gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Remove non-checked subgraph adaptors + rename parameters (#67)
0 2 0
default
2 files changed with 365 insertions and 391 deletions:
↑ Collapse diff ↑
Show white space 96 line context
... ...
@@ -308,132 +308,136 @@
308 308
      template <typename CMap>
309 309
      EdgeMap& operator=(const CMap& cmap) {
310 310
        Parent::operator=(cmap);
311 311
        return *this;
312 312
      }
313 313
    };
314 314

	
315 315
  };
316 316

	
317 317
  template <typename _Digraph>
318 318
  class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> {
319 319
  public:
320 320
    typedef _Digraph Digraph;
321 321
    typedef DigraphAdaptorBase<_Digraph> Parent;
322 322
  protected:
323 323
    ReverseDigraphBase() : Parent() { }
324 324
  public:
325 325
    typedef typename Parent::Node Node;
326 326
    typedef typename Parent::Arc Arc;
327 327

	
328 328
    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
329 329
    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
330 330

	
331 331
    void nextIn(Arc& a) const { Parent::nextOut(a); }
332 332
    void nextOut(Arc& a) const { Parent::nextIn(a); }
333 333

	
334 334
    Node source(const Arc& a) const { return Parent::target(a); }
335 335
    Node target(const Arc& a) const { return Parent::source(a); }
336 336

	
337 337
    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
338 338

	
339 339
    typedef FindArcTagIndicator<Digraph> FindArcTag;
340 340
    Arc findArc(const Node& u, const Node& v,
341 341
                const Arc& prev = INVALID) const {
342 342
      return Parent::findArc(v, u, prev);
343 343
    }
344 344

	
345 345
  };
346 346

	
347 347
  /// \ingroup graph_adaptors
348 348
  ///
349 349
  /// \brief Adaptor class for reversing the orientation of the arcs in
350 350
  /// a digraph.
351 351
  ///
352 352
  /// ReverseDigraph can be used for reversing the arcs in a digraph.
353 353
  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
354 354
  ///
355 355
  /// The adapted digraph can also be modified through this adaptor
356
  /// by adding or removing nodes or arcs, unless the \c _Digraph template
356
  /// by adding or removing nodes or arcs, unless the \c GR template
357 357
  /// parameter is set to be \c const.
358 358
  ///
359
  /// \tparam _Digraph The type of the adapted digraph.
359
  /// \tparam GR The type of the adapted digraph.
360 360
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
361 361
  /// It can also be specified to be \c const.
362 362
  ///
363 363
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
364 364
  /// digraph are convertible to each other.
365
  template<typename _Digraph>
365
  template<typename GR>
366
#ifdef DOXYGEN
367
  class ReverseDigraph {
368
#else
366 369
  class ReverseDigraph :
367
    public DigraphAdaptorExtender<ReverseDigraphBase<_Digraph> > {
370
    public DigraphAdaptorExtender<ReverseDigraphBase<GR> > {
371
#endif
368 372
  public:
369
    typedef _Digraph Digraph;
370
    typedef DigraphAdaptorExtender<
371
      ReverseDigraphBase<_Digraph> > Parent;
373
    /// The type of the adapted digraph.
374
    typedef GR Digraph;
375
    typedef DigraphAdaptorExtender<ReverseDigraphBase<GR> > Parent;
372 376
  protected:
373 377
    ReverseDigraph() { }
374 378
  public:
375 379

	
376 380
    /// \brief Constructor
377 381
    ///
378 382
    /// Creates a reverse digraph adaptor for the given digraph.
379 383
    explicit ReverseDigraph(Digraph& digraph) {
380 384
      Parent::setDigraph(digraph);
381 385
    }
382 386
  };
383 387

	
384 388
  /// \brief Returns a read-only ReverseDigraph adaptor
385 389
  ///
386 390
  /// This function just returns a read-only \ref ReverseDigraph adaptor.
387 391
  /// \ingroup graph_adaptors
388 392
  /// \relates ReverseDigraph
389
  template<typename Digraph>
390
  ReverseDigraph<const Digraph> reverseDigraph(const Digraph& digraph) {
391
    return ReverseDigraph<const Digraph>(digraph);
393
  template<typename GR>
394
  ReverseDigraph<const GR> reverseDigraph(const GR& digraph) {
395
    return ReverseDigraph<const GR>(digraph);
392 396
  }
393 397

	
394 398

	
395 399
  template <typename _Digraph, typename _NodeFilterMap,
396 400
            typename _ArcFilterMap, bool _checked = true>
397 401
  class SubDigraphBase : public DigraphAdaptorBase<_Digraph> {
398 402
  public:
399 403
    typedef _Digraph Digraph;
400 404
    typedef _NodeFilterMap NodeFilterMap;
401 405
    typedef _ArcFilterMap ArcFilterMap;
402 406

	
403 407
    typedef SubDigraphBase Adaptor;
404 408
    typedef DigraphAdaptorBase<_Digraph> Parent;
405 409
  protected:
406 410
    NodeFilterMap* _node_filter;
407 411
    ArcFilterMap* _arc_filter;
408 412
    SubDigraphBase()
409 413
      : Parent(), _node_filter(0), _arc_filter(0) { }
410 414

	
411 415
    void setNodeFilterMap(NodeFilterMap& node_filter) {
412 416
      _node_filter = &node_filter;
413 417
    }
414 418
    void setArcFilterMap(ArcFilterMap& arc_filter) {
415 419
      _arc_filter = &arc_filter;
416 420
    }
417 421

	
418 422
  public:
419 423

	
420 424
    typedef typename Parent::Node Node;
421 425
    typedef typename Parent::Arc Arc;
422 426

	
423 427
    void first(Node& i) const {
424 428
      Parent::first(i);
425 429
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
426 430
    }
427 431

	
428 432
    void first(Arc& i) const {
429 433
      Parent::first(i);
430 434
      while (i != INVALID && (!(*_arc_filter)[i]
431 435
                              || !(*_node_filter)[Parent::source(i)]
432 436
                              || !(*_node_filter)[Parent::target(i)]))
433 437
        Parent::next(i);
434 438
    }
435 439

	
436 440
    void firstIn(Arc& i, const Node& n) const {
437 441
      Parent::firstIn(i, n);
438 442
      while (i != INVALID && (!(*_arc_filter)[i]
439 443
                              || !(*_node_filter)[Parent::source(i)]))
... ...
@@ -651,256 +655,249 @@
651 655

	
652 656
    private:
653 657
      NodeMap& operator=(const NodeMap& cmap) {
654 658
        return operator=<NodeMap>(cmap);
655 659
      }
656 660

	
657 661
      template <typename CMap>
658 662
      NodeMap& operator=(const CMap& cmap) {
659 663
        MapParent::operator=(cmap);
660 664
        return *this;
661 665
      }
662 666
    };
663 667

	
664 668
    template <typename _Value>
665 669
    class ArcMap : public SubMapExtender<Adaptor,
666 670
      typename Parent::template ArcMap<_Value> > {
667 671
    public:
668 672
      typedef _Value Value;
669 673
      typedef SubMapExtender<Adaptor, typename Parent::
670 674
                             template ArcMap<Value> > MapParent;
671 675

	
672 676
      ArcMap(const Adaptor& adaptor)
673 677
        : MapParent(adaptor) {}
674 678
      ArcMap(const Adaptor& adaptor, const Value& value)
675 679
        : MapParent(adaptor, value) {}
676 680

	
677 681
    private:
678 682
      ArcMap& operator=(const ArcMap& cmap) {
679 683
        return operator=<ArcMap>(cmap);
680 684
      }
681 685

	
682 686
      template <typename CMap>
683 687
      ArcMap& operator=(const CMap& cmap) {
684 688
        MapParent::operator=(cmap);
685 689
        return *this;
686 690
      }
687 691
    };
688 692

	
689 693
  };
690 694

	
691 695
  /// \ingroup graph_adaptors
692 696
  ///
693 697
  /// \brief Adaptor class for hiding nodes and arcs in a digraph
694 698
  ///
695 699
  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
696 700
  /// A \c bool node map and a \c bool arc map must be specified, which
697 701
  /// define the filters for nodes and arcs.
698 702
  /// Only the nodes and arcs with \c true filter value are
699
  /// shown in the subdigraph. This adaptor conforms to the \ref
700
  /// concepts::Digraph "Digraph" concept. If the \c _checked parameter
701
  /// is \c true, then the arcs incident to hidden nodes are also
702
  /// filtered out.
703
  /// shown in the subdigraph. The arcs that are incident to hidden
704
  /// nodes are also filtered out.
705
  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
703 706
  ///
704 707
  /// The adapted digraph can also be modified through this adaptor
705
  /// by adding or removing nodes or arcs, unless the \c _Digraph template
708
  /// by adding or removing nodes or arcs, unless the \c GR template
706 709
  /// parameter is set to be \c const.
707 710
  ///
708
  /// \tparam _Digraph The type of the adapted digraph.
711
  /// \tparam GR The type of the adapted digraph.
709 712
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
710 713
  /// It can also be specified to be \c const.
711
  /// \tparam _NodeFilterMap A \c bool (or convertible) node map of the
712
  /// adapted digraph. The default map type is
713
  /// \ref concepts::Digraph::NodeMap "_Digraph::NodeMap<bool>".
714
  /// \tparam _ArcFilterMap A \c bool (or convertible) arc map of the
715
  /// adapted digraph. The default map type is
716
  /// \ref concepts::Digraph::ArcMap "_Digraph::ArcMap<bool>".
717
  /// \tparam _checked If this parameter is set to \c false, then the arc
718
  /// filtering is not checked with respect to the node filter.
719
  /// Otherwise, each arc that is incident to a hidden node is automatically
720
  /// filtered out. This is the default option.
714
  /// \tparam NF The type of the node filter map.
715
  /// It must be a \c bool (or convertible) node map of the
716
  /// adapted digraph. The default type is
717
  /// \ref concepts::Digraph::NodeMap "GR::NodeMap<bool>".
718
  /// \tparam AF The type of the arc filter map.
719
  /// It must be \c bool (or convertible) arc map of the
720
  /// adapted digraph. The default type is
721
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<bool>".
721 722
  ///
722 723
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
723 724
  /// digraph are convertible to each other.
724 725
  ///
725 726
  /// \see FilterNodes
726 727
  /// \see FilterArcs
727 728
#ifdef DOXYGEN
728
  template<typename _Digraph,
729
           typename _NodeFilterMap,
730
           typename _ArcFilterMap,
731
           bool _checked>
729
  template<typename GR, typename NF, typename AF>
730
  class SubDigraph {
732 731
#else
733
  template<typename _Digraph,
734
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
735
           typename _ArcFilterMap = typename _Digraph::template ArcMap<bool>,
736
           bool _checked = true>
732
  template<typename GR,
733
           typename NF = typename GR::template NodeMap<bool>,
734
           typename AF = typename GR::template ArcMap<bool> >
735
  class SubDigraph :
736
    public DigraphAdaptorExtender<SubDigraphBase<GR, NF, AF, true> > {
737 737
#endif
738
  class SubDigraph
739
    : public DigraphAdaptorExtender<
740
      SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > {
741 738
  public:
742 739
    /// The type of the adapted digraph.
743
    typedef _Digraph Digraph;
740
    typedef GR Digraph;
744 741
    /// The type of the node filter map.
745
    typedef _NodeFilterMap NodeFilterMap;
742
    typedef NF NodeFilterMap;
746 743
    /// The type of the arc filter map.
747
    typedef _ArcFilterMap ArcFilterMap;
748

	
749
    typedef DigraphAdaptorExtender<
750
      SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> >
744
    typedef AF ArcFilterMap;
745

	
746
    typedef DigraphAdaptorExtender<SubDigraphBase<GR, NF, AF, true> >
751 747
    Parent;
752 748

	
753 749
    typedef typename Parent::Node Node;
754 750
    typedef typename Parent::Arc Arc;
755 751

	
756 752
  protected:
757 753
    SubDigraph() { }
758 754
  public:
759 755

	
760 756
    /// \brief Constructor
761 757
    ///
762 758
    /// Creates a subdigraph for the given digraph with the
763 759
    /// given node and arc filter maps.
764 760
    SubDigraph(Digraph& digraph, NodeFilterMap& node_filter,
765 761
               ArcFilterMap& arc_filter) {
766 762
      setDigraph(digraph);
767 763
      setNodeFilterMap(node_filter);
768 764
      setArcFilterMap(arc_filter);
769 765
    }
770 766

	
771 767
    /// \brief Sets the status of the given node
772 768
    ///
773 769
    /// This function sets the status of the given node.
774 770
    /// It is done by simply setting the assigned value of \c n
775 771
    /// to \c v in the node filter map.
776 772
    void status(const Node& n, bool v) const { Parent::status(n, v); }
777 773

	
778 774
    /// \brief Sets the status of the given arc
779 775
    ///
780 776
    /// This function sets the status of the given arc.
781 777
    /// It is done by simply setting the assigned value of \c a
782 778
    /// to \c v in the arc filter map.
783 779
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
784 780

