brief Replace an item in the heap. |
|
| 325 |
/// |
|
| 326 |
/// This function replaces item \c i with item \c j. |
|
| 327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 328 |
/// After calling this method, item \c i will be out of the |
|
| 329 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 330 |
/// as item \c i had before. |
|
| 331 |
void replace(const Item& i, const Item& j) {
|
|
| 332 |
int idx = _iim[i]; |
|
| 333 |
_iim.set(i, _iim[j]); |
|
| 334 |
_iim.set(j, idx); |
|
| 335 |
_data[idx].first = j; |
|
| 336 |
} |
|
| 337 |
|
|
| 338 |
}; // class FouraryHeap |
|
| 339 |
|
|
| 340 |
} // namespace lemon |
|
| 341 |
|
|
| 342 |
#endif // LEMON_FOURARY_HEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_KARY_HEAP_H |
|
| 20 |
#define LEMON_KARY_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief K-ary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e K-ary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
| 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
| 41 |
/// \c K children, instead of two. |
|
| 42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
| 43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
| 49 |
/// children. The default is 16. Powers of two are suggested to use |
|
| 50 |
/// so that the multiplications and divisions needed to traverse the |
|
| 51 |
/// nodes of the heap could be performed faster. |
|
| 52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 53 |
/// The default is \c std::less<PR>. |
|
| 54 |
/// |
|
| 55 |
///\sa BinHeap |
|
| 56 |
///\sa FouraryHeap |
|
| 57 |
#ifdef DOXYGEN |
|
| 58 |
template <typename PR, typename IM, int K, typename CMP> |
|
| 59 |
#else |
|
| 60 |
template <typename PR, typename IM, int K = 16, |
|
| 61 |
typename CMP = std::less<PR> > |
|
| 62 |
#endif |
|
| 63 |
class KaryHeap {
|
|
| 64 |
public: |
|
| 65 |
/// Type of the item-int map. |
|
| 66 |
typedef IM ItemIntMap; |
|
| 67 |
/// Type of the priorities. |
|
| 68 |
typedef PR Prio; |
|
| 69 |
/// Type of the items stored in the heap. |
|
| 70 |
typedef typename ItemIntMap::Key Item; |
|
| 71 |
/// Type of the item-priority pairs. |
|
| 72 |
typedef std::pair<Item,Prio> Pair; |
|
| 73 |
/// Functor type for comparing the priorities. |
|
| 74 |
typedef CMP Compare; |
|
| 75 |
|
|
| 76 |
/// \brief Type to represent the states of the items. |
|
| 77 |
/// |
|
| 78 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 80 |
/// heap's point of view, but may be useful to the user. |
|
| 81 |
/// |
|
| 82 |
/// The item-int map must be initialized in such way that it assigns |
|
| 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 84 |
enum State {
|
|
| 85 |
IN_HEAP = 0, ///< = 0. |
|
| 86 |
PRE_HEAP = -1, ///< = -1. |
|
| 87 |
POST_HEAP = -2 ///< = -2. |
|
| 88 |
}; |
|
| 89 |
|
|
| 90 |
private: |
|
| 91 |
std::vector<Pair> _data; |
|
| 92 |
Compare _comp; |
|
| 93 |
ItemIntMap &_iim; |
|
| 94 |
|
|
| 95 |
public: |
|
| 96 |
/// \brief Constructor. |
|
| 97 |
/// |
|
| 98 |
/// Constructor. |
|
| 99 |
/// \param map A map that assigns \c int values to the items. |
|
| 100 |
/// It is used internally to handle the cross references. |
|
| 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 103 |
|
|
| 104 |
/// \brief Constructor. |
|
| 105 |
/// |
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param comp The function object used for comparing the priorities. |
|
| 111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
| 112 |
: _iim(map), _comp(comp) {}
|
|
| 113 |
|
|
| 114 |
/// \brief The number of items stored in the heap. |
|
| 115 |
/// |
|
| 116 |
/// This function returns the number of items stored in the heap. |
|
| 117 |
int size() const { return _data.size(); }
|
|
| 118 |
|
|
| 119 |
/// \brief Check if the heap is empty. |
|
| 120 |
/// |
|
| 121 |
/// This function returns \c true if the heap is empty. |
|
| 122 |
bool empty() const { return _data.empty(); }
|
|
| 123 |
|
|
| 124 |
/// \brief Make the heap empty. |
|
| 125 |
/// |
|
| 126 |
/// This functon makes the heap empty. |
|
| 127 |
/// It does not change the cross reference map. If you want to reuse |
|
| 128 |
/// a heap that is not surely empty, you should first clear it and |
|
| 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 130 |
/// for each item. |
|
| 131 |
void clear() { _data.clear(); }
|
|
| 132 |
|
|
| 133 |
private: |
|
| 134 |
int parent(int i) { return (i-1)/K; }
|
|
| 135 |
int firstChild(int i) { return K*i+1; }
|
|
| 136 |
|
|
| 137 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 138 |
return _comp(p1.second, p2.second); |
|
| 139 |
} |
|
| 140 |
|
|
| 141 |
void bubbleUp(int hole, Pair p) {
|
|
| 142 |
int par = parent(hole); |
|
| 143 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 144 |
move(_data[par],hole); |
|
| 145 |
hole = par; |
|
| 146 |
par = parent(hole); |
|
| 147 |
} |
|
| 148 |
move(p, hole); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 152 |
if( length>1 ) {
|
|
| 153 |
int child = firstChild(hole); |
|
| 154 |
while( child+K<=length ) {
|
|
| 155 |
int min=child; |
|
| 156 |
for (int i=1; i<K; ++i) {
|
|
| 157 |
if( less(_data[child+i], _data[min]) ) |
|
| 158 |
min=child+i; |
|
| 159 |
} |
|
| 160 |
if( !less(_data[min], p) ) |
|
| 161 |
goto ok; |
|
| 162 |
move(_data[min], hole); |
|
| 163 |
hole = min; |
|
| 164 |
child = firstChild(hole); |
|
| 165 |
} |
|
| 166 |
if ( child<length ) {
|
|
| 167 |
int min = child; |
|
| 168 |
while (++child < length) {
|
|
| 169 |
if( less(_data[child], _data[min]) ) |
|
| 170 |
min=child; |
|
| 171 |
} |
|
| 172 |
if( less(_data[min], p) ) {
|
|
| 173 |
move(_data[min], hole); |
|
| 174 |
hole = min; |
|
| 175 |
} |
|
| 176 |
} |
|
| 177 |
} |
|
| 178 |
ok: |
|
| 179 |
move(p, hole); |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
void move(const Pair &p, int i) {
|
|
| 183 |
_data[i] = p; |
|
| 184 |
_iim.set(p.first, i); |
|
| 185 |
} |
|
| 186 |
|
|
| 187 |
public: |
|
| 188 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 189 |
/// |
|
| 190 |
/// This function inserts \c p.first to the heap with priority |
|
| 191 |
/// \c p.second. |
|
| 192 |
/// \param p The pair to insert. |
|
| 193 |
/// \pre \c p.first must not be stored in the heap. |
|
| 194 |
void push(const Pair &p) {
|
|
| 195 |
int n = _data.size(); |
|
| 196 |
_data.resize(n+1); |
|
| 197 |
bubbleUp(n, p); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Insert an item into the heap with the given priority. |
|
| 201 |
/// |
|
| 202 |
/// This function inserts the given item into the heap with the |
|
| 203 |
/// given priority. |
|
| 204 |
/// \param i The item to insert. |
|
| 205 |
/// \param p The priority of the item. |
|
| 206 |
/// \pre \e i must not be stored in the heap. |
|
| 207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 208 |
|
|
| 209 |
/// \brief Return the item having minimum priority. |
|
| 210 |
/// |
|
| 211 |
/// This function returns the item having minimum priority. |
|
| 212 |
/// \pre The heap must be non-empty. |
|
| 213 |
Item top() const { return _data[0].first; }
|
|
| 214 |
|
|
| 215 |
/// \brief The minimum priority. |
|
| 216 |
/// |
|
| 217 |
/// This function returns the minimum priority. |
|
| 218 |
/// \pre The heap must be non-empty. |
|
| 219 |
Prio prio() const { return _data[0].second; }
|
|
| 220 |
|
|
| 221 |
/// \brief Remove the item having minimum priority. |
|
| 222 |
/// |
|
| 223 |
/// This function removes the item having minimum priority. |
|
| 224 |
/// \pre The heap must be non-empty. |
|
| 225 |
void pop() {
|
|
| 226 |
int n = _data.size()-1; |
|
| 227 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 229 |
_data.pop_back(); |
|
| 230 |
} |
|
| 231 |
|
|
| 232 |
/// \brief Remove the given item from the heap. |
|
| 233 |
/// |
|
| 234 |
/// This function removes the given item from the heap if it is |
|
| 235 |
/// already stored. |
|
| 236 |
/// \param i The item to delete. |
|
| 237 |
/// \pre \e i must be in the heap. |
|
| 238 |
void erase(const Item &i) {
|
|
| 239 |
int h = _iim[i]; |
|
| 240 |
int n = _data.size()-1; |
|
| 241 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 242 |
if( h<n ) {
|
|
| 243 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 244 |
bubbleDown(h, _data[n], n); |
|
| 245 |
else |
|
| 246 |
bubbleUp(h, _data[n]); |
|
| 247 |
} |
|
| 248 |
_data.pop_back(); |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief The priority of the given item. |
|
| 252 |
/// |
|
| 253 |
/// This function returns the priority of the given item. |
|
| 254 |
/// \param i The item. |
|
| 255 |
/// \pre \e i must be in the heap. |
|
| 256 |
Prio operator[](const Item &i) const {
|
|
| 257 |
int idx = _iim[i]; |
|
| 258 |
return _data[idx].second; |
|
| 259 |
} |
|
| 260 |
|
|
| 261 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 262 |
/// not stored in the heap. |
|
| 263 |
/// |
|
| 264 |
/// This method sets the priority of the given item if it is |
|
| 265 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 266 |
/// item into the heap with the given priority. |
|
| 267 |
/// \param i The item. |
|
| 268 |
/// \param p The priority. |
|
| 269 |
void set(const Item &i, const Prio &p) {
|
|
| 270 |
int idx = _iim[i]; |
|
| 271 |
if( idx<0 ) |
|
| 272 |
push(i,p); |
|
| 273 |
else if( _comp(p, _data[idx].second) ) |
|
| 274 |
bubbleUp(idx, Pair(i,p)); |
|
| 275 |
else |
|
| 276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
/// \brief Decrease the priority of an item to the given value. |
|
| 280 |
/// |
|
| 281 |
/// This function decreases the priority of an item to the given value. |
|
| 282 |
/// \param i The item. |
|
| 283 |
/// \param p The priority. |
|
| 284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 285 |
void decrease(const Item &i, const Prio &p) {
|
|
| 286 |
int idx = _iim[i]; |
|
| 287 |
bubbleUp(idx, Pair(i,p)); |
|
| 288 |
} |
|
| 289 |
|
|
| 290 |
/// \brief Increase the priority of an item to the given value. |
|
| 291 |
/// |
|
| 292 |
/// This function increases the priority of an item to the given value. |
|
| 293 |
/// \param i The item. |
|
| 294 |
/// \param p The priority. |
|
| 295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 296 |
void increase(const Item &i, const Prio &p) {
|
|
| 297 |
int idx = _iim[i]; |
|
| 298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
/// \brief Return the state of an item. |
|
| 302 |
/// |
|
| 303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 305 |
/// and \c POST_HEAP otherwise. |
|
| 306 |
/// In the latter case it is possible that the item will get back |
|
| 307 |
/// to the heap again. |
|
| 308 |
/// \param i The item. |
|
| 309 |
State state(const Item &i) const {
|
|
| 310 |
int s = _iim[i]; |
|
| 311 |
if (s>=0) s=0; |
|
| 312 |
return State(s); |
|
| 313 |
} |
|
| 314 |
|
|
| 315 |
/// \brief Set the state of an item in the heap. |
|
| 316 |
/// |
|
| 317 |
/// This function sets the state of the given item in the heap. |
|
| 318 |
/// It can be used to manually clear the heap when it is important |
|
| 319 |
/// to achive better time complexity. |
|
| 320 |
/// \param i The item. |
|
| 321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 322 |
void state(const Item& i, State st) {
|
|
| 323 |
switch (st) {
|
|
| 324 |
case POST_HEAP: |
|
| 325 |
case PRE_HEAP: |
|
| 326 |
if (state(i) == IN_HEAP) erase(i); |
|
| 327 |
_iim[i] = st; |
|
| 328 |
break; |
|
| 329 |
case IN_HEAP: |
|
| 330 |
break; |
|
| 331 |
} |
|
| 332 |
} |
|
| 333 |
|
|
| 334 |
/// \brief Replace an item in the heap. |
|
| 335 |
/// |
|
| 336 |
/// This function replaces item \c i with item \c j. |
|
| 337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 338 |
/// After calling this method, item \c i will be out of the |
|
| 339 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 340 |
/// as item \c i had before. |
|
| 341 |
void replace(const Item& i, const Item& j) {
|
|
| 342 |
int idx=_iim[i]; |
|
| 343 |
_iim.set(i, _iim[j]); |
|
| 344 |
_iim.set(j, idx); |
|
| 345 |
_data[idx].first=j; |
|
| 346 |
} |
|
| 347 |
|
|
| 348 |
}; // class KaryHeap |
|
| 349 |
|
|
| 350 |
} // namespace lemon |
|
| 351 |
|
|
| 352 |
#endif // LEMON_KARY_HEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
| 20 |
#define LEMON_PAIRING_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Pairing heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
|
|
| 31 |
namespace lemon {
|
|
| 32 |
|
|
| 33 |
/// \ingroup heaps |
|
| 34 |
/// |
|
| 35 |
///\brief Pairing Heap. |
|
| 36 |
/// |
|
| 37 |
/// This class implements the \e pairing \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 39 |
/// |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 41 |
/// in a pairing heap. In case of many calls of these operations, |
|
| 42 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 43 |
/// "binary heap". |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 49 |
/// The default is \c std::less<PR>. |
|
| 50 |
#ifdef DOXYGEN |
|
| 51 |
template <typename PR, typename IM, typename CMP> |
|
| 52 |
#else |
|
| 53 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 54 |
#endif |
|
| 55 |
class PairingHeap {
|
|
| 56 |
public: |
|
| 57 |
/// Type of the item-int map. |
|
| 58 |
typedef IM ItemIntMap; |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 62 |
typedef typename ItemIntMap::Key Item; |
|
| 63 |
/// Functor type for comparing the priorities. |
|
| 64 |
typedef CMP Compare; |
|
| 65 |
|
|
| 66 |
/// \brief Type to represent the states of the items. |
|
| 67 |
/// |
|
| 68 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 69 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 70 |
/// heap's point of view, but may be useful to the user. |
|
| 71 |
/// |
|
| 72 |
/// The item-int map must be initialized in such way that it assigns |
|
| 73 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 74 |
enum State {
|
|
| 75 |
IN_HEAP = 0, ///< = 0. |
|
| 76 |
PRE_HEAP = -1, ///< = -1. |
|
| 77 |
POST_HEAP = -2 ///< = -2. |
|
| 78 |
}; |
|
| 79 |
|
|
| 80 |
private: |
|
| 81 |
class store; |
|
| 82 |
|
|
| 83 |
std::vector<store> _data; |
|
| 84 |
int _min; |
|
| 85 |
ItemIntMap &_iim; |
|
| 86 |
Compare _comp; |
|
| 87 |
int _num_items; |
|
| 88 |
|
|
| 89 |
public: |
|
| 90 |
/// \brief Constructor. |
|
| 91 |
/// |
|
| 92 |
/// Constructor. |
|
| 93 |
/// \param map A map that assigns \c int values to the items. |
|
| 94 |
/// It is used internally to handle the cross references. |
|
| 95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 96 |
explicit PairingHeap(ItemIntMap &map) |
|
| 97 |
: _min(0), _iim(map), _num_items(0) {}
|
|
| 98 |
|
|
| 99 |
/// \brief Constructor. |
|
| 100 |
/// |
|
| 101 |
/// Constructor. |
|
| 102 |
/// \param map A map that assigns \c int values to the items. |
|
| 103 |
/// It is used internally to handle the cross references. |
|
| 104 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 105 |
/// \param comp The function object used for comparing the priorities. |
|
| 106 |
PairingHeap(ItemIntMap &map, const Compare &comp) |
|
| 107 |
: _min(0), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 108 |
|
|
| 109 |
/// \brief The number of items stored in the heap. |
|
| 110 |
/// |
|
| 111 |
/// This function returns the number of items stored in the heap. |
|
| 112 |
int size() const { return _num_items; }
|
|
| 113 |
|
|
| 114 |
/// \brief Check if the heap is empty. |
|
| 115 |
/// |
|
| 116 |
/// This function returns \c true if the heap is empty. |
|
| 117 |
bool empty() const { return _num_items==0; }
|
|
| 118 |
|
|
| 119 |
/// \brief Make the heap empty. |
|
| 120 |
/// |
|
| 121 |
/// This functon makes the heap empty. |
|
| 122 |
/// It does not change the cross reference map. If you want to reuse |
|
| 123 |
/// a heap that is not surely empty, you should first clear it and |
|
| 124 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 125 |
/// for each item. |
|
| 126 |
void clear() {
|
|
| 127 |
_data.clear(); |
|
| 128 |
_min = 0; |
|
| 129 |
_num_items = 0; |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 133 |
/// not stored in the heap. |
|
| 134 |
/// |
|
| 135 |
/// This method sets the priority of the given item if it is |
|
| 136 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 137 |
/// item into the heap with the given priority. |
|
| 138 |
/// \param item The item. |
|
| 139 |
/// \param value The priority. |
|
| 140 |
void set (const Item& item, const Prio& value) {
|
|
| 141 |
int i=_iim[item]; |
|
| 142 |
if ( i>=0 && _data[i].in ) {
|
|
| 143 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 144 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 145 |
} else push(item, value); |
|
| 146 |
} |
|
| 147 |
|
|
| 148 |
/// \brief Insert an item into the heap with the given priority. |
|
| 149 |
/// |
|
| 150 |
/// This function inserts the given item into the heap with the |
|
| 151 |
/// given priority. |
|
| 152 |
/// \param item The item to insert. |
|
| 153 |
/// \param value The priority of the item. |
|
| 154 |
/// \pre \e item must not be stored in the heap. |
|
| 155 |
void push (const Item& item, const Prio& value) {
|
|
| 156 |
int i=_iim[item]; |
|
| 157 |
if( i<0 ) {
|
|
| 158 |
int s=_data.size(); |
|
| 159 |
_iim.set(item, s); |
|
| 160 |
store st; |
|
| 161 |
st.name=item; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} else {
|
|
| 165 |
_data[i].parent=_data[i].child=-1; |
|
| 166 |
_data[i].left_child=false; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
_data[i].prio=value; |
|
| 172 |
|
|
| 173 |
if ( _num_items!=0 ) {
|
|
| 174 |
if ( _comp( value, _data[_min].prio) ) {
|
|
| 175 |
fuse(i,_min); |
|
| 176 |
_min=i; |
|
| 177 |
} |
|
| 178 |
else fuse(_min,i); |
|
| 179 |
} |
|
| 180 |
else _min=i; |
|
| 181 |
|
|
| 182 |
++_num_items; |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
/// \brief Return the item having minimum priority. |
|
| 186 |
/// |
|
| 187 |
/// This function returns the item having minimum priority. |
|
| 188 |
/// \pre The heap must be non-empty. |
|
| 189 |
Item top() const { return _data[_min].name; }
|
|
| 190 |
|
|
| 191 |
/// \brief The minimum priority. |
|
| 192 |
/// |
|
| 193 |
/// This function returns the minimum priority. |
|
| 194 |
/// \pre The heap must be non-empty. |
|
| 195 |
const Prio& prio() const { return _data[_min].prio; }
|
|
| 196 |
|
|
| 197 |
/// \brief The priority of the given item. |
|
| 198 |
/// |
|
| 199 |
/// This function returns the priority of the given item. |
|
| 200 |
/// \param item The item. |
|
| 201 |
/// \pre \e item must be in the heap. |
|
| 202 |
const Prio& operator[](const Item& item) const {
|
|
| 203 |
return _data[_iim[item]].prio; |
|
| 204 |
} |
|
| 205 |
|
|
| 206 |
/// \brief Remove the item having minimum priority. |
|
| 207 |
/// |
|
| 208 |
/// This function removes the item having minimum priority. |
|
| 209 |
/// \pre The heap must be non-empty. |
|
| 210 |
void pop() {
|
|
| 211 |
std::vector<int> trees; |
|
| 212 |
int i=0, child_right = 0; |
|
| 213 |
_data[_min].in=false; |
|
| 214 |
|
|
| 215 |
if( -1!=_data[_min].child ) {
|
|
| 216 |
i=_data[_min].child; |
|
| 217 |
trees.push_back(i); |
|
| 218 |
_data[i].parent = -1; |
|
| 219 |
_data[_min].child = -1; |
|
| 220 |
|
|
| 221 |
int ch=-1; |
|
| 222 |
while( _data[i].child!=-1 ) {
|
|
| 223 |
ch=_data[i].child; |
|
| 224 |
if( _data[ch].left_child && i==_data[ch].parent ) {
|
|
| 225 |
break; |
|
| 226 |
} else {
|
|
| 227 |
if( _data[ch].left_child ) {
|
|
| 228 |
child_right=_data[ch].parent; |
|
| 229 |
_data[ch].parent = i; |
|
| 230 |
--_data[i].degree; |
|
| 231 |
} |
|
| 232 |
else {
|
|
| 233 |
child_right=ch; |
|
| 234 |
_data[i].child=-1; |
|
| 235 |
_data[i].degree=0; |
|
| 236 |
} |
|
| 237 |
_data[child_right].parent = -1; |
|
| 238 |
trees.push_back(child_right); |
|
| 239 |
i = child_right; |
|
| 240 |
} |
|
| 241 |
} |
|
| 242 |
|
|
| 243 |
int num_child = trees.size(); |
|
| 244 |
int other; |
|
| 245 |
for( i=0; i<num_child-1; i+=2 ) {
|
|
| 246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
|
|
| 247 |
other=trees[i]; |
|
| 248 |
trees[i]=trees[i+1]; |
|
| 249 |
trees[i+1]=other; |
|
| 250 |
} |
|
| 251 |
fuse( trees[i], trees[i+1] ); |
|
| 252 |
} |
|
| 253 |
|
|
| 254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
| 255 |
while(i>=2) {
|
|
| 256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
|
|
| 257 |
other=trees[i]; |
|
| 258 |
trees[i]=trees[i-2]; |
|
| 259 |
trees[i-2]=other; |
|
| 260 |
} |
|
| 261 |
fuse( trees[i-2], trees[i] ); |
|
| 262 |
i-=2; |
|
| 263 |
} |
|
| 264 |
_min = trees[0]; |
|
| 265 |
} |
|
| 266 |
else {
|
|
| 267 |
_min = _data[_min].child; |
|
| 268 |
} |
|
| 269 |
|
|
| 270 |
if (_min >= 0) _data[_min].left_child = false; |
|
| 271 |
--_num_items; |
|
| 272 |
} |
|
| 273 |
|
|
| 274 |
/// \brief Remove the given item from the heap. |
|
| 275 |
/// |
|
| 276 |
/// This function removes the given item from the heap if it is |
|
| 277 |
/// already stored. |
|
| 278 |
/// \param item The item to delete. |
|
| 279 |
/// \pre \e item must be in the heap. |
|
| 280 |
void erase (const Item& item) {
|
|
| 281 |
int i=_iim[item]; |
|
| 282 |
if ( i>=0 && _data[i].in ) {
|
|
| 283 |
decrease( item, _data[_min].prio-1 ); |
|
| 284 |
pop(); |
|
| 285 |
} |
|
| 286 |
} |
|
| 287 |
|
|
| 288 |
/// \brief Decrease the priority of an item to the given value. |
|
| 289 |
/// |
|
| 290 |
/// This function decreases the priority of an item to the given value. |
|
| 291 |
/// \param item The item. |
|
| 292 |
/// \param value The priority. |
|
| 293 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 294 |
void decrease (Item item, const Prio& value) {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
_data[i].prio=value; |
|
| 297 |
int p=_data[i].parent; |
|
| 298 |
|
|
| 299 |
if( _data[i].left_child && i!=_data[p].child ) {
|
|
| 300 |
p=_data[p].parent; |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
if ( p!=-1 && _comp(value,_data[p].prio) ) {
|
|
| 304 |
cut(i,p); |
|
| 305 |
if ( _comp(_data[_min].prio,value) ) {
|
|
| 306 |
fuse(_min,i); |
|
| 307 |
} else {
|
|
| 308 |
fuse(i,_min); |
|
| 309 |
_min=i; |
|
| 310 |
} |
|
| 311 |
} |
|
| 312 |
} |
|
| 313 |
|
|
| 314 |
/// \brief Increase the priority of an item to the given value. |
|
| 315 |
/// |
|
| 316 |
/// This function increases the priority of an item to the given value. |
|
| 317 |
/// \param item The item. |
|
| 318 |
/// \param value The priority. |
|
| 319 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 320 |
void increase (Item item, const Prio& value) {
|
|
| 321 |
erase(item); |
|
| 322 |
push(item,value); |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
/// \brief Return the state of an item. |
|
| 326 |
/// |
|
| 327 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 328 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 329 |
/// and \c POST_HEAP otherwise. |
|
| 330 |
/// In the latter case it is possible that the item will get back |
|
| 331 |
/// to the heap again. |
|
| 332 |
/// \param item The item. |
|
| 333 |
State state(const Item &item) const {
|
|
| 334 |
int i=_iim[item]; |
|
| 335 |
if( i>=0 ) {
|
|
| 336 |
if( _data[i].in ) i=0; |
|
| 337 |
else i=-2; |
|
| 338 |
} |
|
| 339 |
return State(i); |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
/// \brief Set the state of an item in the heap. |
|
| 343 |
/// |
|
| 344 |
/// This function sets the state of the given item in the heap. |
|
| 345 |
/// It can be used to manually clear the heap when it is important |
|
| 346 |
/// to achive better time complexity. |
|
| 347 |
/// \param i The item. |
|
| 348 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 349 |
void state(const Item& i, State st) {
|
|
| 350 |
switch (st) {
|
|
| 351 |
case POST_HEAP: |
|
| 352 |
case PRE_HEAP: |
|
| 353 |
if (state(i) == IN_HEAP) erase(i); |
|
| 354 |
_iim[i]=st; |
|
| 355 |
break; |
|
| 356 |
case IN_HEAP: |
|
| 357 |
break; |
|
| 358 |
} |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
private: |
|
| 362 |
|
|
| 363 |
void cut(int a, int b) {
|
|
| 364 |
int child_a; |
|
| 365 |
switch (_data[a].degree) {
|
|
| 366 |
case 2: |
|
| 367 |
child_a = _data[_data[a].child].parent; |
|
| 368 |
if( _data[a].left_child ) {
|
|
| 369 |
_data[child_a].left_child=true; |
|
| 370 |
_data[b].child=child_a; |
|
| 371 |
_data[child_a].parent=_data[a].parent; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[child_a].left_child=false; |
|
| 375 |
_data[child_a].parent=b; |
|
| 376 |
if( a!=_data[b].child ) |
|
| 377 |
_data[_data[b].child].parent=child_a; |
|
| 378 |
else |
|
| 379 |
_data[b].child=child_a; |
|
| 380 |
} |
|
| 381 |
--_data[a].degree; |
|
| 382 |
_data[_data[a].child].parent=a; |
|
| 383 |
