| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of Undirected Graphs. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
namespace concepts {
|
| 31 | 31 |
|
| 32 | 32 |
/// \ingroup graph_concepts |
| 33 | 33 |
/// |
| 34 | 34 |
/// \brief Class describing the concept of Undirected Graphs. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the common interface of all Undirected |
| 37 | 37 |
/// Graphs. |
| 38 | 38 |
/// |
| 39 | 39 |
/// As all concept describing classes it provides only interface |
| 40 | 40 |
/// without any sensible implementation. So any algorithm for |
| 41 | 41 |
/// undirected graph should compile with this class, but it will not |
| 42 | 42 |
/// run properly, of course. |
| 43 | 43 |
/// |
| 44 | 44 |
/// The LEMON undirected graphs also fulfill the concept of |
| 45 | 45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
| 46 | 46 |
/// Concept"). Each edges can be seen as two opposite |
| 47 | 47 |
/// directed arc and consequently the undirected graph can be |
| 48 | 48 |
/// seen as the direceted graph of these directed arcs. The |
| 49 | 49 |
/// Graph has the Edge inner class for the edges and |
| 50 | 50 |
/// the Arc type for the directed arcs. The Arc type is |
| 51 | 51 |
/// convertible to Edge or inherited from it so from a directed |
| 52 | 52 |
/// arc we can get the represented edge. |
| 53 | 53 |
/// |
| 54 | 54 |
/// In the sense of the LEMON each edge has a default |
| 55 | 55 |
/// direction (it should be in every computer implementation, |
| 56 | 56 |
/// because the order of edge's nodes defines an |
| 57 | 57 |
/// orientation). With the default orientation we can define that |
| 58 | 58 |
/// the directed arc is forward or backward directed. With the \c |
| 59 | 59 |
/// direction() and \c direct() function we can get the direction |
| 60 | 60 |
/// of the directed arc and we can direct an edge. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The EdgeIt is an iterator for the edges. We can use |
| 63 | 63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
| 64 | 64 |
/// OutArcIt iterates on the same edges but with opposite |
| 65 | 65 |
/// direction. The IncEdgeIt iterates also on the same edges |
| 66 | 66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
| 67 | 67 |
/// to Edge. |
| 68 | 68 |
class Graph {
|
| 69 | 69 |
public: |
| 70 | 70 |
/// \brief The undirected graph should be tagged by the |
| 71 | 71 |
/// UndirectedTag. |
| 72 | 72 |
/// |
| 73 | 73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
| 74 | 74 |
/// tag helps the enable_if technics to make compile time |
| 75 | 75 |
/// specializations for undirected graphs. |
| 76 | 76 |
typedef True UndirectedTag; |
| 77 | 77 |
|
| 78 | 78 |
/// \brief The base type of node iterators, |
| 79 | 79 |
/// or in other words, the trivial node iterator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// This is the base type of each node iterator, |
| 82 | 82 |
/// thus each kind of node iterator converts to this. |
| 83 | 83 |
/// More precisely each kind of node iterator should be inherited |
| 84 | 84 |
/// from the trivial node iterator. |
| 85 | 85 |
class Node {
|
| 86 | 86 |
public: |
| 87 | 87 |
/// Default constructor |
| 88 | 88 |
|
| 89 | 89 |
/// @warning The default constructor sets the iterator |
| 90 | 90 |
/// to an undefined value. |
| 91 | 91 |
Node() { }
|
| 92 | 92 |
/// Copy constructor. |
| 93 | 93 |
|
| 94 | 94 |
/// Copy constructor. |
| 95 | 95 |
/// |
| 96 | 96 |
Node(const Node&) { }
|
| 97 | 97 |
|
| 98 | 98 |
/// Invalid constructor \& conversion. |
| 99 | 99 |
|
| 100 | 100 |
/// This constructor initializes the iterator to be invalid. |
| 101 | 101 |
/// \sa Invalid for more details. |
| 102 | 102 |
Node(Invalid) { }
|
| 103 | 103 |
/// Equality operator |
| 104 | 104 |
|
| 105 | 105 |