	
785 781
    /// \brief Returns the status of the given node
786 782
    ///
787 783
    /// This function returns the status of the given node.
788 784
    /// It is \c true if the given node is enabled (i.e. not hidden).
789 785
    bool status(const Node& n) const { return Parent::status(n); }
790 786

	
791 787
    /// \brief Returns the status of the given arc
792 788
    ///
793 789
    /// This function returns the status of the given arc.
794 790
    /// It is \c true if the given arc is enabled (i.e. not hidden).
795 791
    bool status(const Arc& a) const { return Parent::status(a); }
796 792

	
797 793
    /// \brief Disables the given node
798 794
    ///
799 795
    /// This function disables the given node in the subdigraph,
800 796
    /// so the iteration jumps over it.
801 797
    /// It is the same as \ref status() "status(n, false)".
802 798
    void disable(const Node& n) const { Parent::status(n, false); }
803 799

	
804 800
    /// \brief Disables the given arc
805 801
    ///
806 802
    /// This function disables the given arc in the subdigraph,
807 803
    /// so the iteration jumps over it.
808 804
    /// It is the same as \ref status() "status(a, false)".
809 805
    void disable(const Arc& a) const { Parent::status(a, false); }
810 806

	
811 807
    /// \brief Enables the given node
812 808
    ///
813 809
    /// This function enables the given node in the subdigraph.
814 810
    /// It is the same as \ref status() "status(n, true)".
815 811
    void enable(const Node& n) const { Parent::status(n, true); }
816 812

	
817 813
    /// \brief Enables the given arc
818 814
    ///
819 815
    /// This function enables the given arc in the subdigraph.
820 816
    /// It is the same as \ref status() "status(a, true)".
821 817
    void enable(const Arc& a) const { Parent::status(a, true); }
822 818

	
823 819
  };
824 820

	
825 821
  /// \brief Returns a read-only SubDigraph adaptor
826 822
  ///
827 823
  /// This function just returns a read-only \ref SubDigraph adaptor.
828 824
  /// \ingroup graph_adaptors
829 825
  /// \relates SubDigraph
830
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
831
  SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
832
  subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) {
833
    return SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
834
      (digraph, nfm, afm);
835
  }
836

	
837
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
838
  SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
839
  subDigraph(const Digraph& digraph,
840
             const NodeFilterMap& nfm, ArcFilterMap& afm) {
841
    return SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
842
      (digraph, nfm, afm);
843
  }
844

	
845
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
846
  SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
847
  subDigraph(const Digraph& digraph,
848
             NodeFilterMap& nfm, const ArcFilterMap& afm) {
849
    return SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
850
      (digraph, nfm, afm);
851
  }
852

	
853
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
854
  SubDigraph<const Digraph, const NodeFilterMap, const ArcFilterMap>
855
  subDigraph(const Digraph& digraph,
856
             const NodeFilterMap& nfm, const ArcFilterMap& afm) {
857
    return SubDigraph<const Digraph, const NodeFilterMap,
858
      const ArcFilterMap>(digraph, nfm, afm);
826
  template<typename GR, typename NF, typename AF>
827
  SubDigraph<const GR, NF, AF>
828
  subDigraph(const GR& digraph,
829
             NF& node_filter_map, AF& arc_filter_map) {
830
    return SubDigraph<const GR, NF, AF>
831
      (digraph, node_filter_map, arc_filter_map);
832
  }
833

	
834
  template<typename GR, typename NF, typename AF>
835
  SubDigraph<const GR, const NF, AF>
836
  subDigraph(const GR& digraph,
837
             const NF& node_filter_map, AF& arc_filter_map) {
838
    return SubDigraph<const GR, const NF, AF>
839
      (digraph, node_filter_map, arc_filter_map);
840
  }
841

	
842
  template<typename GR, typename NF, typename AF>
843
  SubDigraph<const GR, NF, const AF>
844
  subDigraph(const GR& digraph,
845
             NF& node_filter_map, const AF& arc_filter_map) {
846
    return SubDigraph<const GR, NF, const AF>
847
      (digraph, node_filter_map, arc_filter_map);
848
  }
849

	
850
  template<typename GR, typename NF, typename AF>
851
  SubDigraph<const GR, const NF, const AF>
852
  subDigraph(const GR& digraph,
853
             const NF& node_filter_map, const AF& arc_filter_map) {
854
    return SubDigraph<const GR, const NF, const AF>
855
      (digraph, node_filter_map, arc_filter_map);
859 856
  }
860 857

	
861 858

	
862 859
  template <typename _Graph, typename _NodeFilterMap,
863 860
            typename _EdgeFilterMap, bool _checked = true>
864 861
  class SubGraphBase : public GraphAdaptorBase<_Graph> {
865 862
  public:
866 863
    typedef _Graph Graph;
867 864
    typedef _NodeFilterMap NodeFilterMap;
868 865
    typedef _EdgeFilterMap EdgeFilterMap;
869 866

	
870 867
    typedef SubGraphBase Adaptor;
871 868
    typedef GraphAdaptorBase<_Graph> Parent;
872 869
  protected:
873 870

	
874 871
    NodeFilterMap* _node_filter_map;
875 872
    EdgeFilterMap* _edge_filter_map;
876 873

	
877 874
    SubGraphBase()
878 875
      : Parent(), _node_filter_map(0), _edge_filter_map(0) { }
879 876

	
880 877
    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
881 878
      _node_filter_map=&node_filter_map;
882 879
    }
883 880
    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
884 881
      _edge_filter_map=&edge_filter_map;
885 882
    }
886 883

	
887 884
  public:
888 885

	
889 886
    typedef typename Parent::Node Node;
890 887
    typedef typename Parent::Arc Arc;
891 888
    typedef typename Parent::Edge Edge;
892 889

	
893 890
    void first(Node& i) const {
894 891
      Parent::first(i);
895 892
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
896 893
    }
897 894

	
898 895
    void first(Arc& i) const {
899 896
      Parent::first(i);
900 897
      while (i!=INVALID && (!(*_edge_filter_map)[i]
901 898
                            || !(*_node_filter_map)[Parent::source(i)]
902 899
                            || !(*_node_filter_map)[Parent::target(i)]))
903 900
        Parent::next(i);
904 901
    }
905 902

	
906 903
    void first(Edge& i) const {
... ...
@@ -1247,627 +1244,627 @@
1247 1244
      ArcMap& operator=(const ArcMap& cmap) {
1248 1245
        return operator=<ArcMap>(cmap);
1249 1246
      }
1250 1247

	
1251 1248
      template <typename CMap>
1252 1249
      ArcMap& operator=(const CMap& cmap) {
1253 1250
        MapParent::operator=(cmap);
1254 1251
        return *this;
1255 1252
      }
1256 1253
    };
1257 1254

	
1258 1255
    template <typename _Value>
1259 1256
    class EdgeMap : public SubMapExtender<Adaptor,
1260 1257
      typename Parent::template EdgeMap<_Value> > {
1261 1258
    public:
1262 1259
      typedef _Value Value;
1263 1260
      typedef SubMapExtender<Adaptor, typename Parent::
1264 1261
                             template EdgeMap<Value> > MapParent;
1265 1262

	
1266 1263
      EdgeMap(const Adaptor& adaptor)
1267 1264
        : MapParent(adaptor) {}
1268 1265

	
1269 1266
      EdgeMap(const Adaptor& adaptor, const _Value& value)
1270 1267
        : MapParent(adaptor, value) {}
1271 1268

	
1272 1269
    private:
1273 1270
      EdgeMap& operator=(const EdgeMap& cmap) {
1274 1271
        return operator=<EdgeMap>(cmap);
1275 1272
      }
1276 1273

	
1277 1274
      template <typename CMap>
1278 1275
      EdgeMap& operator=(const CMap& cmap) {
1279 1276
        MapParent::operator=(cmap);
1280 1277
        return *this;
1281 1278
      }
1282 1279
    };
1283 1280

	
1284 1281
  };
1285 1282

	
1286 1283
  /// \ingroup graph_adaptors
1287 1284
  ///
1288 1285
  /// \brief Adaptor class for hiding nodes and edges in an undirected
1289 1286
  /// graph.
1290 1287
  ///
1291 1288
  /// SubGraph can be used for hiding nodes and edges in a graph.
1292 1289
  /// A \c bool node map and a \c bool edge map must be specified, which
1293 1290
  /// define the filters for nodes and edges.
1294 1291
  /// Only the nodes and edges with \c true filter value are
1295
  /// shown in the subgraph. This adaptor conforms to the \ref
1296
  /// concepts::Graph "Graph" concept. If the \c _checked parameter is
1297
  /// \c true, then the edges incident to hidden nodes are also
1298
  /// filtered out.
1292
  /// shown in the subgraph. The edges that are incident to hidden
1293
  /// nodes are also filtered out.
1294
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1299 1295
  ///
1300 1296
  /// The adapted graph can also be modified through this adaptor
1301
  /// by adding or removing nodes or edges, unless the \c _Graph template
1297
  /// by adding or removing nodes or edges, unless the \c GR template
1302 1298
  /// parameter is set to be \c const.
1303 1299
  ///
1304
  /// \tparam _Graph The type of the adapted graph.
1300
  /// \tparam GR The type of the adapted graph.
1305 1301
  /// It must conform to the \ref concepts::Graph "Graph" concept.
1306 1302
  /// It can also be specified to be \c const.
1307
  /// \tparam _NodeFilterMap A \c bool (or convertible) node map of the
1308
  /// adapted graph. The default map type is
1309
  /// \ref concepts::Graph::NodeMap "_Graph::NodeMap<bool>".
1310
  /// \tparam _EdgeFilterMap A \c bool (or convertible) edge map of the
1311
  /// adapted graph. The default map type is
1312
  /// \ref concepts::Graph::EdgeMap "_Graph::EdgeMap<bool>".
1313
  /// \tparam _checked If this parameter is set to \c false, then the edge
1314
  /// filtering is not checked with respect to the node filter.
1315
  /// Otherwise, each edge that is incident to a hidden node is automatically
1316
  /// filtered out. This is the default option.
1303
  /// \tparam NF The type of the node filter map.
1304
  /// It must be a \c bool (or convertible) node map of the
1305
  /// adapted graph. The default type is
1306
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1307
  /// \tparam EF The type of the edge filter map.
1308
  /// It must be a \c bool (or convertible) edge map of the
1309
  /// adapted graph. The default type is
1310
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1317 1311
  ///
1318 1312
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1319 1313
  /// adapted graph are convertible to each other.
1320 1314
  ///
1321 1315
  /// \see FilterNodes
1322 1316
  /// \see FilterEdges
1323 1317
#ifdef DOXYGEN
1324
  template<typename _Graph,
1325
           typename _NodeFilterMap,
1326
           typename _EdgeFilterMap,
1327
           bool _checked>
1318
  template<typename GR, typename NF, typename EF>
1319
  class SubGraph {
1328 1320
#else
1329
  template<typename _Graph,
1330
           typename _NodeFilterMap = typename _Graph::template NodeMap<bool>,
1331
           typename _EdgeFilterMap = typename _Graph::template EdgeMap<bool>,
1332
           bool _checked = true>
1321
  template<typename GR,
1322
           typename NF = typename GR::template NodeMap<bool>,
1323
           typename EF = typename GR::template EdgeMap<bool> >
1324
  class SubGraph :
1325
    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1333 1326
#endif
1334
  class SubGraph
1335
    : public GraphAdaptorExtender<
1336
      SubGraphBase<_Graph, _NodeFilterMap, _EdgeFilterMap, _checked> > {
1337 1327
  public:
1338 1328
    /// The type of the adapted graph.
1339
    typedef _Graph Graph;
1329
    typedef GR Graph;
1340 1330
    /// The type of the node filter map.
1341
    typedef _NodeFilterMap NodeFilterMap;
1331
    typedef NF NodeFilterMap;
1342 1332
    /// The type of the edge filter map.
1343
    typedef _EdgeFilterMap EdgeFilterMap;
1344

	
1345
    typedef GraphAdaptorExtender<
1346
      SubGraphBase<_Graph, _NodeFilterMap, _EdgeFilterMap, _checked> > Parent;
1333
    typedef EF EdgeFilterMap;
1334

	
1335
    typedef GraphAdaptorExtender< SubGraphBase<GR, NF, EF, true> >
1336
      Parent;
1347 1337

	
1348 1338
    typedef typename Parent::Node Node;
1349 1339
    typedef typename Parent::Edge Edge;
1350 1340

	
1351 1341
  protected:
1352 1342
    SubGraph() { }
1353 1343
  public:
1354 1344

	
1355 1345
    /// \brief Constructor
1356 1346
    ///
1357 1347
    /// Creates a subgraph for the given graph with the given node
1358 1348
    /// and edge filter maps.
1359 1349
    SubGraph(Graph& graph, NodeFilterMap& node_filter_map,
1360 1350
             EdgeFilterMap& edge_filter_map) {
1361 1351
      setGraph(graph);
1362 1352
      setNodeFilterMap(node_filter_map);
1363 1353
      setEdgeFilterMap(edge_filter_map);
1364 1354
    }
1365 1355