break; |
|
| 384 |
|
|
| 385 |
case 1: |
|
| 386 |
child_a = _data[a].child; |
|
| 387 |
if( !_data[child_a].left_child ) {
|
|
| 388 |
--_data[a].degree; |
|
| 389 |
if( _data[a].left_child ) {
|
|
| 390 |
_data[child_a].left_child=true; |
|
| 391 |
_data[child_a].parent=_data[a].parent; |
|
| 392 |
_data[b].child=child_a; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[child_a].left_child=false; |
|
| 396 |
_data[child_a].parent=b; |
|
| 397 |
if( a!=_data[b].child ) |
|
| 398 |
_data[_data[b].child].parent=child_a; |
|
| 399 |
else |
|
| 400 |
_data[b].child=child_a; |
|
| 401 |
} |
|
| 402 |
_data[a].child=-1; |
|
| 403 |
} |
|
| 404 |
else {
|
|
| 405 |
--_data[b].degree; |
|
| 406 |
if( _data[a].left_child ) {
|
|
| 407 |
_data[b].child = |
|
| 408 |
(1==_data[b].degree) ? _data[a].parent : -1; |
|
| 409 |
} else {
|
|
| 410 |
if (1==_data[b].degree) |
|
| 411 |
_data[_data[b].child].parent=b; |
|
| 412 |
else |
|
| 413 |
_data[b].child=-1; |
|
| 414 |
} |
|
| 415 |
} |
|
| 416 |
break; |
|
| 417 |
|
|
| 418 |
case 0: |
|
| 419 |
--_data[b].degree; |
|
| 420 |
if( _data[a].left_child ) {
|
|
| 421 |
_data[b].child = |
|
| 422 |
(0!=_data[b].degree) ? _data[a].parent : -1; |
|
| 423 |
} else {
|
|
| 424 |
if( 0!=_data[b].degree ) |
|
| 425 |
_data[_data[b].child].parent=b; |
|
| 426 |
else |
|
| 427 |
_data[b].child=-1; |
|
| 428 |
} |
|
| 429 |
break; |
|
| 430 |
} |
|
| 431 |
_data[a].parent=-1; |
|
| 432 |
_data[a].left_child=false; |
|
| 433 |
} |
|
| 434 |
|
|
| 435 |
void fuse(int a, int b) {
|
|
| 436 |
int child_a = _data[a].child; |
|
| 437 |
int child_b = _data[b].child; |
|
| 438 |
_data[a].child=b; |
|
| 439 |
_data[b].parent=a; |
|
| 440 |
_data[b].left_child=true; |
|
| 441 |
|
|
| 442 |
if( -1!=child_a ) {
|
|
| 443 |
_data[b].child=child_a; |
|
| 444 |
_data[child_a].parent=b; |
|
| 445 |
_data[child_a].left_child=false; |
|
| 446 |
++_data[b].degree; |
|
| 447 |
|
|
| 448 |
if( -1!=child_b ) {
|
|
| 449 |
_data[b].child=child_b; |
|
| 450 |
_data[child_b].parent=child_a; |
|
| 451 |
} |
|
| 452 |
} |
|
| 453 |
else { ++_data[a].degree; }
|
|
| 454 |
} |
|
| 455 |
|
|
| 456 |
class store {
|
|
| 457 |
friend class PairingHeap; |
|
| 458 |
|
|
| 459 |
Item name; |
|
| 460 |
int parent; |
|
| 461 |
int child; |
|
| 462 |
bool left_child; |
|
| 463 |
int degree; |
|
| 464 |
bool in; |
|
| 465 |
Prio prio; |
|
| 466 |
|
|
| 467 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
|
|
| 468 |
}; |
|
| 469 |
}; |
|
| 470 |
|
|
| 471 |
} //namespace lemon |
|
| 472 |
|
|
| 473 |
#endif //LEMON_PAIRING_HEAP_H |
|
| 474 |
| ... | ... |
@@ -227,12 +227,4 @@ |
| 227 | 227 |
|
| 228 | 228 |
/** |
| 229 |
@defgroup matrices Matrices |
|
| 230 |
@ingroup datas |
|
| 231 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 232 |
|
|
| 233 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 234 |
*/ |
|
| 235 |
|
|
| 236 |
/** |
|
| 237 | 229 |
@defgroup paths Path Structures |
| 238 | 230 |
@ingroup datas |
| ... | ... |
@@ -247,5 +239,34 @@ |
| 247 | 239 |
any kind of path structure. |
| 248 | 240 |
|
| 249 |
\sa |
|
| 241 |
\sa \ref concepts::Path "Path concept" |
|
| 242 |
*/ |
|
| 243 |
|
|
| 244 |
/** |
|
| 245 |
@defgroup heaps Heap Structures |
|
| 246 |
@ingroup datas |
|
| 247 |
\brief %Heap structures implemented in LEMON. |
|
| 248 |
|
|
| 249 |
This group contains the heap structures implemented in LEMON. |
|
| 250 |
|
|
| 251 |
LEMON provides several heap classes. They are efficient implementations |
|
| 252 |
of the abstract data type \e priority \e queue. They store items with |
|
| 253 |
specified values called \e priorities in such a way that finding and |
|
| 254 |
removing the item with minimum priority are efficient. |
|
| 255 |
The basic operations are adding and erasing items, changing the priority |
|
| 256 |
of an item, etc. |
|
| 257 |
|
|
| 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 259 |
The heap implementations have the same interface, thus any of them can be |
|
| 260 |
used easily in such algorithms. |
|
| 261 |
|
|
| 262 |
\sa \ref concepts::Heap "Heap concept" |
|
| 263 |
*/ |
|
| 264 |
|
|
| 265 |
/** |
|
| 266 |
@defgroup matrices Matrices |
|
| 267 |
@ingroup datas |
|
| 268 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 269 |
|
|
| 270 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 250 | 271 |
*/ |
| 251 | 272 |
|
| ... | ... |
@@ -260,4 +281,26 @@ |
| 260 | 281 |
|
| 261 | 282 |
/** |
| 283 |
@defgroup geomdat Geometric Data Structures |
|
| 284 |
@ingroup auxdat |
|
| 285 |
\brief Geometric data structures implemented in LEMON. |
|
| 286 |
|
|
| 287 |
This group contains geometric data structures implemented in LEMON. |
|
| 288 |
|
|
| 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
| 290 |
vector with the usual operations. |
|
| 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
| 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
| 293 |
"dim2::Point"'s. |
|
| 294 |
*/ |
|
| 295 |
|
|
| 296 |
/** |
|
| 297 |
@defgroup matrices Matrices |
|
| 298 |
@ingroup auxdat |
|
| 299 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 300 |
|
|
| 301 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 302 |
*/ |
|
| 303 |
|
|
| 304 |
/** |
|
| 262 | 305 |
@defgroup algs Algorithms |
| 263 | 306 |
\brief This group contains the several algorithms |
| ... | ... |
@@ -299,4 +342,13 @@ |
| 299 | 342 |
|
| 300 | 343 |
/** |
| 344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
| 345 |
@ingroup algs |
|
| 346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
| 347 |
|
|
| 348 |
This group contains the algorithms for finding minimum cost spanning |
|
| 349 |
trees and arborescences. |
|
| 350 |
*/ |
|
| 351 |
|
|
| 352 |
/** |
|
| 301 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
| 302 | 354 |
@ingroup algs |
| ... | ... |
@@ -376,5 +428,5 @@ |
| 376 | 428 |
|
| 377 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 378 |
\sum_{uv\in A
|
|
| 430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
|
| 379 | 431 |
|
| 380 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
| ... | ... |
@@ -392,28 +444,4 @@ |
| 392 | 444 |
|
| 393 | 445 |
/** |
| 394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 395 |
@ingroup algs |
|
| 396 |
\brief Algorithms for discovering the graph properties |
|
| 397 |
|
|
| 398 |
This group contains the algorithms for discovering the graph properties |
|
| 399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 400 |
|
|
| 401 |
\image html edge_biconnected_components.png |
|
| 402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
| 403 |
*/ |
|
| 404 |
|
|
| 405 |
/** |
|
| 406 |
@defgroup planar Planarity Embedding and Drawing |
|
| 407 |
@ingroup algs |
|
| 408 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 409 |
|
|
| 410 |
This group contains the algorithms for planarity checking, |
|
| 411 |
embedding and drawing. |
|
| 412 |
|
|
| 413 |
\image html planar.png |
|
| 414 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 415 |
*/ |
|
| 416 |
|
|
| 417 |
/** |
|
| 418 | 446 |
@defgroup matching Matching Algorithms |
| 419 | 447 |
@ingroup algs |
| ... | ... |
@@ -456,10 +484,34 @@ |
| 456 | 484 |
|
| 457 | 485 |
/** |
| 458 |
@defgroup |
|
| 486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 459 | 487 |
@ingroup algs |
| 460 |
\brief Algorithms for |
|
| 488 |
\brief Algorithms for discovering the graph properties |
|
| 461 | 489 |
|
| 462 |
This group contains the algorithms for finding minimum cost spanning |
|
| 463 |
trees and arborescences. |
|
| 490 |
This group contains the algorithms for discovering the graph properties |
|
| 491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 492 |
|
|
| 493 |
\image html connected_components.png |
|
| 494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
| 495 |
*/ |
|
| 496 |
|
|
| 497 |
/** |
|
| 498 |
@defgroup planar Planarity Embedding and Drawing |
|
| 499 |
@ingroup algs |
|
| 500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 501 |
|
|
| 502 |
This group contains the algorithms for planarity checking, |
|
| 503 |
embedding and drawing. |
|
| 504 |
|
|
| 505 |
\image html planar.png |
|
| 506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 507 |
*/ |
|
| 508 |
|
|
| 509 |
/** |
|
| 510 |
@defgroup approx Approximation Algorithms |
|
| 511 |
@ingroup algs |
|
| 512 |
\brief Approximation algorithms. |
|
| 513 |
|
|
| 514 |
This group contains the approximation and heuristic algorithms |
|
| 515 |
implemented in LEMON. |
|
| 464 | 516 |
*/ |
| 465 | 517 |
|
| ... | ... |
@@ -474,13 +526,4 @@ |
| 474 | 526 |
|
| 475 | 527 |
/** |
| 476 |
@defgroup approx Approximation Algorithms |
|
| 477 |
@ingroup algs |
|
| 478 |
\brief Approximation algorithms. |
|
| 479 |
|
|
| 480 |
This group contains the approximation and heuristic algorithms |
|
| 481 |
implemented in LEMON. |
|
| 482 |
*/ |
|
| 483 |
|
|
| 484 |
/** |
|
| 485 | 528 |
@defgroup gen_opt_group General Optimization Tools |
| 486 | 529 |
\brief This group contains some general optimization frameworks |
| ... | ... |
@@ -588,5 +631,5 @@ |
| 588 | 631 |
|
| 589 | 632 |
/** |
| 590 |
@defgroup dimacs_group DIMACS |
|
| 633 |
@defgroup dimacs_group DIMACS Format |
|
| 591 | 634 |
@ingroup io_group |
| 592 | 635 |
\brief Read and write files in DIMACS format |
| ... | ... |
@@ -650,4 +693,13 @@ |
| 650 | 693 |
|
| 651 | 694 |
/** |
| 695 |
@defgroup tools Standalone Utility Applications |
|
| 696 |
|
|
| 697 |
Some utility applications are listed here. |
|
| 698 |
|
|
| 699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 700 |
them, as well. |
|
| 701 |
*/ |
|
| 702 |
|
|
| 703 |
/** |
|
| 652 | 704 |
\anchor demoprograms |
| 653 | 705 |
|
| ... | ... |
@@ -661,12 +713,3 @@ |
| 661 | 713 |
*/ |
| 662 | 714 |
|
| 663 |
/** |
|
| 664 |
@defgroup tools Standalone Utility Applications |
|
| 665 |
|
|
| 666 |
Some utility applications are listed here. |
|
| 667 |
|
|
| 668 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 669 |
them, as well. |
|
| 670 |
*/ |
|
| 671 |
|
|
| 672 | 715 |
} |
| ... | ... |
@@ -58,6 +58,8 @@ |
| 58 | 58 |
lemon/arg_parser.h \ |
| 59 | 59 |
lemon/assert.h \ |
| 60 |
lemon/bellman_ford.h \ |
|
| 60 | 61 |
lemon/bfs.h \ |
| 61 | 62 |
lemon/bin_heap.h \ |
| 63 |
lemon/binom_heap.h \ |
|
| 62 | 64 |
lemon/bucket_heap.h \ |
| 63 | 65 |
lemon/cbc.h \ |
| ... | ... |
@@ -79,4 +81,5 @@ |
| 79 | 81 |
lemon/euler.h \ |
| 80 | 82 |
lemon/fib_heap.h \ |
| 83 |
lemon/fourary_heap.h \ |
|
| 81 | 84 |
lemon/full_graph.h \ |
| 82 | 85 |
lemon/glpk.h \ |
| ... | ... |
@@ -85,4 +88,5 @@ |
| 85 | 88 |
lemon/grid_graph.h \ |
| 86 | 89 |
lemon/hypercube_graph.h \ |
| 90 |
lemon/kary_heap.h \ |
|
| 87 | 91 |
lemon/kruskal.h \ |
| 88 | 92 |
lemon/hao_orlin.h \ |
| ... | ... |
@@ -93,5 +97,4 @@ |
| 93 | 97 |
lemon/lp_base.h \ |
| 94 | 98 |
lemon/lp_skeleton.h \ |
| 95 |
lemon/list_graph.h \ |
|
| 96 | 99 |
lemon/maps.h \ |
| 97 | 100 |
lemon/matching.h \ |
| ... | ... |
@@ -100,4 +103,5 @@ |
| 100 | 103 |
lemon/nauty_reader.h \ |
| 101 | 104 |
lemon/network_simplex.h \ |
| 105 |
lemon/pairing_heap.h \ |
|
| 102 | 106 |
lemon/path.h \ |
| 103 | 107 |
lemon/preflow.h \ |
| ... | ... |
@@ -48,5 +48,5 @@ |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| ... | ... |
@@ -63,5 +63,6 @@ |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| ... | ... |
@@ -82,5 +83,5 @@ |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| ... | ... |
@@ -97,5 +98,5 @@ |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| ... | ... |
@@ -226,5 +227,5 @@ |
| 226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 228 |
///\c PredMap type. |
| 228 |
///It must |
|
| 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 229 | 230 |
template <class T> |
| 230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| ... | ... |
@@ -246,5 +247,5 @@ |
| 246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 248 |
///\c DistMap type. |
| 248 |
///It must |
|
| 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 249 | 250 |
template <class T> |
| 250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| ... | ... |
@@ -266,5 +267,5 @@ |
| 266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 268 |
///\c ReachedMap type. |
| 268 |
///It must |
|
| 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 269 | 270 |
template <class T> |
| 270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| ... | ... |
@@ -286,5 +287,5 @@ |
| 286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 288 |
///\c ProcessedMap type. |
| 288 |
///It must |
|
| 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 289 | 290 |
template <class T> |
| 290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| ... | ... |
@@ -414,6 +415,6 @@ |
| 414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 416 |
///If you need more control on the execution, first you have to call |
|
| 417 |
///\ref init(), then you can add several source nodes with |
|
| 417 |
///If you need better control on the execution, you have to call |
|
| 418 |
///\ref init() first, then you can add several source nodes with |
|
| 418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 420 |
///performed with one of the \ref start() functions. |
| ... | ... |
@@ -738,7 +739,7 @@ |
| 738 | 739 |
///@{
|
| 739 | 740 |
|
| 740 |
///The shortest path to |
|
| 741 |
///The shortest path to the given node. |
|
| 741 | 742 |
|
| 742 |
///Returns the shortest path to |
|
| 743 |
///Returns the shortest path to the given node from the root(s). |
|
| 743 | 744 |
/// |
| 744 | 745 |
///\warning \c t should be reached from the root(s). |
| ... | ... |
@@ -748,7 +749,7 @@ |
| 748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 749 | 750 |
|
| 750 |
///The distance of |
|
| 751 |
///The distance of the given node from the root(s). |
|
| 751 | 752 |
|
| 752 |
///Returns the distance of |
|
| 753 |
///Returns the distance of the given node from the root(s). |
|
| 753 | 754 |
/// |
| 754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
| ... | ... |
@@ -759,6 +760,7 @@ |
| 759 | 760 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 760 | 761 |
|
| 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 762 |
|
|
| 762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 763 |
///the given node. |
|
| 764 |
/// |
|
| 763 | 765 |
///This function returns the 'previous arc' of the shortest path |
| 764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
| ... | ... |
@@ -767,5 +769,5 @@ |
| 767 | 769 |
/// |
| 768 | 770 |
///The shortest path tree used here is equal to the shortest path |
| 769 |
///tree used in \ref predNode(). |
|
| 771 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 770 | 772 |
/// |
| 771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -773,13 +775,14 @@ |
| 773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 774 | 776 |
|
| 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 776 |
|
|
| 777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 778 |
///the given node. |
|
| 779 |
/// |
|
| 777 | 780 |
///This function returns the 'previous node' of the shortest path |
| 778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
| 779 |
/// |
|
| 782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 781 | 784 |
/// |
| 782 | 785 |
///The shortest path tree used here is equal to the shortest path |
| 783 |
///tree used in \ref predArc(). |
|
| 786 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 784 | 787 |
/// |
| 785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -802,5 +805,5 @@ |
| 802 | 805 |
/// |
| 803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
| 804 |
///arcs, which form the shortest path tree. |
|
| 807 |
///arcs, which form the shortest path tree (forest). |
|
| 805 | 808 |
/// |
| 806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -808,5 +811,5 @@ |
| 808 | 811 |
const PredMap &predMap() const { return *_pred;}
|
| 809 | 812 |
|
| 810 |
///Checks if |
|
| 813 |
///Checks if the given node is reached from the root(s). |
|
| 811 | 814 |
|
| 812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
| ... | ... |
@@ -834,5 +837,5 @@ |
| 834 | 837 |
///The type of the map that stores the predecessor |
| 835 | 838 |
///arcs of the shortest paths. |
| 836 |
///It must |
|
| 839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 838 | 841 |
///Instantiates a PredMap. |
| ... | ... |
@@ -849,5 +852,5 @@ |
| 849 | 852 |
|
| 850 | 853 |
///The type of the map that indicates which nodes are processed. |
| 851 |
///It must |
|
| 854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 852 | 855 |
///By default it is a NullMap. |
| 853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| ... | ... |
@@ -869,5 +872,5 @@ |
| 869 | 872 |
|
| 870 | 873 |
///The type of the map that indicates which nodes are reached. |
| 871 |
///It must |
|
| 874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 873 | 876 |
///Instantiates a ReachedMap. |
| ... | ... |
@@ -884,5 +887,5 @@ |
| 884 | 887 |
|
| 885 | 888 |
///The type of the map that stores the distances of the nodes. |
| 886 |
///It must |
|
| 889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 888 | 891 |
///Instantiates a DistMap. |
| ... | ... |
@@ -899,5 +902,5 @@ |
| 899 | 902 |
|
| 900 | 903 |
///The type of the shortest paths. |
| 901 |
///It must |
|
| 904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 902 | 905 |
typedef lemon::Path<Digraph> Path; |
| 903 | 906 |
}; |
| ... | ... |
@@ -905,10 +908,6 @@ |
| 905 | 908 |
/// Default traits class used by BfsWizard |
| 906 | 909 |
|
| 907 |
/// To make it easier to use Bfs algorithm |
|
| 908 |
/// we have created a wizard class. |
|
| 909 |
/// This \ref BfsWizard class needs default traits, |
|
| 910 |
/// as well as the \ref Bfs class. |
|
| 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
| 912 |
/// \ref BfsWizard class. |
|
| 910 |
/// Default traits class used by BfsWizard. |
|
| 911 |
/// \tparam GR The type of the digraph. |
|
| 913 | 912 |
template<class GR> |
| 914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| ... | ... |
@@ -938,5 +937,5 @@ |
| 938 | 937 |
/// Constructor. |
| 939 | 938 |
|
| 940 |
/// This constructor does not require parameters, |
|
| 939 |
/// This constructor does not require parameters, it initiates |
|
| 941 | 940 |
/// all of the attributes to \c 0. |
| 942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| ... | ... |
@@ -968,5 +967,4 @@ |
| 968 | 967 |
typedef TR Base; |
| 969 | 968 |
|
| 970 |
///The type of the digraph the algorithm runs on. |
|
| 971 | 969 |
typedef typename TR::Digraph Digraph; |
| 972 | 970 |
|
| ... | ... |
@@ -976,14 +974,8 @@ |
| 976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 977 | 975 |
|
| 978 |
///\brief The type of the map that stores the predecessor |
|
| 979 |
///arcs of the shortest paths. |
|
| 980 | 976 |
typedef typename TR::PredMap PredMap; |
| 981 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 982 | 977 |
typedef typename TR::DistMap DistMap; |
| 983 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
| 985 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 987 |
///The type of the shortest paths |
|
| 988 | 980 |
typedef typename TR::Path Path; |
| 989 | 981 |
|
| ... | ... |
@@ -1068,9 +1060,10 @@ |
| 1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1061 |
}; |
| 1070 |
///\brief \ref named-func-param "Named parameter" |
|
| 1071 |
///for setting PredMap object. |
|
| 1062 |
|
|
| 1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1064 |
///the predecessor map. |
|
| 1072 | 1065 |
/// |
| 1073 |
///\ref named-func-param "Named parameter" |
|
| 1074 |
///for setting PredMap object. |
|
| 1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1067 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1075 | 1068 |
template<class T> |
| 1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| ... | ... |
@@ -1086,9 +1079,10 @@ |
| 1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1080 |
}; |
| 1088 |
///\brief \ref named-func-param "Named parameter" |
|
| 1089 |
///for setting ReachedMap object. |
|
| 1081 |
|
|
| 1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1083 |
///the reached map. |
|
| 1090 | 1084 |
/// |
| 1091 |
/// \ref named-func-param "Named parameter" |
|
| 1092 |
///for setting ReachedMap object. |
|
| 1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1086 |
///the map that indicates which nodes are reached. |
|
| 1093 | 1087 |
template<class T> |
| 1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| ... | ... |
@@ -1104,9 +1098,11 @@ |
| 1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1105 | 1099 |
}; |
| 1106 |
///\brief \ref named-func-param "Named parameter" |
|
| 1107 |
///for setting DistMap object. |
|
| 1100 |
|
|
| 1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1102 |
///the distance map. |
|
| 1108 | 1103 |
/// |
| 1109 |
/// \ref named-func-param "Named parameter" |
|
| 1110 |
///for setting DistMap object. |
|
| 1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1105 |
///the map that stores the distances of the nodes calculated |
|
| 1106 |
///by the algorithm. |
|
| 1111 | 1107 |
template<class T> |
| 1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| ... | ... |
@@ -1122,9 +1118,10 @@ |
| 1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1123 | 1119 |
}; |
| 1124 |
///\brief \ref named-func-param "Named parameter" |
|
| 1125 |
///for setting ProcessedMap object. |
|
| 1120 |
|
|
| 1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1122 |
///the processed map. |
|
| 1126 | 1123 |
/// |
| 1127 |
/// \ref named-func-param "Named parameter" |
|
| 1128 |
///for setting ProcessedMap object. |
|
| 1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1125 |
///the map that indicates which nodes are processed. |
|
| 1129 | 1126 |
template<class T> |
| 1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| ... | ... |
@@ -1265,5 +1262,5 @@ |
| 1265 | 1262 |
/// |
| 1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
| 1267 |
/// It must |
|
| 1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1269 | 1266 |
|
| ... | ... |
@@ -1426,6 +1423,6 @@ |
| 1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 |
/// If you need more control on the execution, first you have to call |
|
| 1429 |
/// \ref init(), then you can add several source nodes with |
|
| 1425 |
/// If you need better control on the execution, you have to call |
|
| 1426 |
/// \ref init() first, then you can add several source nodes with |
|
| 1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1428 |
/// performed with one of the \ref start() functions. |
| ... | ... |
@@ -1736,5 +1733,5 @@ |
| 1736 | 1733 |
///@{
|
| 1737 | 1734 |
|
| 1738 |
/// \brief Checks if |
|
| 1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1739 | 1736 |
/// |
| 1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
| ... | ... |
@@ -20,7 +20,7 @@ |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Binary |
|
| 24 |
///\brief Binary heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| ... | ... |
@@ -30,43 +30,39 @@ |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 |
///\ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
///\brief |
|
| 34 |
/// \brief Binary heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 36 |
/// This class implements the \e binary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 37 | 38 |
/// |
| 38 |
///A \e heap is a data structure for storing items with specified values |
|
| 39 |
///called \e priorities in such a way that finding the item with minimum |
|
| 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
| 41 |
///In a heap one can change the priority of an item, add or erase an |
|
| 42 |
///item, etc. |
|
| 43 |
/// |
|
| 44 |
///\tparam PR Type of the priority of the items. |
|
| 45 |
///\tparam IM A read and writable item map with int values, used internally |
|
| 46 |
///to handle the cross references. |
|
| 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
| 48 |
///The default is \c std::less<PR>. |
|
| 49 |
/// |
|
| 50 |
///\sa FibHeap |
|
| 51 |
///\sa Dijkstra |
|
| 39 |
/// \tparam PR Type of the priorities of the items. |
|
| 40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 41 |
/// internally to handle the cross references. |
|
| 42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 43 |
/// The default is \c std::less<PR>. |
|
| 44 |
#ifdef DOXYGEN |
|
| 45 |
template <typename PR, typename IM, typename CMP> |
|
| 46 |
#else |
|
| 52 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 48 |
#endif |
|
| 53 | 49 |
class BinHeap {
|
| 50 |
public: |
|
| 54 | 51 |
|
| 55 |
public: |
|
| 56 |
///\e |
|
| 52 |
/// Type of the item-int map. |
|
| 57 | 53 |
typedef IM ItemIntMap; |
| 58 |
/// |