/// Two iterators are equal if and only if they point to the |
| 106 | 106 |
/// same object or both are invalid. |
| 107 | 107 |
bool operator==(Node) const { return true; }
|
| 108 | 108 |
|
| 109 | 109 |
/// Inequality operator |
| 110 | 110 |
|
| 111 | 111 |
/// \sa operator==(Node n) |
| 112 | 112 |
/// |
| 113 | 113 |
bool operator!=(Node) const { return true; }
|
| 114 | 114 |
|
| 115 | 115 |
/// Artificial ordering operator. |
| 116 | 116 |
|
| 117 | 117 |
/// To allow the use of graph descriptors as key type in std::map or |
| 118 | 118 |
/// similar associative container we require this. |
| 119 | 119 |
/// |
| 120 | 120 |
/// \note This operator only have to define some strict ordering of |
| 121 | 121 |
/// the items; this order has nothing to do with the iteration |
| 122 | 122 |
/// ordering of the items. |
| 123 | 123 |
bool operator<(Node) const { return false; }
|
| 124 | 124 |
|
| 125 | 125 |
}; |
| 126 | 126 |
|
| 127 | 127 |
/// This iterator goes through each node. |
| 128 | 128 |
|
| 129 | 129 |
/// This iterator goes through each node. |
| 130 | 130 |
/// Its usage is quite simple, for example you can count the number |
| 131 | 131 |
/// of nodes in graph \c g of type \c Graph like this: |
| 132 | 132 |
///\code |
| 133 | 133 |
/// int count=0; |
| 134 | 134 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 135 | 135 |
///\endcode |
| 136 | 136 |
class NodeIt : public Node {
|
| 137 | 137 |
public: |
| 138 | 138 |
/// Default constructor |
| 139 | 139 |
|
| 140 | 140 |
/// @warning The default constructor sets the iterator |
| 141 | 141 |
/// to an undefined value. |
| 142 | 142 |
NodeIt() { }
|
| 143 | 143 |
/// Copy constructor. |
| 144 | 144 |
|
| 145 | 145 |
/// Copy constructor. |
| 146 | 146 |
/// |
| 147 | 147 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 148 | 148 |
/// Invalid constructor \& conversion. |
| 149 | 149 |
|
| 150 | 150 |
/// Initialize the iterator to be invalid. |
| 151 | 151 |
/// \sa Invalid for more details. |
| 152 | 152 |
NodeIt(Invalid) { }
|
| 153 | 153 |
/// Sets the iterator to the first node. |
| 154 | 154 |
|
| 155 | 155 |
/// Sets the iterator to the first node of \c g. |
| 156 | 156 |
/// |
| 157 | 157 |
NodeIt(const Graph&) { }
|
| 158 | 158 |
/// Node -> NodeIt conversion. |
| 159 | 159 |
|
| 160 | 160 |
/// Sets the iterator to the node of \c the graph pointed by |
| 161 | 161 |
/// the trivial iterator. |
| 162 | 162 |
/// This feature necessitates that each time we |
| 163 | 163 |
/// iterate the arc-set, the iteration order is the same. |
| 164 | 164 |
NodeIt(const Graph&, const Node&) { }
|
| 165 | 165 |
/// Next node. |
| 166 | 166 |
|
| 167 | 167 |
/// Assign the iterator to the next node. |
| 168 | 168 |
/// |
| 169 | 169 |
NodeIt& operator++() { return *this; }
|
| 170 | 170 |
}; |
| 171 | 171 |
|
| 172 | 172 |
|
| 173 | 173 |
/// The base type of the edge iterators. |
| 174 | 174 |
|
| 175 | 175 |
/// The base type of the edge iterators. |
| 176 | 176 |
/// |
| 177 | 177 |
class Edge {
|
| 178 | 178 |
public: |
| 179 | 179 |
/// Default constructor |
| 180 | 180 |
|
| 181 | 181 |
/// @warning The default constructor sets the iterator |
| 182 | 182 |
/// to an undefined value. |
| 183 | 183 |
Edge() { }
|
| 184 | 184 |
/// Copy constructor. |
| 185 | 185 |
|
| 186 | 186 |
/// Copy constructor. |
| 187 | 187 |
/// |
| 188 | 188 |
Edge(const Edge&) { }
|
| 189 | 189 |
/// Initialize the iterator to be invalid. |
| 190 | 190 |
|
| 191 | 191 |
/// Initialize the iterator to be invalid. |
| 192 | 192 |
/// |
| 193 | 193 |
Edge(Invalid) { }
|
| 194 | 194 |
/// Equality operator |
| 195 | 195 |
|
| 196 | 196 |
/// Two iterators are equal if and only if they point to the |
| 197 | 197 |
/// same object or both are invalid. |
| 198 | 198 |
bool operator==(Edge) const { return true; }
|
| 199 | 199 |
/// Inequality operator |
