gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
DescriptorMap->RangeIdMap, InvertableMap->CrossRefMap (#160)
0 2 0
default
2 files changed with 44 insertions and 45 deletions:
↑ Collapse diff ↑
Ignore white space 24576 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25

	
26 26
#include <lemon/core.h>
27 27

	
28 28
///\file
29 29
///\ingroup maps
30 30
///\brief Miscellaneous property maps
31 31

	
32 32
#include <map>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup maps
37 37
  /// @{
38 38

	
39 39
  /// Base class of maps.
40 40

	
41 41
  /// Base class of maps. It provides the necessary type definitions
42 42
  /// required by the map %concepts.
43 43
  template<typename K, typename V>
44 44
  class MapBase {
45 45
  public:
46 46
    /// \brief The key type of the map.
47 47
    typedef K Key;
48 48
    /// \brief The value type of the map.
49 49
    /// (The type of objects associated with the keys).
50 50
    typedef V Value;
51 51
  };
52 52

	
53 53

	
54 54
  /// Null map. (a.k.a. DoNothingMap)
55 55

	
56 56
  /// This map can be used if you have to provide a map only for
57 57
  /// its type definitions, or if you have to provide a writable map,
58 58
  /// but data written to it is not required (i.e. it will be sent to
59 59
  /// <tt>/dev/null</tt>).
60 60
  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
61 61
  ///
62 62
  /// \sa ConstMap
63 63
  template<typename K, typename V>
64 64
  class NullMap : public MapBase<K, V> {
65 65
  public:
66 66
    ///\e
67 67
    typedef K Key;
68 68
    ///\e
69 69
    typedef V Value;
70 70

	
71 71
    /// Gives back a default constructed element.
72 72
    Value operator[](const Key&) const { return Value(); }
73 73
    /// Absorbs the value.
74 74
    void set(const Key&, const Value&) {}
75 75
  };
76 76

	
77 77
  /// Returns a \c NullMap class
78 78

	
79 79
  /// This function just returns a \c NullMap class.
80 80
  /// \relates NullMap
81 81
  template <typename K, typename V>
82 82
  NullMap<K, V> nullMap() {
83 83
    return NullMap<K, V>();
84 84
  }
85 85

	
86 86

	
87 87
  /// Constant map.
88 88

	
89 89
  /// This \ref concepts::ReadMap "readable map" assigns a specified
90 90
  /// value to each key.
91 91
  ///
92 92
  /// In other aspects it is equivalent to \c NullMap.
93 93
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
94 94
  /// concept, but it absorbs the data written to it.
95 95
  ///
96 96
  /// The simplest way of using this map is through the constMap()
97 97
  /// function.
98 98
  ///
99 99
  /// \sa NullMap
100 100
  /// \sa IdentityMap
101 101
  template<typename K, typename V>
102 102
  class ConstMap : public MapBase<K, V> {
103 103
  private:
104 104
    V _value;
105 105
  public:
106 106
    ///\e
107 107
    typedef K Key;
108 108
    ///\e
109 109
    typedef V Value;
110 110

	
111 111
    /// Default constructor
112 112

	
113 113
    /// Default constructor.
114 114
    /// The value of the map will be default constructed.
115 115
    ConstMap() {}
116 116

	
117 117
    /// Constructor with specified initial value
118 118

	
119 119
    /// Constructor with specified initial value.
120 120
    /// \param v The initial value of the map.
121 121
    ConstMap(const Value &v) : _value(v) {}
122 122

	
123 123
    /// Gives back the specified value.
124 124
    Value operator[](const Key&) const { return _value; }
125 125

	
126 126
    /// Absorbs the value.
127 127
    void set(const Key&, const Value&) {}
128 128

	
129 129
    /// Sets the value that is assigned to each key.
130 130
    void setAll(const Value &v) {
131 131
      _value = v;
132 132
    }
133 133

	
134 134
    template<typename V1>
135 135
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
136 136
  };
137 137

	
138 138
  /// Returns a \c ConstMap class
139 139

	
140 140
  /// This function just returns a \c ConstMap class.
141 141
  /// \relates ConstMap
142 142
  template<typename K, typename V>
143 143
  inline ConstMap<K, V> constMap(const V &v) {
144 144
    return ConstMap<K, V>(v);
145 145
  }
146 146

	
147 147
  template<typename K, typename V>
148 148
  inline ConstMap<K, V> constMap() {
149 149
    return ConstMap<K, V>();
150 150
  }
151 151

	
152 152

	
153 153
  template<typename T, T v>
154 154
  struct Const {};
155 155

	
156 156
  /// Constant map with inlined constant value.
157 157

	
158 158
  /// This \ref concepts::ReadMap "readable map" assigns a specified
159 159
  /// value to each key.
160 160
  ///
161 161
  /// In other aspects it is equivalent to \c NullMap.
162 162
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
163 163
  /// concept, but it absorbs the data written to it.
164 164
  ///
165 165
  /// The simplest way of using this map is through the constMap()
166 166
  /// function.
167 167
  ///
168 168
  /// \sa NullMap
169 169
  /// \sa IdentityMap
170 170
  template<typename K, typename V, V v>
171 171
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
172 172
  public:
173 173
    ///\e
174 174
    typedef K Key;
175 175
    ///\e
176 176
    typedef V Value;
177 177

	
178 178
    /// Constructor.
179 179
    ConstMap() {}
180 180

	
181 181
    /// Gives back the specified value.
182 182
    Value operator[](const Key&) const { return v; }
183 183

	
184 184
    /// Absorbs the value.
185 185
    void set(const Key&, const Value&) {}
186 186
  };
187 187

	
188 188
  /// Returns a \c ConstMap class with inlined constant value
189 189

	
190 190
  /// This function just returns a \c ConstMap class with inlined
191 191
  /// constant value.
192 192
  /// \relates ConstMap
193 193
  template<typename K, typename V, V v>
194 194
  inline ConstMap<K, Const<V, v> > constMap() {
195 195
    return ConstMap<K, Const<V, v> >();
196 196
  }
197 197

	
198 198

	
199 199
  /// Identity map.
200 200

	
201 201
  /// This \ref concepts::ReadMap "read-only map" gives back the given
202 202
  /// key as value without any modification.
203 203
  ///
204 204
  /// \sa ConstMap
205 205
  template <typename T>
206 206
  class IdentityMap : public MapBase<T, T> {
207 207
  public:
208 208
    ///\e
209 209
    typedef T Key;
210 210
    ///\e
211 211
    typedef T Value;
212 212

	
213 213
    /// Gives back the given value without any modification.
214 214
    Value operator[](const Key &k) const {
215 215
      return k;
216 216
    }
217 217
  };
218 218

	
219 219
  /// Returns an \c IdentityMap class
220 220

	
221 221
  /// This function just returns an \c IdentityMap class.
222 222
  /// \relates IdentityMap
223 223
  template<typename T>
224 224
  inline IdentityMap<T> identityMap() {
225 225
    return IdentityMap<T>();
226 226
  }
227 227

	
228 228

	
229 229
  /// \brief Map for storing values for integer keys from the range
230 230
  /// <tt>[0..size-1]</tt>.
231 231
  ///
232 232
  /// This map is essentially a wrapper for \c std::vector. It assigns
233 233
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
234 234
  /// It can be used with some data structures, for example
235 235
  /// \c UnionFind, \c BinHeap, when the used items are small
236 236
  /// integers. This map conforms the \ref concepts::ReferenceMap
237 237
  /// "ReferenceMap" concept.
238 238
  ///
239 239
  /// The simplest way of using this map is through the rangeMap()
240 240
  /// function.
241 241
  template <typename V>
242 242
  class RangeMap : public MapBase<int, V> {
243 243
    template <typename V1>
244 244
    friend class RangeMap;
245 245
  private:
246 246

	
247 247
    typedef std::vector<V> Vector;
248 248
    Vector _vector;
249 249

	
250 250
  public:
251 251

	
252 252
    /// Key type
253 253
    typedef int Key;
254 254
    /// Value type
255 255
    typedef V Value;
256 256
    /// Reference type
257 257
    typedef typename Vector::reference Reference;
258 258
    /// Const reference type
259 259
    typedef typename Vector::const_reference ConstReference;
260 260

	
261 261
    typedef True ReferenceMapTag;
262 262

	
263 263
  public:
264 264

	
265 265
    /// Constructor with specified default value.
266 266
    RangeMap(int size = 0, const Value &value = Value())
267 267
      : _vector(size, value) {}
268 268

	
269 269
    /// Constructs the map from an appropriate \c std::vector.
270 270
    template <typename V1>
271 271
    RangeMap(const std::vector<V1>& vector)
272 272
      : _vector(vector.begin(), vector.end()) {}
273 273

	
274 274
    /// Constructs the map from another \c RangeMap.
275 275
    template <typename V1>
276 276
    RangeMap(const RangeMap<V1> &c)
277 277
      : _vector(c._vector.begin(), c._vector.end()) {}
278 278

	
279 279
    /// Returns the size of the map.
280 280
    int size() {
281 281
      return _vector.size();
282 282
    }
283 283

	
284 284
    /// Resizes the map.
285 285

	
286 286
    /// Resizes the underlying \c std::vector container, so changes the
287 287
    /// keyset of the map.
288 288
    /// \param size The new size of the map. The new keyset will be the
289 289
    /// range <tt>[0..size-1]</tt>.
290 290
    /// \param value The default value to assign to the new keys.
291 291
    void resize(int size, const Value &value = Value()) {
292 292
      _vector.resize(size, value);
293 293
    }
294 294

	
295 295
  private:
296 296

	
297 297
    RangeMap& operator=(const RangeMap&);
298 298

	
299 299
  public:
300 300

	
301 301
    ///\e
302 302
    Reference operator[](const Key &k) {
303 303
      return _vector[k];
304 304
    }
305 305

	
306 306
    ///\e
307 307
    ConstReference operator[](const Key &k) const {
308 308
      return _vector[k];
309 309
    }
310 310

	
311 311
    ///\e
312 312
    void set(const Key &k, const Value &v) {
313 313
      _vector[k] = v;
314 314
    }
315 315
  };
316 316

	
317 317
  /// Returns a \c RangeMap class
318 318

	
319 319
  /// This function just returns a \c RangeMap class.
320 320
  /// \relates RangeMap
321 321
  template<typename V>
322 322
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
323 323
    return RangeMap<V>(size, value);
324 324
  }
325 325

	
326 326
  /// \brief Returns a \c RangeMap class created from an appropriate
327 327
  /// \c std::vector
328 328

	
329 329
  /// This function just returns a \c RangeMap class created from an
330 330
  /// appropriate \c std::vector.
331 331
  /// \relates RangeMap
332 332
  template<typename V>
333 333
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
334 334
    return RangeMap<V>(vector);
335 335
  }
336 336

	
337 337

	
338 338
  /// Map type based on \c std::map
339 339

	
340 340
  /// This map is essentially a wrapper for \c std::map with addition
341 341
  /// that you can specify a default value for the keys that are not
342 342
  /// stored actually. This value can be different from the default
343 343
  /// contructed value (i.e. \c %Value()).
344 344
  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
345 345
  /// concept.
346 346
  ///
347 347
  /// This map is useful if a default value should be assigned to most of
348 348
  /// the keys and different values should be assigned only to a few
349 349
  /// keys (i.e. the map is "sparse").
350 350
  /// The name of this type also refers to this important usage.
351 351
  ///
352 352
  /// Apart form that this map can be used in many other cases since it
353 353
  /// is based on \c std::map, which is a general associative container.
354 354
  /// However keep in mind that it is usually not as efficient as other
355 355
  /// maps.
356 356
  ///
357 357
  /// The simplest way of using this map is through the sparseMap()
358 358
  /// function.
359 359
  template <typename K, typename V, typename Comp = std::less<K> >
360 360
  class SparseMap : public MapBase<K, V> {
361 361
    template <typename K1, typename V1, typename C1>
362 362
    friend class SparseMap;
363 363
  public:
364 364

	
365 365
    /// Key type
366 366
    typedef K Key;
367 367
    /// Value type
368 368
    typedef V Value;
369 369
    /// Reference type
370 370
    typedef Value& Reference;
371 371
    /// Const reference type
372 372
    typedef const Value& ConstReference;
373 373

	
374 374
    typedef True ReferenceMapTag;
375 375

	
376 376
  private:
377 377

	
378 378
    typedef std::map<K, V, Comp> Map;
379 379
    Map _map;
380 380
    Value _value;
381 381

	
382 382
  public:
383 383

	
384 384
    /// \brief Constructor with specified default value.
385 385
    SparseMap(const Value &value = Value()) : _value(value) {}
386 386
    /// \brief Constructs the map from an appropriate \c std::map, and
387 387
    /// explicitly specifies a default value.
388 388
    template <typename V1, typename Comp1>
389 389
    SparseMap(const std::map<Key, V1, Comp1> &map,
390 390
              const Value &value = Value())
391 391
      : _map(map.begin(), map.end()), _value(value) {}
392 392

	
393 393
    /// \brief Constructs the map from another \c SparseMap.
394 394
    template<typename V1, typename Comp1>
395 395
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
396 396
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
397 397

	
398 398
  private:
399 399

	
400 400
    SparseMap& operator=(const SparseMap&);
401 401

	
402 402
  public:
403 403

	
404 404
    ///\e
405 405
    Reference operator[](const Key &k) {
406 406
      typename Map::iterator it = _map.lower_bound(k);
407 407
      if (it != _map.end() && !_map.key_comp()(k, it->first))
408 408
        return it->second;
409 409
      else
410 410
        return _map.insert(it, std::make_pair(k, _value))->second;
411 411
    }
412 412

	
413 413
    ///\e
414 414
    ConstReference operator[](const Key &k) const {
415 415
      typename Map::const_iterator it = _map.find(k);
416 416
      if (it != _map.end())
417 417
        return it->second;
418 418
      else
419 419
        return _value;
420 420
    }
421 421

	
422 422
    ///\e
423 423
    void set(const Key &k, const Value &v) {
424 424
      typename Map::iterator it = _map.lower_bound(k);
425 425
      if (it != _map.end() && !_map.key_comp()(k, it->first))
426 426
        it->second = v;
427 427
      else
428 428
        _map.insert(it, std::make_pair(k, v));
429 429
    }
430 430

	
431 431
    ///\e
432 432
    void setAll(const Value &v) {
433 433
      _value = v;
434 434
      _map.clear();
435 435
    }
436 436
  };
437 437