	
1366 1356
    /// \brief Sets the status of the given node
1367 1357
    ///
1368 1358
    /// This function sets the status of the given node.
1369 1359
    /// It is done by simply setting the assigned value of \c n
1370 1360
    /// to \c v in the node filter map.
1371 1361
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1372 1362

	
1373 1363
    /// \brief Sets the status of the given edge
1374 1364
    ///
1375 1365
    /// This function sets the status of the given edge.
1376 1366
    /// It is done by simply setting the assigned value of \c e
1377 1367
    /// to \c v in the edge filter map.
1378 1368
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1379 1369

	
1380 1370
    /// \brief Returns the status of the given node
1381 1371
    ///
1382 1372
    /// This function returns the status of the given node.
1383 1373
    /// It is \c true if the given node is enabled (i.e. not hidden).
1384 1374
    bool status(const Node& n) const { return Parent::status(n); }
1385 1375

	
1386 1376
    /// \brief Returns the status of the given edge
1387 1377
    ///
1388 1378
    /// This function returns the status of the given edge.
1389 1379
    /// It is \c true if the given edge is enabled (i.e. not hidden).
1390 1380
    bool status(const Edge& e) const { return Parent::status(e); }
1391 1381

	
1392 1382
    /// \brief Disables the given node
1393 1383
    ///
1394 1384
    /// This function disables the given node in the subdigraph,
1395 1385
    /// so the iteration jumps over it.
1396 1386
    /// It is the same as \ref status() "status(n, false)".
1397 1387
    void disable(const Node& n) const { Parent::status(n, false); }
1398 1388

	
1399 1389
    /// \brief Disables the given edge
1400 1390
    ///
1401 1391
    /// This function disables the given edge in the subgraph,
1402 1392
    /// so the iteration jumps over it.
1403 1393
    /// It is the same as \ref status() "status(e, false)".
1404 1394
    void disable(const Edge& e) const { Parent::status(e, false); }
1405 1395

	
1406 1396
    /// \brief Enables the given node
1407 1397
    ///
1408 1398
    /// This function enables the given node in the subdigraph.
1409 1399
    /// It is the same as \ref status() "status(n, true)".
1410 1400
    void enable(const Node& n) const { Parent::status(n, true); }
1411 1401

	
1412 1402
    /// \brief Enables the given edge
1413 1403
    ///
1414 1404
    /// This function enables the given edge in the subgraph.
1415 1405
    /// It is the same as \ref status() "status(e, true)".
1416 1406
    void enable(const Edge& e) const { Parent::status(e, true); }
1417 1407

	
1418 1408
  };
1419 1409

	
1420 1410
  /// \brief Returns a read-only SubGraph adaptor
1421 1411
  ///
1422 1412
  /// This function just returns a read-only \ref SubGraph adaptor.
1423 1413
  /// \ingroup graph_adaptors
1424 1414
  /// \relates SubGraph
1425
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1426
  SubGraph<const Graph, NodeFilterMap, ArcFilterMap>
1427
  subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) {
1428
    return SubGraph<const Graph, NodeFilterMap, ArcFilterMap>(graph, nfm, efm);
1429
  }
1430

	
1431
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1432
  SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
1433
  subGraph(const Graph& graph,
1434
           const NodeFilterMap& nfm, ArcFilterMap& efm) {
1435
    return SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
1436
      (graph, nfm, efm);
1437
  }
1438

	
1439
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1440
  SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
1441
  subGraph(const Graph& graph,
1442
           NodeFilterMap& nfm, const ArcFilterMap& efm) {
1443
    return SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
1444
      (graph, nfm, efm);
1445
  }
1446

	
1447
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1448
  SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
1449
  subGraph(const Graph& graph,
1450
           const NodeFilterMap& nfm, const ArcFilterMap& efm) {
1451
    return SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
1452
      (graph, nfm, efm);
1415
  template<typename GR, typename NF, typename EF>
1416
  SubGraph<const GR, NF, EF>
1417
  subGraph(const GR& graph,
1418
           NF& node_filter_map, EF& edge_filter_map) {
1419
    return SubGraph<const GR, NF, EF>
1420
      (graph, node_filter_map, edge_filter_map);
1421
  }
1422

	
1423
  template<typename GR, typename NF, typename EF>
1424
  SubGraph<const GR, const NF, EF>
1425
  subGraph(const GR& graph,
1426
           const NF& node_filter_map, EF& edge_filter_map) {
1427
    return SubGraph<const GR, const NF, EF>
1428
      (graph, node_filter_map, edge_filter_map);
1429
  }
1430

	
1431
  template<typename GR, typename NF, typename EF>
1432
  SubGraph<const GR, NF, const EF>
1433
  subGraph(const GR& graph,
1434
           NF& node_filter_map, const EF& edge_filter_map) {
1435
    return SubGraph<const GR, NF, const EF>
1436
      (graph, node_filter_map, edge_filter_map);
1437
  }
1438

	
1439
  template<typename GR, typename NF, typename EF>
1440
  SubGraph<const GR, const NF, const EF>
1441
  subGraph(const GR& graph,
1442
           const NF& node_filter_map, const EF& edge_filter_map) {
1443
    return SubGraph<const GR, const NF, const EF>
1444
      (graph, node_filter_map, edge_filter_map);
1453 1445
  }
1454 1446

	
1455 1447

	
1456 1448
  /// \ingroup graph_adaptors
1457 1449
  ///
1458 1450
  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1459 1451
  ///
1460 1452
  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1461 1453
  /// graph. A \c bool node map must be specified, which defines the filter
1462 1454
  /// for the nodes. Only the nodes with \c true filter value and the
1463 1455
  /// arcs/edges incident to nodes both with \c true filter value are shown
1464 1456
  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1465 1457
  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1466
  /// depending on the \c _Graph template parameter.
1458
  /// depending on the \c GR template parameter.
1467 1459
  ///
1468 1460
  /// The adapted (di)graph can also be modified through this adaptor
1469
  /// by adding or removing nodes or arcs/edges, unless the \c _Graph template
1461
  /// by adding or removing nodes or arcs/edges, unless the \c GR template
1470 1462
  /// parameter is set to be \c const.
1471 1463
  ///
1472
  /// \tparam _Graph The type of the adapted digraph or graph.
1464
  /// \tparam GR The type of the adapted digraph or graph.
1473 1465
  /// It must conform to the \ref concepts::Digraph "Digraph" concept
1474 1466
  /// or the \ref concepts::Graph "Graph" concept.
1475 1467
  /// It can also be specified to be \c const.
1476
  /// \tparam _NodeFilterMap A \c bool (or convertible) node map of the
1477
  /// adapted (di)graph. The default map type is
1478
  /// \ref concepts::Graph::NodeMap "_Graph::NodeMap<bool>".
1479
  /// \tparam _checked If this parameter is set to \c false then the arc/edge
1480
  /// filtering is not checked with respect to the node filter. In this
1481
  /// case only isolated nodes can be filtered out from the graph.
1482
  /// Otherwise, each arc/edge that is incident to a hidden node is
1483
  /// automatically filtered out. This is the default option.
1468
  /// \tparam NF The type of the node filter map.
1469
  /// It must be a \c bool (or convertible) node map of the
1470
  /// adapted (di)graph. The default type is
1471
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1484 1472
  ///
1485 1473
  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1486 1474
  /// adapted (di)graph are convertible to each other.
1487 1475
#ifdef DOXYGEN
1488
  template<typename _Graph,
1489
           typename _NodeFilterMap,
1490
           bool _checked>
1476
  template<typename GR, typename NF>
1477
  class FilterNodes {
1491 1478
#else
1492
  template<typename _Digraph,
1493
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
1494
           bool _checked = true,
1479
  template<typename GR,
1480
           typename NF = typename GR::template NodeMap<bool>,
1495 1481
           typename Enable = void>
1482
  class FilterNodes :
1483
    public DigraphAdaptorExtender<
1484
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, bool>, true> > {
1496 1485
#endif
1497
  class FilterNodes
1498
    : public SubDigraph<_Digraph, _NodeFilterMap,
1499
                        ConstMap<typename _Digraph::Arc, bool>, _checked> {
1500 1486
  public:
1501 1487

	
1502
    typedef _Digraph Digraph;
1503
    typedef _NodeFilterMap NodeFilterMap;
1504

	
1505
    typedef SubDigraph<Digraph, NodeFilterMap,
1506
                       ConstMap<typename Digraph::Arc, bool>, _checked>
1488
    typedef GR Digraph;
1489
    typedef NF NodeFilterMap;
1490

	
1491
    typedef DigraphAdaptorExtender<
1492
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, bool>, true> >
1507 1493
    Parent;
1508 1494

	
1509 1495
    typedef typename Parent::Node Node;
1510 1496

	
1511 1497
  protected:
1512 1498
    ConstMap<typename Digraph::Arc, bool> const_true_map;
1513 1499

	
1514 1500
    FilterNodes() : const_true_map(true) {
1515 1501
      Parent::setArcFilterMap(const_true_map);
1516 1502
    }
1517 1503

	
1518 1504
  public:
1519 1505

	
1520 1506
    /// \brief Constructor
1521 1507
    ///
1522 1508
    /// Creates a subgraph for the given digraph or graph with the
1523 1509
    /// given node filter map.
1524
#ifdef DOXYGEN
1525
    FilterNodes(_Graph& graph, _NodeFilterMap& node_filter) :
1526
#else
1527
    FilterNodes(Digraph& graph, NodeFilterMap& node_filter) :
1528
#endif
1529
      Parent(), const_true_map(true) {
1510
    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1511
      Parent(), const_true_map(true)
1512
    {
1530 1513
      Parent::setDigraph(graph);
1531 1514
      Parent::setNodeFilterMap(node_filter);
1532 1515
      Parent::setArcFilterMap(const_true_map);
1533 1516
    }
1534 1517

	
1535 1518
    /// \brief Sets the status of the given node
1536 1519
    ///
1537 1520
    /// This function sets the status of the given node.
1538 1521
    /// It is done by simply setting the assigned value of \c n
1539 1522
    /// to \c v in the node filter map.
1540 1523
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1541 1524

	
1542 1525
    /// \brief Returns the status of the given node
1543 1526
    ///
1544 1527
    /// This function returns the status of the given node.
1545 1528
    /// It is \c true if the given node is enabled (i.e. not hidden).
1546 1529
    bool status(const Node& n) const { return Parent::status(n); }
1547 1530

	
1548 1531
    /// \brief Disables the given node
1549 1532
    ///
1550 1533
    /// This function disables the given node, so the iteration
1551 1534
    /// jumps over it.
1552 1535
    /// It is the same as \ref status() "status(n, false)".
1553 1536
    void disable(const Node& n) const { Parent::status(n, false); }
1554 1537

	
1555 1538
    /// \brief Enables the given node
1556 1539
    ///
1557 1540
    /// This function enables the given node.
1558 1541
    /// It is the same as \ref status() "status(n, true)".
1559 1542
    void enable(const Node& n) const { Parent::status(n, true); }
1560 1543

	
1561 1544
  };
1562 1545

	
1563
  template<typename _Graph, typename _NodeFilterMap, bool _checked>
1564
  class FilterNodes<_Graph, _NodeFilterMap, _checked,
1565
                    typename enable_if<UndirectedTagIndicator<_Graph> >::type>
1566
    : public SubGraph<_Graph, _NodeFilterMap,
1567
                      ConstMap<typename _Graph::Edge, bool>, _checked> {
1546
  template<typename GR, typename NF>
1547
  class FilterNodes<GR, NF,
1548
                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1549
    public GraphAdaptorExtender<
1550
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, bool>, true> > {
1551

	
1568 1552
  public:
1569
    typedef _Graph Graph;
1570
    typedef _NodeFilterMap NodeFilterMap;
1571
    typedef SubGraph<Graph, NodeFilterMap,
1572
                     ConstMap<typename Graph::Edge, bool> > Parent;
1553
    typedef GR Graph;
1554
    typedef NF NodeFilterMap;
1555
    typedef GraphAdaptorExtender<
1556
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, bool>, true> >
1557
      Parent;
1573 1558

	
1574 1559
    typedef typename Parent::Node Node;
1575 1560
  protected:
1576 1561
    ConstMap<typename Graph::Edge, bool> const_true_map;
1577 1562

	
1578 1563
    FilterNodes() : const_true_map(true) {
1579 1564
      Parent::setEdgeFilterMap(const_true_map);
1580 1565
    }
1581 1566

	
1582 1567
  public:
1583 1568

	
1584 1569
    FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) :
1585 1570
      Parent(), const_true_map(true) {
1586 1571
      Parent::setGraph(_graph);
1587 1572
      Parent::setNodeFilterMap(node_filter_map);
1588 1573
      Parent::setEdgeFilterMap(const_true_map);
1589 1574
    }
1590 1575

	
1591 1576
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1592 1577
    bool status(const Node& n) const { return Parent::status(n); }
1593 1578
    void disable(const Node& n) const { Parent::status(n, false); }
1594 1579
    void enable(const Node& n) const { Parent::status(n, true); }
1595 1580