| 200 | 200 |
|
| 201 | 201 |
/// \sa operator==(Edge n) |
| 202 | 202 |
/// |
| 203 | 203 |
bool operator!=(Edge) const { return true; }
|
| 204 | 204 |
|
| 205 | 205 |
/// Artificial ordering operator. |
| 206 | 206 |
|
| 207 | 207 |
/// To allow the use of graph descriptors as key type in std::map or |
| 208 | 208 |
/// similar associative container we require this. |
| 209 | 209 |
/// |
| 210 | 210 |
/// \note This operator only have to define some strict ordering of |
| 211 | 211 |
/// the items; this order has nothing to do with the iteration |
| 212 | 212 |
/// ordering of the items. |
| 213 | 213 |
bool operator<(Edge) const { return false; }
|
| 214 | 214 |
}; |
| 215 | 215 |
|
| 216 | 216 |
/// This iterator goes through each edge. |
| 217 | 217 |
|
| 218 | 218 |
/// This iterator goes through each edge of a graph. |
| 219 | 219 |
/// Its usage is quite simple, for example you can count the number |
| 220 | 220 |
/// of edges in a graph \c g of type \c Graph as follows: |
| 221 | 221 |
///\code |
| 222 | 222 |
/// int count=0; |
| 223 | 223 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
| 224 | 224 |
///\endcode |
| 225 | 225 |
class EdgeIt : public Edge {
|
| 226 | 226 |
public: |
| 227 | 227 |
/// Default constructor |
| 228 | 228 |
|
| 229 | 229 |
/// @warning The default constructor sets the iterator |
| 230 | 230 |
/// to an undefined value. |
| 231 | 231 |
EdgeIt() { }
|
| 232 | 232 |
/// Copy constructor. |
| 233 | 233 |
|
| 234 | 234 |
/// Copy constructor. |
| 235 | 235 |
/// |
| 236 | 236 |
EdgeIt(const EdgeIt& e) : Edge(e) { }
|
| 237 | 237 |
/// Initialize the iterator to be invalid. |
| 238 | 238 |
|
| 239 | 239 |
/// Initialize the iterator to be invalid. |
| 240 | 240 |
/// |
| 241 | 241 |
EdgeIt(Invalid) { }
|
| 242 | 242 |
/// This constructor sets the iterator to the first edge. |
| 243 | 243 |
|
| 244 | 244 |
/// This constructor sets the iterator to the first edge. |
| 245 | 245 |
EdgeIt(const Graph&) { }
|
| 246 | 246 |
/// Edge -> EdgeIt conversion |
| 247 | 247 |
|
| 248 | 248 |
/// Sets the iterator to the value of the trivial iterator. |
| 249 | 249 |
/// This feature necessitates that each time we |
| 250 | 250 |
/// iterate the edge-set, the iteration order is the |
| 251 | 251 |
/// same. |
| 252 | 252 |
EdgeIt(const Graph&, const Edge&) { }
|
| 253 | 253 |
/// Next edge |
| 254 | 254 |
|
| 255 | 255 |
/// Assign the iterator to the next edge. |
| 256 | 256 |
EdgeIt& operator++() { return *this; }
|
| 257 | 257 |
}; |
| 258 | 258 |
|
| 259 | 259 |
/// \brief This iterator goes trough the incident undirected |
| 260 | 260 |
/// arcs of a node. |
| 261 | 261 |
/// |
| 262 | 262 |
/// This iterator goes trough the incident edges |
| 263 | 263 |
/// of a certain node of a graph. You should assume that the |
| 264 | 264 |
/// loop arcs will be iterated twice. |
| 265 | 265 |
/// |
| 266 | 266 |
/// Its usage is quite simple, for example you can compute the |
| 267 | 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
| 268 | 268 |
/// in graph \c g of type \c Graph as follows. |
| 269 | 269 |
/// |
| 270 | 270 |
///\code |
| 271 | 271 |
/// int count=0; |
| 272 | 272 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
| 273 | 273 |
///\endcode |
| 274 | 274 |
class IncEdgeIt : public Edge {
|
| 275 | 275 |
public: |
| 276 | 276 |
/// Default constructor |
| 277 | 277 |
|
| 278 | 278 |
/// @warning The default constructor sets the iterator |
| 279 | 279 |
/// to an undefined value. |
| 280 | 280 |
IncEdgeIt() { }
|
| 281 | 281 |
/// Copy constructor. |
| 282 | 282 |
|
| 283 | 283 |
/// Copy constructor. |
| 284 | 284 |
/// |
| 285 | 285 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
|
| 286 | 286 |
/// Initialize the iterator to be invalid. |
| 287 | 287 |
|
| 288 | 288 |
/// Initialize the iterator to be invalid. |