	
438 438
  /// Returns a \c SparseMap class
439 439

	
440 440
  /// This function just returns a \c SparseMap class with specified
441 441
  /// default value.
442 442
  /// \relates SparseMap
443 443
  template<typename K, typename V, typename Compare>
444 444
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
445 445
    return SparseMap<K, V, Compare>(value);
446 446
  }
447 447

	
448 448
  template<typename K, typename V>
449 449
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
450 450
    return SparseMap<K, V, std::less<K> >(value);
451 451
  }
452 452

	
453 453
  /// \brief Returns a \c SparseMap class created from an appropriate
454 454
  /// \c std::map
455 455

	
456 456
  /// This function just returns a \c SparseMap class created from an
457 457
  /// appropriate \c std::map.
458 458
  /// \relates SparseMap
459 459
  template<typename K, typename V, typename Compare>
460 460
  inline SparseMap<K, V, Compare>
461 461
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
462 462
  {
463 463
    return SparseMap<K, V, Compare>(map, value);
464 464
  }
465 465

	
466 466
  /// @}
467 467

	
468 468
  /// \addtogroup map_adaptors
469 469
  /// @{
470 470

	
471 471
  /// Composition of two maps
472 472

	
473 473
  /// This \ref concepts::ReadMap "read-only map" returns the
474 474
  /// composition of two given maps. That is to say, if \c m1 is of
475 475
  /// type \c M1 and \c m2 is of \c M2, then for
476 476
  /// \code
477 477
  ///   ComposeMap<M1, M2> cm(m1,m2);
478 478
  /// \endcode
479 479
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
480 480
  ///
481 481
  /// The \c Key type of the map is inherited from \c M2 and the
482 482
  /// \c Value type is from \c M1.
483 483
  /// \c M2::Value must be convertible to \c M1::Key.
484 484
  ///
485 485
  /// The simplest way of using this map is through the composeMap()
486 486
  /// function.
487 487
  ///
488 488
  /// \sa CombineMap
489 489
  template <typename M1, typename M2>
490 490
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
491 491
    const M1 &_m1;
492 492
    const M2 &_m2;
493 493
  public:
494 494
    ///\e
495 495
    typedef typename M2::Key Key;
496 496
    ///\e
497 497
    typedef typename M1::Value Value;
498 498

	
499 499
    /// Constructor
500 500
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
501 501

	
502 502
    ///\e
503 503
    typename MapTraits<M1>::ConstReturnValue
504 504
    operator[](const Key &k) const { return _m1[_m2[k]]; }
505 505
  };
506 506

	
507 507
  /// Returns a \c ComposeMap class
508 508

	
509 509
  /// This function just returns a \c ComposeMap class.
510 510
  ///
511 511
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
512 512
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
513 513
  /// will be equal to <tt>m1[m2[x]]</tt>.
514 514
  ///
515 515
  /// \relates ComposeMap
516 516
  template <typename M1, typename M2>
517 517
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
518 518
    return ComposeMap<M1, M2>(m1, m2);
519 519
  }
520 520

	
521 521

	
522 522
  /// Combination of two maps using an STL (binary) functor.
523 523

	
524 524
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
525 525
  /// binary functor and returns the combination of the two given maps
526 526
  /// using the functor.
527 527
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
528 528
  /// and \c f is of \c F, then for
529 529
  /// \code
530 530
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
531 531
  /// \endcode
532 532
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
533 533
  ///
534 534
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
535 535
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
536 536
  /// \c M2::Value and \c M1::Value must be convertible to the
537 537
  /// corresponding input parameter of \c F and the return type of \c F
538 538
  /// must be convertible to \c V.
539 539
  ///
540 540
  /// The simplest way of using this map is through the combineMap()
541 541
  /// function.
542 542
  ///
543 543
  /// \sa ComposeMap
544 544
  template<typename M1, typename M2, typename F,
545 545
           typename V = typename F::result_type>
546 546
  class CombineMap : public MapBase<typename M1::Key, V> {
547 547
    const M1 &_m1;
548 548
    const M2 &_m2;
549 549
    F _f;
550 550
  public:
551 551
    ///\e
552 552
    typedef typename M1::Key Key;
553 553
    ///\e
554 554
    typedef V Value;
555 555

	
556 556
    /// Constructor
557 557
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
558 558
      : _m1(m1), _m2(m2), _f(f) {}
559 559
    ///\e
560 560
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
561 561
  };
562 562

	
563 563
  /// Returns a \c CombineMap class
564 564

	
565 565
  /// This function just returns a \c CombineMap class.
566 566
  ///
567 567
  /// For example, if \c m1 and \c m2 are both maps with \c double
568 568
  /// values, then
569 569
  /// \code
570 570
  ///   combineMap(m1,m2,std::plus<double>())
571 571
  /// \endcode
572 572
  /// is equivalent to
573 573
  /// \code
574 574
  ///   addMap(m1,m2)
575 575
  /// \endcode
576 576
  ///
577 577
  /// This function is specialized for adaptable binary function
578 578
  /// classes and C++ functions.
579 579
  ///
580 580
  /// \relates CombineMap
581 581
  template<typename M1, typename M2, typename F, typename V>
582 582
  inline CombineMap<M1, M2, F, V>
583 583
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
584 584
    return CombineMap<M1, M2, F, V>(m1,m2,f);
585 585
  }
586 586

	
587 587
  template<typename M1, typename M2, typename F>
588 588
  inline CombineMap<M1, M2, F, typename F::result_type>
589 589
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
590 590
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
591 591
  }
592 592

	
593 593
  template<typename M1, typename M2, typename K1, typename K2, typename V>
594 594
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
595 595
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
596 596
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
597 597
  }
598 598

	
599 599

	
600 600
  /// Converts an STL style (unary) functor to a map
601 601

	
602 602
  /// This \ref concepts::ReadMap "read-only map" returns the value
603 603
  /// of a given functor. Actually, it just wraps the functor and
604 604
  /// provides the \c Key and \c Value typedefs.
605 605
  ///
606 606
  /// Template parameters \c K and \c V will become its \c Key and
607 607
  /// \c Value. In most cases they have to be given explicitly because
608 608
  /// a functor typically does not provide \c argument_type and
609 609
  /// \c result_type typedefs.
610 610
  /// Parameter \c F is the type of the used functor.
611 611
  ///
612 612
  /// The simplest way of using this map is through the functorToMap()
613 613
  /// function.
614 614
  ///
615 615
  /// \sa MapToFunctor
616 616
  template<typename F,
617 617
           typename K = typename F::argument_type,
618 618
           typename V = typename F::result_type>
619 619
  class FunctorToMap : public MapBase<K, V> {
620 620
    F _f;
621 621
  public:
622 622
    ///\e
623 623
    typedef K Key;
624 624
    ///\e
625 625
    typedef V Value;
626 626

	
627 627
    /// Constructor
628 628
    FunctorToMap(const F &f = F()) : _f(f) {}
629 629
    ///\e
630 630
    Value operator[](const Key &k) const { return _f(k); }
631 631
  };
632 632

	
633 633
  /// Returns a \c FunctorToMap class
634 634

	
635 635
  /// This function just returns a \c FunctorToMap class.
636 636
  ///
637 637
  /// This function is specialized for adaptable binary function
638 638
  /// classes and C++ functions.
639 639
  ///
640 640
  /// \relates FunctorToMap
641 641
  template<typename K, typename V, typename F>
642 642
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
643 643
    return FunctorToMap<F, K, V>(f);
644 644
  }
645 645

	
646 646
  template <typename F>
647 647
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
648 648
    functorToMap(const F &f)
649 649
  {
650 650
    return FunctorToMap<F, typename F::argument_type,
651 651
      typename F::result_type>(f);
652 652
  }
653 653

	
654 654
  template <typename K, typename V>
655 655
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
656 656
    return FunctorToMap<V (*)(K), K, V>(f);
657 657
  }
658 658

	
659 659

	
660 660
  /// Converts a map to an STL style (unary) functor
661 661

	
662 662
  /// This class converts a map to an STL style (unary) functor.
663 663
  /// That is it provides an <tt>operator()</tt> to read its values.
664 664
  ///
665 665
  /// For the sake of convenience it also works as a usual
666 666
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
667 667
  /// and the \c Key and \c Value typedefs also exist.
668 668
  ///
669 669
  /// The simplest way of using this map is through the mapToFunctor()
670 670
  /// function.
671 671
  ///
672 672
  ///\sa FunctorToMap
673 673
  template <typename M>
674 674
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
675 675
    const M &_m;
676 676
  public:
677 677
    ///\e
678 678
    typedef typename M::Key Key;
679 679
    ///\e
680 680
    typedef typename M::Value Value;
681 681

	
682 682
    typedef typename M::Key argument_type;
683 683
    typedef typename M::Value result_type;
684 684

	
685 685
    /// Constructor
686 686
    MapToFunctor(const M &m) : _m(m) {}
687 687
    ///\e
688 688
    Value operator()(const Key &k) const { return _m[k]; }
689 689
    ///\e
690 690
    Value operator[](const Key &k) const { return _m[k]; }
691 691
  };
692 692

	
693 693
  /// Returns a \c MapToFunctor class
694 694

	
695 695
  /// This function just returns a \c MapToFunctor class.
696 696
  /// \relates MapToFunctor
697 697
  template<typename M>
698 698
  inline MapToFunctor<M> mapToFunctor(const M &m) {
699 699
    return MapToFunctor<M>(m);
700 700
  }
701 701

	
702 702

	
703 703
  /// \brief Map adaptor to convert the \c Value type of a map to
704 704
  /// another type using the default conversion.
705 705

	
706 706
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
707 707
  /// "readable map" to another type using the default conversion.
708 708
  /// The \c Key type of it is inherited from \c M and the \c Value
709 709
  /// type is \c V.
710 710
  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
711 711
  ///
712 712
  /// The simplest way of using this map is through the convertMap()
713 713
  /// function.
714 714
  template <typename M, typename V>
715 715
  class ConvertMap : public MapBase<typename M::Key, V> {
716 716
    const M &_m;
717 717
  public:
718 718
    ///\e
719 719
    typedef typename M::Key Key;
720 720
    ///\e
721 721
    typedef V Value;
722 722

	
723 723
    /// Constructor
724 724

	
725 725
    /// Constructor.
726 726
    /// \param m The underlying map.
727 727
    ConvertMap(const M &m) : _m(m) {}
728 728

	
729 729
    ///\e
730 730
    Value operator[](const Key &k) const { return _m[k]; }
731 731
  };
732 732

	
733 733
  /// Returns a \c ConvertMap class
734 734

	
735 735
  /// This function just returns a \c ConvertMap class.
736 736
  /// \relates ConvertMap
737 737
  template<typename V, typename M>
738 738
  inline ConvertMap<M, V> convertMap(const M &map) {
739 739
    return ConvertMap<M, V>(map);
740 740
  }
741 741

	
742 742

	
743 743
  /// Applies all map setting operations to two maps
744 744

	
745 745
  /// This map has two \ref concepts::WriteMap "writable map" parameters
746 746
  /// and each write request will be passed to both of them.
747 747
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
748 748
  /// operations will return the corresponding values of \c M1.
749 749
  ///
750 750
  /// The \c Key and \c Value types are inherited from \c M1.
751 751
  /// The \c Key and \c Value of \c M2 must be convertible from those
752 752
  /// of \c M1.
753 753
  ///
754 754
  /// The simplest way of using this map is through the forkMap()
755 755
  /// function.
756 756
  template<typename  M1, typename M2>
757 757
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
758 758
    M1 &_m1;
759 759
    M2 &_m2;
760 760
  public:
761 761
    ///\e
762 762
    typedef typename M1::Key Key;
763 763
    ///\e
764 764
    typedef typename M1::Value Value;
765 765

	
766 766
    /// Constructor
767 767
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
768 768
    /// Returns the value associated with the given key in the first map.
769 769
    Value operator[](const Key &k) const { return _m1[k]; }
770 770
    /// Sets the value associated with the given key in both maps.
771 771
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
772 772
  };
773 773

	
774 774
  /// Returns a \c ForkMap class
775 775

	
776 776
  /// This function just returns a \c ForkMap class.
777 777
  /// \relates ForkMap
778 778
  template <typename M1, typename M2>
779 779
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
780 780
    return ForkMap<M1,M2>(m1,m2);
781 781
  }
782 782

	
783 783

	
784 784
  /// Sum of two maps
785 785

	
786 786
  /// This \ref concepts::ReadMap "read-only map" returns the sum
787 787
  /// of the values of the two given maps.
788 788
  /// Its \c Key and \c Value types are inherited from \c M1.
789 789
  /// The \c Key and \c Value of \c M2 must be convertible to those of
790 790
  /// \c M1.
791 791
  ///
792 792
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
793 793
  /// \code
794 794
  ///   AddMap<M1,M2> am(m1,m2);
795 795
  /// \endcode
796 796
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
797 797
  ///
798 798
  /// The simplest way of using this map is through the addMap()
799 799
  /// function.
800 800
  ///
801 801
  /// \sa SubMap, MulMap, DivMap
802 802
  /// \sa ShiftMap, ShiftWriteMap
803 803
  template<typename M1, typename M2>
804 804
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
805 805
    const M1 &_m1;
806 806
    const M2 &_m2;
807 807
  public:
808 808
    ///\e
809 809
    typedef typename M1::Key Key;
810 810
    ///\e
811 811
    typedef typename M1::Value Value;
812 812

	
813 813
    /// Constructor
814 814
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
815 815
    ///\e
816 816
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
817 817
  };
818 818

	
819 819
  /// Returns an \c AddMap class
820 820

	
821 821
  /// This function just returns an \c AddMap class.
822 822
  ///
823 823
  /// For example, if \c m1 and \c m2 are both maps with \c double
824 824
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
825 825
  /// <tt>m1[x]+m2[x]</tt>.
826 826
  ///
827 827
  /// \relates AddMap
828 828
  template<typename M1, typename M2>
829 829
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
830 830
    return AddMap<M1, M2>(m1,m2);
831 831
  }
832 832

	
833 833

	
834 834
  /// Difference of two maps
835 835

	
836 836
  /// This \ref concepts::ReadMap "read-only map" returns the difference
837 837
  /// of the values of the two given maps.
838 838
  /// Its \c Key and \c Value types are inherited from \c M1.
839 839
  /// The \c Key and \c Value of \c M2 must be convertible to those of
840 840
  /// \c M1.
841 841
  ///
842 842
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
843 843
  /// \code
844 844
  ///   SubMap<M1,M2> sm(m1,m2);
845 845
  /// \endcode
846 846
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
847 847
  ///
848 848
  /// The simplest way of using this map is through the subMap()
849 849
  /// function.
850 850
  ///
851 851
  /// \sa AddMap, MulMap, DivMap
852 852
  template<typename M1, typename M2>
853 853
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
854 854
    const M1 &_m1;
855 855
    const M2 &_m2;
856 856
  public:
857 857
    ///\e
858 858
    typedef typename M1::Key Key;
859 859
    ///\e
860 860
    typedef typename M1::Value Value;
861 861