	
1596 1581
  };
1597 1582

	
1598 1583

	
1599 1584
  /// \brief Returns a read-only FilterNodes adaptor
1600 1585
  ///
1601 1586
  /// This function just returns a read-only \ref FilterNodes adaptor.
1602 1587
  /// \ingroup graph_adaptors
1603 1588
  /// \relates FilterNodes
1604
  template<typename Digraph, typename NodeFilterMap>
1605
  FilterNodes<const Digraph, NodeFilterMap>
1606
  filterNodes(const Digraph& digraph, NodeFilterMap& nfm) {
1607
    return FilterNodes<const Digraph, NodeFilterMap>(digraph, nfm);
1608
  }
1609

	
1610
  template<typename Digraph, typename NodeFilterMap>
1611
  FilterNodes<const Digraph, const NodeFilterMap>
1612
  filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) {
1613
    return FilterNodes<const Digraph, const NodeFilterMap>(digraph, nfm);
1589
  template<typename GR, typename NF>
1590
  FilterNodes<const GR, NF>
1591
  filterNodes(const GR& graph, NF& node_filter_map) {
1592
    return FilterNodes<const GR, NF>(graph, node_filter_map);
1593
  }
1594

	
1595
  template<typename GR, typename NF>
1596
  FilterNodes<const GR, const NF>
1597
  filterNodes(const GR& graph, const NF& node_filter_map) {
1598
    return FilterNodes<const GR, const NF>(graph, node_filter_map);
1614 1599
  }
1615 1600

	
1616 1601
  /// \ingroup graph_adaptors
1617 1602
  ///
1618 1603
  /// \brief Adaptor class for hiding arcs in a digraph.
1619 1604
  ///
1620 1605
  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1621 1606
  /// A \c bool arc map must be specified, which defines the filter for
1622 1607
  /// the arcs. Only the arcs with \c true filter value are shown in the
1623 1608
  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1624 1609
  /// "Digraph" concept.
1625 1610
  ///
1626 1611
  /// The adapted digraph can also be modified through this adaptor
1627
  /// by adding or removing nodes or arcs, unless the \c _Digraph template
1612
  /// by adding or removing nodes or arcs, unless the \c GR template
1628 1613
  /// parameter is set to be \c const.
1629 1614
  ///
1630
  /// \tparam _Digraph The type of the adapted digraph.
1615
  /// \tparam GR The type of the adapted digraph.
1631 1616
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1632 1617
  /// It can also be specified to be \c const.
1633
  /// \tparam _ArcFilterMap A \c bool (or convertible) arc map of the
1634
  /// adapted digraph. The default map type is
1635
  /// \ref concepts::Digraph::ArcMap "_Digraph::ArcMap<bool>".
1618
  /// \tparam AF The type of the arc filter map.
1619
  /// It must be a \c bool (or convertible) arc map of the
1620
  /// adapted digraph. The default type is
1621
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<bool>".
1636 1622
  ///
1637 1623
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
1638 1624
  /// digraph are convertible to each other.
1639 1625
#ifdef DOXYGEN
1640
  template<typename _Digraph,
1641
           typename _ArcFilterMap>
1626
  template<typename GR,
1627
           typename AF>
1628
  class FilterArcs {
1642 1629
#else
1643
  template<typename _Digraph,
1644
           typename _ArcFilterMap = typename _Digraph::template ArcMap<bool> >
1630
  template<typename GR,
1631
           typename AF = typename GR::template ArcMap<bool> >
1632
  class FilterArcs :
1633
    public DigraphAdaptorExtender<
1634
      SubDigraphBase<GR, ConstMap<typename GR::Node, bool>, AF, false> > {
1645 1635
#endif
1646
  class FilterArcs :
1647
    public SubDigraph<_Digraph, ConstMap<typename _Digraph::Node, bool>,
1648
                      _ArcFilterMap, false> {
1649 1636
  public:
1650

	
1651
    typedef _Digraph Digraph;
1652
    typedef _ArcFilterMap ArcFilterMap;
1653

	
1654
    typedef SubDigraph<Digraph, ConstMap<typename Digraph::Node, bool>,
1655
                       ArcFilterMap, false> Parent;
1637
    /// The type of the adapted digraph.
1638
    typedef GR Digraph;
1639
    /// The type of the arc filter map.
1640
    typedef AF ArcFilterMap;
1641

	
1642
    typedef DigraphAdaptorExtender<
1643
      SubDigraphBase<GR, ConstMap<typename GR::Node, bool>, AF, false> >
1644
      Parent;
1656 1645

	
1657 1646
    typedef typename Parent::Arc Arc;
1658 1647

	
1659 1648
  protected:
1660 1649
    ConstMap<typename Digraph::Node, bool> const_true_map;
1661 1650

	
1662 1651
    FilterArcs() : const_true_map(true) {
1663 1652
      Parent::setNodeFilterMap(const_true_map);
1664 1653
    }
1665 1654

	
1666 1655
  public:
1667 1656

	
1668 1657
    /// \brief Constructor
1669 1658
    ///
1670 1659
    /// Creates a subdigraph for the given digraph with the given arc
1671 1660
    /// filter map.
1672 1661
    FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter)
1673 1662
      : Parent(), const_true_map(true) {
1674 1663
      Parent::setDigraph(digraph);
1675 1664
      Parent::setNodeFilterMap(const_true_map);
1676 1665
      Parent::setArcFilterMap(arc_filter);
1677 1666
    }
1678 1667

	
1679 1668
    /// \brief Sets the status of the given arc
1680 1669
    ///
1681 1670
    /// This function sets the status of the given arc.
1682 1671
    /// It is done by simply setting the assigned value of \c a
1683 1672
    /// to \c v in the arc filter map.
1684 1673
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
1685 1674

	
1686 1675
    /// \brief Returns the status of the given arc
1687 1676
    ///
1688 1677
    /// This function returns the status of the given arc.
1689 1678
    /// It is \c true if the given arc is enabled (i.e. not hidden).
1690 1679
    bool status(const Arc& a) const { return Parent::status(a); }
1691 1680

	
1692 1681
    /// \brief Disables the given arc
1693 1682
    ///
1694 1683
    /// This function disables the given arc in the subdigraph,
1695 1684
    /// so the iteration jumps over it.
1696 1685
    /// It is the same as \ref status() "status(a, false)".
1697 1686
    void disable(const Arc& a) const { Parent::status(a, false); }
1698 1687

	
1699 1688
    /// \brief Enables the given arc
1700 1689
    ///
1701 1690
    /// This function enables the given arc in the subdigraph.
1702 1691
    /// It is the same as \ref status() "status(a, true)".
1703 1692
    void enable(const Arc& a) const { Parent::status(a, true); }
1704 1693

	
1705 1694
  };
1706 1695

	
1707 1696
  /// \brief Returns a read-only FilterArcs adaptor
1708 1697
  ///
1709 1698
  /// This function just returns a read-only \ref FilterArcs adaptor.
1710 1699
  /// \ingroup graph_adaptors
1711 1700
  /// \relates FilterArcs
1712
  template<typename Digraph, typename ArcFilterMap>
1713
  FilterArcs<const Digraph, ArcFilterMap>
1714
  filterArcs(const Digraph& digraph, ArcFilterMap& afm) {
1715
    return FilterArcs<const Digraph, ArcFilterMap>(digraph, afm);
1716
  }
1717

	
1718
  template<typename Digraph, typename ArcFilterMap>
1719
  FilterArcs<const Digraph, const ArcFilterMap>
1720
  filterArcs(const Digraph& digraph, const ArcFilterMap& afm) {
1721
    return FilterArcs<const Digraph, const ArcFilterMap>(digraph, afm);
1701
  template<typename GR, typename AF>
1702
  FilterArcs<const GR, AF>
1703
  filterArcs(const GR& digraph, AF& arc_filter_map) {
1704
    return FilterArcs<const GR, AF>(digraph, arc_filter_map);
1705
  }
1706

	
1707
  template<typename GR, typename AF>
1708
  FilterArcs<const GR, const AF>
1709
  filterArcs(const GR& digraph, const AF& arc_filter_map) {
1710
    return FilterArcs<const GR, const AF>(digraph, arc_filter_map);
1722 1711
  }
1723 1712

	
1724 1713
  /// \ingroup graph_adaptors
1725 1714
  ///
1726 1715
  /// \brief Adaptor class for hiding edges in a graph.
1727 1716
  ///
1728 1717
  /// FilterEdges adaptor can be used for hiding edges in a graph.
1729 1718
  /// A \c bool edge map must be specified, which defines the filter for
1730 1719
  /// the edges. Only the edges with \c true filter value are shown in the
1731 1720
  /// subgraph. This adaptor conforms to the \ref concepts::Graph
1732 1721
  /// "Graph" concept.
1733 1722
  ///
1734 1723
  /// The adapted graph can also be modified through this adaptor
1735
  /// by adding or removing nodes or edges, unless the \c _Graph template
1724
  /// by adding or removing nodes or edges, unless the \c GR template
1736 1725
  /// parameter is set to be \c const.
1737 1726
  ///
1738
  /// \tparam _Graph The type of the adapted graph.
1727
  /// \tparam GR The type of the adapted graph.
1739 1728
  /// It must conform to the \ref concepts::Graph "Graph" concept.
1740 1729
  /// It can also be specified to be \c const.
1741
  /// \tparam _EdgeFilterMap A \c bool (or convertible) edge map of the
1742
  /// adapted graph. The default map type is
1743
  /// \ref concepts::Graph::EdgeMap "_Graph::EdgeMap<bool>".
1730
  /// \tparam EF The type of the edge filter map.
1731
  /// It must be a \c bool (or convertible) edge map of the
1732
  /// adapted graph. The default type is
1733
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1744 1734
  ///
1745 1735
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1746 1736
  /// adapted graph are convertible to each other.
1747 1737
#ifdef DOXYGEN
1748
  template<typename _Graph,
1749
           typename _EdgeFilterMap>
1738
  template<typename GR,
1739
           typename EF>
1740
  class FilterEdges {
1750 1741
#else
1751
  template<typename _Graph,
1752
           typename _EdgeFilterMap = typename _Graph::template EdgeMap<bool> >
1742
  template<typename GR,
1743
           typename EF = typename GR::template EdgeMap<bool> >
1744
  class FilterEdges :
1745
    public GraphAdaptorExtender<
1746
      SubGraphBase<GR, ConstMap<typename GR::Node,bool>, EF, false> > {
1753 1747
#endif
1754
  class FilterEdges :
1755
    public SubGraph<_Graph, ConstMap<typename _Graph::Node,bool>,
1756
                    _EdgeFilterMap, false> {
1757 1748
  public:
1758
    typedef _Graph Graph;
1759
    typedef _EdgeFilterMap EdgeFilterMap;
1760
    typedef SubGraph<Graph, ConstMap<typename Graph::Node,bool>,
1761
                     EdgeFilterMap, false> Parent;
1749
    /// The type of the adapted graph.
1750
    typedef GR Graph;
1751
    /// The type of the edge filter map.
1752
    typedef EF EdgeFilterMap;
1753

	
1754
    typedef GraphAdaptorExtender<
1755
      SubGraphBase<GR, ConstMap<typename GR::Node,bool>, EF, false> >
1756
      Parent;
1757

	
1762 1758
    typedef typename Parent::Edge Edge;
1759

	
1763 1760
  protected:
1764 1761
    ConstMap<typename Graph::Node, bool> const_true_map;
1765 1762

	
1766 1763
    FilterEdges() : const_true_map(true) {
1767 1764
      Parent::setNodeFilterMap(const_true_map);
1768 1765
    }
1769 1766

	
1770 1767
  public:
1771 1768

	
1772 1769
    /// \brief Constructor
1773 1770
    ///
1774 1771
    /// Creates a subgraph for the given graph with the given edge
1775 1772
    /// filter map.
1776 1773
    FilterEdges(Graph& graph, EdgeFilterMap& edge_filter_map) :
1777 1774
      Parent(), const_true_map(true) {
1778 1775
      Parent::setGraph(graph);
1779 1776
      Parent::setNodeFilterMap(const_true_map);
1780 1777
      Parent::setEdgeFilterMap(edge_filter_map);
1781 1778
    }
1782 1779

	
1783 1780
    /// \brief Sets the status of the given edge
1784 1781
    ///
1785 1782
    /// This function sets the status of the given edge.
1786 1783
    /// It is done by simply setting the assigned value of \c e
1787 1784
    /// to \c v in the edge filter map.
1788 1785
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1789 1786

	
1790 1787
    /// \brief Returns the status of the given edge
1791 1788
    ///
1792 1789
    /// This function returns the status of the given edge.
1793 1790
    /// It is \c true if the given edge is enabled (i.e. not hidden).
1794 1791
    bool status(const Edge& e) const { return Parent::status(e); }
1795 1792

	
1796 1793
    /// \brief Disables the given edge
1797 1794
    ///
1798 1795
    /// This function disables the given edge in the subgraph,
1799 1796
    /// so the iteration jumps over it.
1800 1797
    /// It is the same as \ref status() "status(e, false)".
1801 1798
    void disable(const Edge& e) const { Parent::status(e, false); }
1802 1799