|
| 54 |
/// Type of the priorities. |
|
| 59 | 55 |
typedef PR Prio; |
| 60 |
/// |
|
| 56 |
/// Type of the items stored in the heap. |
|
| 61 | 57 |
typedef typename ItemIntMap::Key Item; |
| 62 |
/// |
|
| 58 |
/// Type of the item-priority pairs. |
|
| 63 | 59 |
typedef std::pair<Item,Prio> Pair; |
| 64 |
/// |
|
| 60 |
/// Functor type for comparing the priorities. |
|
| 65 | 61 |
typedef CMP Compare; |
| 66 | 62 |
|
| 67 |
/// \brief Type to represent the |
|
| 63 |
/// \brief Type to represent the states of the items. |
|
| 68 | 64 |
/// |
| 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 65 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 | 67 |
/// heap's point of view, but may be useful to the user. |
| 72 | 68 |
/// |
| ... | ... |
@@ -85,40 +81,41 @@ |
| 85 | 81 |
|
| 86 | 82 |
public: |
| 87 |
|
|
| 83 |
|
|
| 84 |
/// \brief Constructor. |
|
| 88 | 85 |
/// |
| 89 |
/// The constructor. |
|
| 90 |
/// \param map should be given to the constructor, since it is used |
|
| 91 |
/// internally to handle the cross references. The value of the map |
|
| 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
| 86 |
/// Constructor. |
|
| 87 |
/// \param map A map that assigns \c int values to the items. |
|
| 88 |
/// It is used internally to handle the cross references. |
|
| 89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
| 94 | 91 |
|
| 95 |
/// \brief |
|
| 92 |
/// \brief Constructor. |
|
| 96 | 93 |
/// |
| 97 |
/// The constructor. |
|
| 98 |
/// \param map should be given to the constructor, since it is used |
|
| 99 |
/// internally to handle the cross references. The value of the map |
|
| 100 |
/// should be PRE_HEAP (-1) for each element. |
|
| 101 |
/// |
|
| 102 |
/// \param comp The comparator function object. |
|
| 94 |
/// Constructor. |
|
| 95 |
/// \param map A map that assigns \c int values to the items. |
|
| 96 |
/// It is used internally to handle the cross references. |
|
| 97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 98 |
/// \param comp The function object used for comparing the priorities. |
|
| 103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
| 104 | 100 |
: _iim(map), _comp(comp) {}
|
| 105 | 101 |
|
| 106 | 102 |
|
| 107 |
/// The number of items stored in the heap. |
|
| 103 |
/// \brief The number of items stored in the heap. |
|
| 108 | 104 |
/// |
| 109 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 110 | 106 |
int size() const { return _data.size(); }
|
| 111 | 107 |
|
| 112 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 113 | 109 |
/// |
| 114 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 115 | 111 |
bool empty() const { return _data.empty(); }
|
| 116 | 112 |
|
| 117 |
/// \brief Make |
|
| 113 |
/// \brief Make the heap empty. |
|
| 118 | 114 |
/// |
| 119 |
/// Make empty this heap. It does not change the cross reference map. |
|
| 120 |
/// If you want to reuse what is not surely empty you should first clear |
|
| 121 |
/// the heap and after that you should set the cross reference map for |
|
| 122 |
/// each item to \c PRE_HEAP. |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 123 | 120 |
void clear() {
|
| 124 | 121 |
_data.clear(); |
| ... | ... |
@@ -128,10 +125,10 @@ |
| 128 | 125 |
static int parent(int i) { return (i-1)/2; }
|
| 129 | 126 |
|
| 130 |
static int |
|
| 127 |
static int secondChild(int i) { return 2*i+2; }
|
|
| 131 | 128 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 132 | 129 |
return _comp(p1.second, p2.second); |
| 133 | 130 |
} |
| 134 | 131 |
|
| 135 |
int |
|
| 132 |
int bubbleUp(int hole, Pair p) {
|
|
| 136 | 133 |
int par = parent(hole); |
| 137 | 134 |
while( hole>0 && less(p,_data[par]) ) {
|
| ... | ... |
@@ -144,6 +141,6 @@ |
| 144 | 141 |
} |
| 145 | 142 |
|
| 146 |
int bubble_down(int hole, Pair p, int length) {
|
|
| 147 |
int child = second_child(hole); |
|
| 143 |
int bubbleDown(int hole, Pair p, int length) {
|
|
| 144 |
int child = secondChild(hole); |
|
| 148 | 145 |
while(child < length) {
|
| 149 | 146 |
if( less(_data[child-1], _data[child]) ) {
|
| ... | ... |
@@ -154,5 +151,5 @@ |
| 154 | 151 |
move(_data[child], hole); |
| 155 | 152 |
hole = child; |
| 156 |
child = |
|
| 153 |
child = secondChild(hole); |
|
| 157 | 154 |
} |
| 158 | 155 |
child--; |
| ... | ... |
@@ -172,42 +169,45 @@ |
| 172 | 169 |
|
| 173 | 170 |
public: |
| 171 |
|
|
| 174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
| 175 | 173 |
/// |
| 176 |
/// |
|
| 174 |
/// This function inserts \c p.first to the heap with priority |
|
| 175 |
/// \c p.second. |
|
| 177 | 176 |
/// \param p The pair to insert. |
| 177 |
/// \pre \c p.first must not be stored in the heap. |
|
| 178 | 178 |
void push(const Pair &p) {
|
| 179 | 179 |
int n = _data.size(); |
| 180 | 180 |
_data.resize(n+1); |
| 181 |
|
|
| 181 |
bubbleUp(n, p); |
|
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 |
/// \brief Insert an item into the heap with the given |
|
| 184 |
/// \brief Insert an item into the heap with the given priority. |
|
| 185 | 185 |
/// |
| 186 |
/// |
|
| 186 |
/// This function inserts the given item into the heap with the |
|
| 187 |
/// given priority. |
|
| 187 | 188 |
/// \param i The item to insert. |
| 188 | 189 |
/// \param p The priority of the item. |
| 190 |
/// \pre \e i must not be stored in the heap. |
|
| 189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 190 | 192 |
|
| 191 |
/// \brief |
|
| 193 |
/// \brief Return the item having minimum priority. |
|
| 192 | 194 |
/// |
| 193 |
/// This method returns the item with minimum priority relative to \c |
|
| 194 |
/// Compare. |
|
| 195 |
/// |
|
| 195 |
/// This function returns the item having minimum priority. |
|
| 196 |
/// \pre The heap must be non-empty. |
|
| 196 | 197 |
Item top() const {
|
| 197 | 198 |
return _data[0].first; |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
/// \brief |
|
| 201 |
/// \brief The minimum priority. |
|
| 201 | 202 |
/// |
| 202 |
/// It returns the minimum priority relative to \c Compare. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 203 |
/// This function returns the minimum priority. |
|
| 204 |
/// \pre The heap must be non-empty. |
|
| 204 | 205 |
Prio prio() const {
|
| 205 | 206 |
return _data[0].second; |
| 206 | 207 |
} |
| 207 | 208 |
|
| 208 |
/// \brief |
|
| 209 |
/// \brief Remove the item having minimum priority. |
|
| 209 | 210 |
/// |
| 210 |
/// This method deletes the item with minimum priority relative to \c |
|
| 211 |
/// Compare from the heap. |
|
| 211 |
/// This function removes the item having minimum priority. |
|
| 212 | 212 |
/// \pre The heap must be non-empty. |
| 213 | 213 |
void pop() {
|
| ... | ... |
@@ -215,14 +215,15 @@ |
| 215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
| 216 | 216 |
if (n > 0) {
|
| 217 |
|
|
| 217 |
bubbleDown(0, _data[n], n); |
|
| 218 | 218 |
} |
| 219 | 219 |
_data.pop_back(); |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 |
/// \brief |
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 | 223 |
/// |
| 224 |
/// This method deletes item \c i from the heap. |
|
| 225 |
/// \param i The item to erase. |
|
| 226 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 227 | 228 |
void erase(const Item &i) {
|
| 228 | 229 |
int h = _iim[i]; |
| ... | ... |
@@ -230,6 +231,6 @@ |
| 230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
| 231 | 232 |
if( h < n ) {
|
| 232 |
if ( bubble_up(h, _data[n]) == h) {
|
|
| 233 |
bubble_down(h, _data[n], n); |
|
| 233 |
if ( bubbleUp(h, _data[n]) == h) {
|
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 234 | 235 |
} |
| 235 | 236 |
} |
| ... | ... |
@@ -237,10 +238,9 @@ |
| 237 | 238 |
} |
| 238 | 239 |
|
| 239 |
|
|
| 240 |
/// \brief Returns the priority of \c i. |
|
| 240 |
/// \brief The priority of the given item. |
|
| 241 | 241 |
/// |
| 242 |
/// This function returns the priority of |
|
| 242 |
/// This function returns the priority of the given item. |
|
| 243 | 243 |
/// \param i The item. |
| 244 |
/// \pre \ |
|
| 244 |
/// \pre \e i must be in the heap. |
|
| 245 | 245 |
Prio operator[](const Item &i) const {
|
| 246 | 246 |
int idx = _iim[i]; |
| ... | ... |
@@ -248,9 +248,10 @@ |
| 248 | 248 |
} |
| 249 | 249 |
|
| 250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 251 |
/// if \c i was already there. |
|
| 250 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 251 |
/// not stored in the heap. |
|
| 252 | 252 |
/// |
| 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 253 |
/// This method sets the priority of the given item if it is |
|
| 254 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 255 |
/// item into the heap with the given priority. |
|
| 255 | 256 |
/// \param i The item. |
| 256 | 257 |
/// \param p The priority. |
| ... | ... |
@@ -261,42 +262,40 @@ |
| 261 | 262 |
} |
| 262 | 263 |
else if( _comp(p, _data[idx].second) ) {
|
| 263 |
|
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 264 | 265 |
} |
| 265 | 266 |
else {
|
| 266 |
|
|
| 267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 | 268 |
} |
| 268 | 269 |
} |
| 269 | 270 |
|
| 270 |
/// \brief |
|
| 271 |
/// \brief Decrease the priority of an item to the given value. |
|
| 271 | 272 |
/// |
| 272 |
/// This |
|
| 273 |
/// This function decreases the priority of an item to the given value. |
|
| 273 | 274 |
/// \param i The item. |
| 274 | 275 |
/// \param p The priority. |
| 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 276 |
/// p relative to \c Compare. |
|
| 276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 277 | 277 |
void decrease(const Item &i, const Prio &p) {
|
| 278 | 278 |
int idx = _iim[i]; |
| 279 |
|
|
| 279 |
bubbleUp(idx, Pair(i,p)); |
|
| 280 | 280 |
} |
| 281 | 281 |
|
| 282 |
/// \brief |
|
| 282 |
/// \brief Increase the priority of an item to the given value. |
|
| 283 | 283 |
/// |
| 284 |
/// This |
|
| 284 |
/// This function increases the priority of an item to the given value. |
|
| 285 | 285 |
/// \param i The item. |
| 286 | 286 |
/// \param p The priority. |
| 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 288 |
/// p relative to \c Compare. |
|
| 287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 289 | 288 |
void increase(const Item &i, const Prio &p) {
|
| 290 | 289 |
int idx = _iim[i]; |
| 291 |
|
|
| 290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 292 | 291 |
} |
| 293 | 292 |
|
| 294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 295 |
/// never been in the heap. |
|
| 293 |
/// \brief Return the state of an item. |
|
| 296 | 294 |
/// |
| 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 299 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 300 |
/// get back to the heap again. |
|
| 295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 297 |
/// and \c POST_HEAP otherwise. |
|
| 298 |
/// In the latter case it is possible that the item will get back |
|
| 299 |
/// to the heap again. |
|
| 301 | 300 |
/// \param i The item. |
| 302 | 301 |
State state(const Item &i) const {
|
| ... | ... |
@@ -307,9 +306,9 @@ |
| 307 | 306 |
} |
| 308 | 307 |
|
| 309 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 310 | 309 |
/// |
| 311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 312 |
/// manually clear the heap when it is important to achive the |
|
| 313 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 314 | 313 |
/// \param i The item. |
| 315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| ... | ... |
@@ -328,10 +327,11 @@ |
| 328 | 327 |
} |
| 329 | 328 |
|
| 330 |
/// \brief |
|
| 329 |
/// \brief Replace an item in the heap. |
|
| 331 | 330 |
/// |
| 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
| 333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
| 334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
| 335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
| 331 |
/// This function replaces item \c i with item \c j. |
|
| 332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 333 |
/// After calling this method, item \c i will be out of the |
|
| 334 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 335 |
/// as item \c i had before. |
|
| 336 | 336 |
void replace(const Item& i, const Item& j) {
|
| 337 | 337 |
int idx = _iim[i]; |
| ... | ... |
@@ -538,5 +538,5 @@ |
| 538 | 538 |
|
| 539 | 539 |
public: |
| 540 |
ArcMap(const Graph& _g) |
|
| 540 |
explicit ArcMap(const Graph& _g) |
|
| 541 | 541 |
: Parent(_g) {}
|
| 542 | 542 |
ArcMap(const Graph& _g, const _Value& _v) |
| ... | ... |
@@ -562,5 +562,5 @@ |
| 562 | 562 |
|
| 563 | 563 |
public: |
| 564 |
EdgeMap(const Graph& _g) |
|
| 564 |
explicit EdgeMap(const Graph& _g) |
|
| 565 | 565 |
: Parent(_g) {}
|
| 566 | 566 |
| ... | ... |
@@ -605,5 +605,5 @@ |
| 605 | 605 |
|
| 606 | 606 |
public: |
| 607 |
NodeMap(const Graph& graph) |
|
| 607 |
explicit NodeMap(const Graph& graph) |
|
| 608 | 608 |
: Parent(graph) {}
|
| 609 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
| ... | ... |
@@ -629,5 +629,5 @@ |
| 629 | 629 |
|
| 630 | 630 |
public: |
| 631 |
ArcMap(const Graph& graph) |
|
| 631 |
explicit ArcMap(const Graph& graph) |
|
| 632 | 632 |
: Parent(graph) {}
|
| 633 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
| ... | ... |
@@ -653,5 +653,5 @@ |
| 653 | 653 |
|
| 654 | 654 |
public: |
| 655 |
EdgeMap(const Graph& graph) |
|
| 655 |
explicit EdgeMap(const Graph& graph) |
|
| 656 | 656 |
: Parent(graph) {}
|
| 657 | 657 |
| ... | ... |
@@ -20,7 +20,7 @@ |
| 20 | 20 |
#define LEMON_BUCKET_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Bucket |
|
| 24 |
///\brief Bucket heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| ... | ... |
@@ -54,33 +54,39 @@ |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 |
/// \ingroup |
|
| 56 |
/// \ingroup heaps |
|
| 57 | 57 |
/// |
| 58 |
/// \brief |
|
| 58 |
/// \brief Bucket heap data structure. |
|
| 59 | 59 |
/// |
| 60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
| 61 |
/// is a data structure for storing items with specified values called \e |
|
| 62 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
| 64 |
/// only integer priorities and it stores for each priority in the |
|
| 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
| 66 |
/// the |
|
| 60 |
/// This class implements the \e bucket \e heap data structure. |
|
| 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 62 |
/// but it has some limitations. |
|
| 67 | 63 |
/// |
| 68 |
/// \param IM A read and write Item int map, used internally |
|
| 69 |
/// to handle the cross references. |
|
| 70 |
/// \param MIN If the given parameter is false then instead of the |
|
| 71 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 72 |
/// |
|
| 64 |
/// The bucket heap is a very simple structure. It can store only |
|
| 65 |
/// \c int priorities and it maintains a list of items for each priority |
|
| 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
| 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
| 68 |
/// |
|
| 69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 70 |
/// internally to handle the cross references. |
|
| 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 74 |
/// functions deal with the item having maximum priority instead of the |
|
| 75 |
/// minimum. |
|
| 76 |
/// |
|
| 77 |
/// \sa SimpleBucketHeap |
|
| 73 | 78 |
template <typename IM, bool MIN = true> |
| 74 | 79 |
class BucketHeap {
|
| 75 | 80 |
|
| 76 | 81 |
public: |
| 77 |
/// \e |
|
| 78 |
typedef typename IM::Key Item; |
|
| 79 |
|
|
| 82 |
|
|
| 83 |
/// Type of the item-int map. |
|
| 84 |
typedef IM ItemIntMap; |
|
| 85 |
/// Type of the priorities. |
|
| 80 | 86 |
typedef int Prio; |
| 81 |
/// \e |
|
| 82 |
typedef std::pair<Item, Prio> Pair; |
|
| 83 |
/// \e |
|
| 84 |
typedef IM ItemIntMap; |
|
| 87 |
/// Type of the items stored in the heap. |
|
| 88 |
typedef typename ItemIntMap::Key Item; |
|
| 89 |
/// Type of the item-priority pairs. |
|
| 90 |
typedef std::pair<Item,Prio> Pair; |
|
| 85 | 91 |
|
| 86 | 92 |
private: |
| ... | ... |
@@ -90,8 +96,8 @@ |
| 90 | 96 |
public: |
| 91 | 97 |
|
| 92 |
/// \brief Type to represent the |
|
| 98 |
/// \brief Type to represent the states of the items. |
|
| 93 | 99 |
/// |
| 94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 100 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 96 | 102 |
/// heap's point of view, but may be useful to the user. |
| 97 | 103 |
/// |
| ... | ... |
@@ -105,28 +111,30 @@ |
| 105 | 111 |
|
| 106 | 112 |
public: |
| 107 |
|
|
| 113 |
|
|
| 114 |
/// \brief Constructor. |
|
| 108 | 115 |
/// |
| 109 |
/// The constructor. |
|
| 110 |
/// \param map should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 116 |
/// Constructor. |
|
| 117 |
/// \param map A map that assigns \c int values to the items. |
|
| 118 |
/// It is used internally to handle the cross references. |
|
| 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 113 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
| 114 | 121 |
|
| 115 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 116 | 123 |
/// |
| 117 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 118 | 125 |
int size() const { return _data.size(); }
|
| 119 | 126 |
|
| 120 |
/// \brief |
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 121 | 128 |
/// |
| 122 |
/// |
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 123 | 130 |
bool empty() const { return _data.empty(); }
|
| 124 | 131 |
|
| 125 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 126 | 133 |
/// |
| 127 |
/// Make empty this heap. It does not change the cross reference |
|
| 128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 129 |
/// should first clear the heap and after that you should set the |
|
| 130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 131 | 139 |
void clear() {
|
| 132 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
| ... | ... |
@@ -135,5 +143,5 @@ |
| 135 | 143 |
private: |
| 136 | 144 |
|
| 137 |
void |
|
| 145 |
void relocateLast(int idx) {
|
|
| 138 | 146 |
if (idx + 1 < int(_data.size())) {
|
| 139 | 147 |
_data[idx] = _data.back(); |
| ... | ... |
@@ -175,8 +183,11 @@ |
| 175 | 183 |
|
| 176 | 184 |
public: |
| 185 |
|
|
| 177 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
| 178 | 187 |
/// |
| 179 |
/// |
|
| 188 |
/// This function inserts \c p.first to the heap with priority |
|
| 189 |
/// \c p.second. |
|
| 180 | 190 |
/// \param p The pair to insert. |
| 191 |
/// \pre \c p.first must not be stored in the heap. |
|
| 181 | 192 |
void push(const Pair& p) {
|
| 182 | 193 |
push(p.first, p.second); |
| ... | ... |
@@ -185,7 +196,9 @@ |
| 185 | 196 |
/// \brief Insert an item into the heap with the given priority. |
| 186 | 197 |
/// |
| 187 |
/// |
|
| 198 |
/// This function inserts the given item into the heap with the |
|
| 199 |
/// given priority. |
|
| 188 | 200 |
/// \param i The item to insert. |
| 189 | 201 |
/// \param p The priority of the item. |
| 202 |
/// \pre \e i must not be stored in the heap. |
|
| 190 | 203 |
void push(const Item &i, const Prio &p) {
|
| 191 | 204 |
int idx = _data.size(); |
| ... | ... |
@@ -198,8 +211,8 @@ |
| 198 | 211 |
} |
| 199 | 212 |
|
| 200 |
/// \brief |
|
| 213 |
/// \brief Return the item having minimum priority. |
|
| 201 | 214 |
/// |
| 202 |
/// This method returns the item with minimum priority. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 215 |
/// This function returns the item having minimum priority. |
|
| 216 |
/// \pre The heap must be non-empty. |
|
| 204 | 217 |
Item top() const {
|
| 205 | 218 |
while (_first[_minimum] == -1) {
|
| ... | ... |
@@ -209,8 +222,8 @@ |
| 209 | 222 |
} |
| 210 | 223 |
|
| 211 |
/// \brief |
|
| 224 |
/// \brief The minimum priority. |
|
| 212 | 225 |
/// |
| 213 |
/// It returns the minimum priority. |
|
| 214 |
/// \pre The heap must be nonempty. |
|
| 226 |
/// This function returns the minimum priority. |
|
| 227 |
/// \pre The heap must be non-empty. |
|
| 215 | 228 |
Prio prio() const {
|
| 216 | 229 |
while (_first[_minimum] == -1) {
|
| ... | ... |
@@ -220,7 +233,7 @@ |
| 220 | 233 |
} |
| 221 | 234 |
|
| 222 |
/// \brief |
|
| 235 |
/// \brief Remove the item having minimum priority. |
|
| 223 | 236 |
/// |
| 224 |
/// This |
|
| 237 |
/// This function removes the item having minimum priority. |
|
| 225 | 238 |
/// \pre The heap must be non-empty. |
| 226 | 239 |
void pop() {
|
| ... | ... |
@@ -231,25 +244,25 @@ |
| 231 | 244 |
_iim[_data[idx].item] = -2; |
| 232 | 245 |
unlace(idx); |
| 233 |
|
|
| 246 |
relocateLast(idx); |
|
| 234 | 247 |
} |
| 235 | 248 |
|
| 236 |
/// \brief |
|
| 249 |
/// \brief Remove the given item from the heap. |
|
| 237 | 250 |
/// |
| 238 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 239 |
/// already stored in the heap. |
|
| 240 |
/// |
|
| 251 |
/// This function removes the given item from the heap if it is |
|
| 252 |
/// already stored. |
|
| 253 |
/// \param i The item to delete. |
|
| 254 |
/// \pre \e i must be in the heap. |
|
| 241 | 255 |
void erase(const Item &i) {
|
| 242 | 256 |
int idx = _iim[i]; |
| 243 | 257 |
_iim[_data[idx].item] = -2; |
| 244 | 258 |
unlace(idx); |
| 245 |
|
|
| 259 |
relocateLast(idx); |
|
| 246 | 260 |
} |
| 247 | 261 |
|
| 248 |
|
|
| 249 |
/// \brief Returns the priority of \c i. |
|
| 262 |
/// \brief The priority of the given item. |
|
| 250 | 263 |
/// |
| 251 |
/// This function returns the priority of item \c i. |
|
| 252 |
/// \pre \c i must be in the heap. |
|
| 264 |
/// This function returns the priority of the given item. |
|
| 253 | 265 |
/// \param i The item. |
| 266 |
/// \pre \e i must be in the heap. |
|
| 254 | 267 |
Prio operator[](const Item &i) const {
|
| 255 | 268 |
int idx = _iim[i]; |
| ... | ... |
@@ -257,9 +270,10 @@ |
| 257 | 270 |
} |
| 258 | 271 |
|
| 259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 260 |
/// if \c i was already there. |
|
| 272 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 273 |
/// not stored in the heap. |
|
| 261 | 274 |
/// |
| 262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 275 |
/// This method sets the priority of the given item if it is |
|
| 276 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 277 |
/// item into the heap with the given priority. |
|
| 264 | 278 |
/// \param i The item. |
| 265 | 279 |
/// \param p The priority. |
| ... | ... |
@@ -275,11 +289,10 @@ |
| 275 | 289 |
} |
| 276 | 290 |
|
| 277 |
/// \brief |
|
| 291 |
/// \brief Decrease the priority of an item to the given value. |
|
| 278 | 292 |
/// |
| 279 |
/// This method decreases the priority of item \c i to \c p. |
|
| 280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 281 |
/// |
|
| 293 |
/// This function decreases the priority of an item to the given value. |
|
| 282 | 294 |
/// \param i The item. |
| 283 | 295 |
/// \param p The priority. |
| 296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 284 | 297 |
void decrease(const Item &i, const Prio &p) {
|
| 285 | 298 |
int idx = _iim[i]; |
| ... | ... |
@@ -292,11 +305,10 @@ |
| 292 | 305 |
} |
| 293 | 306 |
|
| 294 |
/// \brief |
|
| 307 |
/// \brief Increase the priority of an item to the given value. |
|
| 295 | 308 |
/// |
| 296 |
/// This method sets the priority of item \c i to \c p. |
|
| 297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 298 |
/// |
|
| 309 |
/// This function increases the priority of an item to the given value. |
|
| 299 | 310 |
/// \param i The item. |
| 300 | 311 |
/// \param p The priority. |
| 312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 301 | 313 |
void increase(const Item &i, const Prio &p) {
|
| 302 | 314 |
int idx = _iim[i]; |
| ... | ... |
@@ -306,11 +318,11 @@ |
| 306 | 318 |
} |
| 307 | 319 |
|
| 308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 309 |
/// never been in the heap. |
|
| 320 |
/// \brief Return the state of an item. |
|
| 310 | 321 |
/// |
| 311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 313 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 314 |
/// get back to the heap again. |
|
| 322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 324 |
/// and \c POST_HEAP otherwise. |
|
| 325 |
/// In the latter case it is possible that the item will get back |
|
| 326 |
/// to the heap again. |
|
| 315 | 327 |
/// \param i The item. |
| 316 | 328 |
State state(const Item &i) const {
|
| ... | ... |
@@ -320,9 +332,9 @@ |
| 320 | 332 |
} |
| 321 | 333 |
|
| 322 |
/// \brief |
|
| 334 |
/// \brief Set the state of an item in the heap. |
|
| 323 | 335 |
/// |
| 324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 325 |
/// manually clear the heap when it is important to achive the |
|
| 326 |
/// |
|