| 289 | 289 |
/// |
| 290 | 290 |
IncEdgeIt(Invalid) { }
|
| 291 | 291 |
/// This constructor sets the iterator to first incident arc. |
| 292 | 292 |
|
| 293 | 293 |
/// This constructor set the iterator to the first incident arc of |
| 294 | 294 |
/// the node. |
| 295 | 295 |
IncEdgeIt(const Graph&, const Node&) { }
|
| 296 | 296 |
/// Edge -> IncEdgeIt conversion |
| 297 | 297 |
|
| 298 | 298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
| 299 | 299 |
/// This feature necessitates that each time we |
| 300 | 300 |
/// iterate the arc-set, the iteration order is the same. |
| 301 | 301 |
IncEdgeIt(const Graph&, const Edge&) { }
|
| 302 | 302 |
/// Next incident arc |
| 303 | 303 |
|
| 304 | 304 |
/// Assign the iterator to the next incident arc |
| 305 | 305 |
/// of the corresponding node. |
| 306 | 306 |
IncEdgeIt& operator++() { return *this; }
|
| 307 | 307 |
}; |
| 308 | 308 |
|
| 309 | 309 |
/// The directed arc type. |
| 310 | 310 |
|
| 311 | 311 |
/// The directed arc type. It can be converted to the |
| 312 | 312 |
/// edge or it should be inherited from the undirected |
| 313 |
/// arc. |
|
| 314 |
class Arc : public Edge {
|
|
| 313 |
/// edge. |
|
| 314 |
class Arc {
|
|
| 315 | 315 |
public: |
| 316 | 316 |
/// Default constructor |
| 317 | 317 |
|
| 318 | 318 |
/// @warning The default constructor sets the iterator |
| 319 | 319 |
/// to an undefined value. |
| 320 | 320 |
Arc() { }
|
| 321 | 321 |
/// Copy constructor. |
| 322 | 322 |
|
| 323 | 323 |
/// Copy constructor. |
| 324 | 324 |
/// |
| 325 |
Arc(const Arc& |
|
| 325 |
Arc(const Arc&) { }
|
|
| 326 | 326 |
/// Initialize the iterator to be invalid. |
| 327 | 327 |
|
| 328 | 328 |
/// Initialize the iterator to be invalid. |
| 329 | 329 |
/// |
| 330 | 330 |
Arc(Invalid) { }
|
| 331 | 331 |
/// Equality operator |
| 332 | 332 |
|
| 333 | 333 |
/// Two iterators are equal if and only if they point to the |
| 334 | 334 |
/// same object or both are invalid. |
| 335 | 335 |
bool operator==(Arc) const { return true; }
|
| 336 | 336 |
/// Inequality operator |
| 337 | 337 |
|
| 338 | 338 |
/// \sa operator==(Arc n) |
| 339 | 339 |
/// |
| 340 | 340 |
bool operator!=(Arc) const { return true; }
|
| 341 | 341 |
|
| 342 | 342 |
/// Artificial ordering operator. |
| 343 | 343 |
|
| 344 | 344 |
/// To allow the use of graph descriptors as key type in std::map or |
| 345 | 345 |
/// similar associative container we require this. |
| 346 | 346 |
/// |
| 347 | 347 |
/// \note This operator only have to define some strict ordering of |
| 348 | 348 |
/// the items; this order has nothing to do with the iteration |
| 349 | 349 |
/// ordering of the items. |
| 350 | 350 |
bool operator<(Arc) const { return false; }
|
| 351 | 351 |
|
| 352 |
/// Converison to Edge |
|
| 353 |
operator Edge() const { return Edge(); }
|
|
| 352 | 354 |
}; |
| 353 | 355 |
/// This iterator goes through each directed arc. |
| 354 | 356 |
|
| 355 | 357 |
/// This iterator goes through each arc of a graph. |
| 356 | 358 |
/// Its usage is quite simple, for example you can count the number |
| 357 | 359 |
/// of arcs in a graph \c g of type \c Graph as follows: |
| 358 | 360 |
///\code |
| 359 | 361 |
/// int count=0; |
| 360 | 362 |
/// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count; |
| 361 | 363 |
///\endcode |
| 362 | 364 |
class ArcIt : public Arc {
|
| 363 | 365 |
public: |
| 364 | 366 |
/// Default constructor |
| 365 | 367 |
|
| 366 | 368 |
/// @warning The default constructor sets the iterator |
| 367 | 369 |
/// to an undefined value. |
| 368 | 370 |
ArcIt() { }
|
| 369 | 371 |
/// Copy constructor. |
| 370 | 372 |
|
| 371 | 373 |
/// Copy constructor. |
| 372 | 374 |
/// |
| 373 | 375 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 374 | 376 |
/// Initialize the iterator to be invalid. |
| 375 | 377 |