	
1803 1800
    /// \brief Enables the given edge
1804 1801
    ///
1805 1802
    /// This function enables the given edge in the subgraph.
1806 1803
    /// It is the same as \ref status() "status(e, true)".
1807 1804
    void enable(const Edge& e) const { Parent::status(e, true); }
1808 1805

	
1809 1806
  };
1810 1807

	
1811 1808
  /// \brief Returns a read-only FilterEdges adaptor
1812 1809
  ///
1813 1810
  /// This function just returns a read-only \ref FilterEdges adaptor.
1814 1811
  /// \ingroup graph_adaptors
1815 1812
  /// \relates FilterEdges
1816
  template<typename Graph, typename EdgeFilterMap>
1817
  FilterEdges<const Graph, EdgeFilterMap>
1818
  filterEdges(const Graph& graph, EdgeFilterMap& efm) {
1819
    return FilterEdges<const Graph, EdgeFilterMap>(graph, efm);
1820
  }
1821

	
1822
  template<typename Graph, typename EdgeFilterMap>
1823
  FilterEdges<const Graph, const EdgeFilterMap>
1824
  filterEdges(const Graph& graph, const EdgeFilterMap& efm) {
1825
    return FilterEdges<const Graph, const EdgeFilterMap>(graph, efm);
1813
  template<typename GR, typename EF>
1814
  FilterEdges<const GR, EF>
1815
  filterEdges(const GR& graph, EF& edge_filter_map) {
1816
    return FilterEdges<const GR, EF>(graph, edge_filter_map);
1817
  }
1818

	
1819
  template<typename GR, typename EF>
1820
  FilterEdges<const GR, const EF>
1821
  filterEdges(const GR& graph, const EF& edge_filter_map) {
1822
    return FilterEdges<const GR, const EF>(graph, edge_filter_map);
1826 1823
  }
1827 1824

	
1828 1825

	
1829 1826
  template <typename _Digraph>
1830 1827
  class UndirectorBase {
1831 1828
  public:
1832 1829
    typedef _Digraph Digraph;
1833 1830
    typedef UndirectorBase Adaptor;
1834 1831

	
1835 1832
    typedef True UndirectedTag;
1836 1833

	
1837 1834
    typedef typename Digraph::Arc Edge;
1838 1835
    typedef typename Digraph::Node Node;
1839 1836

	
1840 1837
    class Arc : public Edge {
1841 1838
      friend class UndirectorBase;
1842 1839
    protected:
1843 1840
      bool _forward;
1844 1841

	
1845 1842
      Arc(const Edge& edge, bool forward) :
1846 1843
        Edge(edge), _forward(forward) {}
1847 1844

	
1848 1845
    public:
1849 1846
      Arc() {}
1850 1847

	
1851 1848
      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1852 1849

	
1853 1850
      bool operator==(const Arc &other) const {
1854 1851
        return _forward == other._forward &&
1855 1852
          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1856 1853
      }
1857 1854
      bool operator!=(const Arc &other) const {
1858 1855
        return _forward != other._forward ||
1859 1856
          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1860 1857
      }
1861 1858
      bool operator<(const Arc &other) const {
1862 1859
        return _forward < other._forward ||
1863 1860
          (_forward == other._forward &&
1864 1861
           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1865 1862
      }
1866 1863
    };
1867 1864

	
1868 1865
    void first(Node& n) const {
1869 1866
      _digraph->first(n);
1870 1867
    }
1871 1868

	
1872 1869
    void next(Node& n) const {
1873 1870
      _digraph->next(n);
... ...
@@ -2181,230 +2178,231 @@
2181 2178

	
2182 2179
      explicit EdgeMap(const Adaptor& adaptor)
2183 2180
        : Parent(*adaptor._digraph) {}
2184 2181

	
2185 2182
      EdgeMap(const Adaptor& adaptor, const Value& value)
2186 2183
        : Parent(*adaptor._digraph, value) {}
2187 2184

	
2188 2185
    private:
2189 2186
      EdgeMap& operator=(const EdgeMap& cmap) {
2190 2187
        return operator=<EdgeMap>(cmap);
2191 2188
      }
2192 2189

	
2193 2190
      template <typename CMap>
2194 2191
      EdgeMap& operator=(const CMap& cmap) {
2195 2192
        Parent::operator=(cmap);
2196 2193
        return *this;
2197 2194
      }
2198 2195

	
2199 2196
    };
2200 2197

	
2201 2198
    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
2202 2199
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2203 2200

	
2204 2201
    typedef typename ItemSetTraits<Digraph, Edge>::ItemNotifier EdgeNotifier;
2205 2202
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2206 2203

	
2207 2204
  protected:
2208 2205

	
2209 2206
    UndirectorBase() : _digraph(0) {}
2210 2207

	
2211 2208
    Digraph* _digraph;
2212 2209

	
2213 2210
    void setDigraph(Digraph& digraph) {
2214 2211
      _digraph = &digraph;
2215 2212
    }
2216 2213

	
2217 2214
  };
2218 2215

	
2219 2216
  /// \ingroup graph_adaptors
2220 2217
  ///
2221 2218
  /// \brief Adaptor class for viewing a digraph as an undirected graph.
2222 2219
  ///
2223 2220
  /// Undirector adaptor can be used for viewing a digraph as an undirected
2224 2221
  /// graph. All arcs of the underlying digraph are showed in the
2225 2222
  /// adaptor as an edge (and also as a pair of arcs, of course).
2226 2223
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2227 2224
  ///
2228 2225
  /// The adapted digraph can also be modified through this adaptor
2229
  /// by adding or removing nodes or edges, unless the \c _Digraph template
2226
  /// by adding or removing nodes or edges, unless the \c GR template
2230 2227
  /// parameter is set to be \c const.
2231 2228
  ///
2232
  /// \tparam _Digraph The type of the adapted digraph.
2229
  /// \tparam GR The type of the adapted digraph.
2233 2230
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2234 2231
  /// It can also be specified to be \c const.
2235 2232
  ///
2236 2233
  /// \note The \c Node type of this adaptor and the adapted digraph are
2237 2234
  /// convertible to each other, moreover the \c Edge type of the adaptor
2238 2235
  /// and the \c Arc type of the adapted digraph are also convertible to
2239 2236
  /// each other.
2240 2237
  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2241 2238
  /// of the adapted digraph.)
2242
  template<typename _Digraph>
2243
  class Undirector
2244
    : public GraphAdaptorExtender<UndirectorBase<_Digraph> > {
2239
  template<typename GR>
2240
#ifdef DOXYGEN
2241
  class Undirector {
2242
#else
2243
  class Undirector :
2244
    public GraphAdaptorExtender<UndirectorBase<GR> > {
2245
#endif
2245 2246
  public:
2246
    typedef _Digraph Digraph;
2247
    typedef GraphAdaptorExtender<UndirectorBase<Digraph> > Parent;
2247
    /// The type of the adapted digraph.
2248
    typedef GR Digraph;
2249
    typedef GraphAdaptorExtender<UndirectorBase<GR> > Parent;
2248 2250
  protected:
2249 2251
    Undirector() { }
2250 2252
  public:
2251 2253

	
2252 2254
    /// \brief Constructor
2253 2255
    ///
2254 2256
    /// Creates an undirected graph from the given digraph.
2255
    Undirector(_Digraph& digraph) {
2257
    Undirector(Digraph& digraph) {
2256 2258
      setDigraph(digraph);
2257 2259
    }
2258 2260

	
2259 2261
    /// \brief Arc map combined from two original arc maps
2260 2262
    ///
2261 2263
    /// This map adaptor class adapts two arc maps of the underlying
2262 2264
    /// digraph to get an arc map of the undirected graph.
2263 2265
    /// Its value type is inherited from the first arc map type
2264 2266
    /// (\c %ForwardMap).
2265
    template <typename _ForwardMap, typename _BackwardMap>
2267
    template <typename ForwardMap, typename BackwardMap>
2266 2268
    class CombinedArcMap {
2267 2269
    public:
2268 2270

	
2269
      typedef _ForwardMap ForwardMap;
2270
      typedef _BackwardMap BackwardMap;
2271

	
2272
      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
2273

	
2274 2271
      /// The key type of the map
2275 2272
      typedef typename Parent::Arc Key;
2276 2273
      /// The value type of the map
2277 2274
      typedef typename ForwardMap::Value Value;
2278 2275

	
2276
      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
2277

	
2279 2278
      typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue;
2280 2279
      typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue;
2281 2280
      typedef typename MapTraits<ForwardMap>::ReturnValue Reference;
2282 2281
      typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference;
2283 2282

	
2284 2283
      /// Constructor
2285 2284
      CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
2286 2285
        : _forward(&forward), _backward(&backward) {}
2287 2286

	
2288 2287
      /// Sets the value associated with the given key.
2289 2288
      void set(const Key& e, const Value& a) {
2290 2289
        if (Parent::direction(e)) {
2291 2290
          _forward->set(e, a);
2292 2291
        } else {
2293 2292
          _backward->set(e, a);
2294 2293
        }
2295 2294
      }
2296 2295

	
2297 2296
      /// Returns the value associated with the given key.
2298 2297
      ConstReturnValue operator[](const Key& e) const {
2299 2298
        if (Parent::direction(e)) {
2300 2299
          return (*_forward)[e];
2301 2300
        } else {
2302 2301
          return (*_backward)[e];
2303 2302
        }
2304 2303
      }
2305 2304

	
2306 2305
      /// Returns a reference to the value associated with the given key.
2307 2306
      ReturnValue operator[](const Key& e) {
2308 2307
        if (Parent::direction(e)) {
2309 2308
          return (*_forward)[e];
2310 2309
        } else {
2311 2310
          return (*_backward)[e];
2312 2311
        }
2313 2312
      }
2314 2313

	
2315 2314
    protected:
2316 2315

	
2317 2316
      ForwardMap* _forward;
2318 2317
      BackwardMap* _backward;
2319 2318

	
2320 2319
    };
2321 2320

	
2322 2321
    /// \brief Returns a combined arc map
2323 2322
    ///
2324 2323
    /// This function just returns a combined arc map.
2325 2324
    template <typename ForwardMap, typename BackwardMap>
2326 2325
    static CombinedArcMap<ForwardMap, BackwardMap>
2327 2326
    combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
2328 2327
      return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
2329 2328
    }
2330 2329

	
2331 2330
    template <typename ForwardMap, typename BackwardMap>
2332 2331
    static CombinedArcMap<const ForwardMap, BackwardMap>
2333 2332
    combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
2334 2333
      return CombinedArcMap<const ForwardMap,
2335 2334
        BackwardMap>(forward, backward);
2336 2335
    }
2337 2336

	
2338 2337
    template <typename ForwardMap, typename BackwardMap>
2339 2338
    static CombinedArcMap<ForwardMap, const BackwardMap>
2340 2339
    combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
2341 2340
      return CombinedArcMap<ForwardMap,
2342 2341
        const BackwardMap>(forward, backward);
2343 2342
    }
2344 2343

	
2345 2344
    template <typename ForwardMap, typename BackwardMap>
2346 2345
    static CombinedArcMap<const ForwardMap, const BackwardMap>
2347 2346
    combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
2348 2347
      return CombinedArcMap<const ForwardMap,
2349 2348
        const BackwardMap>(forward, backward);
2350 2349
    }
2351 2350

	
2352 2351
  };
2353 2352

	
2354 2353
  /// \brief Returns a read-only Undirector adaptor
2355 2354
  ///
2356 2355
  /// This function just returns a read-only \ref Undirector adaptor.
2357 2356
  /// \ingroup graph_adaptors
2358 2357
  /// \relates Undirector
2359
  template<typename Digraph>
2360
  Undirector<const Digraph>
2361
  undirector(const Digraph& digraph) {
2362
    return Undirector<const Digraph>(digraph);
2358
  template<typename GR>
2359
  Undirector<const GR> undirector(const GR& digraph) {
2360
    return Undirector<const GR>(digraph);
2363 2361
  }
2364 2362

	
2365 2363

	
2366 2364
  template <typename _Graph, typename _DirectionMap>
2367 2365
  class OrienterBase {
2368 2366
  public:
2369 2367

	
2370 2368
    typedef _Graph Graph;
2371 2369
    typedef _DirectionMap DirectionMap;
2372 2370

	
2373 2371
    typedef typename Graph::Node Node;
2374 2372
    typedef typename Graph::Edge Arc;
2375 2373

	
2376 2374
    void reverseArc(const Arc& arc) {
2377 2375
      _direction->set(arc, !(*_direction)[arc]);
2378 2376
    }
2379 2377

	
2380 2378
    void first(Node& i) const { _graph->first(i); }
2381 2379
    void first(Arc& i) const { _graph->first(i); }
2382 2380
    void firstIn(Arc& i, const Node& n) const {
2383 2381
      bool d = true;
2384 2382
      _graph->firstInc(i, d, n);
2385 2383
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2386 2384
    }
2387 2385
    void firstOut(Arc& i, const Node& n ) const {
2388 2386
      bool d = true;
2389 2387
      _graph->firstInc(i, d, n);
2390 2388
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2391 2389
    }
2392 2390