| 336 |
/// This function sets the state of the given item in the heap. |
|
| 337 |
/// It can be used to manually clear the heap when it is important |
|
| 338 |
/// to achive better time complexity. |
|
| 327 | 339 |
/// \param i The item. |
| 328 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
| ... | ... |
@@ -360,21 +372,27 @@ |
| 360 | 372 |
}; // class BucketHeap |
| 361 | 373 |
|
| 362 |
/// \ingroup |
|
| 374 |
/// \ingroup heaps |
|
| 363 | 375 |
/// |
| 364 |
/// \brief |
|
| 376 |
/// \brief Simplified bucket heap data structure. |
|
| 365 | 377 |
/// |
| 366 | 378 |
/// This class implements a simplified \e bucket \e heap data |
| 367 |
/// structure. It does not provide some functionality but it faster |
|
| 368 |
/// and simplier data structure than the BucketHeap. The main |
|
| 369 |
/// difference is that the BucketHeap stores for every key a double |
|
| 370 |
/// linked list while this class stores just simple lists. In the |
|
| 371 |
/// other way it does not support erasing each elements just the |
|
| 372 |
/// minimal and it does not supports key increasing, decreasing. |
|
| 379 |
/// structure. It does not provide some functionality, but it is |
|
| 380 |
/// faster and simpler than BucketHeap. The main difference is |
|
| 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
| 382 |
/// this class stores only simply-linked lists. It supports erasing |
|
| 383 |
/// only for the item having minimum priority and it does not support |
|
| 384 |
/// key increasing and decreasing. |
|
| 373 | 385 |
/// |
| 374 |
/// \param IM A read and write Item int map, used internally |
|
| 375 |
/// to handle the cross references. |
|
| 376 |
/// \param MIN If the given parameter is false then instead of the |
|
| 377 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 378 |
/// |
|
| 386 |
/// Note that this implementation does not conform to the |
|
| 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
| 388 |
/// functionality. |
|
| 389 |
/// |
|
| 390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 391 |
/// internally to handle the cross references. |
|
| 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 395 |
/// functions deal with the item having maximum priority instead of the |
|
| 396 |
/// minimum. |
|
| 379 | 397 |
/// |
| 380 | 398 |
/// \sa BucketHeap |
| ... | ... |
@@ -383,8 +401,13 @@ |
| 383 | 401 |
|
| 384 | 402 |
public: |
| 385 |
|
|
| 403 |
|
|
| 404 |
/// Type of the item-int map. |
|
| 405 |
typedef IM ItemIntMap; |
|
| 406 |
/// Type of the priorities. |
|
| 386 | 407 |
typedef int Prio; |
| 387 |
typedef std::pair<Item, Prio> Pair; |
|
| 388 |
typedef IM ItemIntMap; |
|
| 408 |
/// Type of the items stored in the heap. |
|
| 409 |
typedef typename ItemIntMap::Key Item; |
|
| 410 |
/// Type of the item-priority pairs. |
|
| 411 |
typedef std::pair<Item,Prio> Pair; |
|
| 389 | 412 |
|
| 390 | 413 |
private: |
| ... | ... |
@@ -394,8 +417,8 @@ |
| 394 | 417 |
public: |
| 395 | 418 |
|
| 396 |
/// \brief Type to represent the |
|
| 419 |
/// \brief Type to represent the states of the items. |
|
| 397 | 420 |
/// |
| 398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 421 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 400 | 423 |
/// heap's point of view, but may be useful to the user. |
| 401 | 424 |
/// |
| ... | ... |
@@ -410,29 +433,30 @@ |
| 410 | 433 |
public: |
| 411 | 434 |
|
| 412 |
/// \brief |
|
| 435 |
/// \brief Constructor. |
|
| 413 | 436 |
/// |
| 414 |
/// The constructor. |
|
| 415 |
/// \param map should be given to the constructor, since it is used |
|
| 416 |
/// internally to handle the cross references. The value of the map |
|
| 417 |
/// should be PRE_HEAP (-1) for each element. |
|
| 437 |
/// Constructor. |
|
| 438 |
/// \param map A map that assigns \c int values to the items. |
|
| 439 |
/// It is used internally to handle the cross references. |
|
| 440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 418 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
| 419 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
| 420 | 443 |
|
| 421 |
/// \brief |
|
| 444 |
/// \brief The number of items stored in the heap. |
|
| 422 | 445 |
/// |
| 423 |
/// |
|
| 446 |
/// This function returns the number of items stored in the heap. |
|
| 424 | 447 |
int size() const { return _num; }
|
| 425 | 448 |
|
| 426 |
/// \brief |
|
| 449 |
/// \brief Check if the heap is empty. |
|
| 427 | 450 |
/// |
| 428 |
/// |
|
| 451 |
/// This function returns \c true if the heap is empty. |
|
| 429 | 452 |
bool empty() const { return _num == 0; }
|
| 430 | 453 |
|
| 431 |
/// \brief Make |
|
| 454 |
/// \brief Make the heap empty. |
|
| 432 | 455 |
/// |
| 433 |
/// Make empty this heap. It does not change the cross reference |
|
| 434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 435 |
/// should first clear the heap and after that you should set the |
|
| 436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 456 |
/// This functon makes the heap empty. |
|
| 457 |
/// It does not change the cross reference map. If you want to reuse |
|
| 458 |
/// a heap that is not surely empty, you should first clear it and |
|
| 459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 460 |
/// for each item. |
|
| 437 | 461 |
void clear() {
|
| 438 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
| ... | ... |
@@ -441,6 +465,8 @@ |
| 441 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
| 442 | 466 |
/// |
| 443 |
/// |
|
| 467 |
/// This function inserts \c p.first to the heap with priority |
|
| 468 |
/// \c p.second. |
|
| 444 | 469 |
/// \param p The pair to insert. |
| 470 |
/// \pre \c p.first must not be stored in the heap. |
|
| 445 | 471 |
void push(const Pair& p) {
|
| 446 | 472 |
push(p.first, p.second); |
| ... | ... |
@@ -449,7 +475,9 @@ |
| 449 | 475 |
/// \brief Insert an item into the heap with the given priority. |
| 450 | 476 |
/// |
| 451 |
/// |
|
| 477 |
/// This function inserts the given item into the heap with the |
|
| 478 |
/// given priority. |
|
| 452 | 479 |
/// \param i The item to insert. |
| 453 | 480 |
/// \param p The priority of the item. |
| 481 |
/// \pre \e i must not be stored in the heap. |
|
| 454 | 482 |
void push(const Item &i, const Prio &p) {
|
| 455 | 483 |
int idx; |
| ... | ... |
@@ -472,8 +500,8 @@ |
| 472 | 500 |
} |
| 473 | 501 |
|
| 474 |
/// \brief |
|
| 502 |
/// \brief Return the item having minimum priority. |
|
| 475 | 503 |
/// |
| 476 |
/// This method returns the item with minimum priority. |
|
| 477 |
/// \pre The heap must be nonempty. |
|
| 504 |
/// This function returns the item having minimum priority. |
|
| 505 |
/// \pre The heap must be non-empty. |
|
| 478 | 506 |
Item top() const {
|
| 479 | 507 |
while (_first[_minimum] == -1) {
|
| ... | ... |
@@ -483,8 +511,8 @@ |
| 483 | 511 |
} |
| 484 | 512 |
|
| 485 |
/// \brief |
|
| 513 |
/// \brief The minimum priority. |
|
| 486 | 514 |
/// |
| 487 |
/// It returns the minimum priority. |
|
| 488 |
/// \pre The heap must be nonempty. |
|
| 515 |
/// This function returns the minimum priority. |
|
| 516 |
/// \pre The heap must be non-empty. |
|
| 489 | 517 |
Prio prio() const {
|
| 490 | 518 |
while (_first[_minimum] == -1) {
|
| ... | ... |
@@ -494,7 +522,7 @@ |
| 494 | 522 |
} |
| 495 | 523 |
|
| 496 |
/// \brief |
|
| 524 |
/// \brief Remove the item having minimum priority. |
|
| 497 | 525 |
/// |
| 498 |
/// This |
|
| 526 |
/// This function removes the item having minimum priority. |
|
| 499 | 527 |
/// \pre The heap must be non-empty. |
| 500 | 528 |
void pop() {
|
| ... | ... |
@@ -510,14 +538,13 @@ |
| 510 | 538 |
} |
| 511 | 539 |
|
| 512 |
/// \brief |
|
| 540 |
/// \brief The priority of the given item. |
|
| 513 | 541 |
/// |
| 514 |
/// This function returns the priority of item \c i. |
|
| 515 |
/// \warning This operator is not a constant time function |
|
| 516 |
/// because it scans the whole data structure to find the proper |
|
| 517 |
/// value. |
|
| 518 |
/// |
|
| 542 |
/// This function returns the priority of the given item. |
|
| 519 | 543 |
/// \param i The item. |
| 544 |
/// \pre \e i must be in the heap. |
|
| 545 |
/// \warning This operator is not a constant time function because |
|
| 546 |
/// it scans the whole data structure to find the proper value. |
|
| 520 | 547 |
Prio operator[](const Item &i) const {
|
| 521 |
for (int k = 0; k < _first.size(); ++k) {
|
|
| 548 |
for (int k = 0; k < int(_first.size()); ++k) {
|
|
| 522 | 549 |
int idx = _first[k]; |
| 523 | 550 |
while (idx != -1) {
|
| ... | ... |
@@ -531,11 +558,11 @@ |
| 531 | 558 |
} |
| 532 | 559 |
|
| 533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 534 |
/// never been in the heap. |
|
| 560 |
/// \brief Return the state of an item. |
|
| 535 | 561 |
/// |
| 536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 538 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 539 |
/// get back to the heap again. |
|
| 562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 564 |
/// and \c POST_HEAP otherwise. |
|
| 565 |
/// In the latter case it is possible that the item will get back |
|
| 566 |
/// to the heap again. |
|
| 540 | 567 |
/// \param i The item. |
| 541 | 568 |
State state(const Item &i) const {
|
| ... | ... |
@@ -73,5 +73,9 @@ |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 77 |
#else |
|
| 75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 |
#endif |
|
| 76 | 80 |
|
| 77 | 81 |
/// \brief Instantiates a FlowMap. |
| ... | ... |
@@ -88,7 +92,10 @@ |
| 88 | 92 |
/// The elevator type used by the algorithm. |
| 89 | 93 |
/// |
| 90 |
/// \sa Elevator |
|
| 91 |
/// \sa LinkedElevator |
|
| 94 |
/// \sa Elevator, LinkedElevator |
|
| 95 |
#ifdef DOXYGEN |
|
| 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 97 |
#else |
|
| 92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 |
#endif |
|
| 93 | 100 |
|
| 94 | 101 |
/// \brief Instantiates an Elevator. |
| ... | ... |
@@ -451,8 +458,9 @@ |
| 451 | 458 |
} |
| 452 | 459 |
|
| 453 |
/// \brief Sets the tolerance used by algorithm. |
|
| 460 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 454 | 461 |
/// |
| 455 |
/// Sets the tolerance used by algorithm. |
|
| 456 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
|
| 462 |
/// Sets the tolerance object used by the algorithm. |
|
| 463 |
/// \return <tt>(*this)</tt> |
|
| 464 |
Circulation& tolerance(const Tolerance& tolerance) {
|
|
| 457 | 465 |
_tol = tolerance; |
| 458 | 466 |
return *this; |
| ... | ... |
@@ -461,13 +469,14 @@ |
| 461 | 469 |
/// \brief Returns a const reference to the tolerance. |
| 462 | 470 |
/// |
| 463 |
/// Returns a const reference to the tolerance |
|
| 471 |
/// Returns a const reference to the tolerance object used by |
|
| 472 |
/// the algorithm. |
|
| 464 | 473 |
const Tolerance& tolerance() const {
|
| 465 |
return |
|
| 474 |
return _tol; |
|
| 466 | 475 |
} |
| 467 | 476 |
|
| 468 | 477 |
/// \name Execution Control |
| 469 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 470 |
/// If you need more control on the initial solution or the execution, |
|
| 471 |
/// first you have to call one of the \ref init() functions, then |
|
| 479 |
/// If you need better control on the initial solution or the execution, |
|
| 480 |
/// you have to call one of the \ref init() functions first, then |
|
| 472 | 481 |
/// the \ref start() function. |
| 473 | 482 |
| ... | ... |
@@ -17,11 +17,11 @@ |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 20 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 21 |
|
|
| 19 | 22 |
///\ingroup concept |
| 20 | 23 |
///\file |
| 21 | 24 |
///\brief The concept of heaps. |
| 22 | 25 |
|
| 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 24 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 25 |
|
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| ... | ... |
@@ -36,19 +36,25 @@ |
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
| 39 |
/// is a data structure for storing items with specified values called |
|
| 40 |
/// \e priorities in such a way that finding the item with minimum |
|
| 41 |
/// priority is efficient. In a heap one can change the priority of an |
|
| 42 |
/// |
|
| 38 |
/// This concept class describes the main interface of heaps. |
|
| 39 |
/// The various \ref heaps "heap structures" are efficient |
|
| 40 |
/// implementations of the abstract data type \e priority \e queue. |
|
| 41 |
/// They store items with specified values called \e priorities |
|
| 42 |
/// in such a way that finding and removing the item with minimum |
|
| 43 |
/// priority are efficient. The basic operations are adding and |
|
| 44 |
/// erasing items, changing the priority of an item, etc. |
|
| 43 | 45 |
/// |
| 44 |
/// \tparam PR Type of the priority of the items. |
|
| 45 |
/// \tparam IM A read and writable item map with int values, used |
|
| 46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 47 |
/// Any class that conforms to this concept can be used easily in such |
|
| 48 |
/// algorithms. |
|
| 49 |
/// |
|
| 50 |
/// \tparam PR Type of the priorities of the items. |
|
| 51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 | 52 |
/// internally to handle the cross references. |
| 47 |
/// \tparam |
|
| 53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 | 54 |
/// The default is \c std::less<PR>. |
| 49 | 55 |
#ifdef DOXYGEN |
| 50 |
template <typename PR, typename IM, typename |
|
| 56 |
template <typename PR, typename IM, typename CMP> |
|
| 51 | 57 |
#else |
| 52 |
template <typename PR, typename IM> |
|
| 58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 53 | 59 |
#endif |
| 54 | 60 |
class Heap {
|
| ... | ... |
@@ -65,7 +71,6 @@ |
| 65 | 71 |
/// |
| 66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
| 67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
| 68 |
/// from the point of view of the heap, but may be useful for |
|
| 69 |
/// |
|
| 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 70 | 75 |
/// |
| 71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
| ... | ... |
@@ -73,42 +78,58 @@ |
| 73 | 78 |
enum State {
|
| 74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
| 75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
| 76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
| 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
| 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
| 77 | 82 |
}; |
| 78 | 83 |
|
| 79 |
/// \brief |
|
| 84 |
/// \brief Constructor. |
|
| 80 | 85 |
/// |
| 81 |
/// |
|
| 86 |
/// Constructor. |
|
| 82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
| 83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
| 84 | 89 |
/// handle the cross references. The assigned value must be |
| 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
| 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 86 | 91 |
explicit Heap(ItemIntMap &map) {}
|
| 87 | 92 |
|
| 93 |
/// \brief Constructor. |
|
| 94 |
/// |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to keys of type |
|
| 97 |
/// \c Item. It is used internally by the heap implementations to |
|
| 98 |
/// handle the cross references. The assigned value must be |
|
| 99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 100 |
/// \param comp The function object used for comparing the priorities. |
|
| 101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {}
|
|
| 102 |
|
|
| 88 | 103 |
/// \brief The number of items stored in the heap. |
| 89 | 104 |
/// |
| 90 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 91 | 106 |
int size() const { return 0; }
|
| 92 | 107 |
|
| 93 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 94 | 109 |
/// |
| 95 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 96 | 111 |
bool empty() const { return false; }
|
| 97 | 112 |
|
| 98 |
/// \brief |
|
| 113 |
/// \brief Make the heap empty. |
|
| 99 | 114 |
/// |
| 100 |
/// Makes the heap empty. |
|
| 101 |
void clear(); |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 120 |
void clear() {}
|
|
| 102 | 121 |
|
| 103 |
/// \brief |
|
| 122 |
/// \brief Insert an item into the heap with the given priority. |
|
| 104 | 123 |
/// |
| 105 |
/// |
|
| 124 |
/// This function inserts the given item into the heap with the |
|
| 125 |
/// given priority. |
|
| 106 | 126 |
/// \param i The item to insert. |
| 107 | 127 |
/// \param p The priority of the item. |
| 128 |
/// \pre \e i must not be stored in the heap. |
|
| 108 | 129 |
void push(const Item &i, const Prio &p) {}
|
| 109 | 130 |
|
| 110 |
/// \brief |
|
| 131 |
/// \brief Return the item having minimum priority. |
|
| 111 | 132 |
/// |
| 112 |
/// |
|
| 133 |
/// This function returns the item having minimum priority. |
|
| 113 | 134 |
/// \pre The heap must be non-empty. |
| 114 | 135 |
Item top() const {}
|
| ... | ... |
@@ -116,33 +137,35 @@ |
| 116 | 137 |
/// \brief The minimum priority. |
| 117 | 138 |
/// |
| 118 |
/// |
|
| 139 |
/// This function returns the minimum priority. |
|
| 119 | 140 |
/// \pre The heap must be non-empty. |
| 120 | 141 |
Prio prio() const {}
|
| 121 | 142 |
|
| 122 |
/// \brief |
|
| 143 |
/// \brief Remove the item having minimum priority. |
|
| 123 | 144 |
/// |
| 124 |
/// |
|
| 145 |
/// This function removes the item having minimum priority. |
|
| 125 | 146 |
/// \pre The heap must be non-empty. |
| 126 | 147 |
void pop() {}
|
| 127 | 148 |
|
| 128 |
/// \brief |
|
| 149 |
/// \brief Remove the given item from the heap. |
|
| 129 | 150 |
/// |
| 130 |
/// |
|
| 151 |
/// This function removes the given item from the heap if it is |
|
| 152 |
/// already stored. |
|
| 131 | 153 |
/// \param i The item to delete. |
| 154 |
/// \pre \e i must be in the heap. |
|
| 132 | 155 |
void erase(const Item &i) {}
|
| 133 | 156 |
|
| 134 |
/// \brief The priority of |
|
| 157 |
/// \brief The priority of the given item. |
|
| 135 | 158 |
/// |
| 136 |
/// |
|
| 159 |
/// This function returns the priority of the given item. |
|
| 137 | 160 |
/// \param i The item. |
| 138 |
/// \pre \ |
|
| 161 |
/// \pre \e i must be in the heap. |
|
| 139 | 162 |
Prio operator[](const Item &i) const {}
|
| 140 | 163 |
|
| 141 |
/// \brief |
|
| 164 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 142 | 165 |
/// not stored in the heap. |
| 143 | 166 |
/// |
| 144 | 167 |
/// This method sets the priority of the given item if it is |
| 145 |
/// already stored in the heap. |
|
| 146 |
/// Otherwise it inserts the given item with the given priority. |
|
| 168 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 169 |
/// item into the heap with the given priority. |
|
| 147 | 170 |
/// |
| 148 | 171 |
/// \param i The item. |
| ... | ... |
@@ -150,22 +173,21 @@ |
| 150 | 173 |
void set(const Item &i, const Prio &p) {}
|
| 151 | 174 |
|
| 152 |
/// \brief |
|
| 175 |
/// \brief Decrease the priority of an item to the given value. |
|
| 153 | 176 |
/// |
| 154 |
/// |
|
| 177 |
/// This function decreases the priority of an item to the given value. |
|
| 155 | 178 |
/// \param i The item. |
| 156 | 179 |
/// \param p The priority. |
| 157 |
/// \pre \ |
|
| 180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 158 | 181 |
void decrease(const Item &i, const Prio &p) {}
|
| 159 | 182 |
|
| 160 |
/// \brief |
|
| 183 |
/// \brief Increase the priority of an item to the given value. |
|
| 161 | 184 |
/// |
| 162 |
/// |
|
| 185 |
/// This function increases the priority of an item to the given value. |
|
| 163 | 186 |
/// \param i The item. |
| 164 | 187 |
/// \param p The priority. |
| 165 |
/// \pre \ |
|
| 188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 166 | 189 |
void increase(const Item &i, const Prio &p) {}
|
| 167 | 190 |
|
| 168 |
/// \brief Returns if an item is in, has already been in, or has |
|
| 169 |
/// never been in the heap. |
|
| 191 |
/// \brief Return the state of an item. |
|
| 170 | 192 |
/// |
| 171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
| ... | ... |
@@ -177,9 +199,9 @@ |
| 177 | 199 |
State state(const Item &i) const {}
|
| 178 | 200 |
|
| 179 |
/// \brief |
|
| 201 |
/// \brief Set the state of an item in the heap. |
|
| 180 | 202 |
/// |
| 181 |
/// Sets the state of the given item in the heap. It can be used |
|
| 182 |
/// to manually clear the heap when it is important to achive the |
|
| 183 |
/// |
|
| 203 |
/// This function sets the state of the given item in the heap. |
|
| 204 |
/// It can be used to manually clear the heap when it is important |
|
| 205 |
/// to achive better time complexity. |
|
| 184 | 206 |
/// \param i The item. |
| 185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
| ... | ... |
@@ -48,5 +48,5 @@ |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| ... | ... |
@@ -63,5 +63,6 @@ |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| ... | ... |
@@ -82,5 +83,5 @@ |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| ... | ... |
@@ -97,5 +98,5 @@ |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| ... | ... |
@@ -225,5 +226,5 @@ |
| 225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 227 |
///\c PredMap type. |
| 227 |
///It must |
|
| 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 228 | 229 |
template <class T> |
| 229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| ... | ... |
@@ -245,5 +246,5 @@ |
| 245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 247 |
///\c DistMap type. |
| 247 |
///It must |
|
| 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 248 | 249 |
template <class T> |
| 249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| ... | ... |
@@ -265,5 +266,5 @@ |
| 265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 267 |
///\c ReachedMap type. |
| 267 |
///It must |
|
| 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 268 | 269 |
template <class T> |
| 269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| ... | ... |
@@ -285,5 +286,5 @@ |
| 285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 287 |
///\c ProcessedMap type. |
| 287 |
///It must |
|
| 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 288 | 289 |
template <class T> |
| 289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| ... | ... |
@@ -412,6 +413,6 @@ |
| 412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 414 |
///member functions called \ref run(Node) "run()".\n |
| 414 |
///If you need more control on the execution, first you have to call |
|
| 415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
| 415 |
///If you need better control on the execution, you have to call |
|
| 416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
| 416 | 417 |
///and perform the actual computation with \ref start(). |
| 417 | 418 |
///This procedure can be repeated if there are nodes that have not |
| ... | ... |
@@ -670,7 +671,7 @@ |
| 670 | 671 |
///@{
|
| 671 | 672 |
|
| 672 |
///The DFS path to |
|
| 673 |
///The DFS path to the given node. |
|
| 673 | 674 |
|
| 674 |
///Returns the DFS path to |
|
| 675 |
///Returns the DFS path to the given node from the root(s). |
|
| 675 | 676 |
/// |
| 676 | 677 |
///\warning \c t should be reached from the root(s). |
| ... | ... |
@@ -680,7 +681,7 @@ |
| 680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 682 |
|
| 682 |
///The distance of |
|
| 683 |
///The distance of the given node from the root(s). |
|
| 683 | 684 |
|
| 684 |
///Returns the distance of |
|
| 685 |
///Returns the distance of the given node from the root(s). |
|
| 685 | 686 |
/// |
| 686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
| ... | ... |
@@ -691,5 +692,5 @@ |
| 691 | 692 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 693 |
|
| 693 |
///Returns the 'previous arc' of the %DFS tree for |
|
| 694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
| 694 | 695 |
|
| 695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
| ... | ... |
@@ -699,5 +700,5 @@ |
| 699 | 700 |
/// |
| 700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 |
///\ref predNode(). |
|
| 702 |
///\ref predNode() and \ref predMap(). |
|
| 702 | 703 |
/// |
| 703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -705,13 +706,13 @@ |
| 705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 707 |
|
| 707 |
///Returns the 'previous node' of the %DFS tree. |
|
| 708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
| 708 | 709 |
|
| 709 | 710 |
///This function returns the 'previous node' of the %DFS |
| 710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 |
/// |
|
| 712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
| 712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 714 |
/// |
| 714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 |
///\ref predArc(). |
|
| 716 |