|
| 376 | 378 |
/// Initialize the iterator to be invalid. |
| 377 | 379 |
/// |
| 378 | 380 |
ArcIt(Invalid) { }
|
| 379 | 381 |
/// This constructor sets the iterator to the first arc. |
| 380 | 382 |
|
| 381 | 383 |
/// This constructor sets the iterator to the first arc of \c g. |
| 382 | 384 |
///@param g the graph |
| 383 | 385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
| 384 | 386 |
/// Arc -> ArcIt conversion |
| 385 | 387 |
|
| 386 | 388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
| 387 | 389 |
/// This feature necessitates that each time we |
| 388 | 390 |
/// iterate the arc-set, the iteration order is the same. |
| 389 | 391 |
ArcIt(const Graph&, const Arc&) { }
|
| 390 | 392 |
///Next arc |
| 391 | 393 |
|
| 392 | 394 |
/// Assign the iterator to the next arc. |
| 393 | 395 |
ArcIt& operator++() { return *this; }
|
| 394 | 396 |
}; |
| 395 | 397 |
|
| 396 | 398 |
/// This iterator goes trough the outgoing directed arcs of a node. |
| 397 | 399 |
|
| 398 | 400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 399 | 401 |
/// of a graph. |
| 400 | 402 |
/// Its usage is quite simple, for example you can count the number |
| 401 | 403 |
/// of outgoing arcs of a node \c n |
| 402 | 404 |
/// in graph \c g of type \c Graph as follows. |
| 403 | 405 |
///\code |
| 404 | 406 |
/// int count=0; |
| 405 | 407 |
/// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; |
| 406 | 408 |
///\endcode |
| 407 | 409 |
|
| 408 | 410 |
class OutArcIt : public Arc {
|
| 409 | 411 |
public: |
| 410 | 412 |
/// Default constructor |
| 411 | 413 |
|
| 412 | 414 |
/// @warning The default constructor sets the iterator |
| 413 | 415 |
/// to an undefined value. |
| 414 | 416 |
OutArcIt() { }
|
| 415 | 417 |
/// Copy constructor. |
| 416 | 418 |
|
| 417 | 419 |
/// Copy constructor. |
| 418 | 420 |
/// |
| 419 | 421 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 420 | 422 |
/// Initialize the iterator to be invalid. |
| 421 | 423 |
|
| 422 | 424 |
/// Initialize the iterator to be invalid. |
| 423 | 425 |
/// |
| 424 | 426 |
OutArcIt(Invalid) { }
|
| 425 | 427 |
/// This constructor sets the iterator to the first outgoing arc. |
| 426 | 428 |
|
| 427 | 429 |
/// This constructor sets the iterator to the first outgoing arc of |
| 428 | 430 |
/// the node. |
| 429 | 431 |
///@param n the node |
| 430 | 432 |
///@param g the graph |
| 431 | 433 |
OutArcIt(const Graph& n, const Node& g) {
|
| 432 | 434 |
ignore_unused_variable_warning(n); |
| 433 | 435 |
ignore_unused_variable_warning(g); |
| 434 | 436 |
} |
| 435 | 437 |
/// Arc -> OutArcIt conversion |
| 436 | 438 |
|
| 437 | 439 |
/// Sets the iterator to the value of the trivial iterator. |
| 438 | 440 |
/// This feature necessitates that each time we |
| 439 | 441 |
/// iterate the arc-set, the iteration order is the same. |
| 440 | 442 |
OutArcIt(const Graph&, const Arc&) { }
|
| 441 | 443 |
///Next outgoing arc |
| 442 | 444 |
|
| 443 | 445 |
/// Assign the iterator to the next |
| 444 | 446 |
/// outgoing arc of the corresponding node. |
| 445 | 447 |
OutArcIt& operator++() { return *this; }
|
| 446 | 448 |
}; |
| 447 | 449 |
|
| 448 | 450 |
/// This iterator goes trough the incoming directed arcs of a node. |
| 449 | 451 |
|
| 450 | 452 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 451 | 453 |
/// of a graph. |
| 452 | 454 |
/// Its usage is quite simple, for example you can count the number |
| 453 | 455 |
/// of outgoing arcs of a node \c n |
| 454 | 456 |
/// in graph \c g of type \c Graph as follows. |
| 455 | 457 |
///\code |
| 456 | 458 |
/// int count=0; |
| 457 | 459 |
/// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count; |
| 458 | 460 |
///\endcode |
| 459 | 461 |
|
| 460 | 462 |
class InArcIt : public Arc {
|
| 461 | 463 |
public: |
| 462 | 464 |
/// Default constructor |