	
2393 2391
    void next(Node& i) const { _graph->next(i); }
2394 2392
    void next(Arc& i) const { _graph->next(i); }
2395 2393
    void nextIn(Arc& i) const {
2396 2394
      bool d = !(*_direction)[i];
2397 2395
      _graph->nextInc(i, d);
2398 2396
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2399 2397
    }
2400 2398
    void nextOut(Arc& i) const {
2401 2399
      bool d = (*_direction)[i];
2402 2400
      _graph->nextInc(i, d);
2403 2401
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2404 2402
    }
2405 2403

	
2406 2404
    Node source(const Arc& e) const {
2407 2405
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2408 2406
    }
2409 2407
    Node target(const Arc& e) const {
2410 2408
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
... ...
@@ -2488,305 +2486,293 @@
2488 2486
      typedef typename Graph::template EdgeMap<_Value> Parent;
2489 2487

	
2490 2488
      explicit ArcMap(const OrienterBase& adapter)
2491 2489
        : Parent(*adapter._graph) { }
2492 2490

	
2493 2491
      ArcMap(const OrienterBase& adapter, const _Value& value)
2494 2492
        : Parent(*adapter._graph, value) { }
2495 2493

	
2496 2494
    private:
2497 2495
      ArcMap& operator=(const ArcMap& cmap) {
2498 2496
        return operator=<ArcMap>(cmap);
2499 2497
      }
2500 2498

	
2501 2499
      template <typename CMap>
2502 2500
      ArcMap& operator=(const CMap& cmap) {
2503 2501
        Parent::operator=(cmap);
2504 2502
        return *this;
2505 2503
      }
2506 2504
    };
2507 2505

	
2508 2506

	
2509 2507

	
2510 2508
  protected:
2511 2509
    Graph* _graph;
2512 2510
    DirectionMap* _direction;
2513 2511

	
2514 2512
    void setDirectionMap(DirectionMap& direction) {
2515 2513
      _direction = &direction;
2516 2514
    }
2517 2515

	
2518 2516
    void setGraph(Graph& graph) {
2519 2517
      _graph = &graph;
2520 2518
    }
2521 2519

	
2522 2520
  };
2523 2521

	
2524 2522
  /// \ingroup graph_adaptors
2525 2523
  ///
2526 2524
  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2527 2525
  ///
2528 2526
  /// Orienter adaptor can be used for orienting the edges of a graph to
2529 2527
  /// get a digraph. A \c bool edge map of the underlying graph must be
2530 2528
  /// specified, which define the direction of the arcs in the adaptor.
2531 2529
  /// The arcs can be easily reversed by the \c reverseArc() member function
2532 2530
  /// of the adaptor.
2533 2531
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2534 2532
  ///
2535 2533
  /// The adapted graph can also be modified through this adaptor
2536
  /// by adding or removing nodes or arcs, unless the \c _Graph template
2534
  /// by adding or removing nodes or arcs, unless the \c GR template
2537 2535
  /// parameter is set to be \c const.
2538 2536
  ///
2539
  /// \tparam _Graph The type of the adapted graph.
2537
  /// \tparam GR The type of the adapted graph.
2540 2538
  /// It must conform to the \ref concepts::Graph "Graph" concept.
2541 2539
  /// It can also be specified to be \c const.
2542
  /// \tparam _DirectionMap A \c bool (or convertible) edge map of the
2543
  /// adapted graph. The default map type is
2544
  /// \ref concepts::Graph::EdgeMap "_Graph::EdgeMap<bool>".
2540
  /// \tparam DM The type of the direction map.
2541
  /// It must be a \c bool (or convertible) edge map of the
2542
  /// adapted graph. The default type is
2543
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2545 2544
  ///
2546 2545
  /// \note The \c Node type of this adaptor and the adapted graph are
2547 2546
  /// convertible to each other, moreover the \c Arc type of the adaptor
2548 2547
  /// and the \c Edge type of the adapted graph are also convertible to
2549 2548
  /// each other.
2550 2549
#ifdef DOXYGEN
2551
  template<typename _Graph,
2552
           typename _DirectionMap>
2550
  template<typename GR,
2551
           typename DM>
2552
  class Orienter {
2553 2553
#else
2554
  template<typename _Graph,
2555
           typename _DirectionMap = typename _Graph::template EdgeMap<bool> >
2554
  template<typename GR,
2555
           typename DM = typename GR::template EdgeMap<bool> >
2556
  class Orienter :
2557
    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2556 2558
#endif
2557
  class Orienter :
2558
    public DigraphAdaptorExtender<OrienterBase<_Graph, _DirectionMap> > {
2559 2559
  public:
2560 2560

	
2561 2561
    /// The type of the adapted graph.
2562
    typedef _Graph Graph;
2562
    typedef GR Graph;
2563 2563
    /// The type of the direction edge map.
2564
    typedef _DirectionMap DirectionMap;
2565

	
2566
    typedef DigraphAdaptorExtender<
2567
      OrienterBase<_Graph, _DirectionMap> > Parent;
2564
    typedef DM DirectionMap;
2565

	
2566
    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2568 2567
    typedef typename Parent::Arc Arc;
2569 2568
  protected:
2570 2569
    Orienter() { }
2571 2570
  public:
2572 2571

	
2573 2572
    /// \brief Constructor
2574 2573
    ///
2575 2574
    /// Constructor of the adaptor.
2576 2575
    Orienter(Graph& graph, DirectionMap& direction) {
2577 2576
      setGraph(graph);
2578 2577
      setDirectionMap(direction);
2579 2578
    }
2580 2579

	
2581 2580
    /// \brief Reverses the given arc
2582 2581
    ///
2583 2582
    /// This function reverses the given arc.
2584 2583
    /// It is done by simply negate the assigned value of \c a
2585 2584
    /// in the direction map.
2586 2585
    void reverseArc(const Arc& a) {
2587 2586
      Parent::reverseArc(a);
2588 2587
    }
2589 2588
  };
2590 2589

	
2591 2590
  /// \brief Returns a read-only Orienter adaptor
2592 2591
  ///
2593 2592
  /// This function just returns a read-only \ref Orienter adaptor.
2594 2593
  /// \ingroup graph_adaptors
2595 2594
  /// \relates Orienter
2596
  template<typename Graph, typename DirectionMap>
2597
  Orienter<const Graph, DirectionMap>
2598
  orienter(const Graph& graph, DirectionMap& dm) {
2599
    return Orienter<const Graph, DirectionMap>(graph, dm);
2600
  }
2601

	
2602
  template<typename Graph, typename DirectionMap>
2603
  Orienter<const Graph, const DirectionMap>
2604
  orienter(const Graph& graph, const DirectionMap& dm) {
2605
    return Orienter<const Graph, const DirectionMap>(graph, dm);
2595
  template<typename GR, typename DM>
2596
  Orienter<const GR, DM>
2597
  orienter(const GR& graph, DM& direction_map) {
2598
    return Orienter<const GR, DM>(graph, direction_map);
2599
  }
2600

	
2601
  template<typename GR, typename DM>
2602
  Orienter<const GR, const DM>
2603
  orienter(const GR& graph, const DM& direction_map) {
2604
    return Orienter<const GR, const DM>(graph, direction_map);
2606 2605
  }
2607 2606

	
2608 2607
  namespace _adaptor_bits {
2609 2608

	
2610
    template<typename _Digraph,
2611
             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
2612
             typename _FlowMap = _CapacityMap,
2613
             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
2609
    template<typename Digraph,
2610
             typename CapacityMap,
2611
             typename FlowMap,
2612
             typename Tolerance>
2614 2613
    class ResForwardFilter {
2615 2614
    public:
2616 2615

	
2617
      typedef _Digraph Digraph;
2618
      typedef _CapacityMap CapacityMap;
2619
      typedef _FlowMap FlowMap;
2620
      typedef _Tolerance Tolerance;
2621

	
2622 2616
      typedef typename Digraph::Arc Key;
2623 2617
      typedef bool Value;
2624 2618

	
2625 2619
    private:
2626 2620

	
2627 2621
      const CapacityMap* _capacity;
2628 2622
      const FlowMap* _flow;
2629 2623
      Tolerance _tolerance;
2630 2624
    public:
2631 2625

	
2632 2626
      ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow,
2633 2627
                       const Tolerance& tolerance = Tolerance())
2634 2628
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2635 2629

	
2636 2630
      bool operator[](const typename Digraph::Arc& a) const {
2637 2631
        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2638 2632
      }
2639 2633
    };
2640 2634

	
2641
    template<typename _Digraph,
2642
             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
2643
             typename _FlowMap = _CapacityMap,
2644
             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
2635
    template<typename Digraph,
2636
             typename CapacityMap,
2637
             typename FlowMap,
2638
             typename Tolerance>
2645 2639
    class ResBackwardFilter {
2646 2640
    public:
2647 2641

	
2648
      typedef _Digraph Digraph;
2649
      typedef _CapacityMap CapacityMap;
2650
      typedef _FlowMap FlowMap;
2651
      typedef _Tolerance Tolerance;
2652

	
2653 2642
      typedef typename Digraph::Arc Key;
2654 2643
      typedef bool Value;
2655 2644

	
2656 2645
    private:
2657 2646

	
2658 2647
      const CapacityMap* _capacity;
2659 2648
      const FlowMap* _flow;
2660 2649
      Tolerance _tolerance;
2661 2650

	
2662 2651
    public:
2663 2652

	
2664 2653
      ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow,
2665 2654
                        const Tolerance& tolerance = Tolerance())
2666 2655
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2667 2656

	
2668 2657
      bool operator[](const typename Digraph::Arc& a) const {
2669 2658
        return _tolerance.positive((*_flow)[a]);
2670 2659
      }
2671 2660
    };
2672 2661

	
2673 2662
  }
2674 2663

	
2675 2664
  /// \ingroup graph_adaptors
2676 2665
  ///
2677 2666
  /// \brief Adaptor class for composing the residual digraph for directed
2678 2667
  /// flow and circulation problems.
2679 2668
  ///
2680 2669
  /// Residual can be used for composing the \e residual digraph for directed
2681 2670
  /// flow and circulation problems. Let \f$ G=(V, A) \f$ be a directed graph
2682 2671
  /// and let \f$ F \f$ be a number type. Let \f$ flow, cap: A\to F \f$ be
2683 2672
  /// functions on the arcs.
2684 2673
  /// This adaptor implements a digraph structure with node set \f$ V \f$
2685 2674
  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2686 2675
  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2687 2676
  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2688 2677
  /// called residual digraph.
2689 2678
  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2690 2679
  /// multiplicities are counted, i.e. the adaptor has exactly
2691 2680
  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2692 2681
  /// arcs).
2693 2682
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2694 2683
  ///
2695
  /// \tparam _Digraph The type of the adapted digraph.
2684
  /// \tparam GR The type of the adapted digraph.
2696 2685
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2697 2686
  /// It is implicitly \c const.
2698
  /// \tparam _CapacityMap An arc map of some numerical type, which defines
2687
  /// \tparam CM The type of the capacity map.
2688
  /// It must be an arc map of some numerical type, which defines
2699 2689
  /// the capacities in the flow problem. It is implicitly \c const.
2700
  /// The default map type is
2701
  /// \ref concepts::Digraph::ArcMap "_Digraph::ArcMap<int>".
2702
  /// \tparam _FlowMap An arc map of some numerical type, which defines
2703
  /// the flow values in the flow problem.
2704
  /// The default map type is \c _CapacityMap.
2705
  /// \tparam _Tolerance Tolerance type for handling inexact computation.
2690
  /// The default type is
2691
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2692
  /// \tparam FM The type of the flow map.
2693
  /// It must be an arc map of some numerical type, which defines
2694
  /// the flow values in the flow problem. The default type is \c CM.
2695
  /// \tparam TL The tolerance type for handling inexact computation.
2706 2696
  /// The default tolerance type depends on the value type of the
2707 2697
  /// capacity map.
2708 2698
  ///
2709 2699
  /// \note This adaptor is implemented using Undirector and FilterArcs
2710 2700
  /// adaptors.
2711 2701
  ///
2712 2702
  /// \note The \c Node type of this adaptor and the adapted digraph are
2713 2703
  /// convertible to each other, moreover the \c Arc type of the adaptor
2714 2704
  /// is convertible to the \c Arc type of the adapted digraph.
2715 2705
#ifdef DOXYGEN
2716
  template<typename _Digraph,
2717
           typename _CapacityMap,
2718
           typename _FlowMap,
2719
           typename _Tolerance>
2706
  template<typename GR, typename CM, typename FM, typename TL>
2720 2707
  class Residual
2721 2708
#else
2722
  template<typename _Digraph,
2723
           typename _CapacityMap = typename _Digraph::template ArcMap<int>,
2724
           typename _FlowMap = _CapacityMap,
2725
           typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
2709
  template<typename GR,
2710
           typename CM = typename GR::template ArcMap<int>,
2711
           typename FM = CM,
2712
           typename TL = Tolerance<typename CM::Value> >
2726 2713
  class Residual :
2727 2714
    public FilterArcs<
2728
    Undirector<const _Digraph>,
2729
    typename Undirector<const _Digraph>::template CombinedArcMap<
2730
      _adaptor_bits::ResForwardFilter<const _Digraph, _CapacityMap,
2731
                                      _FlowMap, _Tolerance>,
2732
      _adaptor_bits::ResBackwardFilter<const _Digraph, _CapacityMap,
2733
                                       _FlowMap, _Tolerance> > >
2715
      Undirector<const GR>,
2716
      typename Undirector<const GR>::template CombinedArcMap<
2717
        _adaptor_bits::ResForwardFilter<const GR, CM, FM, TL>,
2718
        _adaptor_bits::ResBackwardFilter<const GR, CM, FM, TL> > >
2734 2719
#endif
2735 2720
  {
2736 2721
  public:
2737 2722