///\ref predArc() and \ref predMap(). |
|
| 716 | 717 |
/// |
| 717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -734,5 +735,5 @@ |
| 734 | 735 |
/// |
| 735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
| 736 |
///arcs, which form the DFS tree. |
|
| 737 |
///arcs, which form the DFS tree (forest). |
|
| 737 | 738 |
/// |
| 738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -740,5 +741,5 @@ |
| 740 | 741 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 742 |
|
| 742 |
///Checks if |
|
| 743 |
///Checks if the given node. node is reached from the root(s). |
|
| 743 | 744 |
|
| 744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
| ... | ... |
@@ -766,5 +767,5 @@ |
| 766 | 767 |
///The type of the map that stores the predecessor |
| 767 | 768 |
///arcs of the %DFS paths. |
| 768 |
///It must |
|
| 769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 771 |
///Instantiates a PredMap. |
| ... | ... |
@@ -781,5 +782,5 @@ |
| 781 | 782 |
|
| 782 | 783 |
///The type of the map that indicates which nodes are processed. |
| 783 |
///It must |
|
| 784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 784 | 785 |
///By default it is a NullMap. |
| 785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| ... | ... |
@@ -801,5 +802,5 @@ |
| 801 | 802 |
|
| 802 | 803 |
///The type of the map that indicates which nodes are reached. |
| 803 |
///It must |
|
| 804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 806 |
///Instantiates a ReachedMap. |
| ... | ... |
@@ -816,5 +817,5 @@ |
| 816 | 817 |
|
| 817 | 818 |
///The type of the map that stores the distances of the nodes. |
| 818 |
///It must |
|
| 819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 821 |
///Instantiates a DistMap. |
| ... | ... |
@@ -831,5 +832,5 @@ |
| 831 | 832 |
|
| 832 | 833 |
///The type of the DFS paths. |
| 833 |
///It must |
|
| 834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 834 | 835 |
typedef lemon::Path<Digraph> Path; |
| 835 | 836 |
}; |
| ... | ... |
@@ -837,10 +838,6 @@ |
| 837 | 838 |
/// Default traits class used by DfsWizard |
| 838 | 839 |
|
| 839 |
/// To make it easier to use Dfs algorithm |
|
| 840 |
/// we have created a wizard class. |
|
| 841 |
/// This \ref DfsWizard class needs default traits, |
|
| 842 |
/// as well as the \ref Dfs class. |
|
| 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
| 844 |
/// \ref DfsWizard class. |
|
| 840 |
/// Default traits class used by DfsWizard. |
|
| 841 |
/// \tparam GR The type of the digraph. |
|
| 845 | 842 |
template<class GR> |
| 846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| ... | ... |
@@ -870,5 +867,5 @@ |
| 870 | 867 |
/// Constructor. |
| 871 | 868 |
|
| 872 |
/// This constructor does not require parameters, |
|
| 869 |
/// This constructor does not require parameters, it initiates |
|
| 873 | 870 |
/// all of the attributes to \c 0. |
| 874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| ... | ... |
@@ -900,5 +897,4 @@ |
| 900 | 897 |
typedef TR Base; |
| 901 | 898 |
|
| 902 |
///The type of the digraph the algorithm runs on. |
|
| 903 | 899 |
typedef typename TR::Digraph Digraph; |
| 904 | 900 |
|
| ... | ... |
@@ -908,14 +904,8 @@ |
| 908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 905 |
|
| 910 |
///\brief The type of the map that stores the predecessor |
|
| 911 |
///arcs of the DFS paths. |
|
| 912 | 906 |
typedef typename TR::PredMap PredMap; |
| 913 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 914 | 907 |
typedef typename TR::DistMap DistMap; |
| 915 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 |
///The type of the DFS paths |
|
| 920 | 910 |
typedef typename TR::Path Path; |
| 921 | 911 |
|
| ... | ... |
@@ -1000,9 +990,10 @@ |
| 1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1001 | 991 |
}; |
| 1002 |
///\brief \ref named-func-param "Named parameter" |
|
| 1003 |
///for setting PredMap object. |
|
| 992 |
|
|
| 993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 994 |
///the predecessor map. |
|
| 1004 | 995 |
/// |
| 1005 |
///\ref named-func-param "Named parameter" |
|
| 1006 |
///for setting PredMap object. |
|
| 996 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 997 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1007 | 998 |
template<class T> |
| 1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| ... | ... |
@@ -1018,9 +1009,10 @@ |
| 1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1019 | 1010 |
}; |
| 1020 |
///\brief \ref named-func-param "Named parameter" |
|
| 1021 |
///for setting ReachedMap object. |
|
| 1011 |
|
|
| 1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1013 |
///the reached map. |
|
| 1022 | 1014 |
/// |
| 1023 |
/// \ref named-func-param "Named parameter" |
|
| 1024 |
///for setting ReachedMap object. |
|
| 1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1016 |
///the map that indicates which nodes are reached. |
|
| 1025 | 1017 |
template<class T> |
| 1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| ... | ... |
@@ -1036,9 +1028,11 @@ |
| 1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1037 | 1029 |
}; |
| 1038 |
///\brief \ref named-func-param "Named parameter" |
|
| 1039 |
///for setting DistMap object. |
|
| 1030 |
|
|
| 1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1032 |
///the distance map. |
|
| 1040 | 1033 |
/// |
| 1041 |
/// \ref named-func-param "Named parameter" |
|
| 1042 |
///for setting DistMap object. |
|
| 1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1035 |
///the map that stores the distances of the nodes calculated |
|
| 1036 |
///by the algorithm. |
|
| 1043 | 1037 |
template<class T> |
| 1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| ... | ... |
@@ -1054,9 +1048,10 @@ |
| 1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1055 | 1049 |
}; |
| 1056 |
///\brief \ref named-func-param "Named parameter" |
|
| 1057 |
///for setting ProcessedMap object. |
|
| 1050 |
|
|
| 1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1052 |
///the processed map. |
|
| 1058 | 1053 |
/// |
| 1059 |
/// \ref named-func-param "Named parameter" |
|
| 1060 |
///for setting ProcessedMap object. |
|
| 1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1055 |
///the map that indicates which nodes are processed. |
|
| 1061 | 1056 |
template<class T> |
| 1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| ... | ... |
@@ -1209,5 +1204,5 @@ |
| 1209 | 1204 |
/// |
| 1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
| 1211 |
/// It must |
|
| 1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1213 | 1208 |
|
| ... | ... |
@@ -1370,6 +1365,6 @@ |
| 1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 |
/// If you need more control on the execution, first you have to call |
|
| 1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
| 1367 |
/// If you need better control on the execution, you have to call |
|
| 1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
| 1374 | 1369 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
| ... | ... |
@@ -1621,5 +1616,5 @@ |
| 1621 | 1616 |
///@{
|
| 1622 | 1617 |
|
| 1623 |
/// \brief Checks if |
|
| 1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1624 | 1619 |
/// |
| 1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
| ... | ... |
@@ -71,7 +71,7 @@ |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 |
///It must |
|
| 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 74 | 74 |
typedef LEN LengthMap; |
| 75 |
///The type of the |
|
| 75 |
///The type of the arc lengths. |
|
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| ... | ... |
@@ -117,5 +117,5 @@ |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 |
///It must |
|
| 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| ... | ... |
@@ -132,5 +132,5 @@ |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 |
///It must |
|
| 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 | 135 |
///By default it is a NullMap. |
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| ... | ... |
@@ -152,5 +152,5 @@ |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 |
///It must |
|
| 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| ... | ... |
@@ -170,4 +170,8 @@ |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
| 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
| 174 |
///the BellmanFord algorithm should be used instead. |
|
| 175 |
/// |
|
| 172 | 176 |
///The arc lengths are passed to the algorithm using a |
| 173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| ... | ... |
@@ -202,5 +206,5 @@ |
| 202 | 206 |
typedef typename TR::Digraph Digraph; |
| 203 | 207 |
|
| 204 |
///The type of the |
|
| 208 |
///The type of the arc lengths. |
|
| 205 | 209 |
typedef typename TR::LengthMap::Value Value; |
| 206 | 210 |
///The type of the map that stores the arc lengths. |
| ... | ... |
@@ -305,5 +309,5 @@ |
| 305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 310 |
///\c PredMap type. |
| 307 |
///It must |
|
| 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 308 | 312 |
template <class T> |
| 309 | 313 |
struct SetPredMap |
| ... | ... |
@@ -326,5 +330,5 @@ |
| 326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 331 |
///\c DistMap type. |
| 328 |
///It must |
|
| 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 329 | 333 |
template <class T> |
| 330 | 334 |
struct SetDistMap |
| ... | ... |
@@ -347,5 +351,5 @@ |
| 347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 352 |
///\c ProcessedMap type. |
| 349 |
///It must |
|
| 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 350 | 354 |
template <class T> |
| 351 | 355 |
struct SetProcessedMap |
| ... | ... |
@@ -444,4 +448,5 @@ |
| 444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 449 |
///\c OperationTraits type. |
| 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
| 446 | 451 |
template <class T> |
| 447 | 452 |
struct SetOperationTraits |
| ... | ... |
@@ -585,6 +590,6 @@ |
| 585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 |
///If you need more control on the execution, first you have to call |
|
| 588 |
///\ref init(), then you can add several source nodes with |
|
| 592 |
///If you need better control on the execution, you have to call |
|
| 593 |
///\ref init() first, then you can add several source nodes with |
|
| 589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 595 |
///performed with one of the \ref start() functions. |
| ... | ... |
@@ -802,12 +807,12 @@ |
| 802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 808 |
///functions.\n |
| 804 |
///Either \ref run(Node) "run()" or \ref |
|
| 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
| 805 | 810 |
///before using them. |
| 806 | 811 |
|
| 807 | 812 |
///@{
|
| 808 | 813 |
|
| 809 |
///The shortest path to |
|
| 814 |
///The shortest path to the given node. |
|
| 810 | 815 |
|
| 811 |
///Returns the shortest path to |
|
| 816 |
///Returns the shortest path to the given node from the root(s). |
|
| 812 | 817 |
/// |
| 813 | 818 |
///\warning \c t should be reached from the root(s). |
| ... | ... |
@@ -817,7 +822,7 @@ |
| 817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 823 |
|
| 819 |
///The distance of |
|
| 824 |
///The distance of the given node from the root(s). |
|
| 820 | 825 |
|
| 821 |
///Returns the distance of |
|
| 826 |
///Returns the distance of the given node from the root(s). |
|
| 822 | 827 |
/// |
| 823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
| ... | ... |
@@ -828,6 +833,7 @@ |
| 828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 834 |
|
| 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 831 |
|
|
| 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 836 |
///the given node. |
|
| 837 |
/// |
|
| 832 | 838 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
| ... | ... |
@@ -836,5 +842,5 @@ |
| 836 | 842 |
/// |
| 837 | 843 |
///The shortest path tree used here is equal to the shortest path |
| 838 |
///tree used in \ref predNode(). |
|
| 844 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 839 | 845 |
/// |
| 840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -842,13 +848,14 @@ |
| 842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 849 |
|
| 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 845 |
|
|
| 850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 851 |
///the given node. |
|
| 852 |
/// |
|
| 846 | 853 |
///This function returns the 'previous node' of the shortest path |
| 847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 |
/// |
|
| 855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 857 |
/// |
| 851 | 858 |
///The shortest path tree used here is equal to the shortest path |
| 852 |
///tree used in \ref predArc(). |
|
| 859 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 853 | 860 |
/// |
| 854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -871,5 +878,5 @@ |
| 871 | 878 |
/// |
| 872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
| 873 |
///arcs, which form the shortest path tree. |
|
| 880 |
///arcs, which form the shortest path tree (forest). |
|
| 874 | 881 |
/// |
| 875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| ... | ... |
@@ -877,5 +884,5 @@ |
| 877 | 884 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 885 |
|
| 879 |
///Checks if |
|
| 886 |
///Checks if the given node is reached from the root(s). |
|
| 880 | 887 |
|
| 881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
| ... | ... |
@@ -896,7 +903,7 @@ |
| 896 | 903 |
Heap::POST_HEAP; } |
| 897 | 904 |
|
| 898 |
///The current distance of |
|
| 905 |
///The current distance of the given node from the root(s). |
|
| 899 | 906 |
|
| 900 |
///Returns the current distance of |
|
| 907 |
///Returns the current distance of the given node from the root(s). |
|
| 901 | 908 |
///It may be decreased in the following processes. |
| 902 | 909 |
/// |
| ... | ... |
@@ -925,7 +932,7 @@ |
| 925 | 932 |
|
| 926 | 933 |
///The type of the map that stores the arc lengths. |
| 927 |
///It must |
|
| 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 928 | 935 |
typedef LEN LengthMap; |
| 929 |
///The type of the |
|
| 936 |
///The type of the arc lengths. |
|
| 930 | 937 |
typedef typename LEN::Value Value; |
| 931 | 938 |
|
| ... | ... |
@@ -974,5 +981,5 @@ |
| 974 | 981 |
///The type of the map that stores the predecessor |
| 975 | 982 |
///arcs of the shortest paths. |
| 976 |
///It must |
|
| 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 985 |
///Instantiates a PredMap. |
| ... | ... |
@@ -989,5 +996,5 @@ |
| 989 | 996 |
|
| 990 | 997 |
///The type of the map that indicates which nodes are processed. |
| 991 |
///It must |
|
| 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 992 | 999 |
///By default it is a NullMap. |
| 993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| ... | ... |
@@ -1009,5 +1016,5 @@ |
| 1009 | 1016 |
|
| 1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
| 1011 |
///It must |
|
| 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1020 |
///Instantiates a DistMap. |
| ... | ... |
@@ -1024,5 +1031,5 @@ |
| 1024 | 1031 |
|
| 1025 | 1032 |
///The type of the shortest paths. |
| 1026 |
///It must |
|
| 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1035 |
}; |
| ... | ... |
@@ -1030,10 +1037,7 @@ |
| 1030 | 1037 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1038 |
|
| 1032 |
/// To make it easier to use Dijkstra algorithm |
|
| 1033 |
/// we have created a wizard class. |
|
| 1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
| 1035 |
/// as well as the \ref Dijkstra class. |
|
| 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
| 1037 |
/// \ref DijkstraWizard class. |
|
| 1039 |
/// Default traits class used by DijkstraWizard. |
|
| 1040 |
/// \tparam GR The type of the digraph. |
|
| 1041 |
/// \tparam LEN The type of the length map. |
|
| 1038 | 1042 |
template<typename GR, typename LEN> |
| 1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| ... | ... |
@@ -1094,5 +1098,4 @@ |
| 1094 | 1098 |
typedef TR Base; |
| 1095 | 1099 |
|
| 1096 |
///The type of the digraph the algorithm runs on. |
|
| 1097 | 1100 |
typedef typename TR::Digraph Digraph; |
| 1098 | 1101 |
|
| ... | ... |
@@ -1102,18 +1105,10 @@ |
| 1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1103 | 1106 |
|
| 1104 |
///The type of the map that stores the arc lengths. |
|
| 1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
| 1106 |
///The type of the length of the arcs. |
|
| 1107 | 1108 |
typedef typename LengthMap::Value Value; |
| 1108 |
///\brief The type of the map that stores the predecessor |
|
| 1109 |
///arcs of the shortest paths. |
|
| 1110 | 1109 |
typedef typename TR::PredMap PredMap; |
| 1111 |
///The type of the map that stores the distances of the nodes. |
|
| 1112 | 1110 |
typedef typename TR::DistMap DistMap; |
| 1113 |
///The type of the map that indicates which nodes are processed. |
|
| 1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1115 |
///The type of the shortest paths |
|
| 1116 | 1112 |
typedef typename TR::Path Path; |
| 1117 |
///The heap type used by the dijkstra algorithm. |
|
| 1118 | 1113 |
typedef typename TR::Heap Heap; |
| 1119 | 1114 |
|
| ... | ... |
@@ -1187,9 +1182,10 @@ |
| 1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1188 | 1183 |
}; |
| 1189 |
///\brief \ref named-func-param "Named parameter" |
|
| 1190 |
///for setting PredMap object. |
|
| 1184 |
|
|
| 1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1186 |
///the predecessor map. |
|
| 1191 | 1187 |
/// |
| 1192 |
///\ref named-func-param "Named parameter" |
|
| 1193 |
///for setting PredMap object. |
|
| 1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1189 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1194 | 1190 |
template<class T> |
| 1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| ... | ... |
@@ -1205,9 +1201,11 @@ |
| 1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1206 | 1202 |
}; |
| 1207 |
///\brief \ref named-func-param "Named parameter" |
|
| 1208 |
///for setting DistMap object. |
|
| 1203 |
|
|
| 1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1205 |
///the distance map. |
|
| 1209 | 1206 |
/// |
| 1210 |
///\ref named-func-param "Named parameter" |
|
| 1211 |
///for setting DistMap object. |
|
| 1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1208 |
///the map that stores the distances of the nodes calculated |
|
| 1209 |
///by the algorithm. |
|
| 1212 | 1210 |
template<class T> |
| 1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
| ... | ... |
@@ -1223,9 +1221,10 @@ |
| 1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1224 | 1222 |
}; |
| 1225 |
///\brief \ref named-func-param "Named parameter" |
|
| 1226 |
///for setting ProcessedMap object. |
|
| 1223 |
|
|
| 1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1225 |
///the processed map. |
|
| 1227 | 1226 |
/// |
| 1228 |
/// \ref named-func-param "Named parameter" |
|
| 1229 |
///for setting ProcessedMap object. |
|
| 1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1228 |
///the map that indicates which nodes are processed. |
|
| 1230 | 1229 |
template<class T> |
| 1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| ... | ... |
@@ -1240,4 +1239,5 @@ |
| 1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1241 | 1240 |
}; |
| 1241 |
|
|
| 1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
| 1243 | 1243 |
///for getting the shortest path to the target node. |
| ... | ... |
@@ -22,14 +22,7 @@ |
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
|
| 24 |
///\ingroup |
|
| 24 |
///\ingroup geomdat |
|
| 25 | 25 |
///\file |
| 26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
| 27 |
/// |
|
| 28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
| 29 |
/// a two dimensional vector with the usual operations. |
|
| 30 |
/// |
|
| 31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
| 32 |
/// the rectangular bounding box of a set of |
|
| 33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
| 34 | 27 |
|
| 35 | 28 |
namespace lemon {
|
| ... | ... |
@@ -41,5 +34,5 @@ |
| 41 | 34 |
namespace dim2 {
|
| 42 | 35 |
|
| 43 |
/// \addtogroup |
|
| 36 |
/// \addtogroup geomdat |
|
| 44 | 37 |
/// @{
|
| 45 | 38 |
| ... | ... |
@@ -21,8 +21,9 @@ |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 |
///\ingroup auxdat |
|
| 24 |
///\brief Fibonacci Heap implementation. |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Fibonacci heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 |
#include <utility> |
|
| 27 | 28 |
#include <functional> |
| 28 | 29 |
#include <lemon/math.h> |
| ... | ... |
@@ -30,42 +31,37 @@ |
| 30 | 31 |
namespace lemon {
|
| 31 | 32 |
|
| 32 |
/// \ingroup |
|
| 33 |
/// \ingroup heaps |
|
| 33 | 34 |
/// |
| 34 |
///\brief Fibonacci |
|
| 35 |
/// \brief Fibonacci heap data structure. |
|
| 35 | 36 |
/// |
| 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
| 40 |
/// |
|
| 37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 41 | 39 |
/// |
| 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
| 43 |
///heap. In case of many calls to these operations, it is better to use a |
|
| 44 |
///\ref |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
| 41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
| 42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
| 45 | 43 |
/// |
| 46 |
///\param PRIO Type of the priority of the items. |
|
| 47 |
///\param IM A read and writable Item int map, used internally |
|
| 48 |
///to handle the cross references. |
|
| 49 |
///\param CMP A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<PRIO>. |
|
| 51 |
/// |
|
| 52 |
///\sa BinHeap |
|
| 53 |
///\sa Dijkstra |
|
| 44 |
/// \tparam PR Type of the priorities of the items. |
|
| 45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 |
/// internally to handle the cross references. |
|
| 47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 |
/// The default is \c std::less<PR>. |
|
| 54 | 49 |
#ifdef DOXYGEN |
| 55 |
template <typename |
|
| 50 |
template <typename PR, typename IM, typename CMP> |
|
| 56 | 51 |
#else |
| 57 |
template <typename |
|
| 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 58 | 53 |
#endif |
| 59 | 54 |
class FibHeap {
|
| 60 | 55 |
public: |
| 61 |
|
|
| 56 |
|
|
| 57 |
/// Type of the item-int map. |
|
| 62 | 58 |
typedef IM ItemIntMap; |
| 63 |
///\e |
|
| 64 |
typedef PRIO Prio; |
|
| 65 |
/// |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 66 | 62 |
typedef typename ItemIntMap::Key Item; |
| 67 |
/// |
|
| 63 |
/// Type of the item-priority pairs. |
|
| 68 | 64 |
typedef std::pair<Item,Prio> Pair; |
| 69 |
/// |
|
| 65 |
/// Functor type for comparing the priorities. |
|
| 70 | 66 |
typedef CMP Compare; |
| 71 | 67 |
|
| ... | ... |
@@ -81,8 +77,8 @@ |
| 81 | 77 |
public: |
| 82 | 78 |
|
| 83 |
/// \brief Type to represent the |
|
| 79 |
/// \brief Type to represent the states of the items. |
|
| 84 | 80 |
/// |
| 85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 81 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 87 | 83 |
/// heap's point of view, but may be useful to the user. |
| 88 | 84 |
/// |
| ... | ... |
@@ -95,16 +91,20 @@ |
| 95 | 91 |
}; |
| 96 | 92 |
|
| 97 |
/// \brief |
|
| 93 |
/// \brief Constructor. |
|
| 98 | 94 |
/// |
| 99 |
/// \c map should be given to the constructor, since it is |
|
| 100 |
/// used internally to handle the cross references. |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to the items. |
|
| 97 |
/// It is used internally to handle the cross references. |
|
| 98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 101 | 99 |
explicit FibHeap(ItemIntMap &map) |
| 102 | 100 |
: _minimum(0), _iim(map), _num() {}
|
| 103 | 101 |
|
| 104 |
/// \brief |
|
| 102 |
/// \brief Constructor. |
|
| 105 | 103 |
/// |
| 106 |
/// \c map should be given to the constructor, since it is used |
|
| 107 |
/// internally to handle the cross references. \c comp is an |
|
| 108 |
/// |
|
| 104 |
/// Constructor. |
|
| 105 |
/// \param map A map that assigns \c int values to the items. |
|
| 106 |
/// It is used internally to handle the cross references. |
|
| 107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 108 |
/// \param comp The function object used for comparing the priorities. |
|
| 109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
| 110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
| ... | ... |
@@ -112,41 +112,31 @@ |
| 112 | 112 |
/// \brief The number of items stored in the heap. |
| 113 | 113 |
/// |
| 114 |
/// |
|
| 114 |
/// This function returns the number of items stored in the heap. |
|
| 115 | 115 |
int size() const { return _num; }
|
| 116 | 116 |
|
| 117 |
/// \brief |
|
| 117 |