| 463 | 465 |
|
| 464 | 466 |
/// @warning The default constructor sets the iterator |
| 465 | 467 |
/// to an undefined value. |
| 466 | 468 |
InArcIt() { }
|
| 467 | 469 |
/// Copy constructor. |
| 468 | 470 |
|
| 469 | 471 |
/// Copy constructor. |
| 470 | 472 |
/// |
| 471 | 473 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 472 | 474 |
/// Initialize the iterator to be invalid. |
| 473 | 475 |
|
| 474 | 476 |
/// Initialize the iterator to be invalid. |
| 475 | 477 |
/// |
| 476 | 478 |
InArcIt(Invalid) { }
|
| 477 | 479 |
/// This constructor sets the iterator to first incoming arc. |
| 478 | 480 |
|
| 479 | 481 |
/// This constructor set the iterator to the first incoming arc of |
| 480 | 482 |
/// the node. |
| 481 | 483 |
///@param n the node |
| 482 | 484 |
///@param g the graph |
| 483 | 485 |
InArcIt(const Graph& g, const Node& n) {
|
| 484 | 486 |
ignore_unused_variable_warning(n); |
| 485 | 487 |
ignore_unused_variable_warning(g); |
| 486 | 488 |
} |
| 487 | 489 |
/// Arc -> InArcIt conversion |
| 488 | 490 |
|
| 489 | 491 |
/// Sets the iterator to the value of the trivial iterator \c e. |
| 490 | 492 |
/// This feature necessitates that each time we |
| 491 | 493 |
/// iterate the arc-set, the iteration order is the same. |
| 492 | 494 |
InArcIt(const Graph&, const Arc&) { }
|
| 493 | 495 |
/// Next incoming arc |
| 494 | 496 |
|
| 495 | 497 |
/// Assign the iterator to the next inarc of the corresponding node. |
| 496 | 498 |
/// |
| 497 | 499 |
InArcIt& operator++() { return *this; }
|
| 498 | 500 |
}; |
| 499 | 501 |
|
| 500 | 502 |
/// \brief Reference map of the nodes to type \c T. |
| 501 | 503 |
/// |
| 502 | 504 |
/// Reference map of the nodes to type \c T. |
| 503 | 505 |
template<class T> |
| 504 | 506 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
| 505 | 507 |
{
|
| 506 | 508 |
public: |
| 507 | 509 |
|
| 508 | 510 |
///\e |
| 509 | 511 |
NodeMap(const Graph&) { }
|
| 510 | 512 |
///\e |
| 511 | 513 |
NodeMap(const Graph&, T) { }
|
| 512 | 514 |
|
| 513 | 515 |
private: |
| 514 | 516 |
///Copy constructor |
| 515 | 517 |
NodeMap(const NodeMap& nm) : |
| 516 | 518 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 517 | 519 |
///Assignment operator |
| 518 | 520 |
template <typename CMap> |
| 519 | 521 |
NodeMap& operator=(const CMap&) {
|
| 520 | 522 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 521 | 523 |
return *this; |
| 522 | 524 |
} |
| 523 | 525 |
}; |
| 524 | 526 |
|
| 525 | 527 |
/// \brief Reference map of the arcs to type \c T. |
| 526 | 528 |
/// |
| 527 | 529 |
/// Reference map of the arcs to type \c T. |
| 528 | 530 |
template<class T> |
| 529 | 531 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
| 530 | 532 |
{
|
| 531 | 533 |
public: |
| 532 | 534 |
|
| 533 | 535 |
///\e |
| 534 | 536 |
ArcMap(const Graph&) { }
|
| 535 | 537 |
///\e |
| 536 | 538 |
ArcMap(const Graph&, T) { }
|
| 537 | 539 |
private: |
| 538 | 540 |
///Copy constructor |
| 539 | 541 |
ArcMap(const ArcMap& em) : |
| 540 | 542 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 541 | 543 |
///Assignment operator |
| 542 | 544 |
template <typename CMap> |
| 543 | 545 |
ArcMap& operator=(const CMap&) {
|
| 544 | 546 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 545 | 547 |
return *this; |
| 546 | 548 |
} |
| 547 | 549 |
}; |
| 548 | 550 |
|
| 549 | 551 |
/// Reference map of the edges to type \c T. |
| 550 | 552 |
|
| 551 | 553 |
/// Reference map of the edges to type \c T. |
| 552 | 554 |
template<class T> |
| 553 | 555 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
| 554 | 556 |
{
|
| 555 | 557 |
public: |
| 556 | 558 |
|
| 557 | 559 |
///\e |
| 558 | 560 |
EdgeMap(const Graph&) { }
|
| 559 | 561 |
///\e |
| 560 | 562 |
EdgeMap(const Graph&, T) { }
|
| 561 | 563 |
private: |
| 562 | 564 |
///Copy constructor |