	
2738 2723
    /// The type of the underlying digraph.
2739
    typedef _Digraph Digraph;
2724
    typedef GR Digraph;
2740 2725
    /// The type of the capacity map.
2741
    typedef _CapacityMap CapacityMap;
2726
    typedef CM CapacityMap;
2742 2727
    /// The type of the flow map.
2743
    typedef _FlowMap FlowMap;
2744
    typedef _Tolerance Tolerance;
2728
    typedef FM FlowMap;
2729
    /// The tolerance type.
2730
    typedef TL Tolerance;
2745 2731

	
2746 2732
    typedef typename CapacityMap::Value Value;
2747 2733
    typedef Residual Adaptor;
2748 2734

	
2749 2735
  protected:
2750 2736

	
2751 2737
    typedef Undirector<const Digraph> Undirected;
2752 2738

	
2753 2739
    typedef _adaptor_bits::ResForwardFilter<const Digraph, CapacityMap,
2754 2740
                                            FlowMap, Tolerance> ForwardFilter;
2755 2741

	
2756 2742
    typedef _adaptor_bits::ResBackwardFilter<const Digraph, CapacityMap,
2757 2743
                                             FlowMap, Tolerance> BackwardFilter;
2758 2744

	
2759 2745
    typedef typename Undirected::
2760 2746
    template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2761 2747

	
2762 2748
    typedef FilterArcs<Undirected, ArcFilter> Parent;
2763 2749

	
2764 2750
    const CapacityMap* _capacity;
2765 2751
    FlowMap* _flow;
2766 2752

	
2767 2753
    Undirected _graph;
2768 2754
    ForwardFilter _forward_filter;
2769 2755
    BackwardFilter _backward_filter;
2770 2756
    ArcFilter _arc_filter;
2771 2757

	
2772 2758
  public:
2773 2759

	
2774 2760
    /// \brief Constructor
2775 2761
    ///
2776 2762
    /// Constructor of the residual digraph adaptor. The parameters are the
2777 2763
    /// digraph, the capacity map, the flow map, and a tolerance object.
2778 2764
    Residual(const Digraph& digraph, const CapacityMap& capacity,
2779 2765
             FlowMap& flow, const Tolerance& tolerance = Tolerance())
2780 2766
      : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph),
2781 2767
        _forward_filter(capacity, flow, tolerance),
2782 2768
        _backward_filter(capacity, flow, tolerance),
2783 2769
        _arc_filter(_forward_filter, _backward_filter)
2784 2770
    {
2785 2771
      Parent::setDigraph(_graph);
2786 2772
      Parent::setArcFilterMap(_arc_filter);
2787 2773
    }
2788 2774

	
2789 2775
    typedef typename Parent::Arc Arc;
2790 2776

	
2791 2777
    /// \brief Returns the residual capacity of the given arc.
2792 2778
    ///
... ...
@@ -2811,129 +2797,127 @@
2811 2797
        _flow->set(a, (*_flow)[a] - v);
2812 2798
      }
2813 2799
    }
2814 2800

	
2815 2801
    /// \brief Returns \c true if the given residual arc is a forward arc.
2816 2802
    ///
2817 2803
    /// Returns \c true if the given residual arc has the same orientation
2818 2804
    /// as the original arc, i.e. it is a so called forward arc.
2819 2805
    static bool forward(const Arc& a) {
2820 2806
      return Undirected::direction(a);
2821 2807
    }
2822 2808

	
2823 2809
    /// \brief Returns \c true if the given residual arc is a backward arc.
2824 2810
    ///
2825 2811
    /// Returns \c true if the given residual arc has the opposite orientation
2826 2812
    /// than the original arc, i.e. it is a so called backward arc.
2827 2813
    static bool backward(const Arc& a) {
2828 2814
      return !Undirected::direction(a);
2829 2815
    }
2830 2816

	
2831 2817
    /// \brief Returns the forward oriented residual arc.
2832 2818
    ///
2833 2819
    /// Returns the forward oriented residual arc related to the given
2834 2820
    /// arc of the underlying digraph.
2835 2821
    static Arc forward(const typename Digraph::Arc& a) {
2836 2822
      return Undirected::direct(a, true);
2837 2823
    }
2838 2824

	
2839 2825
    /// \brief Returns the backward oriented residual arc.
2840 2826
    ///
2841 2827
    /// Returns the backward oriented residual arc related to the given
2842 2828
    /// arc of the underlying digraph.
2843 2829
    static Arc backward(const typename Digraph::Arc& a) {
2844 2830
      return Undirected::direct(a, false);
2845 2831
    }
2846 2832

	
2847 2833
    /// \brief Residual capacity map.
2848 2834
    ///
2849 2835
    /// This map adaptor class can be used for obtaining the residual
2850 2836
    /// capacities as an arc map of the residual digraph.
2851 2837
    /// Its value type is inherited from the capacity map.
2852 2838
    class ResidualCapacity {
2853 2839
    protected:
2854 2840
      const Adaptor* _adaptor;
2855 2841
    public:
2856 2842
      /// The key type of the map
2857 2843
      typedef Arc Key;
2858 2844
      /// The value type of the map
2859
      typedef typename _CapacityMap::Value Value;
2845
      typedef typename CapacityMap::Value Value;
2860 2846

	
2861 2847
      /// Constructor
2862 2848
      ResidualCapacity(const Adaptor& adaptor) : _adaptor(&adaptor) {}
2863 2849

	
2864 2850
      /// Returns the value associated with the given residual arc
2865 2851
      Value operator[](const Arc& a) const {
2866 2852
        return _adaptor->residualCapacity(a);
2867 2853
      }
2868 2854

	
2869 2855
    };
2870 2856

	
2871 2857
    /// \brief Returns a residual capacity map
2872 2858
    ///
2873 2859
    /// This function just returns a residual capacity map.
2874 2860
    ResidualCapacity residualCapacity() const {
2875 2861
      return ResidualCapacity(*this);
2876 2862
    }
2877 2863

	
2878 2864
  };
2879 2865

	
2880 2866
  /// \brief Returns a (read-only) Residual adaptor
2881 2867
  ///
2882 2868
  /// This function just returns a (read-only) \ref Residual adaptor.
2883 2869
  /// \ingroup graph_adaptors
2884 2870
  /// \relates Residual
2885
  template<typename Digraph, typename CapacityMap, typename FlowMap>
2886
  Residual<Digraph, CapacityMap, FlowMap>
2887
  residual(const Digraph& digraph,
2888
           const CapacityMap& capacity,
2889
           FlowMap& flow)
2890
  {
2891
    return Residual<Digraph, CapacityMap, FlowMap> (digraph, capacity, flow);
2871
  template<typename GR, typename CM, typename FM>
2872
  Residual<GR, CM, FM> residual(const GR& digraph,
2873
                                const CM& capacity_map,
2874
                                FM& flow_map) {
2875
    return Residual<GR, CM, FM> (digraph, capacity_map, flow_map);
2892 2876
  }
2893 2877

	
2894 2878

	
2895 2879
  template <typename _Digraph>
2896 2880
  class SplitNodesBase {
2897 2881
  public:
2898 2882

	
2899 2883
    typedef _Digraph Digraph;
2900 2884
    typedef DigraphAdaptorBase<const _Digraph> Parent;
2901 2885
    typedef SplitNodesBase Adaptor;
2902 2886

	
2903 2887
    typedef typename Digraph::Node DigraphNode;
2904 2888
    typedef typename Digraph::Arc DigraphArc;
2905 2889

	
2906 2890
    class Node;
2907 2891
    class Arc;
2908 2892

	
2909 2893
  private:
2910 2894

	
2911 2895
    template <typename T> class NodeMapBase;
2912 2896
    template <typename T> class ArcMapBase;
2913 2897

	
2914 2898
  public:
2915 2899

	
2916 2900
    class Node : public DigraphNode {
2917 2901
      friend class SplitNodesBase;
2918 2902
      template <typename T> friend class NodeMapBase;
2919 2903
    private:
2920 2904

	
2921 2905
      bool _in;
2922 2906
      Node(DigraphNode node, bool in)
2923 2907
        : DigraphNode(node), _in(in) {}
2924 2908

	
2925 2909
    public:
2926 2910

	
2927 2911
      Node() {}
2928 2912
      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2929 2913

	
2930 2914
      bool operator==(const Node& node) const {
2931 2915
        return DigraphNode::operator==(node) && _in == node._in;
2932 2916
      }
2933 2917

	
2934 2918
      bool operator!=(const Node& node) const {
2935 2919
        return !(*this == node);
2936 2920
      }
2937 2921

	
2938 2922
      bool operator<(const Node& node) const {
2939 2923
        return DigraphNode::operator<(node) ||
... ...
@@ -3294,108 +3278,112 @@
3294 3278
      ArcMap(const Adaptor& adaptor, const Value& value)
3295 3279
        : Parent(adaptor, value) {}
3296 3280

	
3297 3281
    private:
3298 3282
      ArcMap& operator=(const ArcMap& cmap) {
3299 3283
        return operator=<ArcMap>(cmap);
3300 3284
      }
3301 3285

	
3302 3286
      template <typename CMap>
3303 3287
      ArcMap& operator=(const CMap& cmap) {
3304 3288
        Parent::operator=(cmap);
3305 3289
        return *this;
3306 3290
      }
3307 3291
    };
3308 3292

	
3309 3293
  protected:
3310 3294

	
3311 3295
    SplitNodesBase() : _digraph(0) {}
3312 3296

	
3313 3297
    Digraph* _digraph;
3314 3298

	
3315 3299
    void setDigraph(Digraph& digraph) {
3316 3300
      _digraph = &digraph;
3317 3301
    }
3318 3302

	
3319 3303
  };
3320 3304

	
3321 3305
  /// \ingroup graph_adaptors
3322 3306
  ///
3323 3307
  /// \brief Adaptor class for splitting the nodes of a digraph.
3324 3308
  ///
3325 3309
  /// SplitNodes adaptor can be used for splitting each node into an
3326 3310
  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3327 3311
  /// replaces each node \f$ u \f$ in the digraph with two nodes,
3328 3312
  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3329 3313
  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3330 3314
  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3331 3315
  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3332 3316
  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3333 3317
  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3334 3318
  ///
3335 3319
  /// The aim of this class is running an algorithm with respect to node
3336 3320
  /// costs or capacities if the algorithm considers only arc costs or
3337 3321
  /// capacities directly.
3338 3322
  /// In this case you can use \c SplitNodes adaptor, and set the node
3339 3323
  /// costs/capacities of the original digraph to the \e bind \e arcs
3340 3324
  /// in the adaptor.
3341 3325
  ///
3342
  /// \tparam _Digraph The type of the adapted digraph.
3326
  /// \tparam GR The type of the adapted digraph.
3343 3327
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3344 3328
  /// It is implicitly \c const.
3345 3329
  ///
3346 3330
  /// \note The \c Node type of this adaptor is converible to the \c Node
3347 3331
  /// type of the adapted digraph.
3348
  template <typename _Digraph>
3332
  template <typename GR>
3333
#ifdef DOXYGEN
3334
  class SplitNodes {
3335
#else
3349 3336
  class SplitNodes
3350
    : public DigraphAdaptorExtender<SplitNodesBase<const _Digraph> > {
3337
    : public DigraphAdaptorExtender<SplitNodesBase<const GR> > {
3338
#endif
3351 3339
  public:
3352
    typedef _Digraph Digraph;
3353
    typedef DigraphAdaptorExtender<SplitNodesBase<const Digraph> > Parent;
3340
    typedef GR Digraph;
3341
    typedef DigraphAdaptorExtender<SplitNodesBase<const GR> > Parent;
3354 3342

	
3355 3343
    typedef typename Digraph::Node DigraphNode;
3356 3344
    typedef typename Digraph::Arc DigraphArc;
3357 3345

	
3358 3346
    typedef typename Parent::Node Node;
3359 3347
    typedef typename Parent::Arc Arc;
3360 3348

	
3361 3349
    /// \brief Constructor
3362 3350
    ///
3363 3351
    /// Constructor of the adaptor.
3364 3352
    SplitNodes(const Digraph& g) {
3365 3353
      Parent::setDigraph(g);
3366 3354
    }
3367 3355