	
862 862
    /// Constructor
863 863
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
864 864
    ///\e
865 865
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
866 866
  };
867 867

	
868 868
  /// Returns a \c SubMap class
869 869

	
870 870
  /// This function just returns a \c SubMap class.
871 871
  ///
872 872
  /// For example, if \c m1 and \c m2 are both maps with \c double
873 873
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
874 874
  /// <tt>m1[x]-m2[x]</tt>.
875 875
  ///
876 876
  /// \relates SubMap
877 877
  template<typename M1, typename M2>
878 878
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
879 879
    return SubMap<M1, M2>(m1,m2);
880 880
  }
881 881

	
882 882

	
883 883
  /// Product of two maps
884 884

	
885 885
  /// This \ref concepts::ReadMap "read-only map" returns the product
886 886
  /// of the values of the two given maps.
887 887
  /// Its \c Key and \c Value types are inherited from \c M1.
888 888
  /// The \c Key and \c Value of \c M2 must be convertible to those of
889 889
  /// \c M1.
890 890
  ///
891 891
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
892 892
  /// \code
893 893
  ///   MulMap<M1,M2> mm(m1,m2);
894 894
  /// \endcode
895 895
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
896 896
  ///
897 897
  /// The simplest way of using this map is through the mulMap()
898 898
  /// function.
899 899
  ///
900 900
  /// \sa AddMap, SubMap, DivMap
901 901
  /// \sa ScaleMap, ScaleWriteMap
902 902
  template<typename M1, typename M2>
903 903
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
904 904
    const M1 &_m1;
905 905
    const M2 &_m2;
906 906
  public:
907 907
    ///\e
908 908
    typedef typename M1::Key Key;
909 909
    ///\e
910 910
    typedef typename M1::Value Value;
911 911

	
912 912
    /// Constructor
913 913
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
914 914
    ///\e
915 915
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
916 916
  };
917 917

	
918 918
  /// Returns a \c MulMap class
919 919

	
920 920
  /// This function just returns a \c MulMap class.
921 921
  ///
922 922
  /// For example, if \c m1 and \c m2 are both maps with \c double
923 923
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
924 924
  /// <tt>m1[x]*m2[x]</tt>.
925 925
  ///
926 926
  /// \relates MulMap
927 927
  template<typename M1, typename M2>
928 928
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
929 929
    return MulMap<M1, M2>(m1,m2);
930 930
  }
931 931

	
932 932

	
933 933
  /// Quotient of two maps
934 934

	
935 935
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
936 936
  /// of the values of the two given maps.
937 937
  /// Its \c Key and \c Value types are inherited from \c M1.
938 938
  /// The \c Key and \c Value of \c M2 must be convertible to those of
939 939
  /// \c M1.
940 940
  ///
941 941
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
942 942
  /// \code
943 943
  ///   DivMap<M1,M2> dm(m1,m2);
944 944
  /// \endcode
945 945
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
946 946
  ///
947 947
  /// The simplest way of using this map is through the divMap()
948 948
  /// function.
949 949
  ///
950 950
  /// \sa AddMap, SubMap, MulMap
951 951
  template<typename M1, typename M2>
952 952
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
953 953
    const M1 &_m1;
954 954
    const M2 &_m2;
955 955
  public:
956 956
    ///\e
957 957
    typedef typename M1::Key Key;
958 958
    ///\e
959 959
    typedef typename M1::Value Value;
960 960

	
961 961
    /// Constructor
962 962
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
963 963
    ///\e
964 964
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
965 965
  };
966 966

	
967 967
  /// Returns a \c DivMap class
968 968

	
969 969
  /// This function just returns a \c DivMap class.
970 970
  ///
971 971
  /// For example, if \c m1 and \c m2 are both maps with \c double
972 972
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
973 973
  /// <tt>m1[x]/m2[x]</tt>.
974 974
  ///
975 975
  /// \relates DivMap
976 976
  template<typename M1, typename M2>
977 977
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
978 978
    return DivMap<M1, M2>(m1,m2);
979 979
  }
980 980

	
981 981

	
982 982
  /// Shifts a map with a constant.
983 983

	
984 984
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
985 985
  /// the given map and a constant value (i.e. it shifts the map with
986 986
  /// the constant). Its \c Key and \c Value are inherited from \c M.
987 987
  ///
988 988
  /// Actually,
989 989
  /// \code
990 990
  ///   ShiftMap<M> sh(m,v);
991 991
  /// \endcode
992 992
  /// is equivalent to
993 993
  /// \code
994 994
  ///   ConstMap<M::Key, M::Value> cm(v);
995 995
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
996 996
  /// \endcode
997 997
  ///
998 998
  /// The simplest way of using this map is through the shiftMap()
999 999
  /// function.
1000 1000
  ///
1001 1001
  /// \sa ShiftWriteMap
1002 1002
  template<typename M, typename C = typename M::Value>
1003 1003
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
1004 1004
    const M &_m;
1005 1005
    C _v;
1006 1006
  public:
1007 1007
    ///\e
1008 1008
    typedef typename M::Key Key;
1009 1009
    ///\e
1010 1010
    typedef typename M::Value Value;
1011 1011

	
1012 1012
    /// Constructor
1013 1013

	
1014 1014
    /// Constructor.
1015 1015
    /// \param m The undelying map.
1016 1016
    /// \param v The constant value.
1017 1017
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1018 1018
    ///\e
1019 1019
    Value operator[](const Key &k) const { return _m[k]+_v; }
1020 1020
  };
1021 1021

	
1022 1022
  /// Shifts a map with a constant (read-write version).
1023 1023

	
1024 1024
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1025 1025
  /// of the given map and a constant value (i.e. it shifts the map with
1026 1026
  /// the constant). Its \c Key and \c Value are inherited from \c M.
1027 1027
  /// It makes also possible to write the map.
1028 1028
  ///
1029 1029
  /// The simplest way of using this map is through the shiftWriteMap()
1030 1030
  /// function.
1031 1031
  ///
1032 1032
  /// \sa ShiftMap
1033 1033
  template<typename M, typename C = typename M::Value>
1034 1034
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1035 1035
    M &_m;
1036 1036
    C _v;
1037 1037
  public:
1038 1038
    ///\e
1039 1039
    typedef typename M::Key Key;
1040 1040
    ///\e
1041 1041
    typedef typename M::Value Value;
1042 1042

	
1043 1043
    /// Constructor
1044 1044

	
1045 1045
    /// Constructor.
1046 1046
    /// \param m The undelying map.
1047 1047
    /// \param v The constant value.
1048 1048
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1049 1049
    ///\e
1050 1050
    Value operator[](const Key &k) const { return _m[k]+_v; }
1051 1051
    ///\e
1052 1052
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1053 1053
  };
1054 1054

	
1055 1055
  /// Returns a \c ShiftMap class
1056 1056

	
1057 1057
  /// This function just returns a \c ShiftMap class.
1058 1058
  ///
1059 1059
  /// For example, if \c m is a map with \c double values and \c v is
1060 1060
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1061 1061
  /// <tt>m[x]+v</tt>.
1062 1062
  ///
1063 1063
  /// \relates ShiftMap
1064 1064
  template<typename M, typename C>
1065 1065
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1066 1066
    return ShiftMap<M, C>(m,v);
1067 1067
  }
1068 1068

	
1069 1069
  /// Returns a \c ShiftWriteMap class
1070 1070

	
1071 1071
  /// This function just returns a \c ShiftWriteMap class.
1072 1072
  ///
1073 1073
  /// For example, if \c m is a map with \c double values and \c v is
1074 1074
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1075 1075
  /// <tt>m[x]+v</tt>.
1076 1076
  /// Moreover it makes also possible to write the map.
1077 1077
  ///
1078 1078
  /// \relates ShiftWriteMap
1079 1079
  template<typename M, typename C>
1080 1080
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1081 1081
    return ShiftWriteMap<M, C>(m,v);
1082 1082
  }
1083 1083

	
1084 1084

	
1085 1085
  /// Scales a map with a constant.
1086 1086

	
1087 1087
  /// This \ref concepts::ReadMap "read-only map" returns the value of
1088 1088
  /// the given map multiplied from the left side with a constant value.
1089 1089
  /// Its \c Key and \c Value are inherited from \c M.
1090 1090
  ///
1091 1091
  /// Actually,
1092 1092
  /// \code
1093 1093
  ///   ScaleMap<M> sc(m,v);
1094 1094
  /// \endcode
1095 1095
  /// is equivalent to
1096 1096
  /// \code
1097 1097
  ///   ConstMap<M::Key, M::Value> cm(v);
1098 1098
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1099 1099
  /// \endcode
1100 1100
  ///
1101 1101
  /// The simplest way of using this map is through the scaleMap()
1102 1102
  /// function.
1103 1103
  ///
1104 1104
  /// \sa ScaleWriteMap
1105 1105
  template<typename M, typename C = typename M::Value>
1106 1106
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1107 1107
    const M &_m;
1108 1108
    C _v;
1109 1109
  public:
1110 1110
    ///\e
1111 1111
    typedef typename M::Key Key;
1112 1112
    ///\e
1113 1113
    typedef typename M::Value Value;
1114 1114

	
1115 1115
    /// Constructor
1116 1116

	
1117 1117
    /// Constructor.
1118 1118
    /// \param m The undelying map.
1119 1119
    /// \param v The constant value.
1120 1120
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1121 1121
    ///\e
1122 1122
    Value operator[](const Key &k) const { return _v*_m[k]; }
1123 1123
  };
1124 1124

	
1125 1125
  /// Scales a map with a constant (read-write version).
1126 1126

	
1127 1127
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1128 1128
  /// the given map multiplied from the left side with a constant value.
1129 1129
  /// Its \c Key and \c Value are inherited from \c M.
1130 1130
  /// It can also be used as write map if the \c / operator is defined
1131 1131
  /// between \c Value and \c C and the given multiplier is not zero.
1132 1132
  ///
1133 1133
  /// The simplest way of using this map is through the scaleWriteMap()
1134 1134
  /// function.
1135 1135
  ///
1136 1136
  /// \sa ScaleMap
1137 1137
  template<typename M, typename C = typename M::Value>
1138 1138
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1139 1139
    M &_m;
1140 1140
    C _v;
1141 1141
  public:
1142 1142
    ///\e
1143 1143
    typedef typename M::Key Key;
1144 1144
    ///\e
1145 1145
    typedef typename M::Value Value;
1146 1146

	
1147 1147
    /// Constructor
1148 1148

	
1149 1149
    /// Constructor.
1150 1150
    /// \param m The undelying map.
1151 1151
    /// \param v The constant value.
1152 1152
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1153 1153
    ///\e
1154 1154
    Value operator[](const Key &k) const { return _v*_m[k]; }
1155 1155
    ///\e
1156 1156
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1157 1157
  };
1158 1158

	
1159 1159
  /// Returns a \c ScaleMap class
1160 1160

	
1161 1161
  /// This function just returns a \c ScaleMap class.
1162 1162
  ///
1163 1163
  /// For example, if \c m is a map with \c double values and \c v is
1164 1164
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1165 1165
  /// <tt>v*m[x]</tt>.
1166 1166
  ///
1167 1167
  /// \relates ScaleMap
1168 1168
  template<typename M, typename C>
1169 1169
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1170 1170
    return ScaleMap<M, C>(m,v);
1171 1171
  }
1172 1172

	
1173 1173
  /// Returns a \c ScaleWriteMap class
1174 1174

	
1175 1175
  /// This function just returns a \c ScaleWriteMap class.
1176 1176
  ///
1177 1177
  /// For example, if \c m is a map with \c double values and \c v is
1178 1178
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1179 1179
  /// <tt>v*m[x]</tt>.
1180 1180
  /// Moreover it makes also possible to write the map.
1181 1181
  ///
1182 1182
  /// \relates ScaleWriteMap
1183 1183
  template<typename M, typename C>
1184 1184
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1185 1185
    return ScaleWriteMap<M, C>(m,v);
1186 1186
  }
1187 1187

	
1188 1188

	
1189 1189
  /// Negative of a map
1190 1190

	
1191 1191
  /// This \ref concepts::ReadMap "read-only map" returns the negative
1192 1192
  /// of the values of the given map (using the unary \c - operator).
1193 1193
  /// Its \c Key and \c Value are inherited from \c M.
1194 1194
  ///
1195 1195
  /// If M::Value is \c int, \c double etc., then
1196 1196
  /// \code
1197 1197
  ///   NegMap<M> neg(m);
1198 1198
  /// \endcode
1199 1199
  /// is equivalent to
1200 1200
  /// \code
1201 1201
  ///   ScaleMap<M> neg(m,-1);
1202 1202
  /// \endcode
1203 1203
  ///
1204 1204
  /// The simplest way of using this map is through the negMap()
1205 1205
  /// function.
1206 1206
  ///
1207 1207
  /// \sa NegWriteMap
1208 1208
  template<typename M>
1209 1209
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
1210 1210
    const M& _m;
1211 1211
  public:
1212 1212
    ///\e
1213 1213
    typedef typename M::Key Key;
1214 1214
    ///\e
1215 1215
    typedef typename M::Value Value;
1216 1216

	
1217 1217
    /// Constructor
1218 1218
    NegMap(const M &m) : _m(m) {}
1219 1219
    ///\e
1220 1220
    Value operator[](const Key &k) const { return -_m[k]; }
1221 1221
  };
1222 1222

	
1223 1223
  /// Negative of a map (read-write version)
1224 1224

	
1225 1225
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1226 1226
  /// negative of the values of the given map (using the unary \c -
1227 1227
  /// operator).
1228 1228
  /// Its \c Key and \c Value are inherited from \c M.
1229 1229
  /// It makes also possible to write the map.
1230 1230
  ///
1231 1231
  /// If M::Value is \c int, \c double etc., then
1232 1232
  /// \code
1233 1233
  ///   NegWriteMap<M> neg(m);
1234 1234
  /// \endcode
1235 1235
  /// is equivalent to
1236 1236
  /// \code
1237 1237
  ///   ScaleWriteMap<M> neg(m,-1);
1238 1238
  /// \endcode
1239 1239
  ///
1240 1240
  /// The simplest way of using this map is through the negWriteMap()
1241 1241
  /// function.
1242 1242
  ///
1243 1243
  /// \sa NegMap
1244 1244
  template<typename M>
1245 1245
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1246 1246
    M &_m;
1247 1247
  public:
1248 1248
    ///\e
1249 1249
    typedef typename M::Key Key;
1250 1250
    ///\e
1251 1251
    typedef typename M::Value Value;
1252 1252