| 563 | 565 |
EdgeMap(const EdgeMap& em) : |
| 564 | 566 |
ReferenceMap<Edge, T, T&, const T&>(em) {}
|
| 565 | 567 |
///Assignment operator |
| 566 | 568 |
template <typename CMap> |
| 567 | 569 |
EdgeMap& operator=(const CMap&) {
|
| 568 | 570 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 569 | 571 |
return *this; |
| 570 | 572 |
} |
| 571 | 573 |
}; |
| 572 | 574 |
|
| 573 | 575 |
/// \brief Direct the given edge. |
| 574 | 576 |
/// |
| 575 | 577 |
/// Direct the given edge. The returned arc source |
| 576 | 578 |
/// will be the given node. |
| 577 | 579 |
Arc direct(const Edge&, const Node&) const {
|
| 578 | 580 |
return INVALID; |
| 579 | 581 |
} |
| 580 | 582 |
|
| 581 | 583 |
/// \brief Direct the given edge. |
| 582 | 584 |
/// |
| 583 | 585 |
/// Direct the given edge. The returned arc |
| 584 | 586 |
/// represents the given edge and the direction comes |
| 585 | 587 |
/// from the bool parameter. The source of the edge and |
| 586 | 588 |
/// the directed arc is the same when the given bool is true. |
| 587 | 589 |
Arc direct(const Edge&, bool) const {
|
| 588 | 590 |
return INVALID; |
| 589 | 591 |
} |
| 590 | 592 |
|
| 591 | 593 |
/// \brief Returns true if the arc has default orientation. |
| 592 | 594 |
/// |
| 593 | 595 |
/// Returns whether the given directed arc is same orientation as |
| 594 | 596 |
/// the corresponding edge's default orientation. |
| 595 | 597 |
bool direction(Arc) const { return true; }
|
| 596 | 598 |
|
| 597 | 599 |
/// \brief Returns the opposite directed arc. |
| 598 | 600 |
/// |
| 599 | 601 |
/// Returns the opposite directed arc. |
| 600 | 602 |
Arc oppositeArc(Arc) const { return INVALID; }
|
| 601 | 603 |
|
| 602 | 604 |
/// \brief Opposite node on an arc |
| 603 | 605 |
/// |
| 604 | 606 |
/// \return The opposite of the given node on the given edge. |
| 605 | 607 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
| 606 | 608 |
|
| 607 | 609 |
/// \brief First node of the edge. |
| 608 | 610 |
/// |
| 609 | 611 |
/// \return The first node of the given edge. |
| 610 | 612 |
/// |
| 611 | 613 |
/// Naturally edges don't have direction and thus |
| 612 | 614 |
/// don't have source and target node. However we use \c u() and \c v() |
| 613 | 615 |
/// methods to query the two nodes of the arc. The direction of the |
| 614 | 616 |
/// arc which arises this way is called the inherent direction of the |
| 615 | 617 |
/// edge, and is used to define the "default" direction |
| 616 | 618 |
/// of the directed versions of the arcs. |
| 617 | 619 |
/// \sa v() |
| 618 | 620 |
/// \sa direction() |
| 619 | 621 |
Node u(Edge) const { return INVALID; }
|
| 620 | 622 |
|
| 621 | 623 |
/// \brief Second node of the edge. |
| 622 | 624 |
/// |
| 623 | 625 |
/// \return The second node of the given edge. |
| 624 | 626 |
/// |
| 625 | 627 |
/// Naturally edges don't have direction and thus |
| 626 | 628 |
/// don't have source and target node. However we use \c u() and \c v() |
| 627 | 629 |
/// methods to query the two nodes of the arc. The direction of the |
| 628 | 630 |
/// arc which arises this way is called the inherent direction of the |
| 629 | 631 |
/// edge, and is used to define the "default" direction |
| 630 | 632 |
/// of the directed versions of the arcs. |
| 631 | 633 |
/// \sa u() |
| 632 | 634 |
/// \sa direction() |
| 633 | 635 |
Node v(Edge) const { return INVALID; }
|
| 634 | 636 |
|
| 635 | 637 |
/// \brief Source node of the directed arc. |
| 636 | 638 |
Node source(Arc) const { return INVALID; }
|
| 637 | 639 |
|
| 638 | 640 |
/// \brief Target node of the directed arc. |
| 639 | 641 |
Node target(Arc) const { return INVALID; }
|
| 640 | 642 |
|
| 641 | 643 |
/// \brief Returns the id of the node. |
| 642 | 644 |
int id(Node) const { return -1; }
|
| 643 | 645 |
|
| 644 | 646 |
/// \brief Returns the id of the edge. |