	
3368 3356
    /// \brief Returns \c true if the given node is an in-node.
3369 3357
    ///
3370 3358
    /// Returns \c true if the given node is an in-node.
3371 3359
    static bool inNode(const Node& n) {
3372 3360
      return Parent::inNode(n);
3373 3361
    }
3374 3362

	
3375 3363
    /// \brief Returns \c true if the given node is an out-node.
3376 3364
    ///
3377 3365
    /// Returns \c true if the given node is an out-node.
3378 3366
    static bool outNode(const Node& n) {
3379 3367
      return Parent::outNode(n);
3380 3368
    }
3381 3369

	
3382 3370
    /// \brief Returns \c true if the given arc is an original arc.
3383 3371
    ///
3384 3372
    /// Returns \c true if the given arc is one of the arcs in the
3385 3373
    /// original digraph.
3386 3374
    static bool origArc(const Arc& a) {
3387 3375
      return Parent::origArc(a);
3388 3376
    }
3389 3377

	
3390 3378
    /// \brief Returns \c true if the given arc is a bind arc.
3391 3379
    ///
3392 3380
    /// Returns \c true if the given arc is a bind arc, i.e. it connects
3393 3381
    /// an in-node and an out-node.
3394 3382
    static bool bindArc(const Arc& a) {
3395 3383
      return Parent::bindArc(a);
3396 3384
    }
3397 3385

	
3398 3386
    /// \brief Returns the in-node created from the given original node.
3399 3387
    ///
3400 3388
    /// Returns the in-node created from the given original node.
3401 3389
    static Node inNode(const DigraphNode& n) {
... ...
@@ -3476,153 +3464,143 @@
3476 3464
          _in_map.set(key, value);
3477 3465
        } else {
3478 3466
          _out_map.set(key, value);
3479 3467
        }
3480 3468
      }
3481 3469

	
3482 3470
    private:
3483 3471

	
3484 3472
      InNodeMap& _in_map;
3485 3473
      OutNodeMap& _out_map;
3486 3474

	
3487 3475
    };
3488 3476

	
3489 3477

	
3490 3478
    /// \brief Returns a combined node map
3491 3479
    ///
3492 3480
    /// This function just returns a combined node map.
3493 3481
    template <typename InNodeMap, typename OutNodeMap>
3494 3482
    static CombinedNodeMap<InNodeMap, OutNodeMap>
3495 3483
    combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
3496 3484
      return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
3497 3485
    }
3498 3486

	
3499 3487
    template <typename InNodeMap, typename OutNodeMap>
3500 3488
    static CombinedNodeMap<const InNodeMap, OutNodeMap>
3501 3489
    combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
3502 3490
      return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
3503 3491
    }
3504 3492

	
3505 3493
    template <typename InNodeMap, typename OutNodeMap>
3506 3494
    static CombinedNodeMap<InNodeMap, const OutNodeMap>
3507 3495
    combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
3508 3496
      return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
3509 3497
    }
3510 3498

	
3511 3499
    template <typename InNodeMap, typename OutNodeMap>
3512 3500
    static CombinedNodeMap<const InNodeMap, const OutNodeMap>
3513 3501
    combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
3514 3502
      return CombinedNodeMap<const InNodeMap,
3515 3503
        const OutNodeMap>(in_map, out_map);
3516 3504
    }
3517 3505

	
3518 3506
    /// \brief Arc map combined from an arc map and a node map of the
3519 3507
    /// original digraph.
3520 3508
    ///
3521 3509
    /// This map adaptor class adapts an arc map and a node map of the
3522 3510
    /// original digraph to get an arc map of the split digraph.
3523 3511
    /// Its value type is inherited from the original arc map type
3524
    /// (\c DigraphArcMap).
3525
    template <typename DigraphArcMap, typename DigraphNodeMap>
3512
    /// (\c ArcMap).
3513
    template <typename ArcMap, typename NodeMap>
3526 3514
    class CombinedArcMap {
3527 3515
    public:
3528 3516

	
3529 3517
      /// The key type of the map
3530 3518
      typedef Arc Key;
3531 3519
      /// The value type of the map
3532
      typedef typename DigraphArcMap::Value Value;
3533

	
3534
      typedef typename MapTraits<DigraphArcMap>::ReferenceMapTag
3535
        ReferenceMapTag;
3536
      typedef typename MapTraits<DigraphArcMap>::ReturnValue
3537
        ReturnValue;
3538
      typedef typename MapTraits<DigraphArcMap>::ConstReturnValue
3539
        ConstReturnValue;
3540
      typedef typename MapTraits<DigraphArcMap>::ReturnValue
3541
        Reference;
3542
      typedef typename MapTraits<DigraphArcMap>::ConstReturnValue
3543
        ConstReference;
3520
      typedef typename ArcMap::Value Value;
3521

	
3522
      typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag;
3523
      typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue;
3524
      typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue;
3525
      typedef typename MapTraits<ArcMap>::ReturnValue Reference;
3526
      typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReference;
3544 3527

	
3545 3528
      /// Constructor
3546
      CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map)
3529
      CombinedArcMap(ArcMap& arc_map, NodeMap& node_map)
3547 3530
        : _arc_map(arc_map), _node_map(node_map) {}
3548 3531

	
3549 3532
      /// Returns the value associated with the given key.
3550 3533
      Value operator[](const Key& arc) const {
3551 3534
        if (Parent::origArc(arc)) {
3552 3535
          return _arc_map[arc];
3553 3536
        } else {
3554 3537
          return _node_map[arc];
3555 3538
        }
3556 3539
      }
3557 3540

	
3558 3541
      /// Returns a reference to the value associated with the given key.
3559 3542
      Value& operator[](const Key& arc) {
3560 3543
        if (Parent::origArc(arc)) {
3561 3544
          return _arc_map[arc];
3562 3545
        } else {
3563 3546
          return _node_map[arc];
3564 3547
        }
3565 3548
      }
3566 3549

	
3567 3550
      /// Sets the value associated with the given key.
3568 3551
      void set(const Arc& arc, const Value& val) {
3569 3552
        if (Parent::origArc(arc)) {
3570 3553
          _arc_map.set(arc, val);
3571 3554
        } else {
3572 3555
          _node_map.set(arc, val);
3573 3556
        }
3574 3557
      }
3575 3558

	
3576 3559
    private:
3577
      DigraphArcMap& _arc_map;
3578
      DigraphNodeMap& _node_map;
3560
      ArcMap& _arc_map;
3561
      NodeMap& _node_map;
3579 3562
    };
3580 3563

	
3581 3564
    /// \brief Returns a combined arc map
3582 3565
    ///
3583 3566
    /// This function just returns a combined arc map.
3584
    template <typename DigraphArcMap, typename DigraphNodeMap>
3585
    static CombinedArcMap<DigraphArcMap, DigraphNodeMap>
3586
    combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
3587
      return CombinedArcMap<DigraphArcMap, DigraphNodeMap>(arc_map, node_map);
3588
    }
3589

	
3590
    template <typename DigraphArcMap, typename DigraphNodeMap>
3591
    static CombinedArcMap<const DigraphArcMap, DigraphNodeMap>
3592
    combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
3593
      return CombinedArcMap<const DigraphArcMap,
3594
        DigraphNodeMap>(arc_map, node_map);
3595
    }
3596

	
3597
    template <typename DigraphArcMap, typename DigraphNodeMap>
3598
    static CombinedArcMap<DigraphArcMap, const DigraphNodeMap>
3599
    combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) {
3600
      return CombinedArcMap<DigraphArcMap,
3601
        const DigraphNodeMap>(arc_map, node_map);
3602
    }
3603

	
3604
    template <typename DigraphArcMap, typename DigraphNodeMap>
3605
    static CombinedArcMap<const DigraphArcMap, const DigraphNodeMap>
3606
    combinedArcMap(const DigraphArcMap& arc_map,
3607
                   const DigraphNodeMap& node_map) {
3608
      return CombinedArcMap<const DigraphArcMap,
3609
        const DigraphNodeMap>(arc_map, node_map);
3567
    template <typename ArcMap, typename NodeMap>
3568
    static CombinedArcMap<ArcMap, NodeMap>
3569
    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3570
      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3571
    }
3572

	
3573
    template <typename ArcMap, typename NodeMap>
3574
    static CombinedArcMap<const ArcMap, NodeMap>
3575
    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3576
      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3577
    }
3578

	
3579
    template <typename ArcMap, typename NodeMap>
3580
    static CombinedArcMap<ArcMap, const NodeMap>
3581
    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3582
      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3583
    }
3584

	
3585
    template <typename ArcMap, typename NodeMap>
3586
    static CombinedArcMap<const ArcMap, const NodeMap>
3587
    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3588
      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3610 3589
    }
3611 3590

	
3612 3591
  };
3613 3592

	
3614 3593
  /// \brief Returns a (read-only) SplitNodes adaptor
3615 3594
  ///
3616 3595
  /// This function just returns a (read-only) \ref SplitNodes adaptor.
3617 3596
  /// \ingroup graph_adaptors
3618 3597
  /// \relates SplitNodes
3619
  template<typename Digraph>
3620
  SplitNodes<Digraph>
3621
  splitNodes(const Digraph& digraph) {
3622
    return SplitNodes<Digraph>(digraph);
3623
  }
3624

	
3598
  template<typename GR>
3599
  SplitNodes<GR>
3600
  splitNodes(const GR& digraph) {
3601
    return SplitNodes<GR>(digraph);
3602
  }
3625 3603

	
3626 3604
} //namespace lemon
3627 3605

	
3628 3606
#endif //LEMON_ADAPTORS_H
... ...
@@ -128,100 +128,96 @@
128 128

	
129 129
      OutArcIt& operator++() {
130 130
        _adaptor->nextOut(*this);
131 131
        return *this;
132 132
      }
133 133

	
134 134
    };
135 135

	
136 136

	
137 137
    class InArcIt : public Arc {
138 138
      const Adaptor* _adaptor;
139 139
    public:
140 140

	
141 141
      InArcIt() { }
142 142

	
143 143
      InArcIt(Invalid i) : Arc(i) { }
144 144

	
145 145
      InArcIt(const Adaptor& adaptor, const Node& node)
146 146
        : _adaptor(&adaptor) {
147 147
        _adaptor->firstIn(*this, node);
148 148
      }
149 149

	
150 150
      InArcIt(const Adaptor& adaptor, const Arc& arc) :
151 151
        Arc(arc), _adaptor(&adaptor) {}
152 152

	
153 153
      InArcIt& operator++() {
154 154
        _adaptor->nextIn(*this);
155 155
        return *this;
156 156
      }
157 157

	
158 158
    };
159 159

	
160 160
    Node baseNode(const OutArcIt &e) const {
161 161
      return Parent::source(e);
162 162
    }
163 163
    Node runningNode(const OutArcIt &e) const {
164 164
      return Parent::target(e);
165 165
    }
166 166

	
167 167
    Node baseNode(const InArcIt &e) const {
168 168
      return Parent::target(e);
169 169
    }
170 170
    Node runningNode(const InArcIt &e) const {
171 171
      return Parent::source(e);
172 172
    }
173 173

	
174 174
  };
175 175

	
176

	
177
  /// \ingroup digraphbits
178
  ///
179
  /// \brief Extender for the GraphAdaptors
180 176
  template <typename _Graph>
181 177
  class GraphAdaptorExtender : public _Graph {
182 178
  public:
183 179

	
184 180
    typedef _Graph Parent;
185 181
    typedef _Graph Graph;
186 182
    typedef GraphAdaptorExtender Adaptor;
187 183

	
188 184
    typedef typename Parent::Node Node;
189 185
    typedef typename Parent::Arc Arc;
190 186
    typedef typename Parent::Edge Edge;
191 187

	
192 188
    // Graph extension
193 189

	
194 190
    int maxId(Node) const {
195 191
      return Parent::maxNodeId();
196 192
    }
197 193

	
198 194
    int maxId(Arc) const {
199 195
      return Parent::maxArcId();
200 196
    }
201 197

	
202 198
    int maxId(Edge) const {
203 199
      return Parent::maxEdgeId();
204 200
    }
205 201

	
206 202
    Node fromId(int id, Node) const {
207 203
      return Parent::nodeFromId(id);
208 204
    }
209 205

	
210 206
    Arc fromId(int id, Arc) const {
211 207
      return Parent::arcFromId(id);
212 208
    }
213 209

	
214 210
    Edge fromId(int id, Edge) const {
215 211
      return Parent::edgeFromId(id);
216 212
    }
217 213

	
218 214
    Node oppositeNode(const Node &n, const Edge &e) const {
219 215
      if( n == Parent::u(e))
220 216
        return Parent::v(e);
221 217
      else if( n == Parent::v(e))
222 218
        return Parent::u(e);
223 219
      else
224 220
        return INVALID;
225 221
    }
226 222

	
227 223
    Arc oppositeArc(const Arc &a) const {
0 comments (0 inline)