	
1253 1253
    /// Constructor
1254 1254
    NegWriteMap(M &m) : _m(m) {}
1255 1255
    ///\e
1256 1256
    Value operator[](const Key &k) const { return -_m[k]; }
1257 1257
    ///\e
1258 1258
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
1259 1259
  };
1260 1260

	
1261 1261
  /// Returns a \c NegMap class
1262 1262

	
1263 1263
  /// This function just returns a \c NegMap class.
1264 1264
  ///
1265 1265
  /// For example, if \c m is a map with \c double values, then
1266 1266
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1267 1267
  ///
1268 1268
  /// \relates NegMap
1269 1269
  template <typename M>
1270 1270
  inline NegMap<M> negMap(const M &m) {
1271 1271
    return NegMap<M>(m);
1272 1272
  }
1273 1273

	
1274 1274
  /// Returns a \c NegWriteMap class
1275 1275

	
1276 1276
  /// This function just returns a \c NegWriteMap class.
1277 1277
  ///
1278 1278
  /// For example, if \c m is a map with \c double values, then
1279 1279
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1280 1280
  /// Moreover it makes also possible to write the map.
1281 1281
  ///
1282 1282
  /// \relates NegWriteMap
1283 1283
  template <typename M>
1284 1284
  inline NegWriteMap<M> negWriteMap(M &m) {
1285 1285
    return NegWriteMap<M>(m);
1286 1286
  }
1287 1287

	
1288 1288

	
1289 1289
  /// Absolute value of a map
1290 1290

	
1291 1291
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
1292 1292
  /// value of the values of the given map.
1293 1293
  /// Its \c Key and \c Value are inherited from \c M.
1294 1294
  /// \c Value must be comparable to \c 0 and the unary \c -
1295 1295
  /// operator must be defined for it, of course.
1296 1296
  ///
1297 1297
  /// The simplest way of using this map is through the absMap()
1298 1298
  /// function.
1299 1299
  template<typename M>
1300 1300
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1301 1301
    const M &_m;
1302 1302
  public:
1303 1303
    ///\e
1304 1304
    typedef typename M::Key Key;
1305 1305
    ///\e
1306 1306
    typedef typename M::Value Value;
1307 1307

	
1308 1308
    /// Constructor
1309 1309
    AbsMap(const M &m) : _m(m) {}
1310 1310
    ///\e
1311 1311
    Value operator[](const Key &k) const {
1312 1312
      Value tmp = _m[k];
1313 1313
      return tmp >= 0 ? tmp : -tmp;
1314 1314
    }
1315 1315

	
1316 1316
  };
1317 1317

	
1318 1318
  /// Returns an \c AbsMap class
1319 1319

	
1320 1320
  /// This function just returns an \c AbsMap class.
1321 1321
  ///
1322 1322
  /// For example, if \c m is a map with \c double values, then
1323 1323
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1324 1324
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1325 1325
  /// negative.
1326 1326
  ///
1327 1327
  /// \relates AbsMap
1328 1328
  template<typename M>
1329 1329
  inline AbsMap<M> absMap(const M &m) {
1330 1330
    return AbsMap<M>(m);
1331 1331
  }
1332 1332

	
1333 1333
  /// @}
1334 1334

	
1335 1335
  // Logical maps and map adaptors:
1336 1336

	
1337 1337
  /// \addtogroup maps
1338 1338
  /// @{
1339 1339

	
1340 1340
  /// Constant \c true map.
1341 1341

	
1342 1342
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1343 1343
  /// each key.
1344 1344
  ///
1345 1345
  /// Note that
1346 1346
  /// \code
1347 1347
  ///   TrueMap<K> tm;
1348 1348
  /// \endcode
1349 1349
  /// is equivalent to
1350 1350
  /// \code
1351 1351
  ///   ConstMap<K,bool> tm(true);
1352 1352
  /// \endcode
1353 1353
  ///
1354 1354
  /// \sa FalseMap
1355 1355
  /// \sa ConstMap
1356 1356
  template <typename K>
1357 1357
  class TrueMap : public MapBase<K, bool> {
1358 1358
  public:
1359 1359
    ///\e
1360 1360
    typedef K Key;
1361 1361
    ///\e
1362 1362
    typedef bool Value;
1363 1363

	
1364 1364
    /// Gives back \c true.
1365 1365
    Value operator[](const Key&) const { return true; }
1366 1366
  };
1367 1367

	
1368 1368
  /// Returns a \c TrueMap class
1369 1369

	
1370 1370
  /// This function just returns a \c TrueMap class.
1371 1371
  /// \relates TrueMap
1372 1372
  template<typename K>
1373 1373
  inline TrueMap<K> trueMap() {
1374 1374
    return TrueMap<K>();
1375 1375
  }
1376 1376

	
1377 1377

	
1378 1378
  /// Constant \c false map.
1379 1379

	
1380 1380
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1381 1381
  /// each key.
1382 1382
  ///
1383 1383
  /// Note that
1384 1384
  /// \code
1385 1385
  ///   FalseMap<K> fm;
1386 1386
  /// \endcode
1387 1387
  /// is equivalent to
1388 1388
  /// \code
1389 1389
  ///   ConstMap<K,bool> fm(false);
1390 1390
  /// \endcode
1391 1391
  ///
1392 1392
  /// \sa TrueMap
1393 1393
  /// \sa ConstMap
1394 1394
  template <typename K>
1395 1395
  class FalseMap : public MapBase<K, bool> {
1396 1396
  public:
1397 1397
    ///\e
1398 1398
    typedef K Key;
1399 1399
    ///\e
1400 1400
    typedef bool Value;
1401 1401

	
1402 1402
    /// Gives back \c false.
1403 1403
    Value operator[](const Key&) const { return false; }
1404 1404
  };
1405 1405

	
1406 1406
  /// Returns a \c FalseMap class
1407 1407

	
1408 1408
  /// This function just returns a \c FalseMap class.
1409 1409
  /// \relates FalseMap
1410 1410
  template<typename K>
1411 1411
  inline FalseMap<K> falseMap() {
1412 1412
    return FalseMap<K>();
1413 1413
  }
1414 1414

	
1415 1415
  /// @}
1416 1416

	
1417 1417
  /// \addtogroup map_adaptors
1418 1418
  /// @{
1419 1419

	
1420 1420
  /// Logical 'and' of two maps
1421 1421

	
1422 1422
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1423 1423
  /// 'and' of the values of the two given maps.
1424 1424
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1425 1425
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1426 1426
  ///
1427 1427
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1428 1428
  /// \code
1429 1429
  ///   AndMap<M1,M2> am(m1,m2);
1430 1430
  /// \endcode
1431 1431
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1432 1432
  ///
1433 1433
  /// The simplest way of using this map is through the andMap()
1434 1434
  /// function.
1435 1435
  ///
1436 1436
  /// \sa OrMap
1437 1437
  /// \sa NotMap, NotWriteMap
1438 1438
  template<typename M1, typename M2>
1439 1439
  class AndMap : public MapBase<typename M1::Key, bool> {
1440 1440
    const M1 &_m1;
1441 1441
    const M2 &_m2;
1442 1442
  public:
1443 1443
    ///\e
1444 1444
    typedef typename M1::Key Key;
1445 1445
    ///\e
1446 1446
    typedef bool Value;
1447 1447

	
1448 1448
    /// Constructor
1449 1449
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1450 1450
    ///\e
1451 1451
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1452 1452
  };
1453 1453

	
1454 1454
  /// Returns an \c AndMap class
1455 1455

	
1456 1456
  /// This function just returns an \c AndMap class.
1457 1457
  ///
1458 1458
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1459 1459
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1460 1460
  /// <tt>m1[x]&&m2[x]</tt>.
1461 1461
  ///
1462 1462
  /// \relates AndMap
1463 1463
  template<typename M1, typename M2>
1464 1464
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1465 1465
    return AndMap<M1, M2>(m1,m2);
1466 1466
  }
1467 1467

	
1468 1468

	
1469 1469
  /// Logical 'or' of two maps
1470 1470

	
1471 1471
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1472 1472
  /// 'or' of the values of the two given maps.
1473 1473
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1474 1474
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1475 1475
  ///
1476 1476
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1477 1477
  /// \code
1478 1478
  ///   OrMap<M1,M2> om(m1,m2);
1479 1479
  /// \endcode
1480 1480
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1481 1481
  ///
1482 1482
  /// The simplest way of using this map is through the orMap()
1483 1483
  /// function.
1484 1484
  ///
1485 1485
  /// \sa AndMap
1486 1486
  /// \sa NotMap, NotWriteMap
1487 1487
  template<typename M1, typename M2>
1488 1488
  class OrMap : public MapBase<typename M1::Key, bool> {
1489 1489
    const M1 &_m1;
1490 1490
    const M2 &_m2;
1491 1491
  public:
1492 1492
    ///\e
1493 1493
    typedef typename M1::Key Key;
1494 1494
    ///\e
1495 1495
    typedef bool Value;
1496 1496

	
1497 1497
    /// Constructor
1498 1498
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1499 1499
    ///\e
1500 1500
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1501 1501
  };
1502 1502

	
1503 1503
  /// Returns an \c OrMap class
1504 1504

	
1505 1505
  /// This function just returns an \c OrMap class.
1506 1506
  ///
1507 1507
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1508 1508
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1509 1509
  /// <tt>m1[x]||m2[x]</tt>.
1510 1510
  ///
1511 1511
  /// \relates OrMap
1512 1512
  template<typename M1, typename M2>
1513 1513
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1514 1514
    return OrMap<M1, M2>(m1,m2);
1515 1515
  }
1516 1516

	
1517 1517

	
1518 1518
  /// Logical 'not' of a map
1519 1519

	
1520 1520
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1521 1521
  /// negation of the values of the given map.
1522 1522
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1523 1523
  ///
1524 1524
  /// The simplest way of using this map is through the notMap()
1525 1525
  /// function.
1526 1526
  ///
1527 1527
  /// \sa NotWriteMap
1528 1528
  template <typename M>
1529 1529
  class NotMap : public MapBase<typename M::Key, bool> {
1530 1530
    const M &_m;
1531 1531
  public:
1532 1532
    ///\e
1533 1533
    typedef typename M::Key Key;
1534 1534
    ///\e
1535 1535
    typedef bool Value;
1536 1536

	
1537 1537
    /// Constructor
1538 1538
    NotMap(const M &m) : _m(m) {}
1539 1539
    ///\e
1540 1540
    Value operator[](const Key &k) const { return !_m[k]; }
1541 1541
  };
1542 1542

	
1543 1543
  /// Logical 'not' of a map (read-write version)
1544 1544

	
1545 1545
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1546 1546
  /// logical negation of the values of the given map.
1547 1547
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1548 1548
  /// It makes also possible to write the map. When a value is set,
1549 1549
  /// the opposite value is set to the original map.
1550 1550
  ///
1551 1551
  /// The simplest way of using this map is through the notWriteMap()
1552 1552
  /// function.
1553 1553
  ///
1554 1554
  /// \sa NotMap
1555 1555
  template <typename M>
1556 1556
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1557 1557
    M &_m;
1558 1558
  public:
1559 1559
    ///\e
1560 1560
    typedef typename M::Key Key;
1561 1561
    ///\e
1562 1562
    typedef bool Value;
1563 1563

	
1564 1564
    /// Constructor
1565 1565
    NotWriteMap(M &m) : _m(m) {}
1566 1566
    ///\e
1567 1567
    Value operator[](const Key &k) const { return !_m[k]; }
1568 1568
    ///\e
1569 1569
    void set(const Key &k, bool v) { _m.set(k, !v); }
1570 1570
  };
1571 1571

	
1572 1572
  /// Returns a \c NotMap class
1573 1573

	
1574 1574
  /// This function just returns a \c NotMap class.
1575 1575
  ///
1576 1576
  /// For example, if \c m is a map with \c bool values, then
1577 1577
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1578 1578
  ///
1579 1579
  /// \relates NotMap
1580 1580
  template <typename M>
1581 1581
  inline NotMap<M> notMap(const M &m) {
1582 1582
    return NotMap<M>(m);
1583 1583
  }
1584 1584

	
1585 1585
  /// Returns a \c NotWriteMap class
1586 1586

	
1587 1587
  /// This function just returns a \c NotWriteMap class.
1588 1588
  ///
1589 1589
  /// For example, if \c m is a map with \c bool values, then
1590 1590
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1591 1591
  /// Moreover it makes also possible to write the map.
1592 1592
  ///
1593 1593
  /// \relates NotWriteMap
1594 1594
  template <typename M>
1595 1595
  inline NotWriteMap<M> notWriteMap(M &m) {
1596 1596
    return NotWriteMap<M>(m);
1597 1597
  }
1598 1598

	
1599 1599

	
1600 1600
  /// Combination of two maps using the \c == operator
1601 1601

	
1602 1602
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1603 1603
  /// the keys for which the corresponding values of the two maps are
1604 1604
  /// equal.
1605 1605
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1606 1606
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1607 1607
  ///
1608 1608
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1609 1609
  /// \code
1610 1610
  ///   EqualMap<M1,M2> em(m1,m2);
1611 1611
  /// \endcode
1612 1612
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1613 1613
  ///
1614 1614
  /// The simplest way of using this map is through the equalMap()
1615 1615
  /// function.
1616 1616
  ///
1617 1617
  /// \sa LessMap
1618 1618
  template<typename M1, typename M2>
1619 1619
  class EqualMap : public MapBase<typename M1::Key, bool> {
1620 1620
    const M1 &_m1;
1621 1621
    const M2 &_m2;
1622 1622
  public:
1623 1623
    ///\e
1624 1624
    typedef typename M1::Key Key;
1625 1625
    ///\e
1626 1626
    typedef bool Value;
1627 1627

	
1628 1628
    /// Constructor
1629 1629
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1630 1630
    ///\e
1631 1631
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1632 1632
  };
1633 1633