/// \brief Check if the heap is empty. |
|
| 118 | 118 |
/// |
| 119 |
/// |
|
| 119 |
/// This function returns \c true if the heap is empty. |
|
| 120 | 120 |
bool empty() const { return _num==0; }
|
| 121 | 121 |
|
| 122 |
/// \brief Make |
|
| 122 |
/// \brief Make the heap empty. |
|
| 123 | 123 |
/// |
| 124 |
/// Make empty this heap. It does not change the cross reference |
|
| 125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 126 |
/// should first clear the heap and after that you should set the |
|
| 127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 124 |
/// This functon makes the heap empty. |
|
| 125 |
/// It does not change the cross reference map. If you want to reuse |
|
| 126 |
/// a heap that is not surely empty, you should first clear it and |
|
| 127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 128 |
/// for each item. |
|
| 128 | 129 |
void clear() {
|
| 129 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
| 130 | 131 |
} |
| 131 | 132 |
|
| 132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
| 133 |
/// if \c item was already there. |
|
| 133 |
/// \brief Insert an item into the heap with the given priority. |
|
| 134 | 134 |
/// |
| 135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
| 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
| 137 |
/// \ref increase(\c item, \c value) otherwise. |
|
| 138 |
void set (const Item& item, const Prio& value) {
|
|
| 139 |
int i=_iim[item]; |
|
| 140 |
if ( i >= 0 && _data[i].in ) {
|
|
| 141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 143 |
} else push(item, value); |
|
| 144 |
} |
|
| 145 |
|
|
| 146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
| 147 |
/// |
|
| 148 |
/// Adds \c item to the heap with priority \c value. |
|
| 149 |
/// \pre \c item must not be stored in the heap. |
|
| 150 |
void push (const Item& item, const Prio& value) {
|
|
| 135 |
/// This function inserts the given item into the heap with the |
|
| 136 |
/// given priority. |
|
| 137 |
/// \param item The item to insert. |
|
| 138 |
/// \param prio The priority of the item. |
|
| 139 |
/// \pre \e item must not be stored in the heap. |
|
| 140 |
void push (const Item& item, const Prio& prio) {
|
|
| 151 | 141 |
int i=_iim[item]; |
| 152 | 142 |
if ( i < 0 ) {
|
| ... | ... |
@@ -169,38 +159,28 @@ |
| 169 | 159 |
_data[_minimum].right_neighbor=i; |
| 170 | 160 |
_data[i].left_neighbor=_minimum; |
| 171 |
if ( _comp( |
|
| 161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
| 172 | 162 |
} else {
|
| 173 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
| 174 | 164 |
_minimum=i; |
| 175 | 165 |
} |
| 176 |
_data[i].prio= |
|
| 166 |
_data[i].prio=prio; |
|
| 177 | 167 |
++_num; |
| 178 | 168 |
} |
| 179 | 169 |
|
| 180 |
/// \brief |
|
| 170 |
/// \brief Return the item having minimum priority. |
|
| 181 | 171 |
/// |
| 182 |
/// This method returns the item with minimum priority relative to \c |
|
| 183 |
/// Compare. |
|
| 184 |
/// |
|
| 172 |
/// This function returns the item having minimum priority. |
|
| 173 |
/// \pre The heap must be non-empty. |
|
| 185 | 174 |
Item top() const { return _data[_minimum].name; }
|
| 186 | 175 |
|
| 187 |
/// \brief |
|
| 176 |
/// \brief The minimum priority. |
|
| 188 | 177 |
/// |
| 189 |
/// It returns the minimum priority relative to \c Compare. |
|
| 190 |
/// \pre The heap must be nonempty. |
|
| 191 |
|
|
| 178 |
/// This function returns the minimum priority. |
|
| 179 |
/// \pre The heap must be non-empty. |
|
| 180 |
Prio prio() const { return _data[_minimum].prio; }
|
|
| 192 | 181 |
|
| 193 |
/// \brief |
|
| 182 |
/// \brief Remove the item having minimum priority. |
|
| 194 | 183 |
/// |
| 195 |
/// It returns the priority of \c item. |
|
| 196 |
/// \pre \c item must be in the heap. |
|
| 197 |
const Prio& operator[](const Item& item) const {
|
|
| 198 |
return _data[_iim[item]].prio; |
|
| 199 |
} |
|
| 200 |
|
|
| 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
| 202 |
/// |
|
| 203 |
/// This method deletes the item with minimum priority relative to \c |
|
| 204 |
/// Compare from the heap. |
|
| 184 |
/// This function removes the item having minimum priority. |
|
| 205 | 185 |
/// \pre The heap must be non-empty. |
| 206 | 186 |
void pop() {
|
| ... | ... |
@@ -209,5 +189,5 @@ |
| 209 | 189 |
_data[_minimum].in=false; |
| 210 | 190 |
if ( _data[_minimum].degree!=0 ) {
|
| 211 |
|
|
| 191 |
makeRoot(_data[_minimum].child); |
|
| 212 | 192 |
_minimum=_data[_minimum].child; |
| 213 | 193 |
balance(); |
| ... | ... |
@@ -222,5 +202,5 @@ |
| 222 | 202 |
int last_child=_data[child].left_neighbor; |
| 223 | 203 |
|
| 224 |
|
|
| 204 |
makeRoot(child); |
|
| 225 | 205 |
|
| 226 | 206 |
_data[left].right_neighbor=child; |
| ... | ... |
@@ -235,8 +215,10 @@ |
| 235 | 215 |
} |
| 236 | 216 |
|
| 237 |
/// \brief |
|
| 217 |
/// \brief Remove the given item from the heap. |
|
| 238 | 218 |
/// |
| 239 |
/// This method deletes \c item from the heap, if \c item was already |
|
| 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
| 219 |
/// This function removes the given item from the heap if it is |
|
| 220 |
/// already stored. |
|
| 221 |
/// \param item The item to delete. |
|
| 222 |
/// \pre \e item must be in the heap. |
|
| 241 | 223 |
void erase (const Item& item) {
|
| 242 | 224 |
int i=_iim[item]; |
| ... | ... |
@@ -253,41 +235,66 @@ |
| 253 | 235 |
} |
| 254 | 236 |
|
| 255 |
/// \brief |
|
| 237 |
/// \brief The priority of the given item. |
|
| 256 | 238 |
/// |
| 257 |
/// This method decreases the priority of \c item to \c value. |
|
| 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
| 259 |
/// value relative to \c Compare. |
|
| 260 |
void decrease (Item item, const Prio& value) {
|
|
| 239 |
/// This function returns the priority of the given item. |
|
| 240 |
/// \param item The item. |
|
| 241 |
/// \pre \e item must be in the heap. |
|
| 242 |
Prio operator[](const Item& item) const {
|
|
| 243 |
return _data[_iim[item]].prio; |
|
| 244 |
} |
|
| 245 |
|
|
| 246 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 247 |
/// not stored in the heap. |
|
| 248 |
/// |
|
| 249 |
/// This method sets the priority of the given item if it is |
|
| 250 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 251 |
/// item into the heap with the given priority. |
|
| 252 |
/// \param item The item. |
|
| 253 |
/// \param prio The priority. |
|
| 254 |
void set (const Item& item, const Prio& prio) {
|
|
| 261 | 255 |
int i=_iim[item]; |
| 262 |
_data[i]. |
|
| 256 |
if ( i >= 0 && _data[i].in ) {
|
|
| 257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
| 258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
| 259 |
} else push(item, prio); |
|
| 260 |
} |
|
| 261 |
|
|
| 262 |
/// \brief Decrease the priority of an item to the given value. |
|
| 263 |
/// |
|
| 264 |
/// This function decreases the priority of an item to the given value. |
|
| 265 |
/// \param item The item. |
|
| 266 |
/// \param prio The priority. |
|
| 267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
| 268 |
void decrease (const Item& item, const Prio& prio) {
|
|
| 269 |
int i=_iim[item]; |
|
| 270 |
_data[i].prio=prio; |
|
| 263 | 271 |
int p=_data[i].parent; |
| 264 | 272 |
|
| 265 |
if ( p!=-1 && _comp( |
|
| 273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) {
|
|
| 266 | 274 |
cut(i,p); |
| 267 | 275 |
cascade(p); |
| 268 | 276 |
} |
| 269 |
if ( _comp( |
|
| 277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
| 270 | 278 |
} |
| 271 | 279 |
|
| 272 |
/// \brief |
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 273 | 281 |
/// |
| 274 |
/// This method sets the priority of \c item to \c value. Though |
|
| 275 |
/// there is no precondition on the priority of \c item, this |
|
| 276 |
/// method should be used only if it is indeed necessary to increase |
|
| 277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
| 278 |
/// method is inefficient. |
|
| 279 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param item The item. |
|
| 284 |
/// \param prio The priority. |
|
| 285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
| 286 |
void increase (const Item& item, const Prio& prio) {
|
|
| 280 | 287 |
erase(item); |
| 281 |
push(item, |
|
| 288 |
push(item, prio); |
|
| 282 | 289 |
} |
| 283 | 290 |
|
| 284 |
|
|
| 285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
| 286 |
/// |
|
| 291 |
/// \brief Return the state of an item. |
|
| 287 | 292 |
/// |
| 288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 290 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 291 |
/// get back to the heap again. |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param item The item. |
|
| 292 | 299 |
State state(const Item &item) const {
|
| 293 | 300 |
int i=_iim[item]; |
| ... | ... |
@@ -299,9 +306,9 @@ |
| 299 | 306 |
} |
| 300 | 307 |
|
| 301 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 302 | 309 |
/// |
| 303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 304 |
/// manually clear the heap when it is important to achive the |
|
| 305 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 306 | 313 |
/// \param i The item. |
| 307 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| ... | ... |
@@ -366,5 +373,5 @@ |
| 366 | 373 |
} |
| 367 | 374 |
|
| 368 |
void |
|
| 375 |
void makeRoot(int c) {
|
|
| 369 | 376 |
int s=c; |
| 370 | 377 |
do {
|
| ... | ... |
@@ -360,8 +360,8 @@ |
| 360 | 360 |
/// \c t. |
| 361 | 361 |
/// \code |
| 362 |
/// |
|
| 362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 363 | 363 |
/// gom.run(); |
| 364 | 364 |
/// int cnt=0; |
| 365 |
/// for( |
|
| 365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
| 366 | 366 |
/// \endcode |
| 367 | 367 |
class MinCutNodeIt |
| ... | ... |
@@ -457,8 +457,8 @@ |
| 457 | 457 |
/// \c t. |
| 458 | 458 |
/// \code |
| 459 |
/// |
|
| 459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 460 | 460 |
/// gom.run(); |
| 461 | 461 |
/// int value=0; |
| 462 |
/// for( |
|
| 462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
| 463 | 463 |
/// value+=capacities[e]; |
| 464 | 464 |
/// \endcode |
| ... | ... |
@@ -23,4 +23,5 @@ |
| 23 | 23 |
#include <functional> |
| 24 | 24 |
#include <vector> |
| 25 |
#include <map> |
|
| 25 | 26 |
|
| 26 | 27 |
#include <lemon/core.h> |
| ... | ... |
@@ -30,6 +31,4 @@ |
| 30 | 31 |
///\brief Miscellaneous property maps |
| 31 | 32 |
|
| 32 |
#include <map> |
|
| 33 |
|
|
| 34 | 33 |
namespace lemon {
|
| 35 | 34 |
|
| ... | ... |
@@ -1791,9 +1790,9 @@ |
| 1791 | 1790 |
/// \code |
| 1792 | 1791 |
/// std::vector<Node> v; |
| 1793 |
/// dfs(g |
|
| 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
| 1794 | 1793 |
/// \endcode |
| 1795 | 1794 |
/// \code |
| 1796 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
| 1797 |
/// dfs(g |
|
| 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
| 1798 | 1797 |
/// \endcode |
| 1799 | 1798 |
/// |
| ... | ... |
@@ -1819,5 +1818,5 @@ |
| 1819 | 1818 |
/// |
| 1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
| 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
| 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
| 1822 | 1821 |
/// - \b unique: different items get different ids, |
| 1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
| ... | ... |
@@ -1903,11 +1902,12 @@ |
| 1903 | 1902 |
|
| 1904 | 1903 |
/// This class provides simple invertable graph maps. |
| 1905 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 1906 |
/// and if a key is set to a new value then store it |
|
| 1907 |
/// in the inverse map. |
|
| 1908 |
/// |
|
| 1904 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
|
| 1905 |
/// and if a key is set to a new value, then stores it in the inverse map. |
|
| 1909 | 1906 |
/// The values of the map can be accessed |
| 1910 | 1907 |
/// with stl compatible forward iterator. |
| 1911 | 1908 |
/// |
| 1909 |
/// This type is not reference map, so it cannot be modified with |
|
| 1910 |
/// the subscript operator. |
|
| 1911 |
/// |
|
| 1912 | 1912 |
/// \tparam GR The graph type. |
| 1913 | 1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| ... | ... |
@@ -1924,5 +1924,5 @@ |
| 1924 | 1924 |
template Map<V>::Type Map; |
| 1925 | 1925 |
|
| 1926 |
typedef std:: |
|
| 1926 |
typedef std::multimap<V, K> Container; |
|
| 1927 | 1927 |
Container _inv_map; |
| 1928 | 1928 |
|
| ... | ... |
@@ -1949,4 +1949,6 @@ |
| 1949 | 1949 |
/// iterator on the values of the map. The values can |
| 1950 | 1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 1951 |
/// They are considered with multiplicity, so each value is |
|
| 1952 |
/// traversed for each item it is assigned to. |
|
| 1951 | 1953 |
class ValueIterator |
| 1952 | 1954 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| ... | ... |
@@ -2001,9 +2003,13 @@ |
| 2001 | 2003 |
void set(const Key& key, const Value& val) {
|
| 2002 | 2004 |
Value oldval = Map::operator[](key); |
| 2003 |
typename Container::iterator it = _inv_map.find(oldval); |
|
| 2004 |
if (it != _inv_map.end() && it->second == key) {
|
|
| 2005 |
|
|
| 2005 |
typename Container::iterator it; |
|
| 2006 |
for (it = _inv_map.equal_range(oldval).first; |
|
| 2007 |
it != _inv_map.equal_range(oldval).second; ++it) {
|
|
| 2008 |
if (it->second == key) {
|
|
| 2009 |
_inv_map.erase(it); |
|
| 2010 |
break; |
|
| 2011 |
} |
|
| 2006 | 2012 |
} |
| 2007 |
_inv_map.insert(make_pair(val, key)); |
|
| 2013 |
_inv_map.insert(std::make_pair(val, key)); |
|
| 2008 | 2014 |
Map::set(key, val); |
| 2009 | 2015 |
} |
| ... | ... |
@@ -2017,9 +2023,12 @@ |
| 2017 | 2023 |
} |
| 2018 | 2024 |
|
| 2019 |
/// \brief Gives back |
|
| 2025 |
/// \brief Gives back an item by its value. |
|
| 2020 | 2026 |
/// |
| 2021 |
/// Gives back the item by its value. |
|
| 2022 |
Key operator()(const Value& key) const {
|
|
| 2023 |
|
|
| 2027 |
/// This function gives back an item that is assigned to |
|
| 2028 |
/// the given value or \c INVALID if no such item exists. |
|
| 2029 |
/// If there are more items with the same associated value, |
|
| 2030 |
/// only one of them is returned. |
|
| 2031 |
Key operator()(const Value& val) const {
|
|
| 2032 |
typename Container::const_iterator it = _inv_map.find(val); |
|
| 2024 | 2033 |
return it != _inv_map.end() ? it->second : INVALID; |
| 2025 | 2034 |
} |
| ... | ... |
@@ -2033,7 +2042,11 @@ |
| 2033 | 2042 |
virtual void erase(const Key& key) {
|
| 2034 | 2043 |
Value val = Map::operator[](key); |
| 2035 |
typename Container::iterator it = _inv_map.find(val); |
|
| 2036 |
if (it != _inv_map.end() && it->second == key) {
|
|
| 2037 |
|
|
| 2044 |
typename Container::iterator it; |
|
| 2045 |
for (it = _inv_map.equal_range(val).first; |
|
| 2046 |
it != _inv_map.equal_range(val).second; ++it) {
|
|
| 2047 |
if (it->second == key) {
|
|
| 2048 |
_inv_map.erase(it); |
|
| 2049 |
break; |
|
| 2050 |
} |
|
| 2038 | 2051 |
} |
| 2039 | 2052 |
Map::erase(key); |
| ... | ... |
@@ -2047,7 +2060,11 @@ |
| 2047 | 2060 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2048 | 2061 |
Value val = Map::operator[](keys[i]); |
| 2049 |
typename Container::iterator it = _inv_map.find(val); |
|
| 2050 |
if (it != _inv_map.end() && it->second == keys[i]) {
|
|
| 2051 |
|
|
| 2062 |
typename Container::iterator it; |
|
| 2063 |
for (it = _inv_map.equal_range(val).first; |
|
| 2064 |
it != _inv_map.equal_range(val).second; ++it) {
|
|
| 2065 |
if (it->second == keys[i]) {
|
|
| 2066 |
_inv_map.erase(it); |
|
| 2067 |
break; |
|
| 2068 |
} |
|
| 2052 | 2069 |
} |
| 2053 | 2070 |
} |
| ... | ... |
@@ -2085,6 +2102,7 @@ |
| 2085 | 2102 |
/// \brief Subscript operator. |
| 2086 | 2103 |
/// |
| 2087 |
/// Subscript operator. It gives back the item |
|
| 2088 |
/// that was last assigned to the given value. |
|
| 2104 |
/// Subscript operator. It gives back an item |
|
| 2105 |
/// that is assigned to the given value or \c INVALID |
|
| 2106 |
/// if no such item exists. |
|
| 2089 | 2107 |
Value operator[](const Key& key) const {
|
| 2090 | 2108 |
return _inverted(key); |
| ... | ... |
@@ -2255,5 +2273,5 @@ |
| 2255 | 2273 |
|
| 2256 | 2274 |
/// \brief Gives back the item belonging to a \e RangeId |
| 2257 |
/// |
|
| 2275 |
/// |
|
| 2258 | 2276 |
/// Gives back the item belonging to a \e RangeId. |
| 2259 | 2277 |
Item operator()(int id) const {
|
| ... | ... |
@@ -2312,4 +2330,901 @@ |
| 2312 | 2330 |
}; |
| 2313 | 2331 |
|
| 2332 |
/// \brief Dynamic iterable \c bool map. |
|
| 2333 |
/// |
|
| 2334 |
/// This class provides a special graph map type which can store a |
|
| 2335 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2336 |
/// For both \c true and \c false values it is possible to iterate on |
|
| 2337 |
/// the keys. |
|
| 2338 |
/// |
|
| 2339 |
/// This type is a reference map, so it can be modified with the |
|
| 2340 |
/// subscript operator. |
|
| 2341 |
/// |
|
| 2342 |
/// \tparam GR The graph type. |
|
| 2343 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2344 |
/// \c GR::Edge). |
|
| 2345 |
/// |
|
| 2346 |
/// \see IterableIntMap, IterableValueMap |
|
| 2347 |
/// \see CrossRefMap |
|
| 2348 |
template <typename GR, typename K> |
|
| 2349 |
class IterableBoolMap |
|
| 2350 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
|
| 2351 |
private: |
|
| 2352 |
typedef GR Graph; |
|
| 2353 |
|
|
| 2354 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
| 2355 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
| 2356 |
|
|
| 2357 |
std::vector<K> _array; |
|
| 2358 |
int _sep; |
|
| 2359 |
|
|
| 2360 |
public: |
|
| 2361 |
|
|
| 2362 |
/// Indicates that the map is reference map. |
|
| 2363 |
typedef True ReferenceMapTag; |
|
| 2364 |
|
|
| 2365 |
/// The key type |
|
| 2366 |
typedef K Key; |
|
| 2367 |
/// The value type |
|
| 2368 |
typedef bool Value; |
|
| 2369 |
/// The const reference type. |
|
| 2370 |
typedef const Value& ConstReference; |
|
| 2371 |
|
|
| 2372 |
private: |
|
| 2373 |
|
|
| 2374 |
int position(const Key& key) const {
|
|
| 2375 |
return Parent::operator[](key); |
|
| 2376 |
} |
|
| 2377 |
|
|
| 2378 |
public: |
|
| 2379 |
|
|
| 2380 |
/// \brief Reference to the value of the map. |
|
| 2381 |
/// |
|
| 2382 |
/// This class is similar to the \c bool type. It can be converted to |
|
| 2383 |
/// \c bool and it provides the same operators. |
|
| 2384 |
class Reference {
|
|
| 2385 |
friend class IterableBoolMap; |
|
| 2386 |
private: |
|
| 2387 |
Reference(IterableBoolMap& map, const Key& key) |
|
| 2388 |
: _key(key), _map(map) {}
|
|
| 2389 |
public: |
|
| 2390 |
|
|
| 2391 |
Reference& operator=(const Reference& value) {
|
|
| 2392 |
_map.set(_key, static_cast<bool>(value)); |
|
| 2393 |
return *this; |
|
| 2394 |
} |
|
| 2395 |
|
|
| 2396 |
operator bool() const {
|
|
| 2397 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
| 2398 |
} |
|
| 2399 |
|
|
| 2400 |
Reference& operator=(bool value) {
|
|
| 2401 |
_map.set(_key, value); |
|
| 2402 |
return *this; |
|
| 2403 |
} |
|
| 2404 |
Reference& operator&=(bool value) {
|
|
| 2405 |
_map.set(_key, _map[_key] & value); |
|
| 2406 |
return *this; |
|
| 2407 |
} |
|
| 2408 |
Reference& operator|=(bool value) {
|
|
| 2409 |
_map.set(_key, _map[_key] | value); |
|
| 2410 |
return *this; |
|
| 2411 |
} |
|
| 2412 |
Reference& operator^=(bool value) {
|
|
| 2413 |
_map.set(_key, _map[_key] ^ value); |
|
| 2414 |
return *this; |
|
| 2415 |
} |
|
| 2416 |
private: |
|
| 2417 |
Key _key; |
|
| 2418 |
IterableBoolMap& _map; |
|
| 2419 |
}; |
|
| 2420 |
|
|
| 2421 |
/// \brief Constructor of the map with a default value. |
|
| 2422 |
/// |
|
| 2423 |
/// Constructor of the map with a default value. |
|
| 2424 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
| 2425 |
: Parent(graph) {
|
|
| 2426 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2427 |
Key it; |
|
| 2428 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2429 |
Parent::set(it, _array.size()); |
|
| 2430 |
_array.push_back(it); |
|
| 2431 |
} |
|
| 2432 |
_sep = (def ? _array.size() : 0); |
|
| 2433 |
} |
|
| 2434 |
|
|
| 2435 |
/// \brief Const subscript operator of the map. |
|
| 2436 |
/// |
|
| 2437 |
/// Const subscript operator of the map. |
|
| 2438 |
bool operator[](const Key& key) const {
|
|
| 2439 |
return position(key) < _sep; |
|
| 2440 |
} |
|
| 2441 |
|
|
| 2442 |
/// \brief Subscript operator of the map. |
|
| 2443 |
/// |
|
| 2444 |
/// Subscript operator of the map. |
|
| 2445 |
Reference operator[](const Key& key) {
|
|
| 2446 |
return Reference(*this, key); |
|
| 2447 |
} |
|
| 2448 |
|
|
| 2449 |
/// \brief Set operation of the map. |
|
| 2450 |
/// |
|
| 2451 |
/// Set operation of the map. |
|
| 2452 |
void set(const Key& key, bool value) {
|
|
| 2453 |
int pos = position(key); |
|
| 2454 |
if (value) {
|
|
| 2455 |
if (pos < _sep) return; |
|
| 2456 |
Key tmp = _array[_sep]; |
|
| 2457 |
_array[_sep] = key; |
|
| 2458 |
Parent::set(key, _sep); |
|
| 2459 |
_array[pos] = tmp; |
|
| 2460 |
Parent::set(tmp, pos); |
|
| 2461 |
++_sep; |
|
| 2462 |
} else {
|
|
| 2463 |
if (pos >= _sep) return; |
|
| 2464 |
--_sep; |
|
| 2465 |
Key tmp = _array[_sep]; |
|
| 2466 |
_array[_sep] = key; |
|
| 2467 |
Parent::set(key, _sep); |
|
| 2468 |
_array[pos] = tmp; |
|
| 2469 |
Parent::set(tmp, pos); |
|
| 2470 |
} |
|
| 2471 |
} |
|
| 2472 |
|
|
| 2473 |
/// \brief Set all items. |
|
| 2474 |
/// |
|
| 2475 |
/// Set all items in the map. |
|
| 2476 |
/// \note Constant time operation. |
|
| 2477 |
void setAll(bool value) {
|
|
| 2478 |
_sep = (value ? _array.size() : 0); |
|
| 2479 |
} |
|
| 2480 |
|
|
| 2481 |
/// \brief Returns the number of the keys mapped to \c true. |
|
| 2482 |
/// |
|
| 2483 |
/// Returns the number of the keys mapped to \c true. |
|
| 2484 |
int trueNum() const {
|
|
| 2485 |
return _sep; |
|
| 2486 |
} |
|
| 2487 |
|
|
| 2488 |
/// \brief Returns the number of the keys mapped to \c false. |
|
| 2489 |
/// |
|
| 2490 |
/// Returns the number of the keys mapped to \c false. |
|
| 2491 |
int falseNum() const {
|
|
| 2492 |
return _array.size() - _sep; |
|
| 2493 |
} |
|
| 2494 |
|
|
| 2495 |
/// \brief Iterator for the keys mapped to \c true. |
|
| 2496 |
/// |
|
| 2497 |
/// Iterator for the keys mapped to \c true. It works |
|
| 2498 |
/// like a graph item iterator, it can be converted to |
|
| 2499 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2500 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2501 |
/// \c INVALID. |
|
| 2502 |
class TrueIt : public Key {
|
|
| 2503 |
public: |
|
| 2504 |
typedef Key Parent; |
|
| 2505 |
|
|
| 2506 |
/// \brief Creates an iterator. |
|
| 2507 |
/// |
|
| 2508 |
/// Creates an iterator. It iterates on the |
|
| 2509 |
/// keys mapped to \c true. |
|
| 2510 |
/// \param map The IterableBoolMap. |
|
| 2511 |
explicit TrueIt(const IterableBoolMap& map) |
|
| 2512 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
| 2513 |
_map(&map) {}
|
|
| 2514 |
|
|
| 2515 |
/// \brief Invalid constructor \& conversion. |
|
| 2516 |
/// |
|
| 2517 |
/// This constructor initializes the iterator to be invalid. |
|
| 2518 |
/// \sa Invalid for more details. |
|
| 2519 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2520 |
|
|
| 2521 |
/// \brief Increment operator. |
|
| 2522 |
/// |
|
| 2523 |
/// Increment operator. |
|
| 2524 |
TrueIt& operator++() {
|
|
| 2525 |
int pos = _map->position(*this); |
|
| 2526 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
| 2527 |
return *this; |
|
| 2528 |
} |
|
| 2529 |
|
|
| 2530 |
private: |
|
| 2531 |
const IterableBoolMap* _map; |
|
| 2532 |
}; |
|
| 2533 |
|
|
| 2534 |
/// \brief Iterator for the keys mapped to \c false. |
|
| 2535 |
/// |
|
| 2536 |
/// Iterator for the keys mapped to \c false. It works |
|
| 2537 |
/// like a graph item iterator, it can be converted to |
|
| 2538 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2539 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2540 |
/// \c INVALID. |
|
| 2541 |
class FalseIt : public Key {
|
|
| 2542 |
public: |
|
| 2543 |
typedef Key Parent; |
|
| 2544 |
|
|
| 2545 |
/// \brief Creates an iterator. |
|
| 2546 |
/// |
|
| 2547 |
/// Creates an iterator. It iterates on the |
|
| 2548 |
/// keys mapped to \c false. |
|
| 2549 |
/// \param map The IterableBoolMap. |
|
| 2550 |
explicit FalseIt(const IterableBoolMap& map) |
|
| 2551 |
: Parent(map._sep < int(map._array.size()) ? |
|
| 2552 |
map._array.back() : INVALID), _map(&map) {}
|
|
| 2553 |
|
|
| 2554 |
/// \brief Invalid constructor \& conversion. |
|
| 2555 |
/// |
|
| 2556 |
/// This constructor initializes the iterator to be invalid. |
|
| 2557 |
/// \sa Invalid for more details. |
|
| 2558 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2559 |