| 645 | 647 |
int id(Edge) const { return -1; }
|
| 646 | 648 |
|
| 647 | 649 |
/// \brief Returns the id of the arc. |
| 648 | 650 |
int id(Arc) const { return -1; }
|
| 649 | 651 |
|
| 650 | 652 |
/// \brief Returns the node with the given id. |
| 651 | 653 |
/// |
| 652 | 654 |
/// \pre The argument should be a valid node id in the graph. |
| 653 | 655 |
Node nodeFromId(int) const { return INVALID; }
|
| 654 | 656 |
|
| 655 | 657 |
/// \brief Returns the edge with the given id. |
| 656 | 658 |
/// |
| 657 | 659 |
/// \pre The argument should be a valid edge id in the graph. |
| 658 | 660 |
Edge edgeFromId(int) const { return INVALID; }
|
| 659 | 661 |
|
| 660 | 662 |
/// \brief Returns the arc with the given id. |
| 661 | 663 |
/// |
| 662 | 664 |
/// \pre The argument should be a valid arc id in the graph. |
| 663 | 665 |
Arc arcFromId(int) const { return INVALID; }
|
| 664 | 666 |
|
| 665 | 667 |
/// \brief Returns an upper bound on the node IDs. |
| 666 | 668 |
int maxNodeId() const { return -1; }
|
| 667 | 669 |
|
| 668 | 670 |
/// \brief Returns an upper bound on the edge IDs. |
| 669 | 671 |
int maxEdgeId() const { return -1; }
|
| 670 | 672 |
|
| 671 | 673 |
/// \brief Returns an upper bound on the arc IDs. |
| 672 | 674 |
int maxArcId() const { return -1; }
|
| 673 | 675 |
|
| 674 | 676 |
void first(Node&) const {}
|
| 675 | 677 |
void next(Node&) const {}
|
| 676 | 678 |
|
| 677 | 679 |
void first(Edge&) const {}
|
| 678 | 680 |
void next(Edge&) const {}
|
| 679 | 681 |
|
| 680 | 682 |
void first(Arc&) const {}
|
| 681 | 683 |
void next(Arc&) const {}
|
| 682 | 684 |
|
| 683 | 685 |
void firstOut(Arc&, Node) const {}
|
| 684 | 686 |
void nextOut(Arc&) const {}
|
| 685 | 687 |
|
| 686 | 688 |
void firstIn(Arc&, Node) const {}
|
| 687 | 689 |
void nextIn(Arc&) const {}
|
| 688 | 690 |
|
| 689 | 691 |
void firstInc(Edge &, bool &, const Node &) const {}
|
| 690 | 692 |
void nextInc(Edge &, bool &) const {}
|
| 691 | 693 |
|
| 692 | 694 |
// The second parameter is dummy. |
| 693 | 695 |
Node fromId(int, Node) const { return INVALID; }
|
| 694 | 696 |
// The second parameter is dummy. |
| 695 | 697 |
Edge fromId(int, Edge) const { return INVALID; }
|
| 696 | 698 |
// The second parameter is dummy. |
| 697 | 699 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 698 | 700 |
|
| 699 | 701 |
// Dummy parameter. |
| 700 | 702 |
int maxId(Node) const { return -1; }
|
| 701 | 703 |
// Dummy parameter. |
| 702 | 704 |
int maxId(Edge) const { return -1; }
|
| 703 | 705 |
// Dummy parameter. |
| 704 | 706 |
int maxId(Arc) const { return -1; }
|
| 705 | 707 |
|
| 706 | 708 |
/// \brief Base node of the iterator |
| 707 | 709 |
/// |
| 708 | 710 |
/// Returns the base node (the source in this case) of the iterator |
| 709 | 711 |
Node baseNode(OutArcIt e) const {
|
| 710 | 712 |
return source(e); |
| 711 | 713 |
} |
| 712 | 714 |
/// \brief Running node of the iterator |
| 713 | 715 |
/// |
| 714 | 716 |
/// Returns the running node (the target in this case) of the |
| 715 | 717 |
/// iterator |
| 716 | 718 |
Node runningNode(OutArcIt e) const {
|
| 717 | 719 |
return target(e); |
| 718 | 720 |
} |
| 719 | 721 |
|
| 720 | 722 |
/// \brief Base node of the iterator |
| 721 | 723 |
/// |
| 722 | 724 |
/// Returns the base node (the target in this case) of the iterator |
| 723 | 725 |
Node baseNode(InArcIt e) const {
|
| 724 | 726 |
return target(e); |
| 725 | 727 |
} |
| 726 | 728 |
/// \brief Running node of the iterator |
| 727 | 729 |
/// |
| 728 | 730 |
/// Returns the running node (the source in this case) of the |
| 729 | 731 |
/// iterator |
| 730 | 732 |
Node runningNode(InArcIt e) const {
|
| 731 | 733 |
return source(e); |
| 732 | 734 |
} |
| 733 | 735 |
|
| 734 | 736 |
/// \brief Base node of the iterator |
| 735 | 737 |
/// |
0 comments (0 inline)