	
1634 1634
  /// Returns an \c EqualMap class
1635 1635

	
1636 1636
  /// This function just returns an \c EqualMap class.
1637 1637
  ///
1638 1638
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1639 1639
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1640 1640
  /// <tt>m1[x]==m2[x]</tt>.
1641 1641
  ///
1642 1642
  /// \relates EqualMap
1643 1643
  template<typename M1, typename M2>
1644 1644
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1645 1645
    return EqualMap<M1, M2>(m1,m2);
1646 1646
  }
1647 1647

	
1648 1648

	
1649 1649
  /// Combination of two maps using the \c < operator
1650 1650

	
1651 1651
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1652 1652
  /// the keys for which the corresponding value of the first map is
1653 1653
  /// less then the value of the second map.
1654 1654
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1655 1655
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1656 1656
  ///
1657 1657
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1658 1658
  /// \code
1659 1659
  ///   LessMap<M1,M2> lm(m1,m2);
1660 1660
  /// \endcode
1661 1661
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1662 1662
  ///
1663 1663
  /// The simplest way of using this map is through the lessMap()
1664 1664
  /// function.
1665 1665
  ///
1666 1666
  /// \sa EqualMap
1667 1667
  template<typename M1, typename M2>
1668 1668
  class LessMap : public MapBase<typename M1::Key, bool> {
1669 1669
    const M1 &_m1;
1670 1670
    const M2 &_m2;
1671 1671
  public:
1672 1672
    ///\e
1673 1673
    typedef typename M1::Key Key;
1674 1674
    ///\e
1675 1675
    typedef bool Value;
1676 1676

	
1677 1677
    /// Constructor
1678 1678
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1679 1679
    ///\e
1680 1680
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1681 1681
  };
1682 1682

	
1683 1683
  /// Returns an \c LessMap class
1684 1684

	
1685 1685
  /// This function just returns an \c LessMap class.
1686 1686
  ///
1687 1687
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1688 1688
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1689 1689
  /// <tt>m1[x]<m2[x]</tt>.
1690 1690
  ///
1691 1691
  /// \relates LessMap
1692 1692
  template<typename M1, typename M2>
1693 1693
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1694 1694
    return LessMap<M1, M2>(m1,m2);
1695 1695
  }
1696 1696

	
1697 1697
  namespace _maps_bits {
1698 1698

	
1699 1699
    template <typename _Iterator, typename Enable = void>
1700 1700
    struct IteratorTraits {
1701 1701
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1702 1702
    };
1703 1703

	
1704 1704
    template <typename _Iterator>
1705 1705
    struct IteratorTraits<_Iterator,
1706 1706
      typename exists<typename _Iterator::container_type>::type>
1707 1707
    {
1708 1708
      typedef typename _Iterator::container_type::value_type Value;
1709 1709
    };
1710 1710

	
1711 1711
  }
1712 1712

	
1713 1713
  /// @}
1714 1714

	
1715 1715
  /// \addtogroup maps
1716 1716
  /// @{
1717 1717

	
1718 1718
  /// \brief Writable bool map for logging each \c true assigned element
1719 1719
  ///
1720 1720
  /// A \ref concepts::WriteMap "writable" bool map for logging
1721 1721
  /// each \c true assigned element, i.e it copies subsequently each
1722 1722
  /// keys set to \c true to the given iterator.
1723 1723
  /// The most important usage of it is storing certain nodes or arcs
1724 1724
  /// that were marked \c true by an algorithm.
1725 1725
  ///
1726 1726
  /// There are several algorithms that provide solutions through bool
1727 1727
  /// maps and most of them assign \c true at most once for each key.
1728 1728
  /// In these cases it is a natural request to store each \c true
1729 1729
  /// assigned elements (in order of the assignment), which can be
1730 1730
  /// easily done with LoggerBoolMap.
1731 1731
  ///
1732 1732
  /// The simplest way of using this map is through the loggerBoolMap()
1733 1733
  /// function.
1734 1734
  ///
1735 1735
  /// \tparam IT The type of the iterator.
1736 1736
  /// \tparam KEY The key type of the map. The default value set
1737 1737
  /// according to the iterator type should work in most cases.
1738 1738
  ///
1739 1739
  /// \note The container of the iterator must contain enough space
1740 1740
  /// for the elements or the iterator should be an inserter iterator.
1741 1741
#ifdef DOXYGEN
1742 1742
  template <typename IT, typename KEY>
1743 1743
#else
1744 1744
  template <typename IT,
1745 1745
            typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
1746 1746
#endif
1747 1747
  class LoggerBoolMap : public MapBase<KEY, bool> {
1748 1748
  public:
1749 1749

	
1750 1750
    ///\e
1751 1751
    typedef KEY Key;
1752 1752
    ///\e
1753 1753
    typedef bool Value;
1754 1754
    ///\e
1755 1755
    typedef IT Iterator;
1756 1756

	
1757 1757
    /// Constructor
1758 1758
    LoggerBoolMap(Iterator it)
1759 1759
      : _begin(it), _end(it) {}
1760 1760

	
1761 1761
    /// Gives back the given iterator set for the first key
1762 1762
    Iterator begin() const {
1763 1763
      return _begin;
1764 1764
    }
1765 1765

	
1766 1766
    /// Gives back the the 'after the last' iterator
1767 1767
    Iterator end() const {
1768 1768
      return _end;
1769 1769
    }
1770 1770

	
1771 1771
    /// The set function of the map
1772 1772
    void set(const Key& key, Value value) {
1773 1773
      if (value) {
1774 1774
        *_end++ = key;
1775 1775
      }
1776 1776
    }
1777 1777

	
1778 1778
  private:
1779 1779
    Iterator _begin;
1780 1780
    Iterator _end;
1781 1781
  };
1782 1782

	
1783 1783
  /// Returns a \c LoggerBoolMap class
1784 1784

	
1785 1785
  /// This function just returns a \c LoggerBoolMap class.
1786 1786
  ///
1787 1787
  /// The most important usage of it is storing certain nodes or arcs
1788 1788
  /// that were marked \c true by an algorithm.
1789 1789
  /// For example it makes easier to store the nodes in the processing
1790 1790
  /// order of Dfs algorithm, as the following examples show.
1791 1791
  /// \code
1792 1792
  ///   std::vector<Node> v;
1793 1793
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1794 1794
  /// \endcode
1795 1795
  /// \code
1796 1796
  ///   std::vector<Node> v(countNodes(g));
1797 1797
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1798 1798
  /// \endcode
1799 1799
  ///
1800 1800
  /// \note The container of the iterator must contain enough space
1801 1801
  /// for the elements or the iterator should be an inserter iterator.
1802 1802
  ///
1803 1803
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1804 1804
  /// it cannot be used when a readable map is needed, for example as
1805 1805
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1806 1806
  ///
1807 1807
  /// \relates LoggerBoolMap
1808 1808
  template<typename Iterator>
1809 1809
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1810 1810
    return LoggerBoolMap<Iterator>(it);
1811 1811
  }
1812 1812

	
1813 1813
  /// @}
1814 1814

	
1815 1815
  /// \addtogroup graph_maps
1816 1816
  /// @{
1817 1817

	
1818 1818
  /// \brief Provides an immutable and unique id for each item in a graph.
1819 1819
  ///
1820 1820
  /// IdMap provides a unique and immutable id for each item of the
1821 1821
  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is 
1822 1822
  ///  - \b unique: different items get different ids,
1823 1823
  ///  - \b immutable: the id of an item does not change (even if you
1824 1824
  ///    delete other nodes).
1825 1825
  ///
1826 1826
  /// Using this map you get access (i.e. can read) the inner id values of
1827 1827
  /// the items stored in the graph, which is returned by the \c id()
1828 1828
  /// function of the graph. This map can be inverted with its member
1829 1829
  /// class \c InverseMap or with the \c operator() member.
1830 1830
  ///
1831 1831
  /// \tparam GR The graph type.
1832 1832
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1833 1833
  /// \c GR::Edge).
1834 1834
  ///
1835
  /// \see DescriptorMap
1835
  /// \see RangeIdMap
1836 1836
  template <typename GR, typename K>
1837 1837
  class IdMap : public MapBase<K, int> {
1838 1838
  public:
1839 1839
    /// The graph type of IdMap.
1840 1840
    typedef GR Graph;
1841 1841
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1842 1842
    typedef K Item;
1843 1843
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1844 1844
    typedef K Key;
1845 1845
    /// The value type of IdMap.
1846 1846
    typedef int Value;
1847 1847

	
1848 1848
    /// \brief Constructor.
1849 1849
    ///
1850 1850
    /// Constructor of the map.
1851 1851
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
1852 1852

	
1853 1853
    /// \brief Gives back the \e id of the item.
1854 1854
    ///
1855 1855
    /// Gives back the immutable and unique \e id of the item.
1856 1856
    int operator[](const Item& item) const { return _graph->id(item);}
1857 1857

	
1858 1858
    /// \brief Gives back the \e item by its id.
1859 1859
    ///
1860 1860
    /// Gives back the \e item by its id.
1861 1861
    Item operator()(int id) { return _graph->fromId(id, Item()); }
1862 1862

	
1863 1863
  private:
1864 1864
    const Graph* _graph;
1865 1865

	
1866 1866
  public:
1867 1867

	
1868 1868
    /// \brief This class represents the inverse of its owner (IdMap).
1869 1869
    ///
1870 1870
    /// This class represents the inverse of its owner (IdMap).
1871 1871
    /// \see inverse()
1872 1872
    class InverseMap {
1873 1873
    public:
1874 1874

	
1875 1875
      /// \brief Constructor.
1876 1876
      ///
1877 1877
      /// Constructor for creating an id-to-item map.
1878 1878
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
1879 1879

	
1880 1880
      /// \brief Constructor.
1881 1881
      ///
1882 1882
      /// Constructor for creating an id-to-item map.
1883 1883
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1884 1884

	
1885 1885
      /// \brief Gives back the given item from its id.
1886 1886
      ///
1887 1887
      /// Gives back the given item from its id.
1888 1888
      Item operator[](int id) const { return _graph->fromId(id, Item());}
1889 1889

	
1890 1890
    private:
1891 1891
      const Graph* _graph;
1892 1892
    };
1893 1893

	
1894 1894
    /// \brief Gives back the inverse of the map.
1895 1895
    ///
1896 1896
    /// Gives back the inverse of the IdMap.
1897 1897
    InverseMap inverse() const { return InverseMap(*_graph);}
1898 1898
  };
1899 1899

	
1900 1900

	
1901
  /// \brief General invertable graph map type.
1901
  /// \brief General cross reference graph map type.
1902 1902

	
1903 1903
  /// This class provides simple invertable graph maps.
1904 1904
  /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
1905 1905
  /// and if a key is set to a new value then store it
1906 1906
  /// in the inverse map.
1907 1907
  ///
1908 1908
  /// The values of the map can be accessed
1909 1909
  /// with stl compatible forward iterator.
1910 1910
  ///
1911 1911
  /// \tparam GR The graph type.
1912 1912
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1913 1913
  /// \c GR::Edge).
1914 1914
  /// \tparam V The value type of the map.
1915 1915
  ///
1916 1916
  /// \see IterableValueMap
1917 1917
  template <typename GR, typename K, typename V>
1918
  class InvertableMap
1918
  class CrossRefMap
1919 1919
    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
1920 1920
  private:
1921 1921

	
1922 1922
    typedef typename ItemSetTraits<GR, K>::
1923 1923
      template Map<V>::Type Map;
1924 1924

	
1925 1925
    typedef std::map<V, K> Container;
1926 1926
    Container _inv_map;
1927 1927

	
1928 1928
  public:
1929 1929

	
1930
    /// The graph type of InvertableMap.
1930
    /// The graph type of CrossRefMap.
1931 1931
    typedef GR Graph;
1932
    /// The key type of InvertableMap (\c Node, \c Arc or \c Edge).
1932
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1933 1933
    typedef K Item;
1934
    /// The key type of InvertableMap (\c Node, \c Arc or \c Edge).
1934
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1935 1935
    typedef K Key;
1936
    /// The value type of InvertableMap.
1936
    /// The value type of CrossRefMap.
1937 1937
    typedef V Value;
1938 1938

	
1939 1939
    /// \brief Constructor.
1940 1940
    ///
1941
    /// Construct a new InvertableMap for the given graph.
1942
    explicit InvertableMap(const Graph& graph) : Map(graph) {}
1941
    /// Construct a new CrossRefMap for the given graph.
1942
    explicit CrossRefMap(const Graph& graph) : Map(graph) {}
1943 1943

	
1944 1944
    /// \brief Forward iterator for values.
1945 1945
    ///
1946 1946
    /// This iterator is an stl compatible forward
1947 1947
    /// iterator on the values of the map. The values can
1948 1948
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1949 1949
    class ValueIterator
1950 1950
      : public std::iterator<std::forward_iterator_tag, Value> {
1951
      friend class InvertableMap;
1951
      friend class CrossRefMap;
1952 1952
    private:
1953 1953
      ValueIterator(typename Container::const_iterator _it)
1954 1954
        : it(_it) {}
1955 1955
    public:
1956 1956

	
1957 1957
      ValueIterator() {}
1958 1958

	
1959 1959
      ValueIterator& operator++() { ++it; return *this; }
1960 1960
      ValueIterator operator++(int) {
1961 1961
        ValueIterator tmp(*this);
1962 1962
        operator++();
1963 1963
        return tmp;
1964 1964
      }
1965 1965

	
1966 1966
      const Value& operator*() const { return it->first; }
1967 1967
      const Value* operator->() const { return &(it->first); }
1968 1968

	
1969 1969
      bool operator==(ValueIterator jt) const { return it == jt.it; }
1970 1970
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
1971 1971

	
1972 1972
    private:
1973 1973
      typename Container::const_iterator it;
1974 1974
    };
1975 1975

	
1976 1976
    /// \brief Returns an iterator to the first value.
1977 1977
    ///
1978 1978
    /// Returns an stl compatible iterator to the
1979 1979
    /// first value of the map. The values of the
1980 1980
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1981 1981
    /// range.
1982 1982
    ValueIterator beginValue() const {
1983 1983
      return ValueIterator(_inv_map.begin());
1984 1984
    }
1985 1985

	
1986 1986
    /// \brief Returns an iterator after the last value.
1987 1987
    ///
1988 1988
    /// Returns an stl compatible iterator after the
1989 1989
    /// last value of the map. The values of the
1990 1990
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1991 1991
    /// range.
1992 1992
    ValueIterator endValue() const {
1993 1993
      return ValueIterator(_inv_map.end());
1994 1994
    }
1995 1995