|
|
| 2560 |
/// \brief Increment operator. |
|
| 2561 |
/// |
|
| 2562 |
/// Increment operator. |
|
| 2563 |
FalseIt& operator++() {
|
|
| 2564 |
int pos = _map->position(*this); |
|
| 2565 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
| 2566 |
return *this; |
|
| 2567 |
} |
|
| 2568 |
|
|
| 2569 |
private: |
|
| 2570 |
const IterableBoolMap* _map; |
|
| 2571 |
}; |
|
| 2572 |
|
|
| 2573 |
/// \brief Iterator for the keys mapped to a given value. |
|
| 2574 |
/// |
|
| 2575 |
/// Iterator for the keys mapped to a given value. It works |
|
| 2576 |
/// like a graph item iterator, it can be converted to |
|
| 2577 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2578 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2579 |
/// \c INVALID. |
|
| 2580 |
class ItemIt : public Key {
|
|
| 2581 |
public: |
|
| 2582 |
typedef Key Parent; |
|
| 2583 |
|
|
| 2584 |
/// \brief Creates an iterator with a value. |
|
| 2585 |
/// |
|
| 2586 |
/// Creates an iterator with a value. It iterates on the |
|
| 2587 |
/// keys mapped to the given value. |
|
| 2588 |
/// \param map The IterableBoolMap. |
|
| 2589 |
/// \param value The value. |
|
| 2590 |
ItemIt(const IterableBoolMap& map, bool value) |
|
| 2591 |
: Parent(value ? |
|
| 2592 |
(map._sep > 0 ? |
|
| 2593 |
map._array[map._sep - 1] : INVALID) : |
|
| 2594 |
(map._sep < int(map._array.size()) ? |
|
| 2595 |
map._array.back() : INVALID)), _map(&map) {}
|
|
| 2596 |
|
|
| 2597 |
/// \brief Invalid constructor \& conversion. |
|
| 2598 |
/// |
|
| 2599 |
/// This constructor initializes the iterator to be invalid. |
|
| 2600 |
/// \sa Invalid for more details. |
|
| 2601 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2602 |
|
|
| 2603 |
/// \brief Increment operator. |
|
| 2604 |
/// |
|
| 2605 |
/// Increment operator. |
|
| 2606 |
ItemIt& operator++() {
|
|
| 2607 |
int pos = _map->position(*this); |
|
| 2608 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
| 2609 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
| 2610 |
return *this; |
|
| 2611 |
} |
|
| 2612 |
|
|
| 2613 |
private: |
|
| 2614 |
const IterableBoolMap* _map; |
|
| 2615 |
}; |
|
| 2616 |
|
|
| 2617 |
protected: |
|
| 2618 |
|
|
| 2619 |
virtual void add(const Key& key) {
|
|
| 2620 |
Parent::add(key); |
|
| 2621 |
Parent::set(key, _array.size()); |
|
| 2622 |
_array.push_back(key); |
|
| 2623 |
} |
|
| 2624 |
|
|
| 2625 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 2626 |
Parent::add(keys); |
|
| 2627 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2628 |
Parent::set(keys[i], _array.size()); |
|
| 2629 |
_array.push_back(keys[i]); |
|
| 2630 |
} |
|
| 2631 |
} |
|
| 2632 |
|
|
| 2633 |
virtual void erase(const Key& key) {
|
|
| 2634 |
int pos = position(key); |
|
| 2635 |
if (pos < _sep) {
|
|
| 2636 |
--_sep; |
|
| 2637 |
Parent::set(_array[_sep], pos); |
|
| 2638 |
_array[pos] = _array[_sep]; |
|
| 2639 |
Parent::set(_array.back(), _sep); |
|
| 2640 |
_array[_sep] = _array.back(); |
|
| 2641 |
_array.pop_back(); |
|
| 2642 |
} else {
|
|
| 2643 |
Parent::set(_array.back(), pos); |
|
| 2644 |
_array[pos] = _array.back(); |
|
| 2645 |
_array.pop_back(); |
|
| 2646 |
} |
|
| 2647 |
Parent::erase(key); |
|
| 2648 |
} |
|
| 2649 |
|
|
| 2650 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 2651 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2652 |
int pos = position(keys[i]); |
|
| 2653 |
if (pos < _sep) {
|
|
| 2654 |
--_sep; |
|
| 2655 |
Parent::set(_array[_sep], pos); |
|
| 2656 |
_array[pos] = _array[_sep]; |
|
| 2657 |
Parent::set(_array.back(), _sep); |
|
| 2658 |
_array[_sep] = _array.back(); |
|
| 2659 |
_array.pop_back(); |
|
| 2660 |
} else {
|
|
| 2661 |
Parent::set(_array.back(), pos); |
|
| 2662 |
_array[pos] = _array.back(); |
|
| 2663 |
_array.pop_back(); |
|
| 2664 |
} |
|
| 2665 |
} |
|
| 2666 |
Parent::erase(keys); |
|
| 2667 |
} |
|
| 2668 |
|
|
| 2669 |
virtual void build() {
|
|
| 2670 |
Parent::build(); |
|
| 2671 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2672 |
Key it; |
|
| 2673 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2674 |
Parent::set(it, _array.size()); |
|
| 2675 |
_array.push_back(it); |
|
| 2676 |
} |
|
| 2677 |
_sep = 0; |
|
| 2678 |
} |
|
| 2679 |
|
|
| 2680 |
virtual void clear() {
|
|
| 2681 |
_array.clear(); |
|
| 2682 |
_sep = 0; |
|
| 2683 |
Parent::clear(); |
|
| 2684 |
} |
|
| 2685 |
|
|
| 2686 |
}; |
|
| 2687 |
|
|
| 2688 |
|
|
| 2689 |
namespace _maps_bits {
|
|
| 2690 |
template <typename Item> |
|
| 2691 |
struct IterableIntMapNode {
|
|
| 2692 |
IterableIntMapNode() : value(-1) {}
|
|
| 2693 |
IterableIntMapNode(int _value) : value(_value) {}
|
|
| 2694 |
Item prev, next; |
|
| 2695 |
int value; |
|
| 2696 |
}; |
|
| 2697 |
} |
|
| 2698 |
|
|
| 2699 |
/// \brief Dynamic iterable integer map. |
|
| 2700 |
/// |
|
| 2701 |
/// This class provides a special graph map type which can store an |
|
| 2702 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2703 |
/// For each non-negative value it is possible to iterate on the keys |
|
| 2704 |
/// mapped to the value. |
|
| 2705 |
/// |
|
| 2706 |
/// This type is a reference map, so it can be modified with the |
|
| 2707 |
/// subscript operator. |
|
| 2708 |
/// |
|
| 2709 |
/// \note The size of the data structure depends on the largest |
|
| 2710 |
/// value in the map. |
|
| 2711 |
/// |
|
| 2712 |
/// \tparam GR The graph type. |
|
| 2713 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2714 |
/// \c GR::Edge). |
|
| 2715 |
/// |
|
| 2716 |
/// \see IterableBoolMap, IterableValueMap |
|
| 2717 |
/// \see CrossRefMap |
|
| 2718 |
template <typename GR, typename K> |
|
| 2719 |
class IterableIntMap |
|
| 2720 |
: protected ItemSetTraits<GR, K>:: |
|
| 2721 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
|
|
| 2722 |
public: |
|
| 2723 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 2724 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
| 2725 |
|
|
| 2726 |
/// The key type |
|
| 2727 |
typedef K Key; |
|
| 2728 |
/// The value type |
|
| 2729 |
typedef int Value; |
|
| 2730 |
/// The graph type |
|
| 2731 |
typedef GR Graph; |
|
| 2732 |
|
|
| 2733 |
/// \brief Constructor of the map. |
|
| 2734 |
/// |
|
| 2735 |
/// Constructor of the map. It sets all values to -1. |
|
| 2736 |
explicit IterableIntMap(const Graph& graph) |
|
| 2737 |
: Parent(graph) {}
|
|
| 2738 |
|
|
| 2739 |
/// \brief Constructor of the map with a given value. |
|
| 2740 |
/// |
|
| 2741 |
/// Constructor of the map with a given value. |
|
| 2742 |
explicit IterableIntMap(const Graph& graph, int value) |
|
| 2743 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
|
|
| 2744 |
if (value >= 0) {
|
|
| 2745 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 2746 |
lace(it); |
|
| 2747 |
} |
|
| 2748 |
} |
|
| 2749 |
} |
|
| 2750 |
|
|
| 2751 |
private: |
|
| 2752 |
|
|
| 2753 |
void unlace(const Key& key) {
|
|
| 2754 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2755 |
if (node.value < 0) return; |
|
| 2756 |
if (node.prev != INVALID) {
|
|
| 2757 |
Parent::operator[](node.prev).next = node.next; |
|
| 2758 |
} else {
|
|
| 2759 |
_first[node.value] = node.next; |
|
| 2760 |
} |
|
| 2761 |
if (node.next != INVALID) {
|
|
| 2762 |
Parent::operator[](node.next).prev = node.prev; |
|
| 2763 |
} |
|
| 2764 |
while (!_first.empty() && _first.back() == INVALID) {
|
|
| 2765 |
_first.pop_back(); |
|
| 2766 |
} |
|
| 2767 |
} |
|
| 2768 |
|
|
| 2769 |
void lace(const Key& key) {
|
|
| 2770 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2771 |
if (node.value < 0) return; |
|
| 2772 |
if (node.value >= int(_first.size())) {
|
|
| 2773 |
_first.resize(node.value + 1, INVALID); |
|
| 2774 |
} |
|
| 2775 |
node.prev = INVALID; |
|
| 2776 |
node.next = _first[node.value]; |
|
| 2777 |
if (node.next != INVALID) {
|
|
| 2778 |
Parent::operator[](node.next).prev = key; |
|
| 2779 |
} |
|
| 2780 |
_first[node.value] = key; |
|
| 2781 |
} |
|
| 2782 |
|
|
| 2783 |
public: |
|
| 2784 |
|
|
| 2785 |
/// Indicates that the map is reference map. |
|
| 2786 |
typedef True ReferenceMapTag; |
|
| 2787 |
|
|
| 2788 |
/// \brief Reference to the value of the map. |
|
| 2789 |
/// |
|
| 2790 |
/// This class is similar to the \c int type. It can |
|
| 2791 |
/// be converted to \c int and it has the same operators. |
|
| 2792 |
class Reference {
|
|
| 2793 |
friend class IterableIntMap; |
|
| 2794 |
private: |
|
| 2795 |
Reference(IterableIntMap& map, const Key& key) |
|
| 2796 |
: _key(key), _map(map) {}
|
|
| 2797 |
public: |
|
| 2798 |
|
|
| 2799 |
Reference& operator=(const Reference& value) {
|
|
| 2800 |
_map.set(_key, static_cast<const int&>(value)); |
|
| 2801 |
return *this; |
|
| 2802 |
} |
|
| 2803 |
|
|
| 2804 |
operator const int&() const {
|
|
| 2805 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
| 2806 |
} |
|
| 2807 |
|
|
| 2808 |
Reference& operator=(int value) {
|
|
| 2809 |
_map.set(_key, value); |
|
| 2810 |
return *this; |
|
| 2811 |
} |
|
| 2812 |
Reference& operator++() {
|
|
| 2813 |
_map.set(_key, _map[_key] + 1); |
|
| 2814 |
return *this; |
|
| 2815 |
} |
|
| 2816 |
int operator++(int) {
|
|
| 2817 |
int value = _map[_key]; |
|
| 2818 |
_map.set(_key, value + 1); |
|
| 2819 |
return value; |
|
| 2820 |
} |
|
| 2821 |
Reference& operator--() {
|
|
| 2822 |
_map.set(_key, _map[_key] - 1); |
|
| 2823 |
return *this; |
|
| 2824 |
} |
|
| 2825 |
int operator--(int) {
|
|
| 2826 |
int value = _map[_key]; |
|
| 2827 |
_map.set(_key, value - 1); |
|
| 2828 |
return value; |
|
| 2829 |
} |
|
| 2830 |
Reference& operator+=(int value) {
|
|
| 2831 |
_map.set(_key, _map[_key] + value); |
|
| 2832 |
return *this; |
|
| 2833 |
} |
|
| 2834 |
Reference& operator-=(int value) {
|
|
| 2835 |
_map.set(_key, _map[_key] - value); |
|
| 2836 |
return *this; |
|
| 2837 |
} |
|
| 2838 |
Reference& operator*=(int value) {
|
|
| 2839 |
_map.set(_key, _map[_key] * value); |
|
| 2840 |
return *this; |
|
| 2841 |
} |
|
| 2842 |
Reference& operator/=(int value) {
|
|
| 2843 |
_map.set(_key, _map[_key] / value); |
|
| 2844 |
return *this; |
|
| 2845 |
} |
|
| 2846 |
Reference& operator%=(int value) {
|
|
| 2847 |
_map.set(_key, _map[_key] % value); |
|
| 2848 |
return *this; |
|
| 2849 |
} |
|
| 2850 |
Reference& operator&=(int value) {
|
|
| 2851 |
_map.set(_key, _map[_key] & value); |
|
| 2852 |
return *this; |
|
| 2853 |
} |
|
| 2854 |
Reference& operator|=(int value) {
|
|
| 2855 |
_map.set(_key, _map[_key] | value); |
|
| 2856 |
return *this; |
|
| 2857 |
} |
|
| 2858 |
Reference& operator^=(int value) {
|
|
| 2859 |
_map.set(_key, _map[_key] ^ value); |
|
| 2860 |
return *this; |
|
| 2861 |
} |
|
| 2862 |
Reference& operator<<=(int value) {
|
|
| 2863 |
_map.set(_key, _map[_key] << value); |
|
| 2864 |
return *this; |
|
| 2865 |
} |
|
| 2866 |
Reference& operator>>=(int value) {
|
|
| 2867 |
_map.set(_key, _map[_key] >> value); |
|
| 2868 |
return *this; |
|
| 2869 |
} |
|
| 2870 |
|
|
| 2871 |
private: |
|
| 2872 |
Key _key; |
|
| 2873 |
IterableIntMap& _map; |
|
| 2874 |
}; |
|
| 2875 |
|
|
| 2876 |
/// The const reference type. |
|
| 2877 |
typedef const Value& ConstReference; |
|
| 2878 |
|
|
| 2879 |
/// \brief Gives back the maximal value plus one. |
|
| 2880 |
/// |
|
| 2881 |
/// Gives back the maximal value plus one. |
|
| 2882 |
int size() const {
|
|
| 2883 |
return _first.size(); |
|
| 2884 |
} |
|
| 2885 |
|
|
| 2886 |
/// \brief Set operation of the map. |
|
| 2887 |
/// |
|
| 2888 |
/// Set operation of the map. |
|
| 2889 |
void set(const Key& key, const Value& value) {
|
|
| 2890 |
unlace(key); |
|
| 2891 |
Parent::operator[](key).value = value; |
|
| 2892 |
lace(key); |
|
| 2893 |
} |
|
| 2894 |
|
|
| 2895 |
/// \brief Const subscript operator of the map. |
|
| 2896 |
/// |
|
| 2897 |
/// Const subscript operator of the map. |
|
| 2898 |
const Value& operator[](const Key& key) const {
|
|
| 2899 |
return Parent::operator[](key).value; |
|
| 2900 |
} |
|
| 2901 |
|
|
| 2902 |
/// \brief Subscript operator of the map. |
|
| 2903 |
/// |
|
| 2904 |
/// Subscript operator of the map. |
|
| 2905 |
Reference operator[](const Key& key) {
|
|
| 2906 |
return Reference(*this, key); |
|
| 2907 |
} |
|
| 2908 |
|
|
| 2909 |
/// \brief Iterator for the keys with the same value. |
|
| 2910 |
/// |
|
| 2911 |
/// Iterator for the keys with the same value. It works |
|
| 2912 |
/// like a graph item iterator, it can be converted to |
|
| 2913 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 2914 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 2915 |
/// \c INVALID. |
|
| 2916 |
class ItemIt : public Key {
|
|
| 2917 |
public: |
|
| 2918 |
typedef Key Parent; |
|
| 2919 |
|
|
| 2920 |
/// \brief Invalid constructor \& conversion. |
|
| 2921 |
/// |
|
| 2922 |
/// This constructor initializes the iterator to be invalid. |
|
| 2923 |
/// \sa Invalid for more details. |
|
| 2924 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2925 |
|
|
| 2926 |
/// \brief Creates an iterator with a value. |
|
| 2927 |
/// |
|
| 2928 |
/// Creates an iterator with a value. It iterates on the |
|
| 2929 |
/// keys mapped to the given value. |
|
| 2930 |
/// \param map The IterableIntMap. |
|
| 2931 |
/// \param value The value. |
|
| 2932 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
|
|
| 2933 |
if (value < 0 || value >= int(_map->_first.size())) {
|
|
| 2934 |
Parent::operator=(INVALID); |
|
| 2935 |
} else {
|
|
| 2936 |
Parent::operator=(_map->_first[value]); |
|
| 2937 |
} |
|
| 2938 |
} |
|
| 2939 |
|
|
| 2940 |
/// \brief Increment operator. |
|
| 2941 |
/// |
|
| 2942 |
/// Increment operator. |
|
| 2943 |
ItemIt& operator++() {
|
|
| 2944 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
| 2945 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 2946 |
return *this; |
|
| 2947 |
} |
|
| 2948 |
|
|
| 2949 |
private: |
|
| 2950 |
const IterableIntMap* _map; |
|
| 2951 |
}; |
|
| 2952 |
|
|
| 2953 |
protected: |
|
| 2954 |
|
|
| 2955 |
virtual void erase(const Key& key) {
|
|
| 2956 |
unlace(key); |
|
| 2957 |
Parent::erase(key); |
|
| 2958 |
} |
|
| 2959 |
|
|
| 2960 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 2961 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2962 |
unlace(keys[i]); |
|
| 2963 |
} |
|
| 2964 |
Parent::erase(keys); |
|
| 2965 |
} |
|
| 2966 |
|
|
| 2967 |
virtual void clear() {
|
|
| 2968 |
_first.clear(); |
|
| 2969 |
Parent::clear(); |
|
| 2970 |
} |
|
| 2971 |
|
|
| 2972 |
private: |
|
| 2973 |
std::vector<Key> _first; |
|
| 2974 |
}; |
|
| 2975 |
|
|
| 2976 |
namespace _maps_bits {
|
|
| 2977 |
template <typename Item, typename Value> |
|
| 2978 |
struct IterableValueMapNode {
|
|
| 2979 |
IterableValueMapNode(Value _value = Value()) : value(_value) {}
|
|
| 2980 |
Item prev, next; |
|
| 2981 |
Value value; |
|
| 2982 |
}; |
|
| 2983 |
} |
|
| 2984 |
|
|
| 2985 |
/// \brief Dynamic iterable map for comparable values. |
|
| 2986 |
/// |
|
| 2987 |
/// This class provides a special graph map type which can store an |
|
| 2988 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2989 |
/// For each value it is possible to iterate on the keys mapped to |
|
| 2990 |
/// the value. |
|
| 2991 |
/// |
|
| 2992 |
/// The map stores for each value a linked list with |
|
| 2993 |
/// the items which mapped to the value, and the values are stored |
|
| 2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
| 2995 |
/// with stl compatible forward iterator. |
|
| 2996 |
/// |
|
| 2997 |
/// This type is not reference map, so it cannot be modified with |
|
| 2998 |
/// the subscript operator. |
|
| 2999 |
/// |
|
| 3000 |
/// \tparam GR The graph type. |
|
| 3001 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 3002 |
/// \c GR::Edge). |
|
| 3003 |
/// \tparam V The value type of the map. It can be any comparable |
|
| 3004 |
/// value type. |
|
| 3005 |
/// |
|
| 3006 |
/// \see IterableBoolMap, IterableIntMap |
|
| 3007 |
/// \see CrossRefMap |
|
| 3008 |
template <typename GR, typename K, typename V> |
|
| 3009 |
class IterableValueMap |
|
| 3010 |
: protected ItemSetTraits<GR, K>:: |
|
| 3011 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
|
|
| 3012 |
public: |
|
| 3013 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 3014 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
| 3015 |
|
|
| 3016 |
/// The key type |
|
| 3017 |
typedef K Key; |
|
| 3018 |
/// The value type |
|
| 3019 |
typedef V Value; |
|
| 3020 |
/// The graph type |
|
| 3021 |
typedef GR Graph; |
|
| 3022 |
|
|
| 3023 |
public: |
|
| 3024 |
|
|
| 3025 |
/// \brief Constructor of the map with a given value. |
|
| 3026 |
/// |
|
| 3027 |
/// Constructor of the map with a given value. |
|
| 3028 |
explicit IterableValueMap(const Graph& graph, |
|
| 3029 |
const Value& value = Value()) |
|
| 3030 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
|
|
| 3031 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3032 |
lace(it); |
|
| 3033 |
} |
|
| 3034 |
} |
|
| 3035 |
|
|
| 3036 |
protected: |
|
| 3037 |
|
|
| 3038 |
void unlace(const Key& key) {
|
|
| 3039 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3040 |
if (node.prev != INVALID) {
|
|
| 3041 |
Parent::operator[](node.prev).next = node.next; |
|
| 3042 |
} else {
|
|
| 3043 |
if (node.next != INVALID) {
|
|
| 3044 |
_first[node.value] = node.next; |
|
| 3045 |
} else {
|
|
| 3046 |
_first.erase(node.value); |
|
| 3047 |
} |
|
| 3048 |
} |
|
| 3049 |
if (node.next != INVALID) {
|
|
| 3050 |
Parent::operator[](node.next).prev = node.prev; |
|
| 3051 |
} |
|
| 3052 |
} |
|
| 3053 |
|
|
| 3054 |
void lace(const Key& key) {
|
|
| 3055 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3056 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
| 3057 |
if (it == _first.end()) {
|
|
| 3058 |
node.prev = node.next = INVALID; |
|
| 3059 |
_first.insert(std::make_pair(node.value, key)); |
|
| 3060 |
} else {
|
|
| 3061 |
node.prev = INVALID; |
|
| 3062 |
node.next = it->second; |
|
| 3063 |
if (node.next != INVALID) {
|
|
| 3064 |
Parent::operator[](node.next).prev = key; |
|
| 3065 |
} |
|
| 3066 |
it->second = key; |
|
| 3067 |
} |
|
| 3068 |
} |
|
| 3069 |
|
|
| 3070 |
public: |
|
| 3071 |
|
|
| 3072 |
/// \brief Forward iterator for values. |
|
| 3073 |
/// |
|
| 3074 |
/// This iterator is an stl compatible forward |
|
| 3075 |
/// iterator on the values of the map. The values can |
|
| 3076 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
| 3077 |
class ValueIterator |
|
| 3078 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
|
| 3079 |
friend class IterableValueMap; |
|
| 3080 |
private: |
|
| 3081 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it) |
|
| 3082 |
: it(_it) {}
|
|
| 3083 |
public: |
|
| 3084 |
|
|
| 3085 |
ValueIterator() {}
|
|
| 3086 |
|
|
| 3087 |
ValueIterator& operator++() { ++it; return *this; }
|
|
| 3088 |
ValueIterator operator++(int) {
|
|
| 3089 |
ValueIterator tmp(*this); |
|
| 3090 |
operator++(); |
|
| 3091 |
return tmp; |
|
| 3092 |
} |
|
| 3093 |
|
|
| 3094 |
const Value& operator*() const { return it->first; }
|
|
| 3095 |
const Value* operator->() const { return &(it->first); }
|
|
| 3096 |
|
|
| 3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
|
| 3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
|
| 3099 |
|
|
| 3100 |
private: |
|
| 3101 |
typename std::map<Value, Key>::const_iterator it; |
|
| 3102 |
}; |
|
| 3103 |
|
|
| 3104 |
/// \brief Returns an iterator to the first value. |
|
| 3105 |
/// |
|
| 3106 |
/// Returns an stl compatible iterator to the |
|
| 3107 |
/// first value of the map. The values of the |
|
| 3108 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3109 |
/// range. |
|
| 3110 |
ValueIterator beginValue() const {
|
|
| 3111 |
return ValueIterator(_first.begin()); |
|
| 3112 |
} |
|
| 3113 |
|
|
| 3114 |
/// \brief Returns an iterator after the last value. |
|
| 3115 |
/// |
|
| 3116 |
/// Returns an stl compatible iterator after the |
|
| 3117 |
/// last value of the map. The values of the |
|
| 3118 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3119 |
/// range. |
|
| 3120 |
ValueIterator endValue() const {
|
|
| 3121 |
return ValueIterator(_first.end()); |
|
| 3122 |
} |
|
| 3123 |
|
|
| 3124 |
/// \brief Set operation of the map. |
|
| 3125 |
/// |
|
| 3126 |
/// Set operation of the map. |
|
| 3127 |
void set(const Key& key, const Value& value) {
|
|
| 3128 |
unlace(key); |
|
| 3129 |
Parent::operator[](key).value = value; |
|
| 3130 |
lace(key); |
|
| 3131 |
} |
|
| 3132 |
|
|
| 3133 |
/// \brief Const subscript operator of the map. |
|
| 3134 |
/// |
|
| 3135 |
/// Const subscript operator of the map. |
|
| 3136 |
const Value& operator[](const Key& key) const {
|
|
| 3137 |
return Parent::operator[](key).value; |
|
| 3138 |
} |
|
| 3139 |
|
|
| 3140 |
/// \brief Iterator for the keys with the same value. |
|
| 3141 |
/// |
|
| 3142 |
/// Iterator for the keys with the same value. It works |
|
| 3143 |
/// like a graph item iterator, it can be converted to |
|
| 3144 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 3145 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 3146 |
/// \c INVALID. |
|
| 3147 |
class ItemIt : public Key {
|
|
| 3148 |
public: |
|
| 3149 |
typedef Key Parent; |
|
| 3150 |
|
|
| 3151 |
/// \brief Invalid constructor \& conversion. |
|
| 3152 |
/// |
|
| 3153 |
/// This constructor initializes the iterator to be invalid. |
|
| 3154 |
/// \sa Invalid for more details. |
|
| 3155 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 3156 |
|
|
| 3157 |
/// \brief Creates an iterator with a value. |
|
| 3158 |
/// |
|
| 3159 |
/// Creates an iterator with a value. It iterates on the |
|
| 3160 |
/// keys which have the given value. |
|
| 3161 |
/// \param map The IterableValueMap |
|
| 3162 |
/// \param value The value |
|
| 3163 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
|
|
| 3164 |
typename std::map<Value, Key>::const_iterator it = |
|
| 3165 |
map._first.find(value); |
|
| 3166 |
if (it == map._first.end()) {
|
|
| 3167 |
Parent::operator=(INVALID); |
|
| 3168 |
} else {
|
|
| 3169 |
Parent::operator=(it->second); |
|
| 3170 |
} |
|
| 3171 |
} |
|
| 3172 |
|
|
| 3173 |
/// \brief Increment operator. |
|
| 3174 |
/// |
|
| 3175 |
/// Increment Operator. |
|
| 3176 |
ItemIt& operator++() {
|
|
| 3177 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
| 3178 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 3179 |
return *this; |
|
| 3180 |
} |
|
| 3181 |
|
|
| 3182 |
|
|
| 3183 |
private: |
|
| 3184 |
const IterableValueMap* _map; |
|
| 3185 |
}; |
|
| 3186 |
|
|
| 3187 |
protected: |
|
| 3188 |
|
|
| 3189 |
virtual void add(const Key& key) {
|
|
| 3190 |
Parent::add(key); |
|
| 3191 |
unlace(key); |
|
| 3192 |
} |
|
| 3193 |
|
|
| 3194 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 3195 |
Parent::add(keys); |
|
| 3196 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3197 |
lace(keys[i]); |
|
| 3198 |
} |
|
| 3199 |
} |
|
| 3200 |
|
|
| 3201 |
virtual void erase(const Key& key) {
|
|
| 3202 |
unlace(key); |
|
| 3203 |
Parent::erase(key); |
|
| 3204 |
} |
|
| 3205 |
|
|
| 3206 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 3207 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3208 |
unlace(keys[i]); |
|
| 3209 |
} |
|
| 3210 |
Parent::erase(keys); |
|
| 3211 |
} |
|
| 3212 |
|
|
| 3213 |
virtual void build() {
|
|
| 3214 |
Parent::build(); |
|
| 3215 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3216 |
lace(it); |
|
| 3217 |
} |
|
| 3218 |
} |
|
| 3219 |
|
|
| 3220 |
virtual void clear() {
|
|
| 3221 |
_first.clear(); |
|
| 3222 |
Parent::clear(); |
|
| 3223 |
} |
|
| 3224 |
|
|
| 3225 |
private: |
|
| 3226 |
std::map<Value, Key> _first; |
|
| 3227 |
}; |
|
| 3228 |
|
|
| 2314 | 3229 |
/// \brief Map of the source nodes of arcs in a digraph. |
| 2315 | 3230 |
/// |
| ... | ... |
@@ -2481,5 +3396,5 @@ |
| 2481 | 3396 |
/// whenever the digraph changes. |
| 2482 | 3397 |
/// |
| 2483 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 3398 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 2484 | 3399 |
/// may provide alternative ways to modify the digraph. |
| 2485 | 3400 |
/// The correct behavior of InDegMap is not guarantied if these additional |
| ... | ... |
@@ -2497,5 +3412,5 @@ |
| 2497 | 3412 |
|
| 2498 | 3413 |
public: |
| 2499 |
|
|
| 3414 |
|
|
| 2500 | 3415 |
/// The graph type of InDegMap |
| 2501 | 3416 |
typedef GR Graph; |
| ... | ... |
@@ -2611,5 +3526,5 @@ |
| 2611 | 3526 |
/// whenever the digraph changes. |
| 2612 | 3527 |
/// |
| 2613 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 3528 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 2614 | 3529 |