	
1996 1996
    /// \brief Sets the value associated with the given key.
1997 1997
    ///
1998 1998
    /// Sets the value associated with the given key.
1999 1999
    void set(const Key& key, const Value& val) {
2000 2000
      Value oldval = Map::operator[](key);
2001 2001
      typename Container::iterator it = _inv_map.find(oldval);
2002 2002
      if (it != _inv_map.end() && it->second == key) {
2003 2003
        _inv_map.erase(it);
2004 2004
      }
2005 2005
      _inv_map.insert(make_pair(val, key));
2006 2006
      Map::set(key, val);
2007 2007
    }
2008 2008

	
2009 2009
    /// \brief Returns the value associated with the given key.
2010 2010
    ///
2011 2011
    /// Returns the value associated with the given key.
2012 2012
    typename MapTraits<Map>::ConstReturnValue
2013 2013
    operator[](const Key& key) const {
2014 2014
      return Map::operator[](key);
2015 2015
    }
2016 2016

	
2017 2017
    /// \brief Gives back the item by its value.
2018 2018
    ///
2019 2019
    /// Gives back the item by its value.
2020 2020
    Key operator()(const Value& key) const {
2021 2021
      typename Container::const_iterator it = _inv_map.find(key);
2022 2022
      return it != _inv_map.end() ? it->second : INVALID;
2023 2023
    }
2024 2024

	
2025 2025
  protected:
2026 2026

	
2027 2027
    /// \brief Erase the key from the map and the inverse map.
2028 2028
    ///
2029 2029
    /// Erase the key from the map and the inverse map. It is called by the
2030 2030
    /// \c AlterationNotifier.
2031 2031
    virtual void erase(const Key& key) {
2032 2032
      Value val = Map::operator[](key);
2033 2033
      typename Container::iterator it = _inv_map.find(val);
2034 2034
      if (it != _inv_map.end() && it->second == key) {
2035 2035
        _inv_map.erase(it);
2036 2036
      }
2037 2037
      Map::erase(key);
2038 2038
    }
2039 2039

	
2040 2040
    /// \brief Erase more keys from the map and the inverse map.
2041 2041
    ///
2042 2042
    /// Erase more keys from the map and the inverse map. It is called by the
2043 2043
    /// \c AlterationNotifier.
2044 2044
    virtual void erase(const std::vector<Key>& keys) {
2045 2045
      for (int i = 0; i < int(keys.size()); ++i) {
2046 2046
        Value val = Map::operator[](keys[i]);
2047 2047
        typename Container::iterator it = _inv_map.find(val);
2048 2048
        if (it != _inv_map.end() && it->second == keys[i]) {
2049 2049
          _inv_map.erase(it);
2050 2050
        }
2051 2051
      }
2052 2052
      Map::erase(keys);
2053 2053
    }
2054 2054

	
2055 2055
    /// \brief Clear the keys from the map and the inverse map.
2056 2056
    ///
2057 2057
    /// Clear the keys from the map and the inverse map. It is called by the
2058 2058
    /// \c AlterationNotifier.
2059 2059
    virtual void clear() {
2060 2060
      _inv_map.clear();
2061 2061
      Map::clear();
2062 2062
    }
2063 2063

	
2064 2064
  public:
2065 2065

	
2066 2066
    /// \brief The inverse map type.
2067 2067
    ///
2068 2068
    /// The inverse of this map. The subscript operator of the map
2069 2069
    /// gives back the item that was last assigned to the value.
2070 2070
    class InverseMap {
2071 2071
    public:
2072 2072
      /// \brief Constructor
2073 2073
      ///
2074 2074
      /// Constructor of the InverseMap.
2075
      explicit InverseMap(const InvertableMap& inverted)
2075
      explicit InverseMap(const CrossRefMap& inverted)
2076 2076
        : _inverted(inverted) {}
2077 2077

	
2078 2078
      /// The value type of the InverseMap.
2079
      typedef typename InvertableMap::Key Value;
2079
      typedef typename CrossRefMap::Key Value;
2080 2080
      /// The key type of the InverseMap.
2081
      typedef typename InvertableMap::Value Key;
2081
      typedef typename CrossRefMap::Value Key;
2082 2082

	
2083 2083
      /// \brief Subscript operator.
2084 2084
      ///
2085 2085
      /// Subscript operator. It gives back the item
2086 2086
      /// that was last assigned to the given value.
2087 2087
      Value operator[](const Key& key) const {
2088 2088
        return _inverted(key);
2089 2089
      }
2090 2090

	
2091 2091
    private:
2092
      const InvertableMap& _inverted;
2092
      const CrossRefMap& _inverted;
2093 2093
    };
2094 2094

	
2095 2095
    /// \brief It gives back the read-only inverse map.
2096 2096
    ///
2097 2097
    /// It gives back the read-only inverse map.
2098 2098
    InverseMap inverse() const {
2099 2099
      return InverseMap(*this);
2100 2100
    }
2101 2101

	
2102 2102
  };
2103 2103

	
2104
  /// \brief Provides a mutable, continuous and unique descriptor for each
2105
  /// item in a graph.
2104
  /// \brief Provides continuous and unique ID for the
2105
  /// items of a graph.
2106 2106
  ///
2107
  /// DescriptorMap provides a unique and continuous (but mutable)
2108
  /// descriptor (id) for each item of the same type (\c Node, \c Arc or
2107
  /// RangeIdMap provides a unique and continuous
2108
  /// ID for each item of a given type (\c Node, \c Arc or
2109 2109
  /// \c Edge) in a graph. This id is
2110 2110
  ///  - \b unique: different items get different ids,
2111 2111
  ///  - \b continuous: the range of the ids is the set of integers
2112 2112
  ///    between 0 and \c n-1, where \c n is the number of the items of
2113
  ///    this type (\c Node, \c Arc or \c Edge). So the id of an item can
2114
  ///    change if you delete an other item of the same type, i.e. this
2115
  ///    id is mutable.
2113
  ///    this type (\c Node, \c Arc or \c Edge).
2114
  ///  - So, the ids can change when deleting an item of the same type.
2116 2115
  ///
2117 2116
  /// Thus this id is not (necessarily) the same as what can get using
2118 2117
  /// the \c id() function of the graph or \ref IdMap.
2119 2118
  /// This map can be inverted with its member class \c InverseMap,
2120 2119
  /// or with the \c operator() member.
2121 2120
  ///
2122 2121
  /// \tparam GR The graph type.
2123 2122
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2124 2123
  /// \c GR::Edge).
2125 2124
  ///
2126 2125
  /// \see IdMap
2127 2126
  template <typename GR, typename K>
2128
  class DescriptorMap
2127
  class RangeIdMap
2129 2128
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2130 2129

	
2131 2130
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
2132 2131

	
2133 2132
  public:
2134
    /// The graph type of DescriptorMap.
2133
    /// The graph type of RangeIdMap.
2135 2134
    typedef GR Graph;
2136
    /// The key type of DescriptorMap (\c Node, \c Arc or \c Edge).
2135
    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
2137 2136
    typedef K Item;
2138
    /// The key type of DescriptorMap (\c Node, \c Arc or \c Edge).
2137
    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
2139 2138
    typedef K Key;
2140
    /// The value type of DescriptorMap.
2139
    /// The value type of RangeIdMap.
2141 2140
    typedef int Value;
2142 2141

	
2143 2142
    /// \brief Constructor.
2144 2143
    ///
2145
    /// Constructor for descriptor map.
2146
    explicit DescriptorMap(const Graph& gr) : Map(gr) {
2144
    /// Constructor.
2145
    explicit RangeIdMap(const Graph& gr) : Map(gr) {
2147 2146
      Item it;
2148 2147
      const typename Map::Notifier* nf = Map::notifier();
2149 2148
      for (nf->first(it); it != INVALID; nf->next(it)) {
2150 2149
        Map::set(it, _inv_map.size());
2151 2150
        _inv_map.push_back(it);
2152 2151
      }
2153 2152
    }
2154 2153

	
2155 2154
  protected:
2156 2155

	
2157 2156
    /// \brief Adds a new key to the map.
2158 2157
    ///
2159 2158
    /// Add a new key to the map. It is called by the
2160 2159
    /// \c AlterationNotifier.
2161 2160
    virtual void add(const Item& item) {
2162 2161
      Map::add(item);
2163 2162
      Map::set(item, _inv_map.size());
2164 2163
      _inv_map.push_back(item);
2165 2164
    }
2166 2165

	
2167 2166
    /// \brief Add more new keys to the map.
2168 2167
    ///
2169 2168
    /// Add more new keys to the map. It is called by the
2170 2169
    /// \c AlterationNotifier.
2171 2170
    virtual void add(const std::vector<Item>& items) {
2172 2171
      Map::add(items);
2173 2172
      for (int i = 0; i < int(items.size()); ++i) {
2174 2173
        Map::set(items[i], _inv_map.size());
2175 2174
        _inv_map.push_back(items[i]);
2176 2175
      }
2177 2176
    }
2178 2177

	
2179 2178
    /// \brief Erase the key from the map.
2180 2179
    ///
2181 2180
    /// Erase the key from the map. It is called by the
2182 2181
    /// \c AlterationNotifier.
2183 2182
    virtual void erase(const Item& item) {
2184 2183
      Map::set(_inv_map.back(), Map::operator[](item));
2185 2184
      _inv_map[Map::operator[](item)] = _inv_map.back();
2186 2185
      _inv_map.pop_back();
2187 2186
      Map::erase(item);
2188 2187
    }
2189 2188

	
2190 2189
    /// \brief Erase more keys from the map.
2191 2190
    ///
2192 2191
    /// Erase more keys from the map. It is called by the
2193 2192
    /// \c AlterationNotifier.
2194 2193
    virtual void erase(const std::vector<Item>& items) {
2195 2194
      for (int i = 0; i < int(items.size()); ++i) {
2196 2195
        Map::set(_inv_map.back(), Map::operator[](items[i]));
2197 2196
        _inv_map[Map::operator[](items[i])] = _inv_map.back();
2198 2197
        _inv_map.pop_back();
2199 2198
      }
2200 2199
      Map::erase(items);
2201 2200
    }
2202 2201

	
2203 2202
    /// \brief Build the unique map.
2204 2203
    ///
2205 2204
    /// Build the unique map. It is called by the
2206 2205
    /// \c AlterationNotifier.
2207 2206
    virtual void build() {
2208 2207
      Map::build();
2209 2208
      Item it;
2210 2209
      const typename Map::Notifier* nf = Map::notifier();
2211 2210
      for (nf->first(it); it != INVALID; nf->next(it)) {
2212 2211
        Map::set(it, _inv_map.size());
2213 2212
        _inv_map.push_back(it);
2214 2213
      }
2215 2214
    }
2216 2215

	
2217 2216
    /// \brief Clear the keys from the map.
2218 2217
    ///
2219 2218
    /// Clear the keys from the map. It is called by the
2220 2219
    /// \c AlterationNotifier.
2221 2220
    virtual void clear() {
2222 2221
      _inv_map.clear();
2223 2222
      Map::clear();
2224 2223
    }
2225 2224

	
2226 2225
  public:
2227 2226

	
2228 2227
    /// \brief Returns the maximal value plus one.
2229 2228
    ///
2230 2229
    /// Returns the maximal value plus one in the map.
2231 2230
    unsigned int size() const {
2232 2231
      return _inv_map.size();
2233 2232
    }
2234 2233

	
2235 2234
    /// \brief Swaps the position of the two items in the map.
2236 2235
    ///
2237 2236
    /// Swaps the position of the two items in the map.
2238 2237
    void swap(const Item& p, const Item& q) {
2239 2238
      int pi = Map::operator[](p);
2240 2239
      int qi = Map::operator[](q);
2241 2240
      Map::set(p, qi);
2242 2241
      _inv_map[qi] = p;
2243 2242
      Map::set(q, pi);
2244 2243
      _inv_map[pi] = q;
2245 2244
    }
2246 2245

	
2247
    /// \brief Gives back the \e descriptor of the item.
2246
    /// \brief Gives back the \e RangeId of the item
2248 2247
    ///
2249
    /// Gives back the mutable and unique \e descriptor of the map.
2248
    /// Gives back the \e RangeId of the item.
2250 2249
    int operator[](const Item& item) const {
2251 2250
      return Map::operator[](item);
2252 2251
    }
2253 2252

	
2254
    /// \brief Gives back the item by its descriptor.
2255
    ///
2256
    /// Gives back th item by its descriptor.
2253
    /// \brief Gives back the item belonging to a \e RangeId
2254
    /// 
2255
    /// Gives back the item belonging to a \e RangeId.
2257 2256
    Item operator()(int id) const {
2258 2257
      return _inv_map[id];
2259 2258
    }
2260 2259

	
2261 2260
  private:
2262 2261

	
2263 2262
    typedef std::vector<Item> Container;
2264 2263
    Container _inv_map;
2265 2264

	
2266 2265
  public:
2267 2266

	
2268
    /// \brief The inverse map type of DescriptorMap.
2267
    /// \brief The inverse map type of RangeIdMap.
2269 2268
    ///
2270
    /// The inverse map type of DescriptorMap.
2269
    /// The inverse map type of RangeIdMap.
2271 2270
    class InverseMap {
2272 2271
    public:
2273 2272
      /// \brief Constructor
2274 2273
      ///
2275 2274
      /// Constructor of the InverseMap.
2276
      explicit InverseMap(const DescriptorMap& inverted)
2275
      explicit InverseMap(const RangeIdMap& inverted)
2277 2276
        : _inverted(inverted) {}
2278 2277

	
2279 2278

	
2280 2279
      /// The value type of the InverseMap.
2281
      typedef typename DescriptorMap::Key Value;
2280
      typedef typename RangeIdMap::Key Value;
2282 2281
      /// The key type of the InverseMap.
2283
      typedef typename DescriptorMap::Value Key;
2282
      typedef typename RangeIdMap::Value Key;
2284 2283

	
2285 2284
      /// \brief Subscript operator.
2286 2285
      ///
2287 2286
      /// Subscript operator. It gives back the item
2288 2287
      /// that the descriptor currently belongs to.
2289 2288
      Value operator[](const Key& key) const {
2290 2289
        return _inverted(key);
2291 2290
      }
2292 2291

	
2293 2292
      /// \brief Size of the map.
2294 2293
      ///
2295 2294
      /// Returns the size of the map.
2296 2295
      unsigned int size() const {
2297 2296
        return _inverted.size();
2298 2297
      }
2299 2298

	
2300 2299
    private:
2301
      const DescriptorMap& _inverted;
2300
      const RangeIdMap& _inverted;
2302 2301
    };
2303 2302

	
2304 2303
    /// \brief Gives back the inverse of the map.
2305 2304
    ///
2306 2305
    /// Gives back the inverse of the map.
2307 2306
    const InverseMap inverse() const {
2308 2307
      return InverseMap(*this);
2309 2308
    }
2310 2309
  };
2311 2310

	
2312 2311
  /// \brief Map of the source nodes of arcs in a digraph.
2313 2312
  ///
2314 2313
  /// SourceMap provides access for the source node of each arc in a digraph,
2315 2314
  /// which is returned by the \c source() function of the digraph.
2316 2315
  /// \tparam GR The digraph type.
2317 2316
  /// \see TargetMap
2318 2317
  template <typename GR>
2319 2318
  class SourceMap {
2320 2319
  public:
2321 2320

	
2322 2321
    ///\e
2323 2322
    typedef typename GR::Arc Key;
2324 2323
    ///\e
2325 2324
    typedef typename GR::Node Value;
2326 2325

	
2327 2326
    /// \brief Constructor
2328 2327
    ///
2329 2328
    /// Constructor.
2330 2329
    /// \param digraph The digraph that the map belongs to.
2331 2330
    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
2332 2331

	
2333 2332
    /// \brief Returns the source node of the given arc.
2334 2333
    ///
2335 2334
    /// Returns the source node of the given arc.
2336 2335
    Value operator[](const Key& arc) const {
2337 2336
      return _graph.source(arc);
2338 2337
    }
2339 2338

	
2340 2339
  private:
2341 2340
    const GR& _graph;
2342 2341
  };
2343 2342

	
2344 2343
  /// \brief Returns a \c SourceMap class.
2345 2344
  ///
2346 2345
  /// This function just returns an \c SourceMap class.
2347 2346
  /// \relates SourceMap
2348 2347
  template <typename GR>
2349 2348
  inline SourceMap<GR> sourceMap(const GR& graph) {
2350 2349
    return SourceMap<GR>(graph);
2351 2350
  }
2352 2351

	
2353 2352
  /// \brief Map of the target nodes of arcs in a digraph.
2354 2353
  ///
2355 2354
  /// TargetMap provides access for the target node of each arc in a digraph,
2356 2355
  /// which is returned by the \c target() function of the digraph.
2357 2356
  /// \tparam GR The digraph type.
2358 2357
  /// \see SourceMap
2359 2358
  template <typename GR>
2360 2359
  class TargetMap {
2361 2360
  public:
2362 2361

	
2363 2362
    ///\e
2364 2363
    typedef typename GR::Arc Key;
2365 2364
    ///\e
2366 2365
    typedef typename GR::Node Value;
2367 2366

	
2368 2367
    /// \brief Constructor
2369 2368
    ///
2370 2369
    /// Constructor.
2371 2370
    /// \param digraph The digraph that the map belongs to.
2372 2371
    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
2373 2372

	
2374 2373
    /// \brief Returns the target node of the given arc.
2375 2374
    ///
2376 2375
    /// Returns the target node of the given arc.
2377 2376
    Value operator[](const Key& e) const {
2378 2377
      return _graph.target(e);
2379 2378
    }
2380 2379

	
2381 2380
  private:
2382 2381
    const GR& _graph;
2383 2382
  };
2384 2383

	
2385 2384
  /// \brief Returns a \c TargetMap class.
2386 2385
  ///
2387 2386
  /// This function just returns a \c TargetMap class.
2388 2387
  /// \relates TargetMap
2389 2388
  template <typename GR>
2390 2389
  inline TargetMap<GR> targetMap(const GR& graph) {
2391 2390
    return TargetMap<GR>(graph);
2392 2391
  }
2393 2392

	
2394 2393
  /// \brief Map of the "forward" directed arc view of edges in a graph.
2395 2394
  ///
2396 2395
  /// ForwardMap provides access for the "forward" directed arc view of
2397 2396
  /// each edge in a graph, which is returned by the \c direct() function
2398 2397
  /// of the graph with \c true parameter.
2399 2398
  /// \tparam GR The graph type.
2400 2399
  /// \see BackwardMap
2401 2400
  template <typename GR>
2402 2401
  class ForwardMap {
2403 2402
  public:
2404 2403

	
2405 2404
    typedef typename GR::Arc Value;
2406 2405
    typedef typename GR::Edge Key;
2407 2406

	
2408 2407
    /// \brief Constructor
2409 2408
    ///
2410 2409
    /// Constructor.
2411 2410
    /// \param graph The graph that the map belongs to.
2412 2411
    explicit ForwardMap(const GR& graph) : _graph(graph) {}
2413 2412

	
2414 2413
    /// \brief Returns the "forward" directed arc view of the given edge.
2415 2414
    ///
2416 2415
    /// Returns the "forward" directed arc view of the given edge.
2417 2416
    Value operator[](const Key& key) const {
2418 2417
      return _graph.direct(key, true);
2419 2418
    }
2420 2419

	
2421 2420
  private:
2422 2421
    const GR& _graph;
2423 2422
  };
2424 2423

	
2425 2424
  /// \brief Returns a \c ForwardMap class.
2426 2425
  ///
2427 2426
  /// This function just returns an \c ForwardMap class.
2428 2427
  /// \relates ForwardMap
2429 2428
  template <typename GR>
2430 2429
  inline ForwardMap<GR> forwardMap(const GR& graph) {
2431 2430
    return ForwardMap<GR>(graph);
2432 2431
  }
2433 2432

	
2434 2433
  /// \brief Map of the "backward" directed arc view of edges in a graph.
2435 2434
  ///
2436 2435
  /// BackwardMap provides access for the "backward" directed arc view of
2437 2436
  /// each edge in a graph, which is returned by the \c direct() function
2438 2437
  /// of the graph with \c false parameter.
2439 2438
  /// \tparam GR The graph type.
2440 2439
  /// \see ForwardMap
2441 2440
  template <typename GR>
2442 2441
  class BackwardMap {
2443 2442
  public:
2444 2443

	
2445 2444
    typedef typename GR::Arc Value;
2446 2445
    typedef typename GR::Edge Key;
2447 2446

	
2448 2447
    /// \brief Constructor
2449 2448
    ///
2450 2449
    /// Constructor.
2451 2450
    /// \param graph The graph that the map belongs to.
2452 2451
    explicit BackwardMap(const GR& graph) : _graph(graph) {}
2453 2452

	
2454 2453
    /// \brief Returns the "backward" directed arc view of the given edge.
2455 2454
    ///
2456 2455
    /// Returns the "backward" directed arc view of the given edge.
2457 2456
    Value operator[](const Key& key) const {
2458 2457
      return _graph.direct(key, false);
2459 2458
    }
2460 2459

	
2461 2460
  private:
2462 2461
    const GR& _graph;
2463 2462
  };
2464 2463

	
2465 2464
  /// \brief Returns a \c BackwardMap class
2466 2465

	
2467 2466
  /// This function just returns a \c BackwardMap class.
2468 2467
  /// \relates BackwardMap
2469 2468
  template <typename GR>
2470 2469
  inline BackwardMap<GR> backwardMap(const GR& graph) {
2471 2470
    return BackwardMap<GR>(graph);
2472 2471
  }
2473 2472

	
2474 2473
  /// \brief Map of the in-degrees of nodes in a digraph.
2475 2474
  ///
2476 2475
  /// This map returns the in-degree of a node. Once it is constructed,
2477 2476
  /// the degrees are stored in a standard \c NodeMap, so each query is done
2478 2477
  /// in constant time. On the other hand, the values are updated automatically
2479 2478
  /// whenever the digraph changes.
2480 2479
  ///
2481 2480
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
2482 2481
  /// may provide alternative ways to modify the digraph.
2483 2482
  /// The correct behavior of InDegMap is not guarantied if these additional
2484 2483
  /// features are used. For example the functions
2485 2484
  /// \ref ListDigraph::changeSource() "changeSource()",
2486 2485
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
2487 2486
  /// \ref ListDigraph::reverseArc() "reverseArc()"
2488 2487
  /// of \ref ListDigraph will \e not update the degree values correctly.
2489 2488
  ///
2490 2489
  /// \sa OutDegMap
2491 2490
  template <typename GR>
2492 2491
  class InDegMap
2493 2492
    : protected ItemSetTraits<GR, typename GR::Arc>
2494 2493
      ::ItemNotifier::ObserverBase {
2495 2494

	
2496 2495
  public:
2497 2496
    
2498 2497
    /// The digraph type
2499 2498
    typedef GR Digraph;
2500 2499
    /// The key type
2501 2500
    typedef typename Digraph::Node Key;
2502 2501
    /// The value type
2503 2502
    typedef int Value;
2504 2503

	
2505 2504
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
2506 2505
    ::ItemNotifier::ObserverBase Parent;
2507 2506

	
2508 2507
  private:
2509 2508

	
2510 2509
    class AutoNodeMap
2511 2510
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
2512 2511
    public:
2513 2512

	
2514 2513
      typedef typename ItemSetTraits<Digraph, Key>::
2515 2514
      template Map<int>::Type Parent;
2516 2515

	
2517 2516
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
2518 2517

	
2519 2518
      virtual void add(const Key& key) {
2520 2519
        Parent::add(key);
2521 2520
        Parent::set(key, 0);
2522 2521
      }
2523 2522

	
2524 2523
      virtual void add(const std::vector<Key>& keys) {
2525 2524
        Parent::add(keys);
2526 2525
        for (int i = 0; i < int(keys.size()); ++i) {
2527 2526
          Parent::set(keys[i], 0);
2528 2527
        }
2529 2528
      }
2530 2529

	
2531 2530
      virtual void build() {
2532 2531
        Parent::build();
2533 2532
        Key it;
2534 2533
        typename Parent::Notifier* nf = Parent::notifier();
2535 2534
        for (nf->first(it); it != INVALID; nf->next(it)) {
2536 2535
          Parent::set(it, 0);
2537 2536
        }
2538 2537
      }
2539 2538
    };
2540 2539

	
2541 2540
  public:
2542 2541

	
2543 2542
    /// \brief Constructor.
2544 2543
    ///
2545 2544
    /// Constructor for creating an in-degree map.
2546 2545
    explicit InDegMap(const Digraph& graph)
2547 2546
      : _digraph(graph), _deg(graph) {
2548 2547
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
2549 2548

	
2550 2549
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2551 2550
        _deg[it] = countInArcs(_digraph, it);
2552 2551
      }
2553 2552
    }
2554 2553

	
2555 2554
    /// \brief Gives back the in-degree of a Node.
2556 2555
    ///
2557 2556
    /// Gives back the in-degree of a Node.
2558 2557
    int operator[](const Key& key) const {
2559 2558
      return _deg[key];
2560 2559
    }
2561 2560

	
2562 2561
  protected:
2563 2562

	
2564 2563
    typedef typename Digraph::Arc Arc;
2565 2564

	
2566 2565
    virtual void add(const Arc& arc) {
2567 2566
      ++_deg[_digraph.target(arc)];
2568 2567
    }
2569 2568

	
2570 2569
    virtual void add(const std::vector<Arc>& arcs) {
2571 2570
      for (int i = 0; i < int(arcs.size()); ++i) {
2572 2571
        ++_deg[_digraph.target(arcs[i])];
2573 2572
      }
2574 2573
    }
2575 2574

	
2576 2575
    virtual void erase(const Arc& arc) {
2577 2576
      --_deg[_digraph.target(arc)];
2578 2577
    }
2579 2578

	
2580 2579
    virtual void erase(const std::vector<Arc>& arcs) {
2581 2580
      for (int i = 0; i < int(arcs.size()); ++i) {
2582 2581
        --_deg[_digraph.target(arcs[i])];
2583 2582
      }
2584 2583
    }
2585 2584

	
2586 2585
    virtual void build() {
2587 2586
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2588 2587
        _deg[it] = countInArcs(_digraph, it);
2589 2588
      }
2590 2589
    }
2591 2590

	
2592 2591
    virtual void clear() {
2593 2592
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2594 2593
        _deg[it] = 0;
2595 2594
      }
2596 2595
    }
2597 2596
  private:
2598 2597

	
2599 2598
    const Digraph& _digraph;
2600 2599
    AutoNodeMap _deg;
2601 2600
  };
2602 2601

	
2603 2602
  /// \brief Map of the out-degrees of nodes in a digraph.
2604 2603
  ///
2605 2604
  /// This map returns the out-degree of a node. Once it is constructed,
2606 2605
  /// the degrees are stored in a standard \c NodeMap, so each query is done
2607 2606
  /// in constant time. On the other hand, the values are updated automatically
2608 2607
  /// whenever the digraph changes.
2609 2608
  ///
2610 2609
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
2611 2610
  /// may provide alternative ways to modify the digraph.
2612 2611
  /// The correct behavior of OutDegMap is not guarantied if these additional
2613 2612
  /// features are used. For example the functions
2614 2613
  /// \ref ListDigraph::changeSource() "changeSource()",
2615 2614
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
2616 2615
  /// \ref ListDigraph::reverseArc() "reverseArc()"
2617 2616
  /// of \ref ListDigraph will \e not update the degree values correctly.
2618 2617
  ///
2619 2618
  /// \sa InDegMap
2620 2619
  template <typename GR>
2621 2620
  class OutDegMap
2622 2621
    : protected ItemSetTraits<GR, typename GR::Arc>
2623 2622
      ::ItemNotifier::ObserverBase {
2624 2623

	
2625 2624
  public:
2626 2625

	
2627 2626
    /// The digraph type
2628 2627
    typedef GR Digraph;
2629 2628
    /// The key type
2630 2629
    typedef typename Digraph::Node Key;
2631 2630
    /// The value type
2632 2631
    typedef int Value;
2633 2632

	
2634 2633
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
2635 2634
    ::ItemNotifier::ObserverBase Parent;
2636 2635

	
2637 2636
  private:
2638 2637

	
2639 2638
    class AutoNodeMap
2640 2639
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
2641 2640
    public:
2642 2641

	
2643 2642
      typedef typename ItemSetTraits<Digraph, Key>::
2644 2643
      template Map<int>::Type Parent;
2645 2644