/// may provide alternative ways to modify the digraph. |
| 2615 | 3530 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
| ... | ... |
@@ -489,6 +489,6 @@ |
| 489 | 489 |
/// The simplest way to execute the algorithm is to use |
| 490 | 490 |
/// one of the member functions called \c run(...). \n |
| 491 |
/// If you need more control on the execution, |
|
| 492 |
/// first you must call \ref init(), then you can add several |
|
| 491 |
/// If you need better control on the execution, |
|
| 492 |
/// you have to call \ref init() first, then you can add several |
|
| 493 | 493 |
/// source nodes with \ref addSource(). |
| 494 | 494 |
/// Finally \ref start() will perform the arborescence |
| ... | ... |
@@ -53,5 +53,9 @@ |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
#ifdef DOXYGEN |
|
| 56 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 57 |
#else |
|
| 55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 59 |
#endif |
|
| 56 | 60 |
|
| 57 | 61 |
/// \brief Instantiates a FlowMap. |
| ... | ... |
@@ -68,7 +72,10 @@ |
| 68 | 72 |
/// The elevator type used by Preflow algorithm. |
| 69 | 73 |
/// |
| 70 |
/// \sa Elevator |
|
| 71 |
/// \sa LinkedElevator |
|
| 72 |
|
|
| 74 |
/// \sa Elevator, LinkedElevator |
|
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 77 |
#else |
|
| 78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
| 79 |
#endif |
|
| 73 | 80 |
|
| 74 | 81 |
/// \brief Instantiates an Elevator. |
| ... | ... |
@@ -98,5 +105,5 @@ |
| 98 | 105 |
/// "flow of maximum value" in a digraph. |
| 99 | 106 |
/// The preflow algorithms are the fastest known maximum |
| 100 |
/// flow algorithms. The current implementation |
|
| 107 |
/// flow algorithms. The current implementation uses a mixture of the |
|
| 101 | 108 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 109 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| ... | ... |
@@ -372,8 +379,9 @@ |
| 372 | 379 |
} |
| 373 | 380 |
|
| 374 |
/// \brief Sets the tolerance used by algorithm. |
|
| 381 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 375 | 382 |
/// |
| 376 |
/// Sets the tolerance used by algorithm. |
|
| 377 |
Preflow& tolerance(const Tolerance& tolerance) const {
|
|
| 383 |
/// Sets the tolerance object used by the algorithm. |
|
| 384 |
/// \return <tt>(*this)</tt> |
|
| 385 |
Preflow& tolerance(const Tolerance& tolerance) {
|
|
| 378 | 386 |
_tolerance = tolerance; |
| 379 | 387 |
return *this; |
| ... | ... |
@@ -382,7 +390,8 @@ |
| 382 | 390 |
/// \brief Returns a const reference to the tolerance. |
| 383 | 391 |
/// |
| 384 |
/// Returns a const reference to the tolerance |
|
| 392 |
/// Returns a const reference to the tolerance object used by |
|
| 393 |
/// the algorithm. |
|
| 385 | 394 |
const Tolerance& tolerance() const {
|
| 386 |
return |
|
| 395 |
return _tolerance; |
|
| 387 | 396 |
} |
| 388 | 397 |
|
| ... | ... |
@@ -390,6 +399,6 @@ |
| 390 | 399 |
/// The simplest way to execute the preflow algorithm is to use |
| 391 | 400 |
/// \ref run() or \ref runMinCut().\n |
| 392 |
/// If you need more control on the initial solution or the execution, |
|
| 393 |
/// first you have to call one of the \ref init() functions, then |
|
| 401 |
/// If you need better control on the initial solution or the execution, |
|
| 402 |
/// you have to call one of the \ref init() functions first, then |
|
| 394 | 403 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 395 | 404 |
| ... | ... |
@@ -20,7 +20,7 @@ |
| 20 | 20 |
#define LEMON_RADIX_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Radix |
|
| 24 |
///\brief Radix heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| ... | ... |
@@ -30,54 +30,52 @@ |
| 30 | 30 |
|
| 31 | 31 |
|
| 32 |
/// \ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
/// \brief |
|
| 34 |
/// \brief Radix heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
| 37 |
/// is a data structure for storing items with specified values called \e |
|
| 38 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 39 |
/// efficient. This heap type can store only items with \e int priority. |
|
| 40 |
/// In a heap one can change the priority of an item, add or erase an |
|
| 41 |
/// item, but the priority cannot be decreased under the last removed |
|
| 42 |
/// |
|
| 36 |
/// This class implements the \e radix \e heap data structure. |
|
| 37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 38 |
/// but it has some limitations due its special implementation. |
|
| 39 |
/// The type of the priorities must be \c int and the priority of an |
|
| 40 |
/// item cannot be decreased under the priority of the last removed item. |
|
| 43 | 41 |
/// |
| 44 |
/// \param IM A read and writable Item int map, used internally |
|
| 45 |
/// to handle the cross references. |
|
| 46 |
/// |
|
| 47 |
/// \see BinHeap |
|
| 48 |
/// \ |
|
| 42 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 43 |
/// internally to handle the cross references. |
|
| 49 | 44 |
template <typename IM> |
| 50 | 45 |
class RadixHeap {
|
| 51 | 46 |
|
| 52 | 47 |
public: |
| 53 |
|
|
| 48 |
|
|
| 49 |
/// Type of the item-int map. |
|
| 50 |
typedef IM ItemIntMap; |
|
| 51 |
/// Type of the priorities. |
|
| 54 | 52 |
typedef int Prio; |
| 55 |
|
|
| 53 |
/// Type of the items stored in the heap. |
|
| 54 |
typedef typename ItemIntMap::Key Item; |
|
| 56 | 55 |
|
| 57 | 56 |
/// \brief Exception thrown by RadixHeap. |
| 58 | 57 |
/// |
| 59 |
/// This Exception is thrown when a smaller priority |
|
| 60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
| 58 |
/// This exception is thrown when an item is inserted into a |
|
| 59 |
/// RadixHeap with a priority smaller than the last erased one. |
|
| 61 | 60 |
/// \see RadixHeap |
| 62 |
|
|
| 63 |
class UnderFlowPriorityError : public Exception {
|
|
| 61 |
class PriorityUnderflowError : public Exception {
|
|
| 64 | 62 |
public: |
| 65 | 63 |
virtual const char* what() const throw() {
|
| 66 |
return "lemon::RadixHeap:: |
|
| 64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
| 67 | 65 |
} |
| 68 | 66 |
}; |
| 69 | 67 |
|
| 70 |
/// \brief Type to represent the |
|
| 68 |
/// \brief Type to represent the states of the items. |
|
| 71 | 69 |
/// |
| 72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 70 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 | 72 |
/// heap's point of view, but may be useful to the user. |
| 75 | 73 |
/// |
| 76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 74 |
/// The item-int map must be initialized in such way that it assigns |
|
| 75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 78 | 76 |
enum State {
|
| 79 |
IN_HEAP = 0, |
|
| 80 |
PRE_HEAP = -1, |
|
| 81 |
|
|
| 77 |
IN_HEAP = 0, ///< = 0. |
|
| 78 |
PRE_HEAP = -1, ///< = -1. |
|
| 79 |
POST_HEAP = -2 ///< = -2. |
|
| 82 | 80 |
}; |
| 83 | 81 |
|
| ... | ... |
@@ -97,50 +95,53 @@ |
| 97 | 95 |
}; |
| 98 | 96 |
|
| 99 |
std::vector<RadixItem> data; |
|
| 100 |
std::vector<RadixBox> boxes; |
|
| 97 |
std::vector<RadixItem> _data; |
|
| 98 |
std::vector<RadixBox> _boxes; |
|
| 101 | 99 |
|
| 102 | 100 |
ItemIntMap &_iim; |
| 103 | 101 |
|
| 102 |
public: |
|
| 104 | 103 |
|
| 105 |
public: |
|
| 106 |
/// \brief The constructor. |
|
| 104 |
/// \brief Constructor. |
|
| 107 | 105 |
/// |
| 108 |
/// The constructor. |
|
| 109 |
/// |
|
| 110 |
/// \param map It should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 113 |
/// |
|
| 114 |
/// \param minimal The initial minimal value of the heap. |
|
| 115 |
/// \param capacity It determines the initial capacity of the heap. |
|
| 116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
| 117 |
: _iim(map) {
|
|
| 118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 120 |
|
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param minimum The initial minimum value of the heap. |
|
| 111 |
/// \param capacity The initial capacity of the heap. |
|
| 112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
|
| 113 |
: _iim(map) |
|
| 114 |
{
|
|
| 115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
| 116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
| 117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
|
|
| 121 | 118 |
extend(); |
| 122 | 119 |
} |
| 123 | 120 |
} |
| 124 | 121 |
|
| 125 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 126 | 123 |
/// |
| 127 |
/// \brief Returns the number of items stored in the heap. |
|
| 128 |
int size() const { return data.size(); }
|
|
| 129 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 125 |
int size() const { return _data.size(); }
|
|
| 126 |
|
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 130 | 128 |
/// |
| 131 |
/// Returns \c true if and only if the heap stores no items. |
|
| 132 |
bool empty() const { return data.empty(); }
|
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 130 |
bool empty() const { return _data.empty(); }
|
|
| 133 | 131 |
|
| 134 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 135 | 133 |
/// |
| 136 |
/// Make empty this heap. It does not change the cross reference |
|
| 137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 138 |
/// should first clear the heap and after that you should set the |
|
| 139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 140 |
void clear(int minimal = 0, int capacity = 0) {
|
|
| 141 |
data.clear(); boxes.clear(); |
|
| 142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 144 |
|
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 139 |
/// \param minimum The minimum value of the heap. |
|
| 140 |
/// \param capacity The capacity of the heap. |
|
| 141 |
void clear(int minimum = 0, int capacity = 0) {
|
|
| 142 |
_data.clear(); _boxes.clear(); |
|
| 143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
| 144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
| 145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
|
|
| 145 | 146 |
extend(); |
| 146 | 147 |
} |
| ... | ... |
@@ -150,56 +151,56 @@ |
| 150 | 151 |
|
| 151 | 152 |
bool upper(int box, Prio pr) {
|
| 152 |
return pr < |
|
| 153 |
return pr < _boxes[box].min; |
|
| 153 | 154 |
} |
| 154 | 155 |
|
| 155 | 156 |
bool lower(int box, Prio pr) {
|
| 156 |
return pr >= |
|
| 157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
| 157 | 158 |
} |
| 158 | 159 |
|
| 159 |
// |
|
| 160 |
// Remove item from the box list |
|
| 160 | 161 |
void remove(int index) {
|
| 161 |
if (data[index].prev >= 0) {
|
|
| 162 |
data[data[index].prev].next = data[index].next; |
|
| 162 |
if (_data[index].prev >= 0) {
|
|
| 163 |
_data[_data[index].prev].next = _data[index].next; |
|
| 163 | 164 |
} else {
|
| 164 |
|
|
| 165 |
_boxes[_data[index].box].first = _data[index].next; |
|
| 165 | 166 |
} |
| 166 |
if (data[index].next >= 0) {
|
|
| 167 |
data[data[index].next].prev = data[index].prev; |
|
| 167 |
if (_data[index].next >= 0) {
|
|
| 168 |
_data[_data[index].next].prev = _data[index].prev; |
|
| 168 | 169 |
} |
| 169 | 170 |
} |
| 170 | 171 |
|
| 171 |
// |
|
| 172 |
// Insert item into the box list |
|
| 172 | 173 |
void insert(int box, int index) {
|
| 173 |
if (boxes[box].first == -1) {
|
|
| 174 |
boxes[box].first = index; |
|
| 175 |
|
|
| 174 |
if (_boxes[box].first == -1) {
|
|
| 175 |
_boxes[box].first = index; |
|
| 176 |
_data[index].next = _data[index].prev = -1; |
|
| 176 | 177 |
} else {
|
| 177 |
data[index].next = boxes[box].first; |
|
| 178 |
data[boxes[box].first].prev = index; |
|
| 179 |
data[index].prev = -1; |
|
| 180 |
boxes[box].first = index; |
|
| 178 |
_data[index].next = _boxes[box].first; |
|
| 179 |
_data[_boxes[box].first].prev = index; |
|
| 180 |
_data[index].prev = -1; |
|
| 181 |
_boxes[box].first = index; |
|
| 181 | 182 |
} |
| 182 |
|
|
| 183 |
_data[index].box = box; |
|
| 183 | 184 |
} |
| 184 | 185 |
|
| 185 |
// |
|
| 186 |
// Add a new box to the box list |
|
| 186 | 187 |
void extend() {
|
| 187 |
int min = boxes.back().min + boxes.back().size; |
|
| 188 |
int bs = 2 * boxes.back().size; |
|
| 189 |
|
|
| 188 |
int min = _boxes.back().min + _boxes.back().size; |
|
| 189 |
int bs = 2 * _boxes.back().size; |
|
| 190 |
_boxes.push_back(RadixBox(min, bs)); |
|
| 190 | 191 |
} |
| 191 | 192 |
|
| 192 |
/// \brief Move an item up into the proper box. |
|
| 193 |
void bubble_up(int index) {
|
|
| 194 |
|
|
| 193 |
// Move an item up into the proper box. |
|
| 194 |
void bubbleUp(int index) {
|
|
| 195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
| 195 | 196 |
remove(index); |
| 196 |
int box = findUp( |
|
| 197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
| 197 | 198 |
insert(box, index); |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
// |
|
| 201 |
// Find up the proper box for the item with the given priority |
|
| 201 | 202 |
int findUp(int start, int pr) {
|
| 202 | 203 |
while (lower(start, pr)) {
|
| 203 |
if (++start == int( |
|
| 204 |
if (++start == int(_boxes.size())) {
|
|
| 204 | 205 |
extend(); |
| 205 | 206 |
} |
| ... | ... |
@@ -208,38 +209,37 @@ |
| 208 | 209 |
} |
| 209 | 210 |
|
| 210 |
/// \brief Move an item down into the proper box. |
|
| 211 |
void bubble_down(int index) {
|
|
| 212 |
|
|
| 211 |
// Move an item down into the proper box |
|
| 212 |
void bubbleDown(int index) {
|
|
| 213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
| 213 | 214 |
remove(index); |
| 214 |
int box = findDown( |
|
| 215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
| 215 | 216 |
insert(box, index); |
| 216 | 217 |
} |
| 217 | 218 |
|
| 218 |
// |
|
| 219 |
// Find down the proper box for the item with the given priority |
|
| 219 | 220 |
int findDown(int start, int pr) {
|
| 220 | 221 |
while (upper(start, pr)) {
|
| 221 |
if (--start < 0) throw |
|
| 222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
| 222 | 223 |
} |
| 223 | 224 |
return start; |
| 224 | 225 |
} |
| 225 | 226 |
|
| 226 |
// |
|
| 227 |
// Find the first non-empty box |
|
| 227 | 228 |
int findFirst() {
|
| 228 | 229 |
int first = 0; |
| 229 |
while ( |
|
| 230 |
while (_boxes[first].first == -1) ++first; |
|
| 230 | 231 |
return first; |
| 231 | 232 |
} |
| 232 | 233 |
|
| 233 |
// |
|
| 234 |
// Gives back the minimum priority of the given box |
|
| 234 | 235 |
int minValue(int box) {
|
| 235 |
int min = data[boxes[box].first].prio; |
|
| 236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) {
|
|
| 237 |
|
|
| 236 |
int min = _data[_boxes[box].first].prio; |
|
| 237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
|
|
| 238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
| 238 | 239 |
} |
| 239 | 240 |
return min; |
| 240 | 241 |
} |
| 241 | 242 |
|
| 242 |
/// \brief Rearrange the items of the heap and makes the |
|
| 243 |
/// first box not empty. |
|
| 243 |
// Rearrange the items of the heap and make the first box non-empty |
|
| 244 | 244 |
void moveDown() {
|
| 245 | 245 |
int box = findFirst(); |
| ... | ... |
@@ -247,29 +247,29 @@ |
| 247 | 247 |
int min = minValue(box); |
| 248 | 248 |
for (int i = 0; i <= box; ++i) {
|
| 249 |
boxes[i].min = min; |
|
| 250 |
min += boxes[i].size; |
|
| 249 |
_boxes[i].min = min; |
|
| 250 |
min += _boxes[i].size; |
|
| 251 | 251 |
} |
| 252 |
int curr = |
|
| 252 |
int curr = _boxes[box].first, next; |
|
| 253 | 253 |
while (curr != -1) {
|
| 254 |
next = data[curr].next; |
|
| 255 |
bubble_down(curr); |
|
| 254 |
next = _data[curr].next; |
|
| 255 |
bubbleDown(curr); |
|
| 256 | 256 |
curr = next; |
| 257 | 257 |
} |
| 258 | 258 |
} |
| 259 | 259 |
|
| 260 |
void relocate_last(int index) {
|
|
| 261 |
if (index != int(data.size()) - 1) {
|
|
| 262 |
data[index] = data.back(); |
|
| 263 |
if (data[index].prev != -1) {
|
|
| 264 |
|
|
| 260 |
void relocateLast(int index) {
|
|
| 261 |
if (index != int(_data.size()) - 1) {
|
|
| 262 |
_data[index] = _data.back(); |
|
| 263 |
if (_data[index].prev != -1) {
|
|
| 264 |
_data[_data[index].prev].next = index; |
|
| 265 | 265 |
} else {
|
| 266 |
|
|
| 266 |
_boxes[_data[index].box].first = index; |
|
| 267 | 267 |
} |
| 268 |
if (data[index].next != -1) {
|
|
| 269 |
data[data[index].next].prev = index; |
|
| 268 |
if (_data[index].next != -1) {
|
|
| 269 |
_data[_data[index].next].prev = index; |
|
| 270 | 270 |
} |
| 271 |
_iim[ |
|
| 271 |
_iim[_data[index].item] = index; |
|
| 272 | 272 |
} |
| 273 |
|
|
| 273 |
_data.pop_back(); |
|
| 274 | 274 |
} |
| 275 | 275 |
|
| ... | ... |
@@ -278,78 +278,84 @@ |
| 278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
| 279 | 279 |
/// |
| 280 |
/// |
|
| 280 |
/// This function inserts the given item into the heap with the |
|
| 281 |
/// given priority. |
|
| 281 | 282 |
/// \param i The item to insert. |
| 282 | 283 |
/// \param p The priority of the item. |
| 284 |
/// \pre \e i must not be stored in the heap. |
|
| 285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 283 | 286 |
void push(const Item &i, const Prio &p) {
|
| 284 |
int n = |
|
| 287 |
int n = _data.size(); |
|
| 285 | 288 |
_iim.set(i, n); |
| 286 |
data.push_back(RadixItem(i, p)); |
|
| 287 |
while (lower(boxes.size() - 1, p)) {
|
|
| 289 |
_data.push_back(RadixItem(i, p)); |
|
| 290 |
while (lower(_boxes.size() - 1, p)) {
|
|
| 288 | 291 |
extend(); |
| 289 | 292 |
} |
| 290 |
int box = findDown( |
|
| 293 |
int box = findDown(_boxes.size() - 1, p); |
|
| 291 | 294 |
insert(box, n); |
| 292 | 295 |
} |
| 293 | 296 |
|
| 294 |
/// \brief |
|
| 297 |
/// \brief Return the item having minimum priority. |
|
| 295 | 298 |
/// |
| 296 |
/// This method returns the item with minimum priority. |
|
| 297 |
/// \pre The heap must be nonempty. |
|
| 299 |
/// This function returns the item having minimum priority. |
|
| 300 |
/// \pre The heap must be non-empty. |
|
| 298 | 301 |
Item top() const {
|
| 299 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
| 300 |
return |
|
| 303 |
return _data[_boxes[0].first].item; |
|
| 301 | 304 |
} |
| 302 | 305 |
|
| 303 |
/// \brief |
|
| 306 |
/// \brief The minimum priority. |
|
| 304 | 307 |
/// |
| 305 |
/// It returns the minimum priority. |
|
| 306 |
/// \pre The heap must be nonempty. |
|
| 308 |
/// This function returns the minimum priority. |
|
| 309 |
/// \pre The heap must be non-empty. |
|
| 307 | 310 |
Prio prio() const {
|
| 308 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
| 309 |
return |
|
| 312 |
return _data[_boxes[0].first].prio; |
|
| 310 | 313 |
} |
| 311 | 314 |
|
| 312 |
/// \brief |
|
| 315 |
/// \brief Remove the item having minimum priority. |
|
| 313 | 316 |
/// |
| 314 |
/// This |
|
| 317 |
/// This function removes the item having minimum priority. |
|
| 315 | 318 |
/// \pre The heap must be non-empty. |
| 316 | 319 |
void pop() {
|
| 317 | 320 |
moveDown(); |
| 318 |
int index = boxes[0].first; |
|
| 319 |
_iim[data[index].item] = POST_HEAP; |
|
| 321 |
int index = _boxes[0].first; |
|
| 322 |
_iim[_data[index].item] = POST_HEAP; |
|
| 320 | 323 |
remove(index); |
| 321 |
|
|
| 324 |
relocateLast(index); |
|
| 322 | 325 |
} |
| 323 | 326 |
|
| 324 |
/// \brief |
|
| 327 |
/// \brief Remove the given item from the heap. |
|
| 325 | 328 |
/// |
| 326 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 327 |
/// already stored in the heap. |
|
| 328 |
/// |
|
| 329 |
/// This function removes the given item from the heap if it is |
|
| 330 |
/// already stored. |
|
| 331 |
/// \param i The item to delete. |
|
| 332 |
/// \pre \e i must be in the heap. |
|
| 329 | 333 |
void erase(const Item &i) {
|
| 330 | 334 |
int index = _iim[i]; |
| 331 | 335 |
_iim[i] = POST_HEAP; |
| 332 | 336 |
remove(index); |
| 333 |
|
|
| 337 |
relocateLast(index); |
|
| 334 | 338 |
} |
| 335 | 339 |
|
| 336 |
/// \brief |
|
| 340 |
/// \brief The priority of the given item. |
|
| 337 | 341 |
/// |
| 338 |
/// This function returns the priority of item \c i. |
|
| 339 |
/// \pre \c i must be in the heap. |
|
| 342 |
/// This function returns the priority of the given item. |
|
| 340 | 343 |
/// \param i The item. |
| 344 |
/// \pre \e i must be in the heap. |
|
| 341 | 345 |
Prio operator[](const Item &i) const {
|
| 342 | 346 |
int idx = _iim[i]; |
| 343 |
return |
|
| 347 |
return _data[idx].prio; |
|
| 344 | 348 |
} |
| 345 | 349 |
|
| 346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 347 |
/// if \c i was already there. |
|
| 350 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 351 |
/// not stored in the heap. |
|
| 348 | 352 |
/// |
| 349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 351 |
/// |
|
| 353 |
/// This method sets the priority of the given item if it is |
|
| 354 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 355 |
/// item into the heap with the given priority. |
|
| 352 | 356 |
/// \param i The item. |
| 353 | 357 |
/// \param p The priority. |
| 358 |
/// \pre \e i must be in the heap. |
|
| 359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 354 | 360 |
void set(const Item &i, const Prio &p) {
|
| 355 | 361 |
int idx = _iim[i]; |
| ... | ... |
@@ -357,46 +363,45 @@ |
| 357 | 363 |
push(i, p); |
| 358 | 364 |
} |
| 359 |
else if( p >= data[idx].prio ) {
|
|
| 360 |
data[idx].prio = p; |
|
| 361 |
|
|
| 365 |
else if( p >= _data[idx].prio ) {
|
|
| 366 |
_data[idx].prio = p; |
|
| 367 |
bubbleUp(idx); |
|
| 362 | 368 |
} else {
|
| 363 |
data[idx].prio = p; |
|
| 364 |
bubble_down(idx); |
|
| 369 |
_data[idx].prio = p; |
|
| 370 |
bubbleDown(idx); |
|
| 365 | 371 |
} |
| 366 | 372 |
} |
| 367 | 373 |
|
| 368 |
|
|
| 369 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 374 |
/// \brief Decrease the priority of an item to the given value. |
|
| 370 | 375 |
/// |
| 371 |
/// This method decreases the priority of item \c i to \c p. |
|
| 372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
| 373 |
/// |
|
| 376 |
/// This function decreases the priority of an item to the given value. |
|
| 374 | 377 |
/// \param i The item. |
| 375 | 378 |
/// \param p The priority. |
| 379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 376 | 381 |
void decrease(const Item &i, const Prio &p) {
|
| 377 | 382 |
int idx = _iim[i]; |
| 378 |
data[idx].prio = p; |
|
| 379 |
bubble_down(idx); |
|
| 383 |
_data[idx].prio = p; |
|
| 384 |
bubbleDown(idx); |
|
| 380 | 385 |
} |
| 381 | 386 |
|
| 382 |
/// \brief |
|
| 387 |
/// \brief Increase the priority of an item to the given value. |
|
| 383 | 388 |
/// |
| 384 |
/// This method sets the priority of item \c i to \c p. |
|
| 385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
| 389 |
/// This function increases the priority of an item to the given value. |
|
| 386 | 390 |
/// \param i The item. |
| 387 | 391 |
/// \param p The priority. |
| 392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 388 | 393 |
void increase(const Item &i, const Prio &p) {
|
| 389 | 394 |
int idx = _iim[i]; |
| 390 |
data[idx].prio = p; |
|
| 391 |
bubble_up(idx); |
|
| 395 |
_data[idx].prio = p; |
|
| 396 |
bubbleUp(idx); |
|
| 392 | 397 |
} |
| 393 | 398 |
|
| 394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 395 |
/// never been in the heap. |
|
| 399 |
/// \brief Return the state of an item. |
|
| 396 | 400 |
/// |
| 397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 399 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 400 |
/// get back to the heap again. |
|
| 401 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 403 |
/// and \c POST_HEAP otherwise. |
|
| 404 |
/// In the latter case it is possible that the item will get back |
|
| 405 |
/// to the heap again. |
|
| 401 | 406 |
/// \param i The item. |
| 402 | 407 |
State state(const Item &i) const {
|
| ... | ... |
@@ -406,9 +411,9 @@ |
| 406 | 411 |
} |
| 407 | 412 |
|
| 408 |
/// \brief |
|
| 413 |
/// \brief Set the state of an item in the heap. |
|
| 409 | 414 |
/// |
| 410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 411 |
/// manually clear the heap when it is important to achive the |
|
| 412 |
/// |
|
| 415 |
/// This function sets the state of the given item in the heap. |
|
| 416 |
/// It can be used to manually clear the heap when it is important |
|
| 417 |
/// to achive better time complexity. |
|
| 413 | 418 |
/// \param i The item. |
| 414 | 419 |
/// \param st The state. It should not be \c IN_HEAP. |
| ... | ... |
@@ -8,4 +8,5 @@ |
| 8 | 8 |
check_PROGRAMS += \ |
| 9 | 9 |
test/adaptors_test \ |
| 10 |
test/bellman_ford_test \ |
|
| 10 | 11 |
test/bfs_test \ |
| 11 | 12 |
test/circulation_test \ |
| ... | ... |
@@ -53,4 +54,5 @@ |
| 53 | 54 |
|
| 54 | 55 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
| 56 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
|
| 55 | 57 |
test_bfs_test_SOURCES = test/bfs_test.cc |
| 56 | 58 |
test_circulation_test_SOURCES = test/circulation_test.cc |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)