	
2646 2645
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
2647 2646

	
2648 2647
      virtual void add(const Key& key) {
2649 2648
        Parent::add(key);
2650 2649
        Parent::set(key, 0);
2651 2650
      }
2652 2651
      virtual void add(const std::vector<Key>& keys) {
2653 2652
        Parent::add(keys);
2654 2653
        for (int i = 0; i < int(keys.size()); ++i) {
2655 2654
          Parent::set(keys[i], 0);
2656 2655
        }
2657 2656
      }
2658 2657
      virtual void build() {
2659 2658
        Parent::build();
2660 2659
        Key it;
2661 2660
        typename Parent::Notifier* nf = Parent::notifier();
2662 2661
        for (nf->first(it); it != INVALID; nf->next(it)) {
2663 2662
          Parent::set(it, 0);
2664 2663
        }
2665 2664
      }
2666 2665
    };
2667 2666

	
2668 2667
  public:
2669 2668

	
2670 2669
    /// \brief Constructor.
2671 2670
    ///
2672 2671
    /// Constructor for creating an out-degree map.
2673 2672
    explicit OutDegMap(const Digraph& graph)
2674 2673
      : _digraph(graph), _deg(graph) {
2675 2674
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
2676 2675

	
2677 2676
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2678 2677
        _deg[it] = countOutArcs(_digraph, it);
2679 2678
      }
2680 2679
    }
2681 2680

	
2682 2681
    /// \brief Gives back the out-degree of a Node.
2683 2682
    ///
2684 2683
    /// Gives back the out-degree of a Node.
2685 2684
    int operator[](const Key& key) const {
2686 2685
      return _deg[key];
2687 2686
    }
2688 2687

	
2689 2688
  protected:
2690 2689

	
2691 2690
    typedef typename Digraph::Arc Arc;
2692 2691

	
2693 2692
    virtual void add(const Arc& arc) {
2694 2693
      ++_deg[_digraph.source(arc)];
2695 2694
    }
2696 2695

	
2697 2696
    virtual void add(const std::vector<Arc>& arcs) {
2698 2697
      for (int i = 0; i < int(arcs.size()); ++i) {
2699 2698
        ++_deg[_digraph.source(arcs[i])];
2700 2699
      }
2701 2700
    }
2702 2701

	
2703 2702
    virtual void erase(const Arc& arc) {
2704 2703
      --_deg[_digraph.source(arc)];
2705 2704
    }
2706 2705

	
2707 2706
    virtual void erase(const std::vector<Arc>& arcs) {
2708 2707
      for (int i = 0; i < int(arcs.size()); ++i) {
2709 2708
        --_deg[_digraph.source(arcs[i])];
2710 2709
      }
2711 2710
    }
2712 2711

	
2713 2712
    virtual void build() {
2714 2713
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2715 2714
        _deg[it] = countOutArcs(_digraph, it);
2716 2715
      }
2717 2716
    }
2718 2717

	
2719 2718
    virtual void clear() {
2720 2719
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2721 2720
        _deg[it] = 0;
2722 2721
      }
2723 2722
    }
2724 2723
  private:
2725 2724

	
2726 2725
    const Digraph& _digraph;
2727 2726
    AutoNodeMap _deg;
2728 2727
  };
2729 2728

	
2730 2729
  /// \brief Potential difference map
2731 2730
  ///
2732 2731
  /// PotentialMap returns the difference between the potentials of the
2733 2732
  /// source and target nodes of each arc in a digraph, i.e. it returns
2734 2733
  /// \code
2735 2734
  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
2736 2735
  /// \endcode
2737 2736
  /// \tparam GR The digraph type.
2738 2737
  /// \tparam POT A node map storing the potentials.
2739 2738
  template <typename GR, typename POT>
2740 2739
  class PotentialDifferenceMap {
2741 2740
  public:
2742 2741
    /// Key type
2743 2742
    typedef typename GR::Arc Key;
2744 2743
    /// Value type
2745 2744
    typedef typename POT::Value Value;
2746 2745

	
2747 2746
    /// \brief Constructor
2748 2747
    ///
2749 2748
    /// Contructor of the map.
2750 2749
    explicit PotentialDifferenceMap(const GR& gr,
2751 2750
                                    const POT& potential)
2752 2751
      : _digraph(gr), _potential(potential) {}
2753 2752

	
2754 2753
    /// \brief Returns the potential difference for the given arc.
2755 2754
    ///
2756 2755
    /// Returns the potential difference for the given arc, i.e.
2757 2756
    /// \code
2758 2757
    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
2759 2758
    /// \endcode
2760 2759
    Value operator[](const Key& arc) const {
2761 2760
      return _potential[_digraph.target(arc)] -
2762 2761
        _potential[_digraph.source(arc)];
2763 2762
    }
2764 2763

	
2765 2764
  private:
2766 2765
    const GR& _digraph;
2767 2766
    const POT& _potential;
2768 2767
  };
2769 2768

	
2770 2769
  /// \brief Returns a PotentialDifferenceMap.
2771 2770
  ///
2772 2771
  /// This function just returns a PotentialDifferenceMap.
2773 2772
  /// \relates PotentialDifferenceMap
2774 2773
  template <typename GR, typename POT>
2775 2774
  PotentialDifferenceMap<GR, POT>
2776 2775
  potentialDifferenceMap(const GR& gr, const POT& potential) {
2777 2776
    return PotentialDifferenceMap<GR, POT>(gr, potential);
2778 2777
  }
2779 2778

	
2780 2779
  /// @}
2781 2780
}
2782 2781

	
2783 2782
#endif // LEMON_MAPS_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <cstdlib>
20 20
#include <ctime>
21 21

	
22 22
#include <lemon/random.h>
23 23
#include <lemon/list_graph.h>
24 24
#include <lemon/smart_graph.h>
25 25
#include <lemon/maps.h>
26 26

	
27 27
#include "graph_test.h"
28 28
#include "test_tools.h"
29 29

	
30 30
using namespace lemon;
31 31

	
32 32
template <typename Digraph>
33 33
void checkFindArcs() {
34 34
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
35 35

	
36 36
  {
37 37
    Digraph digraph;
38 38
    for (int i = 0; i < 10; ++i) {
39 39
      digraph.addNode();
40 40
    }
41
    DescriptorMap<Digraph, Node> nodes(digraph);
42
    typename DescriptorMap<Digraph, Node>::InverseMap invNodes(nodes);
41
    RangeIdMap<Digraph, Node> nodes(digraph);
42
    typename RangeIdMap<Digraph, Node>::InverseMap invNodes(nodes);
43 43
    for (int i = 0; i < 100; ++i) {
44 44
      int src = rnd[invNodes.size()];
45 45
      int trg = rnd[invNodes.size()];
46 46
      digraph.addArc(invNodes[src], invNodes[trg]);
47 47
    }
48 48
    typename Digraph::template ArcMap<bool> found(digraph, false);
49
    DescriptorMap<Digraph, Arc> arcs(digraph);
49
    RangeIdMap<Digraph, Arc> arcs(digraph);
50 50
    for (NodeIt src(digraph); src != INVALID; ++src) {
51 51
      for (NodeIt trg(digraph); trg != INVALID; ++trg) {
52 52
        for (ConArcIt<Digraph> con(digraph, src, trg); con != INVALID; ++con) {
53 53
          check(digraph.source(con) == src, "Wrong source.");
54 54
          check(digraph.target(con) == trg, "Wrong target.");
55 55
          check(found[con] == false, "The arc found already.");
56 56
          found[con] = true;
57 57
        }
58 58
      }
59 59
    }
60 60
    for (ArcIt it(digraph); it != INVALID; ++it) {
61 61
      check(found[it] == true, "The arc is not found.");
62 62
    }
63 63
  }
64 64

	
65 65
  {
66 66
    int num = 5;
67 67
    Digraph fg;
68 68
    std::vector<Node> nodes;
69 69
    for (int i = 0; i < num; ++i) {
70 70
      nodes.push_back(fg.addNode());
71 71
    }
72 72
    for (int i = 0; i < num * num; ++i) {
73 73
      fg.addArc(nodes[i / num], nodes[i % num]);
74 74
    }
75 75
    check(countNodes(fg) == num, "Wrong node number.");
76 76
    check(countArcs(fg) == num*num, "Wrong arc number.");
77 77
    for (NodeIt src(fg); src != INVALID; ++src) {
78 78
      for (NodeIt trg(fg); trg != INVALID; ++trg) {
79 79
        ConArcIt<Digraph> con(fg, src, trg);
80 80
        check(con != INVALID, "There is no connecting arc.");
81 81
        check(fg.source(con) == src, "Wrong source.");
82 82
        check(fg.target(con) == trg, "Wrong target.");
83 83
        check(++con == INVALID, "There is more connecting arc.");
84 84
      }
85 85
    }
86 86
    ArcLookUp<Digraph> al1(fg);
87 87
    DynArcLookUp<Digraph> al2(fg);
88 88
    AllArcLookUp<Digraph> al3(fg);
89 89
    for (NodeIt src(fg); src != INVALID; ++src) {
90 90
      for (NodeIt trg(fg); trg != INVALID; ++trg) {
91 91
        Arc con1 = al1(src, trg);
92 92
        Arc con2 = al2(src, trg);
93 93
        Arc con3 = al3(src, trg);
94 94
        Arc con4 = findArc(fg, src, trg);
95 95
        check(con1 == con2 && con2 == con3 && con3 == con4,
96 96
              "Different results.")
97 97
        check(con1 != INVALID, "There is no connecting arc.");
98 98
        check(fg.source(con1) == src, "Wrong source.");
99 99
        check(fg.target(con1) == trg, "Wrong target.");
100 100
        check(al3(src, trg, con3) == INVALID,
101 101
              "There is more connecting arc.");
102 102
        check(findArc(fg, src, trg, con4) == INVALID,
103 103
              "There is more connecting arc.");
104 104
      }
105 105
    }
106 106
  }
107 107
}
108 108

	
109 109
template <typename Graph>
110 110
void checkFindEdges() {
111 111
  TEMPLATE_GRAPH_TYPEDEFS(Graph);
112 112
  Graph graph;
113 113
  for (int i = 0; i < 10; ++i) {
114 114
    graph.addNode();
115 115
  }
116
  DescriptorMap<Graph, Node> nodes(graph);
117
  typename DescriptorMap<Graph, Node>::InverseMap invNodes(nodes);
116
  RangeIdMap<Graph, Node> nodes(graph);
117
  typename RangeIdMap<Graph, Node>::InverseMap invNodes(nodes);
118 118
  for (int i = 0; i < 100; ++i) {
119 119
    int src = rnd[invNodes.size()];
120 120
    int trg = rnd[invNodes.size()];
121 121
    graph.addEdge(invNodes[src], invNodes[trg]);
122 122
  }
123 123
  typename Graph::template EdgeMap<int> found(graph, 0);
124
  DescriptorMap<Graph, Edge> edges(graph);
124
  RangeIdMap<Graph, Edge> edges(graph);
125 125
  for (NodeIt src(graph); src != INVALID; ++src) {
126 126
    for (NodeIt trg(graph); trg != INVALID; ++trg) {
127 127
      for (ConEdgeIt<Graph> con(graph, src, trg); con != INVALID; ++con) {
128 128
        check( (graph.u(con) == src && graph.v(con) == trg) ||
129 129
               (graph.v(con) == src && graph.u(con) == trg),
130 130
               "Wrong end nodes.");
131 131
        ++found[con];
132 132
        check(found[con] <= 2, "The edge found more than twice.");
133 133
      }
134 134
    }
135 135
  }
136 136
  for (EdgeIt it(graph); it != INVALID; ++it) {
137 137
    check( (graph.u(it) != graph.v(it) && found[it] == 2) ||
138 138
           (graph.u(it) == graph.v(it) && found[it] == 1),
139 139
           "The edge is not found correctly.");
140 140
  }
141 141
}
142 142

	
143 143
template <class Digraph>
144 144
void checkDeg()
145 145
{
146 146
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
147 147

	
148 148
  const int nodeNum = 10;
149 149
  const int arcNum = 100;
150 150
  Digraph digraph;
151 151
  InDegMap<Digraph> inDeg(digraph);
152 152
  OutDegMap<Digraph> outDeg(digraph);
153 153
  std::vector<Node> nodes(nodeNum);
154 154
  for (int i = 0; i < nodeNum; ++i) {
155 155
    nodes[i] = digraph.addNode();
156 156
  }
157 157
  std::vector<Arc> arcs(arcNum);
158 158
  for (int i = 0; i < arcNum; ++i) {
159 159
    arcs[i] = digraph.addArc(nodes[rnd[nodeNum]], nodes[rnd[nodeNum]]);
160 160
  }
161 161
  for (int i = 0; i < nodeNum; ++i) {
162 162
    check(inDeg[nodes[i]] == countInArcs(digraph, nodes[i]),
163 163
          "Wrong in degree map");
164 164
  }
165 165
  for (int i = 0; i < nodeNum; ++i) {
166 166
    check(outDeg[nodes[i]] == countOutArcs(digraph, nodes[i]),
167 167
          "Wrong out degree map");
168 168
  }
169 169
}
170 170

	
171 171
template <class Digraph>
172 172
void checkSnapDeg()
173 173
{
174 174
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
175 175

	
176 176
  Digraph g;
177 177
  Node n1=g.addNode();
178 178
  Node n2=g.addNode();
179 179

	
180 180
  InDegMap<Digraph> ind(g);
181 181

	
182 182
  g.addArc(n1,n2);
183 183

	
184 184
  typename Digraph::Snapshot snap(g);
185 185

	
186 186
  OutDegMap<Digraph> outd(g);
187 187

	
188 188
  check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value.");
189 189
  check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value.");
190 190

	
191 191
  g.addArc(n1,n2);
192 192
  g.addArc(n2,n1);
193 193

	
194 194
  check(ind[n1]==1 && ind[n2]==2, "Wrong InDegMap value.");
195 195
  check(outd[n1]==2 && outd[n2]==1, "Wrong OutDegMap value.");
196 196

	
197 197
  snap.restore();
198 198

	
199 199
  check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value.");
200 200
  check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value.");
201 201
}
202 202

	
203 203
int main() {
204 204
  // Checking ConArcIt, ConEdgeIt, ArcLookUp, AllArcLookUp, and DynArcLookUp
205 205
  checkFindArcs<ListDigraph>();
206 206
  checkFindArcs<SmartDigraph>();
207 207
  checkFindEdges<ListGraph>();
208 208
  checkFindEdges<SmartGraph>();
209 209

	
210 210
  // Checking In/OutDegMap (and Snapshot feature)
211 211
  checkDeg<ListDigraph>();
212 212
  checkDeg<SmartDigraph>();
213 213
  checkSnapDeg<ListDigraph>();
214 214
  checkSnapDeg<SmartDigraph>();
215 215

	
216 216
  return 0;
217 217
}
0 comments (0 